Sample records for safe space s4

  1. Cultivating the Art of Safe Space

    ERIC Educational Resources Information Center

    Hunter, Mary Ann

    2008-01-01

    Performance-making and peace-building are processes predicated on the production of safe space. But what is "safe space"? In performance-making, what is it that makes space safe without losing the creative potential of tension? What role is there for risk? And, once achieved, how does safe space become meaningful beyond its immediate…

  2. Safe Zones: Creating LGBT Safe Space Ally Programs

    ERIC Educational Resources Information Center

    Poynter, Kerry John; Tubbs, Nancy Jean

    2008-01-01

    This article discusses model LGBT Safe Space Ally programs. These programs, often called "Safe Zones," include self selected students, faculty, and employees who publicly show support by displaying stickers, signs, and other identifiable items. Issues covered in the article include history, development, training, membership, assessment, and…

  3. Is Prevent a Safe Space?

    ERIC Educational Resources Information Center

    Ramsay, Peter

    2017-01-01

    In this article, I test the claims of the UK government and universities that the Prevent programme aims to create a safe space for the discussion of "extremist" ideas in universities. I do this by comparing the main elements of the Prevent duty that has been imposed on universities with those of safe spaces as imagined by student…

  4. More than a Safe Space

    ERIC Educational Resources Information Center

    Sadowski, Michael

    2016-01-01

    Over the past three decades, much of the conversation about LGBTQ students in schools has centered on safety--anti-bullying policies, the "safe space" of gay-straight alliances, and "safe zones" marked by rainbow-colored stickers on classroom doors. In this article, Michael Sadowski argues that it's time to move beyond safety…

  5. Investigation of safe-life fail-safe criteria for the space shuttle

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An investigation was made to determine the effects of a safe-life design approach and a fail-safe design approach on the space shuttle booster vehicle structure, and to recommend any changes to the structural design criteria. Two configurations of the booster vehicle were considered, one incorporating a delta wing (B-9U configuration) and the other a swept wing (B-16B configuration). Several major structural components of the booster were studied to determine the fatigue life, safe-life, and fail-safe capabilities of the baseline design. Each component was investigated to determine the practicability of applying a safe-life or fail-safe design philosophy, the changes such design approaches might require, and the impact of these changes on weight, cost, development plans, and performance.

  6. Creating Safe Spaces for Music Learning

    ERIC Educational Resources Information Center

    Hendricks, Karin S.; Smith, Tawnya D.; Stanuch, Jennifer

    2014-01-01

    This article offers a practical model for fostering emotionally safe learning environments that instill in music students a positive sense of self-belief, freedom, and purpose. The authors examine the implications for music educators of creating effective learning environments and present recommendations for creating a safe space for learning,…

  7. The Safe Space Kit: Guide to Being an Ally to LGBT Students

    ERIC Educational Resources Information Center

    Gay, Lesbian and Straight Education Network (GLSEN), 2009

    2009-01-01

    "The Safe Space Kit" is designed to help educators create a safe space for LGBT (lesbian, gay, bisexual, and transgender) students. One of the most effective ways for an educator to create a safe space is to be a supportive ally to LGBT students. The hard copy of "The Safe Space Kit" includes the "Guide to Being an Ally," ten "Safe Space" stickers…

  8. Safe Space Oddity: Revisiting Critical Pedagogy

    ERIC Educational Resources Information Center

    Redmond, Melissa

    2010-01-01

    Inspired by an incident in a social work graduate classroom in which she was a teaching assistant, the author reflects on her commitment to constructivist teaching methods, critical theory, and critical pedagogy. Exploring the educational utility of notions such as public space and safe space, the author employs this personal experience to examine…

  9. S3/S4 Integrated Truss being moved into the Space Shuttle Payloa

    NASA Image and Video Library

    2007-02-07

    In the Space Station Processing Facility, an overhead crane moves the S3/S4 integrated truss to a payload canister. After it is stowed in the canister, the S3/S4 truss will be transported to the launch pad. The truss is the payload on mission STS-117, targeted for launch on March 15.

  10. S3/S4 Integrated Truss being moved into the Space Shuttle Payloa

    NASA Image and Video Library

    2007-02-07

    In the Space Station Processing Facility, an overhead crane settles the S3/S4 integrated truss into the payload canister. After it is stowed in the canister, the S3/S4 truss will be transported to the launch pad. The truss is the payload on mission STS-117, targeted for launch on March 15.

  11. S3/S4 Integrated Truss being moved into the Space Shuttle Payloa

    NASA Image and Video Library

    2007-02-07

    In the Space Station Processing Facility, an overhead crane lowers the S3/S4 integrated truss into the open bay of the payload canister. After it is stowed in the canister, the S3/S4 truss will be transported to the launch pad. The truss is the payload on mission STS-117, targeted for launch on March 15.

  12. S3/S4 Integrated Truss being moved into the Space Shuttle Payloa

    NASA Image and Video Library

    2007-02-07

    In the Space Station Processing Facility, an overhead crane lowers the S3/S4 integrated truss toward the open doors of the payload canister. After it is stowed in the canister, the S3/S4 truss will be transported to the launch pad. The truss is the payload on mission STS-117, targeted for launch on March 15.

  13. S3/S4 Integrated Truss being moved into the Space Shuttle Payloa

    NASA Image and Video Library

    2007-02-07

    In the Space Station Processing Facility, workers attach an overhead crane to the S3/S4 integrated truss in order to move it to the payload canister. After it is stowed in the canister, the S3/S4 truss will be transported to the launch pad. The truss is the payload on mission STS-117, targeted for launch on March 15.

  14. STS-117 S3 and S4 Trusses in the Space Shuttle Atlantis Cargo Bay

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This nadir view of the STS-117 mission Space Shuttle Atlantis, taken by the Expedition 15 crew aboard the International Space Station (ISS), occurred just before the two spacecraft linked up in Earth orbit. Berthed in the cargo bay are the 17.8 ton second and third (S3 and S4) truss segments ready for installment. STS-117 mission objectives included the addition of S3 and S4 with Photovoltaic Radiator (PVR), the deployment of the third set of solar arrays, and the retraction of the P4 starboard solar array wing and one radiator.

  15. Safe Haven Configurations for Deep Space Transit Habitats

    NASA Technical Reports Server (NTRS)

    Smitherman, David; Polsgrove, Tara; Rowe, Justin; Simon, Matthew

    2017-01-01

    Throughout the human space flight program there have been instances where smoke, fire, and pressure loss have occurred onboard space vehicles, putting crews at risk for loss of mission and loss of life. In every instance the mission has been in Low-Earth-Orbit (LEO) with access to multiple volumes that could be used to quickly seal off the damaged module or escape vehicles for a quick return to Earth. For long duration space missions beyond LEO, including Mars transit missions of about 1000 days, the mass penalty for multiple volumes has been a concern as has operating in an environment where a quick return will not be possible. In 2016 a study was done to investigate a variety of dual pressure vessel configurations for habitats that could protect the crew from these hazards. It was found that for a modest increase in total mass it should be possible to provide significant protection for the crew. Several configurations were developed that either had a small safe haven to provide 30-days to recover, or a full duration safe haven using two equal size pressure vessel volumes. The 30-day safe haven was found to be the simplest, yielding the least total mass impact but still with some risk if recovery is not possible during that timeframe. The full duration safe haven was the most massive option but provided the most robust solution. This paper provides information on the various layouts considered in the study and provides a discussion of the findings for implementing a safe haven in future habitat designs.

  16. Finite-action solutions of Yang-Mills equations on de Sitter dS4 and anti-de Sitter AdS4 spaces

    NASA Astrophysics Data System (ADS)

    Ivanova, Tatiana A.; Lechtenfeld, Olaf; Popov, Alexander D.

    2017-11-01

    We consider pure SU(2) Yang-Mills theory on four-dimensional de Sitter dS4 and anti-de Sitter AdS4 spaces and construct various solutions to the Yang-Mills equations. On de Sitter space we reduce the Yang-Mills equations via an SU(2)-equivariant ansatz to Newtonian mechanics of a particle moving in R^3 under the influence of a quartic potential. Then we describe magnetic and electric-magnetic solutions, both Abelian and non-Abelian, all having finite energy and finite action. A similar reduction on anti-de Sitter space also yields Yang-Mills solutions with finite energy and action. We propose a lower bound for the action on both backgrounds. Employing another metric on AdS4, the SU(2) Yang-Mills equations are reduced to an analytic continuation of the above particle mechanics from R^3 to R^{2,1} . We discuss analytical solutions to these equations, which produce infinite-action configurations. After a Euclidean continuation of dS4 and AdS4 we also present self-dual (instanton-type) Yang-Mills solutions on these backgrounds.

  17. A safe operating space for humanity

    Treesearch

    Johan Rockström; Will Steffen; Kevin Noone; Asa Persson; F. Stuart Chapin; Eric F. Lambin; Timothy M. Lenton; Marten Scheffer; Carl Folke; Hans Joachim Schellnhuber; Björn Nykvist; Cynthia A. de Wit; Terry Hughes; Sander van der Leeuw; Henning Rodhe; Sverker Sörlin; Peter K. Snyder; Robert Costanza; Uno Svedin; Malin Falkenmark; Louise Karlberg; Robert W. Corell; Victoria J. Fabry; James Hansen; Brian Walker; Diana Liverman; Katherine Richardson; Paul Crutzen; Jonathan A. Foley

    2009-01-01

    To meet the challenge of maintaining the Holocene state, we propose a framework based on 'planetary boundaries'. These boundaries define the safe operating space for humanity with respect to the Earth system and are associated with the planet's biophysical subsystems or processes. Although Earth's complex systems sometimes respond smoothly to...

  18. Space Station Astronauts Return Safely to Earth on This Week @NASA – December 11, 2015

    NASA Image and Video Library

    2015-12-11

    On Dec. 11 aboard the International Space Station, NASA’s Kjell Lindgren, Russian cosmonaut Oleg Kononenko and Kimiya Yui of the Japan Aerospace Exploration Agency, bid farewell to crew members remaining on the station -- including Commander Scott Kelly, NASA’s one-year mission astronaut. The returning members of Expedition 45 then climbed aboard their Soyuz spacecraft for the trip back to Earth. They safely touched down hours later in Kazakhstan – closing out a 141-day stay in space. Also, Next space station crew prepares for launch, Supply mission arrives at space station, Quantum computing lab and more!

  19. Education in Safe and Unsafe Spaces

    ERIC Educational Resources Information Center

    Callan, Eamonn

    2016-01-01

    Recent student demands within the academy for "safe space" have aroused concern about the constraints they might impose on free speech and academic freedom. There are as many kinds of safety as there are threats to the things that human beings might care about. That is why we need to be very clear about the specific threats of which the…

  20. Is "Safety" Dangerous? A Critical Examination of the Classroom as Safe Space

    ERIC Educational Resources Information Center

    Barrett, Betty J.

    2010-01-01

    The notion that the classroom can, indeed must, be a safe space to promote student engagement and enhance academic outcomes is pervasive in the teaching and learning literature. Despite the prevalence of this claim, there is a dearth of empirical evidence documenting the effectiveness of safe space classrooms in achieving these goals. The purpose…

  1. Safe Haven Configurations for Deep Space Transit Habitats

    NASA Technical Reports Server (NTRS)

    Smitherman, David; Polsgrove, Tara; Rowe, Justin; Simon, Matthew

    2017-01-01

    Throughout the human space flight program there have been instances where systems failures resulting in smoke, fire, and pressure loss have occurred onboard space vehicles, putting crews at risk for loss of mission and loss of life. In most instances the missions have been in Low-Earth-Orbit (LEO) or Earth-Moon vicinity, with access to multiple volumes that could be used to quickly seal off the damaged module or access escape vehicles for return to Earth. For long duration missions beyond LEO, including Mars transit missions of about 1100 days, the mass penalty for multiple volumes and operating in an environment where a quick return will not be possible have been concerns. In 2016, a study was done to investigate a variety of dual pressure vessel configurations for habitats that could protect the crew from these hazards. It was found that with a modest increase in total mass it should be possible to provide significant protection for the crew. Several configurations were considered that either had a small safe haven to provide 30-days to recover, or a full duration safe haven using two equal size pressure vessel volumes. The 30-day safe haven was found to be the simplest, yielding the least total mass impact but still with some risk if recovery is not possible during that timeframe. The full duration safe haven was the most massive option but provided the most robust solution. This paper provides information on the various layouts developed during the study and provides a discussion of the findings for implementing a safe haven in future habitat designs.

  2. Beyond climate-smart agriculture: toward safe operating spaces for global food systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulledge, Jay; Neufeldt, Heinrich; Jahn, Margaret M

    key areas of innovation, such as (1) improved adaptive management and governance of social-ecological systems; (2) development of meaningful and relevant integrated indicators of social-ecological systems; (3) gathering of quality integrated data, information, knowledge and analytical tools for improved models and scenarios in time frames and at scales relevant for decision-making; and (4) establishment of legitimate and empowered science policy dialogues on local to international scales to facilitate decision making informed by metrics and indicators of safe operating spaces.« less

  3. Evolution of the Hubble Space Telescope Safing Systems

    NASA Technical Reports Server (NTRS)

    Pepe, Joyce; Myslinski, Michael

    2006-01-01

    The Hubble Space Telescope (HST) was launched on April 24 1990, with an expected lifespan of 15 years. Central to the spacecraft design was the concept of a series of on-orbit shuttle servicing missions permitting astronauts to replace failed equipment, update the scientific instruments and keep the HST at the forefront of astronomical discoveries. One key to the success of the Hubble mission has been the robust Safing systems designed to monitor the performance of the observatory and to react to keep the spacecraft safe in the event of equipment anomaly. The spacecraft Safing System consists of a range of software tests in the primary flight computer that evaluate the performance of mission critical hardware, safe modes that are activated when the primary control mode is deemed inadequate for protecting the vehicle, and special actions that the computer can take to autonomously reconfigure critical hardware. The HST Safing System was structured to autonomously detect electrical power system, data management system, and pointing control system malfunctions and to configure the vehicle to ensure safe operation without ground intervention for up to 72 hours. There is also a dedicated safe mode computer that constantly monitors a keep-alive signal from the primary computer. If this signal stops, the safe mode computer shuts down the primary computer and takes over control of the vehicle, putting it into a safe, low-power configuration. The HST Safing system has continued to evolve as equipment has aged, as new hardware has been installed on the vehicle, and as the operation modes have matured during the mission. Along with the continual refinement of the limits used in the safing tests, several new tests have been added to the monitoring system, and new safe modes have been added to the flight software. This paper will focus on the evolution of the HST Safing System and Safing tests, and the importance of this evolution to prolonging the science operations of the

  4. On safe configurations of a natural-artificial space tether system

    NASA Astrophysics Data System (ADS)

    Rodnikov, A. V.

    2018-05-01

    We study the dynamics of a particle moving under gravitation of precessing dynamically symmetric rigid body if the particle motion is restricted by two unilateral (flexible) constraints realized by two weightless unstretchable tethers with ends fixed at body poles, formed as the intersection of the body surface with the axis of its dynamical symmetry. The system under consideration is a simple model of an original natural-artificial space construction consisting of an asteroid and a space station tethered to each other via two cables. We note that the problem is integrable for the system safe configurations, i.e. for motions along the constraints common boundary (both tethers are tensed) if the body gravitational potential is invariant with respect to rotation about the axis of dynamical symmetry. We study these motions depicting phase portraits for possible values of system parameters. We also deduce conditions for the particle coming off the boundary of constraint(s) (if the tether(s) are slackened) and analyze these conditions, eliminating corresponding areas from phase portraits. We also formulate some statements, concerning the particle safety.

  5. Operationalizing safe operating space for regional social-ecological systems.

    PubMed

    Hossain, Md Sarwar; Dearing, John A; Eigenbrod, Felix; Johnson, Fiifi Amoako

    2017-04-15

    This study makes a first attempt to operationalize the safe operating space concept at a regional scale by considering the complex dynamics (e.g. non-linearity, feedbacks, and interactions) within a systems dynamic model (SD). We employ the model to explore eight 'what if' scenarios based on well-known challenges (e.g. climate change) and current policy debates (e.g. subsidy withdrawal). The findings show that the social-ecological system in the Bangladesh delta may move beyond a safe operating space when a withdrawal of a 50% subsidy for agriculture is combined with the effects of a 2°C temperature increase and sea level rise. Further reductions in upstream river discharge in the Ganges would push the system towards a dangerous zone once a 3.5°C temperature increase was reached. The social-ecological system in Bangladesh delta may be operated within a safe space by: 1) managing feedback (e.g. by reducing production costs) and the slow biophysical variables (e.g. temperature, rainfall) to increase the long-term resilience, 2) negotiating for transboundary water resources, and 3) revising global policies (e.g. withdrawal of subsidy) that negatively impact at regional scales. This study demonstrates how the concepts of tipping points, limits to adaptations, and boundaries for sustainable development may be defined in real world social-ecological systems. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Safe delivery of optical power from space.

    PubMed

    Smith, M; Fork, R L; Cole, S

    2001-05-07

    More than a billion gigawatts of sunlight pass through the area extending from Earth out to geostationary orbit. A small fraction of this clean renewable power appears more than adequate to satisfy the projected needs of Earth, and of human exploration and development of space far into the future. Recent studies suggest safe and efficient access to this power can be achieved within 10 to 40 years. Light, enhanced in spatial and temporal coherence, as compared to natural sunlight, offers a means, and probably the only practical means, of usefully transmitting this power to Earth. We describe safety standards for satellite constellations and Earth based sites designed, respectively, to transmit, and receive this power. The spectral properties, number of satellites, and angle subtended at Earth that are required for safe delivery are identified and discussed.

  7. The Complex Case of Fear and Safe Space

    ERIC Educational Resources Information Center

    Stengel, Barbara S.

    2010-01-01

    Here I shine light on the concept of and call for safe space and on the implicit argument that seems to undergird both the concept and the call, complicating and problematizing the taken for granted view of this issue with the goal of revealing a more complex dynamic worthy of interpretive attention when determining educational response. I…

  8. Organising a safe space for navigating social-ecological transformations to sustainability.

    PubMed

    Pereira, Laura; Karpouzoglou, Timothy; Doshi, Samir; Frantzeskaki, Niki

    2015-05-28

    The need for developing socially just living conditions for the world's growing population whilst keeping human societies within a 'safe operating space' has become a modern imperative. This requires transformative changes in the dominant social norms, behaviours, governance and management regimes that guide human responses in areas such as urban ecology, public health, resource security (e.g., food, water, energy access), economic development and biodiversity conservation. However, such systemic transformations necessitate experimentation in public arenas of exchange and a deepening of processes that can widen multi-stakeholder learning. We argue that there is an emergent potential in bridging the sustainability transitions and resilience approaches to create new scientific capacity that can support large-scale social-ecological transformations (SETs) to sustainability globally, not just in the West. In this article, we elucidate a set of guiding principles for the design of a 'safe space' to encourage stronger interactions between these research areas and others that are relevant to the challenges faced. We envisage new opportunities for transdisciplinary collaboration that will develop an adaptive and evolving community of practice. In particular, we emphasise the great opportunity for engaging with the role of emerging economies in facilitating safe space experimentation.

  9. Exploring the safe and just operating space in an inhomogeneous world

    NASA Astrophysics Data System (ADS)

    Barfuss, Wolfram; Beronov, Boyan; Wiedermann, Marc; Donges, Jonathan

    2015-04-01

    The Anthropocene has become reality during the 20th century, implying that our species is pressuring the Earth's ecosystems on a global scale. In the meantime, the challenge of eradicating poverty has not yet ceased to exist. Effectively dealing with these issues requires us to better understand the driving forces, feedback loops and tipping elements in the whole Earth system, constituted by natural and social components. To take a step forward in this direction, we refine an existing conceptual coevolutionary model of social and ecological domains (COPAN:EXPLOIT) by introducing inhomogeneities in the properties of local renewable resource stocks that are abstracted from real-world data. We then propose an analytical framework, 'the safe and just space'- plot, which aligns with the current debate on how to simultaneously stay within planetary boundaries (Rockström et al., 2009) and at the same time ensure that social foundations are met (Raworth, 2012). This plot presents a practical tool for jointly studying global socio-ecological models as well as real-world observations. First results from comparing the model outputs with real-world data indicate that the current state of the world is neither particularly safe nor particularly just. References: Rockström, Johan, et al. "A safe operating space for humanity." Nature 461.7263 (2009): 472-475. Raworth, Kate. "A safe and just space for humanity: can we live within the doughnut?" Oxfam Discussion Papers (2012): 1-26.

  10. Organising a Safe Space for Navigating Social-Ecological Transformations to Sustainability

    PubMed Central

    Pereira, Laura; Karpouzoglou, Timothy; Doshi, Samir; Frantzeskaki, Niki

    2015-01-01

    The need for developing socially just living conditions for the world’s growing population whilst keeping human societies within a ‘safe operating space’ has become a modern imperative. This requires transformative changes in the dominant social norms, behaviours, governance and management regimes that guide human responses in areas such as urban ecology, public health, resource security (e.g., food, water, energy access), economic development and biodiversity conservation. However, such systemic transformations necessitate experimentation in public arenas of exchange and a deepening of processes that can widen multi-stakeholder learning. We argue that there is an emergent potential in bridging the sustainability transitions and resilience approaches to create new scientific capacity that can support large-scale social-ecological transformations (SETs) to sustainability globally, not just in the West. In this article, we elucidate a set of guiding principles for the design of a ‘safe space’ to encourage stronger interactions between these research areas and others that are relevant to the challenges faced. We envisage new opportunities for transdisciplinary collaboration that will develop an adaptive and evolving community of practice. In particular, we emphasise the great opportunity for engaging with the role of emerging economies in facilitating safe space experimentation. PMID:26030471

  11. OverView of Space Applications for Environment (SAFE) initiative

    NASA Astrophysics Data System (ADS)

    Hamamoto, Ko; Fukuda, Toru; Tajima, Yoshimitsu; Takeuchi, Wataru; Sobue, Shinichi; Nukui, Tomoyuki

    2014-06-01

    Climate change and human activities have a direc or indirect influence on the acceleration of environmental problems and natural hazards such as forest fires, draughts and floods in the Asia-Pacific countries. Satellite technology has become one of the key information sources in assessment, monitoring and mitigation of these disasters and related phenomenon. However, there are still gaps between science and application of satellite technology in real-world usage. Asia-Pacific Regional Space Agency Forum (APRSAF) recommended to initiate the Space Applications for Environment (SAFE) proposal providing opportunity to potential user agencies in the Asia Pacific region to develop prototype applications of satellite technology for number of key issues including forest resources management, coastal monitoring and management, agriculture and food security, water resource management and development user-friendly tools for application of satellite technology. This paper describes the overview of SAFE initiative and outcomes of two selected prototypes; agricultural drought monitoring in Indonesia and coastal management in Sri Lanka, as well as the current status of on-going prototypes.

  12. A Radiographic Measurement of the Anterior Epidural Space at L4-5 Disc Level.

    PubMed

    Xu, Rui-Sheng; Wu, Jie-Shi; Lu, Hai-Dan; Zhu, Hao-Gang; Li, Xia; Dong, Jian; Yuan, Feng-Lai

    2017-05-01

    To observe the morphology character of the anterior epidural space at the L 4-5 disc level and to provide an anatomical basis for safely and accurately performing a percutaneous endoscopic lumbar discectomy (PELD). Fifty-five cases with L 5 S 1 lumbar disc herniation were included in this study, and cases with L 4-5 disease were excluded. When the puncture needle reached the epidural space at the L 5 S 1 level, iohexol was injected at the pressure of 50 cm H 2 O during the PELD, then C-Arm fluoroscopy was used to obtain standard lumbar frontal and lateral images. The widths of epidural space at the level of the L 4 lower endplate, the L 5 upper endplate, as well as the middle point of the L 4-5 disc were measured from the lumbar lateral X-ray film. Epidural space at the L 4-5 disc plane performs like a trapezium chart with a short side at the head end and a long side at the tail end in the lumbar lateral X-ray radiograph, while the average widths of epidural space were 10.2 ± 2.5, 12.3 ± 2.3, and 13.8 ± 2.6 mm at the upper, middle, and lower level of the L 4-5 disc. Understanding the morphological characteristics of epidural space will contribute to improving the safety of the tranforaminal percutaneous endoscopy technique. © 2017 Chinese Orthopaedic Association and John Wiley & Sons Australia, Ltd.

  13. Safety And Promotion in the Federal Aviation Administration- Enabling Safe and Successful Commercial Space Transportation

    NASA Astrophysics Data System (ADS)

    Repcheck, Randall J.

    2010-09-01

    The United States Federal Aviation Administration’s Office of Commercial Space Transportation(AST) authorizes the launch and reentry of expendable and reusable launch vehicles and the operation of launch and reentry sites by United States citizens or within the United States. It authorizes these activities consistent with public health and safety, the safety of property, and the national security and foreign policy interests of the United States. In addition to its safety role, AST has the role to encourage, facilitate, and promote commercial space launches and reentries by the private sector. AST’s promotional role includes, among other things, the development of information of interest to industry, the sharing of information of interest through a variety of methods, and serving as an advocate for Commercial Space Transportation within the United States government. This dual safety and promotion role is viewed by some as conflicting. AST views these two roles as complementary, and important for the current state of commercial space transportation. This paper discusses how maintaining a sound safety decision-making process, maintaining a strong safety culture, and taking steps to avoid complacency can together enable safe and successful commercial space transportation.

  14. One Black, One White: Power, White Privilege, & Creating Safe Spaces

    ERIC Educational Resources Information Center

    Delano-Oriaran, Omobolade O.; Parks, Marguerite W.

    2015-01-01

    This article explores the experiences of two professors as they teach about White privilege in predominately White institutions of higher education. The authors discuss how racial potentiality shapes the classroom climates of each of the professors and then present strategies that utilize safe spaces to navigate students away from the resistance…

  15. ]U.S. Commercial Cargo Ship Departs Space Station

    NASA Image and Video Library

    2017-09-17

    The SpaceX/Dragon cargo craft departed the International Space Station Sept. 17, one month after delivering more than three tons of supplies and scientific experiments for the station’s residents. Expedition 53 Flight Engineer Paolo Nespoli of the European Space Agency and station Commander Randy Bresnik used the Cnadarm2 robotic arm to release Dragon after it was detached from the Earth-facing port of the Harmony module. Dragon was scheduled to move to a safe distance away from the station for its engine to conduct a deorbit burn, enabling it to drop out of orit for a parachute-assisted splashdown in the Pacific southwest of Long Beach, California. Dragon was launched on a SpaceX Falcon 9 rocket from the Kennedy Space Center on Aug. 14, arriving at the orbital outpost Aug. 16.

  16. Safe Affordable Fission Engine-(SAFE-) 100a Heat Exchanger Thermal and Structural Analysis

    NASA Technical Reports Server (NTRS)

    Steeve, B. E.

    2005-01-01

    A potential fission power system for in-space missions is a heat pipe-cooled reactor coupled to a Brayton cycle. In this system, a heat exchanger (HX) transfers the heat of the reactor core to the Brayton gas. The Safe Affordable Fission Engine- (SAFE-) 100a is a test program designed to thermally and hydraulically simulate a 95 Btu/s prototypic heat pipe-cooled reactor using electrical resistance heaters on the ground. This Technical Memorandum documents the thermal and structural assessment of the HX used in the SAFE-100a program.

  17. NASA Strategy to Safely Live and Work in the Space Radiation Environment

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wu, Honglu; Corbin, Barbara J.; Sulzman, Frank M.; Krenek, Sam

    2007-01-01

    In space, astronauts are constantly bombarded with energetic particles. The goal of the National Aeronautics and Space Agency and the NASA Space Radiation Project is to ensure that astronauts can safely live and work in the space radiation environment. The space radiation environment poses both acute and chronic risks to crew health and safety, but unlike some other aspects of space travel, space radiation exposure has clinically relevant implications for the lifetime of the crew. Among the identified radiation risks are cancer, acute and late CNS damage, chronic and degenerative tissue decease, and acute radiation syndrome. The term "safely" means that risks are sufficiently understood such that acceptable limits on mission, post-mission and multi-mission consequences can be defined. The NASA Space Radiation Project strategy has several elements. The first element is to use a peer-reviewed research program to increase our mechanistic knowledge and genetic capabilities to develop tools for individual risk projection, thereby reducing our dependency on epidemiological data and population-based risk assessment. The second element is to use the NASA Space Radiation Laboratory to provide a ground-based facility to study the health effects/mechanisms of damage from space radiation exposure and the development and validation of biological models of risk, as well as methods for extrapolation to human risk. The third element is a risk modeling effort that integrates the results from research efforts into models of human risk to reduce uncertainties in predicting the identified radiation risks. To understand the biological basis for risk, we must also understand the physical aspects of the crew environment. Thus, the fourth element develops computer algorithms to predict radiation transport properties, evaluate integrated shielding technologies and provide design optimization recommendations for the design of human space systems. Understanding the risks and determining

  18. The World Health Organization’s Safe Abortion Guidance Document

    PubMed Central

    Van Look, Paul F. A.; Cottingham, Jane

    2013-01-01

    We discuss the history of the World Health Organization’s (WHO’s) development of guidelines for governments on providing safe abortion services, which WHO published as Safe Abortion: Technical and Policy Guidance for Health Systems in 2003 and updated in 2012. We show how the recognition of the devastating impact of unsafe abortion on women’s health and survival, the impetus of the International Conference on Population and Development and its five-year follow-up, and WHO’s progressive leadership at the end of the century enabled the organization to elaborate guidance on providing safe abortion services. Guideline formulation involved extensive review of published evidence, an international technical expert meeting to review the draft document, and a protracted in-house review by senior WHO management. PMID:23409886

  19. A Strategy to Safely Live and Work in the Space Radiation Environment

    NASA Technical Reports Server (NTRS)

    Corbin, Barbara J.; Sulzman, Frank M.; Krenek, Sam

    2006-01-01

    The goal of the National Aeronautics and Space Agency and the Space Radiation Project is to ensure that astronauts can safely live and work in the space radiation environment. The space radiation environment poses both acute and chronic risks to crew health and safety, but unlike some other aspects of space travel, space radiation exposure has clinically relevant implications for the lifetime of the crew. The term safely means that risks are sufficiently understood such that acceptable limits on mission, post-mission and multi-mission consequences (for example, excess lifetime fatal cancer risk) can be defined. The Space Radiation Project strategy has several elements. The first element is to use a peer-reviewed research program to increase our mechanistic knowledge and genetic capabilities to develop tools for individual risk projection, thereby reducing our dependency on epidemiological data and population-based risk assessment. The second element is to use the NASA Space Radiation Laboratory to provide a ground-based facility to study the understanding of health effects/mechanisms of damage from space radiation exposure and the development and validation of biological models of risk, as well as methods for extrapolation to human risk. The third element is a risk modeling effort that integrates the results from research efforts into models of human risk to reduce uncertainties in predicting risk of carcinogenesis, central nervous system damage, degenerative tissue disease, and acute radiation effects. To understand the biological basis for risk, we must also understand the physical aspects of the crew environment. Thus the fourth element develops computer codes to predict radiation transport properties, evaluate integrated shielding technologies and provide design optimization recommendations for the design of human space systems. Understanding the risks and determining methods to mitigate the risks are keys to a successful radiation protection strategy.

  20. Telling Stories of Violence in Adult ESL Classrooms: Disrupting Safe Spaces

    ERIC Educational Resources Information Center

    Waterhouse, Monica

    2016-01-01

    This article develops a complex understanding of safe space in relation to adult refugee learners' oral literacy practice of telling stories of violent life experiences in English as a second language (ESL) classrooms. A rhizoanalytic approach brings theoretical and empirical elements into conversation to ask two questions. Can the exigencies of…

  1. Multidimensional Space-Time Methodology for Development of Planetary and Space Sciences, S-T Data Management and S-T Computational Tomography

    NASA Astrophysics Data System (ADS)

    Andonov, Zdravko

    This R&D represent innovative multidimensional 6D-N(6n)D Space-Time (S-T) Methodology, 6D-6nD Coordinate Systems, 6D Equations, new 6D strategy and technology for development of Planetary Space Sciences, S-T Data Management and S-T Computational To-mography. . . The Methodology is actual for brain new RS Microwaves' Satellites and Compu-tational Tomography Systems development, aimed to defense sustainable Earth, Moon, & Sun System evolution. Especially, extremely important are innovations for monitoring and protec-tion of strategic threelateral system H-OH-H2O Hydrogen, Hydroxyl and Water), correspond-ing to RS VHRS (Very High Resolution Systems) of 1.420-1.657-22.089GHz microwaves. . . One of the Greatest Paradox and Challenge of World Science is the "transformation" of J. L. Lagrange 4D Space-Time (S-T) System to H. Minkovski 4D S-T System (O-X,Y,Z,icT) for Einstein's "Theory of Relativity". As a global result: -In contemporary Advanced Space Sciences there is not real adequate 4D-6D Space-Time Coordinate System and 6D Advanced Cosmos Strategy & Methodology for Multidimensional and Multitemporal Space-Time Data Management and Tomography. . . That's one of the top actual S-T Problems. Simple and optimal nD S-T Methodology discovery is extremely important for all Universities' Space Sci-ences' Education Programs, for advances in space research and especially -for all young Space Scientists R&D!... The top ten 21-Century Challenges ahead of Planetary and Space Sciences, Space Data Management and Computational Space Tomography, important for successfully de-velopment of Young Scientist Generations, are following: 1. R&D of W. R. Hamilton General Idea for transformation all Space Sciences to Time Sciences, beginning with 6D Eukonal for 6D anisotropic mediums & velocities. Development of IERS Earth & Space Systems (VLBI; LLR; GPS; SLR; DORIS Etc.) for Planetary-Space Data Management & Computational Planetary & Space Tomography. 2. R&D of S. W. Hawking Paradigm for 2D

  2. "It's My Safe Space": Student Voice, Teacher Education, and the Relational Space of an Urban High School

    ERIC Educational Resources Information Center

    Butler, Jesse K.; Kane, Ruth G.; Morshead, Christopher E.

    2017-01-01

    White Canadian teacher candidates are brought into direct dialogue with urban high school students through a yearlong immersion in a high school with a "demonized" image in the broader community. Interviews with students reveal experiences of school as "my safe space" and the predominance of a student culture not characterized…

  3. Safe days in space with acceptable uncertainty from space radiation exposure.

    PubMed

    Cucinotta, Francis A; Alp, Murat; Rowedder, Blake; Kim, Myung-Hee Y

    2015-04-01

    The prediction of the risks of cancer and other late effects from space radiation exposure carries large uncertainties mostly due to the lack of information on the risks from high charge and energy (HZE) particles and other high linear energy transfer (LET) radiation. In our recent work new methods were used to consider NASA's requirement to protect against the acceptable risk of no more than 3% probability of cancer fatality estimated at the 95% confidence level. Because it is not possible that a zero-level of uncertainty could be achieved, we suggest that an acceptable uncertainty level should be defined in relationship to a probability distribution function (PDF) that only suffers from modest skewness with higher uncertainty allowed for a normal PDF. In this paper, we evaluate PDFs and the number or "safe days" in space, which are defined as the mission length where risk limits are not exceeded, for several mission scenarios at different acceptable levels of uncertainty. In addition, we briefly discuss several important issues in risk assessment including non-cancer effects, the distinct tumor spectra and lethality found in animal experiments for HZE particles compared to background or low LET radiation associated tumors, and the possibility of non-targeted effects (NTE) modifying low dose responses and increasing relative biological effectiveness (RBE) factors for tumor induction. Each of these issues skew uncertainty distributions to higher fatality probabilities with the potential to increase central values of risk estimates in the future. Therefore they will require significant research efforts to support space exploration within acceptable levels of risk and uncertainty. Copyright © 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  4. Space Station Crew Returns Safely on This Week @NASA – March 5, 2018

    NASA Image and Video Library

    2018-03-05

    A safe return from the International Space Station, a new weather satellite launched into orbit, and our next mission to Mars moves closer to launch … a few of the stories to tell you about – This Week at NASA!

  5. Safe Software for Space Applications: Building on the DO-178 Experience

    NASA Astrophysics Data System (ADS)

    Dorsey, Cheryl A.; Dorsey, Timothy A.

    2013-09-01

    DO-178, Software Considerations in Airborne Systems and Equipment Certification, is the well-known international standard dealing with the assurance of software used in airborne systems [1,2]. Insights into the DO-178 experiences, strengths and weaknesses can benefit the international space community. As DO-178 is an excellent standard for safe software development when used appropriately, this paper provides lessons learned and suggestions for using it effectively.

  6. 4. Interior view shows large walkin safe in main room. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Interior view shows large walk-in safe in main room. Inscription on same reads Herring Hall Marvin Safe Co., Hamilton, Ohio. Radial markings around combination lock are stains from adhesive tape. - Pacific Creosoting Plant, Plant Office, 5350 Creosote Place, Northeast, Bremerton, Kitsap County, WA

  7. Sodium Based Heat Pipe Modules for Space Reactor Concepts: Stainless Steel SAFE-100 Core

    NASA Technical Reports Server (NTRS)

    Martin, James J.; Reid, Robert S.

    2004-01-01

    A heat pipe cooled reactor is one of several candidate reactor cores being considered for advanced space power and propulsion systems to support future space exploration applications. Long life heat pipe modules, with designs verified through a combination of theoretical analysis and experimental lifetime evaluations, would be necessary to establish the viability of any of these candidates, including the heat pipe reactor option. A hardware-based program was initiated to establish the infrastructure necessary to build heat pipe modules. This effort, initiated by Los Alamos National Laboratory and referred to as the Safe Affordable Fission Engine (SAFE) project, set out to fabricate and perform non-nuclear testing on a modular heat pipe reactor prototype that can provide 100 kilowatt from the core to an energy conversion system at 700 C. Prototypic heat pipe hardware was designed, fabricated, filled, closed-out and acceptance tested.

  8. Safe-haven locking device

    DOEpatents

    Williams, J.V.

    1984-04-26

    Disclosed is a locking device for eliminating external control of a secured space formed by fixed and movable barriers. The locking device uses externally and internally controlled locksets and a movable strike, operable from the secured side of the movable barrier, to selectively engage either lockset. A disengagement device, for preventing forces from being applied to the lock bolts is also disclosed. In this manner, a secured space can be controlled from the secured side as a safe-haven. 4 figures.

  9. Creating a safe space: A qualitative inquiry into the way doctors discuss spirituality.

    PubMed

    Best, Megan; Butow, Phyllis; Olver, Ian

    2016-10-01

    Spiritual history taking by physicians is recommended as part of palliative care. Nevertheless, very few studies have explored the way that experienced physicians undertake this task. Using grounded theory, semistructured interviews were conducted with 23 physicians who had experience in caring for advanced cancer patients. They were asked to describe the way they discuss spirituality with their patients. We have described a delicate, skilled, tailored process whereby physicians create a space in which patients feel safe enough to discuss intimate topics. Six themes were identified: (1) developing the self: physicians describe the need to understand and be secure in one's own spirituality and be comfortable with one's own mortality before being able to discuss spirituality; (2) developing one's attitude: awareness of the importance of spirituality in the life of a patient, and the need to respect each patient's beliefs is a prerequisite; (3) experienced physicians wait for the patient to give them an indication that they are ready to discuss spiritual issues and follow their lead; (4) what makes it easier: spiritual discussion is easier when doctor and patient share spiritual and cultural backgrounds, and the patient needs to be physically comfortable and willing to talk; (5) what makes it harder: experienced physicians know that they will find it difficult to discuss spirituality when they are rushed and when they identify too closely with a patient's struggles; and (6) an important and effective intervention: exploration of patient spirituality improves care and enhances coping. A delicate, skilled, tailored process has been described whereby doctors endeavor to create a space in which patients feel sufficiently safe to discuss intimate topics.

  10. "Safe Spaces"? Sites of Bilingualism for Young Learners in Home, School and Community

    ERIC Educational Resources Information Center

    Conteh, Jean; Brock, Avril

    2011-01-01

    Drawing together the work of two researchers engaged in ongoing, longitudinal research with practitioners in early years and bilingual complementary settings, this article argues that bilingual learners in the early years need and are entitled to particular kinds of "safe spaces" to succeed in their education. Historical and policy contexts, and…

  11. X-space MPI: magnetic nanoparticles for safe medical imaging.

    PubMed

    Goodwill, Patrick William; Saritas, Emine Ulku; Croft, Laura Rose; Kim, Tyson N; Krishnan, Kannan M; Schaffer, David V; Conolly, Steven M

    2012-07-24

    One quarter of all iodinated contrast X-ray clinical imaging studies are now performed on Chronic Kidney Disease (CKD) patients. Unfortunately, the iodine contrast agent used in X-ray is often toxic to CKD patients' weak kidneys, leading to significant morbidity and mortality. Hence, we are pioneering a new medical imaging method, called Magnetic Particle Imaging (MPI), to replace X-ray and CT iodinated angiography, especially for CKD patients. MPI uses magnetic nanoparticle contrast agents that are much safer than iodine for CKD patients. MPI already offers superb contrast and extraordinary sensitivity. The iron oxide nanoparticle tracers required for MPI are also used in MRI, and some are already approved for human use, but the contrast agents are far more effective at illuminating blood vessels when used in the MPI modality. We have recently developed a systems theoretic framework for MPI called x-space MPI, which has already dramatically improved the speed and robustness of MPI image reconstruction. X-space MPI has allowed us to optimize the hardware for fi ve MPI scanners. Moreover, x-space MPI provides a powerful framework for optimizing the size and magnetic properties of the iron oxide nanoparticle tracers used in MPI. Currently MPI nanoparticles have diameters in the 10-20 nanometer range, enabling millimeter-scale resolution in small animals. X-space MPI theory predicts that larger nanoparticles could enable up to 250 micrometer resolution imaging, which would represent a major breakthrough in safe imaging for CKD patients.

  12. 26 CFR 1.475(a)-4 - Valuation safe harbor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...(a)-4 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Inventories § 1.475(a)-4 Valuation safe harbor. (a) Overview—(1) Purpose. This... portions of the payments have been recognized for tax purposes before the valuation and appropriate...

  13. The S-matrix in twistor space

    NASA Astrophysics Data System (ADS)

    Arkani-Hamed, N.; Cachazo, F.; Cheung, C.; Kaplan, J.

    2010-03-01

    can be combined into an “S-Matrix” scattering functional which is the natural holographic observable in asymptotically flat space; the BCFW formula turns into a simple quadratic equation for this “S-Matrix” in twistor space, providing a holographic description of mathcal{N} = 4 SYM and mathcal{N} = 8 Supergravity at tree level. We move on to initiate the exploration of loop amplitudes in (2, 2) signature and twistor space, beginning with a discussion of their IR behavior. We find that the natural pole prescriptions needed for transformation to twistor space make the amplitudes perfectly well-defined objects, free of IR divergences. Indeed in momentum space, the loop amplitudes so regulated vanish for generic momenta, and transformed to twistor space, are even simpler than their tree-level counterparts: the full 4-pt one-loop amplitudes in mathcal{N} = 4 SYM are simply equal to “1” or “0”! This further supports the idea that there exists a sharply defined object corresponding to the S-Matrix in (2, 2) signature, computed by a dual theory naturally living in twistor space.

  14. Safe Manual Jettison

    NASA Technical Reports Server (NTRS)

    Barton, Jay

    2008-01-01

    In space, the controlled release of certain cargoes is no less useful than the maritime jettisons from which they take their name but is also much more dangerous. Experience has shown that jettisons can be performed safely, but the process is complicated with the path to performing a jettison taking months or even years. In the background, time is also required to write procedures, train the crew, configure the vehicle, and many other activities. This paper outlines the current process used by the National Aeronautics and Space Administration (NASA) for manual jettisons, detailing the methods used to assure that the jettisons and the jettisoned objects are as safe as achievable and that the crew is adequately trained to be able to affect the safe jettison. The goal of this paper is not only to capture what it takes to perform safe jettisons in the near Earth environment but to extrapolate this knowledge to future space exploration scenarios that will likely have Extravehicular Activity (EVA) and International Partner (IP) interfaces.

  15. Allowing variance may enlarge the safe operating space for exploited ecosystems.

    PubMed

    Carpenter, Stephen R; Brock, William A; Folke, Carl; van Nes, Egbert H; Scheffer, Marten

    2015-11-17

    Variable flows of food, water, or other ecosystem services complicate planning. Management strategies that decrease variability and increase predictability may therefore be preferred. However, actions to decrease variance over short timescales (2-4 y), when applied continuously, may lead to long-term ecosystem changes with adverse consequences. We investigated the effects of managing short-term variance in three well-understood models of ecosystem services: lake eutrophication, harvest of a wild population, and yield of domestic herbivores on a rangeland. In all cases, actions to decrease variance can increase the risk of crossing critical ecosystem thresholds, resulting in less desirable ecosystem states. Managing to decrease short-term variance creates ecosystem fragility by changing the boundaries of safe operating spaces, suppressing information needed for adaptive management, cancelling signals of declining resilience, and removing pressures that may build tolerance of stress. Thus, the management of variance interacts strongly and inseparably with the management of resilience. By allowing for variation, learning, and flexibility while observing change, managers can detect opportunities and problems as they develop while sustaining the capacity to deal with them.

  16. Allowing variance may enlarge the safe operating space for exploited ecosystems

    PubMed Central

    Carpenter, Stephen R.; Brock, William A.; Folke, Carl; van Nes, Egbert H.; Scheffer, Marten

    2015-01-01

    Variable flows of food, water, or other ecosystem services complicate planning. Management strategies that decrease variability and increase predictability may therefore be preferred. However, actions to decrease variance over short timescales (2–4 y), when applied continuously, may lead to long-term ecosystem changes with adverse consequences. We investigated the effects of managing short-term variance in three well-understood models of ecosystem services: lake eutrophication, harvest of a wild population, and yield of domestic herbivores on a rangeland. In all cases, actions to decrease variance can increase the risk of crossing critical ecosystem thresholds, resulting in less desirable ecosystem states. Managing to decrease short-term variance creates ecosystem fragility by changing the boundaries of safe operating spaces, suppressing information needed for adaptive management, cancelling signals of declining resilience, and removing pressures that may build tolerance of stress. Thus, the management of variance interacts strongly and inseparably with the management of resilience. By allowing for variation, learning, and flexibility while observing change, managers can detect opportunities and problems as they develop while sustaining the capacity to deal with them. PMID:26438857

  17. 29 CFR 1915.15 - Maintenance of safe conditions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Enclosed Spaces and Other Dangerous Atmospheres in Shipyard Employment § 1915.15 Maintenance of safe... into spaces that have been certified “Safe for Workers” or “Safe for Hot Work” shall be disconnected... certificates. A competent person shall visually inspect and test each space certified as “Safe for Workers” or...

  18. 29 CFR 1915.15 - Maintenance of safe conditions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Enclosed Spaces and Other Dangerous Atmospheres in Shipyard Employment § 1915.15 Maintenance of safe... into spaces that have been certified “Safe for Workers” or “Safe for Hot Work” shall be disconnected... certificates. A competent person shall visually inspect and test each space certified as “Safe for Workers” or...

  19. U.S. space strategy

    NASA Astrophysics Data System (ADS)

    Robb, David W.

    1984-04-01

    Following the formal announcement of a national space strategy in August, President Ronald Reagan is moving ahead on many of his administration's declared objectives for strengthening the U.S. role in space-based research and space exploration.Possibly the most significant long-term aspect of the administration's national space strategy is its emphasis on international cooperation. While the U.S. space program in the 1960s and 1970s was fueled by intense competition in the race to be the first to put a man on the moon, it may very well be characterized through the beginning of the next century by the spirit of international collaboration. The national space strategy calls for “increased international cooperation in civil space activities,” particularly in the “development and utilization” of the space station. In addition, in late October, President Reagan announced the possibility of a joint U.S.-Soviet simulated space rescue mission. In his statement, Reagan said that the U.S. “is prepared to work with the Soviets on cooperation in space in programs which are mutually beneficial and productive.”

  20. Four new chalcohalides, NaBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Br and CsBa{sub 2}SnS{sub 4}Cl: Syntheses, crystal structures and optical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chao; Feng, Kai; Tu, Heng

    Four new chalcohalides, namely NaBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Br, and CsBa{sub 2}SnS{sub 4}Cl, have been synthesized by the conventional high temperature solid-state reactions. They crystallize in three different space groups: space group I4/mcm for NaBa{sub 2}SnS{sub 4}Cl and KBa{sub 2}SnS{sub 4}Cl, Pnma for KBa{sub 2}SnS{sub 4}Br, and P2{sub 1}/c for CsBa{sub 2}SnS{sub 4}Cl. In all four compounds, the X{sup −} halide anions are only connected to six alkali metal or Ba cations, and the Sn atoms are only tetrahedrally enjoined to four S atoms. However, the M–X–Ba pseudo layers and the SnS{sub 4} tetrahedra are arrangedmore » in different ways in the three structural types, which demonstrates the interesting effect of ionic radii on the crystal structures. UV–vis–NIR spectroscopy measurements indicate that NaBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Br, and CsBa{sub 2}SnS{sub 4}Cl have band gaps of 2.28, 2.30, 1.95, and 2.06 eV, respectively. - Graphical abstract: A new series of chalcohalides, NaBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Br and CsBa{sub 2}SnS{sub 4}Cl have been obtained. They present three different space groups: NaBa{sub 2}SnS{sub 4}Cl and KBa{sub 2}SnS{sub 4}Cl in space group I4/mcm, KBa{sub 2}SnS{sub 4}Br in Pnma and CsBa{sub 2}SnS{sub 4}Cl in space group P2{sub 1}/c. UV–vis–NIR spectroscopy measurements indicate that NaBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Br and CsBa{sub 2}SnS{sub 4}Cl have band gaps of 2.28, 2.30 1.95, and 2.06 eV, respectively. - Highlights: • Four new chalcohalides, NaBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Br and CsBa{sub 2}SnS{sub 4}Cl were obtained. • They adopt three different structures owing to different ionic radii and elemental electronegativity. • NaBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Br and CsBa{sub 2}SnS{sub 4}Cl have

  1. Space Station Astronauts Make Safe Landing on This Week @NASA – September 11, 2015

    NASA Image and Video Library

    2015-09-11

    Aboard the International Space Station, the Expedition 45 crew – including new Commander Scott Kelly and Kjell Lindgren of NASA, said goodbye to Gennady Padalka of the Russian Federal Space Agency, Andreas Mogensen of ESA (European Space Agency) and Aidyn Aimbetov of the Kazakh Space Agency (Kazcosmos) as the trio climbed aboard their Soyuz spacecraft for the return trip to Earth. The Soyuz landed safely in Kazakhstan on Sept. 11 Eastern time, Sept. 12 in Kazakhstan -- closing out a 168-day mission for Padalka and an 8-day stay on the station for Mogensen and Aimbetov. Also, First Orion crew module segments welded, SLS Launch Vehicle Stage Adapter, New Ceres imagery, New Horizons update, 9/11 tribute and National Preparedness Month!

  2. The Rainbow Connection: How Music Classrooms Create Safe Spaces for Sexual-Minority Young People

    ERIC Educational Resources Information Center

    Southerland, William

    2018-01-01

    LGBTQ students in many parts of the United States often experience hostility on the part of other students, teachers, and administrators. This article reviews current terminology, examines present-day attitudes and recent literature, and offers suggestions to educators who want to create safe spaces for all students in their classrooms.

  3. From Safe Spaces to Resilient Places: A Role for Interfaith Cooperation in Contentious Times

    ERIC Educational Resources Information Center

    Gill, Rahuldeep Singn

    2017-01-01

    This article builds on theories of safe and brave spaces to demonstrate how to transform higher education institutions to be better able to incorporate multivalent forms of diversity. In particular, the article suggests leveraging the civic-oriented methodology of interfaith cooperation (Patel & Meyer, 2011) in order to encourage people to…

  4. "Space Challenge '88" Summit Meeting on Space. Proceedings Report of the National Space Symposium (4th, April 12-15, 1988).

    ERIC Educational Resources Information Center

    Kinsley, Allison P., Ed.; And Others

    Forum topics included discussions on: (1) "Provocative Perceptions: Space Achievement and Challenge"; (2) "International Cooperation and Competition"; (3) "International Space Programs"; (4) "Astronauts Memorial Foundation"; (5) "Prospects for U.S. Commerical Space Transportation"; (6)…

  5. Eye-safe digital 3-D sensing for space applications

    NASA Astrophysics Data System (ADS)

    Beraldin, J.-Angelo; Blais, Francois; Rioux, Marc; Cournoyer, Luc; Laurin, Denis G.; MacLean, Steve G.

    2000-01-01

    This paper focuses on the characteristics and performance of an eye-safe laser range scanner (LARS) with short- and medium-range 3D sensing capabilities for space applications. This versatile LARS is a precision measurement tool that will complement the current Canadian Space Vision System. The major advantages of the LARS over conventional video- based imaging are its ability to operate with sunlight shining directly into the scanner and its immunity to spurious reflections and shadows, which occur frequently in space. Because the LARS is equipped with two high-speed galvanometers to steer the laser beam, any spatial location within the field of view of the camera can be addressed. This versatility enables the LARS to operate in two basis scan pattern modes: (1) variable-scan-resolution mode and (2) raster-scan mode. In the variable-resolution mode, the LARS can search and track targets and geometrical features on objects located within a field of view of 30 by 30 deg and with corresponding range from about 0.5 to 2000 m. The tracking mode can reach a refresh rate of up to 130 Hz. The raster mode is used primarily for the measurement of registered range and intensity information on large stationary objects. It allows, among other things, target- based measurements, feature-based measurements, and surface- reflectance monitoring. The digitizing and modeling of human subjects, cargo payloads, and environments are also possible with the LARS. Examples illustrating its capabilities are presented.

  6. West Virginia Safe and Supportive (S3) Schools Project: Year 2 Implementation Evaluation Report

    ERIC Educational Resources Information Center

    Whisman, Andy

    2013-01-01

    The 4-year federal Safe and Supportive Schools (S3) program supports targeted interventions to improve and measure conditions for learning at the high school level. For 2011-2012 (Year 2), two evaluation questions were investigated: (EQ1) To what extent do participating schools implement the program with fidelity relative to the WV Model for…

  7. The National Aeronautics and Space Administration Nondestructive Evaluation Program for Safe and Reliable Operations

    NASA Technical Reports Server (NTRS)

    Generazio, Ed

    2005-01-01

    The National Aeronautics and Space Administration (NASA) Nondestructive Evaluation (NDE) Program is presented. As a result of the loss of seven astronauts and the Space Shuttle Columbia on February 1, 2003, NASA has undergone many changes in its organization. NDE is one of the key areas that are recognized by the Columbia Accident Investigation Board (CAIB) that needed to be strengthened by warranting NDE as a discipline with Independent Technical Authority (iTA). The current NASA NDE system and activities are presented including the latest developments in inspection technologies being applied to the Space Transportation System (STS). The unfolding trends and directions in NDE for the future are discussed as they apply to assuring safe and reliable operations.

  8. Time and Space Partition Platform for Safe and Secure Flight Software

    NASA Astrophysics Data System (ADS)

    Esquinas, Angel; Zamorano, Juan; de la Puente, Juan A.; Masmano, Miguel; Crespo, Alfons

    2012-08-01

    There are a number of research and development activities that are exploring Time and Space Partition (TSP) to implement safe and secure flight software. This approach allows to execute different real-time applications with different levels of criticality in the same computer board. In order to do that, flight applications must be isolated from each other in the temporal and spatial domains. This paper presents the first results of a partitioning platform based on the Open Ravenscar Kernel (ORK+) and the XtratuM hypervisor. ORK+ is a small, reliable realtime kernel supporting the Ada Ravenscar Computational model that is central to the ASSERT development process. XtratuM supports multiple virtual machines, i.e. partitions, on a single computer and is being used in the Integrated Modular Avionics for Space study. ORK+ executes in an XtratuM partition enabling Ada applications to share the computer board with other applications.

  9. U.S. Space Policy and Space Industry Strangulation

    DTIC Science & Technology

    2010-03-01

    protecting U.S. national security, and creating an environment in which non-U.S. citizens can participate fully in the U.S. space industry. 14...still protecting U.S. national security, and creating an environment in which non-U.S. citizens can participate fully in the U.S. space industry...security, and creating and sustaining a globally competitive space industry. These realms are not mutually exclusive. If technologies are overly guarded

  10. Safe Spaces, Support, Social Capital: A Critical Analysis of Artists Working with Vulnerable Young People in Educational Contexts

    ERIC Educational Resources Information Center

    Sellman, Edward

    2015-01-01

    This article provides a critical and thematic analysis of three research projects involving artists working with vulnerable young people in educational contexts. It argues that artists create safe spaces in contrast to traditional educational activities but it will also raise questions about what constitutes such a space for participants. It will…

  11. Realistic Testing of the Safe Affordable Fission Engine (SAFE-100) Thermal Simulator Using Fiber Bragg Gratings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stinson-Bagby, Kelly L.; Fielder, Robert S.; Van Dyke, Melissa K.

    2004-02-04

    The motivation for the reported research was to support NASA space nuclear power initiatives through the development of advanced fiber optic sensors for space-based nuclear power applications. Distributed high temperature measurements were made with 20 FBG temperature sensors installed in the SAFE-100 thermal simulator at the NASA Marshal Space Flight Center. Experiments were performed at temperatures approaching 800 deg. C and 1150 deg. C for characterization studies of the SAFE-100 core. Temperature profiles were successfully generated for the core during temperature increases and decreases. Related tests in the SAFE-100 successfully provided strain measurement data.

  12. SpaceX Jason-3 Live Launch Broadcast - Part 4 of 4

    NASA Image and Video Library

    2016-01-17

    At Space Launch Complex 4 at Vandenberg Air Force Base in California, a SpaceX Falcon 9 rocket launches the Jason-3 spacecraft into orbit for NOAA, the National Oceanic and Atmospheric Administration, and EUMETSAT, the European Organization for the Exploitation of Meteorological Satellites. Built by Thales Alenia of France, Jason-3 will measure the topography of the ocean surface for a four-agency international partnership consisting of NOAA, NASA, Centre National d’Etudes Spatiales, France’s space agency, and the European Organization for the Exploitation of Meteorological Satellites.

  13. Addendum to: Modelling duality between bound and resonant meson spectra by means of free quantum motions on the de Sitter space-time dS4

    NASA Astrophysics Data System (ADS)

    Kirchbach, M.; Compean, C. B.

    2017-04-01

    In the article under discussion the analysis of the spectra of the unflavored mesons lead us to some intriguing insights into the possible geometry of space-time outside the causal Minkowski light cone and into the nature of strong interactions. In applying the potential theory concept of geometrization of interactions, we showed that the meson masses are best described by a confining potential composed by the centrifugal barrier on the three-dimensional spherical space, S3, and of a charge-dipole potential constructed from the Green function to the S3 Laplacian. The dipole potential emerged in view of the fact that S3 does not support single-charges without violation of the Gauss theorem and the superposition principle, thus providing a natural stage for the description of the general phenomenon of confined charge-neutral systems. However, in the original article we did not relate the charge-dipoles on S3 to the color neutral mesons, and did not express the magnitude of the confining dipole potential in terms of the strong coupling αS and the number of colors, Nc, the subject of the addendum. To the amount S3 can be thought of as the unique closed space-like geodesic of a four-dimensional de Sitter space-time, dS4, we hypothesized the space-like region outside the causal Einsteinian light cone (it describes virtual processes, among them interactions) as the (1+4)-dimensional subspace of the conformal (2+4) space-time, foliated with dS4 hyperboloids, and in this way assumed relevance of dS4 special relativity for strong interaction processes. The potential designed in this way predicted meson spectra of conformal degeneracy patterns, and in accord with the experimental observations. We now extract the αs values in the infrared from data on meson masses. The results obtained are compatible with the αs estimates provided by other approaches.

  14. KENNEDY SPACE CENTER, FLA. - In a brief ceremony in the Space Station Processing Facility, Chuck Hardison (left), Boeing senior truss manager, turns over the “key” for the starboard truss segment S3/S4 to Scott Gahring, ISS Vehicle Office manager (acting), Johnson Space Center. The trusses are scheduled to be delivered to the International Space Station on mission STS-117.

    NASA Image and Video Library

    2004-02-12

    KENNEDY SPACE CENTER, FLA. - In a brief ceremony in the Space Station Processing Facility, Chuck Hardison (left), Boeing senior truss manager, turns over the “key” for the starboard truss segment S3/S4 to Scott Gahring, ISS Vehicle Office manager (acting), Johnson Space Center. The trusses are scheduled to be delivered to the International Space Station on mission STS-117.

  15. A safe place with space for learning: Experiences from an interprofessional training ward.

    PubMed

    Hallin, Karin; Kiessling, Anna

    2016-01-01

    Interprofessional learning in a real ward context effectively increases collaborative and professional competence among students. However, less is known on the processes behind this. The aim of this study was to explore medical, nurse, physiotherapy, and occupational therapy students' perspectives on the process of their own learning at an interprofessional training ward (IPTW). We performed a qualitative content analysis on free-text answers of 333 student questionnaires from the years 2004 to 2011. Two main themes emerged: first, students found that the IPTW provided an enriching learning environment--a safe place with space. It included authentic and relevant patients, well-composed and functioning student teams, competent and supportive supervisors, and adjusted ward structures to support learning. Second, they developed an awareness of their own development with faith in the future--from chaos to clarity. It included personal, professional, and interprofessional development towards a comprehensive view of practice and a faith in their ability to work as professionals in the future. Our findings are discussed with a social constructivist perspective. This study suggests that when an IPTW provides a supportive and permissive learning environment with possibilities to interact with one another--a safe place with space--it enables students to move from insecurity to faith in their abilities--from chaos to clarity. However, if the learning environment is impaired, the students' development could be halted.

  16. Making Human Spaceflight as Safe as Possible

    NASA Technical Reports Server (NTRS)

    Gregory, Frederick D.

    2005-01-01

    We articulated the safety hierarchy a little over two years ago, as part of our quest to be the nation s leader in safety and occupational health, and in the safety of the products and services we provide. The safety hierarchy stresses that we are all accountable for assuring that our programs, projects, and operations do not impact safety or health for the public, astronauts and pilots, employees on the ground, and high-value equipment and property. When people are thinking about doing things safely, they re also thinking about doing things right. And for the past couple of years, we ve had some pretty good results. In the time since the failures of the Mars 98 missions that occurred in late 1999, every NASA spacecraft launch has met the success objectives, and every Space Shuttle mission has safely and successfully met all mission objectives. Now I can t say that NASA s safety program is solely responsible for these achievements, but, as we like to say, "mission success starts with safety." In the future, looking forward, we will continue to make spaceflight even safer. That is NASA s vision. That is NASA s duty to both those who will travel into space and the American people who will make the journey possible.

  17. Space shuttle/food system study. Package feasibility study, modifications 3S, 4C and 5S

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An optimum feeding system for the space shuttle was presented. This system consisted of all rehydratable type foods which were enclosed in a 4 in. x 4 in. x 1 in. flexible package. A feasibility follow-on study was conducted, and two acceptable, feasible prototypes for this package are described.

  18. KENNEDY SPACE CENTER, FLA. - Many vendors and organizations displayed their products during the Spaceport Super Safety and Health Day at KSC and Cape Canaveral Air Force Station, an annual event dedicated to reinforcing safe and healthful behaviors in the workforce. This scene is at Hangar S, CCAFS.

    NASA Image and Video Library

    2003-10-15

    KENNEDY SPACE CENTER, FLA. - Many vendors and organizations displayed their products during the Spaceport Super Safety and Health Day at KSC and Cape Canaveral Air Force Station, an annual event dedicated to reinforcing safe and healthful behaviors in the workforce. This scene is at Hangar S, CCAFS.

  19. Expedition 50-51 Arrives Safely at the Space Station on This Week @NASA – November 25, 2016

    NASA Image and Video Library

    2016-11-25

    On Nov. 19 Eastern time, two days after launching aboard a Soyuz spacecraft from the Baikonur Cosmodrome in Kazakhstan, the Expedition 50-51 crew, including NASA astronaut Peggy Whitson arrived safely at the International Space Station. A few hours after docking, Whitson and Expedition 50-51 crewmates, Oleg Novitskiy of the Russian space agency Roscosmos, and Thomas Pesquet of the European Space Agency, were greeted by space station Commander Shane Kimbrough of NASA and Sergey Ryzhikov and Andrey Borisenko of Roscosmos. The arriving crew members, who are scheduled to remain on the space station until next spring, will contribute to more than 250 research experiments while onboard the orbital laboratory. Also, Cygnus Cargo Spacecraft Leaves the Space Station, Advanced Weather Satellite Launched into Orbit, SLS Hardware Installed in Test Stand, C-Level Platforms Installed in Vehicle Assembly Building, and Giving Thanks from Space!

  20. Space Shuttle Strategic Planning Status

    NASA Technical Reports Server (NTRS)

    Henderson, Edward M.; Norbraten, Gordon L.

    2006-01-01

    The Space Shuttle Program is aggressively planning the Space Shuttle manifest for assembling the International Space Station and servicing the Hubble Space Telescope. Implementing this flight manifest while concurrently transitioning to the Exploration architecture creates formidable challenges; the most notable of which is retaining critical skills within the Shuttle Program workforce. The Program must define a strategy that will allow safe and efficient fly-out of the Shuttle, while smoothly transitioning Shuttle assets (both human and facility) to support early flight demonstrations required in the development of NASA s Crew Exploration Vehicle (CEV) and Crew and Cargo Launch Vehicles (CLV). The Program must accomplish all of this while maintaining the current level of resources. Therefore, it will be necessary to initiate major changes in operations and contracting. Overcoming these challenges will be essential for NASA to fly the Shuttle safely, accomplish the President s "Vision for Space Exploration," and ultimately meet the national goal of maintaining a robust space program. This paper will address the Space Shuttle Program s strategy and its current status in meeting these challenges.

  1. Evaluating a Safe Space Training for School Counselors and Trainees Using a Randomized Control Group Design

    ERIC Educational Resources Information Center

    Byrd, Rebekah; Hays, Danica G.

    2014-01-01

    School counselors need to advocate and act as an ally for all students. Safe Space, a training designed to facilitate competency for working with and serving LGBTQ youth (i.e., LGBTQ competency), has received increased attention in the field of school counseling. However, limited empirical support exists for training interventions such as Safe…

  2. "You're Really Gonna Kick Us All Out?" Sustaining Safe Spaces for Community-Based HIV Prevention and Control among Black Men Who Have Sex with Men.

    PubMed

    Garcia, Jonathan; Parker, Caroline; Parker, Richard G; Wilson, Patrick A; Philbin, Morgan M; Hirsch, Jennifer S

    2015-01-01

    Black men who have sex with men (BMSM) experience among the highest rates of HIV infection in the United States. We conducted a community-based ethnography in New York City to identify the structural and environmental factors that influence BMSMs vulnerability to HIV and their engagement with HIV prevention services. Methods included participant observation at community-based organizations (CBOs) in New York City, in-depth interviews with 31 BMSM, and 17 key informant interviews. Our conceptual framework shows how creating and sustaining safe spaces could be a critical environmental approach to reduce vulnerability to HIV among BMSM. Participant observation, in-depth and key informant interviews revealed that fear and mistrust characterized men's relation to social and public institutions, such as churches, schools, and the police. This fear and mistrust created HIV vulnerability among the BMSM in our sample by challenging engagement with services. Our findings suggest that to be successful, HIV prevention efforts must address these structural and environmental vulnerabilities. Among the CBOs that we studied, "safe spaces" emerged as an important tool for addressing these environmental vulnerabilities. CBOs used safe spaces to provide social support, to address stigma, to prepare men for the workforce, and to foster a sense of community among BMSM. In addition, safe spaces were used for HIV and STI testing and treatment campaigns. Our ethnographic findings suggest that safe spaces represent a promising but so far under-utilized part of HIV prevention infrastructure. Safe spaces seem integral to high impact comprehensive HIV prevention efforts, and may be considered more appropriately as part of HIV capacity-building rather than being nested within program-specific funding structures.

  3. Expedition 52 Crew Lands Safely in Kazakhstan

    NASA Image and Video Library

    2017-09-02

    Expedition 52 Commander Fyodor Yurchikhin of Roscosmos and Flight Engineers Peggy Whitson and Jack Fischer of NASA landed safely near the town of Dzhezkazgan, Kazakhstan Sept. 3 after bidding farewell to their colleagues on the complex and undocking their Soyuz MS-04 spacecraft from the Poisk Module on the International Space Station. The landing marked the first time since Nov. 26, 2010 that two NASA astronauts returned to Earth in a Russian Soyuz spacecraft. Whitson, who has logged more days in space than any other U.S. astronaut, completed a 10-month mission, her third long duration flight, while Yurchikhin and Fischer completed 136 days in space.

  4. Apex-4 for SpaceX CRS-10

    NASA Image and Video Library

    2017-02-16

    APEX-04, or Advanced Plant EXperiments-04, is being prepared in a cold room in the Kennedy Space Center Processing Facility for SpaceX-10. The petri plates are wrapped in black cloth and kept cold (+4 degrees Celsius) to prevent them from germinating prior to the experiment start on station. Dr. Anna Lisa Paul of the University of Florida is the principal investigator for APEX-04. Apex-04 is an experiment involving Arabidopsis in petri plates inside the Veggie facility aboard the International Space Station. Since Arabidopsis is the genetic model of the plant world, it is a perfect sample organism for performing genetic studies in spaceflight. The experiment is the result of a grant from NASA’s Space Life and Physical Sciences division.

  5. 14 CFR 417.219 - Data loss flight time and planned safe flight state analyses.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Data loss flight time and planned safe flight state analyses. 417.219 Section 417.219 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION... flight to a condition where the launch vehicle's hazardous debris impact dispersion extends to any...

  6. 14 CFR 417.219 - Data loss flight time and planned safe flight state analyses.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Data loss flight time and planned safe flight state analyses. 417.219 Section 417.219 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION... flight to a condition where the launch vehicle's hazardous debris impact dispersion extends to any...

  7. 14 CFR 417.219 - Data loss flight time and planned safe flight state analyses.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Data loss flight time and planned safe flight state analyses. 417.219 Section 417.219 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION... flight to a condition where the launch vehicle's hazardous debris impact dispersion extends to any...

  8. 14 CFR 417.219 - Data loss flight time and planned safe flight state analyses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Data loss flight time and planned safe flight state analyses. 417.219 Section 417.219 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION... flight to a condition where the launch vehicle's hazardous debris impact dispersion extends to any...

  9. 14 CFR 417.219 - Data loss flight time and planned safe flight state analyses.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Data loss flight time and planned safe flight state analyses. 417.219 Section 417.219 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION... flight to a condition where the launch vehicle's hazardous debris impact dispersion extends to any...

  10. Stormram 4: An MR Safe Robotic System for Breast Biopsy.

    PubMed

    Groenhuis, Vincent; Siepel, Françoise J; Veltman, Jeroen; van Zandwijk, Jordy K; Stramigioli, Stefano

    2018-05-21

    Suspicious lesions in the breast that are only visible on magnetic resonance imaging (MRI) need to be biopsied under MR guidance with high accuracy and efficiency for accurate diagnosis. The aim of this study is to present a novel robotic system, the Stormram 4, and to perform preclinical tests in an MRI environment. Excluding racks and needle, its dimensions are 72 × 51 × 40 mm. The Stormram 4 is driven by two linear and two curved pneumatic stepper motors. The linear motor is capable of exerting 63 N of force at a pressure of 0.65 MPa. In an MRI environment the maximum observed stepping frequency is 30 Hz (unloaded), or 8 Hz when full force is needed. The Stormram 4's mean positioning error is 0.73 ± 0.47 mm in free air, and 1.29 ± 0.59 mm when targeting breast phantoms in MRI. Excluding the off-the-shelf needle, the robot is inherently MR safe. The robot is able to accurately target lesions under MRI guidance, reducing tissue damage and risk of false negatives. These results are promising for clinical experiments, improving the quality of healthcare in the field of MRI-guided breast biopsies.

  11. Apex-4 for SpaceX CRS-10

    NASA Image and Video Library

    2017-02-16

    APEX-04, or Advanced Plant EXperiments-04, is being prepared in a cold room in the Kennedy Space Center Processing Facility for SpaceX-10. Eric Morris from the cold stowage group fits items into the Double Cold Bag (DCB) which is a non-powered container that keeps the APEX petri plates at +4 degrees Celsius during launch and ascent.. Dr. Anna Lisa Paul of the University of Florida is the principal investigator for APEX-04. Apex-04 is an experiment involving Arabidopsis in petri plates inside the Veggie facility aboard the International Space Station. Since Arabidopsis is the genetic model of the plant world, it is a perfect sample organism for performing genetic studies in spaceflight. The experiment is the result of a grant from NASA’s Space Life and Physical Sciences division.

  12. Phase diagrams of the sections As/sub 2/S/sub 3/-Tl/sub 3/AsS/sub 4/, Tl/sub 3/AsS/sub 4/-S, and Tl/sub 3/AsS/sub 4/-Tl/sub 2/S of the ternary system As-Tl-S

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vorob'ev, Yu.I.; Velikova, N.G.; Kirilenko, V.V.

    1987-12-01

    Using DTA and XPA methods, microstructural investigations, and microhardness measurements, phase diagrams of the quasibinary sections As/sub 2/S/sub 3/-Tl/sub 3/AsS/sub 4/, Tl/sub 3/AsS/sub 4/-S, and Tl/sub 3/AsS/sub 4/-Tl/sub 2/S, are characterized by five ternary compounds Tl/sub 3/As/sub 5/S/sub 10/, Tl/sub 9/As/sub 5/S/sub 15/, Tl/sub 9/As/sub 3/S/sub 13/, Tl/sub 3/AsS/sub 6/, and Tl/sub 8/As/sub 2/S/sub 9/, which decompose by peritectic reactions at 198, 307, 408, 362, and 318/degree/C, respectively. Interplanar spacings and line intensities are given for the detected compounds. Glass formation is considered in the Tl-As-S system.

  13. Establishment of design criteria for acceptable failure modes and fail safe considerations for the space shuttle structural system

    NASA Technical Reports Server (NTRS)

    Westrup, R. W.

    1972-01-01

    Investigations of fatigue life, and safe-life and fail-safe design concepts as applied to space shuttle structure are summarized. The results are evaluated to select recommended structural design criteria to provide assurance that premature failure due to propagation of undetected crack-like defects will not occur during shuttle operational service. The space shuttle booster, GDC configuration B-9U, is selected as the reference vehicle. Structural elements used as basis of detail analyses include wing spar caps, vertical stabilizer skins, crew compartment skin, orbiter support frame, and propellant tank shell structure. Fatigue life analyses of structural elements are performed to define potential problem areas and establish upper limits of operating stresses. Flaw growth analyses are summarized in parametric form over a range of initial flaw types and sizes, operating stresses and service life requirements. Service life of 100 to 500 missions is considered.

  14. Humanity’s Eye into the Universe on This Week @NASA – November 4, 2016

    NASA Image and Video Library

    2016-11-04

    During a Nov. 2 media event at NASA’s Goddard Space Flight Center, Administrator Charlie Bolden was joined by Goddard Center Director Chris Scolese and Senior Project Scientist, Dr. John Mather for an update on the James Webb Space Telescope, including a rare glimpse at the telescope’s primary mirror. Engineers and technicians recently completed a “Center of Curvature” test on the mirror, which measures the shape of the mirror. This is the first important optical measurement before the mirror goes into the testing chambers. Meanwhile, the telescope’s sunshield layers also have been finished. This will protect Webb’s sensitive instruments from the sun when the telescope is in space. The Webb Telescope, which is targeted for launch in 2018, will study every phase in the history of our universe, including the cosmos’ first luminous glows, the formation of planetary systems capable of supporting life, and the evolution of our own solar system. Also, Expedition 49 Returns Safely from the International Space Station, Next Space Station Crew Travels to Launch Site, Agency Innovation Mission Day, SDO Captures Lunar Transit, and World Altitude Record for MMS!

  15. Experiments to the Space Station (EXPRESS) Rack 4

    NASA Image and Video Library

    2002-07-04

    iss005e06720 (7/4/2002) --- Front view of Express Rack 4 in the U.S. Laboratory / Destiny taken during Expedition Five. Visible in the rack are the following items: Single-Locker Thermal Enclosure System (STES) Muffler, Advanced Astroculture Growth Chamber (ADVASC-GC), Advanced Astroculture Support System (ADVASC-SS). And Space Acceleration and Measurement System (SAMS) II.

  16. Forecasting Safe or Dangerous Space Weather from HMI Magnetograms

    NASA Technical Reports Server (NTRS)

    Falconer, David; Barghouty, Abdulnasser F.; Khazanov, Igor; Moore, Ron

    2011-01-01

    We have developed a space-weather forecasting tool using an active-region free-energy proxy that was measured from MDI line-of-sight magnetograms. To develop this forecasting tool (Falconer et al 2011, Space Weather Journal, in press), we used a database of 40,000 MDI magnetograms of 1300 active regions observed by MDI during the previous solar cycle (cycle 23). From each magnetogram we measured our free-energy proxy and for each active region we determined its history of major flare, CME and Solar Particle Event (SPE) production. This database determines from the value of an active region s free-energy proxy the active region s expected rate of production of 1) major flares, 2) CMEs, 3) fast CMEs, and 4) SPEs during the next few days. This tool was delivered to NASA/SRAG in 2010. With MDI observations ending, we have to be able to use HMI magnetograms instead of MDI magnetograms. One of the difficulties is that the measured value of the free-energy proxy is sensitive to the spatial resolution of the measured magnetogram: the 0.5 /pixel resolution of HMI gives a different value for the free-energy proxy than the 2 /pixels resolution of MDI. To use our MDI-database forecasting curves until a comparably large HMI database is accumulated, we smooth HMI line-of-sight magnetograms to MDI resolution, so that we can use HMI to find the value of the free-energy proxy that MDI would have measured, and then use the forecasting curves given by the MDI database. The new version for use with HMI magnetograms was delivered to NASA/SRAG (March 2011). It can also use GONG magnetograms, as a backup.

  17. The Role of Schools and their Capabilities to Ensure Safe Sheltering During a Storm

    DTIC Science & Technology

    2017-03-01

    and security aspects include establishing a safe environment in a confined space. While absent from Florida’s 2016 Statewide Emergency Shelter Plan...offer a safe environment for sheltering, and new building codes have been created for this purpose. The northern school districts in Texas sit in...Special Feature 2: Building a Safe and Secure Educational Environment ,” accessed January 15, 2017, http://www.mext.go.jp/b_menu/hakusho/html/hpab201201

  18. China in Space: Implications for U.S. Military Strategy

    DTIC Science & Technology

    2007-01-01

    driver. The space program provides a mechanism for research and scientific exploration that will undoubtedly advance China’s education and high...ndu.edu/ login?url=http://proquest.umi.com/pqdweb?did= 1144517361&Fmt=3&clientId=3921&RQT=309&V Name=PQD>. 4 Michael Westlake, “Space program engen

  19. Results of 30 kWt Safe Affordable Fission Engine (SAFE-30) primary heat transport testing

    NASA Astrophysics Data System (ADS)

    Pedersen, Kevin; van Dyke, Melissa; Houts, Mike; Godfroy, Tom; Martin, James; Dickens, Ricky; Williams, Eric; Harper, Roger; Salvil, Pat; Reid, Bob

    2001-02-01

    The use of resistance heaters to simulate heat from fission allows extensive development of fission systems to be performed in non-nuclear test facilities, saving time and money. Resistance heated tests on the Safe Affordable Fission Engine-30 kilowatt (SAFE30) test article are being performed at the Marshall Space Flight Center. This paper discusses the results of these experiments to date, and describes the additional testing that will be performed. Recommendations related to the design of testable space fission power and propulsion systems are made. .

  20. XYFREZ.4 User’s Manual.

    DTIC Science & Technology

    1987-12-01

    F T FILE I MEuSpecial Report 87-26 December 1987 US Army Corps of Engineers Cold Regions Research & Engineering Laboratory XYFREZ.4 User’s manual...Freeze/thaw User’s manual 19. ABSTRACT (Continue on reverse if necessary and identify by block number) - -- Using the program XYFREZ, version 4, one...may simulate two-dimensional conduction of heat, with or without phase change. The mathematical method employed uses finite elements in space and

  1. NASA's Space Launch System Takes Shape: Progress Toward Safe, Affordable, Exploration

    NASA Technical Reports Server (NTRS)

    Askins, Bruce R.; Robinson, Kimberly F.

    2014-01-01

    Development of NASA's Space Launch System (SLS) exploration-class heavy lift rocket has moved from the formulation phase to implementation in 3 years and will make significant progress this year toward its first launch, slated December 2017. SLS represents a safe, affordable, and evolutionary path to development of an unprecedented capability for future human and robotic exploration and use of space. For the United States current development is focused on a configuration with a 70 metric ton (t) payload to low Earth orbit (LEO), more than double any operational vehicle. This version will launch NASA's Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back, as well as the first crewed Orion flight. SLS is designed to evolve to a 130 t lift capability that can reduce mission costs, simplify payload design, reduce trip times, and lower overall risk. Each vehicle element completed its respective Preliminary Design Reviews, followed by the SLS Program. The Program also completed the Key Decision Point-C milestone to move from formulation to implementation in 2014. NASA hasthorized the program to proceed to Critical Design Review, scheduled for 2015. Accomplihments to date include: manufacture of core stage test hardware, as well as preparations for testing the world's most powerful solid rocket boosters and main engines that flew 135 successful Space Shuttle missions. The Program's success to date is due to prudent use of existing technology, infrastructure, and workforce; streamlined management approach; and judicious use of new technologies. This paper will discuss SLS Program successes over the past year and examine milestones and challenges ahead. The SLS Program and its elements are managed at NASA's Marshall Space Flight Center (MSFC).

  2. Review of Issues Associated with Safe Operation and Management of the Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Johnstone, Paul M.; Blomberg, Richard D.; Gleghorn, George J.; Krone, Norris J.; Voltz, Richard A.; Dunn, Robert F.; Donlan, Charles J.; Kauderer, Bernard M.; Brill, Yvonne C.; Englar, Kenneth G.; hide

    1996-01-01

    At the request of the President of the United States through the Office of Science and Technology Policy (OSTP), the NASA Administrator tasked the Aerospace Safety Advisory Panel with the responsibility to identify and review issues associated with the safe operation and management of the Space Shuttle program arising from ongoing efforts to improve and streamline operations. These efforts include the consolidation of operations under a single Space Flight Operations Contract (SFOC), downsizing the Space Shuttle workforce and reducing costs of operations and management. The Panel formed five teams to address the potentially significant safety impacts of the seven specific topic areas listed in the study Terms of Reference. These areas were (in the order in which they are presented in this report): Maintenance of independent safety oversight; implementation plan for the transition of Shuttle program management to the Lead Center; communications among NASA Centers and Headquarters; transition plan for downsizing to anticipated workforce levels; implementation of a phased transition to a prime contractor for operations; Shuttle flight rate for Space Station assembly; and planned safety and performance upgrades for Space Station assembly. The study teams collected information through briefings, interviews, telephone conversations and from reviewing applicable documentation. These inputs were distilled by each team into observations and recommendations which were then reviewed by the entire Panel.

  3. Defining a Safe Operating Space for inland recreational fisheries

    USGS Publications Warehouse

    Carpenter, Stephen R.; Brock, William A.; Hansen, Gretchen J. A.; Hansen, Jonathan F.; Hennessy, Joseph M.; Isermann, Daniel A.; Pedersen, Eric J.; Perales, K. Martin; Rypel, Andrew L.; Sass, Greg G.; Tunney, Tyler D.; Vander Zanden, M. Jake

    2017-01-01

    The Safe Operating Space (SOS) of a recreational fishery is the multidimensional region defined by levels of harvest, angler effort, habitat, predation and other factors in which the fishery is sustainable into the future. SOS boundaries exhibit trade-offs such that decreases in harvest can compensate to some degree for losses of habitat, increases in predation and increasing value of fishing time to anglers. Conversely, high levels of harvest can be sustained if habitat is intact, predation is low, and value of fishing effort is moderate. The SOS approach recognizes limits in several dimensions: at overly high levels of harvest, habitat loss, predation, or value of fishing effort, the stock falls to a low equilibrium biomass. Recreational fisheries managers can influence harvest and perhaps predation, but they must cope with trends that are beyond their control such as changes in climate, loss of aquatic habitat or social factors that affect the value of fishing effort for anglers. The SOS illustrates opportunities to manage harvest or predation to maintain quality fisheries in the presence of trends in climate, social preferences or other factors that are not manageable.

  4. Jeff’s Earth - 4K

    NASA Image and Video Library

    2017-01-17

    The first time you see Planet Earth from space, it’s stunning; when you’ve spent 534 days in space—more than any other American—it still is! On his most recent trip the International Space Station NASA astronaut Jeff Williams brought an Ultra High Definition video camera that he pointed at the planet 250 miles below; here he shares some of those images, and talks about the beauty of the planet, the variety of things to see, and the value of sharing that perspective with everyone who can’t go to orbit in person. HD download link: https://archive.org/details/TheSpaceProgram UHD content download link: https://archive.org/details/NASA-Ultra-High-Definition _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/ YouTube: https://youtu.be/-nmNhKRzy4w

  5. Safe Heavens: Military Strategy and Space Sanctuary Thought

    DTIC Science & Technology

    1997-06-01

    November 1957, his service proposed two ASAT solutions: a modified Nike Zeus antiballistic missile and a “homing satellite” carrying a destructive charge.18...May 1962, Secretary of Defense (SECDEF) McNamara ordered the Army to modify the Nike Zeus antiballistic missile for a future ASAT role. The modified...would never become operational. President Carter’s 1978 Presidential Directive on Space Policy stated: The United States finds itself under increasing

  6. DroidSafe

    DTIC Science & Technology

    2016-12-01

    branches of our work . 3.1 Understanding Sensitive API Call and API Information Usage Android applications are written in a type- safe language (Java...directly invoke resolved targets. Because DroidSafe works with a comprehensive model of the Android environment , it supports precise resolution of...STATEMENT. FOR THE CHIEF ENGINEER: / S / / S / MARK K. WILLIAMS WARREN H. DEBANY, JR. Work Unit Manager

  7. Safe Heavens. Military Strategy and Space Sanctuary Thought,

    DTIC Science & Technology

    1998-06-01

    service proposed two ASAT solutions: a modified Nike Zeus antiballistic missile (ABM) and a "homing satellite" carrying a destructive charge.9...McNamara ordered the Army to modify the Nike Zeus ABM for a future ASAT role. The modified system, Program 505, was based at Kwajalein Atoll in...operational. President Carter’s 1978 Presidential Directive on Space Policy stated that "the United States finds itself under increasing pressure to

  8. Apex-4 for SpaceX CRS-10

    NASA Image and Video Library

    2017-02-16

    APEX-04, or Advanced Plant EXperiments-04, is being prepared in a cold room in the Kennedy Space Center Processing Facility for SpaceX-10. Eric Morris from the cold stowage group places the APEX-04 science kits into the Double Cold Bag (DCB), which is a non-powered container that keeps the APEX petri plates at +4 degrees Celsius during launch and ascent. The cold bricks in the lower right of the photo are placed in the DCB prior to closure. Dr. Anna Lisa Paul of the University of Florida is the principal investigator for APEX-04. Apex-04 is an experiment involving Arabidopsis in petri plates inside the Veggie facility aboard the International Space Station. Since Arabidopsis is the genetic model of the plant world, it is a perfect sample organism for performing genetic studies in spaceflight. The experiment is the result of a grant from NASA’s Space Life and Physical Sciences division.

  9. A Match Made in Space

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Just before the space shuttle reaches orbit, its three main engines shut down so that it can achieve separation from the massive external tank that provided the fuel required for liftoff and ascent. In jettisoning the external tank, which is completely devoid of fuel at this point in the flight, the space shuttle fires a series of thrusters, separate from its main engines, that gives the orbiter the maneuvering ability necessary to safely steer clear of the descending tank and maintain its intended flight path. These thrusters make up the space shuttle s Reaction Control System. While the space shuttle s main engines only provide thrust in one direction (albeit a very powerful thrust), the Reaction Control System engines allow the vehicle to maneuver in any desired direction (via small amounts of thrust). The resulting rotational maneuvers are known as pitch, roll, and yaw, and are very important in ensuring that the shuttle docks properly when it arrives at the International Space Station and safely reenters the Earth s atmosphere upon leaving. To prevent the highly complex Reaction Control System from malfunctioning during space shuttle flights, and to provide a diagnosis if such a mishap were to occur, NASA turned to a method of artificial intelligence that truly defied the traditional laws of computer science.

  10. U.S. commercial space activities - Returning the U.S. to preeminence in space

    NASA Technical Reports Server (NTRS)

    Stone, Barbara A.

    1987-01-01

    The current status of NASA's activities related to the commercial development of space is reviewed with particular reference to the emerging new commercial space activities and the post-Challenger policy developments affecting space commerce. The discussion covers the development of U.S. private sector launching capabilities, cooperative agreements with the private sector, the NASA technology utilization program, the technology applications activities of the Office of Commercial Programs, and the activities of the Centers for the Commercial Development of Space program.

  11. Recommendations for Safe Separation Distances from the Kennedy Space Center (KSC) Vehicle Assembly Building (VAB) Using a Heat-Flux-Based Analytical Approach (Abridged)

    NASA Technical Reports Server (NTRS)

    Cragg, Clinton H.; Bowman, Howard; Wilson, John E.

    2011-01-01

    The NASA Engineering and Safety Center (NESC) was requested to provide computational modeling to support the establishment of a safe separation distance surrounding the Kennedy Space Center (KSC) Vehicle Assembly Building (VAB). The two major objectives of the study were 1) establish a methodology based on thermal flux to determine safe separation distances from the Kennedy Space Center's (KSC's) Vehicle Assembly Building (VAB) with large numbers of solid propellant boosters containing hazard division 1.3 classification propellants, in case of inadvertent ignition; and 2) apply this methodology to the consideration of housing eight 5-segment solid propellant boosters in the VAB. The results of the study are contained in this report.

  12. Demonstration of 4 lanes of 4 × 100 Gbps DMT transmission with channel spacing of 50-GHz compatible with DWDM

    NASA Astrophysics Data System (ADS)

    Xu, Yuming; Yu, Jianjun; Li, Xinying; Xiao, Jiangnan

    2017-07-01

    We experimentally demonstrate 4 lanes of 416-Gb/s discrete multi-tone (DMT) transmission with 50-GHz channel spacing. This is the first demonstration of 4 × 100 G transmission with less than 100-GHz channel spacing and it can be compatible with dense wavelength division multiplexing (DWDM).

  13. Space Power Facility at NASA’s Plum Brook Station

    NASA Image and Video Library

    1969-02-21

    Exterior view of the Space Power Facility at the National Aeronautics and Space Administration’s (NASA) Plum Brook Station in Sandusky, Ohio. The $28.4-million facility, which began operations in 1969, is the largest high vacuum chamber ever built. The chamber is 100 feet in diameter and 120 feet high. It produces a vacuum deep enough to simulate the conditions at 300 miles altitude. The facility can sustain a high vacuum; simulate solar radiation via a 4-megawatt quartz heat lamp array, solar spectrum by a 400-kilowatt arc lamp, and cold environments. The Space Power Facility was originally designed to test nuclear power sources for spacecraft during long durations in a space atmosphere, but it was never used for that purpose. The facility’s first test in 1970 involved a 15 to 20-kilowatt Brayton Cycle Power System for space applications. Three different methods of simulating solar heat were employed during the Brayton tests. The facility was also used for jettison tests of the Centaur Standard Shroud. The shroud was designed for the new Titan-Centaur rocket that was scheduled to launch the Viking spacecraft to Mars. The new shroud was tested under conditions that simulated the time from launch to the separation of the stages. Test programs at the facility include high-energy experiments, shroud separation tests, Mars Lander system tests, deployable Solar Sail tests and International Space Station hardware tests.

  14. Enhanced Airport Capacity Through Safe, Dynamic Reductions in Aircraft Separation: NASA's Aircraft VOrtex Spacing System (AVOSS)

    NASA Technical Reports Server (NTRS)

    OConnor, Cornelius J.; Rutishauser, David K.

    2001-01-01

    An aspect of airport terminal operations that holds potential for efficiency improvements is the separation criteria applied to aircraft for wake vortex avoidance. These criteria evolved to represent safe spacing under weather conditions conducive to the longest wake hazards, and are consequently overly conservative during a significant portion of operations. Under many ambient conditions, such as moderate crosswinds or turbulence, wake hazard durations are substantially reduced. To realize this reduction NASA has developed a proof-of-concept Aircraft Vortex Spacing System (AVOSS). Successfully operated in a real-time field demonstration during July 2000 at the Dallas Ft. Worth International Airport, AVOSS is a novel integration of weather sensors, wake sensors, and analytical wake prediction algorithms. Gains in airport throughput using AVOSS spacing as compared to the current criteria averaged 6%, with peak values approaching the theoretical maximum of 16%. The average throughput gain translates to 15-40% reductions in delay when applied to realistic capacity ratios at major airports.

  15. We Must Take the Next Steps Towards Safe, Routine Space Travel

    NASA Technical Reports Server (NTRS)

    Lyles, G. M.

    2000-01-01

    This paper presents, in viewgraph form, six in a half generations of airplanes in a century. Some of the topics include: 1) Enterprise goals; 2) Generations of Reusable Launch Vehicles; 3) Space Transportation Across NASA; 4) Three Tiered Implementation Approach for Future Space Transportation Technology; 5) Develop a Comprehensive, Agency Level Space Transportation Plan That Will Enable NASA's Strategic Plan; 6) Timeline for Addressing NASA's Needs; 7) Significant 2nd Generation Technology Drivers; 8) Example Large Scale Ground Demonstrations; and 9) Example Pathfinder Demonstrations. The paper also includes various aircraft designs and propulsion system technology.

  16. So What's an RTG and Are They Safe?

    NASA Technical Reports Server (NTRS)

    Barret, Chris; Hughes, R. W. (Technical Monitor)

    2001-01-01

    When one considers space missions to the outer edges of our solar system and far beyond, our sun cannot be relied on to produce the required spacecraft (s/c) power. Solar energy diminishes as the square of the distance from the Sun. At Mars it is only 43% of that at earth. At Jupiter, it falls off to only 3.6% of Earth's. By the time we get out to Pluto, solar energy is only .066% what it is on Earth. Beyond the orbit of Mars, it is not practical to depend on solar power for a s/c. However, the farther out we go the more power we need to heat the s/c and to transmit data back to Earth over the long distances. On Earth, knowledge is power. In the outer solar system, power is knowledge. Solar arrays only operate at 19% efficiency, are very vulnerable to damage from radiation and temperature extremes, and cannot be used for even nearby missions that operate in extended darkness, or under the surface of a planet or moon. Twenty-six U.S. space missions, from the Transit to Cassini, have used radioisotope power systems and heater units to take s/c to the far reaches of our solar system and have demonstrated an outstanding record of safety and reliability. Radioisotope thermoelectric generators (RTG's) have proven to be safe, reliable, maintenance-free, and capable of providing both thermal and electrical power for decades under the harsh environments of deep space. RTG's have no problem operating in the high radiation belts of space, the extreme temperatures, or the severe dust storms of Mars, and they have proven to be the most reliable power source ever flown on U.S. s/c. For example, the two Pioneer s/c operated for more than two decades and the Voyager s/c may last for 40 years. RTG's are not nuclear reactors, they serve only as power generators and are not involved in the propulsion of the s/c. They operate on the principle of thermoelectric generation that converts heat directly into electricity, they have no moving parts, are extremely reliable, and have met or

  17. Space Food Package - Gemini-Titan (GT)-4 Flight - MSC

    NASA Image and Video Library

    1965-05-01

    Food packages of beef and gravy fully reconstituted and ready to eat. An astronaut would squeeze food through opening at right side of package. Water gun is used to reconstitute dehydrated food. Scissors are used to open packages. This is the type of space food which will be used on the Gemini-Titan 4 spaceflight. MSC, Houston, TX *S65-24895 thru S65-24899

  18. Synthetic torpor: A method for safely and practically transporting experimental animals aboard spaceflight missions to deep space.

    PubMed

    Griko, Yuri; Regan, Matthew D

    2018-02-01

    Animal research aboard the Space Shuttle and International Space Station has provided vital information on the physiological, cellular, and molecular effects of spaceflight. The relevance of this information to human spaceflight is enhanced when it is coupled with information gleaned from human-based research. As NASA and other space agencies initiate plans for human exploration missions beyond low Earth orbit (LEO), incorporating animal research into these missions is vitally important to understanding the biological impacts of deep space. However, new technologies will be required to integrate experimental animals into spacecraft design and transport them beyond LEO in a safe and practical way. In this communication, we propose the use of metabolic control technologies to reversibly depress the metabolic rates of experimental animals while in transit aboard the spacecraft. Compared to holding experimental animals in active metabolic states, the advantages of artificially inducing regulated, depressed metabolic states (called synthetic torpor) include significantly reduced mass, volume, and power requirements within the spacecraft owing to reduced life support requirements, and mitigated radiation- and microgravity-induced negative health effects on the animals owing to intrinsic physiological properties of torpor. In addition to directly benefitting animal research, synthetic torpor-inducing systems will also serve as test beds for systems that may eventually hold human crewmembers in similar metabolic states on long-duration missions. The technologies for inducing synthetic torpor, which we discuss, are at relatively early stages of development, but there is ample evidence to show that this is a viable idea and one with very real benefits to spaceflight programs. The increasingly ambitious goals of world's many spaceflight programs will be most quickly and safely achieved with the help of animal research systems transported beyond LEO; synthetic torpor may

  19. Synthetic torpor: A method for safely and practically transporting experimental animals aboard spaceflight missions to deep space

    NASA Astrophysics Data System (ADS)

    Griko, Yuri; Regan, Matthew D.

    2018-02-01

    Animal research aboard the Space Shuttle and International Space Station has provided vital information on the physiological, cellular, and molecular effects of spaceflight. The relevance of this information to human spaceflight is enhanced when it is coupled with information gleaned from human-based research. As NASA and other space agencies initiate plans for human exploration missions beyond low Earth orbit (LEO), incorporating animal research into these missions is vitally important to understanding the biological impacts of deep space. However, new technologies will be required to integrate experimental animals into spacecraft design and transport them beyond LEO in a safe and practical way. In this communication, we propose the use of metabolic control technologies to reversibly depress the metabolic rates of experimental animals while in transit aboard the spacecraft. Compared to holding experimental animals in active metabolic states, the advantages of artificially inducing regulated, depressed metabolic states (called synthetic torpor) include significantly reduced mass, volume, and power requirements within the spacecraft owing to reduced life support requirements, and mitigated radiation- and microgravity-induced negative health effects on the animals owing to intrinsic physiological properties of torpor. In addition to directly benefitting animal research, synthetic torpor-inducing systems will also serve as test beds for systems that may eventually hold human crewmembers in similar metabolic states on long-duration missions. The technologies for inducing synthetic torpor, which we discuss, are at relatively early stages of development, but there is ample evidence to show that this is a viable idea and one with very real benefits to spaceflight programs. The increasingly ambitious goals of world's many spaceflight programs will be most quickly and safely achieved with the help of animal research systems transported beyond LEO; synthetic torpor may

  20. Investigation of magnetic properties on spin-ordering effects of FeGa2S4 and FeIn2S4

    NASA Astrophysics Data System (ADS)

    Myoung, Bo Ra; Lim, Jung Tae; Kim, Chul Sung

    2017-09-01

    We have studied crystal and magnetic properties of chalcogenides FeGa2S4 and FeIn2S4 with X-ray diffractometer (XRD), magnetic property measurement system (MPMS), magnetometer, physical property measurement system (PPMS), and Mössbauer spectrometer. The crystal structure has 2-dimension triangular lattice structure with P-3m1 of FeGa2S4, while FeIn2S4 has inverse spinel with space group Fd3m. The AC magnetic susceptibility measurements show that FeGa2S4 is an insulating spin glass material, exhibiting geometrical frustration, unlike in the antiferromagnetic [AFM] metallic spin glass FeIn2S4. From hysteresis (M-H) curves at 4.2 K, FeGa2S4 has spin-flop behavior with an angle of 120° of triangle, as against linear slope of FeIn2S4 due to anti-parallel spin. The gap energy by splitting of 5T2g, Δ1 and electric quadrupole splitting ΔEQ of FeIn2S4 are much higher than that of FeGa2S4 at 4.2 K because FeGa2S4 is geometrically frustrated magnet having degenerate ground state at low temperature.

  1. Cygnus Arrives Safely to ISS on This Week @NASA – October 28, 2016

    NASA Image and Video Library

    2016-10-28

    On Oct. 23, Orbital ATK’s Cygnus cargo spacecraft safely arrived at the International Space Station – six days after being launched on an Antares rocket from NASA’s Wallops Flight Facility, in Virginia. The successful trip to orbit is the return of rocket launches to the space station from Virginia, following the loss of an Antares and a Cygnus spacecraft during a launch mishap in October 2014. The Cygnus delivered more than 5,100 pounds of science investigations, food and supplies to the crew onboard the station. Also, Next Space Station Crew Trains in Russia, Solar Hazards in Exploration, Preparing for Orion Water Recovery Test and more!

  2. Safe to Fly: Certifying COTS Hardware for Spaceflight

    NASA Technical Reports Server (NTRS)

    Fichuk, Jessica L.

    2011-01-01

    Providing hardware for the astronauts to use on board the Space Shuttle or International Space Station (ISS) involves a certification process that entails evaluating hardware safety, weighing risks, providing mitigation, and verifying requirements. Upon completion of this certification process, the hardware is deemed safe to fly. This process from start to finish can be completed as quickly as 1 week or can take several years in length depending on the complexity of the hardware and whether the item is a unique custom design. One area of cost and schedule savings that NASA implements is buying Commercial Off the Shelf (COTS) hardware and certifying it for human spaceflight as safe to fly. By utilizing commercial hardware, NASA saves time not having to develop, design and build the hardware from scratch, as well as a timesaving in the certification process. By utilizing COTS hardware, the current detailed certification process can be simplified which results in schedule savings. Cost savings is another important benefit of flying COTS hardware. Procuring COTS hardware for space use can be more economical than custom building the hardware. This paper will investigate the cost savings associated with certifying COTS hardware to NASA s standards rather than performing a custom build.

  3. From Planetary Boundaries to national fair shares of the global safe operating space - How can the scales be bridged?

    NASA Astrophysics Data System (ADS)

    Häyhä, Tiina; Cornell, Sarah; Lucas, Paul; van Vuuren, Detlef; Hoff, Holger

    2016-04-01

    The planetary boundaries framework proposes precautionary quantitative global limits to the anthropogenic perturbation of crucial Earth system processes. In this way, it marks out a planetary 'safe operating space' for human activities. However, decisions regarding resource use and emissions are mostly made at much smaller scales, mostly by (sub-)national and regional governments, businesses, and other local actors. To operationalize the planetary boundaries, they need to be translated into and aligned with targets that are relevant at these smaller scales. In this paper, we develop a framework that addresses the three dimension of bridging across scales: biophysical, socio-economic and ethical, to provide a consistent universally applicable approach for translating the planetary boundaries into national level context-specific and fair shares of the safe operating space. We discuss our findings in the context of previous studies and their implications for future analyses and policymaking. In this way, we help link the planetary boundaries framework to widely- applied operational and policy concepts for more robust strong sustainability decision-making.

  4. Activities on space debris in U.S.

    NASA Astrophysics Data System (ADS)

    Johnson, Nicholas L.

    2001-10-01

    In the U.S. space debris activities are addressed at all government levels, from the Executive Office of the President to the individual federal agencies to specialized centers, laboratories, organizations, and research groups. U.S. Space Policy specifically challenges government agencies to seek to minimize the creation of space debris and to promote debris minimization practices, both domestically and internationally. A set of space debris mitigation standard practices has been developed and adopted by relevant U.S. government agencies, and their application by the commercial aerospace community is highly encouraged. A growing number of U.S. government agencies have issued their own space debris mitigation policies, directives, regulations, and standards. Space debris research, including the definition and modeling of the current and future near-Earth space environment and the development of debris protection technologies, is principally conducted by NASA and the Department of Defense. The U.S. Space Surveillance Network continues to provide the most complete and timely characterization of the population of space debris larger than 10 cm. During the past several years major advancements have been achieved in extending this environment definition in LEO to include particles as small as only a few millimeters. The inspection of returned spacecraft surfaces continues to shed light on the even smaller debris population. With improvements in computer technology, new and more capable programs have been and are being developed to solve a number of operational and research problems. Finally, the academic and industrial sectors of the U.S. are also increasing their participation in and contributions to space debris operations and research. The cooperation of spacecraft and launch vehicle developers and operators is essential to the U.S. objective of promoting the preservation of the space environment for future generations.

  5. Combating Terrorism: U.S. Government Strategies and Efforts to Deny Terrorists Safe Haven

    DTIC Science & Technology

    2011-06-03

    havens—such as activities funded through State’s Peacekeeping Operations and State-funded DHS training to combat money laundering and bulk cash...Management, Committee on Homeland Security House of Representatives COMBATING TERRORISM U.S. Government Strategies and Efforts to Deny Terrorists... Combating Terrorism: U.S. Government Strategies and Efforts to Deny Terrorists Safe Haven 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  6. Higher spin gauge theory on fuzzy \\boldsymbol {S^4_N}

    NASA Astrophysics Data System (ADS)

    Sperling, Marcus; Steinacker, Harold C.

    2018-02-01

    We examine in detail the higher spin fields which arise on the basic fuzzy sphere S^4N in the semi-classical limit. The space of functions can be identified with functions on classical S 4 taking values in a higher spin algebra associated to \

  7. Proceedings of the NASA Conference on Space Telerobotics, volume 4

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo (Editor); Seraji, Homayoun (Editor)

    1989-01-01

    Papers presented at the NASA Conference on Space Telerobotics are compiled. The theme of the conference was man-machine collaboration in space. The conference provided a forum for researchers and engineers to exchange ideas on the research and development required for the application of telerobotic technology to the space systems planned for the 1990's and beyond. Volume 4 contains papers related to the following subject areas: manipulator control; telemanipulation; flight experiments (systems and simulators); sensor-based planning; robot kinematics, dynamics, and control; robot task planning and assembly; and research activities at the NASA Langley Research Center.

  8. Space Shuttle Strategic Planning Status

    NASA Technical Reports Server (NTRS)

    Norbraten, Gordon L.; Henderson, Edward M.

    2007-01-01

    The Space Shuttle Program is aggressively flying the Space Shuttle manifest for assembling the International Space Station and servicing the Hubble Space Telescope. Completing this flight manifest while concurrently transitioning to the Exploration architecture creates formidable challenges; the most notable of which is retaining critical skills within the Shuttle Program workforce. The Program must define a strategy that will allow safe and efficient fly-out of the Shuttle, while smoothly transitioning Shuttle assets (both human and facility) to support early flight demonstrations required in the development of NASA's Crew Exploration Vehicle (Orion) and Crew and Cargo Launch Vehicles (Ares I). The Program must accomplish all of this while maintaining the current level of resources. Therefore, it will be necessary to initiate major changes in operations and contracting. Overcoming these challenges will be essential for NASA to fly the Shuttle safely, accomplish the Vision for Space Exploration, and ultimately meet the national goal of maintaining a robust space program. This paper will address the Space Shuttle Program s strategy and its current status in meeting these challenges.

  9. How To Recycle Water in Space

    NASA Image and Video Library

    2017-06-13

    Nature has been recycling water on Earth for eons, and NASA is perfecting how to do it in space right now on the International Space Station. In constant operation for several years already, the Water Recovery System draws moisture from a number of sources to continuously provide astronauts with safe, clean drinking water. Follow the entire process in this video and learn how engineers are successfully turning yesterday’s coffee into tomorrow’s for these brave explorers! _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  10. NASA's Space Launch System Takes Shape: Progress Toward Safe, Affordable Exploration

    NASA Technical Reports Server (NTRS)

    Askins, Bruce

    2014-01-01

    Development of NASA's Space Launch System exploration-class heavy lift rocket has moved from the formulation phase to implementation in 3 years and will make significant progress this year toward its first launch, slated for December 2017. In recognition of the current fiscal realities, SLS represents a safe, affordable, and evolutionary path to development of an unprecedented capability for future human and robotic exploration and use of space. Current development is focused on a configuration with a 70 metric ton (t) payload to low Earth orbit (LEO), more than double any operational vehicle. It is this version that will launch NASA's Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back, as well as the first crewed Orion flight. This configuration is also designed to evolve to 130 t lift capability that offers several benefits, such as reduced mission costs, simplified payload design, faster trip times, and lower overall risk for missions of national significance. The SLS Program formally transitioned from the formulation phase to implementation during the past year, passing its Preliminary Design Review in 2013 and completion of Key Decision Point C in early 2014. NASA has authorized the Program to move forward to Critical Design Review, scheduled for 2015. Among the Program's many accomplishments are manufacture of core stage test hardware, as well as preparations for testing the world's most powerful solid rocket boosters and the main engines that flew 135 successful Space Shuttle missions. The Program's success to date is due to prudent use of existing technology, infrastructure, and workforce; streamlined management approach; and judicious use of new technologies. The result is a launch vehicle that will carry human and robotic exploration on the history-making missions in the coming decades. This paper will discuss the program and technical successes over the past year and provide a look at the milestones and

  11. 29 CFR 1915.15 - Maintenance of safe conditions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Enclosed Spaces and Other Dangerous Atmospheres in Shipyard Employment § 1915.15 Maintenance of safe... within a tested confined or enclosed space or other dangerous atmosphere occurs, work in the affected...

  12. 29 CFR 1915.15 - Maintenance of safe conditions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Enclosed Spaces and Other Dangerous Atmospheres in Shipyard Employment § 1915.15 Maintenance of safe... within a tested confined or enclosed space or other dangerous atmosphere occurs, work in the affected...

  13. 29 CFR 1915.15 - Maintenance of safe conditions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Enclosed Spaces and Other Dangerous Atmospheres in Shipyard Employment § 1915.15 Maintenance of safe... within a tested confined or enclosed space or other dangerous atmosphere occurs, work in the affected...

  14. Synthesis, Structure, and Characterization of Cu4S10(4-methylpyridine)4

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Richman, Robert M.; Duraj, Stan A.; Andras, Maria T.; Moore, Hall L.; Sabat, Michal; Eckles, William E.; Martuch, Robert A.

    1996-01-01

    The title compound, Cu4S10(4-methylpyridine)(sub 4) (dot) 4-methylpyridine was prepared by three different reactions: the oxidation of copper powder by sulfur and the reaction of copper (I) sulfide (or CuBr (dot) SMe2) with excess sulfur, both in the coordinating solvent, 4-methylpyridine. Red crystals of the compound obtained by layering with hexanes were subjected to single crystal X-ray diffraction. The structure was refined to R = 0.026 and R(sub w) = 0.036 in a space group P1bar (No. 2), with Z = 2, a = 13.983 (2) A, b = 15.384 (2) A, c = 9.660 (1) A, alpha = 93.87 (1)deg., beta = 93.38 (1)deg., gamma = 99.78 (1)deg., V = 2037.9 (9) A(exp 3). The compound has approximate S(sub 4) symmetry and consists of two pentasulfide chains linking four Cu(I) ions, each with a corrdinating 2-methylpyridine. The infrared spectrum was dominated by absorption due to coordinated 4-methylpyridine with several low-energy peaks attributable to S-S stretches, which were also observed by Raman spectroscopy. A featureless electronic absorption spectrum yielded a single peak in the near ultraviolet upon computer enhancement (lambda = 334 nm, epsilon = 10,000), most likely an intraligand transition. Cyclic voltammetry indicates that the polysulfide complex undergoes irrversible oxidation and reduction at +0.04 and -0.34 V vs. SCE, respectively, at 298 K in 4-methylpyridine when swept at 20 mV/sec. The electrochemical behavior was unvaried even at sweep rates as high as 100 V/sec.

  15. Activities on Space Debris in U.S.

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2001-01-01

    In the U.S. space debris activities are addressed at all government levels, from the Executive Office of the President to the individual federal agencies to specialized centers, laboratories, organizations, and research groups. U.S. Space Policy specifically challenges government agencies to seek to minimize the creation of space debris and to promote debris minimization practices both domestically and internationally. A set of space debris mitigation standard practices has been developed and adopted by relevant US government agencies, and their application by the commercial aerospace community is highly encouraged. A growing number of US government agencies have issued their own space debris mitigation policies, directives, regulations, and standards. Space debris research, including the definition and modeling of the current and future near-Earth space environment and the development of debris protection technologies, is principally conducted by NASA and the Department of Defense. The U.S. Space Surveillance Network continues to provide the most complete and timely characterization of the population of space debris larger than 10 cm. During the past several years major advancements have been achieved in extending this environment definition in LEO to include particles as small as only a few millimeters. The inspection of returned spacecraft surfaces continues to shed light on the even smaller debris population. With improvements in computer technology, new and more capable programs have been and are being developed to solve a number of operational and research problems. Finally, the academic and industrial sectors of the U.S. are also increasing their participation in and contributions to space debris operations and research. The cooperation of satellite and launch vehicle developers and operators is essential to the U.S. objective of promoting the preservation of the space environment for future generations.

  16. SpaceX Jason-3 Live Launch Broadcast - Part 1 of 4

    NASA Image and Video Library

    2016-01-17

    At Space Launch Complex 4 at Vandenberg Air Force Base in California, a SpaceX Falcon 9 rocket launches the Jason-3 spacecraft into orbit for NOAA, the National Oceanic and Atmospheric Administration, and EUMETSAT, the European Organization for the Exploitation of Meteorological Satellites. Built by Thales Alenia of France, Jason-3 will measure the topography of the ocean surface for a four-agency international partnership consisting of NOAA, NASA, Centre National d’Etudes Spatiales, France’s space agency, and the European Organization for the Exploitation of Meteorological Satellites.

  17. SpaceX Jason-3 Live Launch Broadcast - Part 3 of 4

    NASA Image and Video Library

    2016-01-17

    At Space Launch Complex 4 at Vandenberg Air Force Base in California, a SpaceX Falcon 9 rocket launches the Jason-3 spacecraft into orbit for NOAA, the National Oceanic and Atmospheric Administration, and EUMETSAT, the European Organization for the Exploitation of Meteorological Satellites. Built by Thales Alenia of France, Jason-3 will measure the topography of the ocean surface for a four-agency international partnership consisting of NOAA, NASA, Centre National d’Etudes Spatiales, France’s space agency, and the European Organization for the Exploitation of Meteorological Satellites.

  18. SpaceX Jason-3 Live Launch Broadcast - Part 2 of 4

    NASA Image and Video Library

    2016-01-17

    At Space Launch Complex 4 at Vandenberg Air Force Base in California, a SpaceX Falcon 9 rocket launches the Jason-3 spacecraft into orbit for NOAA, the National Oceanic and Atmospheric Administration, and EUMETSAT, the European Organization for the Exploitation of Meteorological Satellites. Built by Thales Alenia of France, Jason-3 will measure the topography of the ocean surface for a four-agency international partnership consisting of NOAA, NASA, Centre National d’Etudes Spatiales, France’s space agency, and the European Organization for the Exploitation of Meteorological Satellites.

  19. U.S. Laboratory Module (Destiny) for the International Space Station

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photograph shows the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS), under construction in the Space Station manufacturing facility at the Marshall Space Flight Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-67 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two end cones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  20. Modelling duality between bound and resonant meson spectra by means of free quantum motions on the de Sitter space-time dS4

    NASA Astrophysics Data System (ADS)

    Kirchbach, M.; Compean, C. B.

    2016-07-01

    The real parts of the complex squared energies defined by the resonance poles of the transfer matrix of the Pöschl-Teller barrier, are shown to equal the squared energies of the levels bound within the trigonometric Scarf well potential. By transforming these potentials into parts of the Laplacians describing free quantum motions on the mutually orthogonal open-time-like hyperbolic-, and closed-space-like spherical geodesics on the conformally invariant de Sitter space-time, dS4, the conformal symmetries of these interactions are revealed. On dS4 the potentials under consideration naturally relate to interactions within colorless two-body systems and to cusped Wilson loops. In effect, with the aid of the dS4 space-time as unifying geometry, a conformal symmetry based bijective correspondence (duality) between bound and resonant meson spectra is established at the quantum mechanics level and related to confinement understood as color charge neutrality. The correspondence allows to link the interpretation of mesons as resonance poles of a scattering matrix with their complementary description as states bound by an instantaneous quark interaction and to introduce a conformal symmetry based classification scheme of mesons. As examples representative of such a duality we organize in good agreement with data 71 of the reported light flavor mesons with masses below ˜ 2350 MeV into four conformal families of particles placed on linear f0, π , η , and a0 resonance trajectories, plotted on the ℓ/ M plane. Upon extending the sec2 χ by a properly constructed conformal color dipole potential, shaped after a tangent function, we predict the masses of 12 "missing" mesons. We furthermore notice that the f0 and π trajectories can be viewed as chiral partners, same as the η and a0 trajectories, an indication that chiral symmetry for mesons is likely to be realized in terms of parity doubled conformal multiplets rather than, as usually assumed, only in terms of parity

  1. U.S. Laboratory Module (Destiny) for the International Space Station

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This photograph shows the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS), in the Space Station manufacturing facility at the Marshall Space Flight Center, being readied for shipment to the Kennedy Space Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-67 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  2. Bulk superconductivity in bismuth oxysulfide Bi4O4S3.

    PubMed

    Singh, Shiva Kumar; Kumar, Anuj; Gahtori, Bhasker; Shruti; Sharma, Gyaneshwar; Patnaik, Satyabrata; Awana, Veer P S

    2012-10-10

    A very recent report on the observation of superconductivity in Bi(4)O(4)S(3) [Mizuguchi, Y.; http://arxiv.org/abs/1207.3145] could potentially reignite the search for superconductivity in a broad range of layered sulfides. We report here the synthesis of Bi(4)O(4)S(3) at 500 °C by a vacuum encapsulation technique and its basic characterizations. The as-synthesized Bi(4)O(4)S(3) was contaminated with small amounts of Bi(2)S(3) and Bi impurities. The majority phase was found to be tetragonal (space group I4/mmm) with lattice parameters a = 3.9697(2) Å and c = 41.3520(1) Å. Both AC and DC magnetization measurements confirmed that Bi(4)O(4)S(3) is a bulk superconductor with a superconducting transition temperature (T(c)) of 4.4 K. Isothermal magnetization (M-H) measurements indicated closed loops with clear signatures of flux pinning and irreversible behavior. The lower critical field (H(c1)) at 2 K for the new superconductor was found to be ~15 Oe. Magnetotransport measurements showed a broadening of the resistivity (ρ) and a decrease in T(c) (ρ = 0) with increasing magnetic field. The extrapolated upper critical field H(c2)(0) was ~31 kOe with a corresponding Ginzburg-Landau coherence length of ~100 Å . In the normal state, the ρ ~ T(2) dependence was not indicated. Hall resistivity data showed a nonlinear magnetic field dependence. Our magnetization and electrical transport measurements substantiate the appearance of bulk superconductivity in as-synthesized Bi(4)O(4)S(3). On the other hand, Bi heat-treated at the same temperature is not superconducting, thus excluding the possibility of impurity-driven superconductivity in the newly discovered superconductor Bi(4)O(4)S(3).

  3. 14 CFR 460.45 - Operator informing space flight participant of risk.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Government has not certified the launch vehicle and any reentry vehicle as safe for carrying crew or space... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Operator informing space flight participant of risk. 460.45 Section 460.45 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL...

  4. 14 CFR 460.45 - Operator informing space flight participant of risk.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Government has not certified the launch vehicle and any reentry vehicle as safe for carrying crew or space... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Operator informing space flight participant of risk. 460.45 Section 460.45 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL...

  5. Space Biosciences, Space-X, and the International Space Station

    NASA Technical Reports Server (NTRS)

    Wigley, Cecilia

    2014-01-01

    Space Biosciences Research on the International Space Station uses living organisms to study a variety of research questions. To enhance our understanding of fundamental biological processes. To develop the fundations for a safe, productive human exploration of space. To improve the quality of life on earth.

  6. 75 FR 1734 - Children’s Online Privacy Protection Rule Safe Harbor Proposed Self-Regulatory Guidelines; i-SAFE...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-13

    ...The Federal Trade Commission publishes this notice and request for public comment concerning proposed self-regulatory guidelines submitted by i-SAFE, Inc. under the safe harbor provision of the Children's Online Privacy Protection Rule.

  7. 4Kids.org: Topical, Searchable, and Safe Internet-Based Resource for Children and Youth

    ERIC Educational Resources Information Center

    Bacon, Melanie; Blood, Leslie; Ault, Marilyn; Adams, Doug

    2008-01-01

    4Kids.org is an online resource with an accompanying syndicated print publication created to promote safe access to websites and technology literacy. 4Kids.org, created by ALTEC at the University of Kansas in 1995, provides a variety of Internet-based activities as well as access to a database of websites reviewed for educational content,…

  8. First Principles Investigation of the Geometrical and Electrochemical Properties of Na4P<S6 and Li4P2S6

    NASA Astrophysics Data System (ADS)

    Rush, Larry E., Jr.; Holzwarth, N. A. W.

    First principles simulations are used to examine the structural and physical properties of Na4P2S6 in comparison with its Li4P2S6 analog. Four model structures are considered including the C 2 / m structure recently reported by Kuhn and co-workers from their analysis of single crystals of Na4P2S6, and three structures related to the P63 / mcm structure with P site disorder found in 1982 by Mercier and co-workers from their analysis of single crystals of Li4P2S6. The computational results indicate that both Na4P2S6 and Li4P2S6 have the same disordered ground state structures consistent with the P63 / mcm space group, while the optimized C 2 / m structures have higher energies by 0.1 eV and 0.4 eV per formula unit for Na4P2S6 and Li4P2S6, respectively. Simulations of ion migration suggest that Na4P2S6 may have more favorable ionic conductivity compared to Li4P2S6. Supported by NSF Grant DMR-1105485 and DMR-1507942.

  9. Space Shuttle Main Engine (SSME) Evolution

    NASA Technical Reports Server (NTRS)

    Worlund, Len A.; Hastings, J. H.; McCool, Alex (Technical Monitor)

    2001-01-01

    The SSME when developed in the 1970's was a technological leap in space launch propulsion system design. The engine has safely supported the space shuttle for the last two decades and will be required for at least another decade to support human space flight to the international space station. This paper discusses the continued improvements and maturing of the system to its current state and future considerations for its critical role in the nations space program. Discussed are the initiatives of the late 1980's, which lead to three major upgrades through the 1990's. The current capabilities of the propulsion system are defined in the areas of highest programmatic importance: ascent risk, in-flight abort thrust, reusability, and operability. Future initiatives for improved shuttle safety, the paramount priority of the Space Shuttle program are discussed.

  10. Expedition 52 Crew Lands Safely in Kazakhstan to Complete Record-Setting Mission

    NASA Image and Video Library

    2017-09-02

    Expedition 52 Commander Fyodor Yurchikhin of Roscosmos and Flight Engineers Peggy Whitson and Jack Fischer of NASA landed safely near the town of Dzhezkazgan, Kazakhstan Sept. 3 after bidding farewell to their colleagues on the complex and undocking their Soyuz MS-04 spacecraft from the Poisk Module on the International Space Station. The landing marked the first time since Nov. 26, 2010 that two NASA astronauts returned to Earth in a Russian Soyuz spacecraft. Whitson, who has logged more days in space than any other U.S. astronaut, completed a 10-month mission, her third long duration flight, while Yurchikhin and Fischer completed 136 days in space.

  11. N =4 supersymmetric mechanics on curved spaces

    NASA Astrophysics Data System (ADS)

    Kozyrev, Nikolay; Krivonos, Sergey; Lechtenfeld, Olaf; Nersessian, Armen; Sutulin, Anton

    2018-04-01

    We present N =4 supersymmetric mechanics on n -dimensional Riemannian manifolds constructed within the Hamiltonian approach. The structure functions entering the supercharges and the Hamiltonian obey modified covariant constancy equations as well as modified Witten-Dijkgraaf-Verlinde-Verlinde equations specified by the presence of the manifold's curvature tensor. Solutions of original Witten-Dijkgraaf-Verlinde-Verlinde equations and related prepotentials defining N =4 superconformal mechanics in flat space can be lifted to s o (n )-invariant Riemannian manifolds. For the Hamiltonian this lift generates an additional potential term which, on spheres and (two-sheeted) hyperboloids, becomes a Higgs-oscillator potential. In particular, the sum of n copies of one-dimensional conformal mechanics results in a specific superintegrable deformation of the Higgs oscillator.

  12. Making "ethical safe space" in the translation of contested knowledge: the role of community debate in defining end-of-life decision ethics.

    PubMed

    Kaufert, Joseph; Schwartz, Karen; Wiebe, Rhonda; Derksen, Jim; Lutfiyya, Zana M; Richert, Dean

    2013-04-01

    The objectives of this article are, first, to document a unique process of research knowledge translation (KT), which the authors describe as the creation of "ethical safe space," and, second, to document the narratives of forum participants and describe their interaction in a dialogue about vulnerability, the authority of physicians, and the perspective of people with disabilities on the policy. Narrative data from qualitative interviews with individual key informants and focus groups were used to identify speakers with specific expertise on policy, disability perspectives, and bioethical issues, who were invited to participate in the Forum on Ethical Safe Space. The planning workgroup adopted a model for enabling representative participation in the public forum designed to reduce the impact of physical, sensory, financial, language, and professional status barriers. Using the transcripts and keynote speakers' printed texts, primary themes and patterns of interaction were identified reflecting the alternative perspectives. Through the development of a workshop on ethical, legal, and disability-related implications of professional policy guidelines developed by the College of Physicians and Surgeons of Manitoba, we provided a qualitative analysis of the discourse involving experts and disability community members supporting alternative positions on the impact of the policy statement, and discuss ethical, legal, and disability rights issues identified in the public debate. Contested policy and ethical frameworks for making decisions about withdrawing and withholding life supporting treatment may influence both the perspectives of palliative care providers and patients referred to palliative care facilities. An innovative model for KT using a public forum that enabled stakeholders with conflicting perspectives to engage with ethical and professional policy issues asserting the physician's authority in contested decisions involving withdrawing or withholding life

  13. STS-38 Atlantis, OV-104, during safing operations after KSC SLF landing

    NASA Image and Video Library

    1990-11-20

    Spotlights illuminate Atlantis, Orbiter Vehicle (OV) 104, during safing operations at the Kennedy Space Center's (KSC's) Shuttle Landing Facility (SLF). OV-104 parked on runway 33 is serviced by KSC ground crews. STS-38, a Department of Defense (DOD)-devoted mission, came to an end (with complete wheel stop) at 4:43:37 pm (Eastern Standard Time (EST)).

  14. SpaceX CRS-10 "What's On Board" Science Briefing

    NASA Image and Video Library

    2017-02-17

    Jolyn Russell, deputy Robotics program manager at NASA’s Goddard Space Flight Center’s Satellite Servicing Projects Division in Maryland, speaks to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on “Raven” research planned for the International Space Station. The Raven investigation studies a real-time robotic spacecraft navigation system that provides the eyes and intelligence to see a target and steer safely toward it. Raven will be part of experiments aboard a Dragon spacecraft scheduled for launch from Kennedy’s Launch Complex 39A on Feb. 18 atop a SpaceX Falcon 9 rocket on the company's 10th Commercial Resupply Services mission to the space station.

  15. National facilities study. Volume 4: Space operations facilities task group

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The principal objectives of the National Facilities Study (NFS) were to: (1) determine where U.S. facilities do not meet national aerospace needs; (2) define new facilities required to make U.S. capabilities 'world class' where such improvements are in the national interest; (3) define where consolidation and phase-out of existing facilities is appropriate; and (4) develop a long-term national plan for world-class facility acquisition and shared usage. The Space Operations Facilities Task Group defined discrete tasks to accomplish the above objectives within the scope of the study. An assessment of national space operations facilities was conducted to determine the nation's capability to meet the requirements of space operations during the next 30 years. The mission model used in the study to define facility requirements is described in Volume 3. Based on this model, the major focus of the Task Group was to identify any substantive overlap or underutilization of space operations facilities and to identify any facility shortfalls that would necessitate facility upgrades or new facilities. The focus of this initial study was directed toward facility recommendations related to consolidations, closures, enhancements, and upgrades considered necessary to efficiently and effectively support the baseline requirements model. Activities related to identifying facility needs or recommendations for enhancing U.S. international competitiveness and achieving world-class capability, where appropriate, were deferred to a subsequent study phase.

  16. Hubble Space Telescope Servicing Mission Four (HST SM4) EVA Challenges for Safe Execution of STS-125

    NASA Technical Reports Server (NTRS)

    Dedalis, Robert P.; Hill, William H.; Rice, Karin Bergh; Cooter, Ann M.

    2010-01-01

    In May of 2009, the world-renowned Hubble Space Telescope (HST) received a suite of new instruments and a refurbished bus to enable science for many years to come. The restoration was conducted on-orbit by four space-walkers on five carefully scripted Extra-Vehicular Activity (EVA) days. Assuring the safety of the space-walkers and their crew-mates required careful attention to tool development, detailed procedures for every activity and many rehearsals with engineers and crew to ensure that everything worked together. Additionally, evolution of EVA requirements since the last servicing mission in 2002, and the broad scope of the mission demanded a much higher degree of safety participation in hardware design and risk acceptance than for previous servicing missions.

  17. U.S. Laboratory Module (Destiny) for the International Space Station

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this photograph, the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS) is shown under construction in the West High Bay of the Space Station manufacturing facility (building 4708) at the Marshall Space Flight Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-98 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  18. Human Space Flight Plans Committee

    NASA Image and Video Library

    2009-06-16

    Norman Augustine, chair of the Human Space Flight Review Committee, makes a point during the first of several public meetings at different U.S. locations, Wednesday, June 17, 2009, at the Carnegie Institution in Washington. The panel will examine ongoing and planned NASA development activities and potential alternatives in order to present options for advancing a safe, innovative, affordable and sustainable human space flight program following the space shuttle's retirement. The committee wil present its results by August 2009. Photo Credit: (NASA/Paul E. Alers)

  19. Managing a Safe and Successful Multi-User Spaceport

    NASA Technical Reports Server (NTRS)

    Dacko, Taylor; Ketterer, Kirk; Meade, Phillip

    2016-01-01

    Encouraged by the creation of the Office of Commercial Space Transportation within the U.S. Federal Aviation Administration (FAA) in 1984 and the Commercial Space Act of 1998, the National Aeronautics and Space Administration (NASA) now relies on an extensive network of support from commercial companies and organizations. At NASA's Kennedy Space Center (KSC), this collaboration opens competitive opportunities for launch providers, including repurposing underutilized Shuttle Program resources, constructing new facilities, and utilizing center services and laboratories. The resulting multi-user spaceport fosters diverse activity, though it engenders risk from hazards associated with various spaceflight processing activities. The KSC Safety & Mission Assurance (S&MA) Directorate, in coordination with the center's Spaceport Integration and Center Planning & Development organizations, has developed a novel approach to protect NASA's workforce, critical assets, and the public from hazardous, space-related activity associated with KSC's multi-user spaceport. For NASA KSC S&MA, the transformation to a multi-user spaceport required implementing methods to foster safe and successful commercial activity while resolving challenges involving: Retirement of the Space Shuttle program; Co-location of multiple NASA programs; Relationships between the NASA programs; Complex relationships between NASA programs and commercial partner operations in exclusive-use facilities; Complex relationships between NASA programs and commercial partner operations in shared-use facilities. NASA KSC S&MA challenges were met with long-term planning and solutions involving cooperation with the Spaceport Integration and Services Directorate. This directorate is responsible for managing active commercial partnerships with customer advocacy and services management, providing a dedicated and consistent level of support to a wide array of commercial operations. This paper explores these solutions, their

  20. Tough Tommy’s Space Force: General Thomas S. Power and the Air Force Space Program

    DTIC Science & Technology

    2016-06-01

    public release by AU Security and Policy Review Office. TOUGH TOMMY’S SPACE FORCE GENERAL THOMAS S . POWER AND THE AIR FORCE SPACE PROGRAM BY...in 2007, a Master of Operational Art and Science from the Air Command and Staff College in 2015, and a Doctorate in Economic Development from New...without a college diploma, and a relic of a bygone era of barnstormers perhaps high on courage but low on intelligence.8 In history, Power was a “sadist

  1. Computing danger zones for provably safe closely spaced parallel approaches: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Teo, Rodney

    In poor visibility, paired approaches to airports with closely spaced parallel runways are not permitted, thus halving the arrival rate. With Global Positioning System technology, datalinks and cockpit displays, this could be averted. One important problem is ensuring safety during a blundered approach by one aircraft. This is on-going research. A danger zone around the blunderer is required. If the correct danger zone could be calculated, then it would be possible to get 100% of clear-day capacity in poor-visibility days even on 750 foot runways. The danger zones vary significantly (during an approach) and calculating them in real time would be very significant. Approximations (e.g. outer bounds) are not good enough. This thesis presents a way to calculate these danger zones in real time for a very broad class of blunder trajectories. The approach in this thesis differs from others in that it guarantees safety for any possible blunder trajectory as long as the speeds and turn rates of the blunder are within certain bounds. In addition, the approach considers all emergency evasive maneuvers whose speeds and turn rates are within certain bounds about a nominal emergency evasive maneuver. For all combinations of these blunder and evasive maneuver trajectories, it guarantees that the evasive maneuver is safe. For more than 1 million simulation runs, the algorithm shows a 100% rate of Successful Alerts and a 0% rate of Collisions Given an Alert. As an experimental testbed, two 10-ft wingspan fully autonomous unmanned aerial vehicles and a ground station are developed together with J. S. Jang. The development includes the design and flight testing of automatic controllers. The testbed is used to demonstrate the algorithm implementation through an autonomous closely spaced parallel approach, with one aircraft programmed to blunder. The other aircraft responds according to the result of the algorithm on board it and evades autonomously when required. This experimental

  2. 14 CFR 91.119 - Minimum safe altitudes: General.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... persons, an altitude of 1,000 feet above the highest obstacle within a horizontal radius of 2,000 feet of... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Minimum safe altitudes: General. 91.119... § 91.119 Minimum safe altitudes: General. Except when necessary for takeoff or landing, no person may...

  3. 14 CFR 91.119 - Minimum safe altitudes: General.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... persons, an altitude of 1,000 feet above the highest obstacle within a horizontal radius of 2,000 feet of... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Minimum safe altitudes: General. 91.119... § 91.119 Minimum safe altitudes: General. Except when necessary for takeoff or landing, no person may...

  4. Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Griffin, Amanda

    2012-01-01

    Among 2011's many accomplishments, we safely retired the Space Shuttle Program after 30 incredible years; completed the International Space Station and are taking steps to enable it to reach its full potential as a multi-purpose laboratory; and helped to expand scientific knowledge with missions like Aquarius, GRAIL, and the Mars Science Laboratory. Responding to national budget challenges, we are prioritizing critical capabilities and divesting ourselves of assets no longer needed for NASA's future exploration programs. Since these facilities do not have to be maintained or demolished, the government saves money. At the same time, our commercial partners save money because they do not have to build new facilities. It is a win-win for everyone. Moving forward, 2012 will be even more historically significant as we celebrate the 50th Anniversary of Kennedy Space Center. In the coming year, KSC will facilitate commercial transportation to low-Earth orbit and support the evolution of the Space Launch System and Orion crew vehicle as they ready for exploration missions, which will shape how human beings view the universe. While NASA's Vision is to lead scientific and technological advances in aeronautics and space for a Nation on the frontier of discovery KSC's vision is to be the world's preeminent launch complex for government and commercial space access, enabling the world to explore and work in space. KSC's Mission is to safely manage, develop, integrate, and sustain space systems through partnerships that enable innovative, diverse access to space and inspires the Nation's future explorers.

  5. 16 CFR 1509.4 - Spacing of unit components.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Spacing of unit components. 1509.4 Section 1509.4 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR NON-FULL-SIZE BABY CRIBS § 1509.4 Spacing of unit components. (a) Uniformly...

  6. The Pathway to a Safe and Effective Medication Formulary for Exploration Spaceflight

    NASA Technical Reports Server (NTRS)

    Daniels, V. R.; Bayuse, T. M.; Mulcahy, R. A.; Mcguire, R. K. M.; Antonsen, E. L.

    2017-01-01

    PURPOSE: Exploration space missions pose several challenges to providing a comprehensive medication formulary designed to accommodate the size and space limitations of the spacecraft; while addressing the individual medications needs and preferences of the Crew; the negative outcome of a degrading inventory over time, the inability to resupply before expiration dates; and the need to properly forecast the best possible medication candidates to treat conditions that will occur in the future. METHODS: The Pharmacotherapeutics Discipline has partnered with the Exploration Medical Capabilities (ExMC) Element to develop and propose a research pathway that is comprehensively focused on evidence-based models and theories, as well as on new diagnostic tools and treatments or preventive measures aimed at closure of the Med02 “Pharmacy” Gap; defined in the Human Research Program’s (HRP) risk-based research strategy. The Med02 Gap promotes the challenge to identify a strategy to ensure that medications used to treat medical conditions during exploration space missions are available, safe, and effective. It is abundantly clear that pharmaceutical intervention is an essential component of risk management planning for astronaut healthcare during exploration space. However, the quandary still remains of how to assemble a formulary that is comprehensive enough to prevent or treat anticipated medical events; and is also chemically stable, safe, and robust enough to have sufficient potency to last for the duration of an exploration space mission. In cases where that is not possible, addressing this Gap requires exploration of novel drug development techniques, dosage forms, and dosage delivery platforms that enhance chemical stability as well as therapeutic effectiveness. RESULTS: The proposed research pathway outlines the steps, processes, procedures, and a research portfolio aimed at identifying a capability that will provide a safe and effective pharmacy for any specific

  7. Measurements of LET distribution and dose equivalent onboard the Space Shuttle IML-2 (STS-65) and S/MM#4 (STS-79).

    PubMed

    Hayashi, T; Doke, T; Kikuchi, J; Sakaguchi, T; Takeuchi, R; Takashima, T; Kobayashi, M; Terasawa, K; Takahashi, K; Watanabe, A; Kyan, A; Hasebe, N; Kashiwagi, T; Ogura, K; Nagaoka, S; Kato, M; Nakano, T; Takahashi, S; Yamanaka, H; Yamaguchi, K; Badhwar, G D

    1997-12-01

    Space radiation dosimetry measurements have been made onboard the Space Shuttle STS-65 in the Second International Microgravity Laboratory (IML-2: 28.5 degrees x 300 km: 14.68 days) and the STS-79 in the 4th Shuttle MIR mission (S/MM#4: 51.6 degrees x 300-400km: 10.2 days). In these measurements, three kinds of detectors were used; one is a newly developed active detector telescope called "Real-time Radiation Monitoring Device (RRMD-I for IML-2 and RRMD-II with improved triggering system for S/MM#4)" utilizing silicon semi-conductor detectors and the other detectors are conventional passive detectors of thermoluminescence dosimeters (TLDs) and CR-39 plastic track detectors. The main contribution to dose equivalent for particles with LET > 5.0 keV/micrometer (IML-2) and LET > 3.5 keV/micrometer (S/MM#4) is seen to be due to galactic cosmic rays (GCRs) and the contribution of the South Atlantic Anomaly (SAA) is less than 5% (IML-2: 28.5 degrees x 300 km) and 15% (S/MM#4: 51.6 degrees x 400 km) in the above RRMD LET detection conditions. For the whole LET range (> 0.2 kev/micrometer) obtained by TLDs and CR-39 in these two typical orbits (a small inclination x low altitude and a large inclination x high altitude), absorbed dose rates range from 94 to 114 microGy/day, dose equivalent rates from 186 to 207 microSv/day and average quality factors from 1.82 to 2.00 depending on the locations and directions of detectors inside the Spacelab at the highly protected IML-2 orbit (28.5 degrees x 300 km), and also, absorbed dose rates range from 290 to 367 microGy/day, dose equivalent rates from 582 to 651 microSv/day and average quality factors from 1.78 to 2.01 depending on the dosimeter packages around the RRMD-II "Detector Unit" at the S/MM#4 orbit (5l.6 degrees x 400km). In general, it is seen that absorbed doses depend on the orbit altitude (SAA trapped particles contribution dominant) and dose equivalents on the orbit inclination (GCR contribution dominant). The LET

  8. Measurements of LET distribution and dose equivalent onboard the Space Shuttle IML-2 (STS-65) and S/MM#4 (STS-79)

    NASA Technical Reports Server (NTRS)

    Hayashi, T.; Doke, T.; Kikuchi, J.; Sakaguchi, T.; Takeuchi, R.; Takashima, T.; Kobayashi, M.; Terasawa, K.; Takahashi, K.; Watanabe, A.; hide

    1997-01-01

    Space radiation dosimetry measurements have been made onboard the Space Shuttle STS-65 in the Second International Microgravity Laboratory (IML-2: 28.5 degrees x 300 km: 14.68 days) and the STS-79 in the 4th Shuttle MIR mission (S/MM#4: 51.6 degrees x 300-400km: 10.2 days). In these measurements, three kinds of detectors were used; one is a newly developed active detector telescope called "Real-time Radiation Monitoring Device (RRMD-I for IML-2 and RRMD-II with improved triggering system for S/MM#4)" utilizing silicon semi-conductor detectors and the other detectors are conventional passive detectors of thermoluminescence dosimeters (TLDs) and CR-39 plastic track detectors. The main contribution to dose equivalent for particles with LET > 5.0 keV/micrometer (IML-2) and LET > 3.5 keV/micrometer (S/MM#4) is seen to be due to galactic cosmic rays (GCRs) and the contribution of the South Atlantic Anomaly (SAA) is less than 5% (IML-2: 28.5 degrees x 300 km) and 15% (S/MM#4: 51.6 degrees x 400 km) in the above RRMD LET detection conditions. For the whole LET range (> 0.2 kev/micrometer) obtained by TLDs and CR-39 in these two typical orbits (a small inclination x low altitude and a large inclination x high altitude), absorbed dose rates range from 94 to 114 microGy/day, dose equivalent rates from 186 to 207 microSv/day and average quality factors from 1.82 to 2.00 depending on the locations and directions of detectors inside the Spacelab at the highly protected IML-2 orbit (28.5 degrees x 300 km), and also, absorbed dose rates range from 290 to 367 microGy/day, dose equivalent rates from 582 to 651 microSv/day and average quality factors from 1.78 to 2.01 depending on the dosimeter packages around the RRMD-II "Detector Unit" at the S/MM#4 orbit (5l.6 degrees x 400km). In general, it is seen that absorbed doses depend on the orbit altitude (SAA trapped particles contribution dominant) and dose equivalents on the orbit inclination (GCR contribution dominant). The LET

  9. Human Space Flight Plans Committee

    NASA Image and Video Library

    2009-06-16

    Norman Augustine, chair of the Human Space Flight Review Committee, listens to a comment from the audience during the first of several public meetings at different U.S. locations, Wednesday, June 17, 2009, at the Carnegie Institution in Washington. The panel will examine ongoing and planned NASA development activities and potential alternatives in order to present options for advancing a safe, innovative, affordable and sustainable human space flight program following the space shuttle's retirement. The committee wil present its results by August 2009. Photo Credit: (NASA/Paul E. Alers)

  10. The Space Launch System: NASA's Exploration Rocket

    NASA Technical Reports Server (NTRS)

    Blackerby, Christopher; Cate, Hugh C., III

    2013-01-01

    Powerful, versatile, and capable vehicle for entirely new missions to deep space. Vital to NASA's exploration strategy and the Nation's space agenda. Safe, affordable, and sustainable. Engaging the U.S. aerospace workforce and infrastructure. Competitive opportunities for innovations that affordably upgrade performance. Successfully meeting milestones in preparation for Preliminary Design Review in 2013. On course for first flight in 2017.

  11. Space orbits of collaboration. [international cooperation and the U.S.S.R. space program

    NASA Technical Reports Server (NTRS)

    Petrov, B.

    1978-01-01

    The U.S.S.R. cooperative space efforts with other Socialist countries dating back to 1957 are reviewed. The Interkosmos program, which is divided into three series of satellites (solar, ionospheric and magnetospheric), is discussed as well as the Prognoz, Kosmos, Soyuz, and Molniya spacecraft. Collaboration with France, India, Sweden, and the United States is mentioned.

  12. Open string fluctuations in AdS space with and without torsion

    NASA Astrophysics Data System (ADS)

    Larsen, A. L.; Lomholt, M. A.

    2003-09-01

    The equations of motion and boundary conditions for the fluctuations around a classical open string, in a curved space-time with torsion, are considered in compact and world-sheet covariant form. The rigidly rotating open strings in anti de Sitter space with and without torsion are investigated in detail. By carefully analyzing the tangential fluctuations at the boundary, we show explicitly that the physical fluctuations (which at the boundary are combinations of normal and tangential fluctuations) are finite, even though the world-sheet is singular there. The divergent 2-curvature thus seems less dangerous than expected in these cases. The general formalism can be straightforwardly used also to study the (bosonic part of the) fluctuations around the closed strings, recently considered in connection with the AdS/conformal field theory duality, on AdSS5 and AdSS3×T4.

  13. The Soviet-Russian space suits a historical overview of the 1960's.

    PubMed

    Skoog, A Ingemar; Abramov, Isaac P; Stoklitsky, Anatoly Y; Doodnik, Michail N

    2002-01-01

    The development of protective suits for space use started with the Vostok-suit SK-1, first used by Yu. Gagarin on April 12, 1961, and then used on all subsequent Vostok-flights. The technical background for the design of these suits was the work on full pressure protective suits for military pilots and stratospheric flights in the 1930's through 50's. The Soviet-Russian space programme contains a large number of 'firsts', and one of the most well known is the first EVA by Leonov in 1965. This event is also the starting point for a long series of space suit development for Extravehicular Activities over the last 35 years. The next step to come was the transfer in void space of crew members between the two spacecraft Soyuz 4 and 5 in 1969. As has later become known this was an essential element in the planned Soviet lunar exploration programme, which in itself required a new space suit. After the termination of the lunar programme in 1972, the space suit development concentrated on suits applicable to zero-gravity work around the manned space stations Salyut 6, Salyut 7 and MIR. These suits have become known as the ORLAN-family of suits, and an advanced version of this suit (ORLAN-M) will be used on the International Space Station together with the American EMU. This paper covers the space suit development in the Soviet Union in the 1960's and the experience used from the pre-space era. c2002 Published by Elsevier Science Ltd.

  14. O/S analysis of conceptual space vehicles. Part 1

    NASA Technical Reports Server (NTRS)

    Ebeling, Charles E.

    1995-01-01

    The application of recently developed computer models in determining operational capabilities and support requirements during the conceptual design of proposed space systems is discussed. The models used are the reliability and maintainability (R&M) model, the maintenance simulation model, and the operations and support (O&S) cost model. In the process of applying these models, the R&M and O&S cost models were updated. The more significant enhancements include (1) improved R&M equations for the tank subsystems, (2) the ability to allocate schedule maintenance by subsystem, (3) redefined spares calculations, (4) computing a weighted average of the working days and mission days per month, (5) the use of a position manning factor, and (6) the incorporation into the O&S model of new formulas for computing depot and organizational recurring and nonrecurring training costs and documentation costs, and depot support equipment costs. The case study used is based upon a winged, single-stage, vertical-takeoff vehicle (SSV) designed to deliver to the Space Station Freedom (SSF) a 25,000 lb payload including passengers without a crew.

  15. Student-Parent-Teacher Partnerships: Creating Safe Classrooms and Communities

    ERIC Educational Resources Information Center

    Hall, Horace R.

    2008-01-01

    In this article, the author talks about "Safe Space," an after school program created by a parent-teacher advisory board which maintained that students needed a safe in-school environment where they could openly talk about their out-of-school lives. Being that the school's curriculum heavily focused on academic standards, students' affective…

  16. Cooperation and dialogical modeling for designing a safe Human space exploration mission to Mars

    NASA Astrophysics Data System (ADS)

    Grès, Stéphane; Tognini, Michel; Le Cardinal, Gilles; Zalila, Zyed; Gueydan, Guillaume

    2014-11-01

    This paper proposes an approach for a complex and innovative project requiring international contributions from different communities of knowledge and expertise. Designing a safe and reliable architecture for a manned mission to Mars or the Asteroids necessitates strong cooperation during the early stages of design to prevent and reduce risks for the astronauts at each step of the mission. The stake during design is to deal with the contradictions, antagonisms and paradoxes of the involved partners for the definition and modeling of a shared project of reference. As we see in our research which analyses the cognitive and social aspects of technological risks in major accidents, in such a project, the complexity of the global organization (during design and use) and the integration of a wide and varie d range of sciences and innovative technologies is likely to increase systemic risks as follows: human and cultural mistakes, potential defaults, failures and accidents. We identify as the main danger antiquated centralized models of organization and the operational limits of interdisciplinarity in the sciences. Beyond this, we can see that we need to take carefully into account human cooperation and the quality of relations between heterogeneous partners. Designing an open, self-learning and reliable exploration system able to self-adapt in dangerous and unforeseen situations implies a collective networked intelligence led by a safe process that organizes interaction between the actors and the aims of the project. Our work, supported by the CNES (French Space Agency), proposes an innovative approach to the coordination of a complex project.

  17. A 4D Hyperspherical Interpretation of q-Space

    PubMed Central

    Hosseinbor, A. Pasha; Chung, Moo K.; Wu, Yu-Chien; Bendlin, Barbara B.; Alexander, Andrew L.

    2015-01-01

    3D q-space can be viewed as the surface of a 4D hypersphere. In this paper, we seek to develop a 4D hyperspherical interpretation of q-space by projecting it onto a hypersphere and subsequently modeling the q-space signal via 4D hyperspherical harmonics (HSH). Using this orthonormal basis, we derive several well-established q-space indices and numerically estimate the diffusion orientation distribution function (dODF). We also derive the integral transform describing the relationship between the diffusion signal and propagator on a hypersphere. Most importantly, we will demonstrate that for hybrid diffusion imaging (HYDI) acquisitions low order linear expansion of the HSH basis is sufficient to characterize diffusion in neural tissue. In fact, the HSH basis achieves comparable signal and better dODF reconstructions than other well-established methods, such as Bessel Fourier orientation reconstruction (BFOR), using fewer fitting parameters. All in all, this work provides a new way of looking at q-space. PMID:25624043

  18. GOES-S Arrival at Astrotech Space Operations

    NASA Image and Video Library

    2017-12-05

    NOAA's Geostationary Operation Environmental Satellite-S (GOES-S) arrives inside Astrotech Space Operations in Titusville, Florida, to prepare it for launch. The facility is located near NASA's Kennedy Space Center. GOES-S is the second in a series of four advanced geostationary weather satellites. The GOES-R series - consisting of the GOES-R, GOES-S, GOES-T and GOES-U spacecraft - will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018 aboard a United Launch Alliance Atlas V rocket from Cape Canaveral Air Force Station in Florida.

  19. GOES-S Arrival at Astrotech Space Operations

    NASA Image and Video Library

    2017-12-05

    NOAA's Geostationary Operation Environmental Satellite-S (GOES-S) arrives at Astrotech Space Operations in Titusville, Florida, to prepare it for launch. The facility is located near NASA's Kennedy Space Center. GOES-S is the second in a series of four advanced geostationary weather satellites. The GOES-R series - consisting of the GOES-R, GOES-S, GOES-T and GOES-U spacecraft - will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018 aboard a United Launch Alliance Atlas V rocket from Cape Canaveral Air Force Station in Florida.

  20. New massive gravity and AdS(4) counterterms.

    PubMed

    Jatkar, Dileep P; Sinha, Aninda

    2011-04-29

    We show that the recently proposed Dirac-Born-Infeld extension of new massive gravity emerges naturally as a counterterm in four-dimensional anti-de Sitter space (AdS(4)). The resulting on-shell Euclidean action is independent of the cutoff at zero temperature. We also find that the same choice of counterterm gives the usual area law for the AdS(4) Schwarzschild black hole entropy in a cutoff-independent manner. The parameter values of the resulting counterterm action correspond to a c=0 theory in the context of the duality between AdS(3) gravity and two-dimensional conformal field theory. We rewrite this theory in terms of the gauge field that is used to recast 3D gravity as a Chern-Simons theory.

  1. Planetary boundaries: exploring the safe operating space for humanity

    Treesearch

    Johan Rockström; Will Steffen; Kevin Noone; Asa Persson; F. Stuart Chapin; Eric Lambin; Timothy M. Lenton; Marten Scheffer; Carl Folke; Hans Joachim Schellnhuber; Björn Nykvist; Cynthia A. de Wit; Terry Hughes; Sander van der Leeuw; Henning Rodhe; Sverker Sörlin; Peter K. Snyder; Robert Costanza; Uno Svedin; Malin Falkenmark; Louise Karlberg; Robert W. Corell; Victoria J. Fabry; James Hansen; Brian Walker; Diana Liverman; Katherine Richardson; Paul Crutzen; Jonathan Foley

    2009-01-01

    Anthropogenic pressures on the Earth System have reached a scale where abrupt global environmental change can no longer be excluded. We propose a new approach to global sustainability in which we define planetary boundaries within which we expect that humanity can operate safely. Transgressing one or more planetary boundaries may be deleterious or even catastrophic due...

  2. Advanced Vacuum Plasma Spray (VPS) for a Robust, Longlife and Safe Space Shuttle Main Engine (SSME)

    NASA Technical Reports Server (NTRS)

    Holmes, Richard R.; Elam, Sandra K.; McKechnie, Timothy N.; Power, Christopher A.

    2010-01-01

    In 1984, the Vacuum Plasma Spray Lab was built at NASA/Marshall Space Flight Center for applying durable, protective coatings to turbine blades for the space shuttle main engine (SSME) high pressure fuel turbopump. Existing turbine blades were cracking and breaking off after five hot fire tests while VPS coated turbine blades showed no wear or cracking after 40 hot fire tests. Following that, a major manufacturing problem of copper coatings peeling off the SSME Titanium Main Fuel Valve Housing was corrected with a tenacious VPS copper coating. A patented VPS process utilizing Functional Gradient Material (FGM) application was developed to build ceramic lined metallic cartridges for space furnace experiments, safely containing gallium arsenide at 1260 degrees centigrade. The VPS/FGM process was then translated to build robust, long life, liquid rocket combustion chambers for the space shuttle main engine. A 5K (5,000 Lb. thrust) thruster with the VPS/FGM protective coating experienced 220 hot firing tests in pristine condition with no wear compared to the SSME which showed blanching (surface pulverization) and cooling channel cracks in less than 30 of the same hot firing tests. After 35 of the hot firing tests, the injector face plates disintegrated. The VPS/FGM process was then applied to spraying protective thermal barrier coatings on the face plates which showed 50% cooler operating temperature, with no wear after 50 hot fire tests. Cooling channels were closed out in two weeks, compared to one year for the SSME. Working up the TRL (Technology Readiness Level) to establish the VPS/FGM process as viable technology, a 40K thruster was built and is currently being tested. Proposed is to build a J-2X size liquid rocket engine as the final step in establishing the VPS/FGM process TRL for space flight.

  3. Combating Terrorism: U.S. Government Should Improve Its Reporting on Terrorist Safe Havens

    DTIC Science & Technology

    2011-06-01

    Ecuador , Panama, Peru, and Venezuela) Trans-Sahara (Algeria, Mali, Mauritania, and Niger) Somalia Southern Philippines Yemen Northern Iraq...the east.” Colombia Border Region (Venezuela, Ecuador , Peru, Panama, and Brazil) “Columbia’s borders with Venezuela, Ecuador , Peru, Panama, and...assistance. This appeared to be less so in Brazil and Peru where potential safe havens were addressed by stronger government responses. Ecuador and Panama

  4. Apex-4 for SpaceX CRS-10

    NASA Image and Video Library

    2017-02-16

    APEX-04, or Advanced Plant EXperiments-04, is being prepared in a cold room in the Kennedy Space Center Processing Facility for SpaceX-10. Dr. Anna Lisa Paul of the University of Florida is the principal investigator for APEX-04. Apex-04 is an experiment involving Arabidopsis in petri plates inside the Veggie facility aboard the International Space Station. Since Arabidopsis is the genetic model of the plant world, it is a perfect sample organism for performing genetic studies in spaceflight. The experiment is the result of a grant from NASA’s Space Life and Physical Sciences division.

  5. DVB-S2 Experiment over NASA's Space Network

    NASA Technical Reports Server (NTRS)

    Downey, Joseph A.; Evans, Michael A.; Tollis, Nicholas S.

    2017-01-01

    The commercial DVB-S2 standard was successfully demonstrated over NASAs Space Network (SN) and the Tracking Data and Relay Satellite System (TDRSS) during testing conducted September 20-22nd, 2016. This test was a joint effort between NASA Glenn Research Center (GRC) and Goddard Space Flight Center (GSFC) to evaluate the performance of DVB-S2 as an alternative to traditional NASA SN waveforms. Two distinct sets of tests were conducted: one was sourced from the Space Communication and Navigation (SCaN) Testbed, an external payload on the International Space Station, and the other was sourced from GRCs S-band ground station to emulate a Space Network user through TDRSS. In both cases, a commercial off-the-shelf (COTS) receiver made by Newtec was used to receive the signal at White Sands Complex. Using SCaN Testbed, peak data rates of 5.7 Mbps were demonstrated. Peak data rates of 33 Mbps were demonstrated over the GRC S-band ground station through a 10MHz channel over TDRSS, using 32-amplitude phase shift keying (APSK) and a rate 89 low density parity check (LDPC) code. Advanced features of the DVB-S2 standard were evaluated, including variable and adaptive coding and modulation (VCMACM), as well as an adaptive digital pre-distortion (DPD) algorithm. These features provided additional data throughput and increased link performance reliability. This testing has shown that commercial standards are a viable, low-cost alternative for future Space Network users.

  6. A 4D hyperspherical interpretation of q-space.

    PubMed

    Pasha Hosseinbor, A; Chung, Moo K; Wu, Yu-Chien; Bendlin, Barbara B; Alexander, Andrew L

    2015-04-01

    3D q-space can be viewed as the surface of a 4D hypersphere. In this paper, we seek to develop a 4D hyperspherical interpretation of q-space by projecting it onto a hypersphere and subsequently modeling the q-space signal via 4D hyperspherical harmonics (HSH). Using this orthonormal basis, we derive several well-established q-space indices and numerically estimate the diffusion orientation distribution function (dODF). We also derive the integral transform describing the relationship between the diffusion signal and propagator on a hypersphere. Most importantly, we will demonstrate that for hybrid diffusion imaging (HYDI) acquisitions low order linear expansion of the HSH basis is sufficient to characterize diffusion in neural tissue. In fact, the HSH basis achieves comparable signal and better dODF reconstructions than other well-established methods, such as Bessel Fourier orientation reconstruction (BFOR), using fewer fitting parameters. All in all, this work provides a new way of looking at q-space. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. U.S. and Canada Sign Space Agreement

    NASA Image and Video Library

    2009-10-20

    Canadian Space Agency President Steve MacLean signs a framework agreement on civil space cooperation between the U.S. and Canada, Wednesday, Sept. 9, 2009, at the Canadian Embassy in Washington, DC. Photo Credit: (NASA/Bill Ingalls) 

  8. Debating space security: Capabilities and vulnerabilities

    NASA Astrophysics Data System (ADS)

    Sankaran, Jaganath

    The U.S. position in the debate on space security has been that (1) space-based systems could be developed and used to obtain decisive warfighting superiority over an adversary, and (2) these space-based systems, because they might give such an inordinate advantage over any adversary, will be attacked. The Russians and Chinese, in contrast, claim to be threatened by U.S. aspirations in space but deny that they pose a serious threat to U.S. space-based systems. They view the development of advanced military space systems by the United States as evidence of a growing gap of military capabilities limited only by technological—not political—constraints. They argue that U.S. missile defense systems operating in coordination with advanced satellite sensors would weaken their nuclear retaliatory potential. This dissertation argues that the positions held by both of these parties are more extreme than warranted. An analytical evaluation quickly narrows the touted capabilities and assumed vulnerabilities of space systems to a much smaller set of concerns that can be addressed by collaboration. Chapter 2: Operationally Responsive Space (ORS): Is 24/7 Warfighter Support Feasible? demonstrates the infeasibility of dramatically increasing U.S. warfighting superiority by using satellites. Chapter 3: What Can be Achieved by Attacking Satellites? makes the case that although U.S. armed forces rely extensively on its satellite infrastructure, that does not immediately make them desirable targets. The functions performed by military satellites are diffused among large constellations with redundancies. Also, some of the functions performed by these satellites can be substituted for by other terrestrial and aerial systems. Chapter 4: The Limits of Chinese Anti-Satellite Missiles demonstrates that anti-satellite (ASAT) intercepts are very complex under realistic conditions and that a potential adversary with space capabilities comparable to China's has very limited capability to

  9. Apex-4 for SpaceX CRS-10

    NASA Image and Video Library

    2017-02-16

    APEX-04, or Advanced Plant EXperiments-04, is being prepared in a cold room in the Kennedy Space Center Processing Facility for SpaceX-10. The three science kits are weighed prior to flight. Dr. Anna Lisa Paul of the University of Florida is the principal investigator for APEX-04. Apex-04 is an experiment involving Arabidopsis in petri plates inside the Veggie facility aboard the International Space Station. Since Arabidopsis is the genetic model of the plant world, it is a perfect sample organism for performing genetic studies in spaceflight. The experiment is the result of a grant from NASA’s Space Life and Physical Sciences division.

  10. Safe delivery care practices in western Nepal: Does women’s autonomy influence the utilization of skilled care at birth?

    PubMed Central

    Kutty, V. Raman; Sarma, P. Sankara; Dangal, Ganesh

    2017-01-01

    Despite various efforts to increase the utilization of skilled birth attendants (SBA), nearly two-thirds of deliveries take place at home without the assistance of SBAs in Nepal. We hypothesized that the ability of women to take decisions about their own lives—women’s autonomy—plays an important part in birth choices. To know this, we conducted a community-based cross-sectional study for assessing women’s autonomy and utilization of safe delivery care service in Kapilvastu district of Nepal from June to October 2014. We used multivariate modeling to associate socioeconomic factors and women’s autonomy with the utilization of safe delivery care services. Just over one-third of women sought institutional delivery care during the birth of their last child. Out of the total deliveries at health facilities, nearly 58% women visited health facility for self-reported emergency obstructive care. Only 6.2% home deliveries were handled by health workers and 14.7% women used the safe delivery kit for home delivery care. Higher levels of women’s education had a strong positive association (odds ratio = 24.11, CI = 9.43–61.64) with institutional delivery care. Stratified analysis showed that when the husband is educated, women’s education seems to work partly through their autonomy in decision making. Educational status of women emerged as one of the key predictors of the utilization of delivery care services in Kapilvastu district. Economic status of household and husband’s education are other dominant predictors of the utilization of safe delivery care services. Improving the economic and educational status may be the way out for improving the proportion of institutional deliveries. Women’s autonomy may be an important mediating factor in this pathway. PMID:28771579

  11. U.S. biological experiments in space

    NASA Technical Reports Server (NTRS)

    Klein, H. P.

    1981-01-01

    The history of biologic experimentation in space is traced. Early balloon and rocket borne animals showed no abnormalities on the macroscale, and biosatellite launches with bacteria and amoebae revealed no microscopic dysfunctions. Adult Drosophila flies on board Cosmos spacecraft died with a shortened lifespan, while their offspring lived full lifespans. Green pepper plants grown in weightlessness showed a different orientation, but no physiological disturbances. Normal bone growth in rats has been found to almost cease after 11 days in space, and the mean life span of red blood cells decreases by four days. A series of experiments designed by U.S. scientists will be performed on primates provided and flown by the U.S.S.R. Finally, experiments on board Spacelab will involve determination of the persistence of circadian rhythms in bacteria and humans.

  12. Reacting to nuclear power systems in space: American public protests over outer planetary probes since the 1980s

    NASA Astrophysics Data System (ADS)

    Launius, Roger D.

    2014-03-01

    The United States has pioneered the use of nuclear power systems for outer planetary space probes since the 1970s. These systems have enabled the Viking landings to reach the surface of Mars and both Pioneers 10 and 11 and Voyagers 1 and 2 to travel to the limits of the solar system. Although the American public has long been concerned about safety of these systems, in the 1980s a reaction to nuclear accidents - especially the Soviet Cosmos 954 spacecraft destruction and the Three Mile Island nuclear power plant accidents - heightened awareness about the hazards of nuclear power and every spacecraft launch since that time has been contested by opponents of nuclear energy. This has led to a debate over the appropriateness of the use of nuclear power systems for spacecraft. It has also refocused attention on the need for strict systems of control and rigorous checks and balances to assure safety. This essay describes the history of space radioisotope power systems, the struggles to ensure safe operations, and the political confrontation over whether or not to allow the launch the Galileo and Cassini space probes to the outer planets. Effectively, these efforts have led to the successful flights of 12 deep space planetary probes, two-thirds of them operated since the accidents of Cosmos 954, Three Mile Island, and Chernobyl.

  13. Human Research Program: Space Human Factors and Habitability Element

    NASA Technical Reports Server (NTRS)

    Russo, Dane M.

    2007-01-01

    The three project areas of the Space Human Factors and Habitability Element work together to achieve a working and living environment that will keep crews healthy, safe, and productive throughout all missions -- from Earth orbit to Mars expeditions. The Advanced Environmental Health (AEH) Project develops and evaluates advanced habitability systems and establishes requirements and health standards for exploration missions. The Space Human Factors Engineering (SHFE) Project s goal is to ensure a safe and productive environment for humans in space. With missions using new technologies at an ever-increasing rate, it is imperative that these advances enhance crew performance without increasing stress or risk. The ultimate goal of Advanced Food Technology (AFT) Project is to develop and deliver technologies for human centered spacecraft that will support crews on missions to the moon, Mars, and beyond.

  14. Second harmonic generation response of the cubic chalcogenides Ba( 6-x)Sr x[Ag( 4-y)Sn( y/4)](SnS 4) 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haynes, Alyssa S.; Liu, Te-Kun; Frazer, Laszlo

    We synthesized the barium/strontium solid solution sequence Ba 6-xSr x[Ag( 4-y)Sn( y/4)](SnS 4) 4 for nonlinear optical (NLO) applications in the infrared (IR) via a flux synthesis route. All title compounds are isotypic, crystallizing in the cubic space group Imore » $$\\bar{_4}$$ 3d and are composed of a three-dimensional (3D) anionic framework of alternating corner-sharing SnS 4 and AgS 4 tetrahedra charge balanced by Ba and Sr. The shrinkage of Ba/Sr-S bond lengths causes the tetrahedra in the anionic framework to become more distorted, which results in a tunable band gap from 1.58 to 1.38 eV with increasing x values. The performance of the barium limit (x=0) is also superior to that of Sr (x=6), but surprisingly second harmonic generation (SHG) of the solid solution remains strong and is insensitive to the value of x over the range 0-3.8. Results show that the non-type-I phase-matched SHG produced by these cubic chalcogenides display intensities higher than the benchmark AgGaSe 2 from 600 to 1000 nm.« less

  15. End-to-End Demonstrator of the Safe Affordable Fission Engine (SAFE) 30: Power Conversion and Ion Engine Operation

    NASA Technical Reports Server (NTRS)

    Hrbud, Ivana; VanDyke, Melissa; Houts, Mike; Goodfellow, Keith; Schafer, Charles (Technical Monitor)

    2001-01-01

    The Safe Affordable Fission Engine (SAFE) test series addresses Phase 1 Space Fission Systems issues in particular non-nuclear testing and system integration issues leading to the testing and non-nuclear demonstration of a 400-kW fully integrated flight unit. The first part of the SAFE 30 test series demonstrated operation of the simulated nuclear core and heat pipe system. Experimental data acquired in a number of different test scenarios will validate existing computational models, demonstrated system flexibility (fast start-ups, multiple start-ups/shut downs), simulate predictable failure modes and operating environments. The objective of the second part is to demonstrate an integrated propulsion system consisting of a core, conversion system and a thruster where the system converts thermal heat into jet power. This end-to-end system demonstration sets a precedent for ground testing of nuclear electric propulsion systems. The paper describes the SAFE 30 end-to-end system demonstration and its subsystems.

  16. The sun rises on the Space Shuttle Discovery as it rests on the runway at Edwards Air Force Base, California, after a safe landing August 9, 2005

    NASA Image and Video Library

    2005-08-09

    The sun rises on the Space Shuttle Discovery as it rests on the runway at Edwards Air Force Base, California, after a safe landing August 9, 2005 to complete the STS-114 mission. Space Shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base in California at 5:11:22 a.m. PDT this morning, following the very successful 14-day STS-114 return to flight mission. During their two weeks in space, Commander Eileen Collins and her six crewmates tested out new safety procedures and delivered supplies and equipment the International Space Station. Discovery spent two weeks in space, where the crew demonstrated new methods to inspect and repair the Shuttle in orbit. The crew also delivered supplies, outfitted and performed maintenance on the International Space Station. A number of these tasks were conducted during three spacewalks. In an unprecedented event, spacewalkers were called upon to remove protruding gap fillers from the heat shield on Discovery's underbelly. In other spacewalk activities, astronauts installed an external platform onto the Station's Quest Airlock and replaced one of the orbital outpost's Control Moment Gyroscopes. Inside the Station, the STS-114 crew conducted joint operations with the Expedition 11 crew. They unloaded fresh supplies from the Shuttle and the Raffaello Multi-Purpose Logistics Module. Before Discovery undocked, the crews filled Raffeallo with unneeded items and returned to Shuttle payload bay. Discovery launched on July 26 and spent almost 14 days on orbit.

  17. Human Space Flight Plans Committee

    NASA Image and Video Library

    2009-06-16

    U.S. Sen. Bill Nelson, D-Fla., at podium, addresses members of the Human Space Flight Review Committee, Wednesday, June 17, 2009, at the Carnegie Institution in Washington. Seated from left are Jeffrey Greason, Bohdan Bejmuk, Dr. Leroy Chiao, Norman Augustine (chair), Dr. Wanda Austin, Dr. Edward Crawley, Dr. Christopher Chyba and Philip McAlister. The panel will examine ongoing and planned NASA development activities and potential alternatives in order to present options for advancing a safe, innovative, affordable and sustainable human space flight program following the space shuttle's retirement. The committee wil present its results by August 2009. Photo Credit: (NASA/Paul E. Alers)

  18. Human Spaceflight Safety for the Next Generation on Orbital Space Systems

    NASA Technical Reports Server (NTRS)

    Mango, Edward J.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Commercial Crew Program (CCP) has been chartered to facilitate the development of a United States (U.S.) commercial crew space transportation capability with the goal of achieving safe, reliable, and cost effective access to and from low Earth orbit (LEO) and the International Space Station (ISS) as soon as possible. Once the capability is matured and is available to the Government and other customers, NASA expects to purchase commercial services to meet its ISS crew rotation and emergency return objectives. The primary role of the CCP is to enable and ensure safe human spaceflight and processes for the next generation of earth orbital space systems. The architecture of the Program delineates the process for investment performance in safe orbital systems, Crew Transportation System (CTS) certification, and CTS Flight Readiness. A series of six technical documents build up the architecture to address the top-level CTS requirements and standards. They include Design Reference Missions, with the near term focus on ISS crew services, Certification and Service Requirements, Technical Management Processes, and Technical and Operations Standards Evaluation Processes.

  19. Minimal surfaces in AdS space and integrable systems

    NASA Astrophysics Data System (ADS)

    Burrington, Benjamin A.; Gao, Peng

    2010-04-01

    We consider the Pohlmeyer reduction for spacelike minimal area worldsheets in AdS5. The Lax pair for the reduced theory is found, and written entirely in terms of the A3 = D3 root system, generalizing the B2 affine Toda system which appears for the AdS4 string. For the B2 affine Toda system, we show that the area of the worlsheet is obtainable from the moduli space Kähler potential of a related Hitchin system. We also explore the Saveliev-Leznov construction for solutions of the B2 affine Toda system, and recover the rotationally symmetric solution associated to Painleve transcendent.

  20. 12. PIERS 5S AND 4S, SHOWING TRANSITION AT 4S FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. PIERS 5S AND 4S, SHOWING TRANSITION AT 4S FROM GIRDER SPAN TO 'SUSPENDED' TRUSS SPAN AT U0. VIEW LOOKING WEST. - George P. Coleman Memorial Bridge, Spanning York River at U.S. Route 17, Yorktown, York County, VA

  1. Designing a 'safe and just operating space' for the Chilika lagoon fishery of the Mahanadi delta, India

    NASA Astrophysics Data System (ADS)

    Cooper, Gregory; Dearing, John

    2017-04-01

    Annual fish production from the Chilika lagoon is worth US25-million/year, underpinning the livelihoods of 35,000 fishers and 200,000 secondary dependants. The system has a legacy of collapse, transitioning from annual production rates of 9000 tonnes to 1300 tonnes during the late-1980s, with resulting livelihood losses triggering the first recorded instances of economic migration from Chilika. Despite engineered recovery since 2000, the future persistence of Chilika's resource stock is uncertain. Climate change may strengthen freshwater and sediment delivery, promoting ecohydrological degradation through tidal outlet sedimentation, reduced salinity and freshwater weed growth. Simultaneously, human population growth, fleet motorisation and consumption demands threaten overexploitation driven collapse. These critical social-ecological drivers and feedbacks are projected into future by integrating system dynamics modelling with Monte Carlo inputs. Sustainable pathways are identified from outputs producing social-ecologically desirable futures, such as mid-century catch equalling maximum sustainable yield. The 'safe and just operating space' metaphor is regionalised by the limits of sustainable trajectories, such as the permissible number of active fishers, motorised boats and juvenile catch under alternative governance scenarios. These critical thresholds suggest policy-relevant guardrails for the sustainable governance of Chilika, in order to avoid regional productivity collapse, ecological degradation and livelihood losses. Benefits and trade-offs of alternative governance approaches are also discussed, aiding the optimisation of future regulatory decision-making.

  2. MEETING THE REQUIREMENTS OF THE U.S. SAFE DRINKING WATER ACT: THE ROLE OF TECHNOLOGY

    EPA Science Inventory

    The passage of the U.S. Safe Drinking Water Act (SDWA) in 1974 has had a major impact on the way water is treated and delivered in the United States. The Act established national drinking water regulations for more than 170,000 public drinking water systems serving over 250 mill...

  3. Defining the safe working zones using the minimally invasive lateral retroperitoneal transpsoas approach: an anatomical study.

    PubMed

    Uribe, Juan S; Arredondo, Nicolas; Dakwar, Elias; Vale, Fernando L

    2010-08-01

    The lateral retroperitoneal transpsoas approach is being increasingly employed to treat various spinal disorders. The minimally invasive blunt retroperitoneal and transpsoas dissection poses a risk of injury to major nervous structures. The addition of electrophysiological monitoring potentially decreases the risk of injury to the lumbar plexus. With respect to the use of the direct transpsoas approach, however, there is sparse knowledge regarding the relationship between the retroperitoneum/psoas muscle and the lumbar plexus at each lumbar segment. The authors undertook this anatomical cadaveric dissection study to define the anatomical safe zones relative to the disc spaces for prevention of nerve injuries during the lateral retroperitoneal transpsoas approach. Twenty lumbar segments were dissected and studied. The relationship between the retroperitoneum, psoas muscle, and the lumbar plexus was analyzed. The area between the anterior and posterior edges of the vertebral body (VB) was divided into 4 equal zones. Radiopaque markers were placed in each disc space at the midpoint of Zone III (middle posterior quarter). At each segment, the psoas muscle, lumbar plexus, and nerve roots were dissected. The distribution of the lumbar plexus with reference to the markers at each lumbar segment was analyzed. All parts of the lumbar plexus, including nerve roots, were found within the substance of the psoas muscle dorsal to the posterior fourth of the VB (Zone IV). No Zone III marker was posterior to any part of the lumbar plexus with the exception of the genitofemoral nerve. The genitofemoral nerve travels obliquely in the substance of the psoas muscle from its origin to its innervations. It emerges superficially and anterior from the medial border of the psoas at the L3-4 level and courses along the anterior medial fourth of the L-4 and L-5 VBs (Zone I). The nerves of the plexus that originate at the upper lumbar segments emerge from the lateral border of the psoas major

  4. Atmosphere Revitalization Technology Development for Crewed Space Exploration

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.; Carrasquillo, Robyn L.; Harris, Danny W.

    2006-01-01

    As space exploration objectives extend human presence beyond low Earth orbit, the solutions to technological challenges presented by supporting human life in the hostile space environment must build upon experience gained during past and present crewed space exploration programs. These programs and the cabin atmosphere revitalization process technologies and systems developed for them represent the National Aeronautics and Space Administration s (NASA) past and present operational knowledge base for maintaining a safe, comfortable environment for the crew. The contributions of these programs to the NASA s technological and operational working knowledge base as well as key strengths and weaknesses to be overcome are discussed. Areas for technological development to address challenges inherent with the Vision for Space Exploration (VSE) are presented and a plan for their development employing unit operations principles is summarized

  5. Ultrasonic Detectors Safely Identify Dangerous, Costly Leaks

    NASA Technical Reports Server (NTRS)

    2013-01-01

    In 1990, NASA grounded its space shuttle fleet. The reason: leaks detected in the hydrogen fuel systems of the Space Shuttles Atlantis and Columbia. Unless the sources of the leaks could be identified and fixed, the shuttles would not be safe to fly. To help locate the existing leaks and check for others, Kennedy Space Center engineers used portable ultrasonic detectors to scan the fuel systems. As a gas or liquid escapes from a leak, the resulting turbulence creates ultrasonic noise, explains Gary Mohr, president of Elmsford, New York-based UE Systems Inc., a long-time leader in ultrasonic detector technologies. "In lay terms, the leak is like a dog whistle, and the detector is like the dog ear." Because the ultrasound emissions from a leak are highly localized, they can be used not only to identify the presence of a leak but also to help pinpoint a leak s location. The NASA engineers employed UE s detectors to examine the shuttle fuel tanks and solid rocket boosters, but encountered difficulty with the devices limited range-certain areas of the shuttle proved difficult or unsafe to scan up close. To remedy the problem, the engineers created a long-range attachment for the detectors, similar to "a zoom lens on a camera," Mohr says. "If you are on the ground, and the leak is 50 feet away, the detector would now give you the same impression as if you were only 25 feet away." The enhancement also had the effect of reducing background noise, allowing for a clearer, more precise detection of a leak s location.

  6. How MAG4 Improves Space Weather Forecasting

    NASA Technical Reports Server (NTRS)

    Falconer, David; Khazanov, Igor; Barghouty, Nasser

    2013-01-01

    Dangerous space weather is driven by solar flares and Coronal Mass Ejection (CMEs). Forecasting flares and CMEs is the first step to forecasting either dangerous space weather or All Clear. MAG4 (Magnetogram Forecast), developed originally for NASA/SRAG (Space Radiation Analysis Group), is an automated program that analyzes magnetograms from the HMI (Helioseismic and Magnetic Imager) instrument on NASA SDO (Solar Dynamics Observatory), and automatically converts the rate (or probability) of major flares (M- and X-class), Coronal Mass Ejections (CMEs), and Solar Energetic Particle Events.

  7. GOES-S Transport to Kennedy Space Center

    NASA Image and Video Library

    2017-12-04

    At Buckley Air Force Base in Aurora, Colorado, NOAA's Geostationary Operational Environmental Satellite-S (GOES-S) is being loaded into the cargo hold of a U.S. Air Force C-5M super Galaxy cargo aircraft. GOES-S will be flown to NASA's Kennedy Space Center in Florida. After it arrives at Kennedy's Shuttle Landing Facility, it will be offloaded and transported to the Astrotech Space Operations facility in Titusville, Florida, to prepare it for launch. GOES-S is the second in a series of four advanced geostationary weather satellites. The GOES-R series - consisting of the GOES-R, GOES-S, GOES-T and GOES-U spacecraft - will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018 aboard a United Launch Alliance Atlas V rocket from Cape Canaveral Air Force Station in Florida.

  8. Flywheel Rotor Safe-Life Technology

    NASA Technical Reports Server (NTRS)

    Ratner, J. K. H.; Chang, J. B.; Christopher, D. A.; McLallin, Kerry L. (Technical Monitor)

    2002-01-01

    Since the 1960s, research has been conducted into the use of flywheels as energy storage systems. The-proposed applications include energy storage for hybrid and electric automobiles, attitude control and energy storage for satellites, and uninterruptible power supplies for hospitals and computer centers. For many years, however, the use of flywheels for space applications was restricted by the total weight of a system employing a metal rotor. With recent technological advances in the manufacturing of composite materials, however, lightweight composite rotors have begun to be proposed for such applications. Flywheels with composite rotors provide much higher power and energy storage capabilities than conventional chemical batteries. However, the failure of a high speed flywheel rotor could be a catastrophic event. For this reason, flywheel rotors are classified by the NASA Fracture Control Requirements Standard as fracture critical parts. Currently, there is no industry standard to certify a composite rotor for safe and reliable operation forth( required lifetime of the flywheel. Technical problems hindering the development of this standard include composite manufacturing inconsistencies, insufficient nondestructive evaluation (NDE) techniques for detecting defects and/or impact damage, lack of standard material test methods for characterizing composite rotor design allowables, and no unified proof (over-spin) test for flight rotors. As part of a flywheel rotor safe-life certification pro-ram funded b the government, a review of the state of the art in composite rotors is in progress. The goal of the review is to provide a clear picture of composite flywheel rotor technologies. The literature review has concentrated on the following topics concerning composites and composite rotors: durability (fatigue) and damage tolerance (safe-life) analysis/test methods, in-service NDE and health monitoring techniques, spin test methods/ procedures, and containment options

  9. Integral Inherently Safe Light Water Reactor (I 2S-LWR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrovic, Bojan; Memmott, Matthew; Boy, Guy

    This final report summarizes results of the multi-year effort performed during the period 2/2013- 12/2016 under the DOE NEUP IRP Project “Integral Inherently Safe Light Water Reactors (I 2S-LWR)”. The goal of the project was to develop a concept of a 1 GWe PWR with integral configuration and inherent safety features, at the same time accounting for lessons learned from the Fukushima accident, and keeping in mind the economic viability of the new concept. Essentially (see Figure 1-1) the project aimed to implement attractive safety features, typically found only in SMRs, to a larger power (1 GWe) reactor, to addressmore » the preference of some utilities in the US power market for unit power level on the order of 1 GWe.« less

  10. GOES-S Arrival at Kennedy Space Center

    NASA Image and Video Library

    2017-12-05

    NOAA's Geostationary Operation Environmental Satellite-S (GOES-S) is being offloaded from a C-5 transport aircraft onto the flatbed of a heavy-lift truck at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The satellite will be transported to the Astrotech Space Operations facility in Titusville, Florida to prepare it for launch. GOES-S is the second in a series of four advanced geostationary weather satellites. The GOES-R series - consisting of the GOES-R, GOES-S, GOES-T and GOES-U spacecraft - will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018 aboard a United Launch Alliance Atlas V rocket from Cape Canaveral Air Force Station in Florida.

  11. Apex-4 for SpaceX CRS-10

    NASA Image and Video Library

    2017-02-16

    APEX-04, or Advanced Plant EXperiments-04, is being prepared in a cold room in the Kennedy Space Center Processing Facility for SpaceX-10. Shawn Stephens, Engineering Services Contract, and Dr. Anna Lisa Paul confirm proper orientation of the plates for launch prior to turnover to cold stowage. Dr. Paul of the University of Florida is the principal investigator for APEX-04. Apex-04 is an experiment involving Arabidopsis in petri plates inside the Veggie facility aboard the International Space Station. Since Arabidopsis is the genetic model of the plant world, it is a perfect sample organism for performing genetic studies in spaceflight. The experiment is the result of a grant from NASA’s Space Life and Physical Sciences division.

  12. Apex-4 for SpaceX CRS-10

    NASA Image and Video Library

    2017-02-16

    Drs. Rob Ferl and Anna-Lisa Paul in a cold room in the Kennedy Space Center Processing Facility with the petri plates they prepped at the University of Florida for APEX-04. Paul is the principal investigator (PI) and Ferl is co-PI. Apex-04 is an experiment involving Arabidopsis in petri plates inside the Veggie facility aboard the International Space Station. Since Arabidopsis is the genetic model of the plant world, it is a perfect sample organism for performing genetic studies in spaceflight. The experiment is the result of a grant from NASA’s Space Life and Physical Sciences division.

  13. Safe Spaces in Online Places: Social Media and LGBTQ Youth

    ERIC Educational Resources Information Center

    Lucero, Leanna

    2017-01-01

    This study responds to a need for research in a fast-growing and significant area of study, that of exploring, understanding and documenting the numerous ways that multiply marginalized LGBTQ youth use social media as part of their everyday experiences in an attempt to safely navigate their lives through learning, participating, engaging,…

  14. Creating opportunities through mentorship, parental involvement, and safe spaces (COMPASS) program: multi-country study protocol to protect girls from violence in humanitarian settings.

    PubMed

    Falb, Kathryn L; Tanner, Sophie; Ward, Leora; Erksine, Dorcas; Noble, Eva; Assazenew, Asham; Bakomere, Theresita; Graybill, Elizabeth; Lowry, Carmen; Mallinga, Pamela; Neiman, Amy; Poulton, Catherine; Robinette, Katie; Sommer, Marni; Stark, Lindsay

    2016-03-05

    Violence against adolescent girls in humanitarian settings is of urgent concern given their additional vulnerabilities to violence and unique health and well-being needs that have largely been overlooked by the humanitarian community. In order to understand what works to prevent violence against adolescent girls, a multi-component curriculum-based safe spaces program (Creating Opportunities through Mentorship, Parental involvement and Safe Spaces - COMPASS) will be implemented and evaluated. The objectives of this multi-country study are to understand the feasibility, acceptability and effectiveness of COMPASS programming to prevent violence against adolescent girls in diverse humanitarian settings. Two wait-listed cluster-randomized controlled trials are being implemented in conflict-affected communities in eastern Democratic Republic of Congo (N = 886 girls aged 10-14 years) and in refugee camps in western Ethiopia (N = 919 girls aged 13-19 years). The intervention consists of structured facilitated sessions delivered in safe spaces by young female mentors, caregiver discussion groups, capacity-building activities with service providers, and community engagement. In Ethiopia, the research centers on the overall impact of COMPASS compared to a wait-list group. In DRC, the research objective is to understand the incremental effectiveness of the caregiver component in addition to the other COMPASS activities as compared to a wait-list group. The primary outcome is change in sexual violence. Secondary outcomes include decreased physical and emotional abuse, reduced early marriage, improved gender norms, and positive interpersonal relationships, among others. Qualitative methodologies seek to understand girls' perceptions of safety within their communities, key challenges they face, and to identify potential pathways of change. These trials will add much needed evidence for the humanitarian community to meet the unique needs of adolescent girls and to promote

  15. Energies and spin states of FeS(0/-), FeS2(0/-), Fe2S2(0/-), Fe3S4(0/-), and Fe4S4(0/-) clusters.

    PubMed

    Li, Yan-Ni; Wang, Shengguang; Wang, Tao; Gao, Rui; Geng, Chun-Yu; Li, Yong-Wang; Wang, Jianguo; Jiao, Haijun

    2013-04-15

    The structures and energies of the electronic ground states of the FeS(0/-), FeS2(0/-), Fe2S2(0/-), Fe3S4(0/-), and Fe4S4(0/-) neutral and anionic clusters have been computed systematically with nine computational methods in combination with seven basis sets. The computed adiabatic electronic affinities (AEA) have been compared with available experimental data. Most reasonable agreements between theory and experiment have been found for both hybrid B3LYP and B3PW91 functionals in conjugation with 6-311+G* and QZVP basis sets. Detailed comparisons between the available experimental and computed AEA data at the B3LYP/6-311+G* level identified the electronic ground state of (5)Δ for FeS, (4)Δ for FeS(-), (5)B2 for FeS2, (6)A1 for FeS2(-), (1)A1 for Fe2S2, (8)A' for Fe2S2(-), (5)A'' for Fe3S4, (6)A'' for Fe3S4(-), (1)A1 for Fe4S4, and (1)A2 for Fe4S4(-). In addition, Fe2S2, Fe3S4, Fe3S4(-), Fe4S4, and Fe4S4(-) are antiferromagnetic at the B3LYP/6-311+G* level. The magnetic properties are discussed on the basis of natural bond orbital analysis. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Presidential Leadership in the Development of the U.S. Space Program

    NASA Technical Reports Server (NTRS)

    Launius, Roger D. (Editor); Mccurdy, Howard E. (Editor)

    1994-01-01

    Papers presented at a historical symposium on Presidential leadership in the space program include the following: 'The Imperial Presidency in the History of Space Exploration'; 'The Reluctant Racer: Dwight D. Eisenhower and United States Space Policy'; 'Kennedy and the Decision to Go to the Moon'; 'Johnson, Project Apollo, and the Politics of Space Program Planning'; 'The Presidency, Congress, and the Deceleration of the U.S. Space Program in the 1970s'; 'Politics not Science: The U.S. Space Program in the Reagan and Bush Years'; 'Presidential Leadership and International Aspects of the Space Program'; 'National Leadership and Presidential Power'; and 'Epilogue: Beyond NASA Exceptionalism'.

  17. Curiosity's Autonomous Surface Safing Behavior Design

    NASA Technical Reports Server (NTRS)

    Neilson, Tracy A.; Manning, Robert M.

    2013-01-01

    The safing routines on all robotic deep-space vehicles are designed to put the vehicle in a power and thermally safe configuration, enabling communication with the mission operators on Earth. Achieving this goal is made a little more difficult on Curiosity because the power requirements for the core avionics and the telecommunication equipment exceed the capability of the single power source, the Multi-Mission Radioisotope Thermoelectric Generator. This drove the system design to create an operational mode, called "sleep mode", where the vehicle turns off most of the loads in order to charge the two Li-ion batteries. The system must keep the vehicle safe from over-heat and under-heat conditions, battery cell failures, under-voltage conditions, and clock failures, both while the computer is running and while the system is sleeping. The other goal of a safing routine is to communicate. On most spacecraft, this simply involves turning on the receiver and transmitter continuously. For Curiosity, Earth is above the horizon only a part of the day for direct communication to the Earth, and the orbiter overpass opportunities only occur a few times a day. The design must robustly place the Rover in a communicable condition at the correct time. This paper discusses Curiosity's autonomous safing behavior and describes how the vehicle remains power and thermally safe while sleeping, as well as a description of how the Rover communicates with the orbiters and Earth at specific times.

  18. Space-brain: The negative effects of space exposure on the central nervous system.

    PubMed

    Jandial, Rahul; Hoshide, Reid; Waters, J Dawn; Limoli, Charles L

    2018-01-01

    Journey to Mars will be a large milestone for all humankind. Throughout history, we have learned lessons about the health dangers associated with exploratory voyages to expand our frontiers. Travelling through deep space, the final frontier, is planned for the 2030s by NASA. The lessons learned from the adverse health effects of space exposure have been encountered from previous, less-lengthy missions. Prolonged multiyear deep space travel to Mars could be encumbered by significant adverse health effects, which could critically affect the safety of the mission and its voyagers. In this review, we discuss the health effects of the central nervous system by space exposure. The negative effects from space radiation and microgravity have been detailed. Future aims and recommendations for the safety of the voyagers have been discussed. With proper planning and anticipation, the mission to Mars can be done safely and securely.

  19. Apex-4 for SpaceX CRS-10

    NASA Image and Video Library

    2017-02-16

    APEX-04, or Advanced Plant EXperiments-04, is being prepared in a cold room in the Kennedy Space Center Processing Facility for SpaceX-10. The 30 petri plates are bundled into groups of 10 and placed into one of three science kits. The science kits allow easy handling when the crew removes the plates from cold stowage on station. Dr. Anna Lisa Paul of the University of Florida is the principal investigator for APEX-04. Apex-04 is an experiment involving Arabidopsis in petri plates inside the Veggie facility aboard the International Space Station. Since Arabidopsis is the genetic model of the plant world, it is a perfect sample organism for performing genetic studies in spaceflight. The experiment is the result of a grant from NASA’s Space Life and Physical Sciences division.

  20. SpaceX Recovery Trainer Egress and Handling Testing

    NASA Image and Video Library

    2018-04-17

    Pararescue specialists from the 304th Rescue Squadron, located in Portland, Oregon and supporting the 45th Operations Group’s Detachment 3, based out of Patrick Air Force Base, prepare equipment during an April astronaut rescue exercise with NASA’s Commercial Crew Program and SpaceX off of Florida’s eastern coast. The pararescue specialists, also known as “Guardian Angels,” jumped from military aircraft and simulated a rescue operation to demonstrate their ability to safely remove crew from the SpaceX Crew Dragon in the unlikely event of an emergency landing. The pararescue specialists are fully qualified paramedics able to perform field surgery, if necessary.

  1. MR-guided transcranial focused ultrasound safely enhances interstitial dispersion of large polymeric nanoparticles in the living brain

    PubMed Central

    Mohammadabadi, Ali; Nguyen, Ben A.; Guo, Sijia; Winkles, Jeffrey A.; Kim, Anthony J.; Gullapalli, Rao; Keller, Asaf; Frenkel, Victor

    2018-01-01

    Generating spatially controlled, non-destructive changes in the interstitial spaces of the brain has a host of potential clinical applications, including enhancing the delivery of therapeutics, modulating biological features within the tissue microenvironment, altering fluid and pressure dynamics, and increasing the clearance of toxins, such as plaques found in Alzheimer’s disease. Recently we demonstrated that ultrasound can non-destructively enlarge the interstitial spaces of the brain ex vivo. The goal of the current study was to determine whether these effects could be reproduced in the living brain using non-invasive, transcranial MRI-guided focused ultrasound (MRgFUS). The left striatum of healthy rats was treated using MRgFUS. Computer simulations facilitated treatment planning, and targeting was validated using MRI acoustic radiation force impulse imaging. Following MRgFUS treatments, Evans blue dye or nanoparticle probes were infused to assess changes in the interstitial space. In MRgFUS-treated animals, enhanced dispersion was observed compared to controls for 70 nm (12.8 ± 0.9 mm3 vs. 10.6 ± 1.0 mm3, p = 0.01), 200 nm (10.9 ± 1.4 mm3 vs. 7.4 ± 0.7 mm3, p = 0.01) and 700 nm (7.5 ± 0.4 mm3 vs. 5.4 ± 1.2 mm3, p = 0.02) nanoparticles, indicating enlargement of the interstitial spaces. No evidence of significant histological or electrophysiological injury was identified. These findings suggest that transcranial ultrasound can safely and effectively modulate the brain interstitium and increase the dispersion of large therapeutic entities such as particulate drug carriers or modified viruses. This has the potential to expand the therapeutic uses of MRgFUS. PMID:29415084

  2. The militarization of space: U. S. policy, 1945-1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stares, P.B.

    1985-01-01

    This is an account of the U.S. military space program under successive administrations. Despite Sputnik and the advent of reconnaissance satellites, the development of antisatellite space weapons was resisted from the time of the Eisenhower Administration until the late 1970s. Indeed, Eisenhower wanted to keep U.S. activities in space ''peaceful'' so as to avoid a threat to reconnaissance satellites. When Soviet satellite interceptor tests became a matter of concern, the Carter Administration pursued a two-track policy of seeking to develop the technology and to ban its deployment through negotiations with the Soviet Union; thereafter, the Reagan Administration dropped arms controlmore » efforts and insisted upon testing. The author concludes that an arms race in space is now inevitable-and that a solid opportunity has been lost.« less

  3. Safe Upper-Bounds Inference of Energy Consumption for Java Bytecode Applications

    NASA Technical Reports Server (NTRS)

    Navas, Jorge; Mendez-Lojo, Mario; Hermenegildo, Manuel V.

    2008-01-01

    Many space applications such as sensor networks, on-board satellite-based platforms, on-board vehicle monitoring systems, etc. handle large amounts of data and analysis of such data is often critical for the scientific mission. Transmitting such large amounts of data to the remote control station for analysis is usually too expensive for time-critical applications. Instead, modern space applications are increasingly relying on autonomous on-board data analysis. All these applications face many resource constraints. A key requirement is to minimize energy consumption. Several approaches have been developed for estimating the energy consumption of such applications (e.g. [3, 1]) based on measuring actual consumption at run-time for large sets of random inputs. However, this approach has the limitation that it is in general not possible to cover all possible inputs. Using formal techniques offers the potential for inferring safe energy consumption bounds, thus being specially interesting for space exploration and safety-critical systems. We have proposed and implemented a general frame- work for resource usage analysis of Java bytecode [2]. The user defines a set of resource(s) of interest to be tracked and some annotations that describe the cost of some elementary elements of the program for those resources. These values can be constants or, more generally, functions of the input data sizes. The analysis then statically derives an upper bound on the amount of those resources that the program as a whole will consume or provide, also as functions of the input data sizes. This article develops a novel application of the analysis of [2] to inferring safe upper bounds on the energy consumption of Java bytecode applications. We first use a resource model that describes the cost of each bytecode instruction in terms of the joules it consumes. With this resource model, we then generate energy consumption cost relations, which are then used to infer safe upper bounds. How

  4. HAL/S programmer's guide. [for space shuttle program

    NASA Technical Reports Server (NTRS)

    Newbold, P. M.; Hotz, R. L.

    1974-01-01

    This programming language was developed for the flight software of the NASA space shuttle program. HAL/S is intended to satisfy virtually all of the flight software requirements of the space shuttle. To achieve this, HAL/s incorporates a wide range of features, including applications-oriented data types and organizations, real time control mechanisms, and constructs for systems programming tasks. As the name indicates, HAL/S is a dialect of the original HAL language previously developed. Changes have been incorporated to simplify syntax, curb excessive generality, or facilitate flight code emission.

  5. GOES-S Transport to Kennedy Space Center

    NASA Image and Video Library

    2017-12-04

    NOAA's Geostationary Operational Environmental Satellite-S (GOES-S) is prepared for transport at the Lockheed Martin facility in Littleton, Colorado, where it was built and assembled. GOES-S will be loaded into a U.S. Air Force C-5M Super Galaxy cargo aircraft at Buckley Air Force Base in Aurora, Colorado, and flown to NASA's Kennedy Space Center in Florida. After it arrives at Kennedy's Shuttle Landing Facility, it will be offloaded and transported to the Astrotech Space Operations facility in Titusville, Florida, to prepare it for launch. GOES-S is the second in a series of four advanced geostationary weather satellites. The GOES-R series - consisting of the GOES-R, GOES-S, GOES-T and GOES-U spacecraft - will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018 aboard a United Launch Alliance Atlas V rocket from Cape Canaveral Air Force Station in Florida.

  6. 33 CFR 62.27 - Safe water marks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Safe water marks. 62.27 Section 62.27 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.27 Safe water marks. Safe...

  7. 29 CFR 1915.76 - Access to cargo spaces and confined spaces.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Access to cargo spaces and confined spaces. 1915.76 Section..., Ladders and Other Working Surfaces § 1915.76 Access to cargo spaces and confined spaces. The provisions of... this section applies to ship repairing only. (a) Cargo spaces. (1) There shall be at least one safe and...

  8. 29 CFR 1915.76 - Access to cargo spaces and confined spaces.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Access to cargo spaces and confined spaces. 1915.76 Section..., Ladders and Other Working Surfaces § 1915.76 Access to cargo spaces and confined spaces. The provisions of... this section applies to ship repairing only. (a) Cargo spaces. (1) There shall be at least one safe and...

  9. 29 CFR 1915.76 - Access to cargo spaces and confined spaces.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Access to cargo spaces and confined spaces. 1915.76 Section..., Ladders and Other Working Surfaces § 1915.76 Access to cargo spaces and confined spaces. The provisions of... this section applies to ship repairing only. (a) Cargo spaces. (1) There shall be at least one safe and...

  10. 29 CFR 1915.76 - Access to cargo spaces and confined spaces.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Access to cargo spaces and confined spaces. 1915.76 Section..., Ladders and Other Working Surfaces § 1915.76 Access to cargo spaces and confined spaces. The provisions of... this section applies to ship repairing only. (a) Cargo spaces. (1) There shall be at least one safe and...

  11. 29 CFR 1915.76 - Access to cargo spaces and confined spaces.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Access to cargo spaces and confined spaces. 1915.76 Section..., Ladders and Other Working Surfaces § 1915.76 Access to cargo spaces and confined spaces. The provisions of... this section applies to ship repairing only. (a) Cargo spaces. (1) There shall be at least one safe and...

  12. Classical space-times from the S-matrix

    NASA Astrophysics Data System (ADS)

    Neill, Duff; Rothstein, Ira Z.

    2013-12-01

    We show that classical space-times can be derived directly from the S-matrix for a theory of massive particles coupled to a massless spin two particle. As an explicit example we derive the Schwarzchild space-time as a series in GN. At no point of the derivation is any use made of the Einstein-Hilbert action or the Einstein equations. The intermediate steps involve only on-shell S-matrix elements which are generated via BCFW recursion relations and unitarity sewing techniques. The notion of a space-time metric is only introduced at the end of the calculation where it is extracted by matching the potential determined by the S-matrix to the geodesic motion of a test particle. Other static space-times such as Kerr follow in a similar manner. Furthermore, given that the procedure is action independent and depends only upon the choice of the representation of the little group, solutions to Yang-Mills (YM) theory can be generated in the same fashion. Moreover, the squaring relation between the YM and gravity three point functions shows that the seeds that generate solutions in the two theories are algebraically related. From a technical standpoint our methodology can also be utilized to calculate quantities relevant for the binary inspiral problem more efficiently then the more traditional Feynman diagram approach.

  13. Assessment of Casualty Transport Equipment and Procedures Aboard U.S. Navy Submarines to Accommodate Anti-Shock Trousers

    DTIC Science & Technology

    2012-10-24

    Figure 6. Haul-Safe Winch System (Spec Rescue International). .................................................. 9 Figure 7. Submarine bridge...illustrating limited deck space for winch system . ............................. 9 vi [THIS PAGE INTENTIONALLY LEFT BLANK] INTRODUCTION U.S...and out the submarine sail for helicopter transport. In addition, a winch system used to lift casualties up and out the sail was also evaluated. 4

  14. NASA’s Stennis Space Center Conducts RS-25 Engine Test

    NASA Image and Video Library

    2017-03-24

    On March 23, NASA conducted a test of an RS-25 engine at the agency’s Stennis Space Center in Bay St. Louis, Mississippi. Four RS-25’s will help power NASA’s Space Launch System (SLS) rocket to space. During this test, engineers evaluated the engine’s new controller or “brain”, which communicates with the SLS vehicle. Once test data is certified, the engine controller will be removed and installed on one of the four flight engines that will help power the first integrated flight of SLS and the Orion spacecraft.

  15. CIRiS: Compact Infrared Radiometer in Space

    NASA Astrophysics Data System (ADS)

    Osterman, D. P.; Collins, S.; Ferguson, J.; Good, W.; Kampe, T.; Rohrschneider, R.; Warden, R.

    2016-09-01

    The Compact Infrared Radiometer in Space (CIRiS) is a thermal infrared radiometric imaging instrument under development by Ball Aerospace for a Low Earth Orbit mission on a CubeSat spacecraft. Funded by the NASA Earth Science Technology Office's In-Space Validation of Earth Science Technology (InVEST) program, the mission objective is technology demonstration for improved on-orbit radiometric calibration. The CIRiS calibration approach uses a scene select mirror to direct three calibration views to the focal plane array and to transfer the resulting calibrated response to earth images. The views to deep space and two blackbody sources, including one at a selectable temperature, provide multiple options for calibration optimization. Two new technologies, carbon nanotube blackbody sources and microbolometer focal plane arrays with reduced pixel sizes, enable improved radiometric performance within the constrained 6U CubeSat volume. The CIRiS instrument's modular design facilitates subsystem modifications as required by future mission requirements. CubeSat constellations of CIRiS and derivative instruments offer an affordable approach to achieving revisit times as short as one day for diverse applications including water resource and drought management, cloud, aerosol, and dust studies, and land use and vegetation monitoring. Launch is planned for 2018.

  16. Acceptability of reactors in space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buden, D.

    1981-04-01

    Reactors are the key to our future expansion into space. However, there has been some confusion in the public as to whether they are a safe and acceptable technology for use in space. The answer to these questions is explored. The US position is that when reactors are the preferred technical choice, that they can be used safely. In fact, it dies not appear that reactors add measurably to the risk associated with the Space Transportation System.

  17. Safe-Play Knowledge, Aggression, and Head-Impact Biomechanics in Adolescent Ice Hockey Players.

    PubMed

    Schmidt, Julianne D; Pierce, Alice F; Guskiewicz, Kevin M; Register-Mihalik, Johna K; Pamukoff, Derek N; Mihalik, Jason P

    2016-05-01

    Addressing safe-play knowledge and player aggression could potentially improve ice hockey sport safety. To compare (1) safe-play knowledge and aggression between male and female adolescent ice hockey players and (2) head-impact frequency and severity between players with high and low levels of safe-play knowledge and aggression during practices and games. Cohort study. On field. Forty-one male (n = 29) and female (n = 12) adolescent ice hockey players. Players completed the Safe Play Questionnaire (0 = less knowledge, 7 = most knowledge) and Competitive Aggressiveness and Anger Scale (12 = less aggressive, 60 = most aggressive) at midseason. Aggressive penalty minutes were recorded throughout the season. The Head Impact Telemetry System was used to capture head-impact frequency and severity (linear acceleration [g], rotational acceleration [rad/s(2)], Head Impact Technology severity profile) at practices and games. One-way analyses of variance were used to compare safe play knowledge and aggression between sexes. Players were categorized as having high or low safe-play knowledge and aggression using a median split. A 2 × 2 mixed-model analysis of variance was used to compare head-impact frequency, and random-intercept general linear models were used to compare head-impact severity between groups (high, low) and event types (practice, game). Boys (5.8 of 7 total; 95% confidence interval [CI] = 5.3, 6.3) had a trend toward better safe-play knowledge compared with girls (4.9 of 7 total; 95% CI = 3.9, 5.9; F1,36 = 3.40, P = .073). Less aggressive male players sustained significantly lower head rotational accelerations during practices (1512.8 rad/s (2) , 95% CI = 1397.3, 1637.6 rad/s(2)) versus games (1754.8 rad/s (2) , 95% CI = 1623.9, 1896.2 rad/s(2)) and versus high-aggression players during practices (1773.5 rad/s (2) , 95% CI = 1607.9, 1956.3 rad/s (2) ; F1,26 = 6.04, P = .021). Coaches and sports medicine professionals should ensure that athletes of all levels

  18. 33 CFR 62.27 - Safe water marks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Safe water marks. 62.27 Section... UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.27 Safe water marks. Safe water marks indicate that there is navigable water all around the mark. They are often used to indicate...

  19. 33 CFR 62.27 - Safe water marks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Safe water marks. 62.27 Section... UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.27 Safe water marks. Safe water marks indicate that there is navigable water all around the mark. They are often used to indicate...

  20. 33 CFR 62.27 - Safe water marks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Safe water marks. 62.27 Section... UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.27 Safe water marks. Safe water marks indicate that there is navigable water all around the mark. They are often used to indicate...

  1. Synthesis of ( 2S, 4S)-4-phenylamino-5-oxoproline derivatives.

    PubMed

    Nizova, I A; Krasnov, V P; Levit, G L; Kodess, M I

    2002-01-01

    The paper describes the synthesis of ( 2S, 4S)-4-(N-Ts)- and ( 2S, 4S)-4-(N-Boc)-phenylamino-5-oxoprolines (pyroglutamic acid). These derivatives have been shown to be useful for synthesis of their amides and peptides in spite of steric hindrances caused by bulky groups adjacent to the reaction centre. Under the conditions applied no lactam ring opening and no loss of stereochemical integrity of any of the chiral centres were observed, which has been confirmed by NMR techniques.

  2. IoSiS: a radar system for imaging of satellites in space

    NASA Astrophysics Data System (ADS)

    Jirousek, M.; Anger, S.; Dill, S.; Schreiber, E.; Peichl, M.

    2017-05-01

    Space debris nowadays is one of the main threats for satellite systems especially in low earth orbit (LEO). More than 700,000 debris objects with potential to destroy or damage a satellite are estimated. The effects of an impact often are not identifiable directly from ground. High-resolution radar images are helpful in analyzing a possible damage. Therefor DLR is currently developing a radar system called IoSiS (Imaging of Satellites in Space), being based on an existing steering antenna structure and our multi-purpose high-performance radar system GigaRad for experimental investigations. GigaRad is a multi-channel system operating at X band and using a bandwidth of up to 4.4 GHz in the IoSiS configuration, providing fully separated transmit (TX) and receive (RX) channels, and separated antennas. For the observation of small satellites or space debris a highpower traveling-wave-tube amplifier (TWTA) is mounted close to the TX antenna feed. For the experimental phase IoSiS uses a 9 m TX and a 1 m RX antenna mounted on a common steerable positioner. High-resolution radar images are obtained by using Inverse Synthetic Aperture Radar (ISAR) techniques. The guided tracking of known objects during overpass allows here wide azimuth observation angles. Thus high azimuth resolution comparable to the range resolution can be achieved. This paper outlines technical main characteristics of the IoSiS radar system including the basic setup of the antenna, the radar instrument with the RF error correction, and the measurement strategy. Also a short description about a simulation tool for the whole instrument and expected images is shown.

  3. Flight Demonstrations of Orbital Space Plane (OSP) Technologies

    NASA Technical Reports Server (NTRS)

    Turner, Susan

    2003-01-01

    The Orbital Space Plane (OSP) Program embodies NASA s priority to transport Space Station crews safely, reliably, and affordably, while it empowers the Nation s greater strategies for scientific exploration and space leadership. As early in the development cycle as possible, the OSP will provide crew rescue capability, offering an emergency ride home from the Space Station, while accommodating astronauts who are deconditioned due to long- duration missions, or those that may be ill or injured. As the OSP Program develops a fully integrated system, it will use existing technologies and employ computer modeling and simulation. Select flight demonstrator projects will provide valuable data on launch, orbital, reentry, and landing conditions to validate thermal protection systems, autonomous operations, and other advancements, especially those related to crew safety and survival.

  4. 2016 Year in Review Video- NASA’s Marshall Space Flight Center

    NASA Image and Video Library

    2016-12-22

    The work underway today at NASA’s Marshall Space Flight Center is making it possible to send humans beyond Earth’s orbit and into deep space on bold new missions of space exploration. Marshall teams are designing and building NASA’s Space Launch System, the most powerful rocket ever built and the only launch vehicle capable of launching human explorers to Mars. Using the International Space Station’s orbiting lab, Marshall flight controllers provided round-the-clock oversight of science experiments, supporting the first-ever DNA sequencing in space, pioneering 3-D printing capabilities and advancing human health research. Several successful New Frontiers deep-space robotic missions including OSIRIS-REx, New Horizons and Juno, made new discoveries and refined theories of the solar system. And Marshall collaborations with outside partners are yielding innovative technologies and solving technical challenges that are making the Journey to Mars a reality.

  5. Safe sex

    MedlinePlus

    ... sex; Sexually transmitted - safe sex; GC - safe sex; Gonorrhea - safe sex; Herpes - safe sex; HIV - safe sex; ... contact. STIs include: Chlamydia Genital herpes Genital warts Gonorrhea Hepatitis HIV HPV Syphilis STIs are also called ...

  6. Safe-Play Knowledge, Aggression, and Head-Impact Biomechanics in Adolescent Ice Hockey Players

    PubMed Central

    Schmidt, Julianne D.; Pierce, Alice F.; Guskiewicz, Kevin M.; Register-Mihalik, Johna K.; Pamukoff, Derek N.; Mihalik, Jason P.

    2016-01-01

    Context:  Addressing safe-play knowledge and player aggression could potentially improve ice hockey sport safety. Objectives:  To compare (1) safe-play knowledge and aggression between male and female adolescent ice hockey players and (2) head-impact frequency and severity between players with high and low levels of safe-play knowledge and aggression during practices and games. Design:  Cohort study. Setting:  On field. Patients or Other Participants:  Forty-one male (n = 29) and female (n = 12) adolescent ice hockey players. Intervention(s):  Players completed the Safe Play Questionnaire (0 = less knowledge, 7 = most knowledge) and Competitive Aggressiveness and Anger Scale (12 = less aggressive, 60 = most aggressive) at midseason. Aggressive penalty minutes were recorded throughout the season. The Head Impact Telemetry System was used to capture head-impact frequency and severity (linear acceleration [g], rotational acceleration [rad/s2], Head Impact Technology severity profile) at practices and games. Main Outcome Measure(s):  One-way analyses of variance were used to compare safe play knowledge and aggression between sexes. Players were categorized as having high or low safe-play knowledge and aggression using a median split. A 2 × 2 mixed-model analysis of variance was used to compare head-impact frequency, and random-intercept general linear models were used to compare head-impact severity between groups (high, low) and event types (practice, game). Results:  Boys (5.8 of 7 total; 95% confidence interval [CI] = 5.3, 6.3) had a trend toward better safe-play knowledge compared with girls (4.9 of 7 total; 95% CI = 3.9, 5.9; F1,36 = 3.40, P = .073). Less aggressive male players sustained significantly lower head rotational accelerations during practices (1512.8 rad/s2, 95% CI = 1397.3, 1637.6 rad/s2) versus games (1754.8 rad/s2, 95% CI = 1623.9, 1896.2 rad/s2) and versus high-aggression players during practices (1773.5 rad/s2, 95% CI = 1607

  7. The Origins of U.S. Space Policy: Eisenhower, Open Skies, and Freedom of Space.

    DTIC Science & Technology

    1992-01-01

    national security, the executive action that shaped this enterprise and the space policy that President Dwight D. Eisenhower and his advisors created for...program, the president’s closest advisors determined, if at all possible, to keep outer space a region open to all, where the spacecraft of any state...83. The NSC Planning Board, also at the president’s direction, in November 1954 had established a net capabilities evaluation subcommittee" that

  8. 4-27-18 SpaceCast Weekly_ 2018_117_1600_645761

    NASA Image and Video Library

    2018-04-27

    SpaceCast Weekly is a NASA Television broadcast from the Johnson Space Center in Houston featuring stories about NASA’s work in human spaceflight, including the International Space Station and its crews and scientific research activities, and the development of Orion and the Space Launch System, the nextgeneration American spacecraft being built to take humans farther into space than they’ve ever gone before.

  9. 33 CFR 62.27 - Safe water marks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Safe water marks. 62.27 Section 62.27 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.27 Safe water marks. Safe water marks indicate that there is...

  10. NASA’s Space Launch System Engine Testing Heats Up

    NASA Image and Video Library

    2017-05-23

    NASA engineers successfully conducted the second in a series of RS-25 flight controller tests on May 23, 2017, for the world’s most-powerful rocket. The 500-second test on the A-1 Test Stand at NASA’s Stennis Space Center in Mississippi marked another milestone toward launch of NASA’s new Space Launch System (SLS) rocket on its inaugural flight, the Exploration Mission-1 (EM-1). The SLS rocket, powered by four RS-25 engines, will provide 2 million pounds of thrust and work in conjunction with two solid rocket boosters. These are former space shuttle main engines, modified to perform at a higher level and with a new controller.

  11. A Toxicological Framework for the Prioritization of Children’s Safe Product Act Data

    PubMed Central

    Smith, Marissa N.; Grice, Joshua; Cullen, Alison; Faustman, Elaine M.

    2016-01-01

    In response to concerns over hazardous chemicals in children’s products, Washington State passed the Children’s Safe Product Act (CSPA). CSPA requires manufacturers to report the concentration of 66 chemicals in children’s products. We describe a framework for the toxicological prioritization of the ten chemical groups most frequently reported under CSPA. The framework scores lifestage, exposure duration, primary, secondary and tertiary exposure routes, toxicokinetics and chemical properties to calculate an exposure score. Four toxicological endpoints were assessed based on curated national and international databases: reproductive and developmental toxicity, endocrine disruption, neurotoxicity and carcinogenicity. A total priority index was calculated from the product of the toxicity and exposure scores. The three highest priority chemicals were formaldehyde, dibutyl phthalate and styrene. Elements of the framework were compared to existing prioritization tools, such as the United States Environmental Protection Agency’s (EPA) ExpoCast and Toxicological Prioritization Index (ToxPi). The CSPA framework allowed us to examine toxicity and exposure pathways in a lifestage-specific manner, providing a relatively high throughput approach to prioritizing hazardous chemicals found in children’s products. PMID:27104547

  12. Asymptotical AdS space from nonlinear gravitational models with stabilized extra dimensions

    NASA Astrophysics Data System (ADS)

    Günther, U.; Moniz, P.; Zhuk, A.

    2002-08-01

    We consider nonlinear gravitational models with a multidimensional warped product geometry. Particular attention is payed to models with quadratic scalar curvature terms. It is shown that for certain parameter ranges, the extra dimensions are stabilized if the internal spaces have a negative constant curvature. In this case, the four-dimensional effective cosmological constant as well as the bulk cosmological constant become negative. As a consequence, the homogeneous and isotropic external space is asymptotically AdS4. The connection between the D-dimensional and the four-dimensional fundamental mass scales sets a restriction on the parameters of the considered nonlinear models.

  13. Discovery of ((4R,5S)-5-amino-4-(2,4,5- trifluorophenyl)cyclohex-1-enyl)-(3- (trifluoromethyl)-5,6-dihydro- [1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl)methanone (ABT-341), a highly potent, selective, orally efficacious, and safe dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes.

    PubMed

    Pei, Zhonghua; Li, Xiaofeng; von Geldern, Thomas W; Madar, David J; Longenecker, Kenton; Yong, Hong; Lubben, Thomas H; Stewart, Kent D; Zinker, Bradley A; Backes, Bradley J; Judd, Andrew S; Mulhern, Mathew; Ballaron, Stephen J; Stashko, Michael A; Mika, Amanda K; Beno, David W A; Reinhart, Glenn A; Fryer, Ryan M; Preusser, Lee C; Kempf-Grote, Anita J; Sham, Hing L; Trevillyan, James M

    2006-11-02

    Dipeptidyl peptidase IV (DPP4) deactivates glucose-regulating hormones such as GLP-1 and GIP, thus, DPP4 inhibition has become a useful therapy for type 2 diabetes. Optimization of the high-throughput screening lead 6 led to the discovery of 25 (ABT-341), a highly potent, selective, and orally bioavailable DPP4 inhibitor. When dosed orally, 25 dose-dependently reduced glucose excursion in ZDF rats. Amide 25 is safe in a battery of in vitro and in vivo tests and may represent a new therapeutic agent for the treatment of type 2 diabetes.

  14. Technology Development for Hydrogen Propellant Storage and Transfer at the Kennedy Space Center (KSC)

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert; Starr, Stanley; Krenn, Angela; Captain, Janine; Williams, Martha

    2016-01-01

    The National Aeronautics and Space Administration (NASA) is a major user of liquid hydrogen. In particular, NASA's John F. Kennedy (KSC) Space Center has operated facilities for handling and storing very large quantities of liquid hydrogen (LH2) since the early 1960s. Safe operations pose unique challenges and as a result NASA has invested in technology development to improve operational efficiency and safety. This paper reviews recent innovations including methods of leak and fire detection and aspects of large storage tank health and integrity. We also discuss the use of liquid hydrogen in space and issues we are addressing to ensure safe and efficient operations should hydrogen be used as a propellant derived from in-situ volatiles.

  15. Challenges of Human Space Flight

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.; Charles, John B.

    2006-01-01

    The presentations will be given during the X-Prize symposium, exploring the multi-faceted dimensions of spaceflight ranging from the technical developments necessary to achieve safe routine flight to and from and through space to the new personal business opportunities and economic benefits that will open in space and here on Earth. The symposium will delve into the technical, regulatory, market and financial needs and challenges that must be met in charting and executing the incremental developments leading to Personal Spaceflight and the opening of a Place Called Space. The presentation covers facets of human space flight including descriptions of life in space, the challenges of delivering medical care in space, and the preparations needed for safe and productive human travel to the moon and Mars.

  16. U.S. Space Program Benefits to Education. Hearing before the Subcommittee on Space of the Committee on Science, Space, and Technology. U.S. House of Representatives, One Hundred Second Congress, Second Session.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Committee on Science, Space and Technology.

    This hearing was held to review the educational benefits of the U.S. Space Program. Testimony was given by three panels of experts related to this topic. The three panels consisted of: (1) Daniel S. Goldin, Administrator, National Aeronautics and Space Administration (NASA); Dan Brandenstein, Captain, U.S. Navy, NASA Astronaut; and Damon Butler,…

  17. Crewed Space Vehicle Battery Safety Requirements Revision D

    NASA Technical Reports Server (NTRS)

    Russell, Samuel

    2017-01-01

    The Crewed Space Vehicle Battery Safety Requirements document has been prepared for use by designers of battery-powered vehicles, portable equipment, and experiments intended for crewed spaceflight. The purpose of the requirements document is to provide battery designers with information on design provisions to be incorporated in and around the battery and on the verification to be undertaken to demonstrate a safe battery is provided. The term "safe battery" means that the battery is safe for ground personnel and crew members to handle and use; safe to be used in the enclosed environment of a crewed space vehicle; and safe to be mounted or used in unpressurized spaces adjacent to habitable areas. Battery design review, approval, and certification is required before the batteries can be used for ground operations and be certified for flight.

  18. 29 CFR 1910.146 - Permit-required confined spaces.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... demonstrate that continuous forced air ventilation alone is sufficient to maintain that permit space safe for... accidental fall through the opening and that will protect each employee working in the space from foreign...) The employer shall verify that the space is safe for entry and that the pre-entry measures required by...

  19. Trends in U.S. consumers' safe handling and consumption of food and their risk perceptions, 1988 through 2010.

    PubMed

    Fein, Sara B; Lando, Amy M; Levy, Alan S; Teisl, Mario F; Noblet, Caroline

    2011-09-01

    Although survey results measuring the safety of consumers' food handling and risky food consumption practices have been published for over 20 years, evaluation of trends is impossible because the designs of published studies are not comparable. The Food Safety Surveys used comparable methods to interview U.S. adults by telephone in 1988, 1993, 2001, 2006, and 2010 about food handling (i.e., cross-contamination prevention) and risky consumption practices (eating raw or undercooked foods from animals) and perceived risk from foodborne illness. Sample sizes ranged from 1,620 to 4,547. Responses were analyzed descriptively, and four indices measuring meat, chicken, and egg cross-contamination, fish cross-contamination, risky consumption, and risk perceptions were analyzed using generalized linear models. The extent of media coverage of food safety issues was also examined. We found a substantial improvement in food handling and consumption practices and an increase in perceived risk from foodborne illness between 1993 and 1998. All indices were stable or declined between 1998 and 2006. Between 2006 and 2010, the two safe food handling practice indices increased significantly, but risk perceptions did not change, and safe consumption declined. Women had safer food handling and consumption practices than men. The oldest and youngest respondents and those with the highest education had the least safe food handling behaviors. Changes in safety of practices over the survey years are consistent with the change in the number of media stories about food safety in the periods between surveys. This finding suggests that increased media attention to food safety issues may raise awareness of food safety hazards and increase vigilance in food handling by consumers.

  20. Geant4 hadronic physics for space radiation environment.

    PubMed

    Ivantchenko, Anton V; Ivanchenko, Vladimir N; Molina, Jose-Manuel Quesada; Incerti, Sebastien L

    2012-01-01

    To test and to develop Geant4 (Geometry And Tracking version 4) Monte Carlo hadronic models with focus on applications in a space radiation environment. The Monte Carlo simulations have been performed using the Geant4 toolkit. Binary (BIC), its extension for incident light ions (BIC-ion) and Bertini (BERT) cascades were used as main Monte Carlo generators. For comparisons purposes, some other models were tested too. The hadronic testing suite has been used as a primary tool for model development and validation against experimental data. The Geant4 pre-compound (PRECO) and de-excitation (DEE) models were revised and improved. Proton, neutron, pion, and ion nuclear interactions were simulated with the recent version of Geant4 9.4 and were compared with experimental data from thin and thick target experiments. The Geant4 toolkit offers a large set of models allowing effective simulation of interactions of particles with matter. We have tested different Monte Carlo generators with our hadronic testing suite and accordingly we can propose an optimal configuration of Geant4 models for the simulation of the space radiation environment.

  1. Adoption of the B2SAFE EUDAT replication service by the EPOS community

    NASA Astrophysics Data System (ADS)

    Cacciari, Claudio; Fares, Massimo; Fiameni, Giuseppe; Michelini, Alberto; Danecek, Peter; Wittenburg, Peter

    2014-05-01

    B2SAFE is the EUDAT service for moving and replicating data between sites and storage systems for different purposes. The goal of B2SAFE is to keep the data from a repository safe by replicating it across different geographical and administrative zones according to a set of well-defined policies. It is also a way to store large volumes of data permanently at those sites which are providing powerful on-demand data analysis facilities. In particular, B2SAFE operates on the domain of registered data where data objects are referable via persistent identifiers (PIDs). B2SAFE is more than just copying data because the PIDs must be carefully managed when data objects are moved or replicated. The EUDAT B2SAFE Service offers functionality to replicate datasets across different data centres in a safe and efficient way while maintaining all information required to easily find and query information about the replica locations. The information about the replica locations and other important information is stored in PID records, each managed in separate administrative domains. The B2SAFE Service is implemented as an iRODS module providing a set of iRODS rules or policies to interface with the EPIC handle API and uses the iRODS middleware to replicate datasets from a source data (or community) centre to a destination data centre. The definition of the dataset(s) to replicate is flexible and up to the communities using the B2SAFE service. While the B2SAFE is internally using the EPIC handle API, communities have the choice to use any PID system they prefer to assign PIDs to their digital objects. A reference to one or more EUDAT B2SAFE PIDs is returned by the B2SAFE service when a dataset is replicated. The presentation will introduce the problem space of B2SAFE, presents the achievements that have been made during the last year for enabling communities to make use of the B2SAFE service, demonstrates a EPOS use cases, outlines the commonalities and differences between the policies

  2. A Record of NASA Space Missions Since 1958

    NASA Technical Reports Server (NTRS)

    Rosenthal, Alfred (Compiler)

    1982-01-01

    Dedicated men and women together with a unique team of industries and universities created the U.S. space program. They provided the ideas, developed the hardware, launched the satellites, safely returned our astronauts, and successfully retrieved hard-won data from outer space. In an attempt to document, between two covers, the accomplishments of the 1958-1981 period, this report has been compiled. It is a record of an exciting and often dramatic period in the history of the United States. The National Aeronautic and Space Administration is proud to have been permitted to play such an important role in challenging man's spirit.

  3. Sun-Burned: Space Weather’s Impact On U.S. National Security

    DTIC Science & Technology

    2013-06-01

    for navigation, the wideband global satellite communications system used for secure links in multiple frequencies , the space-based infrared system...used for early warning missile detection, the advanced extremely high frequency used for jam resistant strategic communications , and the defense...NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11 . SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for

  4. 46 CFR 154.340 - Access to tanks and spaces in the cargo area.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... access from the weather deck to gas-safe spaces in the cargo area must be at least 2.4 m (7.9 ft.) above... 46 Shipping 5 2014-10-01 2014-10-01 false Access to tanks and spaces in the cargo area. 154.340... Equipment Ship Arrangements § 154.340 Access to tanks and spaces in the cargo area. (a) Each cargo tank must...

  5. 46 CFR 154.340 - Access to tanks and spaces in the cargo area.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... access from the weather deck to gas-safe spaces in the cargo area must be at least 2.4 m (7.9 ft.) above... 46 Shipping 5 2012-10-01 2012-10-01 false Access to tanks and spaces in the cargo area. 154.340... Equipment Ship Arrangements § 154.340 Access to tanks and spaces in the cargo area. (a) Each cargo tank must...

  6. 46 CFR 154.340 - Access to tanks and spaces in the cargo area.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... access from the weather deck to gas-safe spaces in the cargo area must be at least 2.4 m (7.9 ft.) above... 46 Shipping 5 2013-10-01 2013-10-01 false Access to tanks and spaces in the cargo area. 154.340... Equipment Ship Arrangements § 154.340 Access to tanks and spaces in the cargo area. (a) Each cargo tank must...

  7. 46 CFR 154.340 - Access to tanks and spaces in the cargo area.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... access from the weather deck to gas-safe spaces in the cargo area must be at least 2.4 m (7.9 ft.) above... 46 Shipping 5 2010-10-01 2010-10-01 false Access to tanks and spaces in the cargo area. 154.340... Equipment Ship Arrangements § 154.340 Access to tanks and spaces in the cargo area. (a) Each cargo tank must...

  8. 46 CFR 154.340 - Access to tanks and spaces in the cargo area.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... access from the weather deck to gas-safe spaces in the cargo area must be at least 2.4 m (7.9 ft.) above... 46 Shipping 5 2011-10-01 2011-10-01 false Access to tanks and spaces in the cargo area. 154.340... Equipment Ship Arrangements § 154.340 Access to tanks and spaces in the cargo area. (a) Each cargo tank must...

  9. SpaceX_CRS14_Release_2018_125_1300_649273

    NASA Image and Video Library

    2018-05-07

    U.S. COMMERCIAL CARGO SHIP DEPARTS THE INTERNATIONAL SPACE STATION The upiloted SpaceX Dragon cargo craft departed the International Space Station May 5 after a four-week delivery run in which thousands of pounds of supplies and science experiments arrived at the orbiting laboratory. Robotic ground controllers sent commands to release Dragon from the grasp of the Canadarm2 robotic arm, after which several firings of the Dragon’s engine sent the vehicle to a safe distance from the station. Later in the day, SpaceX flight controllers conducted a deorbit burn for Dragon, enabling it to return to Earth for a splashdown in the Pacific some 400 miles southwest of Long Beach, California. Dragon returned some two tons of vital science experiments for researchers and other critical components from the station for refurbishment.

  10. EnviroSafe Finding of Violation

    EPA Pesticide Factsheets

    This document outlines the U.S. Environmental Protection Agency reissuing an enclosed Finding of Violation (FOV) to Enviro-Safe Refrigerants, Inc. (you). We find that you have violated the Clean Air Act, 42 U.S.C. § 7413(a) (the CAA).

  11. Phase-space overlap measures. I. Fail-safe bias detection in free energies calculated by molecular simulation

    NASA Astrophysics Data System (ADS)

    Wu, Di; Kofke, David A.

    2005-08-01

    We consider ways to quantify the overlap of the parts of phase space important to two systems, labeled A and B. Of interest is how much of the A-important phase space lies in that important to B, and how much of B lies in A. Two measures are proposed. The first considers four total-energy distributions, formed from all combinations made by tabulating either the A-system or the B-system energy when sampling either the A or B system. Measures for A in B and B in A are given by two overlap integrals defined on pairs of these distributions. The second measure is based on information theory, and defines two relative entropies which are conveniently expressed in terms of the dissipated work for free-energy perturbation (FEP) calculations in the A →B and B →A directions, respectively. Phase-space overlap is an important consideration in the performance of free-energy calculations. To demonstrate this connection, we examine bias in FEP calculations applied to a system of independent particles in a harmonic potential. Systems are selected to represent a range of overlap situations, including extreme subset, subset, partial overlap, and nonoverlap. The magnitude and symmetry of the bias (A →B vs B →A) are shown to correlate well with the overlap, and consequently with the overlap measures. The relative entropies are used to scale the amount of sampling to obtain a universal bias curve. This result leads to develop a simple heuristic that can be applied to determine whether a work-based free-energy measurement is free of bias. The heuristic is based in part on the measured free energy, but we argue that it is fail-safe inasmuch as any bias in the measurement will not promote a false indication of accuracy.

  12. Keeping Children Safe: Afterschool Staff and Mandated Child Maltreatment Reporting

    ERIC Educational Resources Information Center

    Gandarilla, Maria; O'Donnell, Julie

    2014-01-01

    With 8.4 million children in the U.S. spending an average of eight hours a week in afterschool programs, afterschool providers are an important part of the network of caring adults who can help to keep children safe. In addition, afterschool staff are "mandated reporters." Whether or not the laws specifically mention afterschool staff,…

  13. Transformation of dinitrosyl iron complexes [(NO)2Fe(SR)2]- (R = Et, Ph) into [4Fe-4S] Clusters [Fe4S4(SPh)4]2-: relevance to the repair of the nitric oxide-modified ferredoxin [4Fe-4S] clusters.

    PubMed

    Tsou, Chih-Chin; Lin, Zong-Sian; Lu, Tsai-Te; Liaw, Wen-Feng

    2008-12-17

    Transformation of dinitrosyl iron complexes (DNICs) [(NO)(2)Fe(SR)(2)](-) (R = Et, Ph) into [4Fe-4S] clusters [Fe(4)S(4)(SPh)(4)](2-) in the presence of [Fe(SPh)(4)](2-/1-) and S-donor species S(8) via the reassembling process ([(NO)(2)Fe(SR)(2)](-) --> [Fe(4)S(3)(NO)(7)](-) (1)/[Fe(4)S(3)(NO)(7)](2-) (2) --> [Fe(4)S(4)(NO)(4)](2-) (3) --> [Fe(4)S(4)(SPh)(4)](2-) (5)) was demonstrated. Reaction of [(NO)(2)Fe(SR)(2)](-) (R = Et, Ph) with S(8) in THF, followed by the addition of HBF(4) into the mixture solution, yielded complex [Fe(4)S(3)(NO)(7)](-) (1). Complex [Fe(4)S(3)(NO)(7)](2-) (2), obtained from reduction of complex 1 by [Na][biphenyl], was converted into complex [Fe(4)S(4)(NO)(4)](2-) (3) along with byproduct [(NO)(2)Fe(SR)(2)](-) via the proposed [Fe(4)S(3)(SPh)(NO)(4)](2-) intermediate upon treating complex 2 with 1.5 equiv of [Fe(SPh)(4)](2-) and the subsequent addition of 1/8 equiv of S(8) in CH(3)CN at ambient temperature. Complex 3 was characterized by IR, UV-vis, and single-crystal X-ray diffraction. Upon addition of complex 3 to the CH(3)CN solution of [Fe(SPh)(4)](-) in a 1:2 molar ratio at ambient temperature, the rapid NO radical-thiyl radical exchange reaction between complex 3 and the biomimetic oxidized form of rubredoxin [Fe(SPh)(4)](-) occurred, leading to the simultaneous formation of [4Fe-4S] cluster [Fe(4)S(4)(SPh)(4)](2-) (5) and DNIC [(NO)(2)Fe(SPh)(2)](-). This result demonstrates a successful biomimetic reassembly of [4Fe-4S] cluster [Fe(4)S(4)(SPh)(4)](2-) from NO-modified [Fe-S] clusters, relevant to the repair of DNICs derived from nitrosylation of [4Fe-4S] clusters of endonuclease III back to [4Fe-4S] clusters upon addition of ferrous ion, cysteine, and IscS.

  14. Expedition 53-54 Crew Safely Onboard the Space Station

    NASA Image and Video Library

    2017-09-13

    After docking their Soyuz MS-06 spacecraft to the Poisk module on the Russian segment of the International Space Station, Expedition 53-54 Soyuz Commander Alexander Misurkin of Roscosmos and flight engineers Mark Vande Hei and Joe Acaba of NASA were greeted by station Commander Randy Bresnik of NASA and flight engineers Sergey Ryazanskiy of Roscosmos and Paolo Nespoli of the European Space Agency, as the hatches between the spacecraft were opened.

  15. The New National Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Sackheim, Robert L.; Geveden, Rex; King, David A.

    2004-01-01

    From the Apollo landings on the Moon, to robotic surveys of the Sun and the planets, to the compelling images captured by advanced space telescopes, U.S. achievements in space have revolutionized humanity s view of the universe and have inspired Americans and people around the world. These achievements also have led to the development of technologies that have widespread applications to address problems on Earth. As the world enters the second century of powered flight, it is appropriate to articulate a new vision that will define and guide U.S. space exploration activities for the next several decades. Today, humanity has the potential to seek answers to the most fundamental questions posed about the existence of life beyond Earth. Telescopes have found planets around other stars. Robotic probes have identified potential resources on the Moon, and evidence of water - a key ingredient for life - has been found on Mars and the moons of Jupiter. Direct human experience in space has fundamentally altered our perspective of humanity and our place in the universe. Humans have the ability to respond to the unexpected developments inherent in space travel and possess unique skills that enhance discoveries. Just as Mercury, Gemini, and Apollo challenged a generation of Americans, a renewed U.S. space exploration program with a significant human component can inspire us - and our youth - to greater achievements on Earth and in space. The loss of Space Shuttles Challenger and Columbia and their crews are a stark reminder of the inherent risks of space flight and the severity of the challenges posed by space exploration. In preparation for future human exploration, we must advance our ability to live and work safely in space and, at the same time, develop the technologies to extend humanity s reach to the Moon, Mars, and beyond. The new technologies required for further space exploration also will improve the Nation s other space activities and may provide applications that

  16. China’s Space Program: A New Tool for PRC Soft Power in International Relations?

    DTIC Science & Technology

    2009-03-01

    programs important and what is China doing to leverage them? A growing number of nations recognize the advantages of space applications. From the...as others far outside of its Asian backyard to market these services to and what it hopes to gain from them. Second, is America’s comparative...Freese, “Strategic Communication with China: What Message About Space?,” China Security, World Security Institute, 2:2 (2006): 45. 4 for

  17. Magic Clusters of MoS2 by Edge S2 Interdimer Spacing Modulation.

    PubMed

    Ryou, Junga; Kim, Yong-Sung

    2018-05-17

    Edge atomic and electronic structures of S-saturated Mo-edge triangular MoS 2 nanoclusters are investigated using density functional theory calculations. The edge electrons described by the S 2 -p x p x π* (S 2 -Π x ) and Mo-d xy orbitals are found to interplay to pin the S 2 -Π x Fermi wavenumber at k F = 2/5 as the nanocluster size increases, and correspondingly, the ×5 Peierls edge S 2 interdimer spacing modulation is induced. For the particular sizes of N = 5 n - 2 and 5 n, where N is the number of Mo atoms at one edge representing the nanocluster size and n is a positive integer, the effective ×5 interdimer spacing modulation stabilizes the nanoclusters, which are identified here to be the magic S-saturated Mo-edge triangular MoS 2 nanoclusters. With the S 2 -Π x Peierls gap, the MoS 2 nanoclusters become far-edge S 2 -Π x semiconducting and subedge Mo-d xy metallic as N → ∞.

  18. Two new phases in the ternary RE-Ga-S systems with the unique interlinkage of GaS4 building units: synthesis, structure, and properties.

    PubMed

    Lin, Hua; Shen, Jin-Ni; Zhu, Wei-Wei; Liu, Yi; Wu, Xin-Tao; Zhu, Qi-Long; Wu, Li-Ming

    2017-10-17

    Two novel ternary rare-earth chalcogenides, Yb 6 Ga 4 S 15 and Lu 5 GaS 9 , have been prepared by solid-state reactions of an elemental mixture at high temperatures. Their structures were determined on the basis of single-crystal X-ray diffraction. Yb 6 Ga 4 S 15 crystallizes in the monoclinic space group C2/m (no.12) [a = 23.557(2) Å, b = 3.7664(4) Å, c = 12.466(1) Å, β = 90.915(9)°, V = 1105.9(2) Å 3 and Z = 2], whereas Lu 5 GaS 9 crystallizes in the triclinic space group P1[combining macron] (no.2) [a = 7.735(3) Å, b = 10.033(4) Å, c = 10.120(4) Å, α = 106.296(4)°, β = 100.178(5)°, γ = 101.946(3)°, V = 714.1(5) Å 3 and Z = 2]. Both the structures feature complicated three dimensional frameworks with the unique interlinkages of GaS 4 as basic building units. Significantly, photo-electrochemical measurements indicated that title compounds were photoresponsive under visible-light illumination. Furthermore, the UV-visible-near IR diffuse reflectance spectra, thermal stabilities, electronic structures, physical properties as well as a structure change trend of the ternary rare-earth/gallium/sulfur compounds have been evaluated.

  19. NASA's Orbital Space Plane Risk Reduction Strategy

    NASA Technical Reports Server (NTRS)

    Dumbacher, Dan

    2003-01-01

    This paper documents the transformation of NASA s Space Launch Initiative (SLI) Second Generation Reusable Launch Vehicle Program under the revised Integrated Space Transportation Plan, announced November 2002. Outlining the technology development approach followed by the original SLI, this paper gives insight into the current risk-reduction strategy that will enable confident development of the Nation s first orbital space plane (OSP). The OSP will perform an astronaut and contingency cargo transportation function, with an early crew rescue capability, thus enabling increased crew size and enhanced science operations aboard the International Space Station. The OSP design chosen for full-scale development will take advantage of the latest innovations American industry has to offer. The OSP Program identifies critical technologies that must be advanced to field a safe, reliable, affordable space transportation system for U.S. access to the Station and low-Earth orbit. OSP flight demonstrators will test crew safety features, validate autonomous operations, and mature thermal protection systems. Additional enabling technologies may be identified during the OSP design process as part of an overall risk-management strategy. The OSP Program uses a comprehensive and evolutionary systems acquisition approach, while applying appropriate lessons learned.

  20. From free fields to AdS space. II

    NASA Astrophysics Data System (ADS)

    Gopakumar, Rajesh

    2004-07-01

    We continue with the program of paper I [Phys. Rev. D 70, 025009 (2004)] to implement open-closed string duality on free gauge field theory (in the large-N limit). In this paper we consider correlators such as <∏ni=1TrΦJi(xi)>. The Schwinger parametrization of this n-point function exhibits a partial gluing up into a set of basic skeleton graphs. We argue that the moduli space of the planar skeleton graphs is exactly the same as the moduli space of genus zero Riemann surfaces with n holes. In other words, we can explicitly rewrite the n-point (planar) free-field correlator as an integral over the moduli space of a sphere with n holes. A preliminary study of the integrand also indicates compatibility with a string theory on AdS space. The details of our argument are quite insensitive to the specific form of the operators and generalize to diagrams of a higher genus as well. We take this as evidence of the field theory’s ability to reorganize itself into a string theory.

  1. International Space Station Increment-4/5 Microgravity Environment Summary Report

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; McPherson, Kevin; Reckart, Timothy

    2003-01-01

    This summary report presents the results of some of the processed acceleration data measured aboard the International Space Station during the period of December 2001 to December 2002. Unlike the past two ISS Increment reports, which were increment specific, this summary report covers two increments: Increments 4 and 5, hereafter referred to as Increment-4/5. Two accelerometer systems were used to measure the acceleration levels for the activities that took place during Increment-4/5. Due to time constraint and lack of precise timeline information regarding some payload operations and station activities, not a11 of the activities were analyzed for this report. The National Aeronautics and Space Administration sponsors the Microgravity Acceleration Measurement System and the Space Acceleration Microgravity System to support microgravity science experiments which require microgravity acceleration measurements. On April 19, 2001, both the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System units were launched on STS-100 from the Kennedy Space Center for installation on the International Space Station. The Microgravity Acceleration Measurement System supports science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System unit supports experiments requiring vibratory acceleration measurement. The International Space Station Increment-4/5 reduced gravity environment analysis presented in this report uses acceleration data collected by both sets of accelerometer systems: The Microgravity Acceleration Measurement System, which consists of two sensors: the low-frequency Orbital Acceleration Research Experiment Sensor Subsystem and the higher frequency High Resolution Accelerometer Package. The low frequency sensor measures up to 1 Hz, but is routinely trimmean filtered to yield much lower frequency acceleration data up to 0.01 Hz. This filtered data can be mapped to arbitrary

  2. Optoelectronic properties of candidate photovoltaic Cu 2PbSiS 4, Ag 2PbGeS 4 and KAg 2SbS 4 semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nhalil, Hariharan; Han, Dan; Du, Mao-Hua

    High temperature synthesis and optical band gaps are reported for three candidate photovoltaic earth-abundant Cu 2PbSiS 4, Ag 2PbGeS 4 and KAg 2SbS 4 semiconductors. The reported synthesis method is found to be more advantageous for KAg 2SbS 4 compared to the literature reported synthesis utilizing supercritical ammonia as a reaction medium, which produces a mixture of chalcogenide products. Based on optical diffuse reflectance data, Cu 2PbSiS 4, Ag 2PbGeS 4 and KAg 2SbS 4 have band gaps in the 1.6–1.8 eV range, and are shown to be stable in ambient air for a period of 6 weeks, making themmore » attractive candidates for solar cell applications. Density functional theory (DFT) calculations indicate indirect band gaps for Cu 2PbSiS 4 and KAg 2SbS 4, and a nearly direct band gap for Ag 2PbGeS 4 with the calculated difference between indirect and direct gaps of only 30 meV. The p-type semiconducting behavior of Cu 2PbSiS 4, Ag 2PbGeS 4 is also verified by the transport measurments. The 3D connectivity of the polyanionic networks in these compounds results in dispersive valence and conduction bands, which is especially noticeable for KAg 2SbS 4. This fact is in part attributed to the presence of formally pentavalent SbV in this compound leading to empty Sb 5s orbitals in the conduction band. Finally, we discuss the potential of Cu 2PbSiS 4, Ag 2PbGeS 4 and KAg 2SbS 4 for photovoltaic applications based on synthesis, stability, band gap and electronic structure considerations.« less

  3. Optoelectronic properties of candidate photovoltaic Cu 2PbSiS 4, Ag 2PbGeS 4 and KAg 2SbS 4 semiconductors

    DOE PAGES

    Nhalil, Hariharan; Han, Dan; Du, Mao-Hua; ...

    2018-03-01

    High temperature synthesis and optical band gaps are reported for three candidate photovoltaic earth-abundant Cu 2PbSiS 4, Ag 2PbGeS 4 and KAg 2SbS 4 semiconductors. The reported synthesis method is found to be more advantageous for KAg 2SbS 4 compared to the literature reported synthesis utilizing supercritical ammonia as a reaction medium, which produces a mixture of chalcogenide products. Based on optical diffuse reflectance data, Cu 2PbSiS 4, Ag 2PbGeS 4 and KAg 2SbS 4 have band gaps in the 1.6–1.8 eV range, and are shown to be stable in ambient air for a period of 6 weeks, making themmore » attractive candidates for solar cell applications. Density functional theory (DFT) calculations indicate indirect band gaps for Cu 2PbSiS 4 and KAg 2SbS 4, and a nearly direct band gap for Ag 2PbGeS 4 with the calculated difference between indirect and direct gaps of only 30 meV. The p-type semiconducting behavior of Cu 2PbSiS 4, Ag 2PbGeS 4 is also verified by the transport measurments. The 3D connectivity of the polyanionic networks in these compounds results in dispersive valence and conduction bands, which is especially noticeable for KAg 2SbS 4. This fact is in part attributed to the presence of formally pentavalent SbV in this compound leading to empty Sb 5s orbitals in the conduction band. Finally, we discuss the potential of Cu 2PbSiS 4, Ag 2PbGeS 4 and KAg 2SbS 4 for photovoltaic applications based on synthesis, stability, band gap and electronic structure considerations.« less

  4. U.S. Commercial Cargo Spacecraft Departs International Space Station

    NASA Image and Video Library

    2018-01-13

    After spending a month at the International Space Station and delivering several tons of supplies and scientific experiments, the SpaceX Dragon cargo craft departed Jan. 13, headed for a parachute-assisted splashdown in the Pacific Ocean southwest of Long Beach, California. Ground controllers at NASA’s Johnson Space Center in Houston sent commands to release Dragon from the Canadarm2 robotic arm while Expedition 54 Flight Engineers Joe Acaba and Scott Tingle of NASA monitored the activity from the station’s cupola. Loaded with scientific samples and other cargo, Dragon was scheduled to conduct a deorbit burn a few hours after its release for its descent back to Earth.

  5. Materials in NASA's Space Launch System: The Stuff Dreams are Made of

    NASA Technical Reports Server (NTRS)

    May, Todd A.

    2012-01-01

    Mr. Todd May, Program Manager for NASA's Space Launch System, will showcase plans and progress the nation s new super-heavy-lift launch vehicle, which is on track for a first flight to launch an Orion Multi-Purpose Crew Vehicle around the Moon in 2017. Mr. May s keynote address will share NASA's vision for future human and scientific space exploration and how SLS will advance those plans. Using new, in-development, and existing assets from the Space Shuttle and other programs, SLS will provide safe, affordable, and sustainable space launch capabilities for exploration payloads starting at 70 metric tons (t) and evolving through 130 t for entirely new deep-space missions. Mr. May will also highlight the impact of material selection, development, and manufacturing as they contribute to reducing risk and cost while simultaneously supporting the nation s exploration goals.

  6. TH-E-17A-04: Geometric Validation of K-Space Self-Gated 4D-MRI Vs. 4D-CT Using A Respiratory Motion Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Y; Fan, Z; Yang, W

    Purpose: 4D-CT is often limited by motion artifacts, low temporal resolution, and poor phase-based target definition. We recently developed a novel k-space self-gated 4D-MRI technique with high spatial and temporal resolution. The goal here is to geometrically validate 4D-MRI using a MRI-CT compatible respiratory motion phantom and comparison to 4D-CT. Methods: 4D-MRI was acquired using 3T spoiled gradient echo-based 3D projection sequences. Respiratory phases were resolved using self-gated k-space lines as the motion surrogate. Images were reconstructed into 10 temporal bins with 1.56×1.56×1.56mm3. A MRI-CT compatible phantom was designed with a 23mm diameter ball target filled with highconcentration gadolinium(Gd) gelmore » embedded in a 35×40×63mm3 plastic box stabilized with low-concentration Gd gel. The whole phantom was driven by an air pump. Human respiratory motion was mimicked using the controller from a commercial dynamic phantom (RSD). Four breathing settings (rates/depths: 10s/20mm, 6s/15mm, 4s/10mm, 3s/7mm) were scanned with 4D-MRI and 4D-CT (slice thickness 1.25mm). Motion ground-truth was obtained from input signals and real-time video recordings. Reconstructed images were imported into Eclipse(Varian) for target contouring. Volumes and target positions were compared with ground-truth. Initial human study was investigated on a liver patient. Results: 4D-MRI and 4D-CT scans for the different breathing cycles were reconstructed with 10 phases. Target volume in each phase was measured for both 4D-CT and 4D-MRI. Volume percentage difference for the 6.37ml target ranged from 6.67±5.33 to 11.63±5.57 for 4D-CT and from 1.47±0.52 to 2.12±1.60 for 4D-MRI. The Mann-Whitney U-test shows the 4D-MRI is significantly superior to 4D-CT (p=0.021) for phase-based target definition. Centroid motion error ranges were 1.35–1.25mm (4D-CT), and 0.31–0.12mm (4D-MRI). Conclusion: The k-space self-gated 4D-MRI we recently developed can accurately determine

  7. NASA Space Exploration Logistics Workshop Proceedings

    NASA Technical Reports Server (NTRS)

    deWeek, Oliver; Evans, William A.; Parrish, Joe; James, Sarah

    2006-01-01

    As NASA has embarked on a new Vision for Space Exploration, there is new energy and focus around the area of manned space exploration. These activities encompass the design of new vehicles such as the Crew Exploration Vehicle (CEV) and Crew Launch Vehicle (CLV) and the identification of commercial opportunities for space transportation services, as well as continued operations of the Space Shuttle and the International Space Station. Reaching the Moon and eventually Mars with a mix of both robotic and human explorers for short term missions is a formidable challenge in itself. How to achieve this in a safe, efficient and long-term sustainable way is yet another question. The challenge is not only one of vehicle design, launch, and operations but also one of space logistics. Oftentimes, logistical issues are not given enough consideration upfront, in relation to the large share of operating budgets they consume. In this context, a group of 54 experts in space logistics met for a two-day workshop to discuss the following key questions: 1. What is the current state-of the art in space logistics, in terms of architectures, concepts, technologies as well as enabling processes? 2. What are the main challenges for space logistics for future human exploration of the Moon and Mars, at the intersection of engineering and space operations? 3. What lessons can be drawn from past successes and failures in human space flight logistics? 4. What lessons and connections do we see from terrestrial analogies as well as activities in other areas, such as U.S. military logistics? 5. What key advances are required to enable long-term success in the context of a future interplanetary supply chain? These proceedings summarize the outcomes of the workshop, reference particular presentations, panels and breakout sessions, and record specific observations that should help guide future efforts.

  8. NASA's Space Launch System (SLS): A New National Capability

    NASA Technical Reports Server (NTRS)

    May, Todd A.

    2012-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) will contribute a new national capability for human space flight and scientific missions to low- Earth orbit (LEO) and beyond. Exploration beyond Earth orbit will be an enduring legacy to future generations, confirming America s desire to explore, learn, and progress. The SLS Program, managed at NASA s Marshall Space Fight Center, will develop the heavy lift vehicle that will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and science experiments for missions beyond Earth s orbit. This paper gives an overview of the SLS design and management approach against a backdrop of the missions it will empower. It will detail the plan to move from the computerized drawing board to the launch pad in the near term, as well as summarize the innovative approaches the SLS team is applying to deliver a safe, affordable, and sustainable long-range national capability.

  9. Protonation and Proton-Coupled Electron Transfer at S-Ligated [4Fe-4S] Clusters

    PubMed Central

    Morris, Wesley D.; Darcy, Julia W.; Mayer, James M.

    2015-01-01

    Biological [Fe-S] clusters are increasingly recognized to undergo proton-coupled electron transfer (PCET), but the site of protonation, mechanism, and role for PCET remains largely unknown. Here we explore this reactivity with synthetic model clusters. Protonation of the arylthiolate-ligated [4Fe-4S] cluster [Fe4S4(SAr)4]2- (1, SAr = S-2,4-6-(iPr)3C6H2) leads to thiol dissociation, reversibly forming [Fe4S4(SAr)3L]1- (2) + ArSH (L = solvent, and/or conjugate base). Solutions of 2 + ArSH react with the nitroxyl radical TEMPO to give [Fe4S4(SAr)4]1- (1ox) and TEMPOH. This reaction involves PCET coupled to thiolate association and may proceed via the unobserved protonated cluster [Fe4S4(SAr)3(HSAr)]1-(1-H). Similar reactions with this and related clusters proceed comparably. An understanding of the PCET thermochemistry of this cluster system has been developed, encompassing three different redox levels and two protonation states. PMID:25965413

  10. U.S. commercial space policies - Implications for developing countries

    NASA Technical Reports Server (NTRS)

    Gillam, Isaac T., IV; Stone, Barbara A.

    1987-01-01

    Recent U.S. policy developments on the commercial use of space are summarized and their international implications are considered. Attention is given to successful applications of technology developed in space, including an implantable cancer medication system, an implantable defibrillator, an ultrasonic residual stress monitor, and aquaculture treatment techniques. NASA projects involving bioengineering and rehabilitation applications are summarized, and plans to investigate high-temperature superconductors in space are addressed. Recent agreements entred into by NASA for space commercial studies are reviewed.

  11. Structure of Li5AlS4 and comparison with other lithium-containing metal sulfides

    NASA Astrophysics Data System (ADS)

    Lim, Hanjin; Kim, Sung-Chul; Kim, Jaegyeom; Kim, Young-Il; Kim, Seung-Joo

    2018-01-01

    Lithium aluminum sulfide (Li5AlS4) was synthesized by solid state reaction, and its crystal structure was characterized by ab initio structure determination on the basis of powder neutron diffraction (ND) data. Li5AlS4 was found to have monoclinic unit cell (space group, P21/m) with the lattice parameters: a = 6.8583(4) Å, b = 7.8369(4) Å, c = 6.2488(4) Å, and β = 90.333(4)°. This structure is built from a hexagonal close-packed (hcp) arrangement of sulfur atoms with a stacking sequence of …ABAB…. The hcp sulfide lattice consists of two different double-sulfide layers alternately stacked along the c-axis. Between the first pair of sulfur layers all the tetrahedral interstices (T+ and T- sites) are filled with lithium and aluminum atoms. All octahedral interstices between the second pair of sulfur layers are occupied by the remaining lithium atoms. The structure of Li5AlS4 is compared with those of various lithium-containing metal sulfides like Li2FeS2, NaLiMS2 (M = Zn, Cd), Li4GeS4, LiM‧S2 (M‧ = Al, Ga, In) and γ-Li3PS4. Each sulfide represents a specific distribution of lithium atoms in the lattice depending on how the octahedral and tetrahedral interstitial sites are filled. The low ionic conductivity of Li5AlS4 (9.7 × 10-9 S cm-1 at 323 K) relative to other sulfides may be due to the highly-ordered distribution of the lithium atoms in the layered structure and the lack of adjacent void spaces that can be used for lithium ion hopping.

  12. 4 × 20 Gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de)multiplexer

    NASA Astrophysics Data System (ADS)

    Milione, Giovanni; Lavery, Martin P. J.; Huang, Hao; Ren, Yongxiong; Xie, Guodong; Nguyen, Thien An; Karimi, Ebrahim; Marrucci, Lorenzo; Nolan, Daniel A.; Alfano, Robert R.; Willner, Alan E.

    2015-05-01

    Vector modes are spatial modes that have spatially inhomogeneous states of polarization, such as, radial and azimuthal polarization. They can produce smaller spot sizes and stronger longitudinal polarization components upon focusing. As a result, they are used for many applications, including optical trapping and nanoscale imaging. In this work, vector modes are used to increase the information capacity of free space optical communication via the method of optical communication referred to as mode division multiplexing. A mode (de)multiplexer for vector modes based on a liquid crystal technology referred to as a q-plate is introduced. As a proof of principle, using the mode (de)multiplexer four vector modes each carrying a 20 Gbit/s quadrature phase shift keying signal on a single wavelength channel (~1550nm), comprising an aggregate 80 Gbit/s, were transmitted ~1m over the lab table with <-16.4 dB (<2%) mode crosstalk. Bit error rates for all vector modes were measured at the forward error correction threshold with power penalties < 3.41dB.

  13. New insights into the structure, chemistry, and properties of Cu 4SnS 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhury, Amitava; Mohapatra, Sudip; Yaghoobnejad Asl, Hooman

    The ambient temperature structure of Cu 4SnS 4 has been revisited and the recently reported low temperature structure has been confirmed from single-crystal X-ray diffraction data. A structural phase transition from a large monoclinic unit cell at low temperature to a smaller orthorhombic unit cell at high temperature has been observed. The room temperature phase exhibited disorder in the two copper sites, which is a different finding from earlier reports. The low temperature monoclinic form crystallizes in P2 1/c space group, which is isostructural with Cu 4GeS 4. The phase transition has also been studied with variable temperature powder X-raymore » diffraction and 119Sn Mössbauer spectroscopy. The Seebeck coefficients and electrical resistivity of polycrystalline Cu 4SnS 4 are reported from 16 to 400 K on hot pressed pellets. Thermal conductivity measurements at high temperatures, 350 – 750 K exhibited very low thermal conductivities in the range 0.28 – 0.35 W K –1 m –1. In all the transport measurements the phase transition has been observed at around 232 K. Resistivity decreases, while Seebeck coefficient increases after the phase transition during warming up from low to high temperatures. This change in resistivity has been correlated with the results of first-principles electronic band structure calculations using highly-accurate screened-exchange local density approximation. It was found that both the low hole effective mass of 0.63 me for the Γ→Y crystallographic direction and small band gap, 0.49 eV, are likely to contribute to the observed higher conductivity of the orthorhombic phase. Cu 4SnS 4 is also electrochemically active and shows reversible reaction with lithium between 1.7 and 3.5 volts.« less

  14. New insights into the structure, chemistry, and properties of Cu 4SnS 4

    DOE PAGES

    Choudhury, Amitava; Mohapatra, Sudip; Yaghoobnejad Asl, Hooman; ...

    2017-05-25

    The ambient temperature structure of Cu 4SnS 4 has been revisited and the recently reported low temperature structure has been confirmed from single-crystal X-ray diffraction data. A structural phase transition from a large monoclinic unit cell at low temperature to a smaller orthorhombic unit cell at high temperature has been observed. The room temperature phase exhibited disorder in the two copper sites, which is a different finding from earlier reports. The low temperature monoclinic form crystallizes in P2 1/c space group, which is isostructural with Cu 4GeS 4. The phase transition has also been studied with variable temperature powder X-raymore » diffraction and 119Sn Mössbauer spectroscopy. The Seebeck coefficients and electrical resistivity of polycrystalline Cu 4SnS 4 are reported from 16 to 400 K on hot pressed pellets. Thermal conductivity measurements at high temperatures, 350 – 750 K exhibited very low thermal conductivities in the range 0.28 – 0.35 W K –1 m –1. In all the transport measurements the phase transition has been observed at around 232 K. Resistivity decreases, while Seebeck coefficient increases after the phase transition during warming up from low to high temperatures. This change in resistivity has been correlated with the results of first-principles electronic band structure calculations using highly-accurate screened-exchange local density approximation. It was found that both the low hole effective mass of 0.63 me for the Γ→Y crystallographic direction and small band gap, 0.49 eV, are likely to contribute to the observed higher conductivity of the orthorhombic phase. Cu 4SnS 4 is also electrochemically active and shows reversible reaction with lithium between 1.7 and 3.5 volts.« less

  15. U.S. and Canada Sign Space Agreement

    NASA Image and Video Library

    2009-10-20

    NASA Administrator Charles Bolden signs a framework agreement on civil space cooperation between the U.S. and Canada, Wednesday, Sept. 9, 2009, at the Canadian Embassy in Washington, DC. Photo Credit: (NASA/Bill Ingalls) 

  16. Space Fission Propulsion System Development Status

    NASA Astrophysics Data System (ADS)

    Houts, M.; Van Dyke, M. K.; Godfroy, T. J.; Pedersen, K. W.; Martin, J. J.; Dickens, R.; Williams, E.; Harper, R.; Salvail, P.; Hrbud, I.

    2001-01-01

    The world's first man-made self-sustaining fission reaction was achieved in 1942. Since then fission has been used to propel submarines, generate tremendous amounts of electricity, produce medical isotopes, and provide numerous other benefits to society. Fission systems operate independently of solar proximity or orientation, and are thus well suited for deep space or planetary surface missions. In addition, the fuel for fission systems (enriched uranium) is virtually non-radioactive. The primary safety issue with fission systems is avoiding inadvertent system start. Addressing this issue through proper system design is straight-forward. Despite the relative simplicity and tremendous potential of space fission systems, the development and utilization of these systems has proven elusive. The first use of fission technology in space occurred 3 April 1965 with the US launch of the SNAP-10A reactor. There have been no additional US uses of space fission systems. While space fission systems were used extensively by the former Soviet Union, their application was limited to earth-orbital missions. Early space fission systems must be safely and affordably utilized if we are to reap the benefits of advanced space fission systems. NASA's Marshall Space Flight Center, working with Los Alamos National Laboratory (LANL), Sandia National Laboratories, and others, has conducted preliminary research related to a Safe Affordable Fission Engine (SAFE). An unfueled core has been fabricated by LANL, and resistance heaters used to verify predicted core thermal performance by closely mimicking heat from fission. The core is designed to use only established nuclear technology and be highly testable. In FY01 an energy conversion system and thruster will be coupled to the core, resulting in an 'end-to-end' nuclear electric propulsion demonstrator being tested using resistance heaters to closely mimic heat from fission. Results of the SAFE test program will be presented. The applicability

  17. Access from Space: A New Perspective on NASA's Space Transportation Technology Requirements and Opportunities

    NASA Technical Reports Server (NTRS)

    Rasky, Daniel J.

    2004-01-01

    The need for robust and reliable access from space is clearly demonstrated by the recent loss of the Space Shuttle Columbia; as well as the NASA s goals to get the Shuttle re-flying and extend its life, build new vehicles for space access, produce successful robotic landers and s a q k retrr? llisrions, and maximize the science content of ambitious outer planets missions that contain nuclear reactors which must be safe for re-entry after possible launch aborts. The technology lynch pin of access from space is hypersonic entry systems such the thermal protection system, along with navigation, guidance and control (NG&C). But it also extends to descent and landing systems such as parachutes, airbags and their control systems. Current space access technology maturation programs such as NASA s Next Generation Launch Technology (NGLT) program or the In-Space Propulsion (ISP) program focus on maturing laboratory demonstrated technologies for potential adoption by specific mission applications. A key requirement for these programs success is a suitable queue of innovative technologies and advanced concepts to mature, including mission concepts enabled by innovative, cross cutting technology advancements. When considering space access, propulsion often dominates the capability requirements, as well as the attention and resources. From the perspective of access from space some new cross cutting technology drivers come into view, along with some new capability opportunities. These include new miniature vehicles (micro, nano, and picosats), advanced automated systems (providing autonomous on-orbit inspection or landing site selection), and transformable aeroshells (to maximize capabilities and minimize weight). This paper provides an assessment of the technology drivers needed to meet future access from space mission requirements, along with the mission capabilities that can be envisioned from innovative, cross cutting access from space technology developments.

  18. U.S. - Russian Second Space Surveillance Workshop, 4-6 July 1996, Poznan, Poland,

    DTIC Science & Technology

    1996-08-01

    Minimum Data, Accounting of the Features of Russian Space Surveillance System ........................................................ 106 V Andrewschenko...the massif of orbital elements accumulated in the Russian Space Surveillance System . This massif was gathered in the year 1989 over the time interval...for matrix Pi/i can be transformed to the form: (I+ ki 0)1 K=-k 12(1 + k1 1)l1 K(c). (21) -k13(1 +’kj- The convenience of application of a system of

  19. Safe Laser Beam Propagation for Interplanetary Links

    NASA Technical Reports Server (NTRS)

    Wilson, Keith E.

    2011-01-01

    Ground-to-space laser uplinks to Earth–orbiting satellites and deep space probes serve both as a beacon and an uplink command channel for deep space probes and Earth-orbiting satellites. An acquisition and tracking point design to support a high bandwidth downlink from a 20-cm optical terminal on an orbiting Mars spacecraft typically calls for 2.5 kW of 1030-nm uplink optical power in 40 micro-radians divergent beams.2 The NOHD (nominal ocular hazard distance) of the 1030nm uplink is in excess of 2E5 km, approximately half the distance to the moon. Recognizing the possible threat of high power laser uplinks to the flying public and to sensitive Earth-orbiting satellites, JPL developed a three-tiered system at its Optical Communications Telescope Laboratory (OCTL) to ensure safe laser beam propagation through navigational and near-Earth space.

  20. Exploring the Unknown: Selected Documents in the History of the U.S. Civil Space Program. Volume 4; Accessing Space

    NASA Technical Reports Server (NTRS)

    Logsdon, John M. (Editor); Williamson, Ray A. (Editor); Launius, Roger D. (Editor); Acker, Russell J. (Editor); Garber, Stephen J. (Editor); Friedman, Jonathan L. (Editor)

    1999-01-01

    The documents selected for inclusion in this volume are presented in four major chapters, each covering a particular aspect of access to space and the manner in which it has developed over time. These chapters focus on the evolution toward the giant Saturn V rocket, the development of the Space Shuttle, space transportation commercialization, and future space transportation possibilities. Each chapter in this volume is introduced by an overview essay, prepared by individuals who are particularly well qualified to write on the topic. In the main, these essays are intended to introduce and complement the documents in the chapter and to place them, for the most part, in a chronological and substantive context. Each essay contains references to the documents in the chapter it introduces, and many also contain references to documents in other chapters of the collection. These introductory essays are the responsibility of their individual authors, and the views and conclusions contained therein do not necessarily represent the opinions of either George Washington University or NASA.

  1. Development of Safe and Effective RSV Vaccine by Modified CD4 Epitope in G Protein Core Fragment (Gcf)

    PubMed Central

    Park, Sung-Moo; Choi, Youngjoo; Jang, Ji Eun; Jung, Dae Im; Kim, Jae-Ouk; Chang, Jun; Yun, Cheol-Heui; Song, Man Ki

    2014-01-01

    Respiratory syncytial virus (RSV) is a major cause of respiratory tract infection in infants and young children worldwide, but currently no safe and effective vaccine is available. The RSV G glycoprotein (RSVG), a major attachment protein, is an important target for the induction of protective immune responses during RSV infection. However, it has been thought that a CD4+ T cell epitope (a.a. 183–195) within RSVG is associated with pathogenic pulmonary eosinophilia. To develop safe and effective RSV vaccine using RSV G protein core fragment (Gcf), several Gcf variants resulting from modification to CD4+ T cell epitope were constructed. Mice were immunized with each variant Gcf, and the levels of RSV-specific serum IgG were measured. At day 4 post-challenge with RSV subtype A or B, lung viral titers and pulmonary eosinophilia were determined and changes in body weight were monitored. With wild type Gcf derived from RSV A2 (wtAGcf), although RSV A subtype-specific immune responses were induced, vaccine-enhanced disease characterized by excessive pulmonary eosinophil recruitment and body weight loss were evident, whereas wtGcf from RSV B1 (wtBGcf) induced RSV B subtype-specific immune responses without the signs of vaccine-enhanced disease. Mice immunized with Th-mGcf, a fusion protein consisting CD4+ T cell epitope from RSV F (F51–66) conjugated to mGcf that contains alanine substitutions at a.a. position 185 and 188, showed higher levels of RSV-specific IgG response than mice immunized with mGcf. Both wtAGcf and Th-mGcf provided complete protection against RSV A2 and partial protection against RSV B. Importantly, mice immunized with Th-mGcf did not develop vaccine-enhanced disease following RSV challenge. Immunization of Th-mGcf provided protection against RSV infection without the symptom of vaccine-enhanced disease. Our study provides a novel strategy to develop a safe and effective mucosal RSV vaccine by manipulating the CD4+ T cell epitope within RSV G

  2. Hydrogeologic Assessment of the 4-S Land and Cattle CompanyRanch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinn, Nigel W.T.

    2006-04-10

    Hydrogeological assessment of the 4-S Land and Cattle Company (4-S Ranch) was conducted using a combination of field investigations and a survey of available literature from nearby agricultural water districts and other entities. The 4-S Ranch has been able to meet most of its own water needs providing irrigated pasture for beef cattle by an active program of shallow groundwater pumping in these miconfined aquifer above the Corcoran Clay. Comparison of groundwater pumping on the 4-S Ranch property with groundwater pumping in the adjacent Merquin and Stevinson Water Districts shows great similarity in the well screened depths and the qualitymore » of the groundwater produced by the well fields. The pump yield for the eight active production wells on the 4-S property are comparable to the production and drainage wells in the adjacent water districts. Like these Districts the 4-S Ranch lies close to the Valley trough in a historic discharge area. The 4-S Ranch is unique in that it is bounded and bisected by several major water conveyance facilities including Bear Creek. Although the large number of potential recharge structures would suggest significant groundwater conjunctive use potential the major well field development has occurred along the length of the Eastside Canal. The Eastside Canal is known to be leaky above the ''A'' Clay the Canal passes through sandy areas and experiences significant groundwater seepage. This seepage can be intercepted by adjacent groundwater wells. Pumping adjacent to, and along the alignment of the Canal, may induce higher rates of seepage from the Eastside Canal. Groundwater quality below and adjacent to the Eastside Canal is very good, reflecting the origin of this diverted water from the Merced River. Most of the pumpage occurs in a depth interval between 30 ft and 130 ft. Safe yield estimates made using the available data show that the 4-S Ranch has sufficient resources to meet its own needs. Further exploitation of the

  3. Collision-induced dissociation of [4Fe-4S] cubane cluster complexes: [Fe4S4Cl4 - x(SC2H5)x]2-/1- (x = 0-4)

    NASA Astrophysics Data System (ADS)

    Fu, You-Jun; Laskin, Julia; Wang, Lai-Sheng

    2006-09-01

    Collision-induced dissociation (CID) experiments on a series of [4Fe-4S] cluster ions, [Fe4S4Cl4 - x(SC2H5)x]2-/1- (x = 0-4), revealed that their fragmentation channels change with the coordination environment. Among the three Coulomb repulsion related channels for the doubly charged species, the collision induced electron detachment channel was found to become more significant from x = 0 to 4 due to the decreasing electron binding energies and the magnitude of repulsion Coulomb barrier, while both the ligand detachment of Cl- and the fission of the [Fe4S4]2+ core became more and more significant with the increase of the Cl- coordination, and eventually became the dominant channel at x = 0. From the parents containing the SC2H5 ligand, neutral losses of HSC2H5 (62 u) and/or HSCHCH2 (60 u) were observed. It was proposed that inter- and intra-ligand proton transfer could happen during the CID process, resulting in hydrogen coordination to the [4Fe-4S] cluster. In the presence of O2, [Fe4S4Cl3(SC2H5)]2- and [Fe4S4Cl4]2- can form the O2-substituted products [Fe4S4Cl2(SC2H5)O2]- and [Fe4S4Cl3O2]-, respectively. It was shown that the O2 complexation occurs by coordination to the empty iron site of the [4Fe-4S] cubane core after dissociation of one Cl- ligand.

  4. The U.S. Commercial Space Launch Program and the Department of Defense Dilemma

    NASA Technical Reports Server (NTRS)

    Clapp, William G.

    1995-01-01

    The U.S. space launch program no longer dominates the world and is now playing 'catch-up' with the world's first commercial launch company, Arianespace. A healthy U.S. commercial launch program is essential and will assure continued low-cost military access to space. The effort to regain the lead in commercial space launch market has been hindered by declining Department of Defense budgets. President Clinton's space policy prohibits expensive new launch vehicles and limits the Department of Defense to low cost upgrades of existing launch vehicles. The U.S. government created the space sector and must ensure a smooth and effective split from the emerging commercial space program in order to regain world dominance. Until U.S. government and commercial ties are severed, the Department of Defense must consider commercial space launch interests when making military decisions. Ariane provides an excellent 'bench mark' for the U.S. to base future launch vehicle upgrades. Ariane advantages were identified and low-cost recommendations have been made. If the U.S. sets the target of first equaling and then surpassing Ariane by incorporating these recommendations, then the U.S. could once again dominate the world commercial launch market and ensure low cost military access to space.

  5. Orion moved at Kennedy Space Center on This Week @NASA - October 3, 2014

    NASA Image and Video Library

    2014-10-03

    On Sept. 28, NASA’s Orion spacecraft was moved from Kennedy Space Center’s Payload Hazardous Servicing Facility to its Launch Abort System Facility, for installation of its launch abort system, one of the many critical safety systems that will be evaluated during Orion’s un-crewed Exploration Flight Test -1, in December. NASA’s new deep space capsule is being developed to safely transport astronauts to and from Mars and other destinations on future missions. Also, Delta IV Heavy moved to the launch pad, U.S. spacewalks previewed, NASA and India to discuss joint exploration, Helicopter safety crash test, Combined Federal Campaign underway and Stop, Think, Connect!

  6. Deep space network Mark 4A description

    NASA Technical Reports Server (NTRS)

    Wallace, R. J.; Burt, R. W.

    1986-01-01

    The general system configuration for the Mark 4A Deep Space Network is described. The arrangement and complement of antennas at the communications complexes and subsystem equipment at the signal processing centers are described. A description of the Network Operations Control Center is also presented.

  7. When one becomes two: Ba12In4Se20, not quite isostructural to Ba12In4S19

    NASA Astrophysics Data System (ADS)

    Yin, Wenlong; Iyer, Abishek K.; Li, Chao; Yao, Jiyong; Mar, Arthur

    2017-09-01

    The ternary selenide Ba12In4Se20 was synthesized by reaction of BaSe, In2Se3, and Se at 1023 K. Single-crystal X-ray diffraction revealed a trigonal structure (space group R 3 bar, Z = 6, a = 10.0360(6) Å, c = 78.286(4) Å at room temperature) consisting of one-dimensional stacks of InSe4 tetrahedra, In2Se7 double tetrahedra, selenide Se2- anions, and diselenide Se22- anions, with Ba2+ cations in the intervening spaces. The selenide Ba12In4Se20 can be derived from the corresponding sulfide Ba12In4S19 by replacing one monoatomic Ch2- anion with a diatomic Ch22- anion. An optical band gap of 1.70(2) eV, consistent with the dark red colour of the crystals, was deduced from the UV-vis-NIR diffuse reflectance spectrum.

  8. Travellers and Home Education: Safe Spaces and Inequality

    ERIC Educational Resources Information Center

    D'Arcy, Kate

    2014-01-01

    Elective home education (EHE) is a legal alternative to school in England but the statutory requirements for provision are remarkably vague. This book explores the use of EHE by Gypsy and Traveller families. The accounts of their experiences and their views about education spaces reveal the racism and discrimination their children encounter in…

  9. Synthesis of the new quaternary sulfides K[sub 2]Y[sub 4]Sn[sub 2]S[sub 11] and BaLnAgS[sub 3] (Ln = Er, Y, Gd) and the structures of K[sub 2]Y[sub 4]Sn[sub 2]S[sub 11] and BaErAgS[sub 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Ping; Ibers, J.A.

    1994-05-01

    Several new quarternary sulfides, K[sub 2]Y[sub 4]Sn[sub 2]S[sub 11] and BaLnAgS[sub 3] (Ln = Er, Y, Gd), have been synthesized by the reaction of the constituent binary chalcogenides and elements at 1000[degrees]C. The crystal structures of K[sub 2]Y[sub 4]Sn[sub 2]S[sub 11] and BaErAgS[sub 3] have been determined by single-crystal X-ray diffraction techniques. Crystal data: K[sub 2]Y[sub 4]Sn[sub 2]S[sub 11]-space group D[sup 8][sub 4h] - P4/ncc, M = 1023.88, Z = 4, a = 8.587(1), c = 27.892(4) [angstrom] (T = 115 K), V = 2056.7(4) [angstrom][sup 3], R[sub W](F[sup 2]) = 0.093 for 1965 observations having F[sup 2][sub 0] >more » 2[sigma](F[sup 2][sub 0]); BaEr AgS[sub 3]-space group C[sup 3][sub 2H] - C2/m, M = 508.65, Z = 4, a = 17.340(4), b = 4.014(1), x = 8.509(2) [angstrom], [beta] = 103.23(3)[degrees], (T = 115 K), V = 576.5(2) [angstrom][sup 3], R[sub W](F[sup 2]) = 0.049 for 1404 observations and 48 variables, R(F) = 0.018 for 1299 observations having F[sup 2][sub 0] > 2[sigma](F[sup 2][sub 0]). In both structures, the rare-earth atoms have octahedral coordination and the octahedra form slabs through edge- and corner-sharing. These slabs are separated by K[sup +] Ba[sup 2+] cations, and are crosslinked into three-dimensional frameworks by Sn[sub 2]S[sub 6] units as edge-sharing SnS[sub 4] tetrahedral pairs in K[sub 2]Y[sub 4]Sn[sub 2]S[sub 11], and by Ag[sub 2]S[sub 9] units as corner-sharing trigonal-bipyramidal AgS[sub 5] pairs in BaEr AgS[sub 3]. From their powder diffraction patterns, BaYAgS[sub 3] and Ba GdAgS[sub 3] appear to be isostructural with BaErAgS[sub 3].« less

  10. Elongated Asteroid Will Safely Pass Earth on Christmas Eve

    NASA Image and Video Library

    2015-12-23

    The elongated asteroid in this radar image, named 2003 SD220, will safely fly past Earth on Thursday, Dec. 24, 2015, at a distance of 6.8 million miles (11 million kilometers). The image was taken on Dec. 22 by scientists using NASA's 230-foot (70-meter) Deep Space Network antenna at Goldstone, California, when the asteroid was approaching its flyby distance. This asteroid is at least 3,600 feet (1,100 meters) long. In 2018, it will safely pass Earth at a distance of 1.8 million miles (2.8 million kilometers). http://photojournal.jpl.nasa.gov/catalog/PIA20280

  11. International Space Station (ISS) S1 Truss

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Shown here is the International Space Station (ISS) S1 Truss in preparation for installation in the payload bay of the Space Shuttle Atlantis at NASA's Kennedy Space Center )KSC)in Florida. The truss launched October 7, 2002 on the STS-112 mission and will be attached during three spacewalks. Constructed primarily of aluminum, it measures 45 feet long, 15 feet wide, 10 feet tall, and weighs over 27,000 pounds. It is one of nine similar truss segments that, combined, will serve as the Station's main backbone, measuring 356 feet from end to end upon completion. Manufactured by the Boeing Company in Huntington Beach, California, the truss was flown to the Marshall Space Flight Center, in Huntsville, Alabama where brackets, cable trays, fluid tubing, and other secondary components and outfitting items were added. In Huntsville, it was screened for manufacturing flaws, including pressure and leak checking tubing, and electrical checks for cabling, before being shipped to KSC for final hardware installation and testing. The Space Station's labs, living modules, solar arrays, heat radiators, and other main components will be attached to the truss.

  12. GOES-S Arrival at Astrotech Space Operations

    NASA Image and Video Library

    2017-12-05

    At Astrotech Space Operations in Titusville, Florida, technicians and engineers prepare to remove NOAA's Geostationary Operation Environmental Satellite-S (GOES-S) from its shipping container. GOES-S is the second in a series of four advanced geostationary weather satellites. The GOES-R series - consisting of the GOES-R, GOES-S, GOES-T and GOES-U spacecraft - will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018 aboard a United Launch Alliance Atlas V rocket from Cape Canaveral Air Force Station in Florida.

  13. S-duality in twistor space

    NASA Astrophysics Data System (ADS)

    Alexandrov, Sergei; Pioline, Boris

    2012-08-01

    In type IIB string compactifications on a Calabi-Yau threefold, the hypermultiplet moduli space {{M}_H} must carry an isometric action of the modular group SL(2 , {Z} ), inherited from the S-duality symmetry of type IIB string theory in ten dimensions. We investigate how this modular symmetry is realized at the level of the twistor space of {{M}_H} , and construct a general class of SL(2 , {Z} )-invariant quaternion-Kähler metrics with two commuting isometries, parametrized by a suitably covariant family of holomorphic transition functions. This family should include {{M}_H} corrected by D3-D1-D(-1)-instantons (with five-brane corrections ignored) and, after taking a suitable rigid limit, the Coulomb branch of five-dimensional {N} = {2} gauge theories compactified on a torus, including monopole string instantons. These results allow us to considerably simplify the derivation of the mirror map between type IIA and IIB fields in the sector where only D1-D(-1)-instantons are retained.

  14. Implementation plan for safe routes to school program.

    DOT National Transportation Integrated Search

    2009-08-01

    Section 1404 of the Safe, Accountable, Flexible, and Efficient Transportation Equity Act: A Legacy for Users (SAFETEA-LU, Public Law 109-59) establishes a national Safe Routes to School (SRTS) Program. The purpose of the program is to encourage K-8 s...

  15. Space Shuttle Projects

    NASA Image and Video Library

    1997-09-01

    Five astronauts and a payload specialist take a break from training at the Johnson Space Center (JSC) to pose for the STS-87 crew portrait. Wearing the orange partial pressure launch and entry suits, from the left, are Kalpana Chawla, mission specialist; Steven W. Lindsey, pilot; Kevin R. Kregel, mission commander; and Leonid K. Kadenyuk, Ukrainian payload specialist. Wearing the white Extravehicular Mobility Unit (EMU) space suits are mission specialists Winston E. Scott (left) and Takao Doi (right). Doi represents Japan’s National Space Development Agency (NASDA). The STS-87 mission launched aboard the Space Shuttle Columbia on November 19, 1997. The primary payload for the mission was the U.S. Microgravity Payload-4 (USMP-4).

  16. The biomedical challenges of space flight

    NASA Technical Reports Server (NTRS)

    Williams, David R.

    2003-01-01

    Space medicine has evolved considerably through past U.S. missions. It has been proven that humans can live and work in space for long durations and that humans are integral to mission success. The space medicine program of the National Aeronautics and Space Administration (NASA) looks toward future long-duration missions. Its goal is to overcome the biomedical challenges associated with maintaining the safety, health, and optimum performance of astronauts and cosmonauts. This program investigates the health effects of adaptation to microgravity: the nature of their pathologies, the effects of microgravity on pathophysiology, and the alterations in pharmacodynamics and treatment. A critical capability in performing research is the monitoring of the health of all astronauts and of the spacecraft environment. These data support the evidence-based approach to space medicine, incorporating past studies of microgravity-related conditions and their terrestrial counterparts. This comprehensive approach will enable safe and effective exploration beyond low Earth orbit.

  17. Stunning Aurora Borealis from Space - Ultra-High Definition 4K

    NASA Image and Video Library

    2016-04-17

    NASA Television’s newest offering, NASA TV UHD, brings ultra-high definition video to a new level with the kind of imagery only the world’s leader in space exploration could provide. Harmonic produced this show exclusively for NASA TV UHD, using time-lapses shot from the International Space Station, showing both the Aurora Borealis and Aurora Australis phenomena that occur when electrically charged electrons and protons in the Earth's magnetic field collide with neutral atoms in the upper atmosphere.

  18. Kent in space: Cosmic dust to space debris

    NASA Astrophysics Data System (ADS)

    McDonnell, J. A. M.

    1994-10-01

    The dusty heritage of the University of Kent's Space Group commenced at Jodrell Bank, Cheshire, U.K., the home of the largest steerable radio telescope. While Professor Bernard Lovell's 250 ft. diameter telescope was used to command the U.S. deep space Pioneer spacecraft, Professor Tony McDonnell, as a research student in 1960, was developing a space dust detector for the US-UK Ariel program. It was successful. With a Ph.D. safely under the belt, it seemed an inevitable step to go for the next higher degree, a B.T.A.] Two years with NASA at Goddard Space Flight Center, Greenbelt, provided excellent qualifications for such a graduation ('Been to America'). A spirited return to the University of Kent at Canterbury followed, to one of the green field UK University sites springing from the Robbins Report on Higher Education. Swimming against the current of the brain drain, and taking a very considerable reduction in salary, it was with some disappointment that he found that the UK Premier Harold Wilson's 'white-hot technological revolution' never quite seemed to materialize in terms of research funding] Research expertise, centered initially on cosmic dust, enlarged to encompass planetology during the Apollo program, and rightly acquired international acclaim, notching up a history of space missions over 25 years. The group now comprises 38 people supported by four sources: the government's Research Councils, the University, the Space Agencies and Industry. This paper describes the thrust of the group's Research Plan in Space Science and Planetology; not so much based on existing international space missions, but more helping to shape the direction and selection of space missions ahead.

  19. Distributed Space Solar Power

    NASA Technical Reports Server (NTRS)

    Fork, Richard L.

    2001-01-01

    The objective was to assess the feasibility of safely collecting solar power at geostationary orbit and delivering it to earth. A strategy which could harness a small fraction of the millions of gigawatts of sunlight passing near earth could adequately supply the power needs of earth and those of space exploration far into the future. Light collected and enhanced both spatially and temporally in space and beamed to earth provides probably the only practical means of safe and efficient delivery of this space solar power to earth. In particular, we analyzed the feasibility of delivering power to sites on earth at a comparable intensity, after conversion to a usable form, to existing power needs. Two major obstacles in the delivery of space solar power to earth are safety and the development of a source suitable for space. We focused our approach on: (1) identifying system requirements and designing a strategy satisfying current eye and skin safety requirements; and (2) identifying a concept for a potential space-based source for producing the enhanced light.

  20. 12 CFR 350.11 - Safe harbor provision.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 4 2010-01-01 2010-01-01 false Safe harbor provision. 350.11 Section 350.11 Banks and Banking FEDERAL DEPOSIT INSURANCE CORPORATION REGULATIONS AND STATEMENTS OF GENERAL POLICY DISCLOSURE OF FINANCIAL AND OTHER INFORMATION BY FDIC-INSURED STATE NONMEMBER BANKS § 350.11 Safe harbor...

  1. In-Space Manufacturing at NASA Marshall Space Flight Center: Enabling Technologies for Exploration

    NASA Technical Reports Server (NTRS)

    Bean, Quincy; Johnston, Mallory; Ordonez, Erick; Ryan, Rick; Prater, Tracie; Werkeiser, Niki

    2015-01-01

    NASA Marshall Space Flight Center is currently engaged in a number of in-space manufacturing(ISM)activities that have the potential to reduce launch costs, enhance crew safety, and provide the capabilities needed to undertake long duration spaceflight safely and sustainably.

  2. SPACE TODAY ONLINE - Space Today Online covering Space from Earth to the

    Science.gov Websites

    Space Rockets 300 Flights Delta Proton Search for Meteorites American Weather Satellites Artist concept Rockets: Spaceports Plowshares 21st Century Experimental Europe's Vega Brazil's Difficulties U.S. Delta 4 , Atlas 5 America's 300th Delta Russia's 300th Proton Spaceflight Museum Space Station: Jules Verne Cargo

  3. 16 CFR 1508.4 - Spacing of crib components.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... by 4-inch high by 4-inch long) rectangular block which shall not pass through the space. (b) The...) direct force is applied in accordance with the test method in § 1508.5. For contoured or irregular slats... below the loading wedge when a 9-kilogram (20-pound) direct force is applied in accordance with said...

  4. Next generation: In-space transportation system(s)

    NASA Technical Reports Server (NTRS)

    Huffaker, Fredrick; Redus, Jerry; Kelley, David L.

    1991-01-01

    The development of the next generation In-Space Transportation System presents a unique challenge to the design of a propulsion system for the Space Exploration Initiative (SEI). Never before have the requirements for long-life, multiple mission use, space basing, high reliability, man-rating, and minimum maintenance come together with performance in one system that must protect the lives of space travelers, support the mission logistics needs, and do so at an acceptable cost. The challenge that is presented is to quantify the bounds of these requirements. The issue is one of degree. The length of acceptable life in space, the time it takes for reuse to pay off, and the degree to which space basing is practical (full, partial, or expended) are the issues that determine the reusable bounds of a design and include dependability, contingency capabilities, resilency, and minimum dependence on a maintenance node in preparation for and during a mission. Missions to planet earth, other non-NASA missions, and planetary missions will provide important but less demanding requirements for the transportation systems of the future. The mission proposed for the SEI require a family of transportation vehicles to meet the requirements for establishing a permanent human presence on the Moon and eventually on Mars. Specialized vehicles are needed to accomplish the different phases of each mission. These large scale missions require assembly in space and will provide the greatest usage of the planned integrated transportation system. The current approach to defining the In-Space Transportation System for the SEI Moon missions with later Mars mission applications is presented. Several system development options, propulsion concepts, current/proposed activities are reviewed, and key propulsion design criteria, issues, and technology challenges for the next generation In-Space Transportation System(s) are outlined.

  5. Thirty years together: A chronology of U.S.-Soviet space cooperation

    NASA Technical Reports Server (NTRS)

    Portree, David S. F.

    1993-01-01

    The chronology covers 30 years of cooperation between the U.S. and the Soviet Union (and its successor, the Commonwealth of Independent States, of which the Russian Federation is the leading space power). It tracks successful cooperative projects and failed attempts at space cooperation. Included are the Dryden-Blagonravov talks; the UN Space Treaties; the Apollo Soyuz Test Project; COSPAS-SARSAT; the abortive Shuttle-Salyut discussions; widespread calls for joint manned and unmanned exploration of Mars; conjectural plans to use Energia and other Russian space hardware in ambitious future joint missions; and contemporary plans involving the U.S. Shuttle, Russian Mir, and Soyuz-TM. The chronology also includes events not directly related to space cooperation to provide context. A bibliography lists works and individuals consulted in compiling the chronology, plus works not used but relevant to the topic of space cooperation.

  6. NASA's Space Launch System Progress Report

    NASA Technical Reports Server (NTRS)

    May, Todd A.; Singer, Joan A.; Cook, Jerry R.; Lyles, Garry M.; Beaman, David E.

    2012-01-01

    Exploration beyond Earth orbit will be an enduring legacy for future generations, as it provides a platform for science and exploration that will define new knowledge and redefine known boundaries. NASA s Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is responsible for designing and developing the first exploration-class rocket since the Apollo Program s Saturn V that sent Americans to the Moon in the 1960s and 1970s. The SLS offers a flexible design that may be configured for the Orion Multi-Purpose Crew Vehicle with associated life-support equipment and provisions for long journeys or may be outfitted with a payload fairing that will accommodate flagship science instruments and a variety of high-priority experiments. Building on legacy systems, facilities, and expertise, the SLS will have an initial lift capability of 70 tonnes (t) in 2017 and will be evolvable to 130 t after 2021. While commercial launch vehicle providers service the International Space Station market, this capability will surpass all vehicles, past and present, providing the means to do entirely new missions, such as human exploration of Mars. Building on the foundation laid by over 50 years of human and scientific space flight and on the lessons learned from the Apollo, Space Shuttle, and Constellation Programs the SLS team is delivering both technical trade studies and business case analyses to ensure that the SLS architecture will be safe, affordable, reliable, and sustainable. This panel will address the planning and progress being made by NASA s SLS Program.

  7. [MoS4]2- Cluster Bridges in Co-Fe Layered Double Hydroxides for Mercury Uptake from S-Hg Mixed Flue Gas.

    PubMed

    Xu, Haomiao; Yuan, Yong; Liao, Yong; Xie, Jiangkun; Qu, Zan; Shangguan, Wenfeng; Yan, Naiqiang

    2017-09-05

    [MoS 4 ] 2- clusters were bridged between CoFe layered double hydroxide (LDH) layers using the ion-exchange method. [MoS 4 ] 2- /CoFe-LDH showed excellent Hg 0 removal performance under low and high concentrations of SO 2 , highlighting the potential for such material in S-Hg mixed flue gas purification. The maximum mercury capacity was as high as 16.39 mg/g. The structure and physical-chemical properties of [MoS 4 ] 2- /CoFe-LDH composites were characterized with FT-IR, XRD, TEM&SEM, XPS, and H 2 -TPR. [MoS 4 ] 2- clusters intercalated into the CoFe-LDH layered sheets; then, we enlarged the layer-to-layer spacing (from 0.622 to 0.880 nm) and enlarged the surface area (from 41.4 m 2 /g to 112.1 m 2 /g) of the composite. During the adsorption process, the interlayer [MoS 4 ] 2- cluster was the primary active site for mercury uptake. The adsorbed mercury existed as HgS on the material surface. The absence of active oxygen results in a composite with high sulfur resistance. Due to its high efficiency and SO 2 resistance, [MoS 4 ] 2- /CoFe-LDH is a promising adsorbent for mercury uptake from S-Hg mixed flue gas.

  8. Separation, Aspiration, and Fat Equalization: SAFE Liposuction Concepts for Comprehensive Body Contouring.

    PubMed

    Wall, Simeon H; Lee, Michael R

    2016-12-01

    Separation, aspiration, and fatty equilibration (SAFE) liposuction uses a process approach to body contouring and minimizes injury to surrounding structures. The multistep process allows for (1) fat separation, (2) lipoaspiration, and (3) fat equalization. The purpose of this study was to review both outcomes and complications of primary SAFE liposuction. Retrospective chart review was completed of patients undergoing SAFE liposuction from January of 2006 to January of 2011. Patient selection was limited to those undergoing liposuction alone with no adjuvant excisional procedures. Data were collected regarding demographics, body mass index, operative details, and outcomes. Seven hundred thirty-four patients were identified as having undergone SAFE liposuction. One hundred twenty-nine patients were found to have been treated with liposuction alone. Patient age ranged from 18 to 42 years and body mass index ranged from 18 to 42 kg/m (mean, 26.3 kg/m). Seven patients (5.4 percent) underwent treatment of the face and neck, six patients (4.7 percent) underwent treatment of upper extremities, 13 patients (10.1 percent) underwent treatment of the chest, 20 patients (15.5 percent) underwent treatment of lower extremities, 32 patients (24.8 percent) underwent treatment of the circumferential trunk, and 51 patients (39.5 percent) underwent treatment of circumferential trunk and additional area(s). No major complications occurred. Five of the 129 patients (3.87 percent) developed the minor complication of seroma formation. SAFE liposuction is a multistep process approach to body contouring consisting of (1) fat separation, (2) lipoaspiration, and (3) fat equalization. The results of this study show such technique to be safe and effective. Therapeutic, IV.

  9. The law applicable to the use of space for commercial activities

    NASA Technical Reports Server (NTRS)

    Hosenball, S. N.

    1983-01-01

    The general principles of space law that have an impact on commercial space activities are discussed. The Outer Space Treaty guaranteed the right of private enterprise in space, with jurisdiction over the participating parties residing in the country of origin. The liability for damages caused to a third party is also assigned to the country of origin. Government consent is necessary in the U.S. before a private firm is permitted to launch an object into space, with the relevant statute sections being part of the Arms Export Control Act; launches are legally treated as exports. FAA regulations define the safe area and flight conditions that must be satisfied for a private launch, although NASA, in the 1958 act which formed the agency, potentialy has the power to regulate space launch activities. The DoD must be notified of any launches in order to notify the U.S.S.R., filings must be made with the Bureau of Alcohol, Tobacco, and Firearms, and fees must be paid to the IRS. It is presently U.S. government policy to encourage and facilitate private sector development of commercial launch services.

  10. Food technology in space habitats

    NASA Technical Reports Server (NTRS)

    Karel, M.

    1979-01-01

    The research required to develop a system that will provide for acceptable, nutritious, and safe diets for man during extended space missions is discussed. The development of a food technology system for space habitats capable of converting raw materials produced in the space habitats into acceptable food is examined.

  11. System definition study of deployable, non-metallic space structures

    NASA Technical Reports Server (NTRS)

    Stimler, F. J.

    1984-01-01

    The state of the art for nonmetallic materials and fabrication techniques suitable for future space structures are summarized. Typical subsystems and systems of interest to the space community that are reviewed include: (1) inflatable/rigidized space hangar; (2) flexible/storable acoustic barrier; (3) deployable fabric bulkhead in a space habitat; (4) extendible tunnel for soft docking; (5) deployable space recovery/re-entry systems for personnel or materials; (6) a manned habitat for a space station; (7) storage enclosures external to the space station habitat; (8) attachable work stations; and (9) safe haven structures. Performance parameters examined include micrometeoroid protection; leakage rate prediction and control; rigidization of flexible structures in the space environment; flammability and offgassing; lifetime for nonmetallic materials; crack propagation prevention; and the effects of atomic oxygen and space debris. An expandable airlock for shuttle flight experiments and potential tethered experiments from shuttle are discussed.

  12. Space station needs, attributes and architectural options study. Volume 4: Architectural options, subsystems, technology and programmatics

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Space station architectural options, habitability considerations and subsystem analyses, technology, and programmatics are reviewed. The methodology employed for conceiving and defining space station concepts is presented. As a result of this approach, architectures were conceived and along with their supporting rationale are described within this portion of the report. Habitability consideration and subsystem analyses describe the human factors associated with space station operations and includes subsections covering (1) data management, (2) communications and tracking, (3) environmental control and life support, (4) manipulator systems, (5) resupply, (6) pointing, (7) thermal management and (8) interface standardization. A consolidated matrix of subsystems technology issues as related to meeting the mission needs for a 1990's era space station is presented. Within the programmatics portion, a brief description of costing and program strategies is outlined.

  13. Ba{sub 3}GeS{sub 5} and Ba{sub 3}InS{sub 4}Cl: Interesting size effects originated from the tetrahedral anions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Ming-Yan; Xia, Sheng-Qing, E-mail: shqxia@sdu.edu.cn; Liu, Xiao-Cun

    2014-11-15

    Two new barium chalcogenides, Ba{sub 3}GeS{sub 5} and Ba{sub 3}InS{sub 4}Cl, were synthesized by using high temperature solid-state reactions and their structures were determined by single-crystal X-ray diffraction technique. Despite the similar chemical formula, the structures of Ba{sub 3}GeS{sub 5} and Ba{sub 3}InS{sub 4}Cl are subtly different due to the size effects originated from the tetrahedral anions. Ba{sub 3}GeS{sub 5} crystallizes in the orthorhombic space group Pnma (no. 62) with cell parameters of a=12.0528(9) Å, b=9.5497(7) Å and c=8.5979(6) Å, while Ba{sub 3}InS{sub 4}Cl adopts a different tetragonal system (space group: I4/mcm, no. 140, a=b=8.3613(6) Å, c=14.3806(18) Å). The measuredmore » optical band gap of Ba{sub 3}GeS{sub 5} is 3.0 eV, a little smaller than the value of 3.42 eV in Ba{sub 3}InS{sub 4}Cl. Theoretical calculations by Wien2k are provided as well in order to better understand these results. - Graphical abstract: The polyhedral structure view for Ba{sub 3}GeS{sub 5} and Ba{sub 3}InS{sub 4}Cl in which Ba, S and Cl atoms are plotted in purple, red and green spheres. - Highlights: • Two new barium chalcogenides, Ba{sub 3}GeS{sub 5} and Ba{sub 3}InS{sub 4}Cl, were synthesized from the BaCl{sub 2}-flux reactions. • Their crystal structures feature discrete [MS{sub 4}] tetrahedra which embody interesting size effects. • Both compounds exhibit a band gap around 3.0 eV. • They are thermally stable up to 1073 K.« less

  14. Hubble Space Telescope Servicing Mission Four(HST SM4) EVA Challenges for Safe Execution of STS-125

    NASA Astrophysics Data System (ADS)

    Dedalis, Robert P.; Hill, William H.; Rice, Karin Bergh; Cooter, Ann M.

    2010-09-01

    In May of 2009, the world-renowned Hubble Space Telescope(HST) received a suite of new instruments and a refurbished bus to enable science for many years to come. The restoration was conducted on-orbit by four spacewalkers on five carefully scripted Extra-Vehicular Activity(EVA) days. Assuring the safety of the spacewalkers and their crewmates required careful attention to tool development, detailed procedures for every activity and many rehearsals with engineers and crew to ensure that everything worked together. Additionally, evolution of EVA requirements since the last servicing mission in 2002, and the broad scope of the mission demanded a much higher degree of safety participation in hardware design and risk acceptance than for previous servicing missions.

  15. Virchow-Robin space and aquaporin-4: new insights on an old friend.

    PubMed

    Nakada, Tsutomu

    2014-08-28

    Recent studies have strongly indicated that the classic circulation model of cerebrospinal fluid (CSF) is no longer valid. The production of CSF is not only dependent on the choroid plexus but also on water flux in the peri-capillary (Virchow Robin) space. Historically, CSF flow through the Virchow Robin space is known as interstitial flow, the physiological significance of which is now fully understood. This article briefly reviews the modern concept of CSF physiology and the Virchow-Robin space, in particular its functionalities critical for central nervous system neural activities. Water influx into the Virchow Robin space and, hence, interstitial flow is regulated by aquaporin-4 (AQP-4) localized in the endfeet of astrocytes, connecting the intracellular cytosolic fluid space of astrocytes and the Virchow Robin space. Interstitial flow has a functionality equivalent to systemic lymphatics, on which clearance of β-amyloid is strongly dependent. Autoregulation of brain blood flow serves to maintain a constant inner capillary fluid pressure, allowing fluid pressure of the Virchow Robin space to regulate regional cerebral blood flow (rCBF) based on AQP-4 gating. Excess heat produced by neural activities is effectively removed from the area of activation by increased rCBF by closing AQP-4 channels. This neural flow coupling (NFC) is likely mediated by heat generated proton channels.

  16. Human Space Flight Plans Committee

    NASA Image and Video Library

    2009-06-16

    Norman Augustine, chair of the Human Space Flight Review Committee, front center, is joined by other members of the committee, clockwise from left, Bohdan Bejmuk, Leroy Chiao, Dr. Wanda Austin, Philip McAlister, Dr. Edward Crawley, Jeffrey Greason and Dr. Christopher Chyba prior to the start of the first of several public meetings at different U.S. locations, Wednesday, June 17, 2009, at the Carnegie Institution in Washington. The panel will examine ongoing and planned NASA development activities and potential alternatives in order to present options for advancing a safe, innovative, affordable and sustainable human space flight program following the space shuttle's retirement. The committee wil present its results by August 2009. Members of the committee that were not in attendance and are not pictured are Dr. Charles Kennel, Retired Air Force Gen. Lester Lyles and former astronaut Sally Ride. Photo Credit: (NASA/Paul E. Alers)

  17. U.S. Air Force Radiation in Space experiment for Gemini 6 flight

    NASA Image and Video Library

    1965-12-10

    S65-58941 (27 Aug. 1965) --- U.S. Air Force Weapons Laboratory D-8 (Radiation in Space) experiment for Gemini-6 spaceflight. Kennedy Space Center alternative photo number is 104-KSC-65C-5533. Photo credit: NASA

  18. Development of a safe ground to space laser propagation system for the optical communications telescope laboratory

    NASA Technical Reports Server (NTRS)

    Wu, Janet P.

    2003-01-01

    Furthering pursuits in high bandwidth communications to future NASA deep space and neat-Earth probes, the Jet Propulsion Laboratory (JPL) is building the Optical communications Telescope Laboratory (OCTL) atop Table Mountain in Southern California. This R&D optical antenna will be used to develop optical communication strategies for future optical ground stations. Initial experiments to be conducted include propagating high-powered, Q-switched laser beams to retro-reflecting satellites. Yet laser beam propagation from the ground to space is under the cognizance of various government agencies, namely: the Occupational Safety and Health Administration (ISHA) that is responsible for protecting workforce personnel; the Federal Aviation Administration (FAA) responsible for protecting pilots and aircraft; and the Laser Clearinghouse of Space Command responsible for protecting space assets. To ensure that laser beam propagation from the OCTL and future autonomously operated ground stations comply with the guidelines of these organizations, JPL is developing a multi-tiered safety system that will meet the coordination, monitoring, and reporting functions required by the agencies. At Tier 0, laser operators will meet OSHA safety standards for protection and access to the high power lasers area will be restricted and interlocked. Tier 1, the area defined from the telescope dome out to a range of 3.4-km, will utilize long wave infrared camera sensors to alert operators of at risk aircraft in the FAA controlled airspace. Tier 2, defined to extend from 3.4-km out to the aircraft service ceiling in FAA airspace, will detect at risk aircraft by radar. Lastly, beam propagation into space, defined as Tier 3, will require coordination with the Laser Clearinghouse. A detailed description of the four tiers is presented along with the design of the integrated monitoring and beam transmission control system.

  19. Design for Assured Safe Jettison Operations

    NASA Astrophysics Data System (ADS)

    Herd, Andrew; Shea, Matt

    2010-09-01

    The International Space Station is coming toward the end of the assembly process and will enter "steady state" operations. During this time and also in the future, there arises the need for removing items from station, and in some instances this is achieved through jettison, either robotic or crew initiated. To control this practice at the ISS Partner level, a policy document has been developed. The policy states: "While there are risks inherent in jettisoning objects, the ISS Program recognizes that there may be significant benefits in terms of operational flexibility, crew safety, etc. A thorough assessment of the risks vs. the benefits will be conducted whenever a proposal to jettison an object is made. It is the intent of the ISS Program to limit the number of objects that are jettisoned from the ISS ...". The policy addresses hardware that: "may fall into one or more of the following categories: 1. Items that pose a safety issue for the ISS or for return onboard a visiting vehicle(contamination, materials degradation, etc.) 2. Items that negatively impact ISS utilization, return or on-orbit stowage manifests 3. Items that represent an Extravehicular Activity(EVA) timeline savings large enough to reduce the sum of the risks of EVA exposure time and the orbital environment’s hazardous debris population, compared to the sum of such risks without a jettison. 4. Items that are designed for jettison ". [1] Through the use of jettison to date, as a disposal means, operational experiences have been gained during and as a result of post-disposal event analysis. The data collected has allowed a generic assessment of issues(and best practices) and the proposal of ways in which process corrective action can be taken to assure future safe jettison operations. The improvements proposed emphasize the ways in which design can offer key interface and hardware response characteristics to the jettison event and the subsequent orbital and re-entry profile. There exist simple

  20. Crewed Space Vehicle Battery Safety Requirements

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith A.; Darcy, Eric C.

    2014-01-01

    This requirements document is applicable to all batteries on crewed spacecraft, including vehicle, payload, and crew equipment batteries. It defines the specific provisions required to design a battery that is safe for ground personnel and crew members to handle and/or operate during all applicable phases of crewed missions, safe for use in the enclosed environment of a crewed space vehicle, and safe for use in launch vehicles, as well as in unpressurized spaces adjacent to the habitable portion of a space vehicle. The required provisions encompass hazard controls, design evaluation, and verification. The extent of the hazard controls and verification required depends on the applicability and credibility of the hazard to the specific battery design and applicable missions under review. Evaluation of the design and verification program results shall be completed prior to certification for flight and ground operations. This requirements document is geared toward the designers of battery systems to be used in crewed vehicles, crew equipment, crew suits, or batteries to be used in crewed vehicle systems and payloads (or experiments). This requirements document also applies to ground handling and testing of flight batteries. Specific design and verification requirements for a battery are dependent upon the battery chemistry, capacity, complexity, charging, environment, and application. The variety of battery chemistries available, combined with the variety of battery-powered applications, results in each battery application having specific, unique requirements pertinent to the specific battery application. However, there are basic requirements for all battery designs and applications, which are listed in section 4. Section 5 includes a description of hazards and controls and also includes requirements.

  1. Surface Structure Spread Single Crystals (S4C): Preparation and characterization

    NASA Astrophysics Data System (ADS)

    de Alwis, A.; Holsclaw, B.; Pushkarev, V. V.; Reinicker, A.; Lawton, T. J.; Blecher, M. E.; Sykes, E. C. H.; Gellman, A. J.

    2013-02-01

    A set of six spherically curved Cu single crystals referred to as Surface Structure Spread Single Crystals (S4Cs) has been prepared in such a way that their exposed surfaces collectively span all possible crystallographic surface orientations that can be cleaved from the face centered cubic Cu lattice. The method for preparing these S4Cs and for finding the high symmetry pole point is described. Optical profilometry has been used to determine the true shapes of the S4Cs and show that over the majority of the surface, the shape is extremely close to that of a perfect sphere. The local orientations of the surfaces lie within ± 1° of the orientation expected on the basis of the spherical shape; their orientation is as good as that of many commercially prepared single crystals. STM imaging has been used to characterize the atomic level structure of the Cu(111) ± 11°-S4C. This has shown that the average step densities and the average step orientations match those expected based on the spherical shape. In other words, although there is some distribution of step-step spacing and step orientations, there is no evidence of large scale reconstruction or faceting. The Cu S4Cs have local structures based on the ideal termination of the face centered cubic Cu lattice in the direction of termination. The set of Cu S4Cs will serve as the basis for high throughput investigations of structure sensitive surface chemistry on Cu.

  2. The Dedicated Chaperone Acl4 Escorts Ribosomal Protein Rpl4 to Its Nuclear Pre-60S Assembly Site

    PubMed Central

    Pillet, Benjamin; García-Gómez, Juan J.; Pausch, Patrick; Falquet, Laurent; Bange, Gert; de la Cruz, Jesús; Kressler, Dieter

    2015-01-01

    Ribosomes are the highly complex macromolecular assemblies dedicated to the synthesis of all cellular proteins from mRNA templates. The main principles underlying the making of ribosomes are conserved across eukaryotic organisms and this process has been studied in most detail in the yeast Saccharomyces cerevisiae. Yeast ribosomes are composed of four ribosomal RNAs (rRNAs) and 79 ribosomal proteins (r-proteins). Most r-proteins need to be transported from the cytoplasm to the nucleus where they get incorporated into the evolving pre-ribosomal particles. Due to the high abundance and difficult physicochemical properties of r-proteins, their correct folding and fail-safe targeting to the assembly site depends largely on general, as well as highly specialized, chaperone and transport systems. Many r-proteins contain universally conserved or eukaryote-specific internal loops and/or terminal extensions, which were shown to mediate their nuclear targeting and association with dedicated chaperones in a growing number of cases. The 60S r-protein Rpl4 is particularly interesting since it harbours a conserved long internal loop and a prominent C-terminal eukaryote-specific extension. Here we show that both the long internal loop and the C-terminal eukaryote-specific extension are strictly required for the functionality of Rpl4. While Rpl4 contains at least five distinct nuclear localization signals (NLS), the C-terminal part of the long internal loop associates with a specific binding partner, termed Acl4. Absence of Acl4 confers a severe slow-growth phenotype and a deficiency in the production of 60S subunits. Genetic and biochemical evidence indicates that Acl4 can be considered as a dedicated chaperone of Rpl4. Notably, Acl4 localizes to both the cytoplasm and nucleus and it has the capacity to capture nascent Rpl4 in a co-translational manner. Taken together, our findings indicate that the dedicated chaperone Acl4 accompanies Rpl4 from the cytoplasm to its pre-60S

  3. Safe Maritime Navigation with COLREGS Using Velocity Obstacles

    NASA Technical Reports Server (NTRS)

    Kuwata, Yoshiaki; Wolf, Michael T.; Zarzhitsky, Dimitri; Huntsberger, Terrance L.

    2011-01-01

    This paper presents a motion planning algorithm for Unmanned Surface Vehicles (USVs) to navigate safely in dynamic, cluttered environments. The proposed algorithm not only addresses Hazard Avoidance (HA) for stationary and moving hazards but also applies the International Regulations for Preventing Collisions at Sea (known as COLREGs). The COLREG rules specify, for example, which vessel is responsible for giving way to the other and to which side of the "stand-on" vessel to maneuver. The three primary COLREG rules were considered in this paper: crossing, overtaking, and head-on situations. For USVs to be safely deployed in environments with other traffic boats, it is imperative that the USV's navigation algorithm obey COLREGs. Note also that if other boats disregard their responsibility under COLREGs, the USV will still apply its HA algorithms to avoid a collision. The proposed approach is based on Velocity Obstacles, which generates a cone-shaped obstacle in the velocity space. Because Velocity Obstacles also specify which side of the obstacle the vehicle will pass during the avoidance maneuver, COLREGs are encoded in the velocity space in a natural way. The algorithm is demonstrated via both simulation and on-water tests.

  4. HAL/S programmer's guide. [space shuttle flight software language

    NASA Technical Reports Server (NTRS)

    Newbold, P. M.; Hotz, R. L.

    1974-01-01

    HAL/S is a programming language developed to satisfy the flight software requirements for the space shuttle program. The user's guide explains pertinent language operating procedures and described the various HAL/S facilities for manipulating integer, scalar, vector, and matrix data types.

  5. Is the 10th and 11th Intercostal Space a Safe Approach for Percutaneous Nephrostomy and Nephrolithotomy?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muzrakchi, Ahmed Al; Szmigielski, W., E-mail: wojszmi@qatar.net.qa; Omar, Ahmed J.S.

    2004-09-15

    The aim of this study was to determine the rate of complications in percutaneous nephrostomy (PCN) and nephrolithotomy (PCNL) performed through the 11th and 10th intercostal spaces using our monitoring technique and to discuss the safety of the procedure. Out of 398 PCNs and PCNLs carried out during a 3-year period, 56 patients had 57 such procedures performed using an intercostal approach. The 11th intercostal route was used in 42 and the 10th in 15 cases. One patient had two separate nephrostomies performed through the 10th and 11th intercostal spaces. The technique utilizes bi-planar fluoroscopy with a combination of amore » conventional angiographic machine to provide anterior-posterior fluoroscopy and a C-arm mobile fluoroscopy machine to give a lateral view, displayed on two separate monitors. None of the patients had clinically significant thoracic or abdominal complications. Two patients had minor chest complications. Only one developed changes (plate atelectasis, elevation of the hemi-diaphragm) directly related to the nephrostomy (2%). The second patient had bilateral plate atelectasis and unilateral congestive lung changes after PCNL. These changes were not necessarily related to the procedure but rather to general anesthesia during nephrolithotomy. The authors consider PCN or PCNL through the intercostal approach a safe procedure with a negligible complication rate, provided that it is performed under bi-planar fluoroscopy, which allows determination of the skin entry point just below the level of pleural reflection and provides three-dimensional monitoring of advancement of the puncturing needle toward the target entry point.« less

  6. Cool and Safe: Multiplicity in Safe Innovation at Unilever

    ERIC Educational Resources Information Center

    Penders, Bart

    2011-01-01

    This article presents the making of a safe innovation: the application of ice structuring protein (ISP) in edible ices. It argues that safety is not the absence of risk but is an active accomplishment; innovations are not "made safe afterward" but "safe innovations are made". Furthermore, there are multiple safeties to be accomplished in the…

  7. Cryocoolers for Space

    NASA Technical Reports Server (NTRS)

    Castles, Stephen

    2000-01-01

    This paper presents Cryocoolers for Space in viewgraph form. The topics include: 1) U.S. Cryocoolers for 4 to 6 Kelvin; 2) Turbo Brayton Cryocooler-Features; 3) HST/NICMOS (Hubble Space Telescope/Near Infrared Camera and Multiobject Spectrometer) 75 Kelvin Cryocooler; 4) Turbo-Brayton Cryocooler-NGST Design; and 5) Two-stage Sorption J-T Cryocooler.

  8. NASA Strategy to Safely Live and Work in the Space Radiation Environment

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis; Wu, Honglu; Corbin, Barbara; Sulzman, Frank; Kreneck, Sam

    2007-01-01

    This viewgraph document reviews the radiation environment that is a significant potential hazard to NASA's goals for space exploration, of living and working in space. NASA has initiated a Peer reviewed research program that is charged with arriving at an understanding of the space radiation problem. To this end NASA Space Radiation Laboratory (NSRL) was constructed to simulate the harsh cosmic and solar radiation found in space. Another piece of the work was to develop a risk modeling tool that integrates the results from research efforts into models of human risk to reduce uncertainties in predicting risk of carcinogenesis, central nervous system damage, degenerative tissue disease, and acute radiation effects acute radiation effects.

  9. C-SAFE: A Computer-Delivered Sexual Health Promotion Program for Latinas.

    PubMed

    Klein, Charles H; Kuhn, Tamara; Altamirano, Midori; Lomonaco, Carmela

    2017-07-01

    This article describes the development and evaluation of C-SAFE (Sexual Awareness for Everyone), a computer-delivered sexual health promotion program for Latinas. We first describe the process of adapting an evidence-based, group-level intervention into an individually administered computer-delivered program. We then present the methods and results of a randomized control trial with 321 Latinas in California and Florida to test C-SAFE's preliminary efficacy in reducing sexual health risk. We found no statistically significant differences between the two conditions at a six-month follow-up in terms of sexual behaviors or attitudes toward sexually transmitted infections and condoms, although C-SAFE women reported fewer days in the past month when their mental health was not good (p = .02). C-SAFE condition women also reported more satisfaction than control condition women in their assessment of information presentation (on a scale of 1 = poor and 5 = excellent; C-SAFE = 4.45 vs. control = 4.25, p = .053) and having learned something new (C-SAFE = 95.1% vs. control = 79.3%, χ 2 < 0.001), with utility of content for Latinas approaching significance (C-SAFE = 4.50 vs. control = 4.31, p = .058). In conclusion we discuss the importance of teachable moments, matching of delivery modalities to implementation contexts, and possible directions for evidence-based sexual health promotion programs given the current sexual health landscape.

  10. Space Weathering on 4 Vesta: Processes and Products

    NASA Technical Reports Server (NTRS)

    Pieters, C. M.; Blewett, D. T.; Gaffey, M.; Mittlefehldt, D. W.; De Sanctis, M. C.; Reddy, V.; Nathues, A.; Denevi, B. W.; Li, J. Y.; McCord, T. B.; hide

    2012-01-01

    The bulk properties of Vesta have previously been linked directly to the howardite, eucrite, and diogenite (HED) meteorites through remote mineral characterization of its surface from Earth-based spectroscopy [e.g., 1]. A long-standing enigma has been why does Vesta s surface appear to have suffered so little alteration from the space environment, whereas materials exposed on the Moon and some S-type asteroids are significantly changed (grains develop rims containing nano-phase opaques [e.g. 2]). The Dawn spacecraft is well suited to address this issue and is half through its extended mapping phase of this remarkable proto-planet [3]. On a local scale Dawn sees evidence of recent exposures at craters, but distinctive surface materials blend into background at older craters. The presence of space weathering processes are thus evident at Vesta, but the character and form are controlled by the unique environment and geologic history of this small body.

  11. Space flight rehabilitation.

    PubMed

    Payne, Michael W C; Williams, David R; Trudel, Guy

    2007-07-01

    The weightless environment of space imposes specific physiologic adaptations on healthy astronauts. On return to Earth, these adaptations manifest as physical impairments that necessitate a period of rehabilitation. Physiologic changes result from unloading in microgravity and highly correlate with those seen in relatively immobile terrestrial patient populations such as spinal cord, geriatric, or deconditioned bed-rest patients. Major postflight impairments requiring rehabilitation intervention include orthostatic intolerance, bone demineralization, muscular atrophy, and neurovestibular symptoms. Space agencies are preparing for extended-duration missions, including colonization of the moon and interplanetary exploration of Mars. These longer-duration flights will result in more severe and more prolonged disability, potentially beyond the point of safe return to Earth. This paper will review and discuss existing space rehabilitation plans for major postflight impairments. Evidence-based rehabilitation interventions are imperative not only to facilitate return to Earth but also to extend the safe duration of exposure to a physiologically hostile microgravity environment.

  12. Safe and Durable High-Temperature Lithium-Sulfur Batteries via Molecular Layer Deposited Coating.

    PubMed

    Li, Xia; Lushington, Andrew; Sun, Qian; Xiao, Wei; Liu, Jian; Wang, Biqiong; Ye, Yifan; Nie, Kaiqi; Hu, Yongfeng; Xiao, Qunfeng; Li, Ruying; Guo, Jinghua; Sham, Tsun-Kong; Sun, Xueliang

    2016-06-08

    Lithium-sulfur (Li-S) battery is a promising high energy storage candidate in electric vehicles. However, the commonly employed ether based electrolyte does not enable to realize safe high-temperature Li-S batteries due to the low boiling and flash temperatures. Traditional carbonate based electrolyte obtains safe physical properties at high temperature but does not complete reversible electrochemical reaction for most Li-S batteries. Here we realize safe high temperature Li-S batteries on universal carbon-sulfur electrodes by molecular layer deposited (MLD) alucone coating. Sulfur cathodes with MLD coating complete the reversible electrochemical process in carbonate electrolyte and exhibit a safe and ultrastable cycle life at high temperature, which promise practicable Li-S batteries for electric vehicles and other large-scale energy storage systems.

  13. QCD Condensates and Holographic Wilson Loops for Asymptotically AdS Spaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quevedo, R. Carcasses; Goity, Jose L.; Trinchero, Roberto C.

    2014-02-01

    The minimization of the Nambu-Goto (NG) action for a surface whose contour defines a circular Wilson loop of radius a placed at a finite value of the coordinate orthogonal to the border is considered. This is done for asymptotically AdS spaces. The condensates of dimension n = 2, 4, 6, 8, and 10 are calculated in terms of the coefficients in the expansion in powers of the radius a of the on-shell subtracted NG action for small a->0. The subtraction employed is such that it presents no conflict with conformal invariance in the AdS case and need not introduce anmore » additional infrared scale for the case of confining geometries. It is shown that the UV value of the gluon condensates is universal in the sense that it only depends on the first coefficients of the difference with the AdS case.« less

  14. NASA's Space Launch System: A Heavy-Lift Platform for Entirely New Missions

    NASA Technical Reports Server (NTRS)

    Creech, Stephen A.

    2012-01-01

    The National Aeronautics and Space Administration s (NASA's) Space Launch System (SLS) will contribute a new capability for human space flight and scientific missions beyond low-Earth orbit. The SLS Program, managed at NASA s Marshall Space Fight Center, will develop the heavy-lift vehicle that will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions. Orion will carry crews to space, provide emergency abort capability, sustain the crew during space travel, and provide safe reentry from deep-space return velocities. Supporting Orion s first autonomous flight to lunar orbit and back in 2017 and its first crewed flight in 2021, the SLS ultimately offers a flexible platform for both human and scientific exploration. The SLS plan leverages legacy infrastructure and hardware in NASA s inventory, as well as continues with advanced propulsion technologies now in development, to deliver an initial 70 metric ton (t) lift capability in 2017, evolving to a 130-t capability after 2021, using a block upgrade approach. This paper will give an overview of the SLS design and management approach against a backdrop of the missions it will support. It will detail the plan to deliver the initial SLS capability to the launch pad in the near term, as well as summarize the innovative approaches the SLS team is applying to deliver a safe, affordable, and sustainable long-range capability for entirely new missions opening a new realm of knowledge and a world of possibilities for multiple partners. Design reference missions that the SLS is being planned to support include asteroids, Lagrange Points, and Mars, among others. The Agency is developing its mission manifest in parallel with the development of a heavy-lift flagship that will dramatically increase total lift and volume capacity beyond current launch vehicle options, reduce trip times, and provide a robust platform for conducting new missions destined to rewrite textbooks with the

  15. SAFE Testing Nuclear Rockets Economically

    NASA Astrophysics Data System (ADS)

    Howe, Steven D.; Travis, Bryan; Zerkle, David K.

    2003-01-01

    Several studies over the past few decades have recognized the need for advanced propulsion to explore the solar system. As early as the 1960s, Werner Von Braun and others recognized the need for a nuclear rocket for sending humans to Mars. The great distances, the intense radiation levels, and the physiological response to zero-gravity all supported the concept of using a nuclear rocket to decrease mission time. These same needs have been recognized in later studies, especially in the Space Exploration Initiative in 1989. One of the key questions that has arisen in later studies, however, is the ability to test a nuclear rocket engine in the current societal environment. Unlike the Rover/NERVA programs in the 1960s, the rocket exhaust can no longer be vented to the open atmosphere. As a consequence, previous studies have examined the feasibility of building a large-scale version of the Nuclear Furnace Scrubber that was demonstrated in 1971. We have investigated an alternative that would deposit the rocket exhaust along with any entrained fission products directly into the ground. The Subsurface Active Filtering of Exhaust, or SAFE, concept would allow variable sized engines to be tested for long times at a modest expense. A system overview, results of preliminary calculations, and cost estimates of proof of concept demonstrations are presented. The results indicate that a nuclear rocket could be tested at the Nevada Test Site for under $20 M.

  16. Space Station crew safety alternatives study. Volume 4: Appendices

    NASA Technical Reports Server (NTRS)

    Peercy, R. L., Jr.; Raasch, R. F.; Rockoff, L. A.

    1985-01-01

    The scope of this study considered the first 15 years of accumulated space station concepts for Initial Operational Capability (10C) during the early 1990's. Twenty-five threats to the space station are identified and selected threats addressed as impacting safety criteria, escape and rescue, and human factors safety concerns. Of the 25 threats identified, eight are discussed including strategy options for threat control: fire, biological or toxic contamination, injury/illness, explosion, loss of pressurization, radiation, meteoroid penetration and debris.

  17. Position space analysis of the AdS (in)stability problem

    NASA Astrophysics Data System (ADS)

    Dimitrakopoulos, Fotios V.; Freivogel, Ben; Lippert, Matthew; Yang, I.-Sheng

    2015-08-01

    We investigate whether arbitrarily small perturbations in global AdS space are generically unstable and collapse into black holes on the time scale set by gravitational interactions. We argue that current evidence, combined with our analysis, strongly suggests that a set of nonzero measure in the space of initial conditions does not collapse on this time scale. We perform an analysis in position space to study this puzzle, and our formalism allows us to directly study the vanishing-amplitude limit. We show that gravitational self-interaction leads to tidal deformations which are equally likely to focus or defocus energy, and we sketch the phase diagram accordingly. We also clarify the connection between gravitational evolution in global AdS and holographic thermalization.

  18. NASA Musculoskeletal Space Medicine and Reconditioning Program

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric; Scheuring, Richard

    2011-01-01

    The Astronaut Strength, Conditioning, and Rehabilitation (ASCR) group is comprised of certified strength and conditioning coaches and licensed and certified athletic trainers. The ASCR group works within NASA s Space Medicine Division providing direction and supervision to the astronaut corp with regards to physical readiness throughout all phases of space flight. The ASCR group is overseen by flight surgeons with specialized training in sports medicine or physical medicine and rehabilitation. The goals of the ASCR group include 1) designing and administering strength and conditioning programs that maximize the potential for physical performance while minimizing the rate of injury, 2) providing appropriate injury management and rehabilitation services, 3) collaborating with medical, research, engineering, and mission operations groups to develop and implement safe and effective in-flight exercise countermeasures, and 4) providing a structured, individualized post-flight reconditioning program for long duration crew members. This Panel will present the current approach to the management of musculoskeletal injuries commonly seen within the astronaut corp and will present an overview of the pre-flight physical training, in-flight exercise countermeasures, and post-flight reconditioning program for ISS astronauts.

  19. Constructing Digital "Safe" Space: Navigating Tensions in Transnational Feminist Organizing Online

    ERIC Educational Resources Information Center

    Linabary, Jasmine R.

    2017-01-01

    Despite decades of advocacy, women still struggle to gain access to public spaces, in particular to spaces of power such as formal governance and decision-making processes, economic sites, and media institutions. Globalization has enabled the emergence of transnational feminist organizing in response to these exclusions, yet scholars have largely…

  20. Space Toxicology: Human Health during Space Operations

    NASA Technical Reports Server (NTRS)

    Khan-Mayberry, Noreen; James, John T.; Tyl, ROchelle; Lam, Chiu-Wing

    2010-01-01

    Space Toxicology is a unique and targeted discipline for spaceflight, space habitation and occupation of celestial bodies including planets, moons and asteroids. Astronaut explorers face distinctive health challenges and limited resources for rescue and medical care during space operation. A central goal of space toxicology is to protect the health of the astronaut by assessing potential chemical exposures during spaceflight and setting safe limits that will protect the astronaut against chemical exposures, in a physiologically altered state. In order to maintain sustained occupation in space on the International Space Station (ISS), toxicological risks must be assessed and managed within the context of isolation continuous exposures, reuse of air and water, limited rescue options, and the need to use highly toxic compounds for propulsion. As we begin to explore other celestial bodies in situ toxicological risks, such as inhalation of reactive mineral dusts, must also be managed.

  1. Space industrialization. Volume 4: Appendices

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Program development and analysis and recommendations for NASA activities are discussed. The impact of international space law on future use of outer space is examined in the light of applicable international agreements. Recommendations for actions designed to facilitate space industralization are also proposed.

  2. Arabidopsis thaliana Nfu2 accommodates [2Fe-2S] or [4Fe-4S] clusters and is competent for in vitro maturation of chloroplast [2Fe-2S] and [4Fe-4S] cluster-containing proteins†

    PubMed Central

    Gao, Huanyao; Subramanian, Sowmya; Couturier, Jérémy; Naik, Sunil; Kim, Sung-Kun; Leustek, Thomas; Knaff, David B.; Wu, Hui-Chen; Vignols, Florence; Huynh, Boi Hanh; Rouhier, Nicolas; Johnson, Michael K.

    2013-01-01

    Nfu-type proteins are essential in the biogenesis of iron-sulfur (Fe-S) clusters in numerous organisms. A number of phenotypes including low levels of Fe-S cluster incorporation are associated with deletion of the gene encoding a chloroplast-specific Nfu-type protein, Nfu2 from Arabidopsis thaliana (AtNfu2). Here we report that recombinant AtNfu2 is able to assemble both [2Fe-2S] and [4Fe-4S] clusters. Analytical data and gel filtration studies support cluster/protein stoichiometries of one [2Fe-2S] cluster/homotetramer and one [4Fe-4S] cluster/homodimer. The combination of UV-visible absorption and circular dichroism, resonance Raman and Mössbauer spectroscopies has been employed to investigate the nature, properties and transfer of the clusters assembled on Nfu2. The results are consistent with subunit-bridging [2Fe-2S]2+ and [4Fe-4S]2+ clusters coordinated by the cysteines in the conserved CXXC motif. The results also provided insight into the specificity of Nfu2 for maturation of chloroplastic Fe-S proteins via intact, rapid and quantitative cluster transfer. [2Fe-2S] cluster-bound Nfu2 is shown to be an effective [2Fe-2S]2+ cluster donor for glutaredoxin S16, but not glutaredoxin S14. Moreover, [4Fe-4S] cluster-bound Nfu2 is shown to be a very rapid and efficient [4Fe-4S]2+ cluster donor for adenosine 5′-phosphosulfate reductase (APR1) and yeast two-hybrid studies indicate that APR1 forms a complex with Nfu2, but not with Nfu1 and Nfu3, the two other chloroplastic Nfu proteins. This cluster transfer is likely to be physiologically relevant and is particularly significant for plant metabolism as APR1 catalyzes the second step in reductive sulfur assimilation which ultimately results in the biosynthesis of cysteine, methionine, glutathione, and Fe-S clusters. PMID:24032747

  3. U.S. President Richard Milhous Nixon Arrives Aboard U.S.S. Hornet for Apollo 11 Recovery

    NASA Technical Reports Server (NTRS)

    1969-01-01

    U.S. President Richard Milhous Nixon (center), is saluted by the honor guard of flight deck crewmen when he arrives aboard the U.S.S. Hornet, prime recovery ship for the Apollo 11 mission, to watch recovery operations and welcome the astronauts home. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was airlifted to safety aboard the U.S.S. Hornet, where they were quartered in a Mobile Quarantine Facility (MQF) for 21 days following the mission. The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard were Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named 'Eagle'', carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. Armstrong was the first human to ever stand on the lunar surface, followed by Edwin (Buzz) Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun.

  4. 0.4 Percent Scale Space Launch System Wind Tunnel Test

    NASA Image and Video Library

    2011-11-15

    0.4 Percent Scale Space Launch System Wind Tunnel Test 0.4 Percent Scale SLS model installed in the NASA Langley Research Center Unitary Plan Wind Tunnel Test Section 1 for aerodynamic force and movement testing.

  5. Cyber Warfare: China’s Strategy to Dominate in Cyber Space

    DTIC Science & Technology

    2011-06-10

    CYBER WARFARE : CHINA‘S STRATEGY TO DOMINATE IN CYBER SPACE A thesis presented to the Faculty of the U.S. Army Command and...warfare supports the use of cyber warfare in future conflict. The IW militia unit organization provides each Chinese military region commander with...China, Strategy, Cyber Warfare , Cyber Space, Information Warfare, Electronic Warfare 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18

  6. 120 Years of U.S. Residential Housing Stock and Floor Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinto de Moura, Maria C.; Smith, Steven J.; Belzer, David B.

    2015-08-11

    Energy consumption in the residential sector accounts for one-fifth of total U.S. energy consumption and energy-related CO2 emissions. Floor space is a major driver of building energy demand. This paper develops a historical time series of total residential floor space for 1891-2010 and examines the role of socio-economic drivers GDP, population and household size on floor space. Using primarily data from the U.S. Census Bureau, we develop new construction and vintage-disaggregated housing stock for three building types, and address various data inconsistency issues. An examination of the long-term relationship of GDP and total residential floor space shows a remarkably constantmore » trend over the period. While population increases five times over the period, a 50% decrease in household size contributes towards a tenfold increase in the number of housing units and floor space, while average floor space per unit remains surprisingly constant, as a result of housing retirement dynamics. In the last 30 years, however, these trends appear to be changing, as household size shows signs of leveling off, or even increasing again, while average floor space per unit has been increasing. Total residential sector primary energy consumption and floor space show a similar growth trend over the last 60 years.« less

  7. [Safe school].

    PubMed

    Liberal, Edson Ferreira; Aires, Roberto Tschoepke; Aires, Mariana Tschoepke; Osório, Ana Carla de Albuquerque

    2005-11-01

    To review the strategies to make school a safe environment. The paper first addresses the social context of accidents and violence in the school environment, and makes recommendations, based on the literature data, for the implementation of safe schools. Articles published between 1993 and 2005 in the MEDLINE database. Brazilian epidemiological and literature data have also been searched. There is growing evidence that intervention has multiple components, focusing on health education practices, with the participation of the whole community. The aim of those interventions is to help students and community members to adopt healthy and safe behaviors. Schools are taking on an increasing role in health promotion, disease prevention, and injury prevention. In the context of prevention of external causes of morbidity and mortality, it is important to recognize a risky environment, places, and risk behaviors as favorable to injury and violence, as well as the concept of accident as something one can avoid. Implementation of safe schools represents a promising new direction for school-based preventive work. It is important to note that a safe school should intervene not only in its physical structure, but it should also make it as safe as possible by gathering the school community through health education, and mainly encouraging healthy behavior.

  8. Novel Catanionic Surfactant Vesicle Vaccines Protect against Francisella tularensis LVS and Confer Significant Partial Protection against F. tularensis Schu S4 Strain

    PubMed Central

    Richard, Katharina; Mann, Barbara J.; Stocker, Lenea; Barry, Eileen M.; Qin, Aiping; Cole, Leah E.; Hurley, Matthew T.; Ernst, Robert K.; Michalek, Suzanne M.; Stein, Daniel C.; DeShong, Philip

    2014-01-01

    Francisella tularensis is a Gram-negative immune-evasive coccobacillus that causes tularemia in humans and animals. A safe and efficacious vaccine that is protective against multiple F. tularensis strains has yet to be developed. In this study, we tested a novel vaccine approach using artificial pathogens, synthetic nanoparticles made from catanionic surfactant vesicles that are functionalized by the incorporation of either F. tularensis type B live vaccine strain (F. tularensis LVS [LVS-V]) or F. tularensis type A Schu S4 strain (F. tularensis Schu S4 [Schu S4-V]) components. The immunization of C57BL/6 mice with “bare” vesicles, which did not express F. tularensis components, partially protected against F. tularensis LVS, presumably through activation of the innate immune response, and yet it failed to protect against the F. tularensis Schu S4 strain. In contrast, immunization with LVS-V fully protected mice against intraperitoneal (i.p.) F. tularensis LVS challenge, while immunization of mice with either LVS-V or Schu S4-V partially protected C57BL/6 mice against an intranasal (i.n.) F. tularensis Schu S4 challenge and significantly increased the mean time to death for nonsurvivors, particularly following the i.n. and heterologous (i.e., i.p./i.n.) routes of immunization. LVS-V immunization, but not immunization with empty vesicles, elicited high levels of IgG against nonlipopolysaccharide (non-LPS) epitopes that were increased after F. tularensis LVS challenge and significantly increased early cytokine production. Antisera from LVS-V-immunized mice conferred passive protection against challenge with F. tularensis LVS. Together, these data indicate that functionalized catanionic surfactant vesicles represent an important and novel tool for the development of a safe and effective F. tularensis subunit vaccine and may be applicable for use with other pathogens. PMID:24351755

  9. HAL/S programmer's guide. [for space shuttle project

    NASA Technical Reports Server (NTRS)

    Newbold, P. M.; Hotz, R. L.

    1974-01-01

    The structure and symbology of the HAL/S programming language are described; this language is to be used among the flight software for the space shuttle project. The data declaration, input/output statements, and replace statements are also discussed.

  10. Space station operations task force. Panel 2 report: Ground operations and support systems

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Ground Operations Concept embodied in this report provides for safe multi-user utilization of the Space Station, eases user integration, and gives users autonomy and flexibility. It provides for meaningful multi-national participation while protecting U.S. interests. The concept also supports continued space operations technology development by maintaining NASA expertise and enabling technology evolution. Given attention here are pre/post flight operations, logistics, sustaining engineering/configuration management, transportation services/rescue, and information systems and communication.

  11. 12 CFR 238.8 - Safe and sound operations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 4 2013-01-01 2013-01-01 false Safe and sound operations. 238.8 Section 238.8... (CONTINUED) SAVINGS AND LOAN HOLDING COMPANIES (REGULATION LL) General Provisions § 238.8 Safe and sound... inconsistent with sound banking principles or the purposes of HOLA or the Financial Institutions Supervisory...

  12. 12 CFR 238.8 - Safe and sound operations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 4 2014-01-01 2014-01-01 false Safe and sound operations. 238.8 Section 238.8... (CONTINUED) SAVINGS AND LOAN HOLDING COMPANIES (REGULATION LL) General Provisions § 238.8 Safe and sound... inconsistent with sound banking principles or the purposes of HOLA or the Financial Institutions Supervisory...

  13. 12 CFR 238.8 - Safe and sound operations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 4 2012-01-01 2012-01-01 false Safe and sound operations. 238.8 Section 238.8... (CONTINUED) SAVINGS AND LOAN HOLDING COMPANIES (REGULATION LL) General Provisions § 238.8 Safe and sound... inconsistent with sound banking principles or the purposes of HOLA or the Financial Institutions Supervisory...

  14. Reactivity of Cubane-Type [(OC)(3)MFe(3)S(4)(SR)(3)](3-) Clusters (M = Mo, W): Interconversion with Cuboidal [Fe(3)S(4)](0) Clusters and Electron Transfer.

    PubMed

    Raebiger, James W.; Crawford, Charles A.; Zhou, Jian; Holm, R. H.

    1997-03-12

    The title clusters, several examples of which have been reported earlier, have been prepared by two different methods and subjected to structural and reactivity studies. The compounds (Et(4)N)(3)[(OC)(3)MFe(3)S(4)(Smes)(3)].MeCN (M = Mo/W) are isomorphous and crystallize in monoclinic space group P2(1)/n with a = 13.412(1)/13.297(1) Å, b = 19.0380(1)/18.9376(3) Å, c = 26.4210(1)/26.2949(1) Å, beta = 97.87(1)/97.549(1) degrees, and Z = 4. The clusters contain long M-S (2.62/2.59 Å) and M-Fe (3.22/3.19 Å) bonds, consistent with the reported structure of [(OC)(3)MoFe(3)S(4)(SEt)(3)](3-) (3). Reaction of [(OC)(3)MoFe(3)S(4)(LS(3))](3-) (7) with CO in the presence of NaPF(6) affords cuboidal [Fe(3)S(4)(LS(3))](3-) (9), also prepared in this laboratory by another route as a synthetic analogue of protein-bound [Fe(3)S(4)](0) clusters. The clusters [Fe(3)S(4)(SR)(3)](3-) (R = mes, Et), of limited stability, were generated by the same reaction. Treatment of 9 with [M(CO)(3)(MeCN)(3)] affords 7 and its M = W analogue. The clusters [(OC)(3)MFe(3)S(4)(SR)(3)](3-) form a four-member electron transfer series in which the 3- cluster can be once reduced (4-) and twice oxidized (2-, 1-) to afford clusters of the indicated charges. The correct assignment of redox couple to potential in the redox series of six clusters is presented, correcting an earlier misassignment of the redox series of 3. Carbonyl stretching frequencies are shown to be sensitive to cluster oxidation state, showing that the M sites and Fe(3)S(4) fragments are electronically coupled despite the long bond distances. (LS(3) = 1,3,5-tris((4,6-dimethyl-3-mercaptophenyl)thio)-2,4,6-tris(p-tolylthio)benzenate(3-); mes = mesityl.)

  15. Safe Autonomous Flight Environment (SAFE50) for the Notional Last 50 ft of Operation of 55 lb Class of UAS

    NASA Technical Reports Server (NTRS)

    Krishnakumar, Kalmanje; Kopardekar, Parimal; Ippolito, Corey; Melton, John E.; Stepanyan, Vahram; Sankararaman, Shankar; Nikaido, Ben

    2017-01-01

    The most difficult phase of small Unmanned Aerial System (sUAS) deployment is autonomous operations below the notional 50 ft in urban landscapes. Understanding the feasibility of safely flying sUAS autonomously below 50 ft is a game changer for many civilian applications. This paper outlines three areas of research currently underway which address key challenges for flight in the urban landscape. These are: (1) Off-line and On-board wind estimation and accommodation; (2) Real-time trajectory planning via characterization of obstacles using a LIDAR; (3) On-board information fusion for real-time decision-making and safe trajectory generation.

  16. Contrasting the material chemistry of Cu 2ZnSnSe 4 and Cu 2ZnSnS (4-x)Se x

    DOE PAGES

    Aguiar, Jeffery A.; Patel, Maulik; Aoki, Toshihiro; ...

    2016-02-02

    Earth-abundant sustainable inorganic thin-film solar cells, independent of precious elements, pivot on a marginal material phase space targeting specific compounds. Advanced materials characterization efforts are necessary to expose the roles of microstructure, chemistry, and interfaces. Here, the earth-abundant solar cell device, Cu 2ZnSnS (4-x)Se x, is reported, which shows a high abundance of secondary phases compared to similarly grown Cu 2ZnSnSe 4.

  17. [3Fe-4S] to [4Fe-4S] cluster conversion in Desulfovibrio fructosovorans [NiFe] hydrogenase by site-directed mutagenesis.

    PubMed

    Rousset, M; Montet, Y; Guigliarelli, B; Forget, N; Asso, M; Bertrand, P; Fontecilla-Camps, J C; Hatchikian, E C

    1998-09-29

    The role of the high potential [3Fe-4S]1+,0 cluster of [NiFe] hydrogenase from Desulfovibrio species located halfway between the proximal and distal low potential [4Fe-4S]2+,1+ clusters has been investigated by using site-directed mutagenesis. Proline 238 of Desulfovibrio fructosovorans [NiFe] hydrogenase, which occupies the position of a potential ligand of the lacking fourth Fe-site of the [3Fe-4S] cluster, was replaced by a cysteine residue. The properties of the mutant enzyme were investigated in terms of enzymatic activity, EPR, and redox properties of the iron-sulfur centers and crystallographic structure. We have shown on the basis of both spectroscopic and x-ray crystallographic studies that the [3Fe-4S] cluster of D. fructosovorans hydrogenase was converted into a [4Fe-4S] center in the P238 mutant. The [3Fe-4S] to [4Fe-4S] cluster conversion resulted in a lowering of approximately 300 mV of the midpoint potential of the modified cluster, whereas no significant alteration of the spectroscopic and redox properties of the two native [4Fe-4S] clusters and the NiFe center occurred. The significant decrease of the midpoint potential of the intermediate Fe-S cluster had only a slight effect on the catalytic activity of the P238C mutant as compared with the wild-type enzyme. The implications of the results for the role of the high-potential [3Fe-4S] cluster in the intramolecular electron transfer pathway are discussed.

  18. [3Fe-4S] to [4Fe-4S] cluster conversion in Desulfovibrio fructosovorans [NiFe] hydrogenase by site-directed mutagenesis

    PubMed Central

    Rousset, Marc; Montet, Yael; Guigliarelli, Bruno; Forget, Nicole; Asso, Marcel; Bertrand, Patrick; Fontecilla-Camps, Juan C.; Hatchikian, E. Claude

    1998-01-01

    The role of the high potential [3Fe-4S]1+,0 cluster of [NiFe] hydrogenase from Desulfovibrio species located halfway between the proximal and distal low potential [4Fe-4S]2+,1+ clusters has been investigated by using site-directed mutagenesis. Proline 238 of Desulfovibrio fructosovorans [NiFe] hydrogenase, which occupies the position of a potential ligand of the lacking fourth Fe-site of the [3Fe-4S] cluster, was replaced by a cysteine residue. The properties of the mutant enzyme were investigated in terms of enzymatic activity, EPR, and redox properties of the iron-sulfur centers and crystallographic structure. We have shown on the basis of both spectroscopic and x-ray crystallographic studies that the [3Fe-4S] cluster of D. fructosovorans hydrogenase was converted into a [4Fe-4S] center in the P238 mutant. The [3Fe-4S] to [4Fe-4S] cluster conversion resulted in a lowering of approximately 300 mV of the midpoint potential of the modified cluster, whereas no significant alteration of the spectroscopic and redox properties of the two native [4Fe-4S] clusters and the NiFe center occurred. The significant decrease of the midpoint potential of the intermediate Fe-S cluster had only a slight effect on the catalytic activity of the P238C mutant as compared with the wild-type enzyme. The implications of the results for the role of the high-potential [3Fe-4S] cluster in the intramolecular electron transfer pathway are discussed. PMID:9751716

  19. Electron excitation cross sections for the 2s(2)2p(3)4S(O) -- 2s(2)2p(3)2D(O) (forbidden) and 4S(O) -- 2s2p(4) 4P (resonance) transitions in O II

    NASA Technical Reports Server (NTRS)

    Zuo, M.; Smith, Steven J.; Chutjian, A.; Williams, I. D.; Tayal, S. S.; Mclaughlin, Brendan M.

    1995-01-01

    Experimental and theoretical excitation cross sections are reported for the first forbidden transition 4S(O) -- 2S(2)2p(3) 2D(O) (lambda-lambda 3726, 3729) and the first allowed (resonance) transition 4S(O) -- 2s2p(4) 4P(lambda-833) in O II. Use is made of electron energy loss and merged-beams methods. The electron energy range covered is 3.33 (threshold) to 15 eV for the S -- D transition, and 14.9 (threshold) to 40 eV for the S -- P transition. Care was taken to assess and minimize the metastable fraction of the O II beam. An electron mirror was designed and tested to reflect inelastically backscattered electrons into the forward direction to account for the full range of polar scattering angles. Comparisons are made between present experiments and 11-state R-matrix calculations. Calculations are also presented for the 4S(O) -- 2s(2)2p(3)2P(O) (lambda-2470) transition.

  20. NASA’s Super Guppy Transports SLS Flight Hardware to Kennedy Space Center

    NASA Image and Video Library

    2018-04-03

    NASA's Super Guppy aircraft prepares to depart the U.S. Army’s Redstone Airfield in Huntsville, Alabama, April 3, with flight hardware for NASA’s Space Launch System – the agency’s new, deep-space rocket that will enable astronauts to begin their journey to explore destinations far into the solar system. The Guppy will deliver the Orion stage adapter to NASA’s Kennedy Space Center in Florida for flight preparations. On Exploration Mission-1, the first integrated flight of the SLS and the Orion spacecraft, the adapter will connect Orion to the rocket and carry 13 CubeSats as secondary payloads. SLS will send Orion beyond the Moon, about 280,000 miles from Earth. This is farther from Earth than any spacecraft built for humans has ever traveled. For more information about SLS, visit nasa.gov/sls.

  1. Four-point functions and the permutation group S4

    NASA Astrophysics Data System (ADS)

    Eichmann, Gernot; Fischer, Christian S.; Heupel, Walter

    2015-09-01

    Four-point functions are at the heart of many interesting physical processes. A prime example is the light-by-light scattering amplitude, which plays an important role in the calculation of hadronic contributions to the anomalous magnetic moment of the muon. In the calculation of such quantities one faces the challenge of finding a suitable and well-behaved basis of tensor structures in coordinate and/or momentum space. Provided all (or many) of the external legs represent similar particle content, a powerful tool to construct and organize such bases is the permutation group S4. We introduce an efficient notation for dealing with the irreducible multiplets of S4, and we highlight the merits of this treatment by exemplifying four-point functions with gauge-boson legs such as the four-gluon vertex and the light-by-light scattering amplitude. The multiplet analysis is also useful for isolating the important kinematic regions and the dynamical singularity content of such amplitudes. Our analysis serves as a basis for future efficient calculations of these and similar objects.

  2. Sparse synthetic aperture with Fresnel elements (S-SAFE) using digital incoherent holograms

    PubMed Central

    Kashter, Yuval; Rivenson, Yair; Stern, Adrian; Rosen, Joseph

    2015-01-01

    Creating a large-scale synthetic aperture makes it possible to break the resolution boundaries dictated by the wave nature of light of common optical systems. However, their implementation is challenging, since the generation of a large size continuous mosaic synthetic aperture composed of many patterns is complicated in terms of both phase matching and time-multiplexing duration. In this study we present an advanced configuration for an incoherent holographic imaging system with super resolution qualities that creates a partial synthetic aperture. The new system, termed sparse synthetic aperture with Fresnel elements (S-SAFE), enables significantly decreasing the number of the recorded elements, and it is free from positional constrains on their location. Additionally, in order to obtain the best image quality we propose an optimal mosaicking structure derived on the basis of physical and numerical considerations, and introduce three reconstruction approaches which are compared and discussed. The super-resolution capabilities of the proposed scheme and its limitations are analyzed, numerically simulated and experimentally demonstrated. PMID:26367947

  3. Asteroidal Space Weathering: The Major Role of FeS

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Rahman, Z.; Hiroi, T.; Sasaki, S.; Noble, S. K.; Horz, F.; Cintala, M. J.

    2013-01-01

    Space weathering (SW) effects on the lunar surface are reasonably well-understood from sample analyses, remote-sensing data, and experiments, yet our knowledge of asteroidal SW effects are far less constrained. While the same SW processes are operating on asteroids and the Moon, namely solar wind irradiation, impact vaporization and condensation, and impact melting, their relative rates and efficiencies are poorly known, as are their effects on such vastly different parent materials. Asteroidal SW models based on remote-sensing data and experiments are in wide disagreement over the dominant mechanisms involved and their kinetics. Lunar space weathering effects observed in UVVIS-NIR spectra result from surface- and volume-correlated nanophase Fe metal (npFe(sup 0)) particles. In the lunar case, it is the tiny vapor-deposited npFe(sup 0) that provides much of the spectral reddening, while the coarser (largely melt-derived) npFe(sup 0) produce lowered albedos. Nanophase FeS (npFeS) particles are expected to modify reflectance spectra in much the same way as npFe(sup 0) particles. Here we report the results of experiments designed to explore the efficiency of npFeS production via the main space weathering processes operating in the asteroid belt.

  4. Space Domain Awareness

    DTIC Science & Technology

    2012-09-01

    the Space Surveillance Network has been tracking orbital objects and maintaining a catalog that allows space operators to safely operate satellites ...collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources...Distribution Unlimited) backward) in time , but the accuracy degrades as the amount of propagation time increases. Thus, the need to maintain a

  5. Space station human productivity study. Volume 4: Issues

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The 305 Issues contained represent topics recommended for study in order to develop requirements in support of space station crew performance/productivity. The overall subject matter, space station elements affecting crew productivity, was organized into a coded subelement listing, which is included for the reader's reference. Each issue is numbered according to the 5-digit topical coding scheme. The requirements column on each Issue page shows a cross-reference to the unresolved requirement statement(s). Because topical overlaps were frequently encountered, many initial Issues were consolidated. Apparent gaps, therefore, may be accounted for by an Issue described within a related subelement. A glossary of abbreviations used throughout the study documentation is also included.

  6. Brownian dynamics simulations on a hypersphere in 4-space

    NASA Astrophysics Data System (ADS)

    Nissfolk, Jarl; Ekholm, Tobias; Elvingson, Christer

    2003-10-01

    We describe an algorithm for performing Brownian dynamics simulations of particles diffusing on S3, a hypersphere in four dimensions. The system is chosen due to recent interest in doing computer simulations in a closed space where periodic boundary conditions can be avoided. We specifically address the question how to generate a random walk on the 3-sphere, starting from the solution of the corresponding diffusion equation, and we also discuss an efficient implementation based on controlled approximations. Since S3 is a closed manifold (space), the average square displacement during a random walk is no longer proportional to the elapsed time, as in R3. Instead, its time rate of change is continuously decreasing, and approaches zero as time becomes large. We show, however, that the effective diffusion coefficient can still be obtained from the time dependence of the square displacement.

  7. Space Shuttle Projects

    NASA Image and Video Library

    1988-11-07

    The STS-28 insignia was designed by the astronaut crew, who said it portrays the pride the American people have in their manned spaceflight program. It depicts America (the eagle) guiding the space program (the Space Shuttle) safely home from an orbital mission. The view looks south on Baja California and the west coast of the United States as the space travelers re-enter the atmosphere. The hypersonic contrails created by the eagle and Shuttle represent the American flag. The crew called the simple boldness of the design symbolic of America's unfaltering commitment to leadership in the exploration and development of space.

  8. Space Station Freedom - Status of the U.S. segment

    NASA Technical Reports Server (NTRS)

    Bartoe, John David F.

    1990-01-01

    An overview of the Space Station Freedom program is given. The results of a technical audit of the U.S. program, and the reorganization taking place at NASA HQ are discussed. Some areas resolved in the past year such as the type of power to be delivered to each pressurized module and the definition of common payload interfaces within all modules are reviewed. The utility of the Space Station Freedom is emphasized.

  9. Extending Wheeler’s delayed-choice experiment to space

    PubMed Central

    Vedovato, Francesco; Agnesi, Costantino; Schiavon, Matteo; Dequal, Daniele; Calderaro, Luca; Tomasin, Marco; Marangon, Davide G.; Stanco, Andrea; Luceri, Vincenza; Bianco, Giuseppe; Vallone, Giuseppe; Villoresi, Paolo

    2017-01-01

    Gedankenexperiments have consistently played a major role in the development of quantum theory. A paradigmatic example is Wheeler’s delayed-choice experiment, a wave-particle duality test that cannot be fully understood using only classical concepts. We implement Wheeler’s idea along a satellite-ground interferometer that extends for thousands of kilometers in space. We exploit temporal and polarization degrees of freedom of photons reflected by a fast-moving satellite equipped with retroreflecting mirrors. We observe the complementary wave- or particle-like behaviors at the ground station by choosing the measurement apparatus while the photons are propagating from the satellite to the ground. Our results confirm quantum mechanical predictions, demonstrating the need of the dual wave-particle interpretation at this unprecedented scale. Our work paves the way for novel applications of quantum mechanics in space links involving multiple photon degrees of freedom. PMID:29075668

  10. DoD Space S and T Community of Interest Presentation to National Defense University (Briefing charts)

    DTIC Science & Technology

    2015-09-30

    DoD Space S &T Community of Interest Presentation to National Defense University 30 September 2015 Dr. John Stubstad Space S &T COI Chair...STRATEGY 2015 Photo: Coronal mass ejection as recorded by NASA, August 31, 2014 DoD Space S &T Strategy • Biennial report to Congress – updated...advantages enabled by space systems at the strategic, operational, and tactical levels • Looks across the entire DoD Space S &T Enterprise

  11. Safe surgical technique for associated acetabular fractures

    PubMed Central

    2013-01-01

    Associated acetabular fractures are challenging injuries to manage. The complex surgical approaches and the technical difficulty in achieving anatomical reduction imply that the learning curve to achieve high-quality care of patients with such challenging injuries is extremely steep. This first article in the Journal’sSafe Surgical Technique” section presents the standard surgical care, in conjunction with intraoperative tips and tricks, for the safe management of all subgroups of associated acetabular fractures. PMID:23414782

  12. Safe and secure at work?: findings from the 2002 Workplace Risk Supplement.

    PubMed

    Jenkins, E Lynn; Fisher, Bonnie S; Hartley, Dan

    2012-01-01

    To examine employee's perception of safety and related workplace safety and prevention issues, including their use of self-protection measures and victimization experience. The Workplace Risk Supplement (WRS) to the National Crime Victimization Survey (NCVS) was administered to 55,158 employed respondents who were 16 years or older. Trained U.S. Census Bureau interviewers administered the WRS in all households selected for the NCVS during the 6-month reference period from January through June 2002. Responses from the 55,158 WRS respondents were weighted to obtain national estimates, resulting in 142,410,858 cases. The demographic distribution of WRS respondents is very similar to that of the U.S. labor force. Seven percent of respondents reported that they worried about someone in their workplace attacking them, while nearly 4% experienced victimization. The majority indicated that they felt that their workplace, the neighborhood around their workplace, and places they traveled to as part of their job were either "Very Safe" or "Somewhat Safe" from crime. Six percent carried some type of self protection while at work although this varied by occupation. Employees largely feel safe from violence while working. Differences in victimization by occupation bolster efforts to focus workplace violence prevention in high-risk occupations.

  13. Clearance Analysis of CTC2 (on ELC4) to S-TRRJ HRS Radiator Rotation Envelope

    NASA Technical Reports Server (NTRS)

    Liddle, Donn

    2014-01-01

    In response to the planned retirement of the Space Shuttle Program, International Space Station (ISS) management began stockpiling spare parts on the ISS. Many of the larger orbital replacement units were stored on the Expedite the Processing of Experiments to Space Station (EXPRESS) Logistics Carriers (ELCs) mounted on the end of the S3 and P3 truss segments, immediately outboard of the Thermal Radiator Rotary Joints (TRRJs) and their attached radiators. In an August 2009 computer-aided design (CAD) assessment, it was determined that mounting the Cargo Transport Container (CTC) 2 on the inboard face of ELC4 as planned would create insufficient clearance between the CTC2 and the rotational envelope of the radiators when the TRRJs were rotated to a gamma angle of 35.0 degrees. The true clearance would depend on how the Unpressurized Cargo Carrier Attachment System (UCCAS) was mounted to the S3 truss and how the ELC4 was attached to it. If the plane of the UCCAS attachment points were tilted even slightly inboard, it would significantly change the clearance between CTC2 and the Starboard TRRJ (S-TRRJ) radiators. Additionally, since CTC2 would be covered in multilayer insulation (MLI), the true outer profile of CTC2 was not captured in the CAD models used for the clearance assessment. It was possible that, even if the S-TRRJ radiators cleared CTC2, they could snag the MLI covering. In the fall of 2010, the Image Science and Analysis Group (ISAG) was asked to perform an on-orbit clearance analysis to determine the location of CTC2 on ELC4 and the S-TRRJ radiators at the angle of closest approach so that a positive clearance could be assured. To provide the measurements as quickly as possible to aid in the assessment, it was decided that the clearance analysis would be broken into two phases. Phase I: The location and orientation of the UCCAS fittings, which support and hold the ELC4 in place, would be measured relative to the ISS Analytical Coordinate System (ISSACS

  14. SU-F-J-158: Respiratory Motion Resolved, Self-Gated 4D-MRI Using Rotating Cartesian K-Space Sampling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, F; Zhou, Z; Yang, Y

    Purpose: Dynamic MRI has been used to quantify respiratory motion of abdominal organs in radiation treatment planning. Many existing 4D-MRI methods based on 2D acquisitions suffer from limited slice resolution and additional stitching artifacts when evaluated in 3D{sup 1}. To address these issues, we developed a 4D-MRI (3D dynamic) technique with true 3D k-space encoding and respiratory motion self-gating. Methods: The 3D k-space was acquired using a Rotating Cartesian K-space (ROCK) pattern, where the Cartesian grid was reordered in a quasi-spiral fashion with each spiral arm rotated using golden angle{sup 2}. Each quasi-spiral arm started with the k-space center-line, whichmore » were used as self-gating{sup 3} signal for respiratory motion estimation. The acquired k-space data was then binned into 8 respiratory phases and the golden angle ensures a near-uniform k-space sampling in each phase. Finally, dynamic 3D images were reconstructed using the ESPIRiT technique{sup 4}. 4D-MRI was performed on 6 healthy volunteers, using the following parameters (bSSFP, Fat-Sat, TE/TR=2ms/4ms, matrix size=500×350×120, resolution=1×1×1.2mm, TA=5min, 8 respiratory phases). Supplemental 2D real-time images were acquired in 9 different planes. Dynamic locations of the diaphragm dome and left kidney were measured from both 4D and 2D images. The same protocol was also performed on a MRI-compatible motion phantom where the motion was programmed with different amplitude (10–30mm) and frequency (3–10/min). Results: High resolution 4D-MRI were obtained successfully in 5 minutes. Quantitative motion measurements from 4D-MRI agree with the ones from 2D CINE (<5% error). The 4D images are free of the stitching artifacts and their near-isotropic resolution facilitates 3D visualization and segmentation of abdominal organs such as the liver, kidney and pancreas. Conclusion: Our preliminary studies demonstrated a novel ROCK 4D-MRI technique with true 3D k-space encoding and

  15. Particulate electron beam weld emission hazards in space

    NASA Technical Reports Server (NTRS)

    Bunton, Patrick H.

    1996-01-01

    The electron-beam welding process is well adapted to function in the environment of space. The Soviets were the first to demonstrate welding in space in the mid-1980's. Under the auspices of the International Space Welding Experiment (ISWE), an on-orbit test of a Ukrainian designed electron-beam welder (the Universal Hand Tool or 'UHT') is scheduled for October of 1997. The potential for sustained presence in space with the development of the international space station raises the possibility of the need for construction and repair in space. While welding is not scheduled to be used in the assembly of the space station, repair of damage from orbiting debris or meteorites is a potential need. Furthermore, safe and successful welding in the space environment may open new avenues for design and construction. The safety issue has been raised with regard to hot particle emissions (spatter) sometimes observed from the weld during operations. On earth the hot particles pose no particular hazard, but in space there exists the possibility for burn-through of the space suit which could be potentially lethal. Contamination of the payload bay by emitted particles could also be a problem.

  16. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    The Marshall Space Flight Center (MSFC) is responsible for designing and building the life support systems that will provide the crew of the International Space Station (ISS) a comfortable environment in which to live and work. Scientists and engineers at the MSFC are working together to provide the ISS with systems that are safe, efficient, and cost-effective. These compact and powerful systems are collectively called the Environmental Control and Life Support Systems, or simply, ECLSS. This is a view of the ECLSS and the Internal Thermal Control System (ITCS) Test Facility in building 4755, MSFC. In the foreground is the 3-module ECLSS simulator comprised of the U.S. Laboratory Module Simulator, Node 1 Simulator, and Node 3/Habitation Module Simulator. At center left is the ITCS Simulator. The main function of the ITCS is to control the temperature of equipment and hardware installed in a typical ISS Payload Rack.

  17. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    The Marshall Space Flight Center (MSFC) is responsible for designing and building the life support systems that will provide the crew of the International Space Station (ISS) a comfortable environment in which to live and work. Scientists and engineers at the MSFC are working together to provide the ISS with systems that are safe, efficient, and cost-effective. These compact and powerful systems are collectively called the Environmental Control and Life Support Systems, or simply, ECLSS. This is a view of the ECLSS and the Internal Thermal Control System (ITCS) Test Facility in building 4755, MSFC. In the foreground is the 3-module ECLSS simulator comprised of the U.S. Laboratory Module Simulator, Node 1 Simulator, and Node 3/Habitation Module Simulator. On the left is the ITCS Simulator. The main function of the ITCS is to control the temperature of equipment and hardware installed in a typical ISS Payload Rack.

  18. 120 Years of U.S. Residential Housing Stock and Floor Space.

    PubMed

    Moura, Maria Cecilia P; Smith, Steven J; Belzer, David B

    2015-01-01

    Residential buildings are a key driver of energy consumption and also impact transportation and land-use. Energy consumption in the residential sector accounts for one-fifth of total U.S. energy consumption and energy-related CO2 emissions, with floor space a major driver of building energy demands. In this work a consistent, vintage-disaggregated, annual long-term series of U.S. housing stock and residential floor space for 1891-2010 is presented. An attempt was made to minimize the effects of the incompleteness and inconsistencies present in the national housing survey data. Over the 1891-2010 period, floor space increased almost tenfold, from approximately 24,700 to 235,150 million square feet, corresponding to a doubling of floor space per capita from approximately 400 to 800 square feet. While population increased five times over the period, a 50% decrease in household size contributed towards a tenfold increase in the number of housing units and floor space, while average floor space per unit remains surprisingly constant, as a result of housing retirement dynamics. In the last 30 years, however, these trends appear to be changing, as household size shows signs of leveling off, or even increasing again, while average floor space per unit has been increasing. GDP and total floor space show a remarkably constant growth trend over the period and total residential sector primary energy consumption and floor space show a similar growth trend over the last 60 years, decoupling only within the last decade.

  19. Calculation of the total electron excitation cross section in the Born approximation using Slater wave functions for the Li (2s yields 2p), Li (2s yields 3p), Na (3s yields 4p), Mg (3p yields 4s), Ca (4s yields 4p) and K (4s yields 4p) excitations. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Simsic, P. L.

    1974-01-01

    Excitation of neutral atoms by inelastic scattering of incident electrons in gaseous nebulae were investigated using Slater Wave functions to describe the initial and final states of the atom. Total cross sections using the Born Approximation are calculated for: Li(2s yields 2p), Na(3s yields 4p), k(4s yields 4p). The intensity of emitted radiation from gaseous nebulae is also calculated, and Maxwell distribution is employed to average the kinetic energy of electrons.

  20. Safe injection practice among health care workers, Gharbiya, Egypt.

    PubMed

    Ismail, Nanees A; Aboul Ftouh, Aisha M; El Shoubary, Waleed H

    2005-01-01

    A cross-sectional study was conducted in 25 health care facilities in Gharbiya governorate to assess safe injection practices among health care workers (HCWs). Two questionnaires, one to collect information about administrative issues related to safe injection and the other to collect data about giving injections, exposure to needle stick injuries, hepatitis B vaccination status and safe injection training. Practices of injections were observed using a standardized checklist. The study revealed that there was lack of both national and local infection control policies and lack of most of the supplies needed for safe injection practices. Many safe practices were infrequent as proper needle manipulation before disposal (41%), safe needle disposal (47.5%), reuse of used syringe & needle (13.2%) and safe syringe disposal (0%). Exposure to needle stick injuries were common among the interviewed HCWs (66.2%) and hand washing was the common post exposure prophylaxis measure (63.4%). Only 11.3% of HCWs had full course hepatitis B vaccination. Infection control -including safe injections- training programs should be afforded to all HCWs.

  1. Marshall Space Flight Center Materials and Processes Laboratory

    NASA Technical Reports Server (NTRS)

    Tramel, Terri L.

    2012-01-01

    Marshall?s Materials and Processes Laboratory has been a core capability for NASA for over fifty years. MSFC has a proven heritage and recognized expertise in materials and manufacturing that are essential to enable and sustain space exploration. Marshall provides a "systems-wise" capability for applied research, flight hardware development, and sustaining engineering. Our history of leadership and achievements in materials, manufacturing, and flight experiments includes Apollo, Skylab, Mir, Spacelab, Shuttle (Space Shuttle Main Engine, External Tank, Reusable Solid Rocket Motor, and Solid Rocket Booster), Hubble, Chandra, and the International Space Station. MSFC?s National Center for Advanced Manufacturing, NCAM, facilitates major M&P advanced manufacturing partnership activities with academia, industry and other local, state and federal government agencies. The Materials and Processes Laborato ry has principal competencies in metals, composites, ceramics, additive manufacturing, materials and process modeling and simulation, space environmental effects, non-destructive evaluation, and fracture and failure analysis provide products ranging from materials research in space to fully integrated solutions for large complex systems challenges. Marshall?s materials research, development and manufacturing capabilities assure that NASA and National missions have access to cutting-edge, cost-effective engineering design and production options that are frugal in using design margins and are verified as safe and reliable. These are all critical factors in both future mission success and affordability.

  2. Approaching Suspicious Substances Safely

    NASA Technical Reports Server (NTRS)

    2004-01-01

    A mineral identification tool that was developed for NASA's Mars Rover Technology Development program is now serving as a powerful tool for U.S. law enforcement agencies and military personnel to identify suspicious liquid and solid substances. The tool can measure unknown substances through glass and plastic packaging materials with the RamanProbe(TradeMark) focused fiber-optic probe. The probe length can be extended up to 200 meters to enable users to analyze potentially dangerous substances at a safe distance. In many cases, the spectrometer and personnel are kept in a safe zone while the probe is positioned next to the sample being analyzed. Being able to identify chemicals in remote locations also saves users time and labor, since otherwise the samples would need to be collected, transported, and prepared prior to measurement in the laboratory.

  3. Origin of the extremely large magnetoresistance in topological semimetal PtS n4

    NASA Astrophysics Data System (ADS)

    Luo, X.; Xiao, R. C.; Chen, F. C.; Yan, J.; Pei, Q. L.; Sun, Y.; Lu, W. J.; Tong, P.; Sheng, Z. G.; Zhu, X. B.; Song, W. H.; Sun, Y. P.

    2018-05-01

    PtS n4 with extremely large magnetoresistance (XMR), a fascinating topological material platform, hosts a novel topological structure and Dirac node arcs, in which the Dirac nodes form closed loops in the momentum space. Here we performed the angular dependent magnetoresistivity (AMR), Hall effect, heat capacity measurements, and first-principles calculations to study the electronic properties of topological semimetal PtS n4 . There are some interesting observations on PtS n4 . (1) In the different experimental probes, we observed the anomalies around T ˜55 K . Significant changes of the transport results and the heat capacity have been observed, indicating successive Fermi surface reconstruction induced by the temperature. It means there is Lifshitz transition (LT) induced by the temperature in PtS n4 . (2) The perfect compensation between the electron and hole has been found around T ˜30 K , where the XMR appears, which is confirmed by the Hall effect measurements and the first-principles calculations. The XMR effect in PtS n4 is suggested to originate from the combination of the electron-hole compensation and a particular orbital texture on the electron pocket. Meanwhile, we also found that LT seems to serve as a knob for the novel topological properties in two-dimensional (2D) topological semimetals (TSMs).

  4. Critically safe volume vacuum pickup for use in wet or dry cleanup of radioactive enclosures

    DOEpatents

    Zeren, J.D.

    1993-12-28

    A physical compact vacuum pickup device of critically safe volume and geometric shape is provided for use in radioactive enclosures, such as a small glove box, to facilitate manual cleanup of either wet or dry radioactive material. The device is constructed and arranged so as to remain safe when filled to capacity with plutonium-239 oxide. Two fine mesh filter bags are supported on the exterior of a rigid fine mesh stainless steel cup. This assembly is sealed within, and spaced from, the interior walls of a stainless steel canister. An air inlet communicates with the interior of the canister. A modified conventional vacuum head is physically connected to, and associated with, the interior of the mesh cup. The volume of the canister, as defined by the space between the mesh cup and the interior walls of the canister, forms a critically safe volume and geometric shape for dry radioactive particles that are gathered within the canister. A critically safe liquid volume is maintained by operation of a suction terminating float valve, and/or by operation of redundant vacuum check/liquid drain valves and placement of the air inlet. 5 figures.

  5. Critically safe volume vacuum pickup for use in wet or dry cleanup of radioactive enclosures

    DOEpatents

    Zeren, Joseph D.

    1993-12-28

    A physical compact vacuum pickup device of critically safe volume and geometric shape is provided for use in radioactive enclosures, such as a small glove box, to facilitate manual cleanup of either wet or dry radioactive material. The device is constructed and arranged so as to remain safe when filled to capacity with plutonium-239 oxide. Two fine mesh filter bags are supported on the exterior of a rigid fine mesh stainless steel cup. This assembly is sealed within, and spaced from, the interior walls of a stainless steel canister. An air inlet communicates with the interior of the canister. A modified conventional vacuum head is physically connected to, and associated with, the interior of the mesh cup. The volume of the canister, as defined by the space between the mesh cup and the interior walls of the canister, forms a critically safe volume and geometric shape for dry radioactive particles that are gathered within the canister. A critically safe liquid volume is maintained by operation of a suction terminating float valve, and/or by operation of redundant vacuum check/liquid drain valves and placement of the air inlet.

  6. Albuquerque police department's Safe Streets program

    DOT National Transportation Integrated Search

    2001-06-01

    The origins and results of the Albuquerque Police Department;s "Safe Streets" program are discussed. Influenced by the "broken windows" theory espoused by criminologist George Kelling and spurred to action over public outcry over several cases of fat...

  7. Super reduced Fe4S4 cluster of Balch's dithiolene series.

    PubMed

    Begum, Ameerunisha; Moula, Golam; Bose, Moumita; Sarkar, Sabyasachi

    2012-03-28

    A super reduced Fe(4)S(4) cluster with a sulfur based radical, [NBu(4)](4)[Fe(3)(III)Fe(II)(μ(3)-S)(4)(mnt)(3)(6-)(mnt)(1-)˙](4-)˙, (1) (mnt, maleonitrile dithiolate) which evolves H(2)S gas on treatment with acid under ambient conditions has been synthesized and structurally characterized. The Fe-S distances in 1 are in the range 2.246-2.383 Å, in stark contrast to that of the known n = -2 member of the series based on the [Fe(4)(μ(3)-S)(4)(S(2)C(2)R(2))(4)](n) unit (R = CF(3), Ph) with Fe-S bond lengths of 2.149-2.186 Å. The EPR of 1 displays very weak signals at g, 4.03 and 2.38 along with a strong S-based radical EPR signal at g, 2.003 associated with five structured components tentatively assigned to hyperfine interaction arising out of the naturally abundant (57)Fe with = 88 G. The EPR profile resembles the reduced Fe-S cluster of CO inhibited Clostridium pasteurianum W5 hydrogenase or the Fe(4)S(4) centers of wild-type enzyme, IspH treated with HMBPP or IPP.

  8. Effects of Control Hysteresis on the Space Shuttle Orbiter's Entry. M.S. Thesis - George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Powell, R. W.

    1975-01-01

    There are six degree-of-freedom simulations of the space shuttle orbiter entry with aerodynamic control hysteresis conducted on the NASA Langley Research Center interactive simulator known as the Automatic Reentry Flight Dynamics Simulator. These were performed to determine if the presence of aerodynamic control hysteresis would endanger the mission, either by making the vehicle unable to maintain proper attitude for a safe entry, or by increasing the amount of the reaction control system's fuel consumption beyond that carried.

  9. N4H9Cu7S4: a hydrazinium-based salt with a layered Cu7S4- framework.

    PubMed

    Mitzi, David B

    2007-02-05

    Crystals of a hydrazinium-based copper(I) sulfide salt, N4H9Cu7S4 (1), have been isolated by an ambient temperature solution-based process. In contrast to previously reported hydrazinium salts of main-group metal chalcogenides, which consist of isolated metal chalcogenide anions, and ACu7S4 (A = NH4+, Rb+, Tl+, K+), which contains a more three-dimensional Cu7S4- framework with partial Cu-site occupancy, the structure of 1 [P21, a = 6.8621(4) A, b = 7.9851(4) A, c = 10.0983(5) A, beta = 99.360(1) degrees , Z = 2] is composed of extended two-dimensional Cu7S4- slabs with full Cu-site occupancy. The Cu7S4- slabs are separated by a mixture of hydrazinium and hydrazine moieties. Thermal decomposition of 1 into copper(I) sulfide proceeds at a significantly lower temperature than that observed for analogous hydrazinium salts of previously considered metal chalcogenides, completing the transition at temperatures as low as 120 degrees C. Solutions of 1 may be used in the solution deposition of a range of Cu-containing chalcogenide films.

  10. Apollo 6 unmanned space mission launch

    NASA Image and Video Library

    1968-04-04

    S68-27364 (4 April 1968) --- The Apollo 6 (Spacecraft 020/Saturn 502) unmanned space mission was launched from Pad A, Launch Complex 39, Kennedy Space Center (KSC), Florida. The liftoff of the huge Apollo/Saturn V space vehicle occurred at 7:00:01.5 a.m. (EST), April 4, 1968.

  11. International Space Station (ISS)

    NASA Image and Video Library

    2005-07-28

    Launched on July 26, 2005 from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. A major focus of the mission was the testing and evaluation of new Space Shuttle flight safety, which included new inspection and repair techniques. Upon its approach to the International Space Station (ISS), the Space Shuttle Discovery underwent a photography session in order to assess any damages that may have occurred during its launch and/or journey through Space. Discovery was over Switzerland, about 600 feet from the ISS, when Cosmonaut Sergei K. Kriklev, Expedition 11 Commander, and John L. Phillips, NASA Space Station officer and flight engineer photographed the spacecraft as it performed a back flip to allow photography of its heat shield. Astronaut Eileen M. Collins, STS-114 Commander, guided the shuttle through the flip. The photographs were analyzed by engineers on the ground to evaluate the condition of Discovery’s heat shield. The crew safely returned to Earth on August 9, 2005. The mission historically marked the Return to Flight after nearly a two and one half year delay in flight after the Space Shuttle Columbia tragedy in February 2003.

  12. International Space Station (ISS)

    NASA Image and Video Library

    2005-07-28

    Launched on July 26, 2005, from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. A major focus of the mission was the testing and evaluation of new Space Shuttle flight safety, which included new inspection and repair techniques. Upon its approach to the International Space Station (ISS), the Space Shuttle Discovery underwent a photography session in order to assess any damages that may have occurred during its launch and/or journey through Space. Discovery was over Switzerland, about 600 feet from the ISS, when Cosmonaut Sergei K. Kriklev, Expedition 11 Commander, and John L. Phillips, NASA Space Station officer and flight engineer photographed the under side of the spacecraft as it performed a back flip to allow photography of its heat shield. Astronaut Eileen M. Collins, STS-114 Commander, guided the shuttle through the flip. The photographs were analyzed by engineers on the ground to evaluate the condition of Discovery’s heat shield. The crew safely returned to Earth on August 9, 2005. The mission historically marked the Return to Flight after nearly a two and one half year delay in flight after the Space Shuttle Columbia tragedy in February 2003.

  13. International Space Station (ISS)

    NASA Image and Video Library

    2005-07-28

    Launched on July 26, 2005 from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. A major focus of the mission was the testing and evaluation of new Space Shuttle flight safety, which included new inspection and repair techniques. Upon its approach to the International Space Station (ISS), the Space Shuttle Discovery underwent a photography session in order to assess any damages that may have occurred during its launch and/or journey through Space. Discovery was over Switzerland, about 600 feet from the ISS, when Cosmonaut Sergei K. Kriklev, Expedition 11 Commander, and John L. Phillips, NASA Space Station officer and flight engineer photographed the under side of the spacecraft as it performed a back flip to allow photography of its heat shield. Astronaut Eileen M. Collins, STS-114 Commander, guided the shuttle through the flip. The photographs were analyzed by engineers on the ground to evaluate the condition of Discovery’s heat shield. The crew safely returned to Earth on August 9, 2005. The mission historically marked the Return to Flight after nearly a two and one half year delay in flight after the Space Shuttle Columbia tragedy in February 2003.

  14. Tungsten phosphanylarylthiolato complexes [W{PhP(2-SC6H4)2-kappa3S,S',P} 2] and [W{P(2-SC6H4)3-kappa4S,S',S",P}2]: synthesis, structures and redox chemistry.

    PubMed

    Hildebrand, Alexandra; Lönnecke, Peter; Silaghi-Dumitrescu, Luminita; Hey-Hawkins, Evamarie

    2008-09-14

    PhP(2-SHC6H4)2 (PS2H2) reacts with WCl6 with reduction of tungsten to give the air-sensitive tungsten(IV) complex [W{PhP(2-SC6H4)2-kappa(3)S,S',P}2] (1). 1 is oxidised in air to [WO{PhPO(2-SC6H4)2-kappa(3)S,S',O}{PhP(2-SC6H4)2-kappa(3)S,S',P}] (2). The attempted synthesis of 2 by reaction of 1 with iodosobenzene as oxidising agent was unsuccessful. [W{P(2-SC6H4)3-kappa(4)S,S',S",P}2] (3) was formed in the reaction of P(2-SHC6H4)3 (PS3H3) with WCl6. The W(VI) complex 3 contains two PS3(3-) ligands, each coordinated in a tetradentate fashion resulting in a tungsten coordination number of eight. The reaction of 3 with AgBF4 yields the dinuclear tungsten complex [W2{P(2-SC6H4)3-kappa(4)S,S',S",P}3]BF4 (4). Complexes 1-4 were characterised by spectral methods and X-ray structure determination.

  15. Structure determination of two structural analogs, named 3-[1-(2-fluoro-4-biphenyl)ethyl]-6-(4-fluorophenyl)-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole (C23H16F2N4S) and 3-[1-(2-fluoro-4-biphenyl)ethyl]-6-(4-chlorophenyl)-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole (C23H16ClFN4S) by synchrotron X-ray powder diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gündoğdu, Gülsüm; Aytaç, Sevim Peri; Müller, Melanie

    Two novel compounds, 3-[1-(2-fluoro-4-biphenyl)ethyl]-6-(4-fluorophenyl)-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole (C 23H 16F 2N 4S) (1) and 3-[1-(2-fluoro-4-biphenyl)ethyl]-6-(4-chlorophenyl)-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole (C 23H 16ClFN 4S) (2), have been designed and synthesized as cytotoxic agents. The compounds were characterized by infrared, proton nuclear magnetic resonance, mass spectral data, elemental analysis and X-ray powder diffraction. The present study comprises spectral data and crystal structures of these novel compounds determined from synchrotron X-ray powder diffraction data. The structure solutions were obtained by simulated annealing. The final structures were achieved by Rietveld refinement using soft restraints for all bond lengths, bond angles, and planar groups. Both compounds crystallize in space groupmore » $$P\\bar 1$$,Z= 2, with the unit-cell parametersa= 6.37433(9),b= 11.3641(2),c= 14.09115(19) Å,α= 80.1740(8)°,β= 85.1164(8)°,γ= 80.9831(10)°,V= 991.55(3) Å 3of compound (1) anda= 6.53736(6),b= 11.55725(15),c= 14.01373(13) Å,α= 80.3323(7)°,β= 84.8939(6)°,γ= 79.3954(8)°,V= 1024.08(2) Å 3of compound (2). Structural analyses reveal that the title compounds are isostructural.« less

  16. More than a Safe Space: How Schools Can Enable LGBTQ Students to Thrive

    ERIC Educational Resources Information Center

    Sadowski, Michael

    2017-01-01

    Few educators or philosophers of education would argue that schools' sole purpose is to keep children safe. Yet a particular subset of students in the United States--lesbian, gay, bisexual, transgender, queer, and questioning (LGBTQ) students--are often served by their schools as if their mere safety were a sufficient objective in and of itself.…

  17. SpaceX Dragon Parachute Test

    NASA Image and Video Library

    2018-03-04

    SpaceX performed its fourteenth overall parachute test supporting Crew Dragon development. This most recent exercise was the first of several planned parachute system qualification tests ahead of the spacecraft’s first crewed flight and resulted in the successful touchdown of Crew Dragon’s parachute system. During this test, a C-130 aircraft transported the parachute test vehicle, designed to achieve the maximum speeds that Crew Dragon could experience on re-entry, over the Mojave Desert in Southern California and dropped the vehicle from an altitude of 25,000 feet. The test demonstrated an off-nominal situation, deploying only one of the two drogue chutes and intentionally skipping a reefing stage on one of the four main parachutes, proving a safe landing in such a contingency scenario.

  18. An Introductory Packet on Violence Prevention and Safe Schools

    ERIC Educational Resources Information Center

    Center for Mental Health in Schools at UCLA, 2007

    2007-01-01

    This publication presents a collection of resources on violence prevention and safe schools. This document contains the following parts: (1) Introduction; (2) A Few Resource Aids; (3) Public Policy and Funding Opportunities; (4) More Resource Aids on Violence Prevention and Safe Schools; and (5) Concluding Comment. Individual sections contain…

  19. Experience with fluorine and its safe use as a propellant

    NASA Technical Reports Server (NTRS)

    Bond, D. L.; Guenther, M. E.; Stimpson, L. D.; Toth, L. R.; Young, D. L.

    1979-01-01

    The industrial and the propulsion experience with fluorine and its derivatives is surveyed. The hazardous qualities of fluorine and safe handling procedures for the substance are emphasized. Procedures which fulfill the safety requirements during ground operations for handling fluorinated propulsion systems are discussed. Procedures to be implemented for use onboard the Space Transportation System are included.

  20. How Safe Are Our Schools?

    ERIC Educational Resources Information Center

    Mayer, Matthew J.; Furlong, Michael J.

    2010-01-01

    Schools are basically safe places for children. School violence and disruption, although in decline through the mid- to late 1990s, remains a concern. National surveys that inform research, policy, and practice have been designed for different purposes and can present conflicting findings. Common standards of risk and harm that could advance…

  1. 120 years of U.S. residential housing stock and floor space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moura, Maria Cecilia P.; Smith, Steven J.; Belzer, David B.

    Residential buildings are a key driver of energy consumption and also impact transportation and land-use. Energy consumption in the residential sector accounts for one-fifth of total U.S. energy consumption and energy-related CO₂ emissions, with floor space a major driver of building energy demands. In this work a consistent, vintage-disaggregated, annual long-term series of U.S. housing stock and residential floor space for 1891–2010 is presented. An attempt was made to minimize the effects of the incompleteness and inconsistencies present in the national housing survey data. Over the 1891–2010 period, floor space increased almost tenfold, from approximately 24,700 to 235,150 million squaremore » feet, corresponding to a doubling of floor space per capita from approximately 400 to 800 square feet. While population increased five times over the period, a 50% decrease in household size contributed towards a tenfold increase in the number of housing units and floor space, while average floor space per unit remains surprisingly constant, as a result of housing retirement dynamics. In the last 30 years, however, these trends appear to be changing, as household size shows signs of leveling off, or even increasing again, while average floor space per unit has been increasing. GDP and total floor space show a remarkably constant growth trend over the period and total residential sector primary energy consumption and floor space show a similar growth trend over the last 60 years, decoupling only within the last decade.« less

  2. 120 Years of U.S. Residential Housing Stock and Floor Space

    PubMed Central

    Moura, Maria Cecilia P.; Smith, Steven J.; Belzer, David B.

    2015-01-01

    Residential buildings are a key driver of energy consumption and also impact transportation and land-use. Energy consumption in the residential sector accounts for one-fifth of total U.S. energy consumption and energy-related CO2 emissions, with floor space a major driver of building energy demands. In this work a consistent, vintage-disaggregated, annual long-term series of U.S. housing stock and residential floor space for 1891–2010 is presented. An attempt was made to minimize the effects of the incompleteness and inconsistencies present in the national housing survey data. Over the 1891–2010 period, floor space increased almost tenfold, from approximately 24,700 to 235,150 million square feet, corresponding to a doubling of floor space per capita from approximately 400 to 800 square feet. While population increased five times over the period, a 50% decrease in household size contributed towards a tenfold increase in the number of housing units and floor space, while average floor space per unit remains surprisingly constant, as a result of housing retirement dynamics. In the last 30 years, however, these trends appear to be changing, as household size shows signs of leveling off, or even increasing again, while average floor space per unit has been increasing. GDP and total floor space show a remarkably constant growth trend over the period and total residential sector primary energy consumption and floor space show a similar growth trend over the last 60 years, decoupling only within the last decade. PMID:26263391

  3. 120 years of U.S. residential housing stock and floor space

    DOE PAGES

    Moura, Maria Cecilia P.; Smith, Steven J.; Belzer, David B.; ...

    2015-08-11

    Residential buildings are a key driver of energy consumption and also impact transportation and land-use. Energy consumption in the residential sector accounts for one-fifth of total U.S. energy consumption and energy-related CO₂ emissions, with floor space a major driver of building energy demands. In this work a consistent, vintage-disaggregated, annual long-term series of U.S. housing stock and residential floor space for 1891–2010 is presented. An attempt was made to minimize the effects of the incompleteness and inconsistencies present in the national housing survey data. Over the 1891–2010 period, floor space increased almost tenfold, from approximately 24,700 to 235,150 million squaremore » feet, corresponding to a doubling of floor space per capita from approximately 400 to 800 square feet. While population increased five times over the period, a 50% decrease in household size contributed towards a tenfold increase in the number of housing units and floor space, while average floor space per unit remains surprisingly constant, as a result of housing retirement dynamics. In the last 30 years, however, these trends appear to be changing, as household size shows signs of leveling off, or even increasing again, while average floor space per unit has been increasing. GDP and total floor space show a remarkably constant growth trend over the period and total residential sector primary energy consumption and floor space show a similar growth trend over the last 60 years, decoupling only within the last decade.« less

  4. Through Microgravity and Towards the Stars: Microgravity and Strategic Research at Marshall's Biological and Physical Space Research Laboratory

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A.

    2003-01-01

    The Microgravity and Strategic research at Marshall s Biological and Physical Space Research Laboratory will be reviewed. The environment in orbit provides a unique opportunity to study Materials Science and Biotechnology in the absence of sedimentation and convection. There are a number of peer-selected investigations that have been selected to fly on the Space Station that have been conceived and are led by Marshall s Biological and Physical Research Laboratory s scientists. In addition to Microgravity research the Station will enable research in "Strategic" Research Areas that focus on enabling humans to live, work, and explore the solar system safely. New research in Radiation Protection, Strategic Molecular Biology, and In-Space Fabrication will be introduced.

  5. U.S. Commercial Cargo Ship Arrives at the Space Station

    NASA Image and Video Library

    2017-12-17

    Loaded with some three tons of experiments and supplies, the SpaceX Dragon cargo craft arrived at the International Space Station Dec. 17, where Expedition 53 crew members Mark Vande Hei and Joe Acaba of NASA captured it by using the Canadian-built robotic arm. Ground controllers at NASA’s Johnson Space Center in Houston took over after Dragon was grappled, sending commands to maneuver the ship to the Earth-facing side of the Harmony module where it was attached for a month-long stay. Dragon was launched Dec. 15 on the SpaceX Falcon 9 rocket from Complex 40 at the Cape Canaveral Air Force Station in Florida to begin its journey to the international outpost.

  6. Space program: Space debris a potential threat to Space Station and shuttle

    NASA Technical Reports Server (NTRS)

    Schwartz, Stephen A.; Beers, Ronald W.; Phillips, Colleen M.; Ramos, Yvette

    1990-01-01

    Experts estimate that more than 3.5 million man-made objects are orbiting the earth. These objects - space debris - include whole and fragmentary parts of rocket bodies and other discarded equipment from space missions. About 24,500 of these objects are 1 centimeter across or larger. A 1-centimeter man-made object travels in orbit at roughly 22,000 miles per hour. If it hit a spacecraft, it would do about the same damage as would a 400-pound safe traveling at 60 miles per hour. The Government Accounting Office (GAO) reviews NASA's plans for protecting the space station from debris, the extent and precision of current NASA and Defense Department (DOD) debris-tracking capabilities, and the extent to which debris has already affected shuttle operations. GAO recommends that the space debris model be updated, and that the findings be incorporated into the plans for protecting the space station from such debris. GAO further recommends that the increased risk from debris to the space shuttle operations be analyzed.

  7. High power eye-safe Er3+:YVO4 laser diode-pumped at 976 nm and emitting at 1603 nm

    NASA Astrophysics Data System (ADS)

    Newburgh, G. A.; Dubinskii, M.

    2016-02-01

    We report on the performance of an eye-safe laser based on a Er:YVO4 single crystal, diode-pumped at 976 nm (4I15/2-->4I11/2 transition) and operating at 1603 nm (4I13/2-->4I15/2 transition) with good beam quality. A 10 mm long Er3+:YVO4 slab, cut with its c-axis perpendicular to the laser cavity axis, was pumped in σ-polarization and lased in π-polarization. The laser operated in a quasi-continuous wave (Q-CW) regime with nearly 9 W output power, and with a slope efficiency of about 39% with respect to absorbed power. This is believed to be the highest efficiency and highest power achieved from an Er3+:YVO4 laser pumped in the 970-980 nm absorption band.

  8. First in Space: The Army’s Role in U.S. Space Efforts, 1938-1958

    DTIC Science & Technology

    2017-06-09

    National Aeronautics and Space Administration ( NASA ) attempted to consolidate early space and missile efforts, inter-service rivalries coupled with...Redstone, Jupiter, ARPA, NASA 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON...Agency (ARPA) and the National Aeronautics and Space Administration ( NASA ) attempted to consolidate early space and missile efforts, inter- service

  9. M825A1 White Phosphorous Malfunction Investigation Related to the M739/ M739A1 Safing and Arming Module

    DTIC Science & Technology

    1993-08-01

    AD-A269 205 AD AD-E402 378 Technical Report ARAED-TR-92031 M825A1 WHITE PHOSPHOROUS MALFUNCTION INVESTIGATION RELATED TO THE M739 /M739A1 SAFING AND...Aug 1993 - 4. TITLE AND SUBTITLE 5 FUNDING NUMBERS M825A1 WHITE PHOSPHOROUS MALFUNCTION INVESTIGATION RELATED TO THE M739 /M739AI SAFING AND ARMING...LT). An investigation of the data revealed changes in the burster and the M739 /M739A1 safing and arming (S&A) module. The Armaments Research

  10. Hidden Surface Removal through Object Space Decomposition.

    DTIC Science & Technology

    1982-01-01

    12 2.1 Methods of Subdividing the Object Space ..................................................... 14 2.2 Accessing...AC.AIIA TO5ASK FORCE MNT OF TECH WRIONT-PATTERSON AFB 0O4 P/O 1a/I 64100(6 SURFACE REMOVAL THROWN4 OBJECT SPACE 0(COMPOSIT109d.(U UiCLASIFIEC AFZITNl...Surface Removal Through Object Space THESlS/ J AJ;I Decomposition 6. PERFORMING ORG. REPORT NUMBER 7. AUTHOR() a. CONTRACT OR GRANT NUMBER(s) Robert

  11. Modeling Relevant to Safe Operations of U.S. Navy Vessels in Arctic Conditions: Physical Modeling of Ice Loads

    DTIC Science & Technology

    2016-06-01

    zones with ice concentrations up to 40%. To achieve this goal, the Navy must determine safe operational speeds as a function of ice concen- tration...and full-scale experience with ice-capable hull forms that have shallow entry angles to promote flexural ice failure preferentially over crushing...plan view) of the proposed large-scale ice–hull impact experiment to be conducted in CRREL’s refrigerated towing basin. Shown here is a side-panel

  12. The beginning of Space Life Science in China exploration rockets for biological experiment during 1960's

    NASA Astrophysics Data System (ADS)

    Jiang, Peidong; Zhang, Jingxue

    The first step of space biological experiment in China was a set of five exploration rockets launched during 1964 to 1966, by Shanghai Institute of Machine and Electricity, and Institute of Biophysics of The Chinese Academy of Sciences. Three T-7AS1rockets for rats, mice and other samples in a biological cabin were launched and recovered safely in July of 1964 and June of 1965. Two T-7AS2rockets for dog, rats, mice and other samples in a biological cabin were launched and recovered safely in July of 1966. Institute of Biophysics in charged of the general design of biological experiments, telemetry of physiological parameters, and selection and training of experiment animals. The samples on-board were: rats, mice, dogs, and test tubes with fruit fly, enzyme, bacteria, E. Coli., lysozyme, bacteriaphage, RNAase, DNAase, crystals of enzyme, etc. Physiological, biochemical, bacte-riological, immunological, genetic, histochemical studies had been conducted, in cellular and sub cellular level. The postures of rat and dog were monitored during flight and under weight-lessness. Physiological parameters of ECG, blood pressure, respiration rate, body temperature were recorded. A dog named"Xiao Bao"was flight in 1966 with video monitor, life support system and conditioned reflex equipment. It flighted for more than 20 minutes and about 70km high. After 40 years, the experimental data recorded of its four physiological parameters during the flight process was reviewed. The change of 4 parameters during various phase of total flight process were compared, analyzed and discussed.

  13. The [4Fe-4S](2+) cluster in reconstituted biotin synthase binds S-adenosyl-L-methionine.

    PubMed

    Cosper, Michele Mader; Jameson, Guy N L; Davydov, Roman; Eidsness, Marly K; Hoffman, Brian M; Huynh, Boi Hanh; Johnson, Michael K

    2002-11-27

    The combination of resonance Raman, electron paramagnetic resonance and Mössbauer spectroscopies has been used to investigate the effect of S-adenosyl-l-methionine (SAM) on the spectroscopic properties of the [4Fe-4S]2+ cluster in biotin synthase. The results indicate that SAM interacts directly at a unique iron site of the [4Fe-4S]2+ cluster in BioB and support the hypothesis of a common inner-sphere mechanism for the reductive cleavage of SAM in the radical SAM family of Fe-S enzymes.

  14. 33 CFR 150.623 - What are the requirements for protecting personnel from hazards associated with confined spaces?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... associated with entering the port's confined spaces, and develop a confined space safe entry program that... implement the confined space safe entry program, the deepwater port operator must determine the education... protecting personnel from hazards associated with confined spaces? 150.623 Section 150.623 Navigation and...

  15. Safe Schools, Safe Communities.

    ERIC Educational Resources Information Center

    Lewis, Julie E.; Pickett, Dean; Pulliam, Janet L.; Schwartz, Richard A.; St. Germaine, Anne-Marie; Underwood, Julie; Worona, Jay

    Schools must work together with agencies, groups, and individuals to eliminate the forces leading children to violence. Chapter 1, "School Safety: Working Together to Keep Schools Safe," stresses the importance of community collaboration in violence prevention. Effective prevention requires sharing information about students, consistent…

  16. Detection of C2H4 Neptune from ISO/PHT-S Observations

    NASA Technical Reports Server (NTRS)

    Schulz, B.; Encrenaz, Th.; Bezard, B.; Romani, P. N.; Lellouch, E.; Atreya, S. K.

    1999-01-01

    The 6-12 micrometer spectrum of Neptune has been recorded with the PHT-S instrument of the Infrared Space Observatory (ISO) at a resolution of 0.095 micrometer. In addition to the emissions of CH4, CH3D and C2H6 previously identified, the spectrum shows the first firm identification of ethylene C2H4. The inferred column density above the 0.2-mbar level is in the range (1.1 - 3) x 10(exp 14) molecules/cm. To produce this low amount, previous photochemical models invoked rapid mixing between the source and sink regions of C2H4. We show that this requirement can be relaxed if recent laboratory measurements of CH4 photolysis branching ratios at Lyman alpha are used.

  17. Monothiol Glutaredoxins Can Bind Linear [Fe3S4]+ and [Fe4S4]2+ Clusters in Addition to [Fe2S2]2+ Clusters: Spectroscopic Characterization and Functional Implications

    PubMed Central

    Zhang, Bo; Bandyopadhyay, Sibali; Shakamuri, Priyanka; Naik, Sunil G.; Huynh, Boi Hanh; Couturier, Jérémy; Rouhier, Nicolas; Johnson, Michael K.

    2013-01-01

    Saccharomyces cerevisiae mitochondrial glutaredoxin 5 (Grx5) is the archetypical member of a ubiquitous class of monothiol glutaredoxins with a strictly conserved CGFS active-site sequence that has been shown to function in biological [Fe2S2]2+ cluster trafficking. In this work, we show that recombinant S. cerevisiae Grx5 purified aerobically after prolonged exposure of the cell-free extract to air or after anaerobic reconstitution in the presence of glutathione, predominantly contains a linear [Fe3S4]+ cluster. The excited state electronic properties and ground state electronic and vibrational properties of the linear [Fe3S4]+ cluster have been characterized using UV-visible absorption/CD/MCD, EPR, Mössbauer and resonance Raman spectroscopies. The results reveal a rhombic S = 5/2 linear [Fe3S4]+ cluster with properties similar to those reported for synthetic linear [Fe3S4]+ clusters and the linear [Fe3S4]+ clusters in purple aconitase. Moreover, the results indicate that the Fe-S cluster content previously reported for many monothiol Grxs has been misinterpreted exclusively in terms of [Fe2S2]2+ clusters, rather than linear [Fe3S4]+ clusters or mixtures of linear [Fe3S4]+ and [Fe2S2]2+ clusters. In the absence of GSH, anaerobic reconstitution of Grx5 yields a dimeric form containing one [Fe4S4]2+ cluster that competent for in vitro activation of apo-aconitase, via intact cluster transfer. The ligation of the linear [Fe3S4]+ and [Fe4S4]2+ clusters in Grx5 has been assessed by spectroscopic, mutational and analytical studies. Potential roles for monothiol Grx5 in scavenging and recycling linear [Fe3S4]+ clusters released during protein unfolding under oxidative stress conditions and in maturation of [Fe4S4]2+ cluster-containing proteins are discussed in light of these results. PMID:24032439

  18. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    The Marshall Space Flight Center (MSFC) is responsible for designing and building the life support systems that will provide the crew of the International Space Station (ISS) a comfortable environment in which to live and work. Scientists and engineers at the MSFC are working together to provide the ISS with systems that are safe, efficient and cost-effective. These compact and powerful systems are collectively called the Environmental Control and Life Support Systems, or simply, ECLSS. This is an exterior view of the U.S. Laboratory Module Simulator containing the ECLSS Internal Thermal Control System (ITCS) testing facility at MSFC. At the bottom right is the data acquisition and control computers (in the blue equipment racks) that monitor the testing in the facility. The ITCS simulator facility duplicates the function, operation, and troubleshooting problems of the ITCS. The main function of the ITCS is to control the temperature of equipment and hardware installed in a typical ISS Payload Rack.

  19. Optical Amplifier Based Space Solar Power

    NASA Technical Reports Server (NTRS)

    Fork, Richard L.

    2001-01-01

    The objective was to design a safe optical power beaming system for use in space. Research was focused on identification of strategies and structures that would enable achievement near diffraction limited optical beam quality, highly efficient electrical to optical conversion, and high average power in combination in a single system. Efforts centered on producing high efficiency, low mass of the overall system, low operating temperature, precision pointing and tracking capability, compatibility with useful satellite orbits, component and system reliability, and long component and system life in space. A system based on increasing the power handled by each individual module to an optimum and the number of modules in the complete structure was planned. We were concerned with identifying the most economical and rapid path to commercially viable safe space solar power.

  20. U.S. Space Radioisotope Power Systems and Applications: Past, Present and Future

    NASA Technical Reports Server (NTRS)

    Cataldo, Robert L.; Bennett, Gary L.

    2011-01-01

    -1906) and R. J. Strut. Almost 100 years ago, in 1913, English physicist H. G. J. Moseley (1887-1915) constructed the first nuclear battery using a vacuum flask and 20 mCi of radium (Corliss and Harvey, 1964, Proceedings of the Royal Society, 1913). After World War II, serious interest in radioisotope power systems in the U.S. was sparked by studies of space satellites such as North American Aviation s 1947 report on nuclear space power and the RAND Corporation s 1949 report on radioisotope power. (Greenfield, 1947, Gendler and Kock, 1949). Radioisotopes were also considered in early studies of nuclear-powered aircraft (Corliss and Harvey, 1964). In 1951, the U.S. Atomic Energy Commission (AEC) signed several contracts to study a 1-kWe space power plant using reactors or radioisotopes. Several of these studies, which were completed in 1952, recommended the use of RPS. (Corliss and Harvey, 1964). In 1954, the RAND Corporation issued the summary report of the Project Feedback military satellite study in which radioisotope power was considered (Lipp and Salter, 1954, RAND). Paralleling these studies, in 1954, K. C. Jordan and J. H. Birden of the AEC s Mound Laboratory conceived and built the first RTG using chromel-constantan thermocouples and a polonium-210 (210Po or Po-210) radioisotope heat source (see Figure 2). While the power produced (1.8 mWe) was low by today s standards, this first RTG showed the feasibility of RPS. A second thermal battery was built with more Po-210, producing 9.4 mWe. Jordan and Birden concluded that the Po-210 thermal battery would have about ten times the energy of ordinary dry cells of the same mass (Jordan and Birden, 1954). The heat source consisted of a 1-cm-diameter sphere of 57 Ci (1.8 Wt) of Po-210 inside a capsule of nickel-coated cold-rolled steel all inside a container of Lucite. The thermocouples were silver-soldered chromel-constantan. The thermal battery produced 1.8 mWe.

  1. Space resources. Volume 4: Social concerns

    NASA Technical Reports Server (NTRS)

    Mckay, Mary Fae (Editor); Mckay, David S. (Editor); Duke, Michael B. (Editor)

    1992-01-01

    Space resources must be used to support life on the Moon and exploration of Mars. This volume, Social Concerns, covers some of the most important issues which must be addressed in any major program for the human exploration of space. The volume begins with a consideration of the economics and management of large scale space activities. Then the legal aspects of these activities are discussed, particularly the interpretation of treaty law with respect to the Moon and asteroids. The social and cultural issues of moving people into space are considered in detail, and the eventual emergence of a space culture different from the existing culture is envisioned. The environmental issues raised by the development of space settlements are faced. Some innovative approaches are proposed to space communities and habitats and self-sufficiency is considered along with human safety at a lunar base or outpost.

  2. HTV-4 hatch closing

    NASA Image and Video Library

    2013-09-03

    ISS036-E-039129 (3 Sept. 2013) --- European Space Agency astronaut Luca Parmitano, Expedition 36 flight engineer, closes the hatch in the vestibule between the International Space Station’s Harmony node and the Japanese "Kounotori" H2 Transfer Vehicle-4 (HTV-4) in preparation to release the HTV-4 ending its one-month stay at the space station. The automated resupply craft will be grappled by the Canadarm2, removed from the Harmony node and released for a destructive reentry into Earth’s atmosphere.

  3. Representation of Perceptual Color Space in Macaque Posterior Inferior Temporal Cortex (the V4 Complex)

    PubMed Central

    Bohon, Kaitlin S.; Hermann, Katherine L.; Hansen, Thorsten

    2016-01-01

    Abstract The lateral geniculate nucleus is thought to represent color using two populations of cone-opponent neurons [L vs M; S vs (L + M)], which establish the cardinal directions in color space (reddish vs cyan; lavender vs lime). How is this representation transformed to bring about color perception? Prior work implicates populations of glob cells in posterior inferior temporal cortex (PIT; the V4 complex), but the correspondence between the neural representation of color in PIT/V4 complex and the organization of perceptual color space is unclear. We compared color-tuning data for populations of glob cells and interglob cells to predictions obtained using models that varied in the color-tuning narrowness of the cells, and the color preference distribution across the populations. Glob cells were best accounted for by simulated neurons that have nonlinear (narrow) tuning and, as a population, represent a color space designed to be perceptually uniform (CIELUV). Multidimensional scaling and representational similarity analyses showed that the color space representations in both glob and interglob populations were correlated with the organization of CIELUV space, but glob cells showed a stronger correlation. Hue could be classified invariant to luminance with high accuracy given glob responses and above-chance accuracy given interglob responses. Luminance could be read out invariant to changes in hue in both populations, but interglob cells tended to prefer stimuli having luminance contrast, regardless of hue, whereas glob cells typically retained hue tuning as luminance contrast was modulated. The combined luminance/hue sensitivity of glob cells is predicted for neurons that can distinguish two colors of the same hue at different luminance levels (orange/brown). PMID:27595132

  4. The International Space Station: Systems and Science

    NASA Technical Reports Server (NTRS)

    Giblin, Timothy W.

    2010-01-01

    ISS Program Mission: Safely build, operate, and utilize a permanent human outpost in space through an international partnership of government, industry, and academia to advance exploration of the solar system, conduct scientific research, and enable commerce in space.

  5. SpaceX Dragon returns on This Week @NASA- October 31, 2014

    NASA Image and Video Library

    2014-10-31

    The SpaceX Dragon cargo capsule was recently detached from the International Space Station for its return to Earth, just over a month after delivering about 5,000 pounds of supplies and experiments to the ISS. Dragon safely returned to Earth with more than 3,200 pounds of NASA cargo and science samples – completing the company’s fourth resupply mission to the station. Also, Destination Station ISS Tech Forum, Orbital Sciences investigating accident, Russian supply ships to and from the ISS, Next ISS crew trains in Russia, Wind tunnel tests of SLS model and more!

  6. Overview of Human-Centric Space Situational Awareness (SSA) Science and Technology (S&T)

    NASA Astrophysics Data System (ADS)

    Ianni, J.; Aleva, D.; Ellis, S.

    2012-09-01

    A number of organizations, within the government, industry, and academia, are researching ways to help humans understand and react to events in space. The problem is both helped and complicated by the fact that there are numerous data sources that need to be planned (i.e., tasked), collected, processed, analyzed, and disseminated. A large part of the research is in support of the Joint Space Operational Center (JSpOC), National Air and Space Intelligence Center (NASIC), and similar organizations. Much recent research has been specifically targeting the JSpOC Mission System (JMS) which has provided a unifying software architecture. This paper will first outline areas of science and technology (S&T) related to human-centric space situational awareness (SSA) and space command and control (C2) including: 1. Object visualization - especially data fused from disparate sources. Also satellite catalog visualizations that convey the physical relationships between space objects. 2. Data visualization - improve data trend analysis as in visual analytics and interactive visualization; e.g., satellite anomaly trends over time, space weather visualization, dynamic visualizations 3. Workflow support - human-computer interfaces that encapsulate multiple computer services (i.e., algorithms, programs, applications) into a 4. Command and control - e.g., tools that support course of action (COA) development and selection, tasking for satellites and sensors, etc. 5. Collaboration - improve individuals or teams ability to work with others; e.g., video teleconferencing, shared virtual spaces, file sharing, virtual white-boards, chat, and knowledge search. 6. Hardware/facilities - e.g., optimal layouts for operations centers, ergonomic workstations, immersive displays, interaction technologies, and mobile computing. Secondly we will provide a survey of organizations working these areas and suggest where more attention may be needed. Although no detailed master plan exists for human

  7. Electronic structure and fragmentation properties of [Fe4S4(SEt)4-x(SSEt)x]2-

    NASA Astrophysics Data System (ADS)

    Fu, You-Jun; Laskin, Julia; Wang, Lai-Sheng

    2007-06-01

    A limited exposure of (n-Bu4N)2[Fe4S4(SEt)4] solutions in acetonitrile to air was found to produce a new series of [4Fe-4S] cluster complexes, [Fe4S4(SEt)4-x(SSEt)x]2- (x = 1-4), with the original -SEt ligands substituted by -SSEt di-sulfide ligands, which were formed due to partial decomposition of the [4Fe-4S] core in parent [Fe4S4(SEt)4]2-. The products were first observed in the experiments with an ESI-ion Trap-TOF mass spectrometer and were further identified using high resolution Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. Photoelectron spectra of the [Fe4S4(SEt)4-x(SSEt)x]2- dianions revealed that the -SSEt coordination induced little change in the electronic structure of the [4Fe-4S] cluster, but the electron binding energies of [Fe4S4(SEt)4-x(SSEt)x]2- increased from 0.52 to 0.73 eV with increase in x from 0 to 4, suggesting a greater electron withdrawing ability of -SSEt than -SEt. In high resolution MS/MS experiments on [Fe4S4(SEt)3(SSEt)]2-/1-, clusters with both charge states yielded fragment [Fe4S4(SEt)3]-, suggesting that -SSEt could be lost either as a negatively charged ion SSEt- from the doubly charged precursor, or as a radical SSEt from the singly charged species. The biological implication of the interaction between [Fe4S4(SEt)4]2- and O2 is discussed in comparison to the air exposure of [4Fe-4S] proteins to the air.

  8. Monte Carlo simulations for the space radiation superconducting shield project (SR2S).

    PubMed

    Vuolo, M; Giraudo, M; Musenich, R; Calvelli, V; Ambroglini, F; Burger, W J; Battiston, R

    2016-02-01

    Astronauts on deep-space long-duration missions will be exposed for long time to galactic cosmic rays (GCR) and Solar Particle Events (SPE). The exposure to space radiation could lead to both acute and late effects in the crew members and well defined countermeasures do not exist nowadays. The simplest solution given by optimized passive shielding is not able to reduce the dose deposited by GCRs below the actual dose limits, therefore other solutions, such as active shielding employing superconducting magnetic fields, are under study. In the framework of the EU FP7 SR2S Project - Space Radiation Superconducting Shield--a toroidal magnetic system based on MgB2 superconductors has been analyzed through detailed Monte Carlo simulations using Geant4 interface GRAS. Spacecraft and magnets were modeled together with a simplified mechanical structure supporting the coils. Radiation transport through magnetic fields and materials was simulated for a deep-space mission scenario, considering for the first time the effect of secondary particles produced in the passage of space radiation through the active shielding and spacecraft structures. When modeling the structures supporting the active shielding systems and the habitat, the radiation protection efficiency of the magnetic field is severely decreasing compared to the one reported in previous studies, when only the magnetic field was modeled around the crew. This is due to the large production of secondary radiation taking place in the material surrounding the habitat. Copyright © 2016 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  9. STS-4 earth observations from space

    NASA Technical Reports Server (NTRS)

    1982-01-01

    STS-4 earth observations from space. Views include both Florida coasts, with Cape Canaveral visible at the center of the frame. The photo was exposed through the aft window on the flight deck of the Columbia. The vertical tail and both orbital maneuvering systems (OMS) pods are visible in the foreground. Other features on the Earth which are visible include Tampa Bay and several lakes, including Apopka, Tohopekaliga, East Tahopekaliga, Harris, Cypress and a number of small reservoirs (33223); This is a north-easterly looking view toward California's Pacific Coast. The coastal area covered includes San Diego northward to Pismo Beach. Los Angeles is near center. The arc of the Temblor-Tehachapi-Sierra Nevada surrounds the San Joaquin Valley at left. The Mojave desert lies between the San Andres and Garlock Faults (33224); Mexico's Baja California and Sonora state are visible in the STS-4 frame. The islands of Angel de la Guardia and Tiburon stand out above and right of center. Low clouds

  10. An S 4 model inspired from self-complementary neutrino mixing

    NASA Astrophysics Data System (ADS)

    Zhang, Xinyi

    2018-03-01

    We build an S 4 model for neutrino masses and mixings based on the self-complementary (SC) neutrino mixing pattern. The SC mixing is constructed from the self-complementarity relation plus {δ }CP}=-\\tfrac{π }{2}. We elaborately construct the model at a percent level of accuracy to reproduce the structure given by the SC mixing. After performing a numerical study on the model’s parameter space, we find that in the case of normal ordering, the model can give predictions on the observables that are compatible with their 3σ ranges, and give predictions for the not-yet observed quantities like the lightest neutrino mass m 1 ∈ [0.003, 0.010] eV and the Dirac CP violating phase {δ }CP}\\in [256.72^\\circ ,283.33^\\circ ].

  11. The S1 Truss Prior to Installation on the International Space Station

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Being attached to the Canadarm2 on the International Space Station (ISS), the Remote Manipulator System arm built by the Canadian Space Agency, the Integrated Truss Assembly (S1) Truss is suspended over the Space Shuttle Orbiter Atlantis' cargo bay. Astronauts Sandra H. Magnus, STS-112 mission specialist, and Peggy A. Whitson, Expedition Five flight engineer, used the Canadarm2 from inside the Destiny laboratory on the ISS to lift the S1 truss out of the orbiter's cargo bay and move it into position prior to its installation on the ISS. The primary payloads of this mission, ISS Assembly Mission 9A, were the Integrated Truss Assembly S1 (S One), the starboard side thermal radiator truss, and the Crew Equipment Translation Aid (CETA) cart to the ISS. The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss was attached to the S0 (S Zero) truss, which was launched on April 8, 2002 aboard the STS-110, and flows 637 pounds of anhydrous ammonia through three heat-rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA cart was attached to the Mobil Transporter and will be used by assembly crews on later missions. Manufactured by the Boeing Company in Huntington Beach, California, the truss primary structure was transferred to the Marshall Space Flight Center in February 1999 for hardware installations and manufacturing acceptance testing. The launch of the STS-112 mission occurred on October 7, 2002, and its 11-day mission ended on October 18, 2002.

  12. Estimate of safe human exposure levels for lunar dust based on comparative benchmark dose modeling.

    PubMed

    James, John T; Lam, Chiu-Wing; Santana, Patricia A; Scully, Robert R

    2013-04-01

    Brief exposures of Apollo astronauts to lunar dust occasionally elicited upper respiratory irritation; however, no limits were ever set for prolonged exposure to lunar dust. The United States and other space faring nations intend to return to the moon for extensive exploration within a few decades. In the meantime, habitats for that exploration, whether mobile or fixed, must be designed to limit human exposure to lunar dust to safe levels. Herein we estimate safe exposure limits for lunar dust collected during the Apollo 14 mission. We instilled three respirable-sized (∼2 μ mass median diameter) lunar dusts (two ground and one unground) and two standard dusts of widely different toxicities (quartz and TiO₂) into the respiratory system of rats. Rats in groups of six were given 0, 1, 2.5 or 7.5 mg of the test dust in a saline-Survanta® vehicle, and biochemical and cellular biomarkers of toxicity in lung lavage fluid were assayed 1 week and one month after instillation. By comparing the dose--response curves of sensitive biomarkers, we estimated safe exposure levels for astronauts and concluded that unground lunar dust and dust ground by two different methods were not toxicologically distinguishable. The safe exposure estimates were 1.3 ± 0.4 mg/m³ (jet-milled dust), 1.0 ± 0.5 mg/m³ (ball-milled dust) and 0.9 ± 0.3 mg/m³ (unground, natural dust). We estimate that 0.5-1 mg/m³ of lunar dust is safe for periodic human exposures during long stays in habitats on the lunar surface.

  13. 8 CFR 236.4 - Removal of S-5, S-6, and S-7 nonimmigrants.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 8 Aliens and Nationality 1 2010-01-01 2010-01-01 false Removal of S-5, S-6, and S-7 nonimmigrants. 236.4 Section 236.4 Aliens and Nationality DEPARTMENT OF HOMELAND SECURITY IMMIGRATION REGULATIONS... of Aliens Prior to Order of Removal § 236.4 Removal of S-5, S-6, and S-7 nonimmigrants. (a) Condition...

  14. Observation of e+e-→ω χc 1 ,2 near √{s }=4.42 and 4.6 GeV

    NASA Astrophysics Data System (ADS)

    Ablikim, M.; Achasov, M. N.; Ai, X. C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Baldini Ferroli, R.; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; de Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Dou, Z. L.; Du, S. X.; Duan, P. F.; Eren, E. E.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Farinelli, R.; Fava, L.; Fedorov, O.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, X. Y.; Gao, Y.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang, Y.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. W.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kiese, P.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kuehn, W.; Kupsc, A.; Lange, J. S.; Lara, M.; Larin, P.; Leng, C.; Li, C.; Li, C. H.; Li, Cheng; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. R.; Li, Q. Y.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. M.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqing; Loehner, H.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Min, J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Muchnoi, N. Yu.; Muramatsu, H.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Qi, H. R.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ripka, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Santoro, V.; Sarantsev, A.; Savrié, M.; Schoenning, K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Ullrich, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, S. G.; Wang, W.; Wang, W. P.; Wang, X. F.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Wei, J. B.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, Z.; Xia, L.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. N.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.; Besiii Collaboration

    2016-01-01

    Based on data samples collected with the BESIII detector operating at the BEPCII storage ring at center-of-mass energies √{s }>4.4 GeV , the processes e+e-→ω χc 1 ,2 are observed for the first time. With an integrated luminosity of 1074 pb-1 near √{s }=4.42 GeV , a significant ω χc 2 signal is found, and the cross section is measured to be (20.9 ±3.2 ±2.5 ) pb . With 567 pb-1 near √{s }=4.6 GeV , a clear ω χc 1 signal is seen, and the cross section is measured to be (9.5 ±2.1 ±1.3 ) pb , while evidence is found for an ω χc 2 signal. The first errors are statistical, and the second are systematic. Due to low luminosity or low cross section at other energies, no significant signals are observed. In the ω χc 2 cross section, an enhancement is seen around √{s }=4.42 GeV . Fitting the cross section with a coherent sum of the ψ (4415 ) Breit-Wigner function and a phase-space term, the branching fraction B (ψ (4415 )→ω χc 2) is obtained to be of the order of 1 0-3.

  15. Magnetodielectric effect in CdS nanosheets grown within Na-4 mica

    NASA Astrophysics Data System (ADS)

    Mandal, Amrita; Mitra, Sreemanta; Datta, Anindya; Banerjee, Sourish; Chakravorty, Dipankar

    2012-04-01

    CdS nanosheets of thickness 0.6 nm were grown within the interlayer spaces of Na-4 mica. Magnetization measurements carried out in the temperature range 2-300 K showed the composites to have weak ferromagnetic-like properties even at room temperature. The saturation magnetization (MS) at room temperature was found to be higher than that reported for CdS nanoparticles. The higher value of MS may be ascribed to the presence of a large number defects in the present CdS system, due to a large surface to volume ratio in the nanosheets as compared to that of CdS nanoparticles. The nanocomposites exhibited a magnetodielectric effect with a dielectric constant change of 5.3% for a magnetic field of 0.5 T. This occurred due to a combination of magnetoresistance and Maxwell-Wagner effect as delineated in the model developed by Catalan.

  16. Technology for Space Station Evolution. Volume 4: Power Systems/Propulsion/Robotics

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on technology for space station evolution on 16-19 Jan. 1990. The purpose of this workshop was to collect and clarify Space Station Freedom technology requirements for evolution and to describe technologies that can potentially fill those requirements. These proceedings are organized into an Executive Summary and Overview and five volumes containing the Technology Discipline Presentations. Volume 4 consists of the technology discipline sections for Power, Propulsion, and Robotics. For each technology discipline, there is a Level 3 subsystem description, along with the papers.

  17. HTV-4 hatch closing

    NASA Image and Video Library

    2013-09-03

    ISS036-E-039132 (3 Sept. 2013) --- European Space Agency astronaut Luca Parmitano and NASA astronaut Karen Nyberg, both Expedition 36 flight engineers, close the hatch in the vestibule between the International Space Station’s Harmony node and the Japanese "Kounotori" H2 Transfer Vehicle-4 (HTV-4) in preparation to release the HTV-4 ending its one-month stay at the space station. The automated resupply craft will be grappled by the Canadarm2, removed from the Harmony node and released for a destructive reentry into Earth’s atmosphere.

  18. Cu{sub 2}Mn{sub 1-x}Co{sub x}SnS{sub 4}: Novel keesterite type solid solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez-Vergara, F., E-mail: fer_martina@u.uchile.cl; Galdamez, A., E-mail: agaldamez@uchile.cl; Manriquez, V.

    2013-02-15

    A new family of Cu{sub 2}Mn{sub 1-x}Co{sub x}SnS{sub 4} chalcogenides has been synthesized by conventional solid-state reactions at 850 Degree-Sign C. The reactions products were characterized by powder X-ray diffraction (XRD), energy-dispersive X-ray analysis (SEM-EDS), Raman spectroscopy and magnetic susceptibility. The crystal structures of two members of the solid solution series Cu{sub 2}Mn{sub 0.4}Co{sub 0.6}SnS{sub 4} and Cu{sub 2}Mn{sub 0.2}Co{sub 0.8}SnS{sub 4} have been determined by single-crystal X-ray diffraction. Both phases crystallize in the tetragonal keesterite-type structure (space group I4{sup Macron }). The distortions of the tetrahedral volume of Cu{sub 2}Mn{sub 0.4}Co{sub 0.6}SnS{sub 4} and Cu{sub 2}Mn{sub 0.2}Co{sub 0.8}SnS{sub 4}more » were calculated and compared with the corresponding differences in the Cu{sub 2}MnSnS{sub 4} (stannite-type) end-member. The compounds show nearly the same Raman spectral features. Temperature-dependent magnetization measurements (ZFC/FC) and high-temperature susceptibility indicate that these solid solutions are antiferromagnetic. - Graphical abstract: View along [100] of the Cu{sub 2}Mn{sub 1-x}Co{sub x}SnS{sub 4} structure showing tetrahedral units and magnetic measurement ZFC-FC at 500 Oe. The insert shows the 1/{chi}-versus-temperature plot fitted by a Curie-Weiss law. Highlights: Black-Right-Pointing-Pointer Cu{sub 2}Mn{sub 1-x}Co{sub x}SnS{sub 4} solid solutions belong to the family of compounds adamantine. Black-Right-Pointing-Pointer Resolved single crystals of the solid solutions have space group I4{sup Macron }. Black-Right-Pointing-Pointer The distortion of the tetrahedral volume of Cu{sub 2}Mn{sub 1-x}Co{sub x}SnS{sub 4} were calculated. Black-Right-Pointing-Pointer These solid solutions are antiferromagnetic.« less

  19. International Space Station (ISS)

    NASA Image and Video Library

    1997-06-01

    This Boeing photograph shows the Node 1, Unity module, Flight Article (at right) and the U.S. Laboratory module, Destiny, Flight Article for the International Space Station (ISS) being manufactured in the High Bay Clean Room of the Space Station Manufacturing Facility at the Marshall Space Flight Center. The Node 1, or Unity, serves as a cornecting passageway to Space Station modules. The U.S. built Unity module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian-built Functional Energy Block (FGB). The U.S. Laboratory (Destiny) module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The U.S. Laboratory/Destiny was launched aboard the orbiter Atlantis (STS-98 mission) on February 7, 2001. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  20. Using drugs in un/safe spaces: Impact of perceived illegality on an underground supervised injecting facility in the United States.

    PubMed

    Davidson, Peter J; Lopez, Andrea M; Kral, Alex H

    2018-03-01

    Supervised injection facilities (SIFs) are spaces where people can consume pre-obtained drugs in hygienic circumstances with trained staff in attendance to provide emergency response in the event of an overdose or other medical emergency, and to provide counselling and referral to other social and health services. Over 100 facilities with formal legal sanction exist in ten countries, and extensive research has shown they reduce overdose deaths, increase drug treatment uptake, and reduce social nuisance. No facility with formal legal sanction currently exists in the United States, however one community-based organization has successfully operated an 'underground' facility since September 2014. Twenty three qualitative interviews were conducted with people who used the underground facility, staff, and volunteers to examine the impact of the facility on peoples' lives, including the impact of lack of formal legal sanction on service provision. Participants reported that having a safe space to inject drugs had led to less injections in public spaces, greater ability to practice hygienic injecting practices, and greater protection from fatal overdose. Constructive aspects of being 'underground' included the ability to shape rules and procedures around user need rather than to meet political concerns, and the rapid deployment of the project, based on immediate need. Limitations associated with being underground included restrictions in the size and diversity of the population served by the site, and reduced ability to closely link the service to drug treatment and other health and social services. Unsanctioned supervised injection facilities can provide a rapid and user-driven response to urgent public health needs. This work draws attention to the need to ensure such services remain focused on user-defined need rather than external political concerns in jurisdictions where supervised injection facilities acquire local legal sanction. Copyright © 2017 Elsevier B.V. All

  1. Enabling Colloidal Synthesis of Edge-Oriented MoS2 with Expanded Interlayer Spacing for Enhanced HER Catalysis.

    PubMed

    Sun, Yugang; Alimohammadi, Farbod; Zhang, Dongtang; Guo, Guangsheng

    2017-03-08

    By selectively promoting heterogeneous nucleation/growth of MoS 2 on graphene monolayer sheets, edge-oriented (EO) MoS 2 nanosheets with expanded interlayer spacing (∼9.4 Å) supported on reduced graphene oxide (rGO) sheets were successfully synthesized through colloidal chemistry, showing the promise in low-cost and large-scale production. The number and edge length of MoS 2 nanosheets per area of graphene sheets were tuned by controlling the reaction time in the microwave-assisted solvothermal reduction of ammonium tetrathiomolybdate [(NH 4 ) 2 MoS 4 ] in dimethylformamide. The edge-oriented and interlayer-expanded (EO&IE) MoS 2 /rGO exhibited significantly improved catalytic activity toward hydrogen evolution reaction (HER) in terms of larger current density, lower Tafel slope, and lower charge transfer resistance compared to the corresponding interlayer-expanded MoS 2 sheets without edge-oriented geometry, highlighting the importance of synergistic effect between edge-oriented geometry and interlayer expansion on determining HER activity of MoS 2 nanosheets. Quantitative analysis clearly shows the linear dependence of current density on the edge length of MoS 2 nanosheets.

  2. Assessment of nuclear reactor concepts for low power space applications

    NASA Technical Reports Server (NTRS)

    Klein, Andrew C.; Gedeon, Stephen R.; Morey, Dennis C.

    1988-01-01

    The results of a preliminary small reactor concepts feasibility and safety evaluation designed to provide a first order validation of the nuclear feasibility and safety of six small reactor concepts are given. These small reactor concepts have potential space applications for missions in the 1 to 20 kWe power output range. It was concluded that low power concepts are available from the U.S. nuclear industry that have the potential for meeting both the operational and launch safety space mission requirements. However, each design has its uncertainties, and further work is required. The reactor concepts must be mated to a power conversion technology that can offer safe and reliable operation.

  3. Development of Stiff and Extendible Electromagnetic Sensors for Space Missions

    NASA Astrophysics Data System (ADS)

    Kasaba, Y.; Kumamoto, A.; Ishisaka, K.; Kojima, H.; Higuchi, K.; Watanabe, A.; Watanabe, K.

    2010-05-01

    We developed three types of stiff and extendible electromagnetic sensors in rigid monopole antenna, loop antenna, and Yagi-Uda antenna for future space missions. They are based on carbon fiber reinforced plastic (CFRP) technologies, in order to fulfill severe requirements, i.e. enough stiffness, light mass, compact storage, safe extension, and reasonable test efforts. One of them, rigid monopole antennas, coupled with an inflatable actuator system, was successfully used in the JAXA S-520-23 sounding rocket experiment in September 2007. Applications of those antennas are expected in space plasma missions including the SCOPE program, sounding rocket experiments, planetary radar remote sensing, and landing radio measurements.

  4. Fracture control methods for space vehicles. Volume 1: Fracture control design methods. [for space shuttle configuration planning

    NASA Technical Reports Server (NTRS)

    Liu, A. F.

    1974-01-01

    A systematic approach for applying methods for fracture control in the structural components of space vehicles consists of four major steps. The first step is to define the primary load-carrying structural elements and the type of load, environment, and design stress levels acting upon them. The second step is to identify the potential fracture-critical parts by means of a selection logic flow diagram. The third step is to evaluate the safe-life and fail-safe capabilities of the specified part. The last step in the sequence is to apply the control procedures that will prevent damage to the fracture-critical parts. The fracture control methods discussed include fatigue design and analysis methods, methods for preventing crack-like defects, fracture mechanics analysis methods, and nondestructive evaluation methods. An example problem is presented for evaluation of the safe-crack-growth capability of the space shuttle crew compartment skin structure.

  5. 1 λ × 1.44 Tb/s free-space IM-DD transmission employing OAM multiplexing and PDM.

    PubMed

    Zhu, Yixiao; Zou, Kaiheng; Zheng, Zhennan; Zhang, Fan

    2016-02-22

    We report the experimental demonstration of single wavelength terabit free-space intensity modulation direct detection (IM-DD) system employing both orbital angular momentum (OAM) multiplexing and polarization division multiplexing (PDM). In our experiment, 12 OAM modes with two orthogonal polarization states are used to generate 24 channels for transmission. Each channel carries 30 Gbaud Nyquist PAM-4 signal. Therefore an aggregate gross capacity record of 1.44 Tb/s (12 × 2 × 30 × 2 Gb/s) is acheived with a modulation efficiency of 48 bits/symbol. After 0.8m free-space transmission, the bit error rates (BERs) of all the channels are below the 20% hard-decision forward error correction (HD-FEC) threshold of 1.5 × 10(-2). After applying the decision directed recursive least square (DD-RLS) based filter and post filter, the BERs of two polarizations can be reduced from 5.3 × 10(-3) and 7.3 × 10(-3) to 2.2 × 10(-3) and 3.4 × 10(-3), respectively.

  6. Safe Sex in the 1970s: Community Practitioners on the Eve of AIDS.

    PubMed

    Blair, Thomas R

    2017-06-01

    In the 1970s, groups of gay and gay-allied health professionals began to formulate guidelines for safer sexual activity, several years before HIV/AIDS. Through such organizations as the National Coalition of Gay Sexually Transmitted Disease Services, Bay Area Physicians for Human Rights, and the Sisters of Perpetual Indulgence, these practitioners developed materials that would define sexual health education for the next four decades, as well as such concepts as "bodily fluids" and the "safe sex hanky." To do so, they used their dual membership in the community and the health professions. Although the dichotomy between the gay community and the medical establishment helped define the early history of HIV/AIDS, the creative work of these socially "amphibious" activists played an equally important part. Amid current debates over preexposure prophylaxis against HIV and Zika virus transmission, lessons for sexual health include the importance of messaging, the difficulty of behavioral change, and the vitality of community-driven strategies to mitigate risk.

  7. Building on 50 Years of Mission Operations Experience for a New Era of Space Exploration

    NASA Technical Reports Server (NTRS)

    Onken, Jay F.; Singer, Christopher E.

    2008-01-01

    The U.S. National Space Policy, I the 14-nation Global Exploration Strategy,2 and the National Aeronautics and Space Administration's (NASA) 2006 Strategic Plan3 provide foundational direction for far-ranging missions, from safely flying the Space Shuttle and completing construction of the International Space Station by 2010, to fielding a next generation space transportation system consisting of the Ares I Crew Launch Vehicle!Orion Crew Exploration Vehicle and the Ares V Cargo Launch Vehicle!Altair Lunar Lander (fig. 1). Transportation beyond low-Earth orbit will open the frontier for a lunar outpost, where astronauts will harness in-situ resources while exploring this 4 billion-year-old archaeological site, which may hold answers to how the Earth and its satellite were formed. Ultimately, this experience will pave the way for the first human footprint on Mars. In October 2007, NASA" announced assignments for this lunar exploration work.4 The Marshall Space Flight Center is responsible for designing, developing, testing, and evaluating the Ares I and Ares V, which are Space Shuttle derived launch vehicles, along with a number of lunar tasks. The Marshall Center's Engineering Directorate provides the skilled workforce and unique manufacturing, testing, and operational infrastructure needed to deliver space transportation solutions that meet the requirements stated in the Constellation Architecture Requirements Document (CARD). While defining design reference missions to the Station and the Moon, the CARD includes goals that include reducing recurring and nonrecurring costs, while increasing safety and reliability. For this reason, future systems are being designed with operability considerations and lifecycle expenses as independent variables in engineering trade studies.

  8. Physical and chemical test results of electrostatic safe flooring materials

    NASA Technical Reports Server (NTRS)

    Gompf, R. H.

    1988-01-01

    This test program was initiated because a need existed at the Kennedy Space Center (KSC) to have this information readily available to the engineer who must make the choice of which electrostatic safe floor to use in a specific application. The information, however, should be of value throughout both the government and private industry in the selection of a floor covering material. Included are the test results of 18 floor covering materials which by test evaluation at KSC are considered electrostatically safe. Tests were done and/or the data compiled in the following areas: electrostatics, flammability, hypergolic compatibility, outgassing, floor type, material thickness, and available colors. Each section contains the test method used to gather the data and the test results.

  9. Global opportunities in land and water use while staying within the safe (and just) operating space: quantifications of interactions and tradeoffs

    NASA Astrophysics Data System (ADS)

    Gerten, Dieter; Jägermeyr, Jonas; Heck, Vera

    2016-04-01

    Staying within the safe and just operating space as defined by multiple planetary boundaries will be a major challenge especially in view of anticipated future increases in food demand, the potential need for balancing climate change (e.g. through terrestrial carbon dioxide removal) and its impacts, and the water and land demand associated with these goals and measures. This presentation will show simulation results from a comprehensive model-based study on the global potentials of diverse crop management options considered as opportunities to stay within the planetary boundaries for human freshwater use and land-system change. The quantified on-farm options include rainwater harvesting, soil conservation and more efficient irrigation, all of which are designed to use neither more water nor more land for agriculture than is presently the case. Results show that irrigation efficiency improvements could save substantial amounts of water in many river basins (globally 48% of non-productive water consumption in an ambitious scenario), and if rerouted to irrigate neighbouring rainfed systems, could at the same time boost kilocalorie production by 26% globally. Low-tech solutions for small-scale farmers on water-limited croplands show the potential to increase rainfed yields to a similar extent. In combination, such ambitious yet achievable integrated water management strategies could increase global kcal production by 41% and close the water-related yield gap by 62%. Global climate change would have adverse effects on crop yields in many regions, but the improvements in water management quantified here could buffer such effects to a significant degree. Thus, a substantial amount of anticipated future needs for food production could be fulfilled without further approaching / transgressing planetary boundaries. In addition, it will be shown how large-scale biomass plantations for the purpose of terrestrial CO2 removal (climate engineering, potentially implemented should

  10. Effects of space flight on GLUT-4 content in rat plantaris muscle

    NASA Astrophysics Data System (ADS)

    Tabata, I.; Kawanaka, Kentaro; Sekiguchi, Chiharu; Nagaoka, Shunji; Ohira, Yoshinobu

    The effects of 14 days of space flight on the glucose transporter protein (GLUT-4) were studied in the plantaris muscle of growing 9-week-old, male Sprague Dawley rats. The rats were randomly separated into five groups: pre-flight vivarium ground controls (PF-VC) sacrificed approximately 2 h after launch; flight groups sacrificed either approximately 5 h (F-R0) or 9 days (F-R9) after the return from space; and synchronous ground controls (SC-R0 and SC-R9) sacrificed at the same time as the respective flight groups. The flight groups F-R0 and F-R9 were exposed to micro-gravity for 14 days in the Spacelab module located in the cargo bay of the shuttle transport system - 58 of the manned Space Shuttle for the NASA mission named ''Spacelab Life Sciences 2''. Body weight and plantaris weight of SC-R0 and F-R0 were significantly higher than those of PF-VC. Neither body weight nor plantaris muscle weight in either group had changed 9 days after the return from space. As a result, body weight and plantaris muscle weight did not differ between the flight and synchronous control groups at any of the time points investigated. The GLUT-4 content (cpm/µg membrane protein) in the plantaris muscle did not show any significant change in response to 14 days of space flight or 9 days after return. Similarly, citrate synthase activity did not change during the course of the space flight or the recovery period. These results suggest that 14 days of space flight does not affect muscle mass or GLUT-4 content of the fast-twitch plantaris muscle in the rat.

  11. Transient Approximation of SAFE-100 Heat Pipe Operation

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Reid, Robert S.

    2005-01-01

    Engineers at Los Alamos National Laboratory (LANL) have designed several heat pipe cooled reactor concepts, ranging in power from 15 kWt to 800 kWt, for both surface power systems and nuclear electric propulsion systems. The Safe, Affordable Fission Engine (SAFE) is now being developed in a collaborative effort between LANL and NASA Marshall Space Flight Center (NASA/MSFC). NASA is responsible for fabrication and testing of non-nuclear, electrically heated modules in the Early Flight Fission Test Facility (EFF-TF) at MSFC. In-core heat pipes must be properly thawed as the reactor power starts. Computational models have been developed to assess the expected operation of a specific heat pipe design during start-up, steady state operation, and shutdown. While computationally intensive codes provide complete, detailed analyses of heat pipe thaw, a relatively simple. concise routine can also be applied to approximate the response of a heat pipe to changes in the evaporator heat transfer rate during start-up and power transients (e.g., modification of reactor power level) with reasonably accurate results. This paper describes a simplified model of heat pipe start-up that extends previous work and compares the results to experimental measurements for a SAFE-100 type heat pipe design.

  12. Quarantined Apollo 11 Astronauts Addressed by U.S. President Richard Milhous Nixon

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named 'Eagle'', carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was airlifted to safety aboard the U.S.S. Hornet recovery ship, where they were quartered in a Mobile Quarantine Facility (MQF). In this photograph, the U.S.S. Hornet crew looks on as the quarantined Apollo 11 crew is addressed by U.S. President Richard Milhous Nixon via microphone and intercom. The president was aboard the recovery vessel awaiting return of the astronauts. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  13. Absolute structure and structure-function relationships of 4R,2‧R and 4S,2‧S Pidotimod®

    NASA Astrophysics Data System (ADS)

    Sarno, Simone; Manzo, Angelo M.; Ferraris, Davide M.; Miggiano, Riccardo; Rizzi, Menico; Palin, Luca; Boccaleri, Enrico; Milanesio, Marco

    2017-11-01

    Pidotimod® is a dipeptide with widely recognized immunomodulatory properties and with particularly beneficial effects for the treatment of acute respiratory and urinary tract infections. Pidotimod® presents two chiral centres which originate four stereoisomers. (4R,2‧S, 4S,2‧R, 4R,2‧R and 4S,2‧S). To date, only the 4R,2‧S and 4S,2‧R stereoisomers are reported in the literature. We report here the absolute crystal structure of the 4R,2‧R and 4S,2‧S diastereoisomers of Pidotimod®, obtained by crystals grown by slow evaporation of a mixture of water and ethanol. The analysis of the crystal structures revealed the key role of a solvent water molecule in the crystal packing engaged in an extended hydrogen bonds network. This water-assisted H-bond network explained the recalcitrance of 4R,2‧R and 4S,2‧S Pidotimod® to crystallize in pure ethanol, despite their high solubility, and the growth of well-diffracting crystals only in presence of water. Hence, Pidotimod®4R,2‧R and 4S,2‧S stereoisomers markedly differ from the 4R,2‧S and 4S,2‧R ones, which crystallize in absence of water. The molecular and crystal structures of the 4R,2‧R and 4S,2‧S Pidotimod® stereoisomers here presented gave some hints on the differences in bioactivity with respect to the 4R,2‧S stereoisomer. In fact, beyond an expected different dispositions of hydrophilic ligands, 4R,2‧R and 4S,2‧S showed an incremented tendency to intermolecular H-bonds with water.

  14. PREFACE: 4th International Conference on Safe Production and Use of Nanomaterials (Nanosafe2014)

    NASA Astrophysics Data System (ADS)

    Tardif, F.; Damlencourt, J.-F.; Schuster, F.; Gaultier, V.

    2015-05-01

    This volume contains a collection of contributions presented at the 4th International Conference on Safe Production and Use of Nanomaterials (NANOSAFE 2014) held in Grenoble, France, from 18th to 20th November 2014. The issues of fast progress in the field of Nanosafety are up to the potential benefits that nanotechnology can bring to mankind. Making more efficient - more sustainable - easier to share mineral resources, increasing the yields of new energy technologies, enabling drugs that act selectively and locally are just few examples of the wide range of nanomaterial applications that currently benefit humanity. Nevertheless, the dynamic development of nanomaterials requires the adhesion from the general public who rightly demand major progresses in Nanosafety as a prerequisite. This is our exciting responsibility and challenge! Following the successful outcome of the three past international conferences on safe production and use of nanomaterials: Nanosafe 2008, 2010 and 2012, the organizing committee has the pleasure to welcoming you again to Minatec, Grenoble with some of the most famous specialists in the field. This year, two new topics have been added dealing with the "New Application of Nanomaterials" and "Nano-responsible Development" in addition to the usual issues addressed in previous Nanosafe conferences such as Expology, Detection and Characterization, Toxicology, Environmental Interactions, Nanomaterials Release, Life Cycle Analysis, Regulation and Standardization, Risk Management. The debates in 2012 proved highly successful so this formula has been kept in 2014 with 3 round tables: Nano-Responsible Development, Risks and Benefits for the Environment, Toxicology Progress. In this 4th edition, there were more than 330 registered participants from 28 different countries including 160 oral presentation covering the whole Nanosafety issues in 12 sessions, satellite workshops and round tables. This high number of participants makes this edition one of

  15. 8 CFR 1236.4 - Removal of S-5, S-6, and S-7 nonimmigrants.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 8 Aliens and Nationality 1 2010-01-01 2010-01-01 false Removal of S-5, S-6, and S-7 nonimmigrants. 1236.4 Section 1236.4 Aliens and Nationality EXECUTIVE OFFICE FOR IMMIGRATION REVIEW, DEPARTMENT OF... OF ALIENS ORDERED REMOVED Detention of Aliens Prior to Order of Removal § 1236.4 Removal of S-5, S-6...

  16. Structure and electrochemistry of proteins harboring iron-sulfur clusters of different nuclearities. Part II. [4Fe-4S] and [3Fe-4S] iron-sulfur proteins.

    PubMed

    Zanello, Piero

    2018-06-01

    In the context of the plethora of proteins harboring iron-sulfur clusters we have already reviewed structure/electrochemistry of metalloproteins expressing single types of iron-sulfur clusters (namely: {Fe(Cys) 4 }, {[Fe 2 S 2 ](Cys) 4 }, {[Fe 2 S 2 ](Cys) 3 (X)} (X = Asp, Arg, His), {[Fe 2 S 2 ](Cys) 2 (His) 2 }, {[Fe 3 S 4 ](Cys) 3 }, {[Fe 4 S 4 ](Cys) 4 } and {[Fe 4 S 4 ](S γ Cys ) 3 (nonthiolate ligand)} cores) and their synthetic analogs. More recently we are focussing on structure/electrochemistry of metalloproteins harboring iron-sulfur centres of different nuclearities. Having started such a subject with proteins harboring [4Fe-4S] and [2Fe-2S] clusters, we now depict the state of art of proteins containing [4Fe-4S] and [3Fe-4S] clusters. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. The NASA Space Radiation Health Program

    NASA Technical Reports Server (NTRS)

    Schimmerling, W.; Sulzman, F. M.

    1994-01-01

    The NASA Space Radiation Health Program is a part of the Life Sciences Division in the Office of Space Science and Applications (OSSA). The goal of the Space Radiation Health Program is development of scientific bases for assuring adequate radiation protection in space. A proposed research program will determine long-term health risks from exposure to cosmic rays and other radiation. Ground-based animal models will be used to predict risk of exposures at varying levels from various sources and the safe levels for manned space flight.

  18. Liftoff of STS-62 Space Shuttle Columbia

    NASA Image and Video Library

    1994-03-04

    STS062-S-051 (4 March 1994) --- Five veteran astronauts and the United States Microgravity Payload (USMP) are ushered into space via the sixteenth launch of Space Shuttle Columbia. Launch occurred at 8:53 a.m. (EST), March 4, 1994. Onboard were astronauts John H. Casper, Andrew M. Allen, Marsha S. Ivins, Charles D. (Sam) Gemar and Pierre J. Thuot.

  19. Inside The Space Launch System (SLS): Outfitting The World’s Most Powerful Rocket

    NASA Image and Video Library

    2018-02-13

    Find out why NASA’s new deep-space rocket, the Space Launch System (SLS) is more than just big and beautiful. For the world’s most powerful rocket, it takes a lot of “guts.” Engineers have built all the giant structures that will be assembled to form the first SLS rocket, and now they are busy installing and outfitting the rocket’s insides with sensors, cables and other equipment. The rocket’s insides including its incredible flight computers and batteries will ensure SLS can do the job of sending the Orion spacecraft out beyond the Moon farther than any human-rated space vehicle as ever ventured. Learn how the SLS core stage components are being outfitted for the first SLS mission, Exploration Mission-1. Find out more at https://www.nasa.gov/exploration/systems/sls/index.html

  20. Safe Reentry for False Aneurysm Operations in High-Risk Patients.

    PubMed

    Martinelli, Gian Luca; Cotroneo, Attilio; Caimmi, Philippe Primo; Musica, Gabriele; Barillà, David; Stelian, Edmond; Romano, Angelo; Novelli, Eugenio; Renzi, Luca; Diena, Marco

    2017-06-01

    In the absence of a standardized safe surgical reentry strategy for high-risk patients with large or anterior postoperative aortic false aneurysm (PAFA), we aimed to describe an effective and safe approach for such patients. We prospectively analyzed patients treated for PAFA between 2006 and 2015. According to the preoperative computed tomography scan examination, patients were divided into two groups according to the anatomy and extension of PAFA: in group A, high-risk PAFA (diameter ≥3 cm) developed in the anterior mediastinum; in group B, low-risk PAFA (diameter <3 cm) was situated posteriorly. For group A, a safe surgical strategy, including continuous cerebral, visceral, and coronary perfusion was adopted before resternotomy; group B patients underwent conventional surgery. We treated 27 patients (safe reentry, n = 13; standard approach, n = 14). Mean age was 60 years (range, 29 to 80); 17 patients were male. Mean interval between the first operation and the last procedure was 4.3 years. Overall 30-day mortality rate was 7.4% (1 patient in each group). No aorta-related mortality was observed at 1 and 5 years in either group. The Kaplan-Meier overall survival estimates at 1 and 5 years were, respectively, 92.3% ± 7.4% and 73.4% ± 13.4% in group A, and 92.9% ± 6.9% and 72.2% ± 13.9% in group B (log rank test, p = 0.830). Freedom from reoperation for recurrent aortic disease was 100% at 1 year and 88% at 5 years. The safe reentry technique with continuous cerebral, visceral, and coronary perfusion for high-risk patients resulted in early and midterm outcomes similar to those observed for low-risk patients undergoing conventional surgery. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  1. Space Shuttle and Space Station Radio Frequency (RF) Exposure Analysis

    NASA Technical Reports Server (NTRS)

    Hwu, Shian U.; Loh, Yin-Chung; Sham, Catherine C.; Kroll, Quin D.

    2005-01-01

    This paper outlines the modeling techniques and important parameters to define a rigorous but practical procedure that can verify the compliance of RF exposure to the NASA standards for astronauts and electronic equipment. The electromagnetic modeling techniques are applied to analyze RF exposure in Space Shuttle and Space Station environments with reasonable computing time and resources. The modeling techniques are capable of taking into account the field interactions with Space Shuttle and Space Station structures. The obtained results illustrate the multipath effects due to the presence of the space vehicle structures. It's necessary to include the field interactions with the space vehicle in the analysis for an accurate assessment of the RF exposure. Based on the obtained results, the RF keep out zones are identified for appropriate operational scenarios, flight rules and necessary RF transmitter constraints to ensure a safe operating environment and mission success.

  2. Stealing Zeus’s Thunder: Physical Space-Control Advantages Against Hostile Satellites

    DTIC Science & Technology

    2006-01-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP023956 TITLE: Stealing Zeus’s Thunder: Physical Space-Control Advantages ...e .d co ne t to a pj@naxwel af. ni Stealing eus’s Thunder Physical Space-Control Advantages against Hostile Satellites CAPT JOSEPH T. PAGE 11, USAF...and ICBM combat crew comander (Squadron Command Post) at he 741st Mi6sse Squadon, 91st Spae Wing, Minor AFB, North akota. 26 its advantage via active

  3. Safe sex self-efficacy and safe sex practice in a Southern United States College

    PubMed Central

    Addoh, Ovuokerie; Sng, Eveleen; Loprinzi, Paul D.

    2017-01-01

    Background: The purpose of this study was to assess the association between safe sex self-efficacy and safe-sex practice in a Southern college setting. Methods: Multivariable logistic regression models were used to examine the association between safe sex self-efficacy in four domains (mechanics, partner disapproval, assertiveness, intoxicants) and safe sex practice (outcome variable). Results: For every 1-unit increase in the composite condom use self-efficacy score, there was an 8% increase in the odds of being beyond the median safe-sex practice score (odds ration [OR]: 1.08, 95% CI: 1.02-1.15). Additionally, for every 1-unit increase in intoxicants self-efficacy score, there was a 31% increase in the odds of being beyond the median safe-sex practice score (OR: 1.31, 95% CI: 1.08-1.58). Conclusion: A greater degree of safe-sex self-efficacy is associated with increased odds of safe-sex practice. These findings are informative for the development of targeted approaches to foster safe-sex behavior in Southern US colleges. PMID:28326287

  4. NASA's Commercial Crew Program, The Next Step in U.S. Space Transportation

    NASA Technical Reports Server (NTRS)

    Mango, Edward J.; Thomas, Rayelle E.

    2013-01-01

    The Commercial Crew Program (CCP) is leading NASA's efforts to develop the next U.S. capability for crew transportation and rescue services to and from the International Space Station (ISS) by the mid-decade timeframe. The outcome of this capability is expected to stimulate and expand the U.S. space transportation industry. NASA is relying on its decades of human space flight experience to certify U.S. crewed vehicles to the ISS and is doing so in a two phase certification approach. NASA Certification will cover all aspects of a crew transportation system, including development, test, evaluation, and verification; program management and control; flight readiness certification; launch, landing, recovery, and mission operations; sustaining engineering and maintenance/upgrades. To ensure NASA crew safety, NASA Certification will validate technical and performance requirements, verify compliance with NASA requirements, validate the crew transportation system operates in appropriate environments, and quantify residual risks.

  5. Improved GaSb surfaces using a (NH4)2S/(NH4)2S04 solution

    NASA Astrophysics Data System (ADS)

    Murape, D. M.; Eassa, N.; Nyamhere, C.; Neethling, J. H.; Betz, R.; Coetsee, E.; Swart, H. C.; Botha, J. R.; Venter, A.

    2012-05-01

    Bulk (1 0 0) n-GaSb surfaces have been treated with a sulphur based solution ((NH4)2S/(NH4)2SO4) to which sulphur has been added, not previously reported for the passivation of GaSb surfaces. Au/n-GaSb Schottky barrier diodes (SBDs) fabricated on the treated material show significant improvement compared to that of the similar SBDs on the as-received material as evidenced by the lower ideality factor (n), higher barrier height (ϕb) and lower contact resistance obtained. Additionally, the reverse leakage current, although not saturating, has been reduced by almost an order of magnitude at -0.2 V. The sample surfaces were studied by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The native oxide, Sb-O, present on the as-received material is effectively removed on treating with ([(NH4)2S/(NH4)2SO4]+S) and (NH4)2S. Analysis of the as-received surface by XPS, prior to and after argon sputtering, suggests that the native oxide layer is ≤8.5 nm.

  6. International Space Station (ISS)

    NASA Image and Video Library

    2007-06-19

    Eight days of construction resumed on the International Space Station (ISS), as STS-117 astronauts and mission specialists and the Expedition 15 crew completed installation of the second and third starboard truss segments (S3 and S4). Back dropped by the blackness of space, its newly expanded configuration is revealed as pilot Lee Archambault conducts a fly around upon departure from the station on June 19, 2007.

  7. A Safe Ride to School; A Safe Ride Home.

    ERIC Educational Resources Information Center

    Illinois State Board of Education, Springfield.

    Text and illustrations are used to teach safe school bus riding practices. The guide begins with instructions to parents or guardians to set a good example of safe behavior, and to help children learn safety rules and be on time. Instructions to children concern obeying the bus driver, boarding the bus, riding the bus, crossing the road, and using…

  8. Rational synthesis of high nuclearity Mo/Fe/S clusters: the reductive coupling approach in the convenient synthesis of (Cl(4)-cat)(2)Mo(2)Fe(6)S(8)(PR(3))(6) [R = Et, (n)Pr, (n)Bu] and the new [(Cl(4)-cat)(2)Mo(2)Fe(2)S(3)O(PEt(3))(3)Cl]-1/2(Fe(PEt(3))(2)(MeCN)(4)) and (Cl(4)-cat)(2)Mo(2)Fe(3)S(5)(PEt(3))(5) clusters.

    PubMed

    Han, J; Koutmos, M; Ahmad, S A; Coucouvanis, D

    2001-11-05

    A general method for the synthesis of high nuclearity Mo/Fe/S clusters is presented and involves the reductive coupling of the (Et(4)N)(2)[(Cl(4)-cat)MoOFeS(2)Cl(2)] (I) and (Et(4)N)(2)[Fe(2)S(2)Cl(4)] (II) clusters. The reaction of I and II with Fe(PR(3))(2)Cl(2) or sodium salts of noncoordinating anions such as NaPF(6) or NaBPh(4) in the presence of PR(3) (R = Et, (n)Pr, or (n)Bu) affords (Cl(4)-cat)(2)Mo(2)Fe(6)S(8)(PR(3))(6) [R = Et (IIIa), (n)Pr (IIIb), (n)Bu (IIIc)], Fe(6)S(6)(PEt(3))(4)Cl(2) (IV) and (PF(6))[Fe(6)S(8)(P(n)Pr(3))(6)] (V) as byproducts. The isolation of (Et(4)N)[Fe(PEt(3))Cl(3)] (VI), NaCl, and SPEt(3) supports a reductive coupling mechanism. Cluster IV and V also have been synthesized by the reductive self-coupling of compound II. The reductive coupling reaction between I and II by PEt(3) and NaPF(6) in a 1:1 ratio produces the (Et(4)N)(2)[(Cl(4)-cat)Mo(L)Fe(3)S(4)Cl(3)] clusters [L = MeCN (VIIa), THF (VIIb)]. The hitherto unknown [(Cl(4)-cat)(2)Mo(2)Fe(2)S(3)O(PEt(3))(3)Cl](+) cluster (VIII) has been isolated as the 2:1 salt of the (Fe(PEt(3))(2)(MeCN)(4))(2+) cation after the reductive self-coupling reaction of I in the presence of Fe(PEt(3))(2)Cl(2). Cluster VIII crystallizes in the monoclinic space group P2(1)/c with a = 11.098(3) A, b = 22.827(6) A, c = 25.855(6) A, beta = 91.680(4) degrees, and Z = 4. The formal oxidation states of metal atoms in VIII have been assigned as Mo(III), Mo(IV), Fe(II), and Fe(III) on the basis of zero-field Mössbauer spectra. The Fe(PEt(3))(2)(MeCN)(4) cation of VIII is also synthesized independently, isolated as the BPh(4)(-) salt (IX), and has been structurally characterized. The reductive coupling of compound I also affords in low yield the new (Cl(4)-cat)(2)Mo(2)Fe(3)S(5)(PEt(3))(5) cluster (X) as a byproduct. Cluster X crystallizes in the monoclinic space group P2(1)/n with a = 14.811(3) A, b = 22.188(4) A, c = 21.864(4) A, beta = 100.124(3) degrees, and Z = 4 and the structure shows very short Mo

  9. 4. INSTRUMENT ROOM,INTERIOR, MAIN SPACE. Looking northeast. Edwards Air ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. INSTRUMENT ROOM,INTERIOR, MAIN SPACE. Looking northeast. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Firing Control Building, Test Area 1-100, northeast end of Test Area 1-100 Road, Boron, Kern County, CA

  10. The US space station and its electric power system

    NASA Technical Reports Server (NTRS)

    Thomas, Ronald L.

    1988-01-01

    The United States has embarked on a major development program to have a space station operating in low earth orbit by the mid-1990s. This endeavor draws on the talents of NASA and most of the aerospace firms in the U.S. Plans are being pursued to include the participation of Canada, Japan, and the European Space Agency in the space station. From the start of the program these was a focus on the utilization of the space station for science, technology, and commercial endeavors. These requirements were utilized in the design of the station and manifest themselves in: pressurized volume; crew time; power availability and level of power; external payload accommodations; microgravity levels; servicing facilities; and the ability to grow and evolve the space station to meet future needs. President Reagan directed NASA to develop a permanently manned space station in his 1984 State of the Union message. Since then the definition phase was completed and the development phase initiated. A major subsystem of the space station is its 75 kW electric power system. The electric power system has characteristics similar to those of terrestrial power systems. Routine maintenance and replacement of failed equipment must be accomplished safely and easily and in a minimum time while providing reliable power to users. Because of the very high value placed on crew time it is essential that the power system operate in an autonomous mode to minimize crew time required. The power system design must also easily accommodate growth as the power demands by users are expected to grow. An overview of the U.S. space station is provided with special emphasis on its electrical power system.

  11. Project 5S: A Safe Stepping Stone into the Solar System

    NASA Technical Reports Server (NTRS)

    Brophy, John; Culick, Fred; Dimotakis, Paul; Friedman, Louis

    2012-01-01

    The human exploration program, at least in NASA, has been directed to move beyond the Moon and travel on a flexible path into the solar system. Reaching a Near-Earth Asteroid (NEA) is a major human space flight goal but such missions have tight times and life-support requirements that require huge steps from current capabilities. An objective between the Moon and a NEA is needed. Example interim objectives are the Lagrangian points in either the Sun-Earth or Earth-Moon (EM) system. The nearest of these points beyond the Moon is E-M L2. The Lagrangian points are empty (as far as we know). As objectives for human flight,it has been argued that they suffer from a lack of public interest and of meaningful objectives for astronaut operations. To provide a physical target, a robotic spacecraft could retrieve a small NEA and bring it to a Lagrangian or other nearer-Earth point to be accessed and utilized for human-mission objectives. This paper reports on the results of a recently completed study of an asteroid retrieval mission sponsored by the Keck Institute for Space Studies (KISS) at the California Institute of Technology. The study included an evaluation of potential targets, mission objectives, mission and system design, and potential capture mechanisms. The study concluded that, while challenging, there are no fundamental show stoppers and that such a mission would be possible with technology expected to be available in this decade. The final destination selected (for safety and mission operations) was high lunar orbit. Two options for target selection are considered: (i) retrieving a small (7 meter) NEA with a mass of order 500,000 kg, and (ii) taking a similar size boulder of a large known carbonaceous NEA. Several areas of technology and program requirements were identified, but the most important conclusion was that this approach enables meeting a goal of humans going to a NEA by the mid-2020s. The advantages and benefits for human exploration are considerable

  12. Wind pressure testing of tornado safe room components made from wood

    Treesearch

    Robert Falk; Deepak Shrestha

    2016-01-01

    To evaluate the ability of a wood tornado safe room to resist wind pressures produced by a tornado, two safe room com-ponents were tested for wind pressure strength. A tornado safe room ceiling panel and door were static-pressure-tested according to ASTM E 330 using a vacuum test system. Re-sults indicate that the panels had load capacities from 2.4 to 3.5 times that...

  13. The One-Year Crew returns on This Week @NASA – March 4, 2016

    NASA Image and Video Library

    2016-03-04

    After spending nearly a year aboard the International Space Station -- conducting a host of biomedical and psychological research on the impacts of long-duration spaceflight on the human body, NASA’s Scott Kelly and Mikhail Kornienko of the Russian space agency Roscosmos wrapped up their historic mission on March 1 – with a safe parachute landing in Kazakhstan . Just over a day, later – at Houston’s Ellington Field, near Johnson Space Center, a host of family, colleagues and VIPs welcomed Kelly back to the United States, including Second Lady of the United States Dr. Jill Biden, Assistant to the President for Science and Technology Dr. John P. Holdren, and NASA Administrator Charles Bolden. There were cheers, embraces and expressions of appreciation for his efforts to help advance deep space exploration and America’s Journey to Mars. Also, Next ISS crew heads to launch site, “Low boom” aircraft, Orion Service Module’s solar array wing deployment and more!

  14. International Space Station (ISS)

    NASA Image and Video Library

    2007-06-11

    STS-117 astronauts and mission specialists Jim Reilly (center frame), and John “Danny” Olivas (bottom center), participated in the first Extra Vehicular Activity (EVA) as construction resumed on the International Space Station (ISS). Among other tasks, the two connected power, data, and cooling cables between trusses 1 (S1) and 3 (S3), released the launch restraints from and deployed the four solar array blanket boxes on S4, and released the cinches and winches holding the photovoltaic radiator on S4. The primary mission objective was the installment of the second and third starboard truss segments (S3 and S4).

  15. Safe commuting factors from existing guidelines in Malaysia: a review for the construction sector

    NASA Astrophysics Data System (ADS)

    Sukor, E. S. A.; Suratkon, A.; Mohammad, H.; Yaman, S. K.

    2018-04-01

    The construction industry is a very active and dynamic industry, which proceeding as one of the significant industry that contributing to the country’s economy. Unfortunately, the construction industry has also earned the reputation of being the riskiest industry because of the higher rates of accidents and fatalities. Nevertheless, overwhelming focus by many on the accident in the workplace has shaded the alarming issue of the construction-related commuting accident. As reported by the Malaysia’s Social Security Organisation (SOCSO) in 2016, the number of commuting accidents and the compensations paid is increasing each year, and it is including the construction sector. Aware of the importance of safe commuting, several Malaysian agencies have developed their guidelines specifically for the improvement of such issue. Regrettably, the number of guidelines published does not exemplify the improvement of such issue when the number of commuting accidents is on the rise, especially for the construction sector. Therefore, this preliminary research was conducted to identify the safe commuting factors from the existing guidelines through manual document analysis. The finding shows that there are four (4) major categories namely; (1) driver/human factor, (2) vehicle factor, (3) environment factor, and (4) others. Hence, the research posits for subsequent exploration to ensure strategic implementation of those factors that will benefit the Malaysia’s construction sector.

  16. Quaternary non-centrosymmetric sulfide Y4GaSbS9: Syntheses, structures, optical properties and theoretical studies

    NASA Astrophysics Data System (ADS)

    Wang, Yue; Zou, Xiaochuan; Feng, Xia; Shi, Yongfang; Wu, Liming

    2017-01-01

    A new rare-earth metal gallium thioantimonate, Y4GaSbS9, has been synthesized successfully via high-temperature solid-state method. Single-crystal X-ray diffraction analyses revealed it adopted a known RE4GaSbS9-structure type in the orthorhombic space group Aba2 (no.41) with a=13.480(4) Å, b=13.790(4) Å, c=13.990(4) Å, V=2600.6(2) Å3 and Z=8. The structure is composed of bimetallic polar (Sb2S5) units and dimeric (GaS4)2 tetrahedra that share vertexes to form a 1D infinite chains 2 ∞ 1Ga 10-, inside which the isolated Y3+ cations and S2- anions. Polycrystalline Y4GaSbS9 shows the weak powder second harmonic generation (SHG) responses of this family, which is about 7.5 times that of the benchmark α-SiO2 in the particle size of 74-106 μm at the laser radiation wavelength of 2050 nm with a non-phase-matchable behavior. In addition, the synthesis, structural characterization, and optical properties as well as theoretical studies are also discussed.

  17. Children’s representations of nature using photovoice and community mapping: perspectives from South Africa

    PubMed Central

    Adams, Sabirah; Savahl, Shazly; Fattore, Tobia

    2017-01-01

    ABSTRACT The aim of the study was to explore children’s representations and perceptions of natural spaces using photovoice and community mapping. The sample consisted of 28 children aged 12–14 years residing in urban and rural communities in the Western Cape, South Africa. Data were collected by means of a series of six focus groups interviews (three photovoice discussion groups and three community mapping discussion groups). For the photovoice missions, children were provided with a 28-exposure disposable camera and given 1 week to complete their missions. Thematic analysis was employed to analyse the data. Three key themes emerged, namely: safe spaces in nature, unsafe spaces in nature, and children’s favourite places in nature. Socio-economic status (SES) was found to be a determining factor in how children make sense of natural spaces. Children from low SES communities indicated being more constricted in their mobility, and were unable to access to safe natural spaces compared to the children from the middle SES community. It is recommended that an expedient starting point would be to work towards and build environmentally and child-friendly communities for children, with children as key contributors in the planning process using a child participation framework. PMID:28699852

  18. Space Suit Spins

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Space is a hostile environment where astronauts combat extreme temperatures, dangerous radiation, and a near-breathless vacuum. Life support in these unforgiving circumstances is crucial and complex, and failure is not an option for the devices meant to keep astronauts safe in an environment that presents constant opposition. A space suit must meet stringent requirements for life support. The suit has to be made of durable material to withstand the impact of space debris and protect against radiation. It must provide essential oxygen, pressure, heating, and cooling while retaining mobility and dexterity. It is not a simple article of clothing but rather a complex modern armor that the space explorers must don if they are to continue exploring the heavens

  19. NASA's Commercial Crew Program, the Next Step in U.S. Space Transportation

    NASA Technical Reports Server (NTRS)

    Mango, Edward J., Jr.

    2013-01-01

    The Commercial Crew Program (CCP) is leading NASA's efforts to develop the next U.S. capability for crew transportation and rescue services to and from the International Space Station (ISS) by the middecade timeframe. The outcome of this capability is expected to stimulate and expand the U.S. space transportation industry. NASA is relying on its decades of human space flight experience to certify U.S. crewed vehicles to the ISS and is doing so in a two phase certification approach. NASA certification will cover all aspects of a crew transportation system, including: Development, test, evaluation, and verification. Program management and control. Flight readiness certification. Launch, landing, recovery, and mission operations. Sustaining engineering and maintenance/upgrades. To ensure NASA crew safety, NASA certification will validate technical and performance requirements, verify compliance with NASA requirements, validate that the crew transportation system operates in the appropriate environments, and quantify residual risks. The Commercial Crew Program will present progress to date and how it manages safety and reduces risk.

  20. NASA's Space Launch System: A Heavy-Lift Platform for Entirely New Missions

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.

    2012-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) will contribute a new capability for human space flight and scientific missions beyond low-Earth orbit (LEO). The SLS Program, managed at NASA s Marshall Space Flight Center, will develop the heavy-lift vehicle that will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions for exploration and discovery. Orion will carry crews to space, provide emergency abort capability, sustain the crew during space travel, and provide safe reentry from deep-space return velocities. Supporting Orion s first autonomous flight to lunar orbit and back in 2017 and its first crewed flight in 2021, the SLS ultimately offers a flexible platform for both human and scientific exploration. The SLS plan leverages legacy infrastructure and hardware in NASA s inventory, as well as continues with advanced technologies now in development, to deliver an initial 70 metric ton (t) lift capability in 2017, evolving to a 130-t capability, using a block upgrade approach. This paper will give an overview of the SLS design and management approach against a backdrop of the missions it will support. It will detail the plan to deliver the initial SLS capability to the launch pad in the near term, as well as summarize the innovative approaches the SLS team is applying to deliver a safe, affordable, and sustainable long-range capability for entirely new missions-opening a new realm of knowledge and a world of possibilities for multiple partners. Design reference missions that the SLS is being planned to support include Mars, Jupiter, Lagrange Points, and near-Earth asteroids (NEAs), among others. The Agency is developing its mission manifest in parallel with the development of a heavy-lift flagship that will dramatically increase total lift and volume capacity beyond current launch vehicle options, reduce trip times, and provide a robust platform for conducting new missions