Sample records for safety analysis process

  1. Systemic safety project selection tool.

    DOT National Transportation Integrated Search

    2013-07-01

    "The Systemic Safety Project Selection Tool presents a process for incorporating systemic safety planning into traditional safety management processes. The Systemic Tool provides a step-by-step process for conducting systemic safety analysis; conside...

  2. Transportation systems safety hazard analysis tool (SafetyHAT) user guide (version 1.0)

    DOT National Transportation Integrated Search

    2014-03-24

    This is a user guide for the transportation system Safety Hazard Analysis Tool (SafetyHAT) Version 1.0. SafetyHAT is a software tool that facilitates System Theoretic Process Analysis (STPA.) This user guide provides instructions on how to download, ...

  3. A method for identifying EMI critical circuits during development of a large C3

    NASA Astrophysics Data System (ADS)

    Barr, Douglas H.

    The circuit analysis methods and process Boeing Aerospace used on a large, ground-based military command, control, and communications (C3) system are described. This analysis was designed to help identify electromagnetic interference (EMI) critical circuits. The methodology used the MIL-E-6051 equipment criticality categories as the basis for defining critical circuits, relational database technology to help sort through and account for all of the approximately 5000 system signal cables, and Macintosh Plus personal computers to predict critical circuits based on safety margin analysis. The EMI circuit analysis process systematically examined all system circuits to identify which ones were likely to be EMI critical. The process used two separate, sequential safety margin analyses to identify critical circuits (conservative safety margin analysis, and detailed safety margin analysis). These analyses used field-to-wire and wire-to-wire coupling models using both worst-case and detailed circuit parameters (physical and electrical) to predict circuit safety margins. This process identified the predicted critical circuits that could then be verified by test.

  4. Improved processes for meeting the data requirements for implementing the Highway Safety Manual (HSM) and Safety Analyst in Florida.

    DOT National Transportation Integrated Search

    2014-03-01

    Recent research in highway safety has focused on the more advanced and statistically proven techniques of highway : safety analysis. This project focuses on the two most recent safety analysis tools, the Highway Safety Manual (HSM) : and SafetyAnalys...

  5. 10 CFR 70.62 - Safety program and integrated safety analysis.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...; (iv) Potential accident sequences caused by process deviations or other events internal to the... of occurrence of each potential accident sequence identified pursuant to paragraph (c)(1)(iv) of this... have experience in nuclear criticality safety, radiation safety, fire safety, and chemical process...

  6. 10 CFR 70.62 - Safety program and integrated safety analysis.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...; (iv) Potential accident sequences caused by process deviations or other events internal to the... of occurrence of each potential accident sequence identified pursuant to paragraph (c)(1)(iv) of this... have experience in nuclear criticality safety, radiation safety, fire safety, and chemical process...

  7. 10 CFR 70.62 - Safety program and integrated safety analysis.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...; (iv) Potential accident sequences caused by process deviations or other events internal to the... of occurrence of each potential accident sequence identified pursuant to paragraph (c)(1)(iv) of this... have experience in nuclear criticality safety, radiation safety, fire safety, and chemical process...

  8. [Process management in the hospital pharmacy for the improvement of the patient safety].

    PubMed

    Govindarajan, R; Perelló-Juncá, A; Parès-Marimòn, R M; Serrais-Benavente, J; Ferrandez-Martí, D; Sala-Robinat, R; Camacho-Calvente, A; Campabanal-Prats, C; Solà-Anderiu, I; Sanchez-Caparrós, S; Gonzalez-Estrada, J; Martinez-Olalla, P; Colomer-Palomo, J; Perez-Mañosas, R; Rodríguez-Gallego, D

    2013-01-01

    To define a process management model for a hospital pharmacy in order to measure, analyse and make continuous improvements in patient safety and healthcare quality. In order to implement process management, Igualada Hospital was divided into different processes, one of which was the Hospital Pharmacy. A multidisciplinary management team was given responsibility for each process. For each sub-process one person was identified to be responsible, and a working group was formed under his/her leadership. With the help of each working group, a risk analysis using failure modes and effects analysis (FMEA) was performed, and the corresponding improvement actions were implemented. Sub-process indicators were also identified, and different process management mechanisms were introduced. The first risk analysis with FMEA produced more than thirty preventive actions to improve patient safety. Later, the weekly analysis of errors, as well as the monthly analysis of key process indicators, permitted us to monitor process results and, as each sub-process manager participated in these meetings, also to assume accountability and responsibility, thus consolidating the culture of excellence. The introduction of different process management mechanisms, with the participation of people responsible for each sub-process, introduces a participative management tool for the continuous improvement of patient safety and healthcare quality. Copyright © 2012 SECA. Published by Elsevier Espana. All rights reserved.

  9. General RMP Guidance - Appendix D: OSHA Guidance on PSM

    EPA Pesticide Factsheets

    OSHA's Process Safety Management (PSM) Guidance on providing complete and accurate written information concerning process chemicals, process technology, and process equipment; including process hazard analysis and material safety data sheets.

  10. Safety analysts training

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolton, P.

    The purpose of this task was to support ESH-3 in providing Airborne Release Fraction and Respirable Fraction training to safety analysts at LANL who perform accident analysis, hazard analysis, safety analysis, and/or risk assessments at nuclear facilities. The task included preparation of materials for and the conduct of two 3-day training courses covering the following topics: safety analysis process; calculation model; aerosol physic concepts for safety analysis; and overview of empirically derived airborne release fractions and respirable fractions.

  11. Process safety improvement--quality and target zero.

    PubMed

    Van Scyoc, Karl

    2008-11-15

    Process safety practitioners have adopted quality management principles in design of process safety management systems with positive effect, yet achieving safety objectives sometimes remain a distant target. Companies regularly apply tools and methods which have roots in quality and productivity improvement. The "plan, do, check, act" improvement loop, statistical analysis of incidents (non-conformities), and performance trending popularized by Dr. Deming are now commonly used in the context of process safety. Significant advancements in HSE performance are reported after applying methods viewed as fundamental for quality management. In pursuit of continual process safety improvement, the paper examines various quality improvement methods, and explores how methods intended for product quality can be additionally applied to continual improvement of process safety. Methods such as Kaizen, Poke yoke, and TRIZ, while long established for quality improvement, are quite unfamiliar in the process safety arena. These methods are discussed for application in improving both process safety leadership and field work team performance. Practical ways to advance process safety, based on the methods, are given.

  12. Enhancing Safety of Artificially Ventilated Patients Using Ambient Process Analysis.

    PubMed

    Lins, Christian; Gerka, Alexander; Lüpkes, Christian; Röhrig, Rainer; Hein, Andreas

    2018-01-01

    In this paper, we present an approach for enhancing the safety of artificially ventilated patients using ambient process analysis. We propose to use an analysis system consisting of low-cost ambient sensors such as power sensor, RGB-D sensor, passage detector, and matrix infrared temperature sensor to reduce risks for artificially ventilated patients in both home and clinical environments. We describe the system concept and our implementation and show how the system can contribute to patient safety.

  13. Improving safety on rural local and tribal roads site safety analysis - user guide #1.

    DOT National Transportation Integrated Search

    2014-08-01

    This User Guide presents an example of how rural local and Tribal practitioners can study conditions at a preselected site. It demonstrates the step-by-step safety analysis process presented in Improving Safety on Rural Local and Tribal Roads Saf...

  14. Making the Hubble Space Telescope servicing mission safe

    NASA Technical Reports Server (NTRS)

    Bahr, N. J.; Depalo, S. V.

    1992-01-01

    The implementation of the HST system safety program is detailed. Numerous safety analyses are conducted through various phases of design, test, and fabrication, and results are presented to NASA management for discussion during dedicated safety reviews. Attention is given to the system safety assessment and risk analysis methodologies used, i.e., hazard analysis, fault tree analysis, and failure modes and effects analysis, and to how they are coupled with engineering and test analysis for a 'synergistic picture' of the system. Some preliminary safety analysis results, showing the relationship between hazard identification, control or abatement, and finally control verification, are presented as examples of this safety process.

  15. Analysis of vehicle's safety envelope under car-following model

    NASA Astrophysics Data System (ADS)

    Tang, Tie-Qiao; Zhang, Jian; Chen, Liang; Shang, Hua-Yan

    2017-05-01

    In this paper, we propose an improved car-following model to explore the impacts of vehicle's two safety distances (i.e., the front safety distance and back safety distance) on the traffic safety during the starting process. The numerical results show that our model is prominently safer than the FVD (full velocity difference) model, i.e., our model is better than the FVD model from the perspective of the traffic safety, which shows that each driver should consider his two safety distances during his driving process.

  16. Safety and reliability analysis in a polyvinyl chloride batch process using dynamic simulator-case study: Loss of containment incident.

    PubMed

    Rizal, Datu; Tani, Shinichi; Nishiyama, Kimitoshi; Suzuki, Kazuhiko

    2006-10-11

    In this paper, a novel methodology in batch plant safety and reliability analysis is proposed using a dynamic simulator. A batch process involving several safety objects (e.g. sensors, controller, valves, etc.) is activated during the operational stage. The performance of the safety objects is evaluated by the dynamic simulation and a fault propagation model is generated. By using the fault propagation model, an improved fault tree analysis (FTA) method using switching signal mode (SSM) is developed for estimating the probability of failures. The timely dependent failures can be considered as unavailability of safety objects that can cause the accidents in a plant. Finally, the rank of safety object is formulated as performance index (PI) and can be estimated using the importance measures. PI shows the prioritization of safety objects that should be investigated for safety improvement program in the plants. The output of this method can be used for optimal policy in safety object improvement and maintenance. The dynamic simulator was constructed using Visual Modeler (VM, the plant simulator, developed by Omega Simulation Corp., Japan). A case study is focused on the loss of containment (LOC) incident at polyvinyl chloride (PVC) batch process which is consumed the hazardous material, vinyl chloride monomer (VCM).

  17. A Case Study of Measuring Process Risk for Early Insights into Software Safety

    NASA Technical Reports Server (NTRS)

    Layman, Lucas; Basili, Victor; Zelkowitz, Marvin V.; Fisher, Karen L.

    2011-01-01

    In this case study, we examine software safety risk in three flight hardware systems in NASA's Constellation spaceflight program. We applied our Technical and Process Risk Measurement (TPRM) methodology to the Constellation hazard analysis process to quantify the technical and process risks involving software safety in the early design phase of these projects. We analyzed 154 hazard reports and collected metrics to measure the prevalence of software in hazards and the specificity of descriptions of software causes of hazardous conditions. We found that 49-70% of 154 hazardous conditions could be caused by software or software was involved in the prevention of the hazardous condition. We also found that 12-17% of the 2013 hazard causes involved software, and that 23-29% of all causes had a software control. The application of the TPRM methodology identified process risks in the application of the hazard analysis process itself that may lead to software safety risk.

  18. Implementation of the Generic Safety Analysis Report - Lessons Learned

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanchard, A.

    1999-06-02

    The Savannah River Site has completed the development, review and approval process for the Generic Safety Analysis Report (GSAR) and implemented this information in facility SARs and BIOs. This includes the yearly revision of the GSAR and the facility-specific SARs. The process has provided us with several lessons learned.

  19. Safety Hazards During Intrahospital Transport: A Prospective Observational Study.

    PubMed

    Bergman, Lina M; Pettersson, Monica E; Chaboyer, Wendy P; Carlström, Eric D; Ringdal, Mona L

    2017-10-01

    To identify, classify, and describe safety hazards during the process of intrahospital transport of critically ill patients. A prospective observational study. Data from participant observations of the intrahospital transport process were collected over a period of 3 months. The study was undertaken at two ICUs in one university hospital. Critically ill patients transported within the hospital by critical care nurses, unlicensed nurses, and physicians. None. Content analysis was performed using deductive and inductive approaches. We detected a total of 365 safety hazards (median, 7; interquartile range, 4-10) during 51 intrahospital transports of critically ill patients, 80% of whom were mechanically ventilated. The majority of detected safety hazards were assessed as increasing the risk of harm, compromising patient safety (n = 204). Using the System Engineering Initiative for Patient Safety, we identified safety hazards related to the work system, as follows: team (n = 61), tasks (n = 83), tools and technologies (n = 124), environment (n = 48), and organization (n = 49). Inductive analysis provided an in-depth description of those safety hazards, contributing factors, and process-related outcomes. Findings suggest that intrahospital transport is a hazardous process for critically ill patients. We have identified several factors that may contribute to transport-related adverse events, which will provide the opportunity for the redesign of systems to enhance patient safety.

  20. Establishing a culture for patient safety - the role of education.

    PubMed

    Milligan, Frank J

    2007-02-01

    This paper argues that the process of making significant moves towards a patient safety culture requires changes in healthcare education. Improvements in patient safety are a shared international priority as too many errors and other forms of unnecessary harm are currently occurring in the process of caring for and treating patients. A description of the patient safety agenda is given followed by a brief analysis of human factors theory and its use in other safety critical industries, most notably aviation. The all too common problem of drug administration errors is used to illustrate the relevance of human factors theory to healthcare education with specific mention made of the Human Factors Analysis and Classification System (HFACS).

  1. 14 CFR 415.117 - Ground safety.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Ground safety. 415.117 Section 415.117... From a Non-Federal Launch Site § 415.117 Ground safety. (a) General. An applicant's safety review document must include a ground safety analysis report, and a ground safety plan for its launch processing...

  2. 14 CFR 415.117 - Ground safety.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Ground safety. 415.117 Section 415.117... From a Non-Federal Launch Site § 415.117 Ground safety. (a) General. An applicant's safety review document must include a ground safety analysis report, and a ground safety plan for its launch processing...

  3. Integrating natural language processing expertise with patient safety event review committees to improve the analysis of medication events.

    PubMed

    Fong, Allan; Harriott, Nicole; Walters, Donna M; Foley, Hanan; Morrissey, Richard; Ratwani, Raj R

    2017-08-01

    Many healthcare providers have implemented patient safety event reporting systems to better understand and improve patient safety. Reviewing and analyzing these reports is often time consuming and resource intensive because of both the quantity of reports and length of free-text descriptions in the reports. Natural language processing (NLP) experts collaborated with clinical experts on a patient safety committee to assist in the identification and analysis of medication related patient safety events. Different NLP algorithmic approaches were developed to identify four types of medication related patient safety events and the models were compared. Well performing NLP models were generated to categorize medication related events into pharmacy delivery delays, dispensing errors, Pyxis discrepancies, and prescriber errors with receiver operating characteristic areas under the curve of 0.96, 0.87, 0.96, and 0.81 respectively. We also found that modeling the brief without the resolution text generally improved model performance. These models were integrated into a dashboard visualization to support the patient safety committee review process. We demonstrate the capabilities of various NLP models and the use of two text inclusion strategies at categorizing medication related patient safety events. The NLP models and visualization could be used to improve the efficiency of patient safety event data review and analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Infusing Reliability Techniques into Software Safety Analysis

    NASA Technical Reports Server (NTRS)

    Shi, Ying

    2015-01-01

    Software safety analysis for a large software intensive system is always a challenge. Software safety practitioners need to ensure that software related hazards are completely identified, controlled, and tracked. This paper discusses in detail how to incorporate the traditional reliability techniques into the entire software safety analysis process. In addition, this paper addresses how information can be effectively shared between the various practitioners involved in the software safety analyses. The author has successfully applied the approach to several aerospace applications. Examples are provided to illustrate the key steps of the proposed approach.

  5. A Microbial Assessment Scheme to measure microbial performance of Food Safety Management Systems.

    PubMed

    Jacxsens, L; Kussaga, J; Luning, P A; Van der Spiegel, M; Devlieghere, F; Uyttendaele, M

    2009-08-31

    A Food Safety Management System (FSMS) implemented in a food processing industry is based on Good Hygienic Practices (GHP), Hazard Analysis Critical Control Point (HACCP) principles and should address both food safety control and assurance activities in order to guarantee food safety. One of the most emerging challenges is to assess the performance of a present FSMS. The objective of this work is to explain the development of a Microbial Assessment Scheme (MAS) as a tool for a systematic analysis of microbial counts in order to assess the current microbial performance of an implemented FSMS. It is assumed that low numbers of microorganisms and small variations in microbial counts indicate an effective FSMS. The MAS is a procedure that defines the identification of critical sampling locations, the selection of microbiological parameters, the assessment of sampling frequency, the selection of sampling method and method of analysis, and finally data processing and interpretation. Based on the MAS assessment, microbial safety level profiles can be derived, indicating which microorganisms and to what extent they contribute to food safety for a specific food processing company. The MAS concept is illustrated with a case study in the pork processing industry, where ready-to-eat meat products are produced (cured, cooked ham and cured, dried bacon).

  6. European Workshop Industrical Computer Science Systems approach to design for safety

    NASA Technical Reports Server (NTRS)

    Zalewski, Janusz

    1992-01-01

    This paper presents guidelines on designing systems for safety, developed by the Technical Committee 7 on Reliability and Safety of the European Workshop on Industrial Computer Systems. The focus is on complementing the traditional development process by adding the following four steps: (1) overall safety analysis; (2) analysis of the functional specifications; (3) designing for safety; (4) validation of design. Quantitative assessment of safety is possible by means of a modular questionnaire covering various aspects of the major stages of system development.

  7. Safety Verification of the Small Aircraft Transportation System Concept of Operations

    NASA Technical Reports Server (NTRS)

    Carreno, Victor; Munoz, Cesar

    2005-01-01

    A critical factor in the adoption of any new aeronautical technology or concept of operation is safety. Traditionally, safety is accomplished through a rigorous process that involves human factors, low and high fidelity simulations, and flight experiments. As this process is usually performed on final products or functional prototypes, concept modifications resulting from this process are very expensive to implement. This paper describe an approach to system safety that can take place at early stages of a concept design. It is based on a set of mathematical techniques and tools known as formal methods. In contrast to testing and simulation, formal methods provide the capability of exhaustive state exploration analysis. We present the safety analysis and verification performed for the Small Aircraft Transportation System (SATS) Concept of Operations (ConOps). The concept of operations is modeled using discrete and hybrid mathematical models. These models are then analyzed using formal methods. The objective of the analysis is to show, in a mathematical framework, that the concept of operation complies with a set of safety requirements. It is also shown that the ConOps has some desirable characteristic such as liveness and absence of dead-lock. The analysis and verification is performed in the Prototype Verification System (PVS), which is a computer based specification language and a theorem proving assistant.

  8. Preliminary hazards analysis -- vitrification process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coordes, D.; Ruggieri, M.; Russell, J.

    1994-06-01

    This paper presents a Preliminary Hazards Analysis (PHA) for mixed waste vitrification by joule heating. The purpose of performing a PHA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PHA is then followed by a Preliminary Safety Analysis Report (PSAR) performed during Title 1 and 2 design. The PSAR then leads to performance of the Final Safety Analysis Report performed during the facility`s constructionmore » and testing. It should be completed before routine operation of the facility commences. This PHA addresses the first four chapters of the safety analysis process, in accordance with the requirements of DOE Safety Guidelines in SG 830.110. The hazards associated with vitrification processes are evaluated using standard safety analysis methods which include: identification of credible potential hazardous energy sources; identification of preventative features of the facility or system; identification of mitigative features; and analyses of credible hazards. Maximal facility inventories of radioactive and hazardous materials are postulated to evaluate worst case accident consequences. These inventories were based on DOE-STD-1027-92 guidance and the surrogate waste streams defined by Mayberry, et al. Radiological assessments indicate that a facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous materials assessment indicates that a Mixed Waste Vitrification facility will be a Low Hazard facility having minimal impacts to offsite personnel and the environment.« less

  9. Sociotechnical attributes of safe and unsafe work systems.

    PubMed

    Kleiner, Brian M; Hettinger, Lawrence J; DeJoy, David M; Huang, Yuang-Hsiang; Love, Peter E D

    2015-01-01

    Theoretical and practical approaches to safety based on sociotechnical systems principles place heavy emphasis on the intersections between social-organisational and technical-work process factors. Within this perspective, work system design emphasises factors such as the joint optimisation of social and technical processes, a focus on reliable human-system performance and safety metrics as design and analysis criteria, the maintenance of a realistic and consistent set of safety objectives and policies, and regular access to the expertise and input of workers. We discuss three current approaches to the analysis and design of complex sociotechnical systems: human-systems integration, macroergonomics and safety climate. Each approach emphasises key sociotechnical systems themes, and each prescribes a more holistic perspective on work systems than do traditional theories and methods. We contrast these perspectives with historical precedents such as system safety and traditional human factors and ergonomics, and describe potential future directions for their application in research and practice. The identification of factors that can reliably distinguish between safe and unsafe work systems is an important concern for ergonomists and other safety professionals. This paper presents a variety of sociotechnical systems perspectives on intersections between social--organisational and technology--work process factors as they impact work system analysis, design and operation.

  10. Canister Storage Building (CSB) Hazard Analysis Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    POWERS, T.B.

    2000-03-16

    This report describes the methodology used in conducting the Canister Storage Building (CSB) Hazard Analysis to support the final CSB Safety Analysis Report and documents the results. This report describes the methodology used in conducting the Canister Storage Building (CSB) hazard analysis to support the CSB final safety analysis report (FSAR) and documents the results. The hazard analysis process identified hazardous conditions and material-at-risk, determined causes for potential accidents, identified preventive and mitigative features, and qualitatively estimated the frequencies and consequences of specific occurrences. The hazard analysis was performed by a team of cognizant CSB operations and design personnel, safetymore » analysts familiar with the CSB, and technical experts in specialty areas. The material included in this report documents the final state of a nearly two-year long process. Attachment A provides two lists of hazard analysis team members and describes the background and experience of each. The first list is a complete list of the hazard analysis team members that have been involved over the two-year long process. The second list is a subset of the first list and consists of those hazard analysis team members that reviewed and agreed to the final hazard analysis documentation. The material included in this report documents the final state of a nearly two-year long process involving formal facilitated group sessions and independent hazard and accident analysis work. The hazard analysis process led to the selection of candidate accidents for further quantitative analysis. New information relative to the hazards, discovered during the accident analysis, was incorporated into the hazard analysis data in order to compile a complete profile of facility hazards. Through this process, the results of the hazard and accident analyses led directly to the identification of safety structures, systems, and components, technical safety requirements, and other controls required to protect the public, workers, and environment.« less

  11. 14 CFR 417.403 - General.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Ground Safety § 417.403 General. (a) Public safety. A launch operator must... with launch processing and post-launch operations. (b) Ground safety analysis. A launch operator must...

  12. Applicability of the Common Safety Method for Risk Evaluation and Assessment (CSM-RA) to the Space Domain

    NASA Astrophysics Data System (ADS)

    Moreira, Francisco; Silva, Nuno

    2016-08-01

    Safety systems require accident avoidance. This is covered by application standards, processes, techniques and tools that support the identification, analysis, elimination or reduction to an acceptable level of system risks and hazards. Ideally, a safety system should be free of hazards. However, both industry and academia have been struggling to ensure appropriate risk and hazard analysis, especially in what concerns completeness of the hazards, formalization, and timely analysis in order to influence the specifications and the implementation. Such analysis is also important when considering a change to an existing system. The Common Safety Method for Risk Evaluation and Assessment (CSM- RA) is a mandatory procedure whenever any significant change is proposed to the railway system in a European Member State. This paper provides insights on the fundamentals of CSM-RA based and complemented with Hazard Analysis. When and how to apply them, and the relation and similarities of these processes with industry standards and the system life cycles is highlighted. Finally, the paper shows how CSM-RA can be the basis of a change management process, guiding the identification and management of the hazards helping ensuring the similar safety level as the initial system. This paper will show how the CSM-RA principles can be used in other domains particularly for space system evolution.

  13. Accident analysis and control options in support of the sludge water system safety analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HEY, B.E.

    A hazards analysis was initiated for the SWS in July 2001 (SNF-8626, K Basin Sludge and Water System Preliminary Hazard Analysis) and updated in December 2001 (SNF-10020 Rev. 0, Hazard Evaluation for KE Sludge and Water System - Project A16) based on conceptual design information for the Sludge Retrieval System (SRS) and 60% design information for the cask and container. SNF-10020 was again revised in September 2002 to incorporate new hazards identified from final design information and from a What-if/Checklist evaluation of operational steps. The process hazards, controls, and qualitative consequence and frequency estimates taken from these efforts have beenmore » incorporated into Revision 5 of HNF-3960, K Basins Hazards Analysis. The hazards identification process documented in the above referenced reports utilized standard industrial safety techniques (AIChE 1992, Guidelines for Hazard Evaluation Procedures) to systematically guide several interdisciplinary teams through the system using a pre-established set of process parameters (e.g., flow, temperature, pressure) and guide words (e.g., high, low, more, less). The teams generally included representation from the U.S. Department of Energy (DOE), K Basins Nuclear Safety, T Plant Nuclear Safety, K Basin Industrial Safety, fire protection, project engineering, operations, and facility engineering.« less

  14. Nuclear criticality safety bounding analysis for the in-tank-precipitation (ITP) process, impacted by fissile isotopic weight fractions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bess, C.E.

    The In-Tank Precipitation process (ITP) receives High Level Waste (HLW) supernatant liquid containing radionuclides in waste processing tank 48H. Sodium tetraphenylborate, NaTPB, and monosodium titanate (MST), NaTi{sub 2}O{sub 5}H, are added for removal of radioactive Cs and Sr, respectively. In addition to removal of radio-strontium, MST will also remove plutonium and uranium. The majority of the feed solutions to ITP will come from the dissolution of supernate that had been concentrated by evaporation to a crystallized salt form, commonly referred to as saltcake. The concern for criticality safety arises from the adsorption of U and Pt onto MST. If sufficientmore » mass and optimum conditions are achieved then criticality is credible. The concentration of u and Pt from solution into the smaller volume of precipitate represents a concern for criticality. This report supplements WSRC-TR-93-171, Nuclear Criticality Safety Bounding Analysis For The In-Tank-Precipitation (ITP) Process. Criticality safety in ITP can be analyzed by two bounding conditions: (1) the minimum safe ratio of MST to fissionable material and (2) the maximum fissionable material adsorption capacity of the MST. Calculations have provided the first bounding condition and experimental analysis has established the second. This report combines these conditions with canyon facility data to evaluate the potential for criticality in the ITP process due to the adsorption of the fissionable material from solution. In addition, this report analyzes the potential impact of increased U loading onto MST. Results of this analysis demonstrate a greater safety margin for ITP operations than the previous analysis. This report further demonstrates that the potential for criticality in the ITP process due to adsorption of fissionable material by MST is not credible.« less

  15. 10 CFR 70.62 - Safety program and integrated safety analysis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... conclusion of each failure investigation of an item relied on for safety or management measure. (b) Process... methodology being used. (3) Requirements for existing licensees. Individuals holding an NRC license on...

  16. Applying Failure Modes, Effects, And Criticality Analysis And Human Reliability Analysis Techniques To Improve Safety Design Of Work Process In Singapore Armed Forces

    DTIC Science & Technology

    2016-09-01

    an instituted safety program that utilizes a generic risk assessment method involving the 5-M (Mission, Man, Machine , Medium and Management) factor...the Safety core value is hinged upon three key principles—(1) each soldier has a crucial part to play, by adopting safety as a core value and making...it a way of life in his unit; (2) safety is an integral part of training, operations and mission success, and (3) safety is an individual, team and

  17. The role of the PIRT process in identifying code improvements and executing code development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, G.E.; Boyack, B.E.

    1997-07-01

    In September 1988, the USNRC issued a revised ECCS rule for light water reactors that allows, as an option, the use of best estimate (BE) plus uncertainty methods in safety analysis. The key feature of this licensing option relates to quantification of the uncertainty in the determination that an NPP has a {open_quotes}low{close_quotes} probability of violating the safety criteria specified in 10 CFR 50. To support the 1988 licensing revision, the USNRC and its contractors developed the CSAU evaluation methodology to demonstrate the feasibility of the BE plus uncertainty approach. The PIRT process, Step 3 in the CSAU methodology, wasmore » originally formulated to support the BE plus uncertainty licensing option as executed in the CSAU approach to safety analysis. Subsequent work has shown the PIRT process to be a much more powerful tool than conceived in its original form. Through further development and application, the PIRT process has shown itself to be a robust means to establish safety analysis computer code phenomenological requirements in their order of importance to such analyses. Used early in research directed toward these objectives, PIRT results also provide the technical basis and cost effective organization for new experimental programs needed to improve the safety analysis codes for new applications. The primary purpose of this paper is to describe the generic PIRT process, including typical and common illustrations from prior applications. The secondary objective is to provide guidance to future applications of the process to help them focus, in a graded approach, on systems, components, processes and phenomena that have been common in several prior applications.« less

  18. Model-Based Safety Analysis

    NASA Technical Reports Server (NTRS)

    Joshi, Anjali; Heimdahl, Mats P. E.; Miller, Steven P.; Whalen, Mike W.

    2006-01-01

    System safety analysis techniques are well established and are used extensively during the design of safety-critical systems. Despite this, most of the techniques are highly subjective and dependent on the skill of the practitioner. Since these analyses are usually based on an informal system model, it is unlikely that they will be complete, consistent, and error free. In fact, the lack of precise models of the system architecture and its failure modes often forces the safety analysts to devote much of their effort to gathering architectural details about the system behavior from several sources and embedding this information in the safety artifacts such as the fault trees. This report describes Model-Based Safety Analysis, an approach in which the system and safety engineers share a common system model created using a model-based development process. By extending the system model with a fault model as well as relevant portions of the physical system to be controlled, automated support can be provided for much of the safety analysis. We believe that by using a common model for both system and safety engineering and automating parts of the safety analysis, we can both reduce the cost and improve the quality of the safety analysis. Here we present our vision of model-based safety analysis and discuss the advantages and challenges in making this approach practical.

  19. Overview of Energy Systems` safety analysis report programs. Safety Analysis Report Update Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-03-01

    The primary purpose of an Safety Analysis Report (SAR) is to provide a basis for judging the adequacy of a facility`s safety. The SAR documents the safety analyses that systematically identify the hazards posed by the facility, analyze the consequences and risk of potential accidents, and describe hazard control measures that protect the health and safety of the public and employees. In addition, some SARs document, as Technical Safety Requirements (TSRs, which include Technical Specifications and Operational Safety Requirements), technical and administrative requirements that ensure the facility is operated within prescribed safety limits. SARs also provide conveniently summarized information thatmore » may be used to support procedure development, training, inspections, and other activities necessary to facility operation. This ``Overview of Energy Systems Safety Analysis Report Programs`` Provides an introduction to the programs and processes used in the development and maintenance of the SARs. It also summarizes some of the uses of the SARs within Energy Systems and DOE.« less

  20. RMP Guidance for Warehouses - Appendix D: OSHA Guidance on PSM

    EPA Pesticide Factsheets

    This text is taken directly from OSHA's appendix C to the Process Safety Management standard (29 CFR 1910.119). Compiled information required by this standard, including material safety data sheets (MSDS), is essential to process hazards analysis (PHA).

  1. Galileo and Ulysses missions safety analysis and launch readiness status

    NASA Technical Reports Server (NTRS)

    Cork, M. Joseph; Turi, James A.

    1989-01-01

    The Galileo spacecraft, which will release probes to explore the Jupiter system, was launched in October, 1989 as the payload on STS-34, and the Ulysses spacecraft, which will fly by Jupiter en route to a polar orbit of the sun, is presently entering system-test activity in preparation for an October, 1990 launch. This paper reviews the Galileo and Ulysses mission objectives and design approaches and presents details of the missions' safety analysis. The processes used to develop the safety analysis are described and the results of safety tests are presented.

  2. Colossal Tooling Design: 3D Simulation for Ergonomic Analysis

    NASA Technical Reports Server (NTRS)

    Hunter, Steve L.; Dischinger, Charles; Thomas, Robert E.; Babai, Majid

    2003-01-01

    The application of high-level 3D simulation software to the design phase of colossal mandrel tooling for composite aerospace fuel tanks was accomplished to discover and resolve safety and human engineering problems. The analyses were conducted to determine safety, ergonomic and human engineering aspects of the disassembly process of the fuel tank composite shell mandrel. Three-dimensional graphics high-level software, incorporating various ergonomic analysis algorithms, was utilized to determine if the process was within safety and health boundaries for the workers carrying out these tasks. In addition, the graphical software was extremely helpful in the identification of material handling equipment and devices for the mandrel tooling assembly/disassembly process.

  3. Sociotechnical attributes of safe and unsafe work systems

    PubMed Central

    Kleiner, Brian M.; Hettinger, Lawrence J.; DeJoy, David M.; Huang, Yuang-Hsiang; Love, Peter E.D.

    2015-01-01

    Theoretical and practical approaches to safety based on sociotechnical systems principles place heavy emphasis on the intersections between social–organisational and technical–work process factors. Within this perspective, work system design emphasises factors such as the joint optimisation of social and technical processes, a focus on reliable human–system performance and safety metrics as design and analysis criteria, the maintenance of a realistic and consistent set of safety objectives and policies, and regular access to the expertise and input of workers. We discuss three current approaches to the analysis and design of complex sociotechnical systems: human–systems integration, macroergonomics and safety climate. Each approach emphasises key sociotechnical systems themes, and each prescribes a more holistic perspective on work systems than do traditional theories and methods. We contrast these perspectives with historical precedents such as system safety and traditional human factors and ergonomics, and describe potential future directions for their application in research and practice. Practitioner Summary: The identification of factors that can reliably distinguish between safe and unsafe work systems is an important concern for ergonomists and other safety professionals. This paper presents a variety of sociotechnical systems perspectives on intersections between social–organisational and technology–work process factors as they impact work system analysis, design and operation. PMID:25909756

  4. Incorporating organisational safety culture within ergonomics practice.

    PubMed

    Bentley, Tim; Tappin, David

    2010-10-01

    This paper conceptualises organisational safety culture and considers its relevance to ergonomics practice. Issues discussed in the paper include the modest contribution that ergonomists and ergonomics as a discipline have made to this burgeoning field of study and the significance of safety culture to a systems approach. The relevance of safety culture to ergonomics work with regard to the analysis, design, implementation and evaluation process, and implications for participatory ergonomics approaches, are also discussed. A potential user-friendly, qualitative approach to assessing safety culture as part of ergonomics work is presented, based on a recently published conceptual framework that recognises the dynamic and multi-dimensional nature of safety culture. The paper concludes by considering the use of such an approach, where an understanding of different aspects of safety culture within an organisation is seen as important to the success of ergonomics projects. STATEMENT OF RELEVANCE: The relevance of safety culture to ergonomics practice is a key focus of this paper, including its relationship with the systems approach, participatory ergonomics and the ergonomics analysis, design, implementation and evaluation process. An approach to assessing safety culture as part of ergonomics work is presented.

  5. 32 CFR 989.27 - Occupational safety and health.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Occupational safety and health. 989.27 Section... PROTECTION ENVIRONMENTAL IMPACT ANALYSIS PROCESS (EIAP) § 989.27 Occupational safety and health. Assess direct and indirect impacts of proposed actions on the safety and health of Air Force employees and...

  6. 32 CFR 989.27 - Occupational safety and health.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Occupational safety and health. 989.27 Section... PROTECTION ENVIRONMENTAL IMPACT ANALYSIS PROCESS (EIAP) § 989.27 Occupational safety and health. Assess direct and indirect impacts of proposed actions on the safety and health of Air Force employees and...

  7. 32 CFR 989.27 - Occupational safety and health.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Occupational safety and health. 989.27 Section... PROTECTION ENVIRONMENTAL IMPACT ANALYSIS PROCESS (EIAP) § 989.27 Occupational safety and health. Assess direct and indirect impacts of proposed actions on the safety and health of Air Force employees and...

  8. 32 CFR 989.27 - Occupational safety and health.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false Occupational safety and health. 989.27 Section... PROTECTION ENVIRONMENTAL IMPACT ANALYSIS PROCESS (EIAP) § 989.27 Occupational safety and health. Assess direct and indirect impacts of proposed actions on the safety and health of Air Force employees and...

  9. 32 CFR 989.27 - Occupational safety and health.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false Occupational safety and health. 989.27 Section... PROTECTION ENVIRONMENTAL IMPACT ANALYSIS PROCESS (EIAP) § 989.27 Occupational safety and health. Assess direct and indirect impacts of proposed actions on the safety and health of Air Force employees and...

  10. Analysis of the medication-use process in North American hospital systems: underlining key points for adoption to improve patient safety in French hospitals.

    PubMed

    Brouard, Agnes; Fagon, Jean Yves; Daniels, Charles E

    2011-01-01

    This project was designed to underline any actions relative to medication error prevention and patient safety improvement setting up in North American hospitals which could be implemented in French Parisian hospitals. A literature research and analysis of medication-use process in the North American hospitals and a validation survey of hospital pharmacist managers in the San Diego area was performed to assess main points of hospital medication-use process. Literature analysis, survey analysis of respondents highlighted main differences between the two countries at three levels: nationwide, hospital level and pharmaceutical service level. According to this, proposal development to optimize medication-use process in the French system includes the following topics: implementation of an expanded use of information technology and robotics; increase pharmaceutical human resources allowing expansion of clinical pharmacy activities; focus on high-risk medications and high-risk patient populations; develop a collective sense of responsibility for medication error prevention in hospital settings, involving medical, pharmaceutical and administrative teams. Along with a strong emphasis that should be put on the identified topics to improve the quality and safety of hospital care in France, consideration of patient safety as a priority at a nationwide level needs to be reinforced.

  11. Station Blackout: A case study in the interaction of mechanistic and probabilistic safety analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis Smith; Diego Mandelli; Cristian Rabiti

    2013-11-01

    The ability to better characterize and quantify safety margins is important to improved decision making about nuclear power plant design, operation, and plant life extension. As research and development (R&D) in the light-water reactor (LWR) Sustainability (LWRS) Program and other collaborative efforts yield new data, sensors, and improved scientific understanding of physical processes that govern the aging and degradation of plant SSCs needs and opportunities to better optimize plant safety and performance will become known. The purpose of the Risk Informed Safety Margin Characterization (RISMC) Pathway R&D is to support plant decisions for risk-informed margin management with the aim tomore » improve economics, reliability, and sustain safety of current NPPs. In this paper, we describe the RISMC analysis process illustrating how mechanistic and probabilistic approaches are combined in order to estimate a safety margin. We use the scenario of a “station blackout” wherein offsite power and onsite power is lost, thereby causing a challenge to plant safety systems. We describe the RISMC approach, illustrate the station blackout modeling, and contrast this with traditional risk analysis modeling for this type of accident scenario.« less

  12. Safety Analysis of Soybean Processing for Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Hentges, Dawn L.

    1999-01-01

    Soybeans (cv. Hoyt) is one of the crops planned for food production within the Advanced Life Support System Integration Testbed (ALSSIT), a proposed habitat simulation for long duration lunar/Mars missions. Soybeans may be processed into a variety of food products, including soymilk, tofu, and tempeh. Due to the closed environmental system and importance of crew health maintenance, food safety is a primary concern on long duration space missions. Identification of the food safety hazards and critical control points associated with the closed ALSSIT system is essential for the development of safe food processing techniques and equipment. A Hazard Analysis Critical Control Point (HACCP) model was developed to reflect proposed production and processing protocols for ALSSIT soybeans. Soybean processing was placed in the type III risk category. During the processing of ALSSIT-grown soybeans, critical control points were identified to control microbiological hazards, particularly mycotoxins, and chemical hazards from antinutrients. Critical limits were suggested at each CCP. Food safety recommendations regarding the hazards and risks associated with growing, harvesting, and processing soybeans; biomass management; and use of multifunctional equipment were made in consideration of the limitations and restraints of the closed ALSSIT.

  13. Applying Qualitative Hazard Analysis to Support Quantitative Safety Analysis for Proposed Reduced Wake Separation Conops

    NASA Technical Reports Server (NTRS)

    Shortle, John F.; Allocco, Michael

    2005-01-01

    This paper describes a scenario-driven hazard analysis process to identify, eliminate, and control safety-related risks. Within this process, we develop selective criteria to determine the applicability of applying engineering modeling to hypothesized hazard scenarios. This provides a basis for evaluating and prioritizing the scenarios as candidates for further quantitative analysis. We have applied this methodology to proposed concepts of operations for reduced wake separation for closely spaced parallel runways. For arrivals, the process identified 43 core hazard scenarios. Of these, we classified 12 as appropriate for further quantitative modeling, 24 that should be mitigated through controls, recommendations, and / or procedures (that is, scenarios not appropriate for quantitative modeling), and 7 that have the lowest priority for further analysis.

  14. Analysis of microgravity space experiments Space Shuttle programmatic safety requirements

    NASA Technical Reports Server (NTRS)

    Terlep, Judith A.

    1996-01-01

    This report documents the results of an analysis of microgravity space experiments space shuttle programmatic safety requirements and recommends the creation of a Safety Compliance Data Package (SCDP) Template for both flight and ground processes. These templates detail the programmatic requirements necessary to produce a complete SCDP. The templates were developed from various NASA centers' requirement documents, previously written guidelines on safety data packages, and from personal experiences. The templates are included in the back as part of this report.

  15. 10 CFR 70.62 - Safety program and integrated safety analysis.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Radiological hazards related to possessing or processing licensed material at its facility; (ii) Chemical hazards of licensed material and hazardous chemicals produced from licensed material; (iii) Facility... performed by a team with expertise in engineering and process operations. The team shall include at least...

  16. 14 CFR 417.405 - Ground safety analysis.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... hazard from affecting the public. A launch operator must incorporate the launch site operator's systems... personnel who are knowledgeable of launch vehicle systems, launch processing, ground systems, operations...) Begin a ground safety analysis by identifying the systems and operations to be analyzed; (2) Define the...

  17. 14 CFR 417.405 - Ground safety analysis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... hazard from affecting the public. A launch operator must incorporate the launch site operator's systems... personnel who are knowledgeable of launch vehicle systems, launch processing, ground systems, operations...) Begin a ground safety analysis by identifying the systems and operations to be analyzed; (2) Define the...

  18. Safety Analysis and Protection Measures of the Control System of the Pulsed High Magnetic Field Facility in WHMFC

    NASA Astrophysics Data System (ADS)

    Shi, J. T.; Han, X. T.; Xie, J. F.; Yao, L.; Huang, L. T.; Li, L.

    2013-03-01

    A Pulsed High Magnetic Field Facility (PHMFF) has been established in Wuhan National High Magnetic Field Center (WHMFC) and various protection measures are applied in its control system. In order to improve the reliability and robustness of the control system, the safety analysis of the PHMFF is carried out based on Fault Tree Analysis (FTA) technique. The function and realization of 5 protection systems, which include sequence experiment operation system, safety assistant system, emergency stop system, fault detecting and processing system and accident isolating protection system, are given. The tests and operation indicate that these measures improve the safety of the facility and ensure the safety of people.

  19. Timing of Formal Phase Safety Reviews for Large-Scale Integrated Hazard Analysis

    NASA Technical Reports Server (NTRS)

    Massie, Michael J.; Morris, A. Terry

    2010-01-01

    Integrated hazard analysis (IHA) is a process used to identify and control unacceptable risk. As such, it does not occur in a vacuum. IHA approaches must be tailored to fit the system being analyzed. Physical, resource, organizational and temporal constraints on large-scale integrated systems impose additional direct or derived requirements on the IHA. The timing and interaction between engineering and safety organizations can provide either benefits or hindrances to the overall end product. The traditional approach for formal phase safety review timing and content, which generally works well for small- to moderate-scale systems, does not work well for very large-scale integrated systems. This paper proposes a modified approach to timing and content of formal phase safety reviews for IHA. Details of the tailoring process for IHA will describe how to avoid temporary disconnects in major milestone reviews and how to maintain a cohesive end-to-end integration story particularly for systems where the integrator inherently has little to no insight into lower level systems. The proposal has the advantage of allowing the hazard analysis development process to occur as technical data normally matures.

  20. C-Band Airport Surface Communications System Engineering-Initial High-Level Safety Risk Assessment and Mitigation

    NASA Technical Reports Server (NTRS)

    Zelkin, Natalie; Henriksen, Stephen

    2011-01-01

    This document is being provided as part of ITT's NASA Glenn Research Center Aerospace Communication Systems Technical Support (ACSTS) contract: "New ATM Requirements--Future Communications, C-Band and L-Band Communications Standard Development." ITT has completed a safety hazard analysis providing a preliminary safety assessment for the proposed C-band (5091- to 5150-MHz) airport surface communication system. The assessment was performed following the guidelines outlined in the Federal Aviation Administration Safety Risk Management Guidance for System Acquisitions document. The safety analysis did not identify any hazards with an unacceptable risk, though a number of hazards with a medium risk were documented. This effort represents an initial high-level safety hazard analysis and notes the triggers for risk reassessment. A detailed safety hazards analysis is recommended as a follow-on activity to assess particular components of the C-band communication system after the profile is finalized and system rollout timing is determined. A security risk assessment has been performed by NASA as a parallel activity. While safety analysis is concerned with a prevention of accidental errors and failures, the security threat analysis focuses on deliberate attacks. Both processes identify the events that affect operation of the system; and from a safety perspective the security threats may present safety risks.

  1. Estimation Of TMDLs And Margin Of Safety Under Conditions Of Uncertainty

    EPA Science Inventory

    In TMDL development, an adequate margin of safety (MOS) is required in the calculation process to provide a cushion needed because of uncertainties in the data and analysis. Current practices, however, rarely factor analysis' uncertainty in TMDL development and the MOS is largel...

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stayner, L.T.; Meinhardt, T.; Hardin, B.

    Under the Occupational Safety and Health, and Mine Safety and Health Acts, the National Institute for Occupational Safety and Health (NIOSH) is charged with development of recommended occupational safety and health standards, and with conducting research to support the development of these standards. Thus, NIOSH has been actively involved in the analysis of risk associated with occupational exposures, and in the development of research information that is critical for the risk assessment process. NIOSH research programs and other information resources relevant to the risk assessment process are described in this paper. Future needs for information resources are also discussed.

  3. Lessons learned from the Galileo and Ulysses flight safety review experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Gary L.

    In preparation for the launches of the Galileo and Ulysses spacecraft, a very comprehensive aerospace nuclear safety program and flight safety review were conducted. A review of this work has highlighted a number of important lessons which should be considered in the safety analysis and review of future space nuclear systems. These lessons have been grouped into six general categories: (1) establishment of the purpose, objectives and scope of the safety process; (2) establishment of charters defining the roles of the various participants; (3) provision of adequate resources; (4) provision of timely peer-reviewed information to support the safety program; (5)more » establishment of general ground rules for the safety review; and (6) agreement on the kinds of information to be provided from the safety review process.« less

  4. Nuclear Criticality Safety Data Book

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollenbach, D. F.

    The objective of this document is to support the revision of criticality safety process studies (CSPSs) for the Uranium Processing Facility (UPF) at the Y-12 National Security Complex (Y-12). This design analysis and calculation (DAC) document contains development and justification for generic inputs typically used in Nuclear Criticality Safety (NCS) DACs to model both normal and abnormal conditions of processes at UPF to support CSPSs. This will provide consistency between NCS DACs and efficiency in preparation and review of DACs, as frequently used data are provided in one reference source.

  5. Sources of Safety Data and Statistical Strategies for Design and Analysis: Clinical Trials.

    PubMed

    Zink, Richard C; Marchenko, Olga; Sanchez-Kam, Matilde; Ma, Haijun; Jiang, Qi

    2018-03-01

    There has been an increased emphasis on the proactive and comprehensive evaluation of safety endpoints to ensure patient well-being throughout the medical product life cycle. In fact, depending on the severity of the underlying disease, it is important to plan for a comprehensive safety evaluation at the start of any development program. Statisticians should be intimately involved in this process and contribute their expertise to study design, safety data collection, analysis, reporting (including data visualization), and interpretation. In this manuscript, we review the challenges associated with the analysis of safety endpoints and describe the safety data that are available to influence the design and analysis of premarket clinical trials. We share our recommendations for the statistical and graphical methodologies necessary to appropriately analyze, report, and interpret safety outcomes, and we discuss the advantages and disadvantages of safety data obtained from clinical trials compared to other sources. Clinical trials are an important source of safety data that contribute to the totality of safety information available to generate evidence for regulators, sponsors, payers, physicians, and patients. This work is a result of the efforts of the American Statistical Association Biopharmaceutical Section Safety Working Group.

  6. KENNEDY SPACE CENTER, FLA. - At the Rotation, Processing and Surge Facility stand a mockup of two segments of a solid rocket booster (SRB) being used to test the feasibility of a vertical SRB propellant grain inspection, required as part of safety analysis.

    NASA Image and Video Library

    2003-09-11

    KENNEDY SPACE CENTER, FLA. - At the Rotation, Processing and Surge Facility stand a mockup of two segments of a solid rocket booster (SRB) being used to test the feasibility of a vertical SRB propellant grain inspection, required as part of safety analysis.

  7. NASA Hazard Analysis Process

    NASA Technical Reports Server (NTRS)

    Deckert, George

    2010-01-01

    This viewgraph presentation reviews The NASA Hazard Analysis process. The contents include: 1) Significant Incidents and Close Calls in Human Spaceflight; 2) Subsystem Safety Engineering Through the Project Life Cycle; 3) The Risk Informed Design Process; 4) Types of NASA Hazard Analysis; 5) Preliminary Hazard Analysis (PHA); 6) Hazard Analysis Process; 7) Identify Hazardous Conditions; 8) Consider All Interfaces; 9) Work a Preliminary Hazard List; 10) NASA Generic Hazards List; and 11) Final Thoughts

  8. Overview of Energy Systems' safety analysis report programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-03-01

    The primary purpose of an Safety Analysis Report (SAR) is to provide a basis for judging the adequacy of a facility's safety. The SAR documents the safety analyses that systematically identify the hazards posed by the facility, analyze the consequences and risk of potential accidents, and describe hazard control measures that protect the health and safety of the public and employees. In addition, some SARs document, as Technical Safety Requirements (TSRs, which include Technical Specifications and Operational Safety Requirements), technical and administrative requirements that ensure the facility is operated within prescribed safety limits. SARs also provide conveniently summarized information thatmore » may be used to support procedure development, training, inspections, and other activities necessary to facility operation. This Overview of Energy Systems Safety Analysis Report Programs'' Provides an introduction to the programs and processes used in the development and maintenance of the SARs. It also summarizes some of the uses of the SARs within Energy Systems and DOE.« less

  9. Development and Validation of a Safety Climate Scale for Manufacturing Industry

    PubMed Central

    Ghahramani, Abolfazl; Khalkhali, Hamid R.

    2015-01-01

    Background This paper describes the development of a scale for measuring safety climate. Methods This study was conducted in six manufacturing companies in Iran. The scale developed through conducting a literature review about the safety climate and constructing a question pool. The number of items was reduced to 71 after performing a screening process. Results The result of content validity analysis showed that 59 items had excellent item content validity index (≥ 0.78) and content validity ratio (> 0.38). The exploratory factor analysis resulted in eight safety climate dimensions. The reliability value for the final 45-item scale was 0.96. The result of confirmatory factor analysis showed that the safety climate model is satisfactory. Conclusion This study produced a valid and reliable scale for measuring safety climate in manufacturing companies. PMID:26106508

  10. Assessment of documentation requirements under DOE 5481. 1, Safety Analysis and Review System (SARS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Browne, E.T.

    1981-03-01

    This report assesses the requirements of DOE Order 5481.1, Safety Analysis and Review System for DOE Operations (SARS) in regard to maintaining SARS documentation. Under SARS, all pertinent details of the entire safety analysis and review process for each DOE operation are to be traceable from the initial identification of a hazard. This report is intended to provide assistance in identifying the points in the SARS cycle at which documentation is required, what type of documentation is most appropriate, and where it ultimately should be maintained.

  11. Patient safety in the clinical laboratory: a longitudinal analysis of specimen identification errors.

    PubMed

    Wagar, Elizabeth A; Tamashiro, Lorraine; Yasin, Bushra; Hilborne, Lee; Bruckner, David A

    2006-11-01

    Patient safety is an increasingly visible and important mission for clinical laboratories. Attention to improving processes related to patient identification and specimen labeling is being paid by accreditation and regulatory organizations because errors in these areas that jeopardize patient safety are common and avoidable through improvement in the total testing process. To assess patient identification and specimen labeling improvement after multiple implementation projects using longitudinal statistical tools. Specimen errors were categorized by a multidisciplinary health care team. Patient identification errors were grouped into 3 categories: (1) specimen/requisition mismatch, (2) unlabeled specimens, and (3) mislabeled specimens. Specimens with these types of identification errors were compared preimplementation and postimplementation for 3 patient safety projects: (1) reorganization of phlebotomy (4 months); (2) introduction of an electronic event reporting system (10 months); and (3) activation of an automated processing system (14 months) for a 24-month period, using trend analysis and Student t test statistics. Of 16,632 total specimen errors, mislabeled specimens, requisition mismatches, and unlabeled specimens represented 1.0%, 6.3%, and 4.6% of errors, respectively. Student t test showed a significant decrease in the most serious error, mislabeled specimens (P < .001) when compared to before implementation of the 3 patient safety projects. Trend analysis demonstrated decreases in all 3 error types for 26 months. Applying performance-improvement strategies that focus longitudinally on specimen labeling errors can significantly reduce errors, therefore improving patient safety. This is an important area in which laboratory professionals, working in interdisciplinary teams, can improve safety and outcomes of care.

  12. Mine safety assessment using gray relational analysis and bow tie model

    PubMed Central

    2018-01-01

    Mine safety assessment is a precondition for ensuring orderly and safety in production. The main purpose of this study was to prevent mine accidents more effectively by proposing a composite risk analysis model. First, the weights of the assessment indicators were determined by the revised integrated weight method, in which the objective weights were determined by a variation coefficient method and the subjective weights determined by the Delphi method. A new formula was then adopted to calculate the integrated weights based on the subjective and objective weights. Second, after the assessment indicator weights were determined, gray relational analysis was used to evaluate the safety of mine enterprises. Mine enterprise safety was ranked according to the gray relational degree, and weak links of mine safety practices identified based on gray relational analysis. Third, to validate the revised integrated weight method adopted in the process of gray relational analysis, the fuzzy evaluation method was used to the safety assessment of mine enterprises. Fourth, for first time, bow tie model was adopted to identify the causes and consequences of weak links and allow corresponding safety measures to be taken to guarantee the mine’s safe production. A case study of mine safety assessment was presented to demonstrate the effectiveness and rationality of the proposed composite risk analysis model, which can be applied to other related industries for safety evaluation. PMID:29561875

  13. 21 CFR 123.6 - Hazard analysis and Hazard Analysis Critical Control Point (HACCP) plan.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... identified food safety hazards, including as appropriate: (i) Critical control points designed to control... control points designed to control food safety hazards introduced outside the processing plant environment... Control Point (HACCP) plan. 123.6 Section 123.6 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...

  14. 21 CFR 123.6 - Hazard analysis and Hazard Analysis Critical Control Point (HACCP) plan.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... identified food safety hazards, including as appropriate: (i) Critical control points designed to control... control points designed to control food safety hazards introduced outside the processing plant environment... Control Point (HACCP) plan. 123.6 Section 123.6 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...

  15. 21 CFR 123.6 - Hazard analysis and Hazard Analysis Critical Control Point (HACCP) plan.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... identified food safety hazards, including as appropriate: (i) Critical control points designed to control... control points designed to control food safety hazards introduced outside the processing plant environment... Control Point (HACCP) plan. 123.6 Section 123.6 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...

  16. Understanding of safety monitoring in clinical trials by individuals with CF or their parents: A qualitative analysis.

    PubMed

    Kern-Goldberger, Andrew S; Hessels, Amanda J; Saiman, Lisa; Quittell, Lynne M

    2018-03-14

    Recruiting both pediatric and adult participants for clinical trials in CF is currently of paramount importance as numerous new therapies are being developed. However, recruitment is challenging as parents of children with CF and adults with CF cite safety concerns as a principal barrier to enrollment. In conjunction with the CF Foundation (CFF) Data Safety Monitoring Board (DSMB), a pilot brochure was developed to inform patients and parents of the multiple levels of safety monitoring; the CFF simultaneously created an infographic representing the safety monitoring process. This study explores the attitudes and beliefs of CF patients and families regarding safety monitoring and clinical trial participation, and elicits feedback regarding the educational materials. Semi-structured interviews were conducted using a pre-tested interview guide and audio-recorded during routine CF clinic visits. Participants included 5 parents of children with CF <16years old; 5 adolescents and young adults with CF 16-21years old; and 5 adults with CF ≥22years old from pediatric and adult CF centers. The study team performed systematic text condensation analysis of the recorded interviews using an iterative process. Four major thematic categories with subthemes emerged as supported by exemplar quotations: attitudes toward clinical trials, safety values, conceptualizing the safety monitoring process, and priorities for delivery of patient education. Participant feedback was used to revise the pilot brochure; text was shortened, unfamiliar words clarified (e.g., "pipeline"), abbreviations eliminated, and redundancy avoided. Qualitative analysis of CF patient and family interviews provided insights into barriers to participation in clinical trials, safety concerns, perspectives on safety monitoring and educational priorities. We plan a multicenter study to determine if the revised brochure reduces knowledge, attitude and practice barriers regarding participation in CF clinical trials. Copyright © 2018 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  17. Employer, use of personal protective equipment, and work safety climate: Latino poultry processing workers.

    PubMed

    Arcury, Thomas A; Grzywacz, Joseph G; Anderson, Andrea M; Mora, Dana C; Carrillo, Lourdes; Chen, Haiying; Quandt, Sara A

    2013-02-01

    This analysis describes the work safety climate of Latino poultry processing workers and notes differences by worker personal characteristics and employer; describes the use of common personal protective equipment (PPE) among workers; and examines the associations of work safety climate with use of common PPE. Data are from a cross-sectional study of 403 Latino poultry processing workers in western North Carolina. Work safety climate differed little by personal characteristics, but it did differ consistently by employer. Provision of PPE varied; for example, 27.2% of participants were provide with eye protection at no cost, 57.0% were provided with hand protection at no cost, and 84.7% were provided with protective clothing at no cost. PPE use varied by type. Provision of PPE at no cost was associated with lower work safety climate; this result was counter-intuitive. Consistent use of PPE was associated with higher work safety climate. Work safety climate is important for improving workplace safety for immigrant workers. Research among immigrant workers should document work safety climate for different employers and industries, and delineate how work safety climate affects safety behavior and injuries. Copyright © 2012 Wiley Periodicals, Inc.

  18. Lessons learnt from the development of the Patient Safety Incidents Reporting an Learning System for the Spanish National Health System: SiNASP.

    PubMed

    Vallejo-Gutiérrez, Paula; Bañeres-Amella, Joaquim; Sierra, Eduardo; Casal, Jesús; Agra, Yolanda

    2014-01-01

    To describe the development process and characteristics of a patient safety incidents reporting system to be implemented in the Spanish National Health System, based on the context and the needs of the different stakeholders. Literature review and analysis of most relevant reporting systems, identification of more than 100 stakeholder's (patients, professionals, regional governments representatives) expectations and requirements, analysis of the legal context, consensus of taxonomy, development of the software and pilot test. Patient Safety Events Reporting and Learning system (Sistema de Notificación y Aprendizajepara la Seguridad del Paciente, SiNASP) is a generic reporting system for all types of incidents related to patient safety, voluntary, confidential, non punitive, anonymous or nominative with anonimization, system oriented, with local analysis of cases and based on the WHO International Classification for Patient Safety. The electronic program has an on-line form for reporting, a software to manage the incidents and improvement plans, and a scoreboard with process indicators to monitor the system. The reporting system has been designed to respond to the needs and expectations identified by the stakeholders, taking into account the lessons learned from the previous notification systems, the characteristics of the National Health System and the existing legal context. The development process presented and the characteristics of the system provide a comprehensive framework that can be used for future deployments of similar patient safety systems. Copyright © 2013 SECA. Published by Elsevier Espana. All rights reserved.

  19. "Chance favors only the prepared mind": preparing minds to systematically reduce hazards in the testing process in primary care.

    PubMed

    Singh, Ranjit; Hickner, John; Mold, Jim; Singh, Gurdev

    2014-03-01

    Testing plays a vital role in primary care. Failures in the process are common and can be harmful. As the great 19th century microbiologist Louis Pasteur put it "chance favors only the prepared mind." Our objective is to prepare minds in primary care practices to improve safety in the testing process. Various principles from safety science can be applied. A prospective methodology that uses an anonymous practice survey based on concepts from failure modes and effects analysis is proposed. Responses are used to rank perceived hazards in the testing process, leading to prioritization of areas for intervention. Secondary data analysis (using data from a study of medication safety) was used to explore the value of this approach in the context of assessing the testing process. At 3 primary care practice sites, a total of 61 staff members completed 4 survey items examining the testing process. Comparison across practices shows that each has a distinct profile of hazards, which would lead each on a different path toward improvement. The proposed approach treats each practice as a unique complex adaptive system aiming to help it thrive by inculcating trust, mutual respect, and collaboration. Implications for patient safety research and practice are discussed.

  20. Safety and Security Interface Technology Initiative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Michael A. Lehto; Kevin J. Carroll; Dr. Robert Lowrie

    Safety and Security Interface Technology Initiative Mr. Kevin J. Carroll Dr. Robert Lowrie, Dr. Micheal Lehto BWXT Y12 NSC Oak Ridge, TN 37831 865-576-2289/865-241-2772 carrollkj@y12.doe.gov Work Objective. Earlier this year, the Energy Facility Contractors Group (EFCOG) was asked to assist in developing options related to acceleration deployment of new security-related technologies to assist meeting design base threat (DBT) needs while also addressing the requirements of 10 CFR 830. NNSA NA-70, one of the working group participants, designated this effort the Safety and Security Interface Technology Initiative (SSIT). Relationship to Workshop Theme. “Supporting Excellence in Operations Through Safety Analysis,” (workshop theme)more » includes security and safety personnel working together to ensure effective and efficient operations. One of the specific workshop elements listed in the call for papers is “Safeguards/Security Integration with Safety.” This paper speaks directly to this theme. Description of Work. The EFCOG Safety Analysis Working Group (SAWG) and the EFCOG Security Working Group formed a core team to develop an integrated process involving both safety basis and security needs allowing achievement of the DBT objectives while ensuring safety is appropriately considered. This effort garnered significant interest, starting with a two day breakout session of 30 experts at the 2006 Safety Basis Workshop. A core team was formed, and a series of meetings were held to develop that process, including safety and security professionals, both contractor and federal personnel. A pilot exercise held at Idaho National Laboratory (INL) in mid-July 2006 was conducted as a feasibility of concept review. Work Results. The SSIT efforts resulted in a topical report transmitted from EFCOG to DOE/NNSA in August 2006. Elements of the report included: Drivers and Endstate, Control Selections Alternative Analysis Process, Terminology Crosswalk, Safety Basis/Security Documentation Integration, Configuration Control, and development of a shared ‘tool box’ of information/successes. Specific Benefits. The expectation or end state resulting from the topical report and associated implementation plan includes: (1) A recommended process for handling the documentation of the security and safety disciplines, including an appropriate change control process and participation by all stakeholders. (2) A means to package security systems with sufficient information to help expedite the flow of that system through the process. In addition, a means to share successes among sites, to include information and safety basis to the extent such information is transportable. (3) Identification of key security systems and associated essential security elements being installed and an arrangement for the sites installing these systems to host an appropriate team to review a specific system and determine what information is exportable. (4) Identification of the security systems’ essential elements and appropriate controls required for testing of these essential elements in the facility. (5) The ability to help refine and improve an agreed to control set at the manufacture stage.« less

  1. Conservation of Life as a Unifying Theme for Process Safety in Chemical Engineering Education

    ERIC Educational Resources Information Center

    Klein, James A.; Davis, Richard A.

    2011-01-01

    This paper explores the use of "conservation of life" as a concept and unifying theme for increasing awareness, application, and integration of process safety in chemical engineering education. Students need to think of conservation of mass, conservation of energy, and conservation of life as equally important in engineering design and analysis.…

  2. [Quality control in herbal supplements].

    PubMed

    Oelker, Luisa

    2005-01-01

    Quality and safety of food and herbal supplements are the result of a whole of different elements as good manufacturing practice and process control. The process control must be active and able to individuate and correct all possible hazards. The main and most utilized instrument is the hazard analysis critical control point (HACCP) system the correct application of which can guarantee the safety of the product. Herbal supplements need, in addition to standard quality control, a set of checks to assure the harmlessness and safety of the plants used.

  3. Putting the ‘patient’ in patient safety: a qualitative study of consumer experiences

    PubMed Central

    Rathert, Cheryl; Brandt, Julie; Williams, Eric S.

    2011-01-01

    Abstract Background  Although patient safety has been studied extensively, little research has directly examined patient and family (consumer) perceptions. Evidence suggests that clinicians define safety differently from consumers, e.g. clinicians focus more on outcomes, whereas consumers may focus more on processes. Consumer perceptions of patient safety are important for several reasons. First, health‐care policy leaders have been encouraging patients and families to take a proactive role in ensuring patient safety; therefore, an understanding of how patients define safety is needed. Second, consumer perceptions of safety could influence outcomes such as trust and satisfaction or compliance with treatment protocols. Finally, consumer perspectives could be an additional lens for viewing complex systems and processes for quality improvement efforts. Objectives  To qualitatively explore acute care consumer perceptions of patient safety. Design and methods  Thirty‐nine individuals with a recent overnight hospital visit participated in one of four group interviews. Analysis followed an interpretive analytical approach. Results  Three basic themes were identified: Communication, staffing issues and medication administration. Consumers associated care process problems, such as delays or lack of information, with safety rather than as service quality problems. Participants agreed that patients need family caregivers as advocates. Conclusions  Consumers seem acutely aware of care processes they believe pose risks to safety. Perceptual measures of patient safety and quality may help to identify areas where there are higher risks of preventable adverse events. PMID:21624026

  4. Comparison of a Traditional Probabilistic Risk Assessment Approach with Advanced Safety Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Curtis L; Mandelli, Diego; Zhegang Ma

    2014-11-01

    As part of the Light Water Sustainability Program (LWRS) [1], the purpose of the Risk Informed Safety Margin Characterization (RISMC) [2] Pathway research and development (R&D) is to support plant decisions for risk-informed margin management with the aim to improve economics, reliability, and sustain safety of current NPPs. In this paper, we describe the RISMC analysis process illustrating how mechanistic and probabilistic approaches are combined in order to estimate a safety margin. We use the scenario of a “station blackout” (SBO) wherein offsite power and onsite power is lost, thereby causing a challenge to plant safety systems. We describe themore » RISMC approach, illustrate the station blackout modeling, and contrast this with traditional risk analysis modeling for this type of accident scenario. We also describe our approach we are using to represent advanced flooding analysis.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    MITCHELL,GERRY W.; LONGLEY,SUSAN W.; PHILBIN,JEFFREY S.

    This Safety Analysis Report (SAR) is prepared in compliance with the requirements of DOE Order 5480.23, Nuclear Safety Analysis Reports, and has been written to the format and content guide of DOE-STD-3009-94 Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports. The Hot Cell Facility is a Hazard Category 2 nonreactor nuclear facility, and is operated by Sandia National Laboratories for the Department of Energy. This SAR provides a description of the HCF and its operations, an assessment of the hazards and potential accidents which may occur in the facility. The potential consequences and likelihood ofmore » these accidents are analyzed and described. Using the process and criteria described in DOE-STD-3009-94, safety-related structures, systems and components are identified, and the important safety functions of each SSC are described. Additionally, information which describes the safety management programs at SNL are described in ancillary chapters of the SAR.« less

  6. Mission safety evaluation report for STS-35: Postflight edition

    NASA Technical Reports Server (NTRS)

    Hill, William C.; Finkel, Seymour I.

    1991-01-01

    Space Transportation System 35 (STS-35) safety risk factors that represent a change from previous flights that had an impact on this flight, and factors that were unique to this flight are discussed. While some changes to the safety risk baseline since the previous flight are included to highlight their significance in risk level change, the primary purpose is to insure that changes which were too late too include in formal changes through the Failure Modes and Effects Analysis/Critical Items List (FMEA/CIL) and Hazard Analysis process are documented along with the safety position, which includes the acceptance rationale.

  7. The Frontier of Research in the Consumer Interest. Proceedings of the International Conference on Research in the Consumer Interest (Racine, Wisconsin, August 16-19, 1986).

    ERIC Educational Resources Information Center

    Maynes, E. Scott, Ed.; And Others

    The following papers are included: "JFK's Four Consumer Rights" (Lampman); "Product Safety" (Gerner); "Use of Cost-Benefit Analysis in Product Safety Regulation" (Crandall); "CPCS's Voluntary Standards" (Ault); "Consumer Safety and Issue Emergence Process" (Mayer); "Reflections on Research in…

  8. Demonstration of emulator-based Bayesian calibration of safety analysis codes: Theory and formulation

    DOE PAGES

    Yurko, Joseph P.; Buongiorno, Jacopo; Youngblood, Robert

    2015-05-28

    System codes for simulation of safety performance of nuclear plants may contain parameters whose values are not known very accurately. New information from tests or operating experience is incorporated into safety codes by a process known as calibration, which reduces uncertainty in the output of the code and thereby improves its support for decision-making. The work reported here implements several improvements on classic calibration techniques afforded by modern analysis techniques. The key innovation has come from development of code surrogate model (or code emulator) construction and prediction algorithms. Use of a fast emulator makes the calibration processes used here withmore » Markov Chain Monte Carlo (MCMC) sampling feasible. This study uses Gaussian Process (GP) based emulators, which have been used previously to emulate computer codes in the nuclear field. The present work describes the formulation of an emulator that incorporates GPs into a factor analysis-type or pattern recognition-type model. This “function factorization” Gaussian Process (FFGP) model allows overcoming limitations present in standard GP emulators, thereby improving both accuracy and speed of the emulator-based calibration process. Calibration of a friction-factor example using a Method of Manufactured Solution is performed to illustrate key properties of the FFGP based process.« less

  9. 29 CFR 1910.119 - Process safety management of highly hazardous chemicals.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... complexity of the process will influence the decision as to the appropriate PHA methodology to use. All PHA... process hazard analysis in sufficient detail to support the analysis. (3) Information pertaining to the...) Relief system design and design basis; (E) Ventilation system design; (F) Design codes and standards...

  10. 29 CFR 1910.119 - Process safety management of highly hazardous chemicals.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... complexity of the process will influence the decision as to the appropriate PHA methodology to use. All PHA... process hazard analysis in sufficient detail to support the analysis. (3) Information pertaining to the...) Relief system design and design basis; (E) Ventilation system design; (F) Design codes and standards...

  11. TOOKUIL: A case study in user interface development for safety code application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, D.L.; Harkins, C.K.; Hoole, J.G.

    1997-07-01

    Traditionally, there has been a very high learning curve associated with using nuclear power plant (NPP) analysis codes. Even for seasoned plant analysts and engineers, the process of building or modifying an input model for present day NPP analysis codes is tedious, error prone, and time consuming. Current cost constraints and performance demands place an additional burden on today`s safety analysis community. Advances in graphical user interface (GUI) technology have been applied to obtain significant productivity and quality assurance improvements for the Transient Reactor Analysis Code (TRAC) input model development. KAPL Inc. has developed an X Windows-based graphical user interfacemore » named TOOKUIL which supports the design and analysis process, acting as a preprocessor, runtime editor, help system, and post processor for TRAC. This paper summarizes the objectives of the project, the GUI development process and experiences, and the resulting end product, TOOKUIL.« less

  12. Post-Challenger evaluation of space shuttle risk assessment and management

    NASA Technical Reports Server (NTRS)

    1988-01-01

    As the shock of the Space Shuttle Challenger accident began to subside, NASA initiated a wide range of actions designed to ensure greater safety in various aspects of the Shuttle system and an improved focus on safety throughout the National Space Transportation System (NSTS) Program. Certain specific features of the NASA safety process are examined: the Critical Items List (CIL) and the NASA review of the Shuttle primary and backup units whose failure might result in the loss of life, the Shuttle vehicle, or the mission; the failure modes and effects analyses (FMEA); and the hazard analysis and their review. The conception of modern risk management, including the essential element of objective risk assessment is described and it is contrasted with NASA's safety process in general terms. The discussion, findings, and recommendations regarding particular aspects of the NASA STS safety assurance process are reported. The 11 subsections each deal with a different aspect of the process. The main lessons learned by SCRHAAC in the course of the audit are summarized.

  13. [Establishment and application of "multi-dimensional structure and process dynamic quality control technology system" in preparation products of traditional Chinese medicine (I)].

    PubMed

    Gu, Jun-Fei; Feng, Liang; Zhang, Ming-Hua; Wu, Chan; Jia, Xiao-Bin

    2013-11-01

    Safety is an important component of the quality control of traditional Chinese medicine (TCM) preparation products, as well as an important guarantee for clinical application. Currently, the quality control of TCMs in Chinese Pharmacopoeia mostly focuses on indicative compounds for TCM efficacy. TCM preparations are associated with multiple links, from raw materials to products, and each procedure may have impacts on the safety of preparation. We make a summary and analysis on the factors impacting safety during the preparation of TCM products, and then expound the important role of the "multi-dimensional structure and process dynamic quality control technology system" in the quality safety of TCM preparations. Because the product quality of TCM preparation is closely related to the safety, the control over safety-related material basis is an important component of the product quality control of TCM preparations. The implementation of the quality control over the dynamic process of TCM preparations from raw materials to products, and the improvement of the TCM quality safety control at the microcosmic level help lay a firm foundation for the development of the modernization process of TCM preparations.

  14. An Analysis of the Food Safety Educational Processes in the Cooperative Extension System of the North Central Region of the United States

    ERIC Educational Resources Information Center

    Koundinya, Vikram Swaroop Chandra

    2010-01-01

    Literature suggests that food safety is a serious concern all over the world, and lack of it has huge health and economic implications to different stakeholders. The situation in the U.S. is also no different with most of the American public not much knowledgeable about agriculture and food safety. Therefore, food safety education assumes…

  15. [A systemic risk analysis of hospital management processes by medical employees--an effective basis for improving patient safety].

    PubMed

    Sobottka, Stephan B; Eberlein-Gonska, Maria; Schackert, Gabriele; Töpfer, Armin

    2009-01-01

    Due to the knowledge gap that exists between patients and health care staff the quality of medical treatment usually cannot be assessed securely by patients. For an optimization of safety in treatment-related processes of medical care, the medical staff needs to be actively involved in preventive and proactive quality management. Using voluntary, confidential and non-punitive systematic employee surveys, vulnerable topics and areas in patient care revealing preventable risks can be identified at an early stage. Preventive measures to continuously optimize treatment quality can be defined by creating a risk portfolio and a priority list of vulnerable topics. Whereas critical incident reporting systems are suitable for continuous risk assessment by detecting safety-relevant single events, employee surveys permit to conduct a systematic risk analysis of all treatment-related processes of patient care at any given point in time.

  16. Sensor fault diagnosis of aero-engine based on divided flight status.

    PubMed

    Zhao, Zhen; Zhang, Jun; Sun, Yigang; Liu, Zhexu

    2017-11-01

    Fault diagnosis and safety analysis of an aero-engine have attracted more and more attention in modern society, whose safety directly affects the flight safety of an aircraft. In this paper, the problem concerning sensor fault diagnosis is investigated for an aero-engine during the whole flight process. Considering that the aero-engine is always working in different status through the whole flight process, a flight status division-based sensor fault diagnosis method is presented to improve fault diagnosis precision for the aero-engine. First, aero-engine status is partitioned according to normal sensor data during the whole flight process through the clustering algorithm. Based on that, a diagnosis model is built for each status using the principal component analysis algorithm. Finally, the sensors are monitored using the built diagnosis models by identifying the aero-engine status. The simulation result illustrates the effectiveness of the proposed method.

  17. Sensor fault diagnosis of aero-engine based on divided flight status

    NASA Astrophysics Data System (ADS)

    Zhao, Zhen; Zhang, Jun; Sun, Yigang; Liu, Zhexu

    2017-11-01

    Fault diagnosis and safety analysis of an aero-engine have attracted more and more attention in modern society, whose safety directly affects the flight safety of an aircraft. In this paper, the problem concerning sensor fault diagnosis is investigated for an aero-engine during the whole flight process. Considering that the aero-engine is always working in different status through the whole flight process, a flight status division-based sensor fault diagnosis method is presented to improve fault diagnosis precision for the aero-engine. First, aero-engine status is partitioned according to normal sensor data during the whole flight process through the clustering algorithm. Based on that, a diagnosis model is built for each status using the principal component analysis algorithm. Finally, the sensors are monitored using the built diagnosis models by identifying the aero-engine status. The simulation result illustrates the effectiveness of the proposed method.

  18. Demographic variables in coal miners’ safety attitude

    NASA Astrophysics Data System (ADS)

    Yin, Wen-wen; Wu, Xiang; Ci, Hui-Peng; Qin, Shu-Qi; Liu, Jia-Long

    2017-03-01

    To change unsafe behavior through adjusting people’s safety attitudes has become an important measure to prevent accidents. Demographic variables, as influential factors of safety attitude, are fundamental and essential for the research. This research does a questionnaire survey among coal mine industry workers, and makes variance analysis and correlation analysis of the results in light of age, length of working years, educational level and experiences of accidents. The results show that the coal miners’ age, length of working years and accident experiences correlate lowly with safety attitudes, and those older coal miners with longer working years have better safety attitude, as coal miners without experiences of accident do.However, educational level has nothing to do with the safety attitude. Therefore, during the process of safety management, coal miners with different demographic characteristics should be put more attention to.

  19. Flightdeck Automation Problems (FLAP) Model for Safety Technology Portfolio Assessment

    NASA Technical Reports Server (NTRS)

    Ancel, Ersin; Shih, Ann T.

    2014-01-01

    NASA's Aviation Safety Program (AvSP) develops and advances methodologies and technologies to improve air transportation safety. The Safety Analysis and Integration Team (SAIT) conducts a safety technology portfolio assessment (PA) to analyze the program content, to examine the benefits and risks of products with respect to program goals, and to support programmatic decision making. The PA process includes systematic identification of current and future safety risks as well as tracking several quantitative and qualitative metrics to ensure the program goals are addressing prominent safety risks accurately and effectively. One of the metrics within the PA process involves using quantitative aviation safety models to gauge the impact of the safety products. This paper demonstrates the role of aviation safety modeling by providing model outputs and evaluating a sample of portfolio elements using the Flightdeck Automation Problems (FLAP) model. The model enables not only ranking of the quantitative relative risk reduction impact of all portfolio elements, but also highlighting the areas with high potential impact via sensitivity and gap analyses in support of the program office. Although the model outputs are preliminary and products are notional, the process shown in this paper is essential to a comprehensive PA of NASA's safety products in the current program and future programs/projects.

  20. L-Band Digital Aeronautical Communications System Engineering - Initial Safety and Security Risk Assessment and Mitigation

    NASA Technical Reports Server (NTRS)

    Zelkin, Natalie; Henriksen, Stephen

    2011-01-01

    This document is being provided as part of ITT's NASA Glenn Research Center Aerospace Communication Systems Technical Support (ACSTS) contract NNC05CA85C, Task 7: "New ATM Requirements--Future Communications, C-Band and L-Band Communications Standard Development." ITT has completed a safety hazard analysis providing a preliminary safety assessment for the proposed L-band (960 to 1164 MHz) terrestrial en route communications system. The assessment was performed following the guidelines outlined in the Federal Aviation Administration Safety Risk Management Guidance for System Acquisitions document. The safety analysis did not identify any hazards with an unacceptable risk, though a number of hazards with a medium risk were documented. This effort represents a preliminary safety hazard analysis and notes the triggers for risk reassessment. A detailed safety hazards analysis is recommended as a follow-on activity to assess particular components of the L-band communication system after the technology is chosen and system rollout timing is determined. The security risk analysis resulted in identifying main security threats to the proposed system as well as noting additional threats recommended for a future security analysis conducted at a later stage in the system development process. The document discusses various security controls, including those suggested in the COCR Version 2.0.

  1. Update from C3RS lessons learned team : safety culture and trend analysis.

    DOT National Transportation Integrated Search

    2014-07-01

    The Federal Railroad Administration (FRA) believes that, in addition to process and technology innovations, human-factors-based solutions can significantly contribute to improving safety in the railroad industry. To test this assumption, FRA implemen...

  2. Choices, choices: the application of multi-criteria decision analysis to a food safety decision-making problem.

    PubMed

    Fazil, A; Rajic, A; Sanchez, J; McEwen, S

    2008-11-01

    In the food safety arena, the decision-making process can be especially difficult. Decision makers are often faced with social and fiscal pressures when attempting to identify an appropriate balance among several choices. Concurrently, policy and decision makers in microbial food safety are under increasing pressure to demonstrate that their policies and decisions are made using transparent and accountable processes. In this article, we present a multi-criteria decision analysis approach that can be used to address the problem of trying to select a food safety intervention while balancing various criteria. Criteria that are important when selecting an intervention were determined, as a result of an expert consultation, to include effectiveness, cost, weight of evidence, and practicality associated with the interventions. The multi-criteria decision analysis approach we present is able to consider these criteria and arrive at a ranking of interventions. It can also provide a clear justification for the ranking as well as demonstrate to stakeholders, through a scenario analysis approach, how to potentially converge toward common ground. While this article focuses on the problem of selecting food safety interventions, the range of applications in the food safety arena is truly diverse and can be a significant tool in assisting decisions that need to be coherent, transparent, and justifiable. Most importantly, it is a significant contributor when there is a need to strike a fine balance between various potentially competing alternatives and/or stakeholder groups.

  3. Dynamic event tree analysis with the SAS4A/SASSYS-1 safety analysis code

    DOE PAGES

    Jankovsky, Zachary K.; Denman, Matthew R.; Aldemir, Tunc

    2018-02-02

    The consequences of a transient in an advanced sodium-cooled fast reactor are difficult to capture with the traditional approach to probabilistic risk assessment (PRA). Numerous safety-relevant systems are passive and may have operational states that cannot be represented by binary success or failure. In addition, the specific order and timing of events may be crucial which necessitates the use of dynamic PRA tools such as ADAPT. The modifications to the SAS4A/SASSYS-1 sodium-cooled fast reactor safety analysis code for linking it to ADAPT to perform a dynamic PRA are described. A test case is used to demonstrate the linking process andmore » to illustrate the type of insights that may be gained with this process. Finally, newly-developed dynamic importance measures are used to assess the significance of reactor parameters/constituents on calculated consequences of initiating events.« less

  4. Dynamic event tree analysis with the SAS4A/SASSYS-1 safety analysis code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jankovsky, Zachary K.; Denman, Matthew R.; Aldemir, Tunc

    The consequences of a transient in an advanced sodium-cooled fast reactor are difficult to capture with the traditional approach to probabilistic risk assessment (PRA). Numerous safety-relevant systems are passive and may have operational states that cannot be represented by binary success or failure. In addition, the specific order and timing of events may be crucial which necessitates the use of dynamic PRA tools such as ADAPT. The modifications to the SAS4A/SASSYS-1 sodium-cooled fast reactor safety analysis code for linking it to ADAPT to perform a dynamic PRA are described. A test case is used to demonstrate the linking process andmore » to illustrate the type of insights that may be gained with this process. Finally, newly-developed dynamic importance measures are used to assess the significance of reactor parameters/constituents on calculated consequences of initiating events.« less

  5. Materials Safety - Not just Flammability and Toxic Offgassing

    NASA Technical Reports Server (NTRS)

    Pedley, Michael D.

    2007-01-01

    For many years, the safety community has focused on a limited subset of materials and processes requirements as key to safety: Materials flammability, Toxic offgassing, Propellant compatibility, Oxygen compatibility, and Stress-corrosion cracking. All these items are important, but the exclusive focus on these items neglects many other items that are equally important to materials safety. Examples include (but are not limited to): 1. Materials process control -- proper qualification and execution of manufacturing processes such as structural adhesive bonding, welding, and forging are crucial to materials safety. Limitation of discussions on materials process control to an arbitrary subset of processes, known as "critical processes" is a mistake, because any process where the quality of the product cannot be verified by inspection can potentially result in unsafe hardware 2 Materials structural design allowables -- development of valid design allowables when none exist in the literature requires extensive testing of multiple lots of materials and is extremely expensive. But, without valid allowables, structural analysis cannot verify structural safety 3. Corrosion control -- All forms of corrosion, not just stress corrosion, can affect structural integrity of hardware 4. Contamination control during ground processing -- contamination control is critical to manufacturing processes such as adhesive bonding and also to elimination foreign objects and debris (FOD) that are hazardous to the crew of manned spacecraft in microgravity environments. 5. Fasteners -- Fastener design, the use of verifiable secondary locking features, and proper verification of fastener torque are essential for proper structural performance This presentation discusses some of these key factors and the importance of considering them in ensuring the safety of space hardware.

  6. The 1997 JANNAF Propellant Development and Characterization Subcommittee and Safety and Environmental Protection Subcommittee Joint Meeting

    NASA Technical Reports Server (NTRS)

    Cocchiaro, James E. (Editor); Filliben, Jeff D. (Editor); Watson, Anne H. (Editor)

    1997-01-01

    In the Propellant Development and Characterization Subcommittee (PDCS) meeting, topics included: the analysis, characterization, and processing of propellants and propellant ingredients; chemical reactivity; liquid propellants; test methods; rheology; surveillance and aging; and process engineering. In the Safety and Environmental Protection Subcommittee (S&EPS) meeting, topics covered included: hydrazine propellant vapor detection methods; toxicity of propellants and propellants; explosives safety; atmospheric modeling and risk assessment of toxic releases; reclamation, disposal, and demilitarization methods; and remediation of explosives or propellant contaminated sites.

  7. Scenario Analysis for the Safety Assessment of Nuclear Waste Repositories: A Critical Review.

    PubMed

    Tosoni, Edoardo; Salo, Ahti; Zio, Enrico

    2018-04-01

    A major challenge in scenario analysis for the safety assessment of nuclear waste repositories pertains to the comprehensiveness of the set of scenarios selected for assessing the safety of the repository. Motivated by this challenge, we discuss the aspects of scenario analysis relevant to comprehensiveness. Specifically, we note that (1) it is necessary to make it clear why scenarios usually focus on a restricted set of features, events, and processes; (2) there is not yet consensus on the interpretation of comprehensiveness for guiding the generation of scenarios; and (3) there is a need for sound approaches to the treatment of epistemic uncertainties. © 2017 Society for Risk Analysis.

  8. Estimating and controlling workplace risk: an approach for occupational hygiene and safety professionals.

    PubMed

    Toffel, Michael W; Birkner, Lawrence R

    2002-07-01

    The protection of people and physical assets is the objective of health and safety professionals and is accomplished through the paradigm of anticipation, recognition, evaluation, and control of risks in the occupational environment. Risk assessment concepts are not only used by health and safety professionals, but also by business and financial planners. Since meeting health and safety objectives requires financial resources provided by business and governmental managers, the hypothesis addressed here is that health and safety risk decisions should be made with probabilistic processes used in financial decision-making and which are familiar and recognizable to business and government planners and managers. This article develops the processes and demonstrates the use of incident probabilities, historic outcome information, and incremental impact analysis to estimate risk of multiple alternatives in the chemical process industry. It also analyzes how the ethical aspects of decision-making can be addressed in formulating health and safety risk management plans. It is concluded that certain, easily understood, and applied probabilistic risk assessment methods used by business and government to assess financial and outcome risk have applicability to improving workplace health and safety in three ways: 1) by linking the business and health and safety risk assessment processes to securing resources, 2) by providing an additional set of tools for health and safety risk assessment, and 3) by requiring the risk assessor to consider multiple risk management alternatives.

  9. Multi-institutional application of Failure Mode and Effects Analysis (FMEA) to CyberKnife Stereotactic Body Radiation Therapy (SBRT).

    PubMed

    Veronese, Ivan; De Martin, Elena; Martinotti, Anna Stefania; Fumagalli, Maria Luisa; Vite, Cristina; Redaelli, Irene; Malatesta, Tiziana; Mancosu, Pietro; Beltramo, Giancarlo; Fariselli, Laura; Cantone, Marie Claire

    2015-06-13

    A multidisciplinary and multi-institutional working group applied the Failure Mode and Effects Analysis (FMEA) approach to assess the risks for patients undergoing Stereotactic Body Radiation Therapy (SBRT) treatments for lesions located in spine and liver in two CyberKnife® Centres. The various sub-processes characterizing the SBRT treatment were identified to generate the process trees of both the treatment planning and delivery phases. This analysis drove to the identification and subsequent scoring of the potential failure modes, together with their causes and effects, using the risk probability number (RPN) scoring system. Novel solutions aimed to increase patient safety were accordingly considered. The process-tree characterising the SBRT treatment planning stage was composed with a total of 48 sub-processes. Similarly, 42 sub-processes were identified in the stage of delivery to liver tumours and 30 in the stage of delivery to spine lesions. All the sub-processes were judged to be potentially prone to one or more failure modes. Nineteen failures (i.e. 5 in treatment planning stage, 5 in the delivery to liver lesions and 9 in the delivery to spine lesions) were considered of high concern in view of the high RPN and/or severity index value. The analysis of the potential failures, their causes and effects allowed to improve the safety strategies already adopted in the clinical practice with additional measures for optimizing quality management workflow and increasing patient safety.

  10. Criticality safety strategy and analysis summary for the fuel cycle facility electrorefiner at Argonne National Laboratory West

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mariani, R.D.; Benedict, R.W.; Lell, R.M.

    1996-05-01

    As part of the termination activities of Experimental Breeder Reactor II (EBR-II) at Argonne National Laboratory (ANL) West, the spent metallic fuel from EBR-II will be treated in the fuel cycle facility (FCF). A key component of the spent-fuel treatment process in the FCF is the electrorefiner (ER) in which the actinide metals are separated from the active metal fission products and the reactive bond sodium. In the electrorefining process, the metal fuel is anodically dissolved into a high-temperature molten salt, and refined uranium or uranium/plutonium products are deposited at cathodes. The criticality safety strategy and analysis for the ANLmore » West FCF ER is summarized. The FCF ER operations and processes formed the basis for evaluating criticality safety and control during actinide metal fuel refining. To show criticality safety for the FCF ER, the reference operating conditions for the ER had to be defined. Normal operating envelopes (NOEs) were then defined to bracket the important operating conditions. To keep the operating conditions within their NOEs, process controls were identified that can be used to regulate the actinide forms and content within the ER. A series of operational checks were developed for each operation that will verify the extent or success of an operation. The criticality analysis considered the ER operating conditions at their NOE values as the point of departure for credible and incredible failure modes. As a result of the analysis, FCF ER operations were found to be safe with respect to criticality.« less

  11. SLUDGE TREATMENT PROJECT KOP CONCEPTUAL DESIGN CONTROL DECISION REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CARRO CA

    2010-03-09

    This control decision addresses the Knock-Out Pot (KOP) Disposition KOP Processing System (KPS) conceptual design. The KPS functions to (1) retrieve KOP material from canisters, (2) remove particles less than 600 {micro}m in size and low density materials from the KOP material, (3) load the KOP material into Multi-Canister Overpack (MCO) baskets, and (4) stage the MCO baskets for subsequent loading into MCOs. Hazard and accident analyses of the KPS conceptual design have been performed to incorporate safety into the design process. The hazard analysis is documented in PRC-STP-00098, Knock-Out Pot Disposition Project Conceptual Design Hazard Analysis. The accident analysismore » is documented in PRC-STP-CN-N-00167, Knock-Out Pot Disposition Sub-Project Canister Over Lift Accident Analysis. Based on the results of these analyses, and analyses performed in support of MCO transportation and MCO processing and storage activities at the Cold Vacuum Drying Facility (CVDF) and Canister Storage Building (CSB), control decision meetings were held to determine the controls required to protect onsite and offsite receptors and facility workers. At the conceptual design stage, these controls are primarily defined by their safety functions. Safety significant structures, systems, and components (SSCs) that could provide the identified safety functions have been selected for the conceptual design. It is anticipated that some safety SSCs identified herein will be reclassified based on hazard and accident analyses performed in support of preliminary and detailed design.« less

  12. Identification of High Performance, Low Environmental Impact Materials and Processes Using Systematic Substitution (SyS)

    NASA Technical Reports Server (NTRS)

    Dhooge, P. M.; Nimitz, J. S.

    2001-01-01

    Process analysis can identify opportunities for efficiency improvement including cost reduction, increased safety, improved quality, and decreased environmental impact. A thorough, systematic approach to materials and process selection is valuable in any analysis. New operations and facilities design offer the best opportunities for proactive cost reduction and environmental improvement, but existing operations and facilities can also benefit greatly. Materials and processes that have been used for many years may be sources of excessive resource use, waste generation, pollution, and cost burden that should be replaced. Operational and purchasing personnel may not recognize some materials and processes as problems. Reasons for materials or process replacement may include quality and efficiency improvements, excessive resource use and waste generation, materials and operational costs, safety (flammability or toxicity), pollution prevention, compatibility with new processes or materials, and new or anticipated regulations.

  13. SCAP: a new methodology for safety management based on feedback from credible accident-probabilistic fault tree analysis system.

    PubMed

    Khan, F I; Iqbal, A; Ramesh, N; Abbasi, S A

    2001-10-12

    As it is conventionally done, strategies for incorporating accident--prevention measures in any hazardous chemical process industry are developed on the basis of input from risk assessment. However, the two steps-- risk assessment and hazard reduction (or safety) measures--are not linked interactively in the existing methodologies. This prevents a quantitative assessment of the impacts of safety measures on risk control. We have made an attempt to develop a methodology in which risk assessment steps are interactively linked with implementation of safety measures. The resultant system tells us the extent of reduction of risk by each successive safety measure. It also tells based on sophisticated maximum credible accident analysis (MCAA) and probabilistic fault tree analysis (PFTA) whether a given unit can ever be made 'safe'. The application of the methodology has been illustrated with a case study.

  14. Engineering and Safety Partnership Enhances Safety of the Space Shuttle Program (SSP)

    NASA Technical Reports Server (NTRS)

    Duarte, Alberto

    2007-01-01

    Project Management must use the risk assessment documents (RADs) as tools to support their decision making process. Therefore, these documents have to be initiated, developed, and evolved parallel to the life of the project. Technical preparation and safety compliance of these documents require a great deal of resources. Updating these documents after-the-fact not only requires substantial increase in resources - Project Cost -, but this task is also not useful and perhaps an unnecessary expense. Hazard Reports (HRs), Failure Modes and Effects Analysis (FMEAs), Critical Item Lists (CILs), Risk Management process are, among others, within this category. A positive action resulting from a strong partnership between interested parties is one way to get these documents and related processes and requirements, released and updated in useful time. The Space Shuttle Program (SSP) at the Marshall Space Flight Center has implemented a process which is having positive results and gaining acceptance within the Agency. A hybrid Panel, with equal interest and responsibilities for the two larger organizations, Safety and Engineering, is the focal point of this process. Called the Marshall Safety and Engineering Review Panel (MSERP), its charter (Space Shuttle Program Directive 110 F, April 15, 2005), and its Operating Control Plan emphasizes the technical and safety responsibilities over the program risk documents: HRs; FMEA/CILs; Engineering Changes; anomalies/problem resolutions and corrective action implementations, and trend analysis. The MSERP has undertaken its responsibilities with objectivity, assertiveness, dedication, has operated with focus, and has shown significant results and promising perspectives. The MSERP has been deeply involved in propulsion systems and integration, real time technical issues and other relevant reviews, since its conception. These activities have transformed the propulsion MSERP in a truly participative and value added panel, making a difference for the safety of the Space Shuttle Vehicle, its crew, and personnel. Because of the MSERP's valuable contribution to the assessment of safety risk for the SSP, this paper also proposes an enhanced Panel concept that takes this successful partnership concept to a higher level of 'true partnership'. The proposed panel is aimed to be responsible for the review and assessment of all risk relative to Safety for new and future aerospace and related programs.

  15. Patient safety challenges in a case study hospital--of relevance for transfusion processes?

    PubMed

    Aase, Karina; Høyland, Sindre; Olsen, Espen; Wiig, Siri; Nilsen, Stein Tore

    2008-10-01

    The paper reports results from a research project with the objective of studying patient safety, and relates the finding to safety issues within transfusion medicine. The background is an increased focus on undesired events related to diagnosis, medication, and patient treatment in general in the healthcare sector. The study is designed as a case study within a regional Norwegian hospital conducting specialised health care services. The study includes multiple methods such as interviews, document analysis, analysis of error reports, and a questionnaire survey. Results show that the challenges for improved patient safety, based on employees' perceptions, are hospital management support, reporting of accidents/incidents, and collaboration across hospital units. Several of these generic safety challenges are also found to be of relevance for a hospital's transfusion service. Positive patient safety factors are identified as teamwork within hospital units, a non-punitive response to errors, and unit manager's actions promoting safety.

  16. Analysis on Dangerous Source of Large Safety Accident in Storage Tank Area

    NASA Astrophysics Data System (ADS)

    Wang, Tong; Li, Ying; Xie, Tiansheng; Liu, Yu; Zhu, Xueyuan

    2018-01-01

    The difference between a large safety accident and a general accident is that the consequences of a large safety accident are particularly serious. To study the tank area which factors directly or indirectly lead to the occurrence of large-sized safety accidents. According to the three kinds of hazard source theory and the consequence cause analysis of the super safety accident, this paper analyzes the dangerous source of the super safety accident in the tank area from four aspects, such as energy source, large-sized safety accident reason, management missing, environmental impact Based on the analysis of three kinds of hazard sources and environmental analysis to derive the main risk factors and the AHP evaluation model is established, and after rigorous and scientific calculation, the weights of the related factors in four kinds of risk factors and each type of risk factors are obtained. The result of analytic hierarchy process shows that management reasons is the most important one, and then the environmental factors and the direct cause and Energy source. It should be noted that although the direct cause is relatively low overall importance, the direct cause of Failure of emergency measures and Failure of prevention and control facilities in greater weight.

  17. The elements of a commercial human spaceflight safety reporting system

    NASA Astrophysics Data System (ADS)

    Christensen, Ian

    2017-10-01

    In its report on the SpaceShipTwo accident the National Transportation Safety Board (NTSB) included in its recommendations that the Federal Aviation Administration (FAA) ;in collaboration with the commercial spaceflight industry, continue work to implement a database of lessons learned from commercial space mishap investigations and encourage commercial space industry members to voluntarily submit lessons learned.; In its official response to the NTSB the FAA supported this recommendation and indicated it has initiated an iterative process to put into place a framework for a cooperative safety data sharing process including the sharing of lessons learned, and trends analysis. Such a framework is an important element of an overall commercial human spaceflight safety system.

  18. A macro-ergonomic work system analysis of the diagnostic testing process in an outpatient health care facility for process improvement and patient safety.

    PubMed

    Hallock, M L; Alper, S J; Karsh, B

    The diagnosis of illness is important for quality patient care and patient safety and is greatly aided by diagnostic testing. For diagnostic tests, such as pathology and radiology, to positively impact patient care, the tests must be processed and the physician and patient must be notified of the results in a timely fashion. There are many steps in the diagnostic testing process, from ordering to result dissemination, where the process can break down and therefore delay patient care and reduce patient safety. This study was carried out to examine the diagnostic testing process (i.e. from ordering to result notification) and used a macro-ergonomic work system analysis to uncover system design flaws that contributed to delayed physician and patient notification of results. The study was carried out in a large urban outpatient health-care facility made up of 30 outpatient clinics. Results indicated a number of variances that contributed to delays, the majority of which occurred across the boundaries of different systems and were related to poor or absent feedback structures. Recommendations for improvements are discussed.

  19. The integration of Human Factors (HF) in the SAR process training course text

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, T.G.

    1995-03-01

    This text provides the technical basis for a two-day course on human factors (HF), as applied to the Safety Analysis Report (SAR) process. The overall objective of this text and course is to: provide the participant with a working knowledge of human factors-related requirements, suggestions for doing a human safety analysis applying a graded approach, and an ability to demonstrate using the results of the human safety analysis, that human factors elements as defined by DOE (human factors engineering, procedures, training, oversight, staffing, qualifications), can support wherever necessary, nuclear safety commitments in the SAR. More specifically, the objectives of themore » text and course are: (1) To provide the SAR preparer with general guidelines for doing HE within the context of a graded approach for the SAR; (2) To sensitize DOE facility managers and staff, safety analysts and SAR preparers, independent reviewers, and DOE reviewers and regulators, to DOE Order 5480.23 requirements for HE in the SAR; (3) To provide managers, analysts, reviewers and regulators with a working knowledge of HE concepts and techniques within the context of a graded approach for the SAR, and (4) To provide SAR managers and DOE reviewers and regulators with general guidelines for monitoring and coordinating the work of preparers of HE inputs throughout the SAR process, and for making decisions regarding the safety relevance of HE inputs to the SAR. As a ready reference for implementing the human factors requirements of DOE Order 5480.22 and DOE Standard 3009-94, this course text and accompanying two-day course are intended for all persons who are involved in the SAR.« less

  20. Software safety

    NASA Technical Reports Server (NTRS)

    Leveson, Nancy

    1987-01-01

    Software safety and its relationship to other qualities are discussed. It is shown that standard reliability and fault tolerance techniques will not solve the safety problem for the present. A new attitude requires: looking at what you do NOT want software to do along with what you want it to do; and assuming things will go wrong. New procedures and changes to entire software development process are necessary: special software safety analysis techniques are needed; and design techniques, especially eliminating complexity, can be very helpful.

  1. NASA Accident Precursor Analysis Handbook, Version 1.0

    NASA Technical Reports Server (NTRS)

    Groen, Frank; Everett, Chris; Hall, Anthony; Insley, Scott

    2011-01-01

    Catastrophic accidents are usually preceded by precursory events that, although observable, are not recognized as harbingers of a tragedy until after the fact. In the nuclear industry, the Three Mile Island accident was preceded by at least two events portending the potential for severe consequences from an underappreciated causal mechanism. Anomalies whose failure mechanisms were integral to the losses of Space Transportation Systems (STS) Challenger and Columbia had been occurring within the STS fleet prior to those accidents. Both the Rogers Commission Report and the Columbia Accident Investigation Board report found that processes in place at the time did not respond to the prior anomalies in a way that shed light on their true risk implications. This includes the concern that, in the words of the NASA Aerospace Safety Advisory Panel (ASAP), "no process addresses the need to update a hazard analysis when anomalies occur" At a broader level, the ASAP noted in 2007 that NASA "could better gauge the likelihood of losses by developing leading indicators, rather than continue to depend on lagging indicators". These observations suggest a need to revalidate prior assumptions and conclusions of existing safety (and reliability) analyses, as well as to consider the potential for previously unrecognized accident scenarios, when unexpected or otherwise undesired behaviors of the system are observed. This need is also discussed in NASA's system safety handbook, which advocates a view of safety assurance as driving a program to take steps that are necessary to establish and maintain a valid and credible argument for the safety of its missions. It is the premise of this handbook that making cases for safety more experience-based allows NASA to be better informed about the safety performance of its systems, and will ultimately help it to manage safety in a more effective manner. The APA process described in this handbook provides a systematic means of analyzing candidate accident precursors by evaluating anomaly occurrences for their system safety implications and, through both analytical and deliberative methods used to project to other circumstances, identifying those that portend more serious consequences to come if effective corrective action is not taken. APA builds upon existing safety analysis processes currently in practice within NASA, leveraging their results to provide an improved understanding of overall system risk. As such, APA represents an important dimension of safety evaluation; as operational experience is acquired, precursor information is generated such that it can be fed back into system safety analyses to risk-inform safety improvements. Importantly, APA utilizes anomaly data to predict risk whereas standard reliability and PRA approaches utilize failure data which often is limited and rare.

  2. Preliminary Evaluation of an Aviation Safety Thesaurus' Utility for Enhancing Automated Processing of Incident Reports

    NASA Technical Reports Server (NTRS)

    Barrientos, Francesca; Castle, Joseph; McIntosh, Dawn; Srivastava, Ashok

    2007-01-01

    This document presents a preliminary evaluation the utility of the FAA Safety Analytics Thesaurus (SAT) utility in enhancing automated document processing applications under development at NASA Ames Research Center (ARC). Current development efforts at ARC are described, including overviews of the statistical machine learning techniques that have been investigated. An analysis of opportunities for applying thesaurus knowledge to improving algorithm performance is then presented.

  3. Usage of information safety requirements in improving tube bending process

    NASA Astrophysics Data System (ADS)

    Livshitz, I. I.; Kunakov, E.; Lontsikh, P. A.

    2018-05-01

    This article is devoted to an improvement of the technological process's analysis with the information security requirements implementation. The aim of this research is the competition increase analysis in aircraft industry enterprises due to the information technology implementation by the example of the tube bending technological process. The article analyzes tube bending kinds and current technique. In addition, a potential risks analysis in a tube bending technological process is carried out in terms of information security.

  4. General RMP Guidance - Chapter 7: Prevention Program (Program 3)

    EPA Pesticide Factsheets

    Many Program 3 processes are already addressed by the OSHA Process Safety Management Program, which covers on-site consequences. So for compliance with the risk management program, process hazard analysis teams must consider potential offsite consequences.

  5. Management of local economic and ecological system of coal processing company

    NASA Astrophysics Data System (ADS)

    Kiseleva, T. V.; Mikhailov, V. G.; Karasev, V. A.

    2016-10-01

    The management issues of local ecological and economic system of coal processing company - coal processing plant - are considered in the article. The objectives of the research are the identification and the analysis of local ecological and economic system (coal processing company) performance and the proposals for improving the mechanism to support the management decision aimed at improving its environmental safety. The data on the structure of run-of-mine coal processing products are shown. The analysis of main ecological and economic indicators of coal processing enterprises, characterizing the state of its environmental safety, is done. The main result of the study is the development of proposals to improve the efficiency of local enterprise ecological and economic system management, including technical, technological and business measures. The results of the study can be recommended to industrial enterprises to improve their ecological and economic efficiency.

  6. Use of evidential reasoning and AHP to assess regional industrial safety

    PubMed Central

    Chen, Zhichao; Chen, Tao; Qu, Zhuohua; Ji, Xuewei; Zhou, Yi; Zhang, Hui

    2018-01-01

    China’s fast economic growth contributes to the rapid development of its urbanization process, and also renders a series of industrial accidents, which often cause loss of life, damage to property and environment, thus requiring the associated risk analysis and safety control measures to be implemented in advance. However, incompleteness of historical failure data before the occurrence of accidents makes it difficult to use traditional risk analysis approaches such as probabilistic risk analysis in many cases. This paper aims to develop a new methodology capable of assessing regional industrial safety (RIS) in an uncertain environment. A hierarchical structure for modelling the risks influencing RIS is first constructed. The hybrid of evidential reasoning (ER) and Analytical Hierarchy Process (AHP) is then used to assess the risks in a complementary way, in which AHP is hired to evaluate the weight of each risk factor and ER is employed to synthesise the safety evaluations of the investigated region(s) against the risk factors from the bottom to the top level in the hierarchy. The successful application of the hybrid approach in a real case analysis of RIS in several major districts of Beijing (capital of China) demonstrates its feasibility as well as provides risk analysts and safety engineers with useful insights on effective solutions to comprehensive risk assessment of RIS in metropolitan cities. The contribution of this paper is made by the findings on the comparison of risk levels of RIS at different regions against various risk factors so that best practices from the good performer(s) can be used to improve the safety of the others. PMID:29795593

  7. Use of evidential reasoning and AHP to assess regional industrial safety.

    PubMed

    Chen, Zhichao; Chen, Tao; Qu, Zhuohua; Yang, Zaili; Ji, Xuewei; Zhou, Yi; Zhang, Hui

    2018-01-01

    China's fast economic growth contributes to the rapid development of its urbanization process, and also renders a series of industrial accidents, which often cause loss of life, damage to property and environment, thus requiring the associated risk analysis and safety control measures to be implemented in advance. However, incompleteness of historical failure data before the occurrence of accidents makes it difficult to use traditional risk analysis approaches such as probabilistic risk analysis in many cases. This paper aims to develop a new methodology capable of assessing regional industrial safety (RIS) in an uncertain environment. A hierarchical structure for modelling the risks influencing RIS is first constructed. The hybrid of evidential reasoning (ER) and Analytical Hierarchy Process (AHP) is then used to assess the risks in a complementary way, in which AHP is hired to evaluate the weight of each risk factor and ER is employed to synthesise the safety evaluations of the investigated region(s) against the risk factors from the bottom to the top level in the hierarchy. The successful application of the hybrid approach in a real case analysis of RIS in several major districts of Beijing (capital of China) demonstrates its feasibility as well as provides risk analysts and safety engineers with useful insights on effective solutions to comprehensive risk assessment of RIS in metropolitan cities. The contribution of this paper is made by the findings on the comparison of risk levels of RIS at different regions against various risk factors so that best practices from the good performer(s) can be used to improve the safety of the others.

  8. Advancing perinatal patient safety through application of safety science principles using health IT.

    PubMed

    Webb, Jennifer; Sorensen, Asta; Sommerness, Samantha; Lasater, Beth; Mistry, Kamila; Kahwati, Leila

    2017-12-19

    The use of health information technology (IT) has been shown to promote patient safety in Labor and Delivery (L&D) units. The use of health IT to apply safety science principles (e.g., standardization) to L&D unit processes may further advance perinatal safety. Semi-structured interviews were conducted with L&D units participating in the Agency for Healthcare Research and Quality's (AHRQ's) Safety Program for Perinatal Care (SPPC) to assess units' experience with program implementation. Analysis of interview transcripts was used to characterize the process and experience of using health IT for applying safety science principles to L&D unit processes. Forty-six L&D units from 10 states completed participation in SPPC program implementation; thirty-two (70%) reported the use of health IT as an enabling strategy for their local implementation. Health IT was used to improve standardization of processes, use of independent checks, and to facilitate learning from defects. L&D units standardized care processes through use of electronic health record (EHR)-based order sets and use of smart pumps and other technology to improve medication safety. Units also standardized EHR documentation, particularly related to electronic fetal monitoring (EFM) and shoulder dystocia. Cognitive aids and tools were integrated into EHR and care workflows to create independent checks such as checklists, risk assessments, and communication handoff tools. Units also used data from EHRs to monitor processes of care to learn from defects. Units experienced several challenges incorporating health IT, including obtaining organization approval, working with their busy IT departments, and retrieving standardized data from health IT systems. Use of health IT played an integral part in the planning and implementation of SPPC for participating L&D units. Use of health IT is an encouraging approach for incorporating safety science principles into care to improve perinatal safety and should be incorporated into materials to facilitate the implementation of perinatal safety initiatives.

  9. 14 CFR 417.111 - Launch plans.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... controls identified by a launch operator's ground safety analysis and implementation of the ground safety.... (ii) For each toxic propellant, any hazard controls and process constraints determined under the... classification and compatibility group as defined by part 420 of this chapter. (3) A graphic depiction of the...

  10. Safety studies on vacuum insulated liquid helium cryostats

    NASA Astrophysics Data System (ADS)

    Weber, C.; Henriques, A.; Zoller, C.; Grohmann, S.

    2017-12-01

    The loss of insulating vacuum is often considered as a reasonable foreseeable accident for the dimensioning of cryogenic safety relief devices (SRD). The cryogenic safety test facility PICARD was designed at KIT to investigate such events. In the course of first experiments, discharge instabilities of the spring loaded safety relief valve (SRV) occurred, the so-called chattering and pumping effects. These instabilities reduce the relief flow capacity, which leads to impermissible over-pressures in the system. The analysis of the process dynamics showed first indications for a smaller heat flux than the commonly assumed 4W/cm2. This results in an oversized discharge area for the reduced relief flow rate, which corresponds to the lower heat flux. This paper presents further experimental investigations on the venting of the insulating vacuum with atmospheric air under variation of the set pressure (p set) of the SRV. Based on dynamic process analysis, the results are discussed with focus on effective heat fluxes and operating characteristics of the spring-loaded SRV.

  11. Linguistic analysis of large-scale medical incident reports for patient safety.

    PubMed

    Fujita, Katsuhide; Akiyama, Masanori; Park, Keunsik; Yamaguchi, Etsuko Nakagami; Furukawa, Hiroyuki

    2012-01-01

    The analysis of medical incident reports is indispensable for patient safety. The cycles between analysis of incident reports and proposals to medical staffs are a key point for improving the patient safety in the hospital. Most incident reports are composed from freely written descriptions, but an analysis of such free descriptions is not sufficient in the medical field. In this study, we aim to accumulate and reinterpret findings using structured incident information, to clarify improvements that should be made to solve the root cause of the accident, and to ensure safe medical treatment through such improvements. We employ natural language processing (NLP) and network analysis to identify effective categories of medical incident reports. Network analysis can find various relationships that are not only direct but also indirect. In addition, we compare bottom-up results obtained by NLP with existing categories based on experts' judgment. By the bottom-up analysis, the class of patient managements regarding patients' fallings and medicines in top-down analysis is created clearly. Finally, we present new perspectives on ways of improving patient safety.

  12. [Concept analysis of a participatory approach to occupational safety and health].

    PubMed

    Yoshikawa, Etsuko

    2013-01-01

    The purpose of this study was to analyze a participatory approach to occupational safety and health, and to examine the possibility of applying the concept to the practice and research of occupational safety and health. According to Rodger's method, descriptive data concerning antecedents, attributes and consequences were qualitatively analyzed. A total of 39 articles were selected for analysis. Attributes with a participatory approach were: "active involvement of both workers and employers", "focusing on action-oriented low-cost and multiple area improvements based on good practices", "the process of emphasis on consensus building", and "utilization of a local network". Antecedents of the participatory approach were classified as: "existing risks at the workplace", "difficulty of occupational safety and health activities", "characteristics of the workplace and workers", and "needs for the workplace". The derived consequences were: "promoting occupational safety and health activities", "emphasis of self-management", "creation of safety and healthy workplace", and "contributing to promotion of quality of life and productivity". A participatory approach in occupational safety and health is defined as, the process of emphasis on consensus building to promote occupational safety and health activities with emphasis on self-management, which focuses on action-oriented low-cost and multiple area improvements based on good practices with active involvement of both workers and employers through utilization of local networks. We recommend that the role of the occupational health professional be clarified and an evaluation framework be established for the participatory approach to promote occupational safety and health activities by involving both workers and employers.

  13. Does the process map influence the outcome of quality improvement work? A comparison of a sequential flow diagram and a hierarchical task analysis diagram.

    PubMed

    Colligan, Lacey; Anderson, Janet E; Potts, Henry W W; Berman, Jonathan

    2010-01-07

    Many quality and safety improvement methods in healthcare rely on a complete and accurate map of the process. Process mapping in healthcare is often achieved using a sequential flow diagram, but there is little guidance available in the literature about the most effective type of process map to use. Moreover there is evidence that the organisation of information in an external representation affects reasoning and decision making. This exploratory study examined whether the type of process map - sequential or hierarchical - affects healthcare practitioners' judgments. A sequential and a hierarchical process map of a community-based anti coagulation clinic were produced based on data obtained from interviews, talk-throughs, attendance at a training session and examination of protocols and policies. Clinic practitioners were asked to specify the parts of the process that they judged to contain quality and safety concerns. The process maps were then shown to them in counter-balanced order and they were asked to circle on the diagrams the parts of the process where they had the greatest quality and safety concerns. A structured interview was then conducted, in which they were asked about various aspects of the diagrams. Quality and safety concerns cited by practitioners differed depending on whether they were or were not looking at a process map, and whether they were looking at a sequential diagram or a hierarchical diagram. More concerns were identified using the hierarchical diagram compared with the sequential diagram and more concerns were identified in relation to clinical work than administrative work. Participants' preference for the sequential or hierarchical diagram depended on the context in which they would be using it. The difficulties of determining the boundaries for the analysis and the granularity required were highlighted. The results indicated that the layout of a process map does influence perceptions of quality and safety problems in a process. In quality improvement work it is important to carefully consider the type of process map to be used and to consider using more than one map to ensure that different aspects of the process are captured.

  14. Analysis of dynamical response of air blast loaded safety device

    NASA Astrophysics Data System (ADS)

    Tropkin, S. N.; Tlyasheva, R. R.; Bayazitov, M. I.; Kuzeev, I. R.

    2018-03-01

    Equipment of many oil and gas processing plants in the Russian Federation is considerably worn-out. This causes the decrease of reliability and durability of equipment and rises the accident rate. An air explosion is the one of the most dangerous cases for plants in oil and gas industry, usually caused by uncontrolled emission and inflammation of oil products. Air explosion can lead to significant danger for life and health of plant staff, so it necessitates safety device usage. A new type of a safety device is designed. Numerical simulation is necessary to analyse design parameters and performance of the safety device, subjected to air blast loading. Coupled fluid-structure interaction analysis is performed to determine strength of the protective device and its performance. The coupled Euler-Lagrange method, allowable in Abaqus by SIMULIA, is selected as the most appropriate analysis tool to study blast wave interaction with the safety device. Absorption factors of blast wave are evaluated for the safety device. This factors allow one to assess efficiency of the safety device, and its main structural component – dampener. Usage of CEL allowed one to model fast and accurately the dampener behaviour, and to develop the parametric model to determine safety device sizes.

  15. Use of a systematic risk analysis method to improve safety in the production of paediatric parenteral nutrition solutions

    PubMed Central

    Bonnabry, P; Cingria, L; Sadeghipour, F; Ing, H; Fonzo-Christe, C; Pfister, R

    2005-01-01

    Background: Until recently, the preparation of paediatric parenteral nutrition formulations in our institution included re-transcription and manual compounding of the mixture. Although no significant clinical problems have occurred, re-engineering of this high risk activity was undertaken to improve its safety. Several changes have been implemented including new prescription software, direct recording on a server, automatic printing of the labels, and creation of a file used to pilot a BAXA MM 12 automatic compounder. The objectives of this study were to compare the risks associated with the old and new processes, to quantify the improved safety with the new process, and to identify the major residual risks. Methods: A failure modes, effects, and criticality analysis (FMECA) was performed by a multidisciplinary team. A cause-effect diagram was built, the failure modes were defined, and the criticality index (CI) was determined for each of them on the basis of the likelihood of occurrence, the severity of the potential effect, and the detection probability. The CIs for each failure mode were compared for the old and new processes and the risk reduction was quantified. Results: The sum of the CIs of all 18 identified failure modes was 3415 for the old process and 1397 for the new (reduction of 59%). The new process reduced the CIs of the different failure modes by a mean factor of 7. The CI was smaller with the new process for 15 failure modes, unchanged for two, and slightly increased for one. The greatest reduction (by a factor of 36) concerned re-transcription errors, followed by readability problems (by a factor of 30) and chemical cross contamination (by a factor of 10). The most critical steps in the new process were labelling mistakes (CI 315, maximum 810), failure to detect a dosage or product mistake (CI 288), failure to detect a typing error during the prescription (CI 175), and microbial contamination (CI 126). Conclusions: Modification of the process resulted in a significant risk reduction as shown by risk analysis. Residual failure opportunities were also quantified, allowing additional actions to be taken to reduce the risk of labelling mistakes. This study illustrates the usefulness of prospective risk analysis methods in healthcare processes. More systematic use of risk analysis is needed to guide continuous safety improvement of high risk activities. PMID:15805453

  16. Use of a systematic risk analysis method to improve safety in the production of paediatric parenteral nutrition solutions.

    PubMed

    Bonnabry, P; Cingria, L; Sadeghipour, F; Ing, H; Fonzo-Christe, C; Pfister, R E

    2005-04-01

    Until recently, the preparation of paediatric parenteral nutrition formulations in our institution included re-transcription and manual compounding of the mixture. Although no significant clinical problems have occurred, re-engineering of this high risk activity was undertaken to improve its safety. Several changes have been implemented including new prescription software, direct recording on a server, automatic printing of the labels, and creation of a file used to pilot a BAXA MM 12 automatic compounder. The objectives of this study were to compare the risks associated with the old and new processes, to quantify the improved safety with the new process, and to identify the major residual risks. A failure modes, effects, and criticality analysis (FMECA) was performed by a multidisciplinary team. A cause-effect diagram was built, the failure modes were defined, and the criticality index (CI) was determined for each of them on the basis of the likelihood of occurrence, the severity of the potential effect, and the detection probability. The CIs for each failure mode were compared for the old and new processes and the risk reduction was quantified. The sum of the CIs of all 18 identified failure modes was 3415 for the old process and 1397 for the new (reduction of 59%). The new process reduced the CIs of the different failure modes by a mean factor of 7. The CI was smaller with the new process for 15 failure modes, unchanged for two, and slightly increased for one. The greatest reduction (by a factor of 36) concerned re-transcription errors, followed by readability problems (by a factor of 30) and chemical cross contamination (by a factor of 10). The most critical steps in the new process were labelling mistakes (CI 315, maximum 810), failure to detect a dosage or product mistake (CI 288), failure to detect a typing error during the prescription (CI 175), and microbial contamination (CI 126). Modification of the process resulted in a significant risk reduction as shown by risk analysis. Residual failure opportunities were also quantified, allowing additional actions to be taken to reduce the risk of labelling mistakes. This study illustrates the usefulness of prospective risk analysis methods in healthcare processes. More systematic use of risk analysis is needed to guide continuous safety improvement of high risk activities.

  17. 29 CFR 1926.64 - Process safety management of highly hazardous chemicals.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... analysis methodology being used. (5) The employer shall establish a system to promptly address the team's... the decision as to the appropriate PHA methodology to use. All PHA methodologies are subject to... be developed in conjunction with the process hazard analysis in sufficient detail to support the...

  18. 29 CFR 1926.64 - Process safety management of highly hazardous chemicals.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... analysis methodology being used. (5) The employer shall establish a system to promptly address the team's... the decision as to the appropriate PHA methodology to use. All PHA methodologies are subject to... be developed in conjunction with the process hazard analysis in sufficient detail to support the...

  19. Application of Mls Data to the Assessment of Safety-Related Features in the Surrounding Area of Automatically Detected Pedestrian Crossings

    NASA Astrophysics Data System (ADS)

    Soilán, M.; Riveiro, B.; Sánchez-Rodríguez, A.; González-deSantos, L. M.

    2018-05-01

    During the last few years, there has been a huge methodological development regarding the automatic processing of 3D point cloud data acquired by both terrestrial and aerial mobile mapping systems, motivated by the improvement of surveying technologies and hardware performance. This paper presents a methodology that, in a first place, extracts geometric and semantic information regarding the road markings within the surveyed area from Mobile Laser Scanning (MLS) data, and then employs it to isolate street areas where pedestrian crossings are found and, therefore, pedestrians are more likely to cross the road. Then, different safety-related features can be extracted in order to offer information about the adequacy of the pedestrian crossing regarding its safety, which can be displayed in a Geographical Information System (GIS) layer. These features are defined in four different processing modules: Accessibility analysis, traffic lights classification, traffic signs classification, and visibility analysis. The validation of the proposed methodology has been carried out in two different cities in the northwest of Spain, obtaining both quantitative and qualitative results for pedestrian crossing classification and for each processing module of the safety assessment on pedestrian crossing environments.

  20. Improving food safety within the dairy chain: an application of conjoint analysis.

    PubMed

    Valeeva, N I; Meuwissen, M P M; Lansink, A G J M Oude; Huirne, R B M

    2005-04-01

    This study determined the relative importance of attributes of food safety improvement in the production chain of fluid pasteurized milk. The chain was divided into 4 blocks: "feed" (compound feed production and its transport), "farm" (dairy farm), "dairy processing" (transport and processing of raw milk, delivery of pasteurized milk), and "consumer" (retailer/catering establishment and pasteurized milk consumption). The concept of food safety improvement focused on 2 main groups of hazards: chemical (antibiotics and dioxin) and microbiological (Salmonella, Escherichia coli, Mycobacterium paratuberculosis, and Staphylococcus aureus). Adaptive conjoint analysis was used to investigate food safety experts' perceptions of the attributes' importance. Preference data from individual experts (n = 24) on 101 attributes along the chain were collected in a computer-interactive mode. Experts perceived the attributes from the "feed" and "farm" blocks as being more vital for controlling the chemical hazards; whereas the attributes from the "farm" and "dairy processing" were considered more vital for controlling the microbiological hazards. For the chemical hazards, "identification of treated cows" and "quality assurance system of compound feed manufacturers" were considered the most important attributes. For the microbiological hazards, these were "manure supply source" and "action in salmonellosis and M. paratuberculosis cases". The rather high importance of attributes relating to quality assurance and traceability systems of the chain participants indicates that participants look for food safety assurance from the preceding participants. This information has substantial decision-making implications for private businesses along the chain and for the government regarding the food safety improvement of fluid pasteurized milk.

  1. Nuclear Safety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silver, E G

    This document is a review journal that covers significant developments in the field of nuclear safety. Its scope includes the analysis and control of hazards associated with nuclear energy, operations involving fissionable materials, and the products of nuclear fission and their effects on the environment. Primary emphasis is on safety in reactor design, construction, and operation; however, the safety aspects of the entire fuel cycle, including fuel fabrication, spent-fuel processing, nuclear waste disposal, handling of radioisotopes, and environmental effects of these operations, are also treated.

  2. Nuclear Safety. Technical progress journal, April--June 1996: Volume 37, No. 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muhlheim, M D

    1996-01-01

    This journal covers significant issues in the field of nuclear safety. Its primary scope is safety in the design, construction, operation, and decommissioning of nuclear power reactors worldwide and the research and analysis activities that promote this goal, but it also encompasses the safety aspects of the entire nuclear fuel cycle, including fuel fabrication, spent-fuel processing and handling, nuclear waste disposal, the handling of fissionable materials and radioisotopes, and the environmental effects of all these activities.

  3. Nuclear Safety. Technical progress journal, January--March 1994: Volume 35, No. 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silver, E G

    1994-01-01

    This is a journal that covers significant issues in the field of nuclear safety. Its primary scope is safety in the design, construction, operation, and decommissioning of nuclear power reactors worldwide and the research and analysis activities that promote this goal, but it also encompasses the safety aspects of the entire nuclear fuel cycle, including fuel fabrication, spent-fuel processing and handling, and nuclear waste disposal, the handling of fissionable materials and radioisotopes, and the environmental effects of all these activities.

  4. The Role of Individual and Collective Mindfulness in Promoting Occupational Safety in Health Care.

    PubMed

    Dierynck, Bart; Leroy, Hannes; Savage, Grant T; Choi, Ellen

    2017-02-01

    Although the importance of safety regulations is highly emphasized in hospitals, nurses frequently work around, or intentionally bypass, safety regulations. We argue that work-arounds occur because adhering to safety regulations usually requires more time and work process design often lacks complementarity with safety regulations. Our main proposition is that mindfulness is associated with a decrease in occupational safety failures through a decrease in work-arounds. First, we propose that individual mindfulness may prevent the depletion of motivational resources caused by worrying about the consequences of time lost when adhering to safety regulations. Second, we argue that collective mindfulness may provide nursing teams with a cognitive infrastructure that facilitates the detection and adaptation of work processes. The results of a multilevel analysis of 580 survey responses from nurses are consistent with our propositions. Our multilevel analytic approach enables us to account for the unique variance in work-arounds that individual and collective mindfulness explain.

  5. Process value of care safety: women's willingness to pay for perinatal services.

    PubMed

    Anezaki, Hisataka; Hashimoto, Hideki

    2017-08-01

    To evaluate the process value of care safety from the patient's view in perinatal services. Cross-sectional survey. Fifty two sites of mandated public neonatal health checkup in 6 urban cities in West Japan. Mothers who attended neonatal health checkups for their babies in 2011 (n = 1316, response rate = 27.4%). Willingness to pay (WTP) for physician-attended care compared with midwife care as the process-related value of care safety. WTP was estimated using conjoint analysis based on the participants' choice over possible alternatives that were randomly assigned from among eight scenarios considering attributes such as professional attendance, amenities, painless delivery, caesarean section rate, travel time and price. The WTP for physician-attended care over midwife care was estimated 1283 USD. Women who had experienced complications in prior deliveries had a 1.5 times larger WTP. We empirically evaluated the process value for safety practice in perinatal care that was larger than a previously reported accounting-based value. Our results indicate that measurement of process value from the patient's view is informative for the evaluation of safety care, and that it is sensitive to individual risk perception for the care process. © The Author 2017. Published by Oxford University Press in association with the International Society for Quality in Health Care.

  6. 14 CFR 417.307 - Support systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... subsystem, component, and part that can affect the reliability of the support system must have written...) Data processing, display, and recording. A flight safety system must include one or more subsystems... accordance with the flight safety analysis required by subpart C of this part; (5) Display and record raw...

  7. 14 CFR 417.307 - Support systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... subsystem, component, and part that can affect the reliability of the support system must have written...) Data processing, display, and recording. A flight safety system must include one or more subsystems... accordance with the flight safety analysis required by subpart C of this part; (5) Display and record raw...

  8. 14 CFR 417.307 - Support systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... subsystem, component, and part that can affect the reliability of the support system must have written...) Data processing, display, and recording. A flight safety system must include one or more subsystems... accordance with the flight safety analysis required by subpart C of this part; (5) Display and record raw...

  9. 14 CFR 417.307 - Support systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... subsystem, component, and part that can affect the reliability of the support system must have written...) Data processing, display, and recording. A flight safety system must include one or more subsystems... accordance with the flight safety analysis required by subpart C of this part; (5) Display and record raw...

  10. Determinants of job stress in chemical process industry: A factor analysis approach.

    PubMed

    Menon, Balagopal G; Praveensal, C J; Madhu, G

    2015-01-01

    Job stress is one of the active research domains in industrial safety research. The job stress can result in accidents and health related issues in workers in chemical process industries. Hence it is important to measure the level of job stress in workers so as to mitigate the same to avoid the worker's safety related problems in the industries. The objective of this study is to determine the job stress factors in the chemical process industry in Kerala state, India. This study also aims to propose a comprehensive model and an instrument framework for measuring job stress levels in the chemical process industries in Kerala, India. The data is collected through a questionnaire survey conducted in chemical process industries in Kerala. The collected data out of 1197 surveys is subjected to principal component and confirmatory factor analysis to develop the job stress factor structure. The factor analysis revealed 8 factors that influence the job stress in process industries. It is also found that the job stress in employees is most influenced by role ambiguity and the least by work environment. The study has developed an instrument framework towards measuring job stress utilizing exploratory factor analysis and structural equation modeling.

  11. Can Leader–Member Exchange Contribute to Safety Performance in An Italian Warehouse?

    PubMed Central

    Mariani, Marco G.; Curcuruto, Matteo; Matic, Mirna; Sciacovelli, Paolo; Toderi, Stefano

    2017-01-01

    Introduction: The research considers safety climate in a warehouse and wants to analyze the Leader–Member Exchange (LMX) role in respect to safety performance. Griffin and Neal’s safety model was adopted and Leader-Member Exchange was inserted as moderator in the relationships between safety climate and proximal antecedents (motivation and knowledge) of safety performance constructs (compliance and participation). Materials and Methods: Survey data were collected from a sample of 133 full-time employees in an Italian warehouse. The statistical framework of Hayes (2013) was adopted for moderated mediation analysis. Results: Proximal antecedents partially mediated the relationship between Safety climate and safety participation, but not safety compliance. Moreover, the results from the moderation analysis showed that the Leader–Member Exchange moderated the influence of safety climate on proximal antecedents and the mediation exist only at the higher level of LMX. Conclusion: The study shows that the different aspects of leadership processes interact in explaining individual proficiency in safety practices. Practical Implications: Organizations as warehouses should improve the quality of the relationship between a leader and a subordinate based upon the dimensions of respect, trust, and obligation for high level of safety performance. PMID:28553244

  12. Can Leader-Member Exchange Contribute to Safety Performance in An Italian Warehouse?

    PubMed

    Mariani, Marco G; Curcuruto, Matteo; Matic, Mirna; Sciacovelli, Paolo; Toderi, Stefano

    2017-01-01

    Introduction: The research considers safety climate in a warehouse and wants to analyze the Leader-Member Exchange (LMX) role in respect to safety performance. Griffin and Neal's safety model was adopted and Leader-Member Exchange was inserted as moderator in the relationships between safety climate and proximal antecedents (motivation and knowledge) of safety performance constructs (compliance and participation). Materials and Methods: Survey data were collected from a sample of 133 full-time employees in an Italian warehouse. The statistical framework of Hayes (2013) was adopted for moderated mediation analysis. Results: Proximal antecedents partially mediated the relationship between Safety climate and safety participation, but not safety compliance. Moreover, the results from the moderation analysis showed that the Leader-Member Exchange moderated the influence of safety climate on proximal antecedents and the mediation exist only at the higher level of LMX. Conclusion: The study shows that the different aspects of leadership processes interact in explaining individual proficiency in safety practices. Practical Implications: Organizations as warehouses should improve the quality of the relationship between a leader and a subordinate based upon the dimensions of respect, trust, and obligation for high level of safety performance.

  13. Use of a collaborative tool to simplify the outsourcing of preclinical safety studies: an insight into the AstraZeneca-Charles River Laboratories strategic relationship.

    PubMed

    Martin, Frederic D C; Benjamin, Amanda; MacLean, Ruth; Hollinshead, David M; Landqvist, Claire

    2017-12-01

    In 2012, AstraZeneca entered into a strategic relationship with Charles River Laboratories whereby preclinical safety packages comprising safety pharmacology, toxicology, formulation analysis, in vivo ADME, bioanalysis and pharmacokinetics studies are outsourced. New processes were put in place to ensure seamless workflows with the aim of accelerating the delivery of new medicines to patients. Here, we describe in more detail the AstraZeneca preclinical safety outsourcing model and the way in which a collaborative tool has helped to translate the processes in AstraZeneca and Charles River Laboratories into simpler integrated workflows that are efficient and visible across the two companies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Implementation of Programmatic Quality and the Impact on Safety

    NASA Technical Reports Server (NTRS)

    Huls, Dale Thomas; Meehan, Kevin

    2005-01-01

    The purpose of this paper is to discuss the implementation of a programmatic quality assurance discipline within the International Space Station Program and the resulting impact on safety. NASA culture has continued to stress safety at the expense of quality when both are extremely important and both can equally influence the success or failure of a Program or Mission. Although safety was heavily criticized in the media after Colimbiaa, strong case can be made that it was the failure of quality processes and quality assurance in all processes that eventually led to the Columbia accident. Consequently, it is possible to have good quality processes without safety, but it is impossible to have good safety processes without quality. The ISS Program quality assurance function was analyzed as representative of the long-term manned missions that are consistent with the President s Vision for Space Exploration. Background topics are as follows: The quality assurance organizational structure within the ISS Program and the interrelationships between various internal and external organizations. ISS Program quality roles and responsibilities with respect to internal Program Offices and other external organizations such as the Shuttle Program, JSC Directorates, NASA Headquarters, NASA Contractors, other NASA Centers, and International Partner/participants will be addressed. A detailed analysis of implemented quality assurance responsibilities and functions with respect to NASA Headquarters, the JSC S&MA Directorate, and the ISS Program will be presented. Discussions topics are as follows: A comparison of quality and safety resources in terms of staffing, training, experience, and certifications. A benchmark assessment of the lessons learned from the Columbia Accident Investigation (CAB) Report (and follow-up reports and assessments), NASA Benchmarking, and traditional quality assurance activities against ISS quality procedures and practices. The lack of a coherent operational and sustaining quality assurance strategy for long-term manned space flight. An analysis of the ISS waiver processes and the Problem Reporting and Corrective Action (PRACA) process implemented as quality functions. Impact of current ISS Program procedures and practices with regards to operational safety and risk A discussion regarding a "defense-in-depth" approach to quality functions will be provided to address the issue of "integration vs independence" with respect to the roles of Programs, NASA Centers, and NASA Headquarters. Generic recommendations are offered to address the inadequacies identified in the implementation of ISS quality assurance. A reassessment by the NASA community regarding the importance of a "quality culture" as a component within a larger "safety culture" will generate a more effective and value-added functionality that will ultimately enhance safety.

  15. The relationship between patient safety climate and occupational safety climate in healthcare - A multi-level investigation.

    PubMed

    Pousette, Anders; Larsman, Pernilla; Eklöf, Mats; Törner, Marianne

    2017-06-01

    Patient safety climate/culture is attracting increasing research interest, but there is little research on its relation with organizational climates regarding other target domains. The aim of this study was to investigate the relationship between patient safety climate and occupational safety climate in healthcare. The climates were assessed using two questionnaires: Hospital Survey on Patient Safety Culture and Nordic Occupational Safety Climate Questionnaire. The final sample consisted of 1154 nurses, 886 assistant nurses, and 324 physicians, organized in 150 work units, within hospitals (117units), primary healthcare (5units) and elderly care (28units) in western Sweden, which represented 56% of the original sample contacted. Within each type of safety climate, two global dimensions were confirmed in a higher order factor analysis; one with an external focus relative the own unit, and one with an internal focus. Two methods were used to estimate the covariation between the global climate dimensions, in order to minimize the influence of bias from common method variance. First multilevel analysis was used for partitioning variances and covariances in a within unit part (individual level) and a between unit part (unit level). Second, a split sample technique was used to calculate unit level correlations based on aggregated observations from different respondents. Both methods showed associations similar in strength between the patient safety climate and the occupational safety climate domains. The results indicated that patient safety climate and occupational safety climate are strongly positively related at the unit level, and that the same organizational processes may be important for the development of both types of organizational climate. Safety improvement interventions should not be separated in different organizational processes, but be planned so that both patient safety and staff safety are considered concomitantly. Copyright © 2017 National Safety Council and Elsevier Ltd. All rights reserved.

  16. NASA System Safety Handbook. Volume 1; System Safety Framework and Concepts for Implementation

    NASA Technical Reports Server (NTRS)

    Dezfuli, Homayoon; Benjamin, Allan; Everett, Christopher; Smith, Curtis; Stamatelatos, Michael; Youngblood, Robert

    2011-01-01

    System safety assessment is defined in NPR 8715.3C, NASA General Safety Program Requirements as a disciplined, systematic approach to the analysis of risks resulting from hazards that can affect humans, the environment, and mission assets. Achievement of the highest practicable degree of system safety is one of NASA's highest priorities. Traditionally, system safety assessment at NASA and elsewhere has focused on the application of a set of safety analysis tools to identify safety risks and formulate effective controls.1 Familiar tools used for this purpose include various forms of hazard analyses, failure modes and effects analyses, and probabilistic safety assessment (commonly also referred to as probabilistic risk assessment (PRA)). In the past, it has been assumed that to show that a system is safe, it is sufficient to provide assurance that the process for identifying the hazards has been as comprehensive as possible and that each identified hazard has one or more associated controls. The NASA Aerospace Safety Advisory Panel (ASAP) has made several statements in its annual reports supporting a more holistic approach. In 2006, it recommended that "... a comprehensive risk assessment, communication and acceptance process be implemented to ensure that overall launch risk is considered in an integrated and consistent manner." In 2009, it advocated for "... a process for using a risk-informed design approach to produce a design that is optimally and sufficiently safe." As a rationale for the latter advocacy, it stated that "... the ASAP applauds switching to a performance-based approach because it emphasizes early risk identification to guide designs, thus enabling creative design approaches that might be more efficient, safer, or both." For purposes of this preface, it is worth mentioning three areas where the handbook emphasizes a more holistic type of thinking. First, the handbook takes the position that it is important to not just focus on risk on an individual basis but to consider measures of aggregate safety risk and to ensure wherever possible that there be quantitative measures for evaluating how effective the controls are in reducing these aggregate risks. The term aggregate risk, when used in this handbook, refers to the accumulation of risks from individual scenarios that lead to a shortfall in safety performance at a high level: e.g., an excessively high probability of loss of crew, loss of mission, planetary contamination, etc. Without aggregated quantitative measures such as these, it is not reasonable to expect that safety has been optimized with respect to other technical and programmatic objectives. At the same time, it is fully recognized that not all sources of risk are amenable to precise quantitative analysis and that the use of qualitative approaches and bounding estimates may be appropriate for those risk sources. Second, the handbook stresses the necessity of developing confidence that the controls derived for the purpose of achieving system safety not only handle risks that have been identified and properly characterized but also provide a general, more holistic means for protecting against unidentified or uncharacterized risks. For example, while it is not possible to be assured that all credible causes of risk have been identified, there are defenses that can provide protection against broad categories of risks and thereby increase the chances that individual causes are contained. Third, the handbook strives at all times to treat uncertainties as an integral aspect of risk and as a part of making decisions. The term "uncertainty" here does not refer to an actuarial type of data analysis, but rather to a characterization of our state of knowledge regarding results from logical and physical models that approximate reality. Uncertainty analysis finds how the output parameters of the models are related to plausible variations in the input parameters and in the modeling assumptions. The evaluation of unrtainties represents a method of probabilistic thinking wherein the analyst and decision makers recognize possible outcomes other than the outcome perceived to be "most likely." Without this type of analysis, it is not possible to determine the worth of an analysis product as a basis for making decisions related to safety and mission success. In line with these considerations the handbook does not take a hazard-analysis-centric approach to system safety. Hazard analysis remains a useful tool to facilitate brainstorming but does not substitute for a more holistic approach geared to a comprehensive identification and understanding of individual risk issues and their contributions to aggregate safety risks. The handbook strives to emphasize the importance of identifying the most critical scenarios that contribute to the risk of not meeting the agreed-upon safety objectives and requirements using all appropriate tools (including but not limited to hazard analysis). Thereafter, emphasis shifts to identifying the risk drivers that cause these scenarios to be critical and ensuring that there are controls directed toward preventing or mitigating the risk drivers. To address these and other areas, the handbook advocates a proactive, analytic-deliberative, risk-informed approach to system safety, enabling the integration of system safety activities with systems engineering and risk management processes. It emphasizes how one can systematically provide the necessary evidence to substantiate the claim that a system is safe to within an acceptable risk tolerance, and that safety has been achieved in a cost-effective manner. The methodology discussed in this handbook is part of a systems engineering process and is intended to be integral to the system safety practices being conducted by the NASA safety and mission assurance and systems engineering organizations. The handbook posits that to conclude that a system is adequately safe, it is necessary to consider a set of safety claims that derive from the safety objectives of the organization. The safety claims are developed from a hierarchy of safety objectives and are therefore hierarchical themselves. Assurance that all the claims are true within acceptable risk tolerance limits implies that all of the safety objectives have been satisfied, and therefore that the system is safe. The acceptable risk tolerance limits are provided by the authority who must make the decision whether or not to proceed to the next step in the life cycle. These tolerances are therefore referred to as the decision maker's risk tolerances. In general, the safety claims address two fundamental facets of safety: 1) whether required safety thresholds or goals have been achieved, and 2) whether the safety risk is as low as possible within reasonable impacts on cost, schedule, and performance. The latter facet includes consideration of controls that are collective in nature (i.e., apply generically to broad categories of risks) and thereby provide protection against unidentified or uncharacterized risks.

  17. Facilitators and barriers for the adoption, implementation and monitoring of child safety interventions: a multinational qualitative analysis.

    PubMed

    Scholtes, Beatrice; Schröder-Bäck, Peter; MacKay, J Morag; Vincenten, Joanne; Förster, Katharina; Brand, Helmut

    2017-06-01

    The efficiency and effectiveness of child safety interventions are determined by the quality of the implementation process. This multinational European study aimed to identify facilitators and barriers for the three phases of implementation: adoption, implementation and monitoring (AIM process). Twenty-seven participants from across the WHO European Region were invited to provide case studies of child safety interventions from their country. Cases were selected by the authors to ensure broad coverage of injury issues, age groups and governance level of implementation (eg, national, regional or local). Each participant presented their case and provided a written account according to a standardised template. Presentations and question and answer sessions were recorded. The presentation slides, written accounts and the notes taken during the workshops were analysed using thematic content analysis to elicit facilitators and barriers. Twenty-six cases (from 26 different countries) were presented and analysed. Facilitators and barriers were identified within eight general themes, applicable across the AIM process: management and collaboration; resources; leadership; nature of the intervention; political, social and cultural environment; visibility; nature of the injury problem and analysis and interpretation. The importance of the quality of the implementation process for intervention effectiveness, coupled with limited resources for child safety makes it more difficult to achieve successful actions. The findings of this study, divided by phase of the AIM process, provide practitioners with practical suggestions, where proactive planning might help increase the likelihood of effective implementation. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  18. Systems Theoretic Process Analysis Applied to an Offshore Supply Vessel Dynamic Positioning System

    DTIC Science & Technology

    2016-06-01

    additional safety issues that were either not identified or inadequately mitigated through the use of Fault Tree Analysis and Failure Modes and...Techniques ...................................................................................................... 15 1.3.1. Fault Tree Analysis...49 3.2. Fault Tree Analysis Comparison

  19. Sources of Safety Data and Statistical Strategies for Design and Analysis: Transforming Data Into Evidence.

    PubMed

    Ma, Haijun; Russek-Cohen, Estelle; Izem, Rima; Marchenko, Olga V; Jiang, Qi

    2018-03-01

    Safety evaluation is a key aspect of medical product development. It is a continual and iterative process requiring thorough thinking, and dedicated time and resources. In this article, we discuss how safety data are transformed into evidence to establish and refine the safety profile of a medical product, and how the focus of safety evaluation, data sources, and statistical methods change throughout a medical product's life cycle. Some challenges and statistical strategies for medical product safety evaluation are discussed. Examples of safety issues identified in different periods, that is, premarketing and postmarketing, are discussed to illustrate how different sources are used in the safety signal identification and the iterative process of safety assessment. The examples highlighted range from commonly used pediatric vaccine given to healthy children to medical products primarily used to treat a medical condition in adults. These case studies illustrate that different products may require different approaches, and once a signal is discovered, it could impact future safety assessments. Many challenges still remain in this area despite advances in methodologies, infrastructure, public awareness, international harmonization, and regulatory enforcement. Innovations in safety assessment methodologies are pressing in order to make the medical product development process more efficient and effective, and the assessment of medical product marketing approval more streamlined and structured. Health care payers, providers, and patients may have different perspectives when weighing in on clinical, financial and personal needs when therapies are being evaluated.

  20. 10 CFR 63.112 - Requirements for preclosure safety analysis of the geologic repository operations area.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... emergency power to instruments, utility service systems, and operating systems important to safety if there... include: (a) A general description of the structures, systems, components, equipment, and process... of the performance of the structures, systems, and components to identify those that are important to...

  1. 10 CFR 63.112 - Requirements for preclosure safety analysis of the geologic repository operations area.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... emergency power to instruments, utility service systems, and operating systems important to safety if there... include: (a) A general description of the structures, systems, components, equipment, and process... of the performance of the structures, systems, and components to identify those that are important to...

  2. 10 CFR 63.112 - Requirements for preclosure safety analysis of the geologic repository operations area.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... emergency power to instruments, utility service systems, and operating systems important to safety if there... include: (a) A general description of the structures, systems, components, equipment, and process... of the performance of the structures, systems, and components to identify those that are important to...

  3. 10 CFR 63.112 - Requirements for preclosure safety analysis of the geologic repository operations area.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... emergency power to instruments, utility service systems, and operating systems important to safety if there... include: (a) A general description of the structures, systems, components, equipment, and process... of the performance of the structures, systems, and components to identify those that are important to...

  4. Safe sleep, day and night: mothers' experiences regarding infant sleep safety.

    PubMed

    Lau, Annie; Hall, Wendy

    2016-10-01

    To explore Canadian mothers' experiences with infant sleep safety. Parents decide when, how and where to place their infants to sleep. It is anticipated that they will follow international Sudden Infant Death Syndrome prevention sleep safety guidelines. Limited evidence is available for how parents take up guidelines; no studies have explored Canadian mothers' experiences regarding infant sleep safety. An inductive qualitative descriptive study using some elements of grounded theory, including concurrent data collection and analysis and memoing. Semi-structured interviews and constant comparative analysis were employed to explore infant sleep safety experiences of 14 Canadian mothers residing in Metro Vancouver. Data collection commenced in December 2012 and ended in July 2013. The core theme, Infant Sleep Safety Cycle, represents a cyclical process encompassing sleep safety from the prenatal period to the first six months of infants' lives. The cyclical process includes five segments: mothers' expectations of sleep safety, their struggles with reality as opposed to maternal visions, modifications of expectations, provision of rationale for choices and shifts in mothers' views of infants' developmental capabilities. Mothers' experiences were influenced by four factors: perceptions of everyone's needs, familial influences, attitudes and judgments from outsiders and resource availability and accessibility. To manage infants' sleep, mothers reframed sleep safety guidelines and downplayed the risk of Sudden Infant Death Syndrome for all forms of sleep at all times. Healthcare providers can support mothers' efforts to manage their infants' sleep challenges. During prenatal and postpartum periods, providers' interventions can influence mothers' efforts to adhere to sleep safety principles. The study findings support healthcare providers' efforts to assist mothers to modify expectations and develop strategies to support sleep safety principles while acknowledging their challenges. © 2016 John Wiley & Sons Ltd.

  5. Recognising safety critical events: can automatic video processing improve naturalistic data analyses?

    PubMed

    Dozza, Marco; González, Nieves Pañeda

    2013-11-01

    New trends in research on traffic accidents include Naturalistic Driving Studies (NDS). NDS are based on large scale data collection of driver, vehicle, and environment information in real world. NDS data sets have proven to be extremely valuable for the analysis of safety critical events such as crashes and near crashes. However, finding safety critical events in NDS data is often difficult and time consuming. Safety critical events are currently identified using kinematic triggers, for instance searching for deceleration below a certain threshold signifying harsh braking. Due to the low sensitivity and specificity of this filtering procedure, manual review of video data is currently necessary to decide whether the events identified by the triggers are actually safety critical. Such reviewing procedure is based on subjective decisions, is expensive and time consuming, and often tedious for the analysts. Furthermore, since NDS data is exponentially growing over time, this reviewing procedure may not be viable anymore in the very near future. This study tested the hypothesis that automatic processing of driver video information could increase the correct classification of safety critical events from kinematic triggers in naturalistic driving data. Review of about 400 video sequences recorded from the events, collected by 100 Volvo cars in the euroFOT project, suggested that drivers' individual reaction may be the key to recognize safety critical events. In fact, whether an event is safety critical or not often depends on the individual driver. A few algorithms, able to automatically classify driver reaction from video data, have been compared. The results presented in this paper show that the state of the art subjective review procedures to identify safety critical events from NDS can benefit from automated objective video processing. In addition, this paper discusses the major challenges in making such video analysis viable for future NDS and new potential applications for NDS video processing. As new NDS such as SHRP2 are now providing the equivalent of five years of one vehicle data each day, the development of new methods, such as the one proposed in this paper, seems necessary to guarantee that these data can actually be analysed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Hazard Analysis and Safety Requirements for Small Drone Operations: To What Extent Do Popular Drones Embed Safety?

    PubMed

    Plioutsias, Anastasios; Karanikas, Nektarios; Chatzimihailidou, Maria Mikela

    2018-03-01

    Currently, published risk analyses for drones refer mainly to commercial systems, use data from civil aviation, and are based on probabilistic approaches without suggesting an inclusive list of hazards and respective requirements. Within this context, this article presents: (1) a set of safety requirements generated from the application of the systems theoretic process analysis (STPA) technique on a generic small drone system; (2) a gap analysis between the set of safety requirements and the ones met by 19 popular drone models; (3) the extent of the differences between those models, their manufacturers, and the countries of origin; and (4) the association of drone prices with the extent they meet the requirements derived by STPA. The application of STPA resulted in 70 safety requirements distributed across the authority, manufacturer, end user, or drone automation levels. A gap analysis showed high dissimilarities regarding the extent to which the 19 drones meet the same safety requirements. Statistical results suggested a positive correlation between drone prices and the extent that the 19 drones studied herein met the safety requirements generated by STPA, and significant differences were identified among the manufacturers. This work complements the existing risk assessment frameworks for small drones, and contributes to the establishment of a commonly endorsed international risk analysis framework. Such a framework will support the development of a holistic and methodologically justified standardization scheme for small drone flights. © 2017 Society for Risk Analysis.

  7. Probabilistic Risk Assessment Procedures Guide for NASA Managers and Practitioners (Second Edition)

    NASA Technical Reports Server (NTRS)

    Stamatelatos,Michael; Dezfuli, Homayoon; Apostolakis, George; Everline, Chester; Guarro, Sergio; Mathias, Donovan; Mosleh, Ali; Paulos, Todd; Riha, David; Smith, Curtis; hide

    2011-01-01

    Probabilistic Risk Assessment (PRA) is a comprehensive, structured, and logical analysis method aimed at identifying and assessing risks in complex technological systems for the purpose of cost-effectively improving their safety and performance. NASA's objective is to better understand and effectively manage risk, and thus more effectively ensure mission and programmatic success, and to achieve and maintain high safety standards at NASA. NASA intends to use risk assessment in its programs and projects to support optimal management decision making for the improvement of safety and program performance. In addition to using quantitative/probabilistic risk assessment to improve safety and enhance the safety decision process, NASA has incorporated quantitative risk assessment into its system safety assessment process, which until now has relied primarily on a qualitative representation of risk. Also, NASA has recently adopted the Risk-Informed Decision Making (RIDM) process [1-1] as a valuable addition to supplement existing deterministic and experience-based engineering methods and tools. Over the years, NASA has been a leader in most of the technologies it has employed in its programs. One would think that PRA should be no exception. In fact, it would be natural for NASA to be a leader in PRA because, as a technology pioneer, NASA uses risk assessment and management implicitly or explicitly on a daily basis. NASA has probabilistic safety requirements (thresholds and goals) for crew transportation system missions to the International Space Station (ISS) [1-2]. NASA intends to have probabilistic requirements for any new human spaceflight transportation system acquisition. Methods to perform risk and reliability assessment in the early 1960s originated in U.S. aerospace and missile programs. Fault tree analysis (FTA) is an example. It would have been a reasonable extrapolation to expect that NASA would also become the world leader in the application of PRA. That was, however, not to happen. Early in the Apollo program, estimates of the probability for a successful roundtrip human mission to the moon yielded disappointingly low (and suspect) values and NASA became discouraged from further performing quantitative risk analyses until some two decades later when the methods were more refined, rigorous, and repeatable. Instead, NASA decided to rely primarily on the Hazard Analysis (HA) and Failure Modes and Effects Analysis (FMEA) methods for system safety assessment.

  8. Evolution of Safety Analysis to Support New Exploration Missions

    NASA Technical Reports Server (NTRS)

    Thrasher, Chard W.

    2008-01-01

    NASA is currently developing the Ares I launch vehicle as a key component of the Constellation program which will provide safe and reliable transportation to the International Space Station, back to the moon, and later to Mars. The risks and costs of the Ares I must be significantly lowered, as compared to other manned launch vehicles, to enable the continuation of space exploration. It is essential that safety be significantly improved, and cost-effectively incorporated into the design process. This paper justifies early and effective safety analysis of complex space systems. Interactions and dependences between design, logistics, modeling, reliability, and safety engineers will be discussed to illustrate methods to lower cost, reduce design cycles and lessen the likelihood of catastrophic events.

  9. Toxic release consequence analysis tool (TORCAT) for inherently safer design plant.

    PubMed

    Shariff, Azmi Mohd; Zaini, Dzulkarnain

    2010-10-15

    Many major accidents due to toxic release in the past have caused many fatalities such as the tragedy of MIC release in Bhopal, India (1984). One of the approaches is to use inherently safer design technique that utilizes inherent safety principle to eliminate or minimize accidents rather than to control the hazard. This technique is best implemented in preliminary design stage where the consequence of toxic release can be evaluated and necessary design improvements can be implemented to eliminate or minimize the accidents to as low as reasonably practicable (ALARP) without resorting to costly protective system. However, currently there is no commercial tool available that has such capability. This paper reports on the preliminary findings on the development of a prototype tool for consequence analysis and design improvement via inherent safety principle by utilizing an integrated process design simulator with toxic release consequence analysis model. The consequence analysis based on the worst-case scenarios during process flowsheeting stage were conducted as case studies. The preliminary finding shows that toxic release consequences analysis tool (TORCAT) has capability to eliminate or minimize the potential toxic release accidents by adopting the inherent safety principle early in preliminary design stage. 2010 Elsevier B.V. All rights reserved.

  10. Image processing for safety assessment in civil engineering.

    PubMed

    Ferrer, Belen; Pomares, Juan C; Irles, Ramon; Espinosa, Julian; Mas, David

    2013-06-20

    Behavior analysis of construction safety systems is of fundamental importance to avoid accidental injuries. Traditionally, measurements of dynamic actions in civil engineering have been done through accelerometers, but high-speed cameras and image processing techniques can play an important role in this area. Here, we propose using morphological image filtering and Hough transform on high-speed video sequence as tools for dynamic measurements on that field. The presented method is applied to obtain the trajectory and acceleration of a cylindrical ballast falling from a building and trapped by a thread net. Results show that safety recommendations given in construction codes can be potentially dangerous for workers.

  11. RELEASE OF DRIED RADIOACTIVE WASTE MATERIALS TECHNICAL BASIS DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KOZLOWSKI, S.D.

    2007-05-30

    This technical basis document was developed to support RPP-23429, Preliminary Documented Safety Analysis for the Demonstration Bulk Vitrification System (PDSA) and RPP-23479, Preliminary Documented Safety Analysis for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Facility. The main document describes the risk binning process and the technical basis for assigning risk bins to the representative accidents involving the release of dried radioactive waste materials from the Demonstration Bulk Vitrification System (DBVS) and to the associated represented hazardous conditions. Appendices D through F provide the technical basis for assigning risk bins to the representative dried waste release accident and associated represented hazardous conditionsmore » for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Packaging Unit (WPU). The risk binning process uses an evaluation of the frequency and consequence of a given representative accident or represented hazardous condition to determine the need for safety structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls. A representative accident or a represented hazardous condition is assigned to a risk bin based on the potential radiological and toxicological consequences to the public and the collocated worker. Note that the risk binning process is not applied to facility workers because credible hazardous conditions with the potential for significant facility worker consequences are considered for safety-significant SSCs and/or TSR-level controls regardless of their estimated frequency. The controls for protection of the facility workers are described in RPP-23429 and RPP-23479. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, as described below.« less

  12. Toward an understanding of the impact of production pressure on safety performance in construction operations.

    PubMed

    Han, Sanguk; Saba, Farzaneh; Lee, Sanghyun; Mohamed, Yasser; Peña-Mora, Feniosky

    2014-07-01

    It is not unusual to observe that actual schedule and quality performances are different from planned performances (e.g., schedule delay and rework) during a construction project. Such differences often result in production pressure (e.g., being pressed to work faster). Previous studies demonstrated that such production pressure negatively affects safety performance. However, the process by which production pressure influences safety performance, and to what extent, has not been fully investigated. As a result, the impact of production pressure has not been incorporated much into safety management in practice. In an effort to address this issue, this paper examines how production pressure relates to safety performance over time by identifying their feedback processes. A conceptual causal loop diagram is created to identify the relationship between schedule and quality performances (e.g., schedule delays and rework) and the components related to a safety program (e.g., workers' perceptions of safety, safety training, safety supervision, and crew size). A case study is then experimentally undertaken to investigate this relationship with accident occurrence with the use of data collected from a construction site; the case study is used to build a System Dynamics (SD) model. The SD model, then, is validated through inequality statistics analysis. Sensitivity analysis and statistical screening techniques further permit an evaluation of the impact of the managerial components on accident occurrence. The results of the case study indicate that schedule delays and rework are the critical factors affecting accident occurrence for the monitored project. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Design of agricultural product quality safety retrospective supervision system of Jiangsu province

    NASA Astrophysics Data System (ADS)

    Wang, Kun

    2017-08-01

    In store and supermarkets to consumers can trace back agricultural products through the electronic province card to query their origin, planting, processing, packaging, testing and other important information and found that the problems. Quality and safety issues can identify the responsibility of the problem. This paper designs a retroactive supervision system for the quality and safety of agricultural products in Jiangsu Province. Based on the analysis of agricultural production and business process, the goal of Jiangsu agricultural product quality safety traceability system construction is established, and the specific functional requirements and non-functioning requirements of the retroactive system are analyzed, and the target is specified for the specific construction of the retroactive system. The design of the quality and safety traceability system in Jiangsu province contains the design of the overall design, the trace code design and the system function module.

  14. ASRDI oxygen technology survey, Volume 7: Characteristics of metals that influence system safety

    NASA Technical Reports Server (NTRS)

    Pelouch, J. J., Jr.

    1974-01-01

    A literature survey and analysis of the material and process factors affecting the safety of metals in oxygen systems is presented. In addition, the practices of those who specify, build, or use oxygen systems relative to the previous is summarized. Alloys based on iron, copper, nickel, and aluminum were investigated representing the bulk of metals found in oxygen systems. Safety-related characteristics of other miscellaneous metals are summarized. It was found that factors affecting the safety of metals in oxygen systems exit in all phases of the evolutionary process, from smelting and mill techniques through end-production fabrication. The safety of a given metal in an oxygen system was determined to be influenced by the particular service requirement. The metal characteristics should favorably influence fulfillment of these requirements. Thus, no singular metal or alloy could be classified as safest for all types of oxygen service.

  15. Determining the causal relationships among balanced scorecard perspectives on school safety performance: case of Saudi Arabia.

    PubMed

    Alolah, Turki; Stewart, Rodney A; Panuwatwanich, Kriengsak; Mohamed, Sherif

    2014-07-01

    In the public schools of many developing countries, numerous accidents and incidents occur because of poor safety regulations and management systems. To improve the educational environment in Saudi Arabia, the Ministry of Education seeks novel approaches to measure school safety performance in order to decrease incidents and accidents. The main objective of this research was to develop a systematic approach for measuring Saudi school safety performance using the balanced scorecard framework philosophy. The evolved third generation balanced scorecard framework is considered to be a suitable and robust framework that captures the system-wide leading and lagging indicators of business performance. The balanced scorecard architecture is ideal for adaptation to complex areas such as safety management where a holistic system evaluation is more effective than traditional compartmentalised approaches. In developing the safety performance balanced scorecard for Saudi schools, the conceptual framework was first developed and peer-reviewed by eighteen Saudi education experts. Next, 200 participants, including teachers, school executives, and Ministry of Education officers, were recruited to rate both the importance and the performance of 79 measurement items used in the framework. Exploratory factor analysis, followed by the confirmatory partial least squares method, was then conducted in order to operationalise the safety performance balanced scorecard, which encapsulates the following five salient perspectives: safety management and leadership; safety learning and training; safety policy, procedures and processes; workforce safety culture; and safety performance. Partial least squares based structural equation modelling was then conducted to reveal five significant relationships between perspectives, namely, safety management and leadership had a significant effect on safety learning and training and safety policy, procedures and processes, both safety learning and training and safety policy, procedures and processes had significant effects on workforce safety culture, and workforce safety culture had a significant effect on safety performance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Shielding calculation and criticality safety analysis of spent fuel transportation cask in research reactors.

    PubMed

    Mohammadi, A; Hassanzadeh, M; Gharib, M

    2016-02-01

    In this study, shielding calculation and criticality safety analysis were carried out for general material testing reactor (MTR) research reactors interim storage and relevant transportation cask. During these processes, three major terms were considered: source term, shielding, and criticality calculations. The Monte Carlo transport code MCNP5 was used for shielding calculation and criticality safety analysis and ORIGEN2.1 code for source term calculation. According to the results obtained, a cylindrical cask with body, top, and bottom thicknesses of 18, 13, and 13 cm, respectively, was accepted as the dual-purpose cask. Furthermore, it is shown that the total dose rates are below the normal transport criteria that meet the standards specified. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Collaborating with nurse leaders to develop patient safety practices.

    PubMed

    Kanerva, Anne; Kivinen, Tuula; Lammintakanen, Johanna

    2017-07-03

    Purpose The organisational level and leadership development are crucial elements in advancing patient safety, because patient safety weaknesses are often caused by system failures. However, little is known about how frontline leader and director teams can be supported to develop patient safety practices. The purpose of this study is to describe the patient safety development process carried out by nursing leaders and directors. The research questions were: how the chosen development areas progressed in six months' time and how nursing leaders view the participatory development process. Design/methodology/approach Participatory action research was used to engage frontline nursing leaders and directors into developing patient safety practices. Semi-structured group interviews ( N = 10) were used in data collection at the end of a six-month action cycle, and data were analysed using content analysis. Findings The participatory development process enhanced collaboration and gave leaders insights into patient safety as a part of the hospital system and their role in advancing it. The chosen development areas advanced to different extents, with the greatest improvements in those areas with simple guidelines to follow and in which the leaders were most participative. The features of high-reliability organisation were moderately identified in the nursing leaders' actions and views. For example, acting as a change agent to implement patient safety practices was challenging. Participatory methods can be used to support leaders into advancing patient safety. However, it is important that the participants are familiar with the method, and there are enough facilitators to steer development processes. Originality/value Research brings more knowledge of how leaders can increase their effectiveness in advancing patient safety and promoting high-reliability organisation features in the healthcare organisation.

  18. Rework and workarounds in nurse medication administration process: implications for work processes and patient safety.

    PubMed

    Halbesleben, Jonathon R B; Savage, Grant T; Wakefield, Douglas S; Wakefield, Bonnie J

    2010-01-01

    Health care organizations have redesigned existing and implemented new work processes intended to improve patient safety. As a consequence of these process changes, there are now intentionally designed "blocks" or barriers that limit how specific work actions, such as ordering and administering medication, are to be carried out. Health care professionals encountering these designed barriers can choose to either follow the new process, engage in workarounds to get past the block, or potentially repeat work (rework). Unfortunately, these workarounds and rework may lead to other safety concerns. The aim of this study was to examine rework and workarounds in hospital medication administration processes. Observations and semistructured interviews were conducted with 58 nurses from four hospital intensive care units focusing on the medication administration process. Using the constant comparative method, we analyzed the observation and interview data to develop themes regarding rework and workarounds. From this analysis, we developed an integrated process map of the medication administration process depicting blocks. A total of 12 blocks were reported by the participants. Based on the analysis, we categorized them as related to information exchange, information entry, and internal supply chain issues. Whereas information exchange and entry blocks tended to lead to rework, internal supply chain issues were more likely to lead to workarounds. A decentralized pharmacist on the unit may reduce work flow blocks (and, thus, workarounds and rework). Work process redesign may further address the problems of workarounds and rework.

  19. Ares I-X Range Safety Flight Envelope Analysis

    NASA Technical Reports Server (NTRS)

    Starr, Brett R.; Olds, Aaron D.; Craig, Anthony S.

    2011-01-01

    Ares I-X was the first test flight of NASA's Constellation Program's Ares I Crew Launch Vehicle designed to provide manned access to low Earth orbit. As a one-time test flight, the Air Force's 45th Space Wing required a series of Range Safety analysis data products to be developed for the specified launch date and mission trajectory prior to granting flight approval on the Eastern Range. The range safety data package is required to ensure that the public, launch area, and launch complex personnel and resources are provided with an acceptable level of safety and that all aspects of prelaunch and launch operations adhere to applicable public laws. The analysis data products, defined in the Air Force Space Command Manual 91-710, Volume 2, consisted of a nominal trajectory, three sigma trajectory envelopes, stage impact footprints, acoustic intensity contours, trajectory turn angles resulting from potential vehicle malfunctions (including flight software failures), characterization of potential debris, and debris impact footprints. These data products were developed under the auspices of the Constellation's Program Launch Constellation Range Safety Panel and its Range Safety Trajectory Working Group with the intent of beginning the framework for the operational vehicle data products and providing programmatic review and oversight. A multi-center NASA team in conjunction with the 45th Space Wing, collaborated within the Trajectory Working Group forum to define the data product development processes, performed the analyses necessary to generate the data products, and performed independent verification and validation of the data products. This paper outlines the Range Safety data requirements and provides an overview of the processes established to develop both the data products and the individual analyses used to develop the data products, and it summarizes the results of the analyses required for the Ares I-X launch.

  20. The Decision Making Trial and Evaluation Laboratory (Dematel) and Analytic Network Process (ANP) for Safety Management System Evaluation Performance

    NASA Astrophysics Data System (ADS)

    Rolita, Lisa; Surarso, Bayu; Gernowo, Rahmat

    2018-02-01

    In order to improve airport safety management system (SMS) performance, an evaluation system is required to improve on current shortcomings and maximize safety. This study suggests the integration of the DEMATEL and ANP methods in decision making processes by analyzing causal relations between the relevant criteria and taking effective analysis-based decision. The DEMATEL method builds on the ANP method in identifying the interdependencies between criteria. The input data consists of questionnaire data obtained online and then stored in an online database. Furthermore, the questionnaire data is processed using DEMATEL and ANP methods to obtain the results of determining the relationship between criteria and criteria that need to be evaluated. The study cases on this evaluation system were Adi Sutjipto International Airport, Yogyakarta (JOG); Ahmad Yani International Airport, Semarang (SRG); and Adi Sumarmo International Airport, Surakarta (SOC). The integration grades SMS performance criterion weights in a descending order as follow: safety and destination policy, safety risk management, healthcare, and safety awareness. Sturges' formula classified the results into nine grades. JOG and SMG airports were in grade 8, while SOG airport was in grade 7.

  1. Safety Risk Knowledge Elicitation in Support of Aeronautical R and D Portfolio Management: A Case Study

    NASA Technical Reports Server (NTRS)

    Shih, Ann T.; Ancel, Ersin; Jones, Sharon Monica; Reveley, Mary S.; Luxhoj, James T.

    2012-01-01

    Aviation is a problem domain characterized by a high level of system complexity and uncertainty. Safety risk analysis in such a domain is especially challenging given the multitude of operations and diverse stakeholders. The Federal Aviation Administration (FAA) projects that by 2025 air traffic will increase by more than 50 percent with 1.1 billion passengers a year and more than 85,000 flights every 24 hours contributing to further delays and congestion in the sky (Circelli, 2011). This increased system complexity necessitates the application of structured safety risk analysis methods to understand and eliminate where possible, reduce, and/or mitigate risk factors. The use of expert judgments for probabilistic safety analysis in such a complex domain is necessary especially when evaluating the projected impact of future technologies, capabilities, and procedures for which current operational data may be scarce. Management of an R&D product portfolio in such a dynamic domain needs a systematic process to elicit these expert judgments, process modeling results, perform sensitivity analyses, and efficiently communicate the modeling results to decision makers. In this paper a case study focusing on the application of an R&D portfolio of aeronautical products intended to mitigate aircraft Loss of Control (LOC) accidents is presented. In particular, the knowledge elicitation process with three subject matter experts who contributed to the safety risk model is emphasized. The application and refinement of a verbal-numerical scale for conditional probability elicitation in a Bayesian Belief Network (BBN) is discussed. The preliminary findings from this initial step of a three-part elicitation are important to project management practitioners as they illustrate the vital contribution of systematic knowledge elicitation in complex domains.

  2. Preliminary Results Obtained in Integrated Safety Analysis of NASA Aviation Safety Program Technologies

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This is a listing of recent unclassified RTO technical publications processed by the NASA Center for AeroSpace Information from July 1, 2004 through September 30, 2004 available on the NASA Aeronautics and Space Database. Topics covered include: military training; personal active noise reduction; electric combat vehicles.

  3. An Independent Evaluation of the FMEA/CIL Hazard Analysis Alternative Study

    NASA Technical Reports Server (NTRS)

    Ray, Paul S.

    1996-01-01

    The present instruments of safety and reliability risk control for a majority of the National Aeronautics and Space Administration (NASA) programs/projects consist of Failure Mode and Effects Analysis (FMEA), Hazard Analysis (HA), Critical Items List (CIL), and Hazard Report (HR). This extensive analytical approach was introduced in the early 1970's and was implemented for the Space Shuttle Program by NHB 5300.4 (1D-2. Since the Challenger accident in 1986, the process has been expanded considerably and resulted in introduction of similar and/or duplicated activities in the safety/reliability risk analysis. A study initiated in 1995, to search for an alternative to the current FMEA/CIL Hazard Analysis methodology generated a proposed method on April 30, 1996. The objective of this Summer Faculty Study was to participate in and conduct an independent evaluation of the proposed alternative to simplify the present safety and reliability risk control procedure.

  4. Safety Guided Design Based on Stamp/STPA for Manned Vehicle in Concept Design Phase

    NASA Astrophysics Data System (ADS)

    Ujiie, Ryo; Katahira, Masafumi; Miyamoto, Yuko; Umeda, Hiroki; Leveson, Nancy; Hoshino, Nobuyuki

    2013-09-01

    In manned vehicles, such as the Soyuz and the Space Shuttle, the crew and computer system cooperate to succeed in returning to the earth. While computers increase the functionality of system, they also increase the complexity of the interaction between the controllers (human and computer) and the target dynamics. In some cases, the complexity can produce a serious accident. To prevent such losses, traditional hazard analysis such as FTA has been applied to system development, however it can be used after creating a detailed system because it focuses on detailed component failures. As a result, it's more difficult to eliminate hazard cause early in the process when it is most feasible.STAMP/STPA is a new hazard analysis that can be applied from the early development phase, with the analysis being refined as more detailed decisions are made. In essence, the analysis and design decisions are intertwined and go hand-in-hand. We have applied STAMP/STPA to a concept design of a new JAXA manned vehicle and tried safety guided design of the vehicle. As a result of this trial, it has been shown that STAMP/STPA can be accepted easily by system engineers and the design has been made more sophisticated from a safety viewpoint. The result also shows that the consequences of human errors on system safety can be analysed in the early development phase and the system designed to prevent them. Finally, the paper will discuss an effective way to harmonize this safety guided design approach with system engineering process based on the result of this experience in this project.

  5. Interprofessional communication supporting clinical handover in emergency departments: An observation study.

    PubMed

    Redley, Bernice; Botti, Mari; Wood, Beverley; Bucknall, Tracey

    2017-08-01

    Poor interprofessional communication poses a risk to patient safety at change-of-shift in emergency departments (EDs). The purpose of this study was to identify and describe patterns and processes of interprofessional communication impacting quality of ED change-of-shift handovers. Observation of 66 change-of-shift handovers at two acute hospital EDs in Victoria, Australia. Focus groups with 34 nurse participants complemented the observations. Qualitative data analysis involved content and thematic methods. Four structural components of ED handover processes emerged represented by (ABCD): (1) Antecedents; (2) Behaviours and interactions; (3) Content; and (4) Delegation of ongoing care. Infrequent and ad hoc interprofessional communication and discipline-specific handover content and processes emerged as specific risks to patient safety at change-of-shift handovers. Three themes related to risky and effective practices to support interprofessional communications across the four stages of ED handovers emerged: 1) standard processes and practices, 2) teamwork and interactions and 3) communication activities and practices. Unreliable interprofessional communication can impact the quality of change-of-shift handovers in EDs and poses risk to patient safety. Structured reflective analysis of existing practices can identify opportunities for standardisation, enhanced team practices and effective communication across four stages of the handover process to support clinicians to enhance local handover practices. Future research should test and refine models to support analysis of practice, and identify and test strategies to enhance ED interprofessional communication to support clinical handovers. Copyright © 2017 College of Emergency Nursing Australasia. Published by Elsevier Ltd. All rights reserved.

  6. Safety Sufficiency for NextGen: Assessment of Selected Existing Safety Methods, Tools, Processes, and Regulations

    NASA Technical Reports Server (NTRS)

    Xu, Xidong; Ulrey, Mike L.; Brown, John A.; Mast, James; Lapis, Mary B.

    2013-01-01

    NextGen is a complex socio-technical system and, in many ways, it is expected to be more complex than the current system. It is vital to assess the safety impact of the NextGen elements (technologies, systems, and procedures) in a rigorous and systematic way and to ensure that they do not compromise safety. In this study, the NextGen elements in the form of Operational Improvements (OIs), Enablers, Research Activities, Development Activities, and Policy Issues were identified. The overall hazard situation in NextGen was outlined; a high-level hazard analysis was conducted with respect to multiple elements in a representative NextGen OI known as OI-0349 (Automation Support for Separation Management); and the hazards resulting from the highly dynamic complexity involved in an OI-0349 scenario were illustrated. A selected but representative set of the existing safety methods, tools, processes, and regulations was then reviewed and analyzed regarding whether they are sufficient to assess safety in the elements of that OI and ensure that safety will not be compromised and whether they might incur intolerably high costs.

  7. [Safety and structural analysis of polymers produced in manufacturing process of alpha-lipoic acid].

    PubMed

    Shimoda, Hiroshi; Tanaka, Junji; Seki, Azusa; Honda, Haruya; Akaogi, Seiichiro; Komatsubara, Hirobumi; Suzuki, Nobuo; Kameyama, Mayumi; Tamura, Satoru; Murakami, Nobutoshi

    2007-10-01

    Alpha-Lipoic acid has recently been permitted for use in foodstuffs and is contained in tablets and capsules. Although alpha-lipoic acid is synthesized from adipic acid, the safety of polymers produced during the purification and drying processes has been an issue of concern. Hence, we examined the safety profiles of thermally denatured polymer (LAP-A) and ethanol-denatured polymer (LAP-B) produced in the manufacturing process of alpha-lipoic acid. Furthermore, we conducted structural analysis of these polymers by 1H-NMR and FAB-MS spectroscopy. In a consecutive ingestion test, male and female mice ingested diet containing 0.1 and 0.2% LAP-A and -B for 4 weeks. Blood uric acid, potassium and lactate dehydrogenase (LDH) tended to increase without dose-dependency. Relative liver weights were also increased. However, male dogs that were orally administered LAP-B (500 mg/kg) once did not show any abnormalities in blood parameters or general condition. These findings indicate that alpha-lipoic acid polymers are not acutely toxic; however, chronic ingestion of these polymers may affect liver and kidney functions.

  8. Selecting an Architecture for a Safety-Critical Distributed Computer System with Power, Weight and Cost Considerations

    NASA Technical Reports Server (NTRS)

    Torres-Pomales, Wilfredo

    2014-01-01

    This report presents an example of the application of multi-criteria decision analysis to the selection of an architecture for a safety-critical distributed computer system. The design problem includes constraints on minimum system availability and integrity, and the decision is based on the optimal balance of power, weight and cost. The analysis process includes the generation of alternative architectures, evaluation of individual decision criteria, and the selection of an alternative based on overall value. In this example presented here, iterative application of the quantitative evaluation process made it possible to deliberately generate an alternative architecture that is superior to all others regardless of the relative importance of cost.

  9. Quality and Safety in Health Care, Part XXI: PSOs and the Vascular Quality Initiative.

    PubMed

    Harolds, Jay A

    2017-04-01

    Congress provided for the formation of patient safety organizations (PSOs) so that physicians and other providers would come forward to improve the safety and quality of health care. Important legal safeguards for the providers and patients were put in place for PSOs. The Society for Vascular Surgery (SVS) PSO operates the Vascular Quality Initiative. The latter gathers information from certain commonly done vascular procedures. First, information is collected so a risk adjustment determination of each individual patient can be done. Then the details of every procedure are recorded for later analysis of the processes of the patient's care. In addition, outcome analysis from all procedures is carried out. This registry is an important source of data for research improving health care safety and quality.

  10. Systems, methods and apparatus for quiesence of autonomic safety devices with self action

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G. (Inventor); Sterritt, Roy (Inventor)

    2011-01-01

    Systems, methods and apparatus are provided through which in some embodiments an autonomic environmental safety device may be quiesced. In at least one embodiment, a method for managing an autonomic safety device, such as a smoke detector, based on functioning state and operating status of the autonomic safety device includes processing received signals from the autonomic safety device to obtain an analysis of the condition of the autonomic safety device, generating one or more stay-awake signals based on the functioning status and the operating state of the autonomic safety device, transmitting the stay-awake signal, transmitting self health/urgency data, and transmitting environment health/urgency data. A quiesce component of an autonomic safety device can render the autonomic safety device inactive for a specific amount of time or until a challenging situation has passed.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This document is a review journal that covers significant developments in the field of nuclear safety. Its scope includes the analysis and control of hazards associated with nuclear energy, operations involving fissionable materials, and the products of nuclear fission and their effects on the environment. Primary emphasis is on safety in reactor design, construction, and operation; however, the safety aspects of the entire fuel cycle, including fuel fabrication, spent-fuel processing, nuclear waste disposal, handling of radioisotopes, and environmental effects of these operations, are also treated.

  12. Development and psychometric testing of an instrument to measure safety climate perceptions in community pharmacy.

    PubMed

    Newham, Rosemary; Bennie, Marion; Maxwell, David; Watson, Anne; de Wet, Carl; Bowie, Paul

    2014-12-01

    A positive and strong safety culture underpins effective learning from patient safety incidents in health care, including the community pharmacy (CP) setting. To build this culture, perceptions of safety climate must be measured with context-specific and reliable instruments. No pre-existing instruments were specifically designed or suitable for CP within Scotland. We therefore aimed to develop a psychometrically sound instrument to measure perceptions of safety climate within Scottish CPs. The first stage, development of a preliminary instrument, comprised three steps: (i) a literature review; (ii) focus group feedback; and (iii) content validation. The second stage, psychometric testing, consisted of three further steps: (iv) a pilot survey; (v) a survey of all CP staff within a single health board in NHS Scotland; and (vi) application of statistical methods, including principal components analysis and calculation of Cronbach's reliability coefficients, to derive the final instrument. The preliminary questionnaire was developed through a process of literature review and feedback. This questionnaire was completed by staff in 50 CPs from the 131 (38%) sampled. 250 completed questionnaires were suitable for analysis. Psychometric evaluation resulted in a 30-item instrument with five positively correlated safety climate factors: leadership, teamwork, safety systems, communication and working conditions. Reliability coefficients were satisfactory for the safety climate factors (α > 0.7) and overall (α = 0.93). The robust nature of the technical design and testing process has resulted in the development of an instrument with sufficient psychometric properties, which can be implemented in the community pharmacy setting in NHS Scotland. © 2014 John Wiley & Sons, Ltd.

  13. A fully Bayesian before-after analysis of permeable friction course (PFC) pavement wet weather safety.

    PubMed

    Buddhavarapu, Prasad; Smit, Andre F; Prozzi, Jorge A

    2015-07-01

    Permeable friction course (PFC), a porous hot-mix asphalt, is typically applied to improve wet weather safety on high-speed roadways in Texas. In order to warrant expensive PFC construction, a statistical evaluation of its safety benefits is essential. Generally, the literature on the effectiveness of porous mixes in reducing wet-weather crashes is limited and often inconclusive. In this study, the safety effectiveness of PFC was evaluated using a fully Bayesian before-after safety analysis. First, two groups of road segments overlaid with PFC and non-PFC material were identified across Texas; the non-PFC or reference road segments selected were similar to their PFC counterparts in terms of site specific features. Second, a negative binomial data generating process was assumed to model the underlying distribution of crash counts of PFC and reference road segments to perform Bayesian inference on the safety effectiveness. A data-augmentation based computationally efficient algorithm was employed for a fully Bayesian estimation. The statistical analysis shows that PFC is not effective in reducing wet weather crashes. It should be noted that the findings of this study are in agreement with the existing literature, although these studies were not based on a fully Bayesian statistical analysis. Our study suggests that the safety effectiveness of PFC road surfaces, or any other safety infrastructure, largely relies on its interrelationship with the road user. The results suggest that the safety infrastructure must be properly used to reap the benefits of the substantial investments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. 77 FR 66638 - The Standard on Process Safety Management of Highly Hazardous Chemicals; Extension of the Office...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-06

    ... analyses and the development of other elements of the standard; developing a written action plan for..., revalidating and retaining the process hazard analysis; developing and implementing written operating [[Page 66639

  15. RMP Guidance for Warehouses - Chapter 7: Prevention Program (Program 3)

    EPA Pesticide Factsheets

    If you are already complying with the OSHA Process Safety Management standard for on-site consequences, your process hazard analysis (PHA) team may have to assess new hazards that could affect the public or the environment offsite.

  16. FLAMMABLE GAS TECHNICAL BASIS DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KRIPPS, L.J.

    2005-02-18

    This document describes the qualitative evaluation of frequency and consequences for double shell tank (DST) and single shell tank (SST) representative flammable gas accidents and associated hazardous conditions without controls. The evaluation indicated that safety-significant SSCs and/or TSRS were required to prevent or mitigate flammable gas accidents. Discussion on the resulting control decisions is included. This technical basis document was developed to support of the Tank Farms Documented Safety Analysis (DSA) and describes the risk binning process for the flammable gas representative accidents and associated represented hazardous conditions. The purpose of the risk binning process is to determine the needmore » for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous condition based on an evaluation of the event frequency and consequence.« less

  17. SER assistant: An expert system for safety evaluation reports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeChaine, M.D.; Levine, S.H.; Feltus, M.A.

    1993-01-01

    The SER Assistant is an expert system that assists engineers to write safety evaluation reports (SERs). Section 50.59 of the Code of Federal Regulations allows modifications to be made to nuclear power plants without prior US Nuclear Regulatory Commission approval if two conditions are satisfied. First, the change must not affect the technical specifications of the plant. Second, the modification must not affect a part of the plant described in the final safety analysis report, or if it does, it must not create an unreviewed safety question. The purpose of an SER is to ensure that these conditions are satisfiedmore » for the proposed modification. The SER Assistant aids this process by providing relevant, but directed, questions and information as well as giving engineers an organized environment to document their thought processes.« less

  18. Integrated risk assessment and screening analysis of drinking water safety of a conventional water supply system.

    PubMed

    Sun, F; Chen, J; Tong, Q; Zeng, S

    2007-01-01

    Management of drinking water safety is changing towards an integrated risk assessment and risk management approach that includes all processes in a water supply system from catchment to consumers. However, given the large number of water supply systems in China and the cost of implementing such a risk assessment procedure, there is a necessity to first conduct a strategic screening analysis at a national level. An integrated methodology of risk assessment and screening analysis is thus proposed to evaluate drinking water safety of a conventional water supply system. The violation probability, indicating drinking water safety, is estimated at different locations of a water supply system in terms of permanganate index, ammonia nitrogen, turbidity, residual chlorine and trihalomethanes. Critical parameters with respect to drinking water safety are then identified, based on which an index system is developed to prioritize conventional water supply systems in implementing a detailed risk assessment procedure. The evaluation results are represented as graphic check matrices for the concerned hazards in drinking water, from which the vulnerability of a conventional water supply system is characterized.

  19. RMP Guidance for Chemical Distributors - Chapter 7: Prevention Program (Program 3)

    EPA Pesticide Factsheets

    The OSHA Process Safety Management program has legal authority for on-site consequences, EPA's Prevention Program for offsite consequences, so your process hazard analysis (PHA) team may have to assess new hazards to the public and offsite environment.

  20. Exploring the role of emotional intelligence in behavior-based safety coaching.

    PubMed

    Wiegand, Douglas M

    2007-01-01

    Safety coaching is an applied behavior analysis technique that involves interpersonal interaction to understand and manipulate environmental conditions that are directing (i.e., antecedent to) and motivating (i.e., consequences of) safety-related behavior. A safety coach must be skilled in interacting with others so as to understand their perspectives, communicate a point clearly, and be persuasive with behavior-based feedback. This article discusses the evidence-based "ability model" of emotional intelligence and its relevance to the interpersonal aspect of the safety coaching process. Emotional intelligence has potential for improving safety-related efforts and other aspects of individuals' work and personal lives. Safety researchers and practitioners are therefore encouraged to gain an understanding of emotional intelligence and conduct and support research applying this construct toward injury prevention.

  1. Research on public participant urban infrastructure safety monitoring system using smartphone

    NASA Astrophysics Data System (ADS)

    Zhao, Xuefeng; Wang, Niannian; Ou, Jinping; Yu, Yan; Li, Mingchu

    2017-04-01

    Currently more and more people concerned about the safety of major public security. Public participant urban infrastructure safety monitoring and investigation has become a trend in the era of big data. In this paper, public participant urban infrastructure safety protection system based on smart phones is proposed. The system makes it possible to public participant disaster data collection, monitoring and emergency evaluation in the field of disaster prevention and mitigation. Function of the system is to monitor the structural acceleration, angle and other vibration information, and extract structural deformation and implement disaster emergency communications based on smartphone without network. The monitoring data is uploaded to the website to create urban safety information database. Then the system supports big data analysis processing, the structure safety assessment and city safety early warning.

  2. RFID in the blood supply chain--increasing productivity, quality and patient safety.

    PubMed

    Briggs, Lynne; Davis, Rodeina; Gutierrez, Alfonso; Kopetsky, Matthew; Young, Kassandra; Veeramani, Raj

    2009-01-01

    As part of an overall design of a new, standardized RFID-enabled blood transfusion medicine supply chain, an assessment was conducted for two hospitals: the University of Iowa Hospital and Clinics (UIHC) and Mississippi Baptist Health System (MBHS). The main objectives of the study were to assess RFID technological and economic feasibility, along with possible impacts to productivity, quality and patient safety. A step-by-step process analysis focused on the factors contributing to process "pain points" (errors, inefficiency, product losses). A process re-engineering exercise produced blueprints of RFID-enabled processes to alleviate or eliminate those pain-points. In addition, an innovative model quantifying the potential reduction in adverse patient effects as a result of RFID implementation was created, allowing improvement initiatives to focus on process areas with the greatest potential impact to patient safety. The study concluded that it is feasible to implement RFID-enabled processes, with tangible improvements to productivity and safety expected. Based on a comprehensive cost/benefit model, it is estimated for a large hospital (UIHC) to recover investment from implementation within two to three years, while smaller hospitals may need longer to realize ROI. More importantly, the study estimated that RFID technology could reduce morbidity and mortality effects substantially among patients receiving transfusions.

  3. Solving a product safety problem using a recycled high density polyethylene container

    NASA Technical Reports Server (NTRS)

    Liu, Ping; Waskom, T. L.

    1993-01-01

    The objectives are to introduce basic problem-solving techniques for product safety including problem identification, definition, solution criteria, test process and design, and data analysis. The students are given a recycled milk jug made of high density polyethylene (HDPE) by blow molding. The objectives are to design and perform proper material test(s) so they can evaluate the product safety if the milk jug is used in a certain way which is specified in the description of the procedure for this investigation.

  4. Implementation of Recommendations from the One System Comparative Evaluation of the Hanford Tank Farms and Waste Treatment Plant Safety Bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrett, Richard L.; Niemi, Belinda J.; Paik, Ingle K.

    2013-11-07

    A Comparative Evaluation was conducted for One System Integrated Project Team to compare the safety bases for the Hanford Waste Treatment and Immobilization Plant Project (WTP) and Tank Operations Contract (TOC) (i.e., Tank Farms) by an Expert Review Team. The evaluation had an overarching purpose to facilitate effective integration between WTP and TOC safety bases. It was to provide One System management with an objective evaluation of identified differences in safety basis process requirements, guidance, direction, procedures, and products (including safety controls, key safety basis inputs and assumptions, and consequence calculation methodologies) between WTP and TOC. The evaluation identified 25more » recommendations (Opportunities for Integration). The resolution of these recommendations resulted in 16 implementation plans. The completion of these implementation plans will help ensure consistent safety bases for WTP and TOC along with consistent safety basis processes. procedures, and analyses. and should increase the likelihood of a successful startup of the WTP. This early integration will result in long-term cost savings and significant operational improvements. In addition, the implementation plans lead to the development of eight new safety analysis methodologies that can be used at other U.S. Department of Energy (US DOE) complex sites where URS Corporation is involved.« less

  5. Documentary analysis of risk-assessment and safety-planning policies and tools in a mental health context.

    PubMed

    Higgins, Agnes; Doyle, Louise; Morrissey, Jean; Downes, Carmel; Gill, Ailish; Bailey, Sive

    2016-08-01

    Despite the articulated need for policies and processes to guide risk assessment and safety planning, limited guidance exists on the processes or procedures to be used to develop such policies, and there is no body of research that examines the quality or content of the risk-management policies developed. The aim of the present study was to analyse the policies of risk and safety management used to guide mental health nursing practice in Ireland. A documentary analysis was performed on 123 documents received from 22 of the 23 directors of nursing contacted. Findings from the analysis revealed a wide variation in how risk, risk assessment, and risk management were defined. Emphasis within the risk documentation submitted was on risk related to self and others, with minimal attention paid to other types of risks. In addition, there was limited evidence of recovery-focused approaches to positive risk taking that involved service users and their families within the risk-related documentation. Many of the risk-assessment tools had not been validated, and lacked consistency or guidance in relation to how they were to be used or applied. The tick-box approach and absence of space for commentary within documentation have the potential to impact severely on the quality of information collected and documented, and subsequent clinical decision-making. Managers, and those tasked with ensuring safety and quality, need to ensure that policies and processes are, where possible, informed by best evidence and are in line with national mental health policy on recovery. © 2016 Australian College of Mental Health Nurses Inc.

  6. Integrating Data Sources for Process Sustainability ...

    EPA Pesticide Factsheets

    To perform a chemical process sustainability assessment requires significant data about chemicals, process design specifications, and operating conditions. The required information includes the identity of the chemicals used, the quantities of the chemicals within the context of the sustainability assessment, physical properties of these chemicals, equipment inventory, as well as health, environmental, and safety properties of the chemicals. Much of this data are currently available to the process engineer either from the process design in the chemical process simulation software or online through chemical property and environmental, health, and safety databases. Examples of these databases include the U.S. Environmental Protection Agency’s (USEPA’s) Aggregated Computational Toxicology Resource (ACToR), National Institute for Occupational Safety and Health’s (NIOSH’s) Hazardous Substance Database (HSDB), and National Institute of Standards and Technology’s (NIST’s) Chemistry Webbook. This presentation will provide methods and procedures for extracting chemical identity and flow information from process design tools (such as chemical process simulators) and chemical property information from the online databases. The presentation will also demonstrate acquisition and compilation of the data for use in the EPA’s GREENSCOPE process sustainability analysis tool. This presentation discusses acquisition of data for use in rapid LCI development.

  7. The implementation of a Hazard Analysis and Critical Control Point management system in a peanut butter ice cream plant.

    PubMed

    Hung, Yu-Ting; Liu, Chi-Te; Peng, I-Chen; Hsu, Chin; Yu, Roch-Chui; Cheng, Kuan-Chen

    2015-09-01

    To ensure the safety of the peanut butter ice cream manufacture, a Hazard Analysis and Critical Control Point (HACCP) plan has been designed and applied to the production process. Potential biological, chemical, and physical hazards in each manufacturing procedure were identified. Critical control points for the peanut butter ice cream were then determined as the pasteurization and freezing process. The establishment of a monitoring system, corrective actions, verification procedures, and documentation and record keeping were followed to complete the HACCP program. The results of this study indicate that implementing the HACCP system in food industries can effectively enhance food safety and quality while improving the production management. Copyright © 2015. Published by Elsevier B.V.

  8. Analysis of FMCSA Civil Penalty Enforcement Cases, 2010–14.

    DOT National Transportation Integrated Search

    2016-11-01

    This report provides an overview of the civil penalty process and an analysis of the Federal Motor Carrier Safety Administrations (FMCSAs) civil penalty data from January 2010 through December 2014, in terms of claimed, settled, and paid dollar...

  9. Finite element analysis to determine the stress distribution, displacement and safety factor on a microplate for the fractured jaw case

    NASA Astrophysics Data System (ADS)

    Pratama, Juan; Mahardika, Muslim

    2018-03-01

    Microplate is a connecting plate that can be used for jaw bone fixation. In the last two decades, microplate has been used so many times to help reconstruction of fractured jaw bone which is called mandibular bone or mandible bone. The plate is used to provide stable fixation of the fractured bone tissue during healing and reconstruction process. In this study Finite Element Analysis was used to predict the stress concentration and distribution on a microplate, displacement on the microplate and also to determine the safety factor of the microplate based on maximum allowable stress value, and finally to ascertain whether microplate is safe to use or not. The microplate was produced from punching process using titanium grade 1 (pure titanium) as material with a thickness of 500 µm. The results of the research indicated that the microplate was safe to use according to the maximum stress around the hole, displacement around the hole and also the safety factor of the microplate.

  10. Real-time hyperspectral imaging for food safety applications

    USDA-ARS?s Scientific Manuscript database

    Multispectral imaging systems with selected bands can commonly be used for real-time applications of food processing. Recent research has demonstrated several image processing methods including binning, noise removal filter, and appropriate morphological analysis in real-time mode can remove most fa...

  11. Analysis of Railroad Track Maintenance Expenditures for Class I Railroads 1962-1977

    DOT National Transportation Integrated Search

    1982-02-01

    This study investigates the decision-making process for railroad track maintenance (T/M) expenditures. The objectives are to (1) describe how Federal track safety standards have influenced this process and (2) try to predict the impact of changes in ...

  12. Poster - Thur Eve - 05: Safety systems and failure modes and effects analysis for a magnetic resonance image guided radiation therapy system.

    PubMed

    Lamey, M; Carlone, M; Alasti, H; Bissonnette, J P; Borg, J; Breen, S; Coolens, C; Heaton, R; Islam, M; van Proojen, M; Sharpe, M; Stanescu, T; Jaffray, D

    2012-07-01

    An online Magnetic Resonance guided Radiation Therapy (MRgRT) system is under development. The system is comprised of an MRI with the capability of travel between and into HDR brachytherapy and external beam radiation therapy vaults. The system will provide on-line MR images immediately prior to radiation therapy. The MR images will be registered to a planning image and used for image guidance. With the intention of system safety we have performed a failure modes and effects analysis. A process tree of the facility function was developed. Using the process tree as well as an initial design of the facility as guidelines possible failure modes were identified, for each of these failure modes root causes were identified. For each possible failure the assignment of severity, detectability and occurrence scores was performed. Finally suggestions were developed to reduce the possibility of an event. The process tree consists of nine main inputs and each of these main inputs consisted of 5 - 10 sub inputs and tertiary inputs were also defined. The process tree ensures that the overall safety of the system has been considered. Several possible failure modes were identified and were relevant to the design, construction, commissioning and operating phases of the facility. The utility of the analysis can be seen in that it has spawned projects prior to installation and has lead to suggestions in the design of the facility. © 2012 American Association of Physicists in Medicine.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, W.S.

    Progress during the period includes completion of the SNAP 7C system tests, completion of safety analysis for the SNAP 7A and C systems, assembly and initial testing of SNAP 7A, assembly of a modified reliability model, and assembly of a 10-W generator. Other activities include completion of thermal and safety analyses for SNAP 7B and D generators and fuel processing for these generators. (J.R.D.)

  14. Implementing person-environment approaches to prevent falls: a qualitative inquiry in applying the Westmead approach to occupational therapy home visits.

    PubMed

    Clemson, Lindy; Donaldson, Alex; Hill, Keith; Day, Lesley

    2014-10-01

    Despite evidence of the effectiveness of home safety interventions for preventing falls, there is limited uptake of such interventions within community services. Therefore, as part of a broader translational project, we explored issues underlying the implementation of an evidence-based home safety fall prevention intervention. We conducted in-depth interviews with eight occupational therapists and two programme coordinators engaged to deliver a home safety fall prevention intervention. Six community health centres within two metropolitan regions of Melbourne, Australia participated. The RE-AIM framework and Diffusion of Innovations theory underpinned the interviews which examine the enablers and barriers to implementing a home safety fall prevention intervention and integrating it into routine community preventive practice. Analysis involved thematic and content analysis. Investment in the home safety for fall prevention intervention was supported and valued by coordinators and therapists alike, and a number of themes emerged which influenced implementation of this intervention. These included issues of: compatibility with organisational processes, individual practitioner practices and skills, a prevention approach, and client expectations; relative advantage in terms of flexibility of the process, client engagement and regional capacity building; complexity of implementing the intervention; and observability related to the invisible nature of fall prevention outcomes. Implementation of this home safety fall prevention intervention was influenced by a range of interrelated organisational, practitioner and client related factors. The findings from this project provide insights into, and opportunities to increase the sustainable implementation of the home safety fall prevention intervention into practice. © 2014 Occupational Therapy Australia.

  15. Sensemaking of patient safety risks and hazards.

    PubMed

    Battles, James B; Dixon, Nancy M; Borotkanics, Robert J; Rabin-Fastmen, Barbara; Kaplan, Harold S

    2006-08-01

    In order for organizations to become learning organizations, they must make sense of their environment and learn from safety events. Sensemaking, as described by Weick (1995), literally means making sense of events. The ultimate goal of sensemaking is to build the understanding that can inform and direct actions to eliminate risk and hazards that are a threat to patient safety. True sensemaking in patient safety must use both retrospective and prospective approach to learning. Sensemaking is as an essential part of the design process leading to risk informed design. Sensemaking serves as a conceptual framework to bring together well established approaches to assessment of risk and hazards: (1) at the single event level using root cause analysis (RCA), (2) at the processes level using failure modes effects analysis (FMEA) and (3) at the system level using probabilistic risk assessment (PRA). The results of these separate or combined approaches are most effective when end users in conversation-based meetings add their expertise and knowledge to the data produced by the RCA, FMEA, and/or PRA in order to make sense of the risks and hazards. Without ownership engendered by such conversations, the possibility of effective action to eliminate or minimize them is greatly reduced.

  16. Sensemaking of Patient Safety Risks and Hazards

    PubMed Central

    Battles, James B; Dixon, Nancy M; Borotkanics, Robert J; Rabin-Fastmen, Barbara; Kaplan, Harold S

    2006-01-01

    In order for organizations to become learning organizations, they must make sense of their environment and learn from safety events. Sensemaking, as described by Weick (1995), literally means making sense of events. The ultimate goal of sensemaking is to build the understanding that can inform and direct actions to eliminate risk and hazards that are a threat to patient safety. True sensemaking in patient safety must use both retrospective and prospective approach to learning. Sensemaking is as an essential part of the design process leading to risk informed design. Sensemaking serves as a conceptual framework to bring together well established approaches to assessment of risk and hazards: (1) at the single event level using root cause analysis (RCA), (2) at the processes level using failure modes effects analysis (FMEA) and (3) at the system level using probabilistic risk assessment (PRA). The results of these separate or combined approaches are most effective when end users in conversation-based meetings add their expertise and knowledge to the data produced by the RCA, FMEA, and/or PRA in order to make sense of the risks and hazards. Without ownership engendered by such conversations, the possibility of effective action to eliminate or minimize them is greatly reduced. PMID:16898979

  17. Validity and consistency assessment of accident analysis methods in the petroleum industry.

    PubMed

    Ahmadi, Omran; Mortazavi, Seyed Bagher; Khavanin, Ali; Mokarami, Hamidreza

    2017-11-17

    Accident analysis is the main aspect of accident investigation. It includes the method of connecting different causes in a procedural way. Therefore, it is important to use valid and reliable methods for the investigation of different causal factors of accidents, especially the noteworthy ones. This study aimed to prominently assess the accuracy (sensitivity index [SI]) and consistency of the six most commonly used accident analysis methods in the petroleum industry. In order to evaluate the methods of accident analysis, two real case studies (process safety and personal accident) from the petroleum industry were analyzed by 10 assessors. The accuracy and consistency of these methods were then evaluated. The assessors were trained in the workshop of accident analysis methods. The systematic cause analysis technique and bowtie methods gained the greatest SI scores for both personal and process safety accidents, respectively. The best average results of the consistency in a single method (based on 10 independent assessors) were in the region of 70%. This study confirmed that the application of methods with pre-defined causes and a logic tree could enhance the sensitivity and consistency of accident analysis.

  18. Use of FMEA analysis to reduce risk of errors in prescribing and administering drugs in paediatric wards: a quality improvement report

    PubMed Central

    Lago, Paola; Bizzarri, Giancarlo; Scalzotto, Francesca; Parpaiola, Antonella; Amigoni, Angela; Putoto, Giovanni; Perilongo, Giorgio

    2012-01-01

    Objective Administering medication to hospitalised infants and children is a complex process at high risk of error. Failure mode and effect analysis (FMEA) is a proactive tool used to analyse risks, identify failures before they happen and prioritise remedial measures. To examine the hazards associated with the process of drug delivery to children, we performed a proactive risk-assessment analysis. Design and setting Five multidisciplinary teams, representing different divisions of the paediatric department at Padua University Hospital, were trained to analyse the drug-delivery process, to identify possible causes of failures and their potential effects, to calculate a risk priority number (RPN) for each failure and plan changes in practices. Primary outcome To identify higher-priority potential failure modes as defined by RPNs and planning changes in clinical practice to reduce the risk of patients harm and improve safety in the process of medication use in children. Results In all, 37 higher-priority potential failure modes and 71 associated causes and effects were identified. The highest RPNs related (>48) mainly to errors in calculating drug doses and concentrations. Many of these failure modes were found in all the five units, suggesting the presence of common targets for improvement, particularly in enhancing the safety of prescription and preparation of endovenous drugs. The introductions of new activities in the revised process of administering drugs allowed reducing the high-risk failure modes of 60%. Conclusions FMEA is an effective proactive risk-assessment tool useful to aid multidisciplinary groups in understanding a process care and identifying errors that may occur, prioritising remedial interventions and possibly enhancing the safety of drug delivery in children. PMID:23253870

  19. Use of FMEA analysis to reduce risk of errors in prescribing and administering drugs in paediatric wards: a quality improvement report.

    PubMed

    Lago, Paola; Bizzarri, Giancarlo; Scalzotto, Francesca; Parpaiola, Antonella; Amigoni, Angela; Putoto, Giovanni; Perilongo, Giorgio

    2012-01-01

    Administering medication to hospitalised infants and children is a complex process at high risk of error. Failure mode and effect analysis (FMEA) is a proactive tool used to analyse risks, identify failures before they happen and prioritise remedial measures. To examine the hazards associated with the process of drug delivery to children, we performed a proactive risk-assessment analysis. Five multidisciplinary teams, representing different divisions of the paediatric department at Padua University Hospital, were trained to analyse the drug-delivery process, to identify possible causes of failures and their potential effects, to calculate a risk priority number (RPN) for each failure and plan changes in practices. To identify higher-priority potential failure modes as defined by RPNs and planning changes in clinical practice to reduce the risk of patients harm and improve safety in the process of medication use in children. In all, 37 higher-priority potential failure modes and 71 associated causes and effects were identified. The highest RPNs related (>48) mainly to errors in calculating drug doses and concentrations. Many of these failure modes were found in all the five units, suggesting the presence of common targets for improvement, particularly in enhancing the safety of prescription and preparation of endovenous drugs. The introductions of new activities in the revised process of administering drugs allowed reducing the high-risk failure modes of 60%. FMEA is an effective proactive risk-assessment tool useful to aid multidisciplinary groups in understanding a process care and identifying errors that may occur, prioritising remedial interventions and possibly enhancing the safety of drug delivery in children.

  20. Applying the Extended Parallel Process Model to workplace safety messages.

    PubMed

    Basil, Michael; Basil, Debra; Deshpande, Sameer; Lavack, Anne M

    2013-01-01

    The extended parallel process model (EPPM) proposes fear appeals are most effective when they combine threat and efficacy. Three studies conducted in the workplace safety context examine the use of various EPPM factors and their effects, especially multiplicative effects. Study 1 was a content analysis examining the use of EPPM factors in actual workplace safety messages. Study 2 experimentally tested these messages with 212 construction trainees. Study 3 replicated this experiment with 1,802 men across four English-speaking countries-Australia, Canada, the United Kingdom, and the United States. The results of these three studies (1) demonstrate the inconsistent use of EPPM components in real-world work safety communications, (2) support the necessity of self-efficacy for the effective use of threat, (3) show a multiplicative effect where communication effectiveness is maximized when all model components are present (severity, susceptibility, and efficacy), and (4) validate these findings with gory appeals across four English-speaking countries.

  1. Total Diet Studies as a Tool for Ensuring Food Safety

    PubMed Central

    Lee, Joon-Goo; Kim, Sheen-Hee; Kim, Hae-Jung

    2015-01-01

    With the diversification and internationalization of the food industry and the increased focus on health from a majority of consumers, food safety policies are being implemented based on scientific evidence. Risk analysis represents the most useful scientific approach for making food safety decisions. Total diet study (TDS) is often used as a risk assessment tool to evaluate exposure to hazardous elements. Many countries perform TDSs to screen for chemicals in foods and analyze exposure trends to hazardous elements. TDSs differ from traditional food monitoring in two major aspects: chemicals are analyzed in food in the form in which it will be consumed and it is cost-effective in analyzing composite samples after processing multiple ingredients together. In Korea, TDSs have been conducted to estimate dietary intakes of heavy metals, pesticides, mycotoxins, persistent organic pollutants, and processing contaminants. TDSs need to be carried out periodically to ensure food safety. PMID:26483881

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyack, B.E.

    The PIUS reactor utilizes simplified, inherent, passive, or other innovative means to accomplish safety functions. Accordingly, the PIUS reactor is subject to the requirements of 10CFR52.47(b)(2)(i)(A). This regulation requires that the applicant adequately demonstrate the performance of each safety feature, interdependent effects among the safety features, and a sufficient data base on the safety features of the design to assess the analytical tools used for safety analysis. Los Alamos has assessed the quality and completeness of the existing and planned data bases used by Asea Brown Boveri to validate its safety analysis codes and other relevant data bases. Only amore » limited data base of separate effect and integral tests exist at present. This data base is not adequate to fulfill the requirements of 10CFR52.47(b)(2)(i)(A). Asea Brown Boveri has stated that it plans to conduct more separate effect and integral test programs. If appropriately designed and conducted, these test programs have the potential to satisfy most of the data base requirements of 10CFR52.47(b)(2)(i)(A) and remedy most of the deficiencies of the currently existing combined data base. However, the most important physical processes in PIUS are related to reactor shutdown because the PIUS reactor does not contain rodded shutdown and control systems. For safety-related reactor shutdown, PIUS relies on negative reactivity insertions from the moderator temperature coefficient and from boron entering the core from the reactor pool. Asea Brown Boveri has neither developed a direct experimental data base for these important processes nor provided a rationale for indirect testing of these key PIUS processes. This is assessed as a significant shortcoming. In preparing the conclusions of this report, test documentation and results have been reviewed for only one integral test program, the small-scale integral tests conducted in the ATLE facility.« less

  3. Patient safety reporting systems: sustained quality improvement using a multidisciplinary team and "good catch" awards.

    PubMed

    Herzer, Kurt R; Mirrer, Meredith; Xie, Yanjun; Steppan, Jochen; Li, Matthew; Jung, Clinton; Cover, Renee; Doyle, Peter A; Mark, Lynette J

    2012-08-01

    Since 1999, hospitals have made substantial commitments to health care quality and patient safety through individual initiatives of executive leadership involvement in quality, investments in safety culture, education and training for medical students and residents in quality and safety, the creation of patient safety committees, and implementation of patient safety reporting systems. At the Weinberg Surgical Suite at The Johns Hopkins Hospital (Baltimore), a 16-operating-room inpatient/outpatient cancer center, a patient safety reporting process was developed to maximize the usefulness of the reports and the long-term sustainability of quality improvements arising from them. A six-phase framework was created incorporating UHC's Patient Safety Net (PSN): Identify, report, analyze, mitigate, reward, and follow up. Unique features of this process included a multidisciplinary team to review reports, mitigate hazards, educate and empower providers, recognize the identifying/reporting individuals or groups with "Good Catch" awards, and follow up to determine if quality improvements were sustained over time. Good Catch awards have been given in recognition of 29 patient safety hazards identified since 2008; in each of these cases, an initiative was developed to mitigate the original hazard. Twenty-five (86%) of the associated quality improvements have been sustained. Two Good Catch award-winning projects--vials of heparin with an unusually high concentration of the drug that posed a potential overdose hazard and a rapid infusion device that resisted practitioner control--are described in detail. A multidisciplinary team's analysis and mitigation of hazards identified in a patient safety reporting process entailed positive recognition with a Good Catch award, education of practitioners, and long-term follow-up.

  4. Capability maturity models for offshore organisational management.

    PubMed

    Strutt, J E; Sharp, J V; Terry, E; Miles, R

    2006-12-01

    The goal setting regime imposed by the UK safety regulator has important implications for an organisation's ability to manage health and safety related risks. Existing approaches to safety assurance based on risk analysis and formal safety assessments are increasingly considered unlikely to create the step change improvement in safety to which the offshore industry aspires and alternative approaches are being considered. One approach, which addresses the important issue of organisational behaviour and which can be applied at a very early stage of design, is the capability maturity model (CMM). The paper describes the development of a design safety capability maturity model, outlining the key processes considered necessary to safety achievement, definition of maturity levels and scoring methods. The paper discusses how CMM is related to regulatory mechanisms and risk based decision making together with the potential of CMM to environmental risk management.

  5. Incident Learning and Failure-Mode-and-Effects-Analysis Guided Safety Initiatives in Radiation Medicine

    PubMed Central

    Kapur, Ajay; Goode, Gina; Riehl, Catherine; Zuvic, Petrina; Joseph, Sherin; Adair, Nilda; Interrante, Michael; Bloom, Beatrice; Lee, Lucille; Sharma, Rajiv; Sharma, Anurag; Antone, Jeffrey; Riegel, Adam; Vijeh, Lili; Zhang, Honglai; Cao, Yijian; Morgenstern, Carol; Montchal, Elaine; Cox, Brett; Potters, Louis

    2013-01-01

    By combining incident learning and process failure-mode-and-effects-analysis (FMEA) in a structure-process-outcome framework we have created a risk profile for our radiation medicine practice and implemented evidence-based risk-mitigation initiatives focused on patient safety. Based on reactive reviews of incidents reported in our departmental incident-reporting system and proactive FMEA, high safety-risk procedures in our paperless radiation medicine process and latent risk factors were identified. Six initiatives aimed at the mitigation of associated severity, likelihood-of-occurrence, and detectability risks were implemented. These were the standardization of care pathways and toxicity grading, pre-treatment-planning peer review, a policy to thwart delay-rushed processes, an electronic whiteboard to enhance coordination, and the use of six sigma metrics to monitor operational efficiencies. The effectiveness of these initiatives over a 3-years period was assessed using process and outcome specific metrics within the framework of the department structure. There has been a 47% increase in incident-reporting, with no increase in adverse events. Care pathways have been used with greater than 97% clinical compliance rate. The implementation of peer review prior to treatment-planning and use of the whiteboard have provided opportunities for proactive detection and correction of errors. There has been a twofold drop in the occurrence of high-risk procedural delays. Patient treatment start delays are routinely enforced on cases that would have historically been rushed. Z-scores for high-risk procedures have steadily improved from 1.78 to 2.35. The initiatives resulted in sustained reductions of failure-mode risks as measured by a set of evidence-based metrics over a 3-years period. These augment or incorporate many of the published recommendations for patient safety in radiation medicine by translating them to clinical practice. PMID:24380074

  6. Integrated Response Time Evaluation Methodology for the Nuclear Safety Instrumentation System

    NASA Astrophysics Data System (ADS)

    Lee, Chang Jae; Yun, Jae Hee

    2017-06-01

    Safety analysis for a nuclear power plant establishes not only an analytical limit (AL) in terms of a measured or calculated variable but also an analytical response time (ART) required to complete protective action after the AL is reached. If the two constraints are met, the safety limit selected to maintain the integrity of physical barriers used for preventing uncontrolled radioactivity release will not be exceeded during anticipated operational occurrences and postulated accidents. Setpoint determination methodologies have actively been developed to ensure that the protective action is initiated before the process conditions reach the AL. However, regarding the ART for a nuclear safety instrumentation system, an integrated evaluation methodology considering the whole design process has not been systematically studied. In order to assure the safety of nuclear power plants, this paper proposes a systematic and integrated response time evaluation methodology that covers safety analyses, system designs, response time analyses, and response time tests. This methodology is applied to safety instrumentation systems for the advanced power reactor 1400 and the optimized power reactor 1000 nuclear power plants in South Korea. The quantitative evaluation results are provided herein. The evaluation results using the proposed methodology demonstrate that the nuclear safety instrumentation systems fully satisfy corresponding requirements of the ART.

  7. Safety diagnosis: are we doing a good job?

    PubMed

    Park, Peter Y; Sahaji, Rajib

    2013-03-01

    Collision diagnosis is the second step in the six-step road safety management process described in the AASHTO Highway Safety Manual (HSM). Diagnosis is designed to identify a dominant or abnormally high proportion of particular collision configurations (e.g., rear end, right angle, etc.) at a target location. The primary diagnosis method suggested in the HSM is descriptive data analysis. This type of analysis relies on, for example, pie charts, histograms, and/or collision diagrams. Using location specific collision data (e.g., collision frequency per collision configuration for a target location), safety engineers identify (the most) frequent collision configurations. Safety countermeasures are then likely to concentrate on preventing the selected collision configurations. Although its real-world application in engineering practice is limited, an additional collision diagnosis method, known as the beta-binomial (BB) test, is also presented as the secondary diagnosis tool in the HSM. The BB test compares the proportion of a particular collision configuration observed at one location with the proportion of the same collision configuration found at other reference locations which are similar to the target location in terms of selected traffic and roadway characteristics (e.g., traffic volume, traffic control, and number of lanes). This study compared the outcomes obtained from descriptive data analysis and the BB test, and investigates two questions: (1) Do descriptive data analysis and the BB tests produce the same results (i.e., do they select the same collision configurations at the same locations)? and (2) If the tests produce different results, which result should be adopted in engineering practice? This study's analysis was based on a sample of the most recent five years (2005-2009) of collision and roadway configuration data for 143 signalized intersections in the City of Saskatoon, Saskatchewan. The study results show that the BB test's role in diagnosing safety concerns in road safety engineering projects such as safety review projects for existing roadways may be just as important as the descriptive data analysis method. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Use of Failure Mode and Effects Analysis to Improve Emergency Department Handoff Processes.

    PubMed

    Sorrentino, Patricia

    2016-01-01

    The purpose of this article is to describe a quality improvement process using failure mode and effects analysis (FMEA) to evaluate systems handoff communication processes, improve emergency department (ED) throughput and reduce crowding through development of a standardized handoff, and, ultimately, improve patient safety. Risk of patient harm through ineffective communication during handoff transitions is a major reason for breakdown of systems. Complexities of ED processes put patient safety at risk. An increased incidence of submitted patient safety event reports for handoff communication failures between the ED and inpatient units solidified a decision to implement the use of FMEA to identify handoff failures to mitigate patient harm through redesign. The clinical nurse specialist implemented an FMEA. Handoff failure themes were created from deidentified retrospective reviews. Weekly meetings were held over a 3-month period to identify failure modes and determine cause and effect on the process. A functional block diagram process map tool was used to illustrate handoff processes. An FMEA grid was used to list failure modes and assign a risk priority number to quantify results. Multiple areas with actionable failures were identified. A majority of causes for high-priority failure modes were specific to communications. Findings demonstrate the complexity of transition and handoff processes. The FMEA served to identify and evaluate risk of handoff failures and provide a framework for process improvement. A focus on mentoring nurses to quality handoff processes so that it becomes habitual practice is crucial to safe patient transitions. Standardizing content and hardwiring within the system are best practice. The clinical nurse specialist is prepared to provide strong leadership to drive and implement system-wide quality projects.

  9. Food Safety Practices in the Egg Products Industry.

    PubMed

    Viator, Catherine L; Cates, Sheryl C; Karns, Shawn A; Muth, Mary K; Noyes, Gary

    2016-07-01

    We conducted a national census survey of egg product plants (n = 57) to obtain information on the technological and food safety practices of the egg products industry and to assess changes in these practices from 2004 to 2014. The questionnaire asked about operational and sanitation practices, microbiological testing practices, food safety training for employees, other food safety issues, and plant characteristics. The findings suggest that improvements were made in the industry's use of food safety technologies and practices between 2004 and 2014. The percentage of plants using advanced pasteurization technology and an integrated, computerized processing system increased by almost 30 percentage points. Over 90% of plants voluntarily use a written hazard analysis and critical control point (HACCP) plan to address food safety for at least one production step. Further, 90% of plants have management employees who are trained in a written HACCP plan. Most plants (93%) conduct voluntary microbiological testing. The percentage of plants conducting this testing on egg products before pasteurization has increased by almost 30 percentage points since 2004. The survey findings identify strengths and weaknesses in egg product plants' food safety practices and can be used to guide regulatory policymaking and to conduct required regulatory impact analysis of potential regulations.

  10. Design for Reliability and Safety Approach for the New NASA Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Safie, Fayssal M.; Weldon, Danny M.

    2007-01-01

    The United States National Aeronautics and Space Administration (NASA) is in the midst of a space exploration program intended for sending crew and cargo to the international Space Station (ISS), to the moon, and beyond. This program is called Constellation. As part of the Constellation program, NASA is developing new launch vehicles aimed at significantly increase safety and reliability, reduce the cost of accessing space, and provide a growth path for manned space exploration. Achieving these goals requires a rigorous process that addresses reliability, safety, and cost upfront and throughout all the phases of the life cycle of the program. This paper discusses the "Design for Reliability and Safety" approach for the NASA new launch vehicles, the ARES I and ARES V. Specifically, the paper addresses the use of an integrated probabilistic functional analysis to support the design analysis cycle and a probabilistic risk assessment (PRA) to support the preliminary design and beyond.

  11. System Safety and the Unintended Consequence

    NASA Technical Reports Server (NTRS)

    Watson, Clifford

    2012-01-01

    The analysis and identification of risks often result in design changes or modification of operational steps. This paper identifies the potential of unintended consequences as an over-looked result of these changes. Examples of societal changes such as prohibition, regulatory changes including mandating lifeboats on passenger ships, and engineering proposals or design changes to automobiles and spaceflight hardware are used to demonstrate that the System Safety Engineer must be cognizant of the potential for unintended consequences as a result of an analysis. Conclusions of the report indicate the need for additional foresight and consideration of the potential effects of analysis-driven design, processing changes, and/or operational modifications.

  12. Ares-I-X Vehicle Preliminary Range Safety Malfunction Turn Analysis

    NASA Technical Reports Server (NTRS)

    Beaty, James R.; Starr, Brett R.; Gowan, John W., Jr.

    2008-01-01

    Ares-I-X is the designation given to the flight test version of the Ares-I rocket (also known as the Crew Launch Vehicle - CLV) being developed by NASA. As part of the preliminary flight plan approval process for the test vehicle, a range safety malfunction turn analysis was performed to support the launch area risk assessment and vehicle destruct criteria development processes. Several vehicle failure scenarios were identified which could cause the vehicle trajectory to deviate from its normal flight path, and the effects of these failures were evaluated with an Ares-I-X 6 degrees-of-freedom (6-DOF) digital simulation, using the Program to Optimize Simulated Trajectories Version 2 (POST2) simulation framework. The Ares-I-X simulation analysis provides output files containing vehicle state information, which are used by other risk assessment and vehicle debris trajectory simulation tools to determine the risk to personnel and facilities in the vicinity of the launch area at Kennedy Space Center (KSC), and to develop the vehicle destruct criteria used by the flight test range safety officer. The simulation analysis approach used for this study is described, including descriptions of the failure modes which were considered and the underlying assumptions and ground rules of the study, and preliminary results are presented, determined by analysis of the trajectory deviation of the failure cases, compared with the expected vehicle trajectory.

  13. Incidence of patient safety events and process-related human failures during intra-hospital transportation of patients: retrospective exploration from the institutional incident reporting system.

    PubMed

    Yang, Shu-Hui; Jerng, Jih-Shuin; Chen, Li-Chin; Li, Yu-Tsu; Huang, Hsiao-Fang; Wu, Chao-Ling; Chan, Jing-Yuan; Huang, Szu-Fen; Liang, Huey-Wen; Sun, Jui-Sheng

    2017-11-03

    Intra-hospital transportation (IHT) might compromise patient safety because of different care settings and higher demand on the human operation. Reports regarding the incidence of IHT-related patient safety events and human failures remain limited. To perform a retrospective analysis of IHT-related events, human failures and unsafe acts. A hospital-wide process for the IHT and database from the incident reporting system in a medical centre in Taiwan. All eligible IHT-related patient safety events between January 2010 to December 2015 were included. Incidence rate of IHT-related patient safety events, human failure modes, and types of unsafe acts. There were 206 patient safety events in 2 009 013 IHT sessions (102.5 per 1 000 000 sessions). Most events (n=148, 71.8%) did not involve patient harm, and process events (n=146, 70.9%) were most common. Events at the location of arrival (n=101, 49.0%) were most frequent; this location accounted for 61.0% and 44.2% of events with patient harm and those without harm, respectively (p<0.001). Of the events with human failures (n=186), the most common related process step was the preparation of the transportation team (n=91, 48.9%). Contributing unsafe acts included perceptual errors (n=14, 7.5%), decision errors (n=56, 30.1%), skill-based errors (n=48, 25.8%), and non-compliance (n=68, 36.6%). Multivariate analysis showed that human failure found in the arrival and hand-off sub-process (OR 4.84, p<0.001) was associated with increased patient harm, whereas the presence of omission (OR 0.12, p<0.001) was associated with less patient harm. This study shows a need to reduce human failures to prevent patient harm during intra-hospital transportation. We suggest that the transportation team pay specific attention to the sub-process at the location of arrival and prevent errors other than omissions. Long-term monitoring of IHT-related events is also warranted. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  14. Changing conversations: teaching safety and quality in residency training.

    PubMed

    Voss, John D; May, Natalie B; Schorling, John B; Lyman, Jason A; Schectman, Joel M; Wolf, Andrew M D; Nadkarni, Mohan M; Plews-Ogan, Margaret

    2008-11-01

    Improving patient safety and quality in health care is one of medicine's most pressing challenges. Residency training programs have a unique opportunity to meet this challenge by training physicians in the science and methods of patient safety and quality improvement (QI).With support from the Health Resources and Services Administration, the authors developed an innovative, longitudinal, experiential curriculum in patient safety and QI for internal medicine residents at the University of Virginia. This two-year curriculum teaches the critical concepts and skills of patient safety and QI: systems thinking and human factors analysis, root cause analysis (RCA), and process mapping. Residents apply these skills in a series of QI and patient safety projects. The constructivist educational model creates a learning environment that actively engages residents in improving the quality and safety of their medical practice.Between 2003 and 2005, 38 residents completed RCAs of adverse events. The RCAs identified causes and proposed useful interventions that have produced important care improvements. Qualitative analysis demonstrates that the curriculum shifted residents' thinking about patient safety to a systems-based approach. Residents completed 237 outcome assessments during three years. Results indicate that seminars met predefined learning objectives and were interactive and enjoyable. Residents strongly believe they gained important skills in all domains.The challenge to improve quality and safety in health care requires physicians to learn new knowledge and skills. Graduate medical education can equip new physicians with the skills necessary to lead the movement to safer and better quality of care for all patients.This article is part of a theme issue of Academic Medicine on the Title VII health professions training programs.

  15. Ergonomic analysis of safety signs: a focus of informational and cultural ergonomics.

    PubMed

    Cavalcanti, Janaina; Soares, Marcelo

    2012-01-01

    This paper presents the results of a research carried out in the states of Pernambuco and Rio Grande do Sul, Brazil about differences and similarities in the graphic representation of safety signs at factories of food, steel, shoes and construction/ building industries, together with their workers' opinions on the security signs. The overall results show differences in the sign structure across the states, confirming the influence of cultural differences on the design of safety signs, which must be taken into account during the design process.

  16. A Framework to Guide the Assessment of Human-Machine Systems.

    PubMed

    Stowers, Kimberly; Oglesby, James; Sonesh, Shirley; Leyva, Kevin; Iwig, Chelsea; Salas, Eduardo

    2017-03-01

    We have developed a framework for guiding measurement in human-machine systems. The assessment of safety and performance in human-machine systems often relies on direct measurement, such as tracking reaction time and accidents. However, safety and performance emerge from the combination of several variables. The assessment of precursors to safety and performance are thus an important part of predicting and improving outcomes in human-machine systems. As part of an in-depth literature analysis involving peer-reviewed, empirical articles, we located and classified variables important to human-machine systems, giving a snapshot of the state of science on human-machine system safety and performance. Using this information, we created a framework of safety and performance in human-machine systems. This framework details several inputs and processes that collectively influence safety and performance. Inputs are divided according to human, machine, and environmental inputs. Processes are divided into attitudes, behaviors, and cognitive variables. Each class of inputs influences the processes and, subsequently, outcomes that emerge in human-machine systems. This framework offers a useful starting point for understanding the current state of the science and measuring many of the complex variables relating to safety and performance in human-machine systems. This framework can be applied to the design, development, and implementation of automated machines in spaceflight, military, and health care settings. We present a hypothetical example in our write-up of how it can be used to aid in project success.

  17. Bacterial Diversity Analysis during the Fermentation Processing of Traditional Chinese Yellow Rice Wine Revealed by 16S rDNA 454 Pyrosequencing.

    PubMed

    Fang, Ruo-si; Dong, Ya-chen; Chen, Feng; Chen, Qi-he

    2015-10-01

    Rice wine is a traditional Chinese fermented alcohol drink. Spontaneous fermentation with the use of the Chinese starter and wheat Qu lead to the growth of various microorganisms during the complete brewing process. It's of great importance to fully understand the composition of bacteria diversity in rice wine in order to improve the quality and solve safety problems. In this study, a more comprehensive bacterial description was shown with the use of bacteria diversity analysis, which enabled us to have a better understanding. Rarefaction, rank abundance, alpha Diversity, beta diversity and principal coordinates analysis simplified their complex bacteria components and provide us theoretical foundation for further investigation. It has been found bacteria diversity is more abundant at mid-term and later stage of brewing process. Bacteria community analysis reveals there is a potential safety hazard existing in the fermentation, since most of the sequence reads are assigned to Enterobacter (7900 at most) and Pantoea (7336 at most), followed by Staphylococcus (2796 at most) and Pseudomonas (1681 at most). Lactic acid bacteria are rare throughout the fermentation process which is not in accordance with other reports. This work may offer us an opportunity to investigate micro ecological fermentation system in food industry. © 2015 Institute of Food Technologists®

  18. Using a 3D CAD plant model to simplify process hazard reviews

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolpa, G.

    A Hazard and Operability (HAZOP) review is a formal predictive procedure used to identify potential hazard and operability problems associated with certain processes and facilities. The HAZOP procedure takes place several times during the life cycle of the facility. Replacing plastic models, layout and detail drawings with a 3D CAD electronic model, provides access to process safety information and a detailed level of plant topology that approaches the visualization capability of the imagination. This paper describes the process that is used for adding the use of a 3D CAD model to flowsheets and proven computer programs for the conduct ofmore » hazard and operability reviews. Using flowsheets and study nodes as a road map for the review the need for layout and other detail drawings is all but eliminated. Using the 3D CAD model again for a post-P and ID HAZOP supports conformance to layout and safety requirements, provides superior visualization of the plant configuration and preserves the owners equity in the design. The response from the review teams are overwhelmingly in favor of this type of review over a review that uses only drawings. Over the long term the plant model serves more than just process hazards analysis. Ongoing use of the model can satisfy the required access to process safety information, OHSA documentation and other legal requirements. In this paper extensive instructions address the logic for the process hazards analysis and the preparation required to assist anyone who wishes to add the use of a 3D model to their review.« less

  19. Mindful Application of Aviation Practices in Healthcare.

    PubMed

    Powell-Dunford, Nicole; Brennan, Peter A; Peerally, Mohammad Farhad; Kapur, Narinder; Hynes, Jonny M; Hodkinson, Peter D

    2017-12-01

    Evidence supports the efficacy of incorporating select recognized aviation practices and procedures into healthcare. Incident analysis, debrief, safety brief, and crew resource management (CRM) have all been assessed for implementation within the UK healthcare system, a world leader in aviation-based patient safety initiatives. Mindful application, in which aviation practices are specifically tailored to the unique healthcare setting, show promise in terms of acceptance and long-term sustainment. In order to establish British healthcare applications of aviation practices, a PubMed search of UK authored manuscripts published between 2005-2016 was undertaken using search terms 'aviation,' 'healthcare,' 'checklist,' and 'CRM.' A convenience sample of UK-authored aviation medical conference presentations and UK-authored patient safety manuscripts were also reviewed. A total of 11 of 94 papers with UK academic affiliations published between 2005-2016 and relevant to aviation modeled healthcare delivery were found. The debrief process, incident analysis, and CRM are the primary practices incorporated into UK healthcare, with success dependent on cultural acceptance and mindful application. CRM training has gained significant acceptance in UK healthcare environments. Aviation modeled incident analysis, debrief, safety brief, and CRM training are increasingly undertaken within the UK healthcare system. Nuanced application, in which the unique aspects of the healthcare setting are addressed as part of a comprehensive safety approach, shows promise for long-term success. The patient safety brief and aviation modeled incident analysis are in earlier phases of implementation, and warrant further analysis.Powell-Dunford N, Brennan PA, Peerally MF, Kapur N, Hynes JM, Hodkinson PD. Mindful application of aviation practices in healthcare. Aerosp Med Hum Perform. 2017; 88(12):1107-1116.

  20. Software safety - A user's practical perspective

    NASA Technical Reports Server (NTRS)

    Dunn, William R.; Corliss, Lloyd D.

    1990-01-01

    Software safety assurance philosophy and practices at the NASA Ames are discussed. It is shown that, to be safe, software must be error-free. Software developments on two digital flight control systems and two ground facility systems are examined, including the overall system and software organization and function, the software-safety issues, and their resolution. The effectiveness of safety assurance methods is discussed, including conventional life-cycle practices, verification and validation testing, software safety analysis, and formal design methods. It is concluded (1) that a practical software safety technology does not yet exist, (2) that it is unlikely that a set of general-purpose analytical techniques can be developed for proving that software is safe, and (3) that successful software safety-assurance practices will have to take into account the detailed design processes employed and show that the software will execute correctly under all possible conditions.

  1. Ares I-X Range Safety Analyses Overview

    NASA Technical Reports Server (NTRS)

    Starr, Brett R.; Gowan, John W., Jr.; Thompson, Brian G.; Tarpley, Ashley W.

    2011-01-01

    Ares I-X was the first test flight of NASA's Constellation Program's Ares I Crew Launch Vehicle designed to provide manned access to low Earth orbit. As a one-time test flight, the Air Force's 45th Space Wing required a series of Range Safety analysis data products to be developed for the specified launch date and mission trajectory prior to granting flight approval on the Eastern Range. The range safety data package is required to ensure that the public, launch area, and launch complex personnel and resources are provided with an acceptable level of safety and that all aspects of prelaunch and launch operations adhere to applicable public laws. The analysis data products, defined in the Air Force Space Command Manual 91-710, Volume 2, consisted of a nominal trajectory, three sigma trajectory envelopes, stage impact footprints, acoustic intensity contours, trajectory turn angles resulting from potential vehicle malfunctions (including flight software failures), characterization of potential debris, and debris impact footprints. These data products were developed under the auspices of the Constellation's Program Launch Constellation Range Safety Panel and its Range Safety Trajectory Working Group with the intent of beginning the framework for the operational vehicle data products and providing programmatic review and oversight. A multi-center NASA team in conjunction with the 45th Space Wing, collaborated within the Trajectory Working Group forum to define the data product development processes, performed the analyses necessary to generate the data products, and performed independent verification and validation of the data products. This paper outlines the Range Safety data requirements and provides an overview of the processes established to develop both the data products and the individual analyses used to develop the data products, and it summarizes the results of the analyses required for the Ares I-X launch.

  2. The mediating role of integration of safety by activity versus operator between organizational culture and safety climate.

    PubMed

    Auzoult, Laurent; Gangloff, Bernard

    2018-04-20

    In this study, we analyse the impact of the organizational culture and introduce a new variable, the integration of safety, which relates to the modalities for the implementation and adoption of safety in the work process, either through the activity or by the operator. One hundred and eighty employees replied to a questionnaire measuring the organizational climate, the safety climate and the integration of safety. We expected that implementation centred on the activity or on the operator would mediate the relationship between the organizational culture and the safety climate. The results support our assumptions. A regression analysis highlights the positive impact on the safety climate of organizational values of the 'rule' and 'support' type, as well as of integration by the operator and activity. Moreover, integration mediates the relation between these variables. The results suggest to take into account organizational culture and to introduce different implementation modalities to improve the safety climate.

  3. Safety organizing, emotional exhaustion, and turnover in hospital nursing units.

    PubMed

    Vogus, Timothy J; Cooil, Bruce; Sitterding, Mary; Everett, Linda Q

    2014-10-01

    Prior research has found that safety organizing behaviors of registered nurses (RNs) positively impact patient safety. However, little research exists on how engaging in safety organizing affects caregivers. While we know that organizational processes can have divergent effects on organizational and employee outcomes, little research exists on the effects of pursuing highly reliable performance through safety organizing on caregivers. Specifically, we examined whether, and the conditions under which, safety organizing affects RN emotional exhaustion and nursing unit turnover rates. Subjects included 1352 RNs in 50 intensive care, internal medicine, labor, and surgery nursing units in 3 Midwestern acute-care hospitals who completed questionnaires between August and December 2011 and 50 Nurse Managers from the units who completed questionnaires in December 2012. Cross-sectional analyses of RN emotional exhaustion linked to survey data on safety organizing and hospital incident reporting system data on adverse event rates for the year before survey administration. Cross-sectional analysis of unit-level RN turnover rates for the year following the administration of the survey linked to survey data on safety organizing. Multilevel regression analysis indicated that safety organizing was negatively associated with RN emotional exhaustion on units with higher rates of adverse events and positively associated with RN emotional exhaustion with lower rates of adverse events. Tobit regression analyses indicated that safety organizing was associated with lower unit level of turnover rates over time. Safety organizing is beneficial to caregivers in multiple ways, especially on nursing units with high levels of adverse events and over time.

  4. Optimizing Web-Based Instruction: A Case Study Using Poultry Processing Unit Operations

    ERIC Educational Resources Information Center

    O' Bryan, Corliss A.; Crandall, Philip G.; Shores-Ellis, Katrina; Johnson, Donald M.; Ricke, Steven C.; Marcy, John

    2009-01-01

    Food companies and supporting industries need inexpensive, revisable training methods for large numbers of hourly employees due to continuing improvements in Hazard Analysis Critical Control Point (HACCP) programs, new processing equipment, and high employee turnover. HACCP-based food safety programs have demonstrated their value by reducing the…

  5. Facultative Lagoons. Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Andersen, Lorri

    The textual material for a unit on facultative lagoons is presented in this student manual. Topic areas discussed include: (1) loading; (2) microbial theory; (3) structure and design; (4) process control; (5) lagoon start-up; (6) data handling and analysis; (7) lagoon maintenance (considering visual observations, pond structure, safety, odor,…

  6. Model Transformation for a System of Systems Dependability Safety Case

    NASA Technical Reports Server (NTRS)

    Murphy, Judy; Driskell, Stephen B.

    2010-01-01

    Software plays an increasingly larger role in all aspects of NASA's science missions. This has been extended to the identification, management and control of faults which affect safety-critical functions and by default, the overall success of the mission. Traditionally, the analysis of fault identification, management and control are hardware based. Due to the increasing complexity of system, there has been a corresponding increase in the complexity in fault management software. The NASA Independent Validation & Verification (IV&V) program is creating processes and procedures to identify, and incorporate safety-critical software requirements along with corresponding software faults so that potential hazards may be mitigated. This Specific to Generic ... A Case for Reuse paper describes the phases of a dependability and safety study which identifies a new, process to create a foundation for reusable assets. These assets support the identification and management of specific software faults and, their transformation from specific to generic software faults. This approach also has applications to other systems outside of the NASA environment. This paper addresses how a mission specific dependability and safety case is being transformed to a generic dependability and safety case which can be reused for any type of space mission with an emphasis on software fault conditions.

  7. Modeling and Hazard Analysis Using STPA

    NASA Astrophysics Data System (ADS)

    Ishimatsu, Takuto; Leveson, Nancy; Thomas, John; Katahira, Masa; Miyamoto, Yuko; Nakao, Haruka

    2010-09-01

    A joint research project between MIT and JAXA/JAMSS is investigating the application of a new hazard analysis to the system and software in the HTV. Traditional hazard analysis focuses on component failures but software does not fail in this way. Software most often contributes to accidents by commanding the spacecraft into an unsafe state(e.g., turning off the descent engines prematurely) or by not issuing required commands. That makes the standard hazard analysis techniques of limited usefulness on software-intensive systems, which describes most spacecraft built today. STPA is a new hazard analysis technique based on systems theory rather than reliability theory. It treats safety as a control problem rather than a failure problem. The goal of STPA, which is to create a set of scenarios that can lead to a hazard, is the same as FTA but STPA includes a broader set of potential scenarios including those in which no failures occur but the problems arise due to unsafe and unintended interactions among the system components. STPA also provides more guidance to the analysts that traditional fault tree analysis. Functional control diagrams are used to guide the analysis. In addition, JAXA uses a model-based system engineering development environment(created originally by Leveson and called SpecTRM) which also assists in the hazard analysis. One of the advantages of STPA is that it can be applied early in the system engineering and development process in a safety-driven design process where hazard analysis drives the design decisions rather than waiting until reviews identify problems that are then costly or difficult to fix. It can also be applied in an after-the-fact analysis and hazard assessment, which is what we did in this case study. This paper describes the experimental application of STPA to the JAXA HTV in order to determine the feasibility and usefulness of the new hazard analysis technique. Because the HTV was originally developed using fault tree analysis and following the NASA standards for safety-critical systems, the results of our experimental application of STPA can be compared with these more traditional safety engineering approaches in terms of the problems identified and the resources required to use it.

  8. Automated Hazard Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riddle, F. J.

    2003-06-26

    The Automated Hazard Analysis (AHA) application is a software tool used to conduct job hazard screening and analysis of tasks to be performed in Savannah River Site facilities. The AHA application provides a systematic approach to the assessment of safety and environmental hazards associated with specific tasks, and the identification of controls regulations, and other requirements needed to perform those tasks safely. AHA is to be integrated into existing Savannah River site work control and job hazard analysis processes. Utilization of AHA will improve the consistency and completeness of hazard screening and analysis, and increase the effectiveness of the workmore » planning process.« less

  9. Safety analysis, 200 Area, Savannah River Plant: Separations area operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perkins, W.C.; Lee, R.; Allen, P.M.

    1991-07-01

    The nev HB-Line, located on the fifth and sixth levels of Building 221-H, is designed to replace the aging existing HB-Line production facility. The nev HB-Line consists of three separate facilities: the Scrap Recovery Facility, the Neptunium Oxide Facility, and the Plutonium Oxide Facility. There are three separate safety analyses for the nev HB-Line, one for each of the three facilities. These are issued as supplements to the 200-Area Safety Analysis (DPSTSA-200-10). These supplements are numbered as Sup 2A, Scrap Recovery Facility, Sup 2B, Neptunium Oxide Facility, Sup 2C, Plutonium Oxide Facility. The subject of this safety analysis, the, Plutoniummore » Oxide Facility, will convert nitrate solutions of {sup 238}Pu to plutonium oxide (PuO{sub 2}) powder. All these new facilities incorporate improvements in: (1) engineered barriers to contain contamination, (2) barriers to minimize personnel exposure to airborne contamination, (3) shielding and remote operations to decrease radiation exposure, and (4) equipment and ventilation design to provide flexibility and improved process performance.« less

  10. Rights, responsibilities and (re)presentation: Using drawings to convey health and safety messages among immigrant workers.

    PubMed

    McKillop, Chris; Parsons, Janet A; Brown, Janet; Scott, Susan; Holness, D Linn

    2016-09-27

    Immigrant workers who are new to Canada are considered a vulnerable population under the Ontario Ministry of Labour Prevention Strategy for workplace safety. Posters outlining workplace safety rights and responsibilities may not be understandable to new immigrants. To explore visual approaches to making health and safety messages more understandable to new immigrants. This pilot study used arts-based qualitative research methods. Key messages from the Ministry of Labour Health & Safety at Work poster were (re)represented as images by an artist. Recent immigrants engaged in individual interviews and then took part in a focus group, in order to elicit their experiences of health and safety practices, their understanding and feedback concerning the Ministry poster, and the images created. An image-rich version of the poster was developed. The combination of drawings and minimal text was preferred and considered helpful by participants. Barriers to health and safety and work challenges for new immigrants were highlighted. Visual analysis yielded new versions of the poster, as well as a pictorial representation of the research process and study findings. The study demonstrates the value of using image-rich posters with immigrant workers, and the effectiveness of using arts-based methods within the research process.

  11. Indiana crash facts 2008

    DOT National Transportation Integrated Search

    2008-01-01

    Designing and implementing effective traffic safety policies : requires data-driven analysis of traffic collisions. To help in the : policy-making process, the Indiana University Public Policy : Institute, Center for Criminal Justice Research (CCJR o...

  12. Indiana crash facts 2006

    DOT National Transportation Integrated Search

    2006-01-01

    Designing and implementing effective traffic safety policies : requires data-driven analysis of traffic collisions. To help in the : policy-making process, the Indiana University Public Policy : Institute, Center for Criminal Justice Research (CCJR o...

  13. Indiana crash facts 1998

    DOT National Transportation Integrated Search

    1998-01-01

    Designing and implementing effective traffic safety policies : requires data-driven analysis of traffic collisions. To help in the : policy-making process, the Indiana University Public Policy : Institute, Center for Criminal Justice Research (CCJR o...

  14. Indiana crash facts 2007

    DOT National Transportation Integrated Search

    2007-01-01

    Designing and implementing effective traffic safety policies : requires data-driven analysis of traffic collisions. To help in the : policy-making process, the Indiana University Public Policy : Institute, Center for Criminal Justice Research (CCJR o...

  15. Expensive Enrichment

    ERIC Educational Resources Information Center

    Resnikoff, Marvin

    1975-01-01

    This article presents an economic analysis of the nuclear fuel reprocessing industry. It indicates that while environmental safety devices have improved the working conditions, they have also added ever-increasing costs to this necessary process. (MA)

  16. Reactor Operations Monitoring System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, M.M.

    1989-01-01

    The Reactor Operations Monitoring System (ROMS) is a VME based, parallel processor data acquisition and safety action system designed by the Equipment Engineering Section and Reactor Engineering Department of the Savannah River Site. The ROMS will be analyzing over 8 million signal samples per minute. Sixty-eight microprocessors are used in the ROMS in order to achieve a real-time data analysis. The ROMS is composed of multiple computer subsystems. Four redundant computer subsystems monitor 600 temperatures with 2400 thermocouples. Two computer subsystems share the monitoring of 600 reactor coolant flows. Additional computer subsystems are dedicated to monitoring 400 signals from assortedmore » process sensors. Data from these computer subsystems are transferred to two redundant process display computer subsystems which present process information to reactor operators and to reactor control computers. The ROMS is also designed to carry out safety functions based on its analysis of process data. The safety functions include initiating a reactor scram (shutdown), the injection of neutron poison, and the loadshed of selected equipment. A complete development Reactor Operations Monitoring System has been built. It is located in the Program Development Center at the Savannah River Site and is currently being used by the Reactor Engineering Department in software development. The Equipment Engineering Section is designing and fabricating the process interface hardware. Upon proof of hardware and design concept, orders will be placed for the final five systems located in the three reactor areas, the reactor training simulator, and the hardware maintenance center.« less

  17. Human Factors Process Task Analysis Liquid Oxygen Pump Acceptance Test Procedure for the Advanced Technology Development Center

    NASA Technical Reports Server (NTRS)

    Diorio, Kimberly A.

    2002-01-01

    A process task analysis effort was undertaken by Dynacs Inc. commencing in June 2002 under contract from NASA YA-D6. Funding was provided through NASA's Ames Research Center (ARC), Code M/HQ, and Industrial Engineering and Safety (IES). The John F. Kennedy Space Center (KSC) Engineering Development Contract (EDC) Task Order was 5SMA768. The scope of the effort was to conduct a Human Factors Process Failure Modes and Effects Analysis (HF PFMEA) of a hazardous activity and provide recommendations to eliminate or reduce the effects of errors caused by human factors. The Liquid Oxygen (LOX) Pump Acceptance Test Procedure (ATP) was selected for this analysis. The HF PFMEA table (see appendix A) provides an analysis of six major categories evaluated for this study. These categories include Personnel Certification, Test Procedure Format, Test Procedure Safety Controls, Test Article Data, Instrumentation, and Voice Communication. For each specific requirement listed in appendix A, the following topics were addressed: Requirement, Potential Human Error, Performance-Shaping Factors, Potential Effects of the Error, Barriers and Controls, Risk Priority Numbers, and Recommended Actions. This report summarizes findings and gives recommendations as determined by the data contained in appendix A. It also includes a discussion of technology barriers and challenges to performing task analyses, as well as lessons learned. The HF PFMEA table in appendix A recommends the use of accepted and required safety criteria in order to reduce the risk of human error. The items with the highest risk priority numbers should receive the greatest amount of consideration. Implementation of the recommendations will result in a safer operation for all personnel.

  18. Defining near misses: towards a sharpened definition based on empirical data about error handling processes.

    PubMed

    Kessels-Habraken, Marieke; Van der Schaaf, Tjerk; De Jonge, Jan; Rutte, Christel

    2010-05-01

    Medical errors in health care still occur frequently. Unfortunately, errors cannot be completely prevented and 100% safety can never be achieved. Therefore, in addition to error reduction strategies, health care organisations could also implement strategies that promote timely error detection and correction. Reporting and analysis of so-called near misses - usually defined as incidents without adverse consequences for patients - are necessary to gather information about successful error recovery mechanisms. This study establishes the need for a clearer and more consistent definition of near misses to enable large-scale reporting and analysis in order to obtain such information. Qualitative incident reports and interviews were collected on four units of two Dutch general hospitals. Analysis of the 143 accompanying error handling processes demonstrated that different incident types each provide unique information about error handling. Specifically, error handling processes underlying incidents that did not reach the patient differed significantly from those of incidents that reached the patient, irrespective of harm, because of successful countermeasures that had been taken after error detection. We put forward two possible definitions of near misses and argue that, from a practical point of view, the optimal definition may be contingent on organisational context. Both proposed definitions could yield large-scale reporting of near misses. Subsequent analysis could enable health care organisations to improve the safety and quality of care proactively by (1) eliminating failure factors before real accidents occur, (2) enhancing their ability to intercept errors in time, and (3) improving their safety culture. Copyright 2010 Elsevier Ltd. All rights reserved.

  19. Patient Safety Reporting Systems: Sustained Quality Improvement Using a Multidisciplinary Team and “Good Catch” Awards

    PubMed Central

    Herzer, Kurt R.; Mirrer, Meredith; Xie, Yanjun; Steppan, Jochen; Li, Matthew; Jung, Clinton; Cover, Renee; Doyle, Peter A.; Mark, Lynette J.

    2014-01-01

    Background Since 1999, hospitals have made substantial commitments to healthcare quality and patient safety through individual initiatives of executive leadership involvement in quality, investments in safety culture, education and training for medical students and residents in quality and safety, the creation of patient safety committees, and implementation of patient safety reporting systems. Cohesive quality and safety approaches have become comprehensive programs to identify and mitigate hazards that could harm patients. This article moves to the next level with an intense refocusing of attention on one of the individual components of a comprehensive program--the patient safety reporting system—with a goal of maximized usefulness of the reports and long-term sustainability of quality improvements arising from them. Methods A six-phase framework was developed to deal with patient safety hazards: identify, report, analyze, mitigate, reward, and follow up. Unique features of this process included a multidisciplinary team to review reports, mitigate hazards, educate and empower providers, recognize the identifying/reporting individuals or groups with “Good Catch” awards, and follow up to determine if quality improvements were sustained over time. Results To date, 29 patient safety hazards have gone through this process with “Good Catch” awards being granted at our institution. These awards were presented at various times over the past 4 years since the process began in 2008. Follow-up revealed that 86% of the associated quality improvements have been sustained over time since the awards were given. We present the details of two of these “Good Catch” awards: vials of heparin with an unusually high concentration of the drug that posed a potential overdose hazard and a rapid infusion device that resisted practitioner control. Conclusion A multidisciplinary team's analysis and mitigation of hazards identified in a patient safety reporting system, positive recognition with a “Good Catch” award, education of practitioners, and long-term follow-up resulted in an outcome of sustained quality improvement initiatives. PMID:22946251

  20. Criteria for the Research Institute for Fragrance Materials, Inc. (RIFM) safety evaluation process for fragrance ingredients.

    PubMed

    Api, A M; Belsito, D; Bruze, M; Cadby, P; Calow, P; Dagli, M L; Dekant, W; Ellis, G; Fryer, A D; Fukayama, M; Griem, P; Hickey, C; Kromidas, L; Lalko, J F; Liebler, D C; Miyachi, Y; Politano, V T; Renskers, K; Ritacco, G; Salvito, D; Schultz, T W; Sipes, I G; Smith, B; Vitale, D; Wilcox, D K

    2015-08-01

    The Research Institute for Fragrance Materials, Inc. (RIFM) has been engaged in the generation and evaluation of safety data for fragrance materials since its inception over 45 years ago. Over time, RIFM's approach to gathering data, estimating exposure and assessing safety has evolved as the tools for risk assessment evolved. This publication is designed to update the RIFM safety assessment process, which follows a series of decision trees, reflecting advances in approaches in risk assessment and new and classical toxicological methodologies employed by RIFM over the past ten years. These changes include incorporating 1) new scientific information including a framework for choosing structural analogs, 2) consideration of the Threshold of Toxicological Concern (TTC), 3) the Quantitative Risk Assessment (QRA) for dermal sensitization, 4) the respiratory route of exposure, 5) aggregate exposure assessment methodology, 6) the latest methodology and approaches to risk assessments, 7) the latest alternatives to animal testing methodology and 8) environmental risk assessment. The assessment begins with a thorough analysis of existing data followed by in silico analysis, identification of 'read across' analogs, generation of additional data through in vitro testing as well as consideration of the TTC approach. If necessary, risk management may be considered. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. The dimensions of nursing surveillance: a concept analysis.

    PubMed

    Kelly, Lesly; Vincent, Deborah

    2011-03-01

    This paper is a report of an analysis of the concept of nursing surveillance. Nursing surveillance, a primary function of acute care nurses, is critical to patient safety and outcomes. Although it has been associated with patient outcomes and organizational context of care, little knowledge has been generated about the conceptual and operational process of surveillance. A search using the CINAHL, Medline and PubMed databases was used to compile an international data set of 18 papers and 4 book chapters published from 1985 to 2009. Rodger's evolutionary concept analysis techniques were used to analyse surveillance in a systems framework. This method focused the search to nursing surveillance (as opposed to other medical uses of the term) and used a theoretical framework to guide the analysis. The examination of the literature clarifies the multifaceted nature of nursing surveillance in the acute care setting. Surveillance involves purposeful and ongoing acquisition, interpretation and synthesis of patient data for clinical decision-making. Behavioural activities and multiple cognitive processes are used in surveillance in order for the nurse to make decisions for patient safety and health maintenance. A systems approach to the analysis also demonstrates how organizational characteristics and contextual factors influence the process in the acute care environment. This conceptual analysis describes the nature of the surveillance process and clarifies the concept for effective communication and future use in health services research. © 2010 The Authors. Journal of Advanced Nursing © 2010 Blackwell Publishing Ltd.

  2. The dimensions of nursing surveillance: a concept analysis

    PubMed Central

    Kelly, Lesly; Vincent, Deborah

    2011-01-01

    Aim This paper is a report of an analysis of the concept of nursing surveillance. Background Nursing surveillance, a primary function of acute care nurses, is critical to patient safety and outcomes. Although it has been associated with patient outcomes and organizational context of care, little knowledge has been generated about the conceptual and operational process of surveillance. Data sources A search using the CINAHL, Medline and PubMed databases was used to compile an international data set of 18 papers and 4 book chapters published from 1985 to 2009. Review methods Rodger’s evolutionary concept analysis techniques were used to analyse surveillance in a systems framework. This method focused the search to nursing surveillance (as opposed to other medical uses of the term) and used a theoretical framework to guide the analysis. Results The examination of the literature clarifies the multifaceted nature of nursing surveillance in the acute care setting. Surveillance involves purposeful and ongoing acquisition, interpretation and synthesis of patient data for clinical decision- making. Behavioural activities and multiple cognitive processes are used in surveillance in order for the nurse to make decisions for patient safety and health maintenance. A systems approach to the analysis also demonstrates how organizational characteristics and contextual factors influence the process in the acute care environment. Conclusion This conceptual analysis describes the nature of the surveillance process and clarifies the concept for effective communication and future use in health services research. PMID:21129007

  3. RPP-PRT-58489, Revision 1, One Systems Consistent Safety Analysis Methodologies Report. 24590-WTP-RPT-MGT-15-014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Mukesh; Niemi, Belinda; Paik, Ingle

    2015-09-02

    In 2012, One System Nuclear Safety performed a comparison of the safety bases for the Tank Farms Operations Contractor (TOC) and Hanford Tank Waste Treatment and Immobilization Plant (WTP) (RPP-RPT-53222 / 24590-WTP-RPT-MGT-12-018, “One System Report of Comparative Evaluation of Safety Bases for Hanford Waste Treatment and Immobilization Plant Project and Tank Operations Contract”), and identified 25 recommendations that required further evaluation for consensus disposition. This report documents ten NSSC approved consistent methodologies and guides and the results of the additional evaluation process using a new set of evaluation criteria developed for the evaluation of the new methodologies.

  4. Regulatory Science in Professional Education.

    PubMed

    Akiyama, Hiroshi

    2017-01-01

    In the field of pharmaceutical sciences, the subject of regulatory science (RS) includes pharmaceuticals, food, and living environments. For pharmaceuticals, considering the balance between efficacy and safety is a point required for public acceptance, and in that balance, more importance is given to efficacy in curing disease. For food, however, safety is the most important consideration for public acceptance because food should be essentially free of risk. To ensure food safety, first, any hazard that is an agent in food or condition of food with the potential to cause adverse health effects should be identified and characterized. Then the risk that it will affect public health is scientifically analyzed. This process is called risk assessment. Second, risk management should be conducted to reduce a risk that has the potential to affect public health found in a risk assessment. Furthermore, risk communication, which is the interactive exchange of information and opinions concerning risk and risk management among risk assessors, risk managers, consumers, and other interested parties, should be conducted. Food safety is ensured based on risk analysis consisting of the three components of risk assessment, risk management, and risk communication. RS in the field of food safety supports risk analysis, such as scientific research and development of test methods to evaluate food quality, efficacy, and safety. RS is also applied in the field of living environments because the safety of environmental chemical substances is ensured based on risk analysis, similar to that conducted for food.

  5. Development and evaluation of a web-based software for crash data collection, processing and analysis.

    PubMed

    Montella, Alfonso; Chiaradonna, Salvatore; Criscuolo, Giorgio; De Martino, Salvatore

    2017-02-05

    First step of the development of an effective safety management system is to create reliable crash databases since the quality of decision making in road safety depends on the quality of the data on which decisions are based. Improving crash data is a worldwide priority, as highlighted in the Global Plan for the Decade of Action for Road Safety adopted by the United Nations, which recognizes that the overall goal of the plan will be attained improving the quality of data collection at the national, regional and global levels. Crash databases provide the basic information for effective highway safety efforts at any level of government, but lack of uniformity among countries and among the different jurisdictions in the same country is observed. Several existing databases show significant drawbacks which hinder their effective use for safety analysis and improvement. Furthermore, modern technologies offer great potential for significant improvements of existing methods and procedures for crash data collection, processing and analysis. To address these issues, in this paper we present the development and evaluation of a web-based platform-independent software for crash data collection, processing and analysis. The software is designed for mobile and desktop electronic devices and enables a guided and automated drafting of the crash report, assisting police officers both on-site and in the office. The software development was based both on the detailed critical review of existing Australasian, EU, and U.S. crash databases and software as well as on the continuous consultation with the stakeholders. The evaluation was carried out comparing the completeness, timeliness, and accuracy of crash data before and after the use of the software in the city of Vico Equense, in south of Italy showing significant advantages. The amount of collected information increased from 82 variables to 268 variables, i.e., a 227% increase. The time saving was more than one hour per crash, i.e., a 36% reduction. The on-site data collection did not produce time saving, however this is a temporary weakness that will be annihilated very soon in the future after officers are more acquainted with the software. The phase of evaluation, processing and analysis carried out in the office was dramatically shortened, i.e., a 69% reduction. Another benefit was the standardization which allowed fast and consistent data analysis and evaluation. Even if all these benefits are remarkable, the most valuable benefit of the new procedure was the reduction of the police officers mistakes during the manual operations of survey and data evaluation. Because of these benefits, the satisfaction questionnaires administrated to the police officers after the testing phase showed very good acceptance of the procedure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Risk management systems for health care and safety development on transplantation: a review and a proposal.

    PubMed

    Pretagostini, R; Gabbrielli, F; Fiaschetti, P; Oliveti, A; Cenci, S; Peritore, D; Stabile, D

    2010-05-01

    Starting from the report on medical errors published in 1999 by the US Institute of Medicine, a number of different approaches to risk management have been developed for maximum risk reduction in health care activities. The health care authorities in many countries have focused attention on patient safety, employing action research programs that are based on quite different principles. We performed a systematic Medline research of the literature since 1999. The following key words were used, also combining boolean operators and medical subheading terms: "adverse event," "risk management," "error," and "governance." Studies published in the last 5 years were particularly classified in various groups: risk management in health care systems; safety in specific hospital activities; and health care institutions' official documents. Methods of action researches have been analysed and their characteristics compared. Their suitability for safety development in donation, retrieval, and transplantation processes were discussed in the reality of the Italian transplant network. Some action researches and studies were dedicated to entire national healthcare systems, whereas others focused on specific risks. Many research programs have undergone critical review in the literature. Retrospective analysis has centered on so-called sentinel events to particularly analyze only a minor portion of the organizational phenomena, which can be the origin of an adverse event, an incident, or an error. Sentinel events give useful information if they are studied in highly engineered and standardized organizations like laboratories or tissue establishments, but they show several limits in the analysis of organ donation, retrieval, and transplantation processes, which are characterized by prevailing human factors, with high intrinsic risk and variability. Thus, they are poorly effective to deliver sure elements to base safety management improvement programs, especially regarding multidisciplinary systems with high complexity. In organ transplantation, the possibility to increase safety seems greater using proactive research, mainly centred on organizational processes together with retrospective analyses but not limited to sentinel event reports. Copyright (c) 2010. Published by Elsevier Inc.

  7. An Analysis of the Baking Occupation.

    ERIC Educational Resources Information Center

    Boyadjid, Thomas A; Paoletti, Donald J.

    The general purpose of the occupational analysis is to provide workable, basic information dealing with the many and varied duties performed in the baking occupation. Such tasks as choosing ingredients and the actual baking process are logical primary concerns, but also explored are the safety and sanitation factors and management problems in a…

  8. Thinking in Pharmacy Practice: A Study of Community Pharmacists’ Clinical Reasoning in Medication Supply Using the Think-Aloud Method

    PubMed Central

    Croft, Hayley; Gilligan, Conor; Rasiah, Rohan; Levett-Jones, Tracy; Schneider, Jennifer

    2017-01-01

    Medication review and supply by pharmacists involves both cognitive and technical skills related to the safety and appropriateness of prescribed medicines. The cognitive ability of pharmacists to recall, synthesise and memorise information is a critical aspect of safe and optimal medicines use, yet few studies have investigated the clinical reasoning and decision-making processes pharmacists use when supplying prescribed medicines. The objective of this study was to examine the patterns and processes of pharmacists’ clinical reasoning and to identify the information sources used, when making decisions about the safety and appropriateness of prescribed medicines. Ten community pharmacists participated in a simulation in which they were required to review a prescription and make decisions about the safety and appropriateness of supplying the prescribed medicines to the patient, whilst at the same time thinking aloud about the tasks required. Following the simulation each pharmacist was asked a series of questions to prompt retrospective thinking aloud using video-stimulated recall. The simulated consultation and retrospective interview were recorded and transcribed for thematic analysis. All of the pharmacists made a safe and appropriate supply of two prescribed medicines to the simulated patient. Qualitative analysis identified seven core thinking processes used during the supply process: considering prescription in context, retrieving information, identifying medication-related issues, processing information, collaborative planning, decision making and reflection; and align closely with other health professionals. The insights from this study have implications for enhancing awareness of decision making processes in pharmacy practice and informing teaching and assessment approaches in medication supply. PMID:29301223

  9. Thinking in Pharmacy Practice: A Study of Community Pharmacists' Clinical Reasoning in Medication Supply Using the Think-Aloud Method.

    PubMed

    Croft, Hayley; Gilligan, Conor; Rasiah, Rohan; Levett-Jones, Tracy; Schneider, Jennifer

    2017-12-31

    Medication review and supply by pharmacists involves both cognitive and technical skills related to the safety and appropriateness of prescribed medicines. The cognitive ability of pharmacists to recall, synthesise and memorise information is a critical aspect of safe and optimal medicines use, yet few studies have investigated the clinical reasoning and decision-making processes pharmacists use when supplying prescribed medicines. The objective of this study was to examine the patterns and processes of pharmacists' clinical reasoning and to identify the information sources used, when making decisions about the safety and appropriateness of prescribed medicines. Ten community pharmacists participated in a simulation in which they were required to review a prescription and make decisions about the safety and appropriateness of supplying the prescribed medicines to the patient, whilst at the same time thinking aloud about the tasks required. Following the simulation each pharmacist was asked a series of questions to prompt retrospective thinking aloud using video-stimulated recall. The simulated consultation and retrospective interview were recorded and transcribed for thematic analysis. All of the pharmacists made a safe and appropriate supply of two prescribed medicines to the simulated patient. Qualitative analysis identified seven core thinking processes used during the supply process: considering prescription in context, retrieving information, identifying medication-related issues, processing information, collaborative planning, decision making and reflection; and align closely with other health professionals. The insights from this study have implications for enhancing awareness of decision making processes in pharmacy practice and informing teaching and assessment approaches in medication supply.

  10. Design and Testing of BACRA, a Web-Based Tool for Middle Managers at Health Care Facilities to Lead the Search for Solutions to Patient Safety Incidents

    PubMed Central

    Mira, José Joaquín; Vicente, Maria Asuncion; Fernandez, Cesar; Guilabert, Mercedes; Ferrús, Lena; Zavala, Elena; Silvestre, Carmen; Pérez-Pérez, Pastora

    2016-01-01

    Background Lack of time, lack of familiarity with root cause analysis, or suspicion that the reporting may result in negative consequences hinder involvement in the analysis of safety incidents and the search for preventive actions that can improve patient safety. Objective The aim was develop a tool that enables hospitals and primary care professionals to immediately analyze the causes of incidents and to propose and implement measures intended to prevent their recurrence. Methods The design of the Web-based tool (BACRA) considered research on the barriers for reporting, review of incident analysis tools, and the experience of eight managers from the field of patient safety. BACRA’s design was improved in successive versions (BACRA v1.1 and BACRA v1.2) based on feedback from 86 middle managers. BACRA v1.1 was used by 13 frontline professionals to analyze incidents of safety; 59 professionals used BACRA v1.2 and assessed the respective usefulness and ease of use of both versions. Results BACRA contains seven tabs that guide the user through the process of analyzing a safety incident and proposing preventive actions for similar future incidents. BACRA does not identify the person completing each analysis since the password introduced to hide said analysis only is linked to the information concerning the incident and not to any personal data. The tool was used by 72 professionals from hospitals and primary care centers. BACRA v1.2 was assessed more favorably than BACRA v1.1, both in terms of its usefulness (z=2.2, P=.03) and its ease of use (z=3.0, P=.003). Conclusions BACRA helps to analyze incidents of safety and to propose preventive actions. BACRA guarantees anonymity of the analysis and reduces the reluctance of professionals to carry out this task. BACRA is useful and easy to use. PMID:27678308

  11. Design and Testing of BACRA, a Web-Based Tool for Middle Managers at Health Care Facilities to Lead the Search for Solutions to Patient Safety Incidents.

    PubMed

    Carrillo, Irene; Mira, José Joaquín; Vicente, Maria Asuncion; Fernandez, Cesar; Guilabert, Mercedes; Ferrús, Lena; Zavala, Elena; Silvestre, Carmen; Pérez-Pérez, Pastora

    2016-09-27

    Lack of time, lack of familiarity with root cause analysis, or suspicion that the reporting may result in negative consequences hinder involvement in the analysis of safety incidents and the search for preventive actions that can improve patient safety. The aim was develop a tool that enables hospitals and primary care professionals to immediately analyze the causes of incidents and to propose and implement measures intended to prevent their recurrence. The design of the Web-based tool (BACRA) considered research on the barriers for reporting, review of incident analysis tools, and the experience of eight managers from the field of patient safety. BACRA's design was improved in successive versions (BACRA v1.1 and BACRA v1.2) based on feedback from 86 middle managers. BACRA v1.1 was used by 13 frontline professionals to analyze incidents of safety; 59 professionals used BACRA v1.2 and assessed the respective usefulness and ease of use of both versions. BACRA contains seven tabs that guide the user through the process of analyzing a safety incident and proposing preventive actions for similar future incidents. BACRA does not identify the person completing each analysis since the password introduced to hide said analysis only is linked to the information concerning the incident and not to any personal data. The tool was used by 72 professionals from hospitals and primary care centers. BACRA v1.2 was assessed more favorably than BACRA v1.1, both in terms of its usefulness (z=2.2, P=.03) and its ease of use (z=3.0, P=.003). BACRA helps to analyze incidents of safety and to propose preventive actions. BACRA guarantees anonymity of the analysis and reduces the reluctance of professionals to carry out this task. BACRA is useful and easy to use.

  12. Assessment of Primary Production of Horticultural Safety Management Systems of Mushroom Farms in South Africa.

    PubMed

    Dzingirayi, Garikayi; Korsten, Lise

    2016-07-01

    Growing global consumer concern over food safety in the fresh produce industry requires producers to implement necessary quality assurance systems. Varying effectiveness has been noted in how countries and food companies interpret and implement food safety standards. A diagnostic instrument (DI) for global fresh produce industries was developed to measure the compliancy of companies with implemented food safety standards. The DI is made up of indicators and descriptive grids for context factors and control and assurance activities to measure food safety output. The instrument can be used in primary production to assess food safety performance. This study applied the DI to measure food safety standard compliancy of mushroom farming in South Africa. Ten farms representing almost half of the industry farms and more than 80% of production were independently assessed for their horticultural safety management system (HSMS) compliance via in-depth interviews with each farm's quality assurance personnel. The data were processed using Microsoft Office Excel 2010 and are represented in frequency tables. The diagnosis revealed that the mushroom farming industry had an average food safety output. The farms were implementing an average-toadvanced HSMS and operating in a medium-risk context. Insufficient performance areas in HSMSs included inadequate hazard analysis and analysis of control points, low specificity of pesticide assessment, and inadequate control of suppliers and incoming materials. Recommendations to the industry and current shortcomings are suggested for realization of an improved industry-wide food safety assurance system.

  13. Development of NASA's Accident Precursor Analysis Process Through Application on the Space Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Maggio, Gaspare; Groen, Frank; Hamlin, Teri; Youngblood, Robert

    2010-01-01

    Accident Precursor Analysis (APA) serves as the bridge between existing risk modeling activities, which are often based on historical or generic failure statistics, and system anomalies, which provide crucial information about the failure mechanisms that are actually operative in the system. APA docs more than simply track experience: it systematically evaluates experience, looking for under-appreciated risks that may warrant changes to design or operational practice. This paper presents the pilot application of the NASA APA process to Space Shuttle Orbiter systems. In this effort, the working sessions conducted at Johnson Space Center (JSC) piloted the APA process developed by Information Systems Laboratories (ISL) over the last two years under the auspices of NASA's Office of Safety & Mission Assurance, with the assistance of the Safety & Mission Assurance (S&MA) Shuttle & Exploration Analysis Branch. This process is built around facilitated working sessions involving diverse system experts. One important aspect of this particular APA process is its focus on understanding the physical mechanism responsible for an operational anomaly, followed by evaluation of the risk significance of the observed anomaly as well as consideration of generalizations of the underlying mechanism to other contexts. Model completeness will probably always be an issue, but this process tries to leverage operating experience to the extent possible in order to address completeness issues before a catastrophe occurs.

  14. Evolution of International Space Station Program Safety Review Processes and Tools

    NASA Technical Reports Server (NTRS)

    Ratterman, Christian D.; Green, Collin; Guibert, Matt R.; McCracken, Kristle I.; Sang, Anthony C.; Sharpe, Matthew D.; Tollinger, Irene V.

    2013-01-01

    The International Space Station Program at NASA is constantly seeking to improve the processes and systems that support safe space operations. To that end, the ISS Program decided to upgrade their Safety and Hazard data systems with 3 goals: make safety and hazard data more accessible; better support the interconnection of different types of safety data; and increase the efficiency (and compliance) of safety-related processes. These goals are accomplished by moving data into a web-based structured data system that includes strong process support and supports integration with other information systems. Along with the data systems, ISS is evolving its submission requirements and safety process requirements to support the improved model. In contrast to existing operations (where paper processes and electronic file repositories are used for safety data management) the web-based solution provides the program with dramatically faster access to records, the ability to search for and reference specific data within records, reduced workload for hazard updates and approval, and process support including digital signatures and controlled record workflow. In addition, integration with other key data systems provides assistance with assessments of flight readiness, more efficient review and approval of operational controls and better tracking of international safety certifications. This approach will also provide new opportunities to streamline the sharing of data with ISS international partners while maintaining compliance with applicable laws and respecting restrictions on proprietary data. One goal of this paper is to outline the approach taken by the ISS Progrm to determine requirements for the new system and to devise a practical and efficient implementation strategy. From conception through implementation, ISS and NASA partners utilized a user-centered software development approach focused on user research and iterative design methods. The user-centered approach used on the new ISS hazard system utilized focused user research and iterative design methods employed by the Human Computer Interaction Group at NASA Ames Research Center. Particularly, the approach emphasized the reduction of workload associated with document and data management activities so more resources can be allocated to the operational use of data in problem solving, safety analysis, and recurrence control. The methods and techniques used to understand existing processes and systems, to recognize opportunities for improvement, and to design and review improvements are described with the intent that similar techniques can be employed elsewhere in safety operations. A second goal of this paper is to provide and overview of the web-based data system implemented by ISS. The software selected for the ISS hazard systemMission Assurance System (MAS)is a NASA-customized vairant of the open source software project Bugzilla. The origin and history of MAS as a NASA software project and the rationale for (and advantages of) using open-source software are documented elsewhere (Green, et al., 2009).

  15. Safety Management of a Clinical Process Using Failure Mode and Effect Analysis: Continuous Renal Replacement Therapies in Intensive Care Unit Patients.

    PubMed

    Sanchez-Izquierdo-Riera, Jose Angel; Molano-Alvarez, Esteban; Saez-de la Fuente, Ignacio; Maynar-Moliner, Javier; Marín-Mateos, Helena; Chacón-Alves, Silvia

    2016-01-01

    The failure mode and effect analysis (FMEA) may improve the safety of the continuous renal replacement therapies (CRRT) in the intensive care unit. We use this tool in three phases: 1) Retrospective observational study. 2) A process FMEA, with implementation of the improvement measures identified. 3) Cohort study after FMEA. We included 54 patients in the pre-FMEA group and 72 patients in the post-FMEA group. Comparing the risks frequencies per patient in both groups, we got less cases of under 24 hours of filter survival time in the post-FMEA group (31 patients 57.4% vs. 21 patients 29.6%; p < 0.05); less patients suffered circuit coagulation with inability to return the blood to the patient (25 patients [46.3%] vs. 16 patients [22.2%]; p < 0.05); 54 patients (100%) versus 5 (6.94%) did not get phosphorus levels monitoring (p < 0.05); in 14 patients (25.9%) versus 0 (0%), the CRRT prescription did not appear on medical orders. As a measure of improvement, we adopt a dynamic dosage management. After the process FMEA, there were several improvements in the management of intensive care unit patients receiving CRRT, and we consider it a useful tool for improving the safety of critically ill patients.

  16. 2006 NASA Range Safety Annual Report

    NASA Technical Reports Server (NTRS)

    TenHaken, Ron; Daniels, B.; Becker, M.; Barnes, Zack; Donovan, Shawn; Manley, Brenda

    2007-01-01

    Throughout 2006, Range Safety was involved in a number of exciting and challenging activities and events, from developing, implementing, and supporting Range Safety policies and procedures-such as the Space Shuttle Launch and Landing Plans, the Range Safety Variance Process, and the Expendable Launch Vehicle Safety Program procedures-to evaluating new technologies. Range Safety training development is almost complete with the last course scheduled to go on line in mid-2007. Range Safety representatives took part in a number of panels and councils, including the newly formed Launch Constellation Range Safety Panel, the Range Commanders Council and its subgroups, the Space Shuttle Range Safety Panel, and the unmanned aircraft systems working group. Space based range safety demonstration and certification (formerly STARS) and the autonomous flight safety system were successfully tested. The enhanced flight termination system will be tested in early 2007 and the joint advanced range safety system mission analysis software tool is nearing operational status. New technologies being evaluated included a processor for real-time compensation in long range imaging, automated range surveillance using radio interferometry, and a space based range command and telemetry processor. Next year holds great promise as we continue ensuring safety while pursuing our quest beyond the Moon to Mars.

  17. Towards a Fuzzy Bayesian Network Based Approach for Safety Risk Analysis of Tunnel-Induced Pipeline Damage.

    PubMed

    Zhang, Limao; Wu, Xianguo; Qin, Yawei; Skibniewski, Miroslaw J; Liu, Wenli

    2016-02-01

    Tunneling excavation is bound to produce significant disturbances to surrounding environments, and the tunnel-induced damage to adjacent underground buried pipelines is of considerable importance for geotechnical practice. A fuzzy Bayesian networks (FBNs) based approach for safety risk analysis is developed in this article with detailed step-by-step procedures, consisting of risk mechanism analysis, the FBN model establishment, fuzzification, FBN-based inference, defuzzification, and decision making. In accordance with the failure mechanism analysis, a tunnel-induced pipeline damage model is proposed to reveal the cause-effect relationships between the pipeline damage and its influential variables. In terms of the fuzzification process, an expert confidence indicator is proposed to reveal the reliability of the data when determining the fuzzy probability of occurrence of basic events, with both the judgment ability level and the subjectivity reliability level taken into account. By means of the fuzzy Bayesian inference, the approach proposed in this article is capable of calculating the probability distribution of potential safety risks and identifying the most likely potential causes of accidents under both prior knowledge and given evidence circumstances. A case concerning the safety analysis of underground buried pipelines adjacent to the construction of the Wuhan Yangtze River Tunnel is presented. The results demonstrate the feasibility of the proposed FBN approach and its application potential. The proposed approach can be used as a decision tool to provide support for safety assurance and management in tunnel construction, and thus increase the likelihood of a successful project in a complex project environment. © 2015 Society for Risk Analysis.

  18. Categorizing accident sequences in the external radiotherapy for risk analysis

    PubMed Central

    2013-01-01

    Purpose This study identifies accident sequences from the past accidents in order to help the risk analysis application to the external radiotherapy. Materials and Methods This study reviews 59 accidental cases in two retrospective safety analyses that have collected the incidents in the external radiotherapy extensively. Two accident analysis reports that accumulated past incidents are investigated to identify accident sequences including initiating events, failure of safety measures, and consequences. This study classifies the accidents by the treatments stages and sources of errors for initiating events, types of failures in the safety measures, and types of undesirable consequences and the number of affected patients. Then, the accident sequences are grouped into several categories on the basis of similarity of progression. As a result, these cases can be categorized into 14 groups of accident sequence. Results The result indicates that risk analysis needs to pay attention to not only the planning stage, but also the calibration stage that is committed prior to the main treatment process. It also shows that human error is the largest contributor to initiating events as well as to the failure of safety measures. This study also illustrates an event tree analysis for an accident sequence initiated in the calibration. Conclusion This study is expected to provide sights into the accident sequences for the prospective risk analysis through the review of experiences. PMID:23865005

  19. System Guidelines for EMC Safety-Critical Circuits: Design, Selection, and Margin Demonstration

    NASA Technical Reports Server (NTRS)

    Lawton, R. M.

    1996-01-01

    Demonstration of required safety margins on critical electrical/electronic circuits in large complex systems has become an implementation and cost problem. These margins are the difference between the activation level of the circuit and the electrical noise on the circuit in the actual operating environment. This document discusses the origin of the requirement and gives a detailed process flow for the identification of the system electromagnetic compatibility (EMC) critical circuit list. The process flow discusses the roles of engineering disciplines such as systems engineering, safety, and EMC. Design and analysis guidelines are provided to assist the designer in assuring the system design has a high probability of meeting the margin requirements. Examples of approaches used on actual programs (Skylab and Space Shuttle Solid Rocket Booster) are provided to show how variations of the approach can be used successfully.

  20. Final report of coordination and cooperation with the European Union on embankment failure analysis

    USDA-ARS?s Scientific Manuscript database

    There has been an emphasis in the European Union (EU) community on the investigation of extreme flood processes and the uncertainties related to these processes. Over a 3-year period, the EU and the U.S. dam safety community (1) coordinated their efforts and collected information needed to integrate...

  1. Controlled versus automatic processes: which is dominant to safety? The moderating effect of inhibitory control.

    PubMed

    Xu, Yaoshan; Li, Yongjuan; Ding, Weidong; Lu, Fan

    2014-01-01

    This study explores the precursors of employees' safety behaviors based on a dual-process model, which suggests that human behaviors are determined by both controlled and automatic cognitive processes. Employees' responses to a self-reported survey on safety attitudes capture their controlled cognitive process, while the automatic association concerning safety measured by an Implicit Association Test (IAT) reflects employees' automatic cognitive processes about safety. In addition, this study investigates the moderating effects of inhibition on the relationship between self-reported safety attitude and safety behavior, and that between automatic associations towards safety and safety behavior. The results suggest significant main effects of self-reported safety attitude and automatic association on safety behaviors. Further, the interaction between self-reported safety attitude and inhibition and that between automatic association and inhibition each predict unique variances in safety behavior. Specifically, the safety behaviors of employees with lower level of inhibitory control are influenced more by automatic association, whereas those of employees with higher level of inhibitory control are guided more by self-reported safety attitudes. These results suggest that safety behavior is the joint outcome of both controlled and automatic cognitive processes, and the relative importance of these cognitive processes depends on employees' individual differences in inhibitory control. The implications of these findings for theoretical and practical issues are discussed at the end.

  2. Controlled versus Automatic Processes: Which Is Dominant to Safety? The Moderating Effect of Inhibitory Control

    PubMed Central

    Xu, Yaoshan; Li, Yongjuan; Ding, Weidong; Lu, Fan

    2014-01-01

    This study explores the precursors of employees' safety behaviors based on a dual-process model, which suggests that human behaviors are determined by both controlled and automatic cognitive processes. Employees' responses to a self-reported survey on safety attitudes capture their controlled cognitive process, while the automatic association concerning safety measured by an Implicit Association Test (IAT) reflects employees' automatic cognitive processes about safety. In addition, this study investigates the moderating effects of inhibition on the relationship between self-reported safety attitude and safety behavior, and that between automatic associations towards safety and safety behavior. The results suggest significant main effects of self-reported safety attitude and automatic association on safety behaviors. Further, the interaction between self-reported safety attitude and inhibition and that between automatic association and inhibition each predict unique variances in safety behavior. Specifically, the safety behaviors of employees with lower level of inhibitory control are influenced more by automatic association, whereas those of employees with higher level of inhibitory control are guided more by self-reported safety attitudes. These results suggest that safety behavior is the joint outcome of both controlled and automatic cognitive processes, and the relative importance of these cognitive processes depends on employees' individual differences in inhibitory control. The implications of these findings for theoretical and practical issues are discussed at the end. PMID:24520338

  3. Risk Informed Margins Management as part of Risk Informed Safety Margin Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis Smith

    2014-06-01

    The ability to better characterize and quantify safety margin is important to improved decision making about Light Water Reactor (LWR) design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margin management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. In addition, as research and development in the LWR Sustainability (LWRS) Program and other collaborative efforts yield new data, sensors, and improved scientific understanding of physical processes that govern the aging and degradation of plant SSCs needs and opportunities to better optimize plantmore » safety and performance will become known. To support decision making related to economics, readability, and safety, the Risk Informed Safety Margin Characterization (RISMC) Pathway provides methods and tools that enable mitigation options known as risk informed margins management (RIMM) strategies.« less

  4. Analysis respons to the implementation of nuclear installations safety culture using AHP-TOPSIS

    NASA Astrophysics Data System (ADS)

    Situmorang, J.; Kuntoro, I.; Santoso, S.; Subekti, M.; Sunaryo, G. R.

    2018-02-01

    An analysis of responses to the implementation of nuclear installations safety culture has been done using AHP (Analitic Hierarchy Process) - TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution). Safety culture is considered as collective commitments of the decision-making level, management level, and individual level. Thus each level will provide a subjective perspective as an alternative approach to implementation. Furthermore safety culture is considered by the statement of five characteristics which in more detail form consist of 37 attributes, and therefore can be expressed as multi-attribute state. Those characteristics and or attributes will be a criterion and its value is difficult to determine. Those criteria of course, will determine and strongly influence the implementation of the corresponding safety culture. To determine the pattern and magnitude of the influence is done by using a TOPSIS that is based on decision matrix approach and is composed of alternatives and criteria. The weight of each criterion is determined by AHP technique. The data used are data collected through questionnaires at the workshop on safety and health in 2015. .Reliability test of data gives Cronbah Alpha value of 95.5% which according to the criteria is stated reliable. Validity test using bivariate correlation analysis technique between each attribute give Pearson correlation for all attribute is significant at level 0,01. Using confirmatory factor analysis gives Kaise-Meyer-Olkin of sampling Adequacy (KMO) is 0.719 and it is greater than the acceptance criterion 0.5 as well as the 0.000 significance level much smaller than 0.05 and stated that further analysis could be performed. As a result of the analysis it is found that responses from the level of decision maker (second echelon) dominate the best order preference rank to be the best solution in strengthening the nuclear installation safety culture, except for the first characteristics, safety is a clearly recognized value. The rank of preference order is obtained sequentially according to the level of policy maker, management and individual or staff.

  5. Emission measurement and safety assessment for the production process of silicon nanoparticles in a pilot-scale facility

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Asbach, Christof; Fissan, Heinz; Hülser, Tim; Kaminski, Heinz; Kuhlbusch, Thomas A. J.; Pui, David Y. H.

    2012-03-01

    Emission into the workplace was measured for the production process of silicon nanoparticles in a pilot-scale facility at the Institute of Energy and Environmental Technology e.V. (IUTA). The silicon nanoparticles were produced in a hot-wall reactor and consisted of primary particles around 60 nm in diameter. We employed real-time aerosol instruments to measure particle number and lung-deposited surface area concentrations and size distribution; airborne particles were also collected for off-line electron microscopic analysis. Emission of silicon nanoparticles was not detected during the processes of synthesis, collection, and bagging. This was attributed to the completely closed production system and other safety measures against particle release which will be discussed briefly. Emission of silicon nanoparticles significantly above the detection limit was only observed during the cleaning process when the production system was open and manually cleaned. The majority of the detected particles was in the size range of 100-400 nm and were silicon nanoparticle agglomerates first deposited in the tubing then re-suspended during the cleaning process. Appropriate personal protection equipment is recommended for safety protection of the workers during cleaning.

  6. Evaluation of radiological dispersion/consequence codes supporting DOE nuclear facility SARs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O`Kula, K.R.; Paik, I.K.; Chung, D.Y.

    1996-12-31

    Since the early 1990s, the authorization basis documentation of many U.S. Department of Energy (DOE) nuclear facilities has been upgraded to comply with DOE orders and standards. In this process, many safety analyses have been revised. Unfortunately, there has been nonuniform application of software, and the most appropriate computer and engineering methodologies often are not applied. A DOE Accident Phenomenology and Consequence (APAC) Methodology Evaluation Program was originated at the request of DOE Defense Programs to evaluate the safety analysis methodologies used in nuclear facility authorization basis documentation and to define future cost-effective support and development initiatives. Six areas, includingmore » source term development (fire, spills, and explosion analysis), in-facility transport, and dispersion/ consequence analysis (chemical and radiological) are contained in the APAC program. The evaluation process, codes considered, key results, and recommendations for future model and software development of the Radiological Dispersion/Consequence Working Group are summarized in this paper.« less

  7. CRITICALITY SAFETY CONTROLS AND THE SAFETY BASIS AT PFP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kessler, S

    2009-04-21

    With the implementation of DOE Order 420.1B, Facility Safety, and DOE-STD-3007-2007, 'Guidelines for Preparing Criticality Safety Evaluations at Department of Energy Non-Reactor Nuclear Facilities', a new requirement was imposed that all criticality safety controls be evaluated for inclusion in the facility Documented Safety Analysis (DSA) and that the evaluation process be documented in the site Criticality Safety Program Description Document (CSPDD). At the Hanford site in Washington State the CSPDD, HNF-31695, 'General Description of the FH Criticality Safety Program', requires each facility develop a linking document called a Criticality Control Review (CCR) to document performance of these evaluations. Chapter 5,more » Appendix 5B of HNF-7098, Criticality Safety Program, provided an example of a format for a CCR that could be used in lieu of each facility developing its own CCR. Since the Plutonium Finishing Plant (PFP) is presently undergoing Deactivation and Decommissioning (D&D), new procedures are being developed for cleanout of equipment and systems that have not been operated in years. Existing Criticality Safety Evaluations (CSE) are revised, or new ones written, to develop the controls required to support D&D activities. Other Hanford facilities, including PFP, had difficulty using the basic CCR out of HNF-7098 when first implemented. Interpretation of the new guidelines indicated that many of the controls needed to be elevated to TSR level controls. Criterion 2 of the standard, requiring that the consequence of a criticality be examined for establishing the classification of a control, was not addressed. Upon in-depth review by PFP Criticality Safety staff, it was not clear that the programmatic interpretation of criterion 8C could be applied at PFP. Therefore, the PFP Criticality Safety staff decided to write their own CCR. The PFP CCR provides additional guidance for the evaluation team to use by clarifying the evaluation criteria in DOE-STD-3007-2007. In reviewing documents used in classifying controls for Nuclear Safety, it was noted that DOE-HDBK-1188, 'Glossary of Environment, Health, and Safety Terms', defines an Administrative Control (AC) in terms that are different than typically used in Criticality Safety. As part of this CCR, a new term, Criticality Administrative Control (CAC) was defined to clarify the difference between an AC used for criticality safety and an AC used for nuclear safety. In Nuclear Safety terms, an AC is a provision relating to organization and management, procedures, recordkeeping, assessment, and reporting necessary to ensure safe operation of a facility. A CAC was defined as an administrative control derived in a criticality safety analysis that is implemented to ensure double contingency. According to criterion 2 of Section IV, 'Linkage to the Documented Safety Analysis', of DOESTD-3007-2007, the consequence of a criticality should be examined for the purposes of classifying the significance of a control or component. HNF-PRO-700, 'Safety Basis Development', provides control selection criteria based on consequence and risk that may be used in the development of a Criticality Safety Evaluation (CSE) to establish the classification of a component as a design feature, as safety class or safety significant, i.e., an Engineered Safety Feature (ESF), or as equipment important to safety; or merely provides defense-in-depth. Similar logic is applied to the CACs. Criterion 8C of DOE-STD-3007-2007, as written, added to the confusion of using the basic CCR from HNF-7098. The PFP CCR attempts to clarify this criterion by revising it to say 'Programmatic commitments or general references to control philosophy (e.g., mass control or spacing control or concentration control as an overall control strategy for the process without specific quantification of individual limits) is included in the PFP DSA'. Table 1 shows the PFP methodology for evaluating CACs. This evaluation process has been in use since February of 2008 and has proven to be simple and effective. Each control identified in the applicable new/revised CSE is evaluated via the table. The results of this evaluation are documented in tables attached to the CCR as an appendix, for each CSE, to the base document.« less

  8. How Thirty Years of Focused Safety Development has Influenced Injury Outcome in Volvo Cars

    PubMed Central

    Isaksson-Hellman, I.; Norin, H.

    2005-01-01

    This study points out how thirty years of focused safety development has produced a steady decrease in injury rates in car crashes, strongly influenced by a well-structured process. An important part of this process is the knowledge gained by accident research based on collection of data from real world crashes, and the feedback of this research into development work. Statistical analysis shows that the MAIS 2+ injury rate for the most recent car models has decreased by two-thirds compared to the rate for the oldest car models. Calculation of the effect of specific development steps will be given as examples. PMID:16179140

  9. Review of Exploration Systems Development (ESD) Integrated Hazard Development Process. Volume 1; Appendices

    NASA Technical Reports Server (NTRS)

    Smiles, Michael D.; Blythe, Michael P.; Bejmuk, Bohdan; Currie, Nancy J.; Doremus, Robert C.; Franzo, Jennifer C.; Gordon, Mark W.; Johnson, Tracy D.; Kowaleski, Mark M.; Laube, Jeffrey R.

    2015-01-01

    The Chief Engineer of the Exploration Systems Development (ESD) Office requested that the NASA Engineering and Safety Center (NESC) perform an independent assessment of the ESD's integrated hazard development process. The focus of the assessment was to review the integrated hazard analysis (IHA) process and identify any gaps/improvements in the process (e.g., missed causes, cause tree completeness, missed hazards). This document contains the outcome of the NESC assessment.

  10. Review of Exploration Systems Development (ESD) Integrated Hazard Development Process. Appendices; Volume 2

    NASA Technical Reports Server (NTRS)

    Smiles, Michael D.; Blythe, Michael P.; Bejmuk, Bohdan; Currie, Nancy J.; Doremus, Robert C.; Franzo, Jennifer C.; Gordon, Mark W.; Johnson, Tracy D.; Kowaleski, Mark M.; Laube, Jeffrey R.

    2015-01-01

    The Chief Engineer of the Exploration Systems Development (ESD) Office requested that the NASA Engineering and Safety Center (NESC) perform an independent assessment of the ESD's integrated hazard development process. The focus of the assessment was to review the integrated hazard analysis (IHA) process and identify any gaps/improvements in the process (e.g. missed causes, cause tree completeness, missed hazards). This document contains the outcome of the NESC assessment.

  11. The Implementation and Maintenance of a Behavioral Safety Process in a Petroleum Refinery

    ERIC Educational Resources Information Center

    Myers, Wanda V.; McSween, Terry E.; Medina, Rixio E.; Rost, Kristen; Alvero, Alicia M.

    2010-01-01

    A values-centered and team-based behavioral safety process was implemented in a petroleum oil refinery. Employee teams defined the refinery's safety values and related practices, which were used to guide the process design and implementation. The process included (a) a safety assessment; (b) the clarification of safety-related values and related…

  12. New risk metrics and mathematical tools for risk analysis: Current and future challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skandamis, Panagiotis N., E-mail: pskan@aua.gr; Andritsos, Nikolaos, E-mail: pskan@aua.gr; Psomas, Antonios, E-mail: pskan@aua.gr

    The current status of the food safety supply world wide, has led Food and Agriculture Organization (FAO) and World Health Organization (WHO) to establishing Risk Analysis as the single framework for building food safety control programs. A series of guidelines and reports that detail out the various steps in Risk Analysis, namely Risk Management, Risk Assessment and Risk Communication is available. The Risk Analysis approach enables integration between operational food management systems, such as Hazard Analysis Critical Control Points, public health and governmental decisions. To do that, a series of new Risk Metrics has been established as follows: i) themore » Appropriate Level of Protection (ALOP), which indicates the maximum numbers of illnesses in a population per annum, defined by quantitative risk assessments, and used to establish; ii) Food Safety Objective (FSO), which sets the maximum frequency and/or concentration of a hazard in a food at the time of consumption that provides or contributes to the ALOP. Given that ALOP is rather a metric of the public health tolerable burden (it addresses the total ‘failure’ that may be handled at a national level), it is difficult to be interpreted into control measures applied at the manufacturing level. Thus, a series of specific objectives and criteria for performance of individual processes and products have been established, all of them assisting in the achievement of FSO and hence, ALOP. In order to achieve FSO, tools quantifying the effect of processes and intrinsic properties of foods on survival and growth of pathogens are essential. In this context, predictive microbiology and risk assessment have offered an important assistance to Food Safety Management. Predictive modelling is the basis of exposure assessment and the development of stochastic and kinetic models, which are also available in the form of Web-based applications, e.g., COMBASE and Microbial Responses Viewer), or introduced into user-friendly softwares, (e.g., Seafood Spoilage Predictor) have evolved the use of information systems in the food safety management. Such tools are updateable with new food-pathogen specific models containing cardinal parameters and multiple dependent variables, including plate counts, concentration of metabolic products, or even expression levels of certain genes. Then, these tools may further serve as decision-support tools which may assist in product logistics, based on their scientifically-based and “momentary” expressed spoilage and safety level.« less

  13. New risk metrics and mathematical tools for risk analysis: Current and future challenges

    NASA Astrophysics Data System (ADS)

    Skandamis, Panagiotis N.; Andritsos, Nikolaos; Psomas, Antonios; Paramythiotis, Spyridon

    2015-01-01

    The current status of the food safety supply world wide, has led Food and Agriculture Organization (FAO) and World Health Organization (WHO) to establishing Risk Analysis as the single framework for building food safety control programs. A series of guidelines and reports that detail out the various steps in Risk Analysis, namely Risk Management, Risk Assessment and Risk Communication is available. The Risk Analysis approach enables integration between operational food management systems, such as Hazard Analysis Critical Control Points, public health and governmental decisions. To do that, a series of new Risk Metrics has been established as follows: i) the Appropriate Level of Protection (ALOP), which indicates the maximum numbers of illnesses in a population per annum, defined by quantitative risk assessments, and used to establish; ii) Food Safety Objective (FSO), which sets the maximum frequency and/or concentration of a hazard in a food at the time of consumption that provides or contributes to the ALOP. Given that ALOP is rather a metric of the public health tolerable burden (it addresses the total `failure' that may be handled at a national level), it is difficult to be interpreted into control measures applied at the manufacturing level. Thus, a series of specific objectives and criteria for performance of individual processes and products have been established, all of them assisting in the achievement of FSO and hence, ALOP. In order to achieve FSO, tools quantifying the effect of processes and intrinsic properties of foods on survival and growth of pathogens are essential. In this context, predictive microbiology and risk assessment have offered an important assistance to Food Safety Management. Predictive modelling is the basis of exposure assessment and the development of stochastic and kinetic models, which are also available in the form of Web-based applications, e.g., COMBASE and Microbial Responses Viewer), or introduced into user-friendly softwares, (e.g., Seafood Spoilage Predictor) have evolved the use of information systems in the food safety management. Such tools are updateable with new food-pathogen specific models containing cardinal parameters and multiple dependent variables, including plate counts, concentration of metabolic products, or even expression levels of certain genes. Then, these tools may further serve as decision-support tools which may assist in product logistics, based on their scientifically-based and "momentary" expressed spoilage and safety level.

  14. Application of failure mode and effect analysis in a radiology department.

    PubMed

    Thornton, Eavan; Brook, Olga R; Mendiratta-Lala, Mishal; Hallett, Donna T; Kruskal, Jonathan B

    2011-01-01

    With increasing deployment, complexity, and sophistication of equipment and related processes within the clinical imaging environment, system failures are more likely to occur. These failures may have varying effects on the patient, ranging from no harm to devastating harm. Failure mode and effect analysis (FMEA) is a tool that permits the proactive identification of possible failures in complex processes and provides a basis for continuous improvement. This overview of the basic principles and methodology of FMEA provides an explanation of how FMEA can be applied to clinical operations in a radiology department to reduce, predict, or prevent errors. The six sequential steps in the FMEA process are explained, and clinical magnetic resonance imaging services are used as an example for which FMEA is particularly applicable. A modified version of traditional FMEA called Healthcare Failure Mode and Effect Analysis, which was introduced by the U.S. Department of Veterans Affairs National Center for Patient Safety, is briefly reviewed. In conclusion, FMEA is an effective and reliable method to proactively examine complex processes in the radiology department. FMEA can be used to highlight the high-risk subprocesses and allows these to be targeted to minimize the future occurrence of failures, thus improving patient safety and streamlining the efficiency of the radiology department. RSNA, 2010

  15. Dynamic Positioning System (DPS) Risk Analysis Using Probabilistic Risk Assessment (PRA)

    NASA Technical Reports Server (NTRS)

    Thigpen, Eric B.; Boyer, Roger L.; Stewart, Michael A.; Fougere, Pete

    2017-01-01

    The National Aeronautics and Space Administration (NASA) Safety & Mission Assurance (S&MA) directorate at the Johnson Space Center (JSC) has applied its knowledge and experience with Probabilistic Risk Assessment (PRA) to projects in industries ranging from spacecraft to nuclear power plants. PRA is a comprehensive and structured process for analyzing risk in complex engineered systems and/or processes. The PRA process enables the user to identify potential risk contributors such as, hardware and software failure, human error, and external events. Recent developments in the oil and gas industry have presented opportunities for NASA to lend their PRA expertise to both ongoing and developmental projects within the industry. This paper provides an overview of the PRA process and demonstrates how this process was applied in estimating the probability that a Mobile Offshore Drilling Unit (MODU) operating in the Gulf of Mexico and equipped with a generically configured Dynamic Positioning System (DPS) loses location and needs to initiate an emergency disconnect. The PRA described in this paper is intended to be generic such that the vessel meets the general requirements of an International Maritime Organization (IMO) Maritime Safety Committee (MSC)/Circ. 645 Class 3 dynamically positioned vessel. The results of this analysis are not intended to be applied to any specific drilling vessel, although provisions were made to allow the analysis to be configured to a specific vessel if required.

  16. Preanalytical errors in medical laboratories: a review of the available methodologies of data collection and analysis.

    PubMed

    West, Jamie; Atherton, Jennifer; Costelloe, Seán J; Pourmahram, Ghazaleh; Stretton, Adam; Cornes, Michael

    2017-01-01

    Preanalytical errors have previously been shown to contribute a significant proportion of errors in laboratory processes and contribute to a number of patient safety risks. Accreditation against ISO 15189:2012 requires that laboratory Quality Management Systems consider the impact of preanalytical processes in areas such as the identification and control of non-conformances, continual improvement, internal audit and quality indicators. Previous studies have shown that there is a wide variation in the definition, repertoire and collection methods for preanalytical quality indicators. The International Federation of Clinical Chemistry Working Group on Laboratory Errors and Patient Safety has defined a number of quality indicators for the preanalytical stage, and the adoption of harmonized definitions will support interlaboratory comparisons and continual improvement. There are a variety of data collection methods, including audit, manual recording processes, incident reporting mechanisms and laboratory information systems. Quality management processes such as benchmarking, statistical process control, Pareto analysis and failure mode and effect analysis can be used to review data and should be incorporated into clinical governance mechanisms. In this paper, The Association for Clinical Biochemistry and Laboratory Medicine PreAnalytical Specialist Interest Group review the various data collection methods available. Our recommendation is the use of the laboratory information management systems as a recording mechanism for preanalytical errors as this provides the easiest and most standardized mechanism of data capture.

  17. Implementation of a "No Fly" safety culture in a multicenter radiation medicine department.

    PubMed

    Potters, Louis; Kapur, Ajay

    2012-01-01

    The safe delivery of radiation therapy requires multiple disciplines and interactions to perform flawlessly for each patient. Because treatment is individualized and every aspect of the patient's care is unique, it is difficult to regiment a delivery process that works flawlessly. The purpose of this study is to describe one safety-directed component of our quality program called the "No Fly Policy" (NFP). Our quality assurance program for radiation therapy reviewed the entire process of care prior, during, and after a patient's treatment course. Each component of care was broken down and rebuilt within a matrix of multidisciplinary safety quality checklists (QCL). The QCL process map was subsequently streamlined with revised task due dates and stopping rules. The NFP was introduced to place a holding pattern on treatment initiation pending reconciliation of associated stopping events. The NFP was introduced in a pilot phase using a Six-Sigma process improvement approach. Quantitative analysis on the performance of the new QCLs was performed using crystal reports in the Oncology Information Systems. Root cause analysis was conducted. Notable improvements in QCL performance were observed. The variances among staff in completing tasks reduced by a factor of at least 3, suggesting better process control. Steady improvements over time indicated an increasingly compliant and controlled adoption of the new safety-oriented process map. Stopping events led to rescheduling treatments with average and maximum delays of 2 and 4 days, respectively, with no reported adverse effects. The majority of stopping events were due to incomplete plan approvals stemming from treatment planning delays. Whereas these may have previously solicited last-minute interventions, including intensity modulated radiation therapy quality assurance, the NFP enabled nonpunitive, reasonable schedule adjustments to mitigate compromises in safe delivery. Implementation of the NFP has helped to mitigate risk from expedited care, convert reactive to proactive delays, and created a checklist, process driven, and variance-reducing culture in a large, multicenter department. Copyright © 2012 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  18. What motivates professionals to engage in the accreditation of healthcare organizations?

    PubMed

    Greenfield, David; Pawsey, Marjorie; Braithwaite, Jeffrey

    2011-02-01

    Motivated staff are needed to improve quality and safety in healthcare organizations. Stimulating and engaging staff to participate in accreditation processes is a considerable challenge. The purpose of this study was to explore the experiences of health executives, managers and frontline clinicians who participated in organizational accreditation processes: what motivated them to engage, and what benefits accrued? The setting was a large public teaching hospital undergoing a planned review of its accreditation status. A research protocol was employed to conduct semi-structured interviews with a purposive sample of 30 staff with varied organizational roles, from different professions, to discuss their involvement in accreditation. Thematic analysis of the data was undertaken. The analysis identified three categories, each with sub-themes: accreditation response (reactions to accreditation and the value of surveys); survey issues (participation in the survey, learning through interactions and constraints) and documentation issues (self-assessment report, survey report and recommendations). Participants' occupational role focuses their attention to prioritize aspects of the accreditation process. Their motivations to participate and the benefits that accrue to them can be positively self-reinforcing. Participants have a desire to engage collaboratively with colleagues to learn and validate their efforts to improve. Participation in the accreditation process promoted a quality and safety culture that crossed organizational boundaries. The insights into worker motivation can be applied to engage staff to promote learning, overcome organizational boundaries and improve services. The findings can be applied to enhance involvement with accreditation and, more broadly, to other quality and safety activities.

  19. Prediction accident triangle in maintenance of underground mine facilities using Poisson distribution analysis

    NASA Astrophysics Data System (ADS)

    Khuluqi, M. H.; Prapdito, R. R.; Sambodo, F. P.

    2018-04-01

    In Indonesia, mining is categorized as a hazardous industry. In recent years, a dramatic increase of mining equipment and technological complexities had resulted in higher maintenance expectations that accompanied by the changes in the working conditions, especially on safety. Ensuring safety during the process of conducting maintenance works in underground mine is important as an integral part of accident prevention programs. Accident triangle has provided a support to safety practitioner to draw a road map in preventing accidents. Poisson distribution is appropriate for the analysis of accidents at a specific site in a given time period. Based on the analysis of accident statistics in the underground mine maintenance of PT. Freeport Indonesia from 2011 through 2016, it is found that 12 minor accidents for 1 major accident and 66 equipment damages for 1 major accident as a new value of accident triangle. The result can be used for the future need for improving the accident prevention programs.

  20. Transforming primary care in the New Orleans safety-net: the patient experience.

    PubMed

    Schmidt, Laura A; Rittenhouse, Diane R; Wu, Kevin J; Wiley, James A

    2013-02-01

    The patient-centered medical home (PCMH) is a key service delivery innovation in health reform. However, there are growing questions about whether the changes in clinics promoted by the PCMH model lead to improvements in the patient experience. To test the hypothesis that PCMH improvements in safety-net primary care clinics are associated with a more positive patient experience. Multilevel cross-sectional analysis of patients nested within the primary care clinics that serve them. Primary care clinic leaders and patients throughout the City of New Orleans health care safety-net. Dependent variables included patient ratings of accessibility, coordination, and confidence in the quality/safety of care. The key independent variable was a score measuring PCMH structural and process improvements at the clinic level. Approximately two thirds of patients in New Orleans gave positive ratings to their clinics on access and quality/safety, but only one third did for care coordination. In all but the largest clinics, patient experiences of care coordination were positively associated with the clinic's use of PCMH structural and process changes. Results for patient ratings of access and quality/safety were mixed. Among primary care clinics in the New Orleans safety-net, use of more PCMH improvements at the clinic level led to more positive patient rating of care coordination, but not of accessibility or confidence in quality/safety. Ongoing efforts to pilot, demonstrate, implement, and evaluate the PCMH should consider how the impact of medical practice transformation could vary across different aspects of the patient experience.

  1. Application of failure mode and effects analysis to treatment planning in scanned proton beam radiotherapy

    PubMed Central

    2013-01-01

    Background A multidisciplinary and multi-institutional working group applied the Failure Mode and Effects Analysis (FMEA) approach to the actively scanned proton beam radiotherapy process implemented at CNAO (Centro Nazionale di Adroterapia Oncologica), aiming at preventing accidental exposures to the patient. Methods FMEA was applied to the treatment planning stage and consisted of three steps: i) identification of the involved sub-processes; ii) identification and ranking of the potential failure modes, together with their causes and effects, using the risk probability number (RPN) scoring system, iii) identification of additional safety measures to be proposed for process quality and safety improvement. RPN upper threshold for little concern of risk was set at 125. Results Thirty-four sub-processes were identified, twenty-two of them were judged to be potentially prone to one or more failure modes. A total of forty-four failure modes were recognized, 52% of them characterized by an RPN score equal to 80 or higher. The threshold of 125 for RPN was exceeded in five cases only. The most critical sub-process appeared related to the delineation and correction of artefacts in planning CT data. Failures associated to that sub-process were inaccurate delineation of the artefacts and incorrect proton stopping power assignment to body regions. Other significant failure modes consisted of an outdated representation of the patient anatomy, an improper selection of beam direction and of the physical beam model or dose calculation grid. The main effects of these failures were represented by wrong dose distribution (i.e. deviating from the planned one) delivered to the patient. Additional strategies for risk mitigation, easily and immediately applicable, consisted of a systematic information collection about any known implanted prosthesis directly from each patient and enforcing a short interval time between CT scan and treatment start. Moreover, (i) the investigation of dedicated CT image reconstruction algorithms, (ii) further evaluation of treatment plan robustness and (iii) implementation of independent methods for dose calculation (such as Monte Carlo simulations) may represent novel solutions to increase patient safety. Conclusions FMEA is a useful tool for prospective evaluation of patient safety in proton beam radiotherapy. The application of this method to the treatment planning stage lead to identify strategies for risk mitigation in addition to the safety measures already adopted in clinical practice. PMID:23705626

  2. Inductive Double-Contingency Analysis of UO2 Powder Bulk Blending Operations at a Commercial Fuel Plant (U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skiles, S. K.

    1994-12-22

    An inductive double-contingency analysis (DCA) method developed by the criticality safety function at the Savannah River Site, was applied in Criticality Safety Evaluations (CSEs) of five major plant process systems at the Westinghouse Electric Corporation`s Commercial Nuclear Fuel Manufacturing Plant in Columbia, South Carolina (WEC-Cola.). The method emphasizes a thorough evaluation of the controls intended to provide barriers against criticality for postulated initiating events, and has been demonstrated effective at identifying common mode failure potential and interdependence among multiple controls. A description of the method and an example of its application is provided.

  3. The geography of patient safety: a topical analysis of sterility.

    PubMed

    Mesman, Jessica

    2009-12-01

    Many studies on patient safety are geared towards prevention of adverse events by eliminating causes of error. In this article, I argue that patient safety research needs to widen its analytical scope and include causes of strength as well. This change of focus enables me to ask other questions, like why don't things go wrong more often? Or, what is the significance of time and space for patient safety? The focal point of this article is on the spatial dimension of patient safety. To gain insight into the 'geography' of patient safety and perform a topical analysis, I will focus on one specific kind of space (sterile space), one specific medical procedure (insertion of an intravenous line) and one specific medical ward (neonatology). Based on ethnographic data from research in the Netherlands, I demonstrate how spatial arrangements produce sterility and how sterility work produces spatial orders at the same time. Detailed analysis shows how a sterile line insertion involves the convergence of spatially distributed resources, relocations of the field of activity, an assemblage of an infrastructure of attention, a specific compositional order of materials, and the scaling down of one's degree of mobility. Sterility, I will argue, turns out to be a product of spatial orderings. Simultaneously, sterility work generates particular spatial orders, like open and restricted areas, by producing buffers and boundaries. However, the spatial order of sterility intersects with the spatial order of other lines of activity. Insight into the normative structure of these co-existing spatial orders turns out to be crucial for patient safety. By analyzing processes of spatial fine-tuning in everyday practice, it becomes possible to identify spatial competences and circumstances that enable staff members to provide safe health care. As such, a topical analysis offers an alternative perspective of patient safety, one that takes into account its spatial dimension.

  4. The Interagency Nuclear Safety Review Panel's Galileo safety evaluation report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, R.C.; Gray, L.B.; Huff, D.A.

    The safety evaluation report (SER) for Galileo was prepared by the Interagency Nuclear Safety Review Panel (INSRP) coordinators in accordance with Presidential directive/National Security Council memorandum 25. The INSRP consists of three coordinators appointed by their respective agencies, the Department of Defense, the Department of Energy (DOE), and the National Aeronautics and Space Administration (NASA). These individuals are independent of the program being evaluated and depend on independent experts drawn from the national technical community to serve on the five INSRP subpanels. The Galileo SER is based on input provided by the NASA Galileo Program Office, review and assessment ofmore » the final safety analysis report prepared by the Office of Special Applications of the DOE under a memorandum of understanding between NASA and the DOE, as well as other related data and analyses. The SER was prepared for use by the agencies and the Office of Science and Technology Policy, Executive Office of the Present for use in their launch decision-making process. Although more than 20 nuclear-powered space missions have been previously reviewed via the INSRP process, the Galileo review constituted the first review of a nuclear power source associated with launch aboard the Space Transportation System.« less

  5. Six sigma tools for a patient safety-oriented, quality-checklist driven radiation medicine department.

    PubMed

    Kapur, Ajay; Potters, Louis

    2012-01-01

    The purpose of this work was to develop and implement six sigma practices toward the enhancement of patient safety in an electronic, quality checklist-driven, multicenter, paperless radiation medicine department. A quality checklist process map (QPM), stratified into consultation through treatment-completion stages was incorporated into an oncology information systems platform. A cross-functional quality management team conducted quality-function-deployment and define-measure-analyze-improve-control (DMAIC) six sigma exercises with a focus on patient safety. QPM procedures were Pareto-sorted in order of decreasing patient safety risk with failure mode and effects analysis (FMEA). Quantitative metrics for a grouped set of highest risk procedures were established. These included procedural delays, associated standard deviations and six sigma Z scores. Baseline performance of the QPM was established over the previous year of usage. Data-driven analysis led to simplification, standardization, and refinement of the QPM with standard deviation, slip-day reduction, and Z-score enhancement goals. A no-fly policy (NFP) for patient safety was introduced at the improve-control DMAIC phase, with a process map interlock imposed on treatment initiation in the event of FMEA-identified high-risk tasks being delayed or not completed. The NFP was introduced in a pilot phase with specific stopping rules and the same metrics used for performance assessments. A custom root-cause analysis database was deployed to monitor patient safety events. Relative to the baseline period, average slip days and standard deviations for the risk-enhanced QPM procedures improved by over threefold factors in the NFP period. The Z scores improved by approximately 20%. A trend for proactive delays instead of reactive hard stops was observed with no adverse effects of the NFP. The number of computed potential no-fly delays per month dropped from 60 to 20 over a total of 520 cases. The fraction of computed potential no-fly cases that were delayed in NFP compliance rose from 28% to 45%. Proactive delays rose to 80% of all delayed cases. For potential no-fly cases, event reporting rose from 18% to 50%, while for actually delayed cases, event reporting rose from 65% to 100%. With complex technologies, resource-compromised staff, and pressures to hasten treatment initiation, the use of the six sigma driven process interlocks may mitigate potential patient safety risks as demonstrated in this study. Copyright © 2012 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  6. Contrasting models of driver behaviour in emergencies using retrospective verbalisations and network analysis.

    PubMed

    Banks, Victoria A; Stanton, Neville A

    2015-01-01

    Automated assistance in driving emergencies aims to improve the safety of our roads by avoiding or mitigating the effects of accidents. However, the behavioural implications of such systems remain unknown. This paper introduces the driver decision-making in emergencies (DDMiEs) framework to investigate how the level and type of automation may affect driver decision-making and subsequent responses to critical braking events using network analysis to interrogate retrospective verbalisations. Four DDMiE models were constructed to represent different levels of automation within the driving task and its effects on driver decision-making. Findings suggest that whilst automation does not alter the decision-making pathway (e.g. the processes between hazard detection and response remain similar), it does appear to significantly weaken the links between information-processing nodes. This reflects an unintended yet emergent property within the task network that could mean that we may not be improving safety in the way we expect. This paper contrasts models of driver decision-making in emergencies at varying levels of automation using the Southampton University Driving Simulator. Network analysis of retrospective verbalisations indicates that increasing the level of automation in driving emergencies weakens the link between information-processing nodes essential for effective decision-making.

  7. A Conceptual Aerospace Vehicle Structural System Modeling, Analysis and Design Process

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    2007-01-01

    A process for aerospace structural concept analysis and design is presented, with examples of a blended-wing-body fuselage, a multi-bubble fuselage concept, a notional crew exploration vehicle, and a high altitude long endurance aircraft. Aerospace vehicle structures must withstand all anticipated mission loads, yet must be designed to have optimal structural weight with the required safety margins. For a viable systems study of advanced concepts, these conflicting requirements must be imposed and analyzed early in the conceptual design cycle, preferably with a high degree of fidelity. In this design process, integrated multidisciplinary analysis tools are used in a collaborative engineering environment. First, parametric solid and surface models including the internal structural layout are developed for detailed finite element analyses. Multiple design scenarios are generated for analyzing several structural configurations and material alternatives. The structural stress, deflection, strain, and margins of safety distributions are visualized and the design is improved. Over several design cycles, the refined vehicle parts and assembly models are generated. The accumulated design data is used for the structural mass comparison and concept ranking. The present application focus on the blended-wing-body vehicle structure and advanced composite material are also discussed.

  8. The Columbia Debris Loan Program; Examples of Microscopic Analysis

    NASA Technical Reports Server (NTRS)

    Russell, Rick; Thurston, Scott; Smith, Stephen; Marder, Arnold; Steckel, Gary

    2006-01-01

    Following the tragic loss of the Space Shuttle Columbia NASA formed The Columbia Recovery Office (CRO). The CRO was initially formed at the Johnson Space Center after the conclusion of recovery operations on May 1,2003 and then transferred .to the Kennedy Space Center on October 6,2003 and renamed The Columbia Recovery Office and Preservation. An integral part of the preservation project was the development of a process to loan Columbia debris to qualified researchers and technical educators. The purposes of this program include aiding in the advancement of advanced spacecraft design and flight safety development, the advancement of the study of hypersonic re-entry to enhance ground safety, to train and instruct accident investigators and to establish an enduring legacy for Space Shuttle Columbia and her crew. Along with a summary of the debris loan process examples of microscopic analysis of Columbia debris items will be presented. The first example will be from the reconstruction following the STS- 107 accident and how the Materials and Proessteesa m used microscopic analysis to confirm the accident scenario. Additionally, three examples of microstructural results from the debris loan process from NASA internal, academia and private industry will be presented.

  9. New Mexico’s comprehensive impaired-driving program : crash data analysis.

    DOT National Transportation Integrated Search

    2014-03-01

    In late 2004, the National Highway Traffic Safety Administration provided funds through a Cooperative Agreement to the New Mexico Department of Transportation to demonstrate a process for implementing a comprehensive State impaired-driving system. NH...

  10. SCALE Code System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rearden, Bradley T.; Jessee, Matthew Anderson

    The SCALE Code System is a widely-used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor and lattice physics, radiation shielding, spent fuel and radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including three deterministicmore » and three Monte Carlo radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE’s graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results.« less

  11. SCALE Code System 6.2.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rearden, Bradley T.; Jessee, Matthew Anderson

    The SCALE Code System is a widely-used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor and lattice physics, radiation shielding, spent fuel and radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including three deterministicmore » and three Monte Carlo radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE’s graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results.« less

  12. Plutonium Finishing Plant (PFP) Final Safety Analysis Report (FSAR) [SEC 1 THRU 11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ULLAH, M K

    2001-02-26

    The Plutonium Finishing Plant (PFP) is located on the US Department of Energy (DOE) Hanford Site in south central Washington State. The DOE Richland Operations (DOE-RL) Project Hanford Management Contract (PHMC) is with Fluor Hanford Inc. (FH). Westinghouse Safety Management Systems (WSMS) provides management support to the PFP facility. Since 1991, the mission of the PFP has changed from plutonium material processing to preparation for decontamination and decommissioning (D and D). The PFP is in transition between its previous mission and the proposed D and D mission. The objective of the transition is to place the facility into a stablemore » state for long-term storage of plutonium materials before final disposition of the facility. Accordingly, this update of the Final Safety Analysis Report (FSAR) reflects the current status of the buildings, equipment, and operations during this transition. The primary product of the PFP was plutonium metal in the form of 2.2-kg, cylindrical ingots called buttoms. Plutonium nitrate was one of several chemical compounds containing plutonium that were produced as an intermediate processing product. Plutonium recovery was performed at the Plutonium Reclamation Facility (PRF) and plutonium conversion (from a nitrate form to a metal form) was performed at the Remote Mechanical C (RMC) Line as the primary processes. Plutonium oxide was also produced at the Remote Mechanical A (RMA) Line. Plutonium processed at the PFP contained both weapons-grade and fuels-grade plutonium materials. The capability existed to process both weapons-grade and fuels-grade material through the PRF and only weapons-grade material through the RMC Line although fuels-grade material was processed through the line before 1984. Amounts of these materials exist in storage throughout the facility in various residual forms left from previous years of operations.« less

  13. On the line: worker democracy and the struggle over occupational health and safety.

    PubMed

    Granzow, Kara; Theberge, Nancy

    2009-01-01

    In this article we present a qualitative analysis of worker involvement in a participatory project to improve occupational health and safety at a Canadian manufacturing site. Based on interviews with workers in the plant, we consider the manner and degree to which workers experienced meaningful participation in the intervention process and some of the main barriers to worker participation. Findings emphasize the importance of the social and political context in conditioning the dynamics of joint management labor ventures specifically in relation to health initiatives. Interviews revealed few instances in which workers felt included in the participatory initiative; most often they felt marginalized. In the absence of structural change in the plant, workers described the health initiative as seriously limited in its ability to render meaningful worker participation. These results extend beyond this analysis of a participatory workplace health initiative, offering insights into the dynamics of institutional participatory process, and into participatory research practice generally.

  14. KSC-03pd0837

    NASA Image and Video Library

    2003-03-26

    KENNEDY SPACE CENTER, FLA. - William Higgins, chief of Shuttle Processing Safety and Mission Assurance Division at KSC, talks to the Columbia Accident Investigation Board during its third public hearing, held in Cape Canaveral, Fla. Over the course of two days, the Board's chairman, retired Navy Admiral Harold W. "Hal" Gehman Jr., and other board members would hear from experts discussing the role of the Kennedy Space Center in the Shuttle Program, Shuttle Safety and Debris Collection, Layout and Analysis and Forensic Metallurgy.

  15. KSC-03PD-0837

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. - William Higgins, chief of Shuttle Processing Safety and Mission Assurance Division at KSC, talks to the Columbia Accident Investigation Board during its third public hearing, held in Cape Canaveral, Fla. Over the course of two days, the Board's chairman, retired Navy Admiral Harold W. 'Hal' Gehman Jr., and other board members would hear from experts discussing the role of the Kennedy Space Center in the Shuttle Program, Shuttle Safety and Debris Collection, Layout and Analysis and Forensic Metallurgy.

  16. Preliminary Results Obtained in Integrated Safety Analysis of NASA Aviation Safety Program Technologies

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This is a listing of recent unclassified RTO technical publications for January 1, 2005 through March 31, 2005 processed by the NASA Center for AeroSpace Center available on the NASA Aeronautics and Space Database. Contents include 1) Electronic Information Management; 2) Decision Support to Combined Joint Task Force and Component Commanders; 3) RTO Technical Publications : A Quarterly Listing (December 2004); 4) The Role of Humans in Intelligent and Automated Systems.

  17. Failure mode and effects analysis based risk profile assessment for stereotactic radiosurgery programs at three cancer centers in Brazil.

    PubMed

    Teixeira, Flavia C; de Almeida, Carlos E; Saiful Huq, M

    2016-01-01

    The goal of this study was to evaluate the safety and quality management program for stereotactic radiosurgery (SRS) treatment processes at three radiotherapy centers in Brazil by using three industrial engineering tools (1) process mapping, (2) failure modes and effects analysis (FMEA), and (3) fault tree analysis. The recommendations of Task Group 100 of American Association of Physicists in Medicine were followed to apply the three tools described above to create a process tree for SRS procedure for each radiotherapy center and then FMEA was performed. Failure modes were identified for all process steps and values of risk priority number (RPN) were calculated from O, S, and D (RPN = O × S × D) values assigned by a professional team responsible for patient care. The subprocess treatment planning was presented with the highest number of failure modes for all centers. The total number of failure modes were 135, 104, and 131 for centers I, II, and III, respectively. The highest RPN value for each center is as follows: center I (204), center II (372), and center III (370). Failure modes with RPN ≥ 100: center I (22), center II (115), and center III (110). Failure modes characterized by S ≥ 7, represented 68% of the failure modes for center III, 62% for center II, and 45% for center I. Failure modes with RPNs values ≥100 and S ≥ 7, D ≥ 5, and O ≥ 5 were considered as high priority in this study. The results of the present study show that the safety risk profiles for the same stereotactic radiotherapy process are different at three radiotherapy centers in Brazil. Although this is the same treatment process, this present study showed that the risk priority is different and it will lead to implementation of different safety interventions among the centers. Therefore, the current practice of applying universal device-centric QA is not adequate to address all possible failures in clinical processes at different radiotherapy centers. Integrated approaches to device-centric and process specific quality management program specific to each radiotherapy center are the key to a safe quality management program.

  18. Sociotechnical systems as a framework for regulatory system design and evaluation: Using Work Domain Analysis to examine a new regulatory system.

    PubMed

    Carden, Tony; Goode, Natassia; Read, Gemma J M; Salmon, Paul M

    2017-03-15

    Like most work systems, the domain of adventure activities has seen a series of serious incidents and subsequent calls to improve regulation. Safety regulation systems aim to promote safety and reduce accidents. However, there is scant evidence they have led to improved safety outcomes. In fact there is some evidence that the poor integration of regulatory system components has led to adverse safety outcomes in some contexts. Despite this, there is an absence of methods for evaluating regulatory and compliance systems. This article argues that sociotechnical systems theory and methods provide a suitable framework for evaluating regulatory systems. This is demonstrated through an analysis of a recently introduced set of adventure activity regulations. Work Domain Analysis (WDA) was used to describe the regulatory system in terms of its functional purposes, values and priority measures, purpose-related functions, object-related processes and cognitive objects. This allowed judgement to be made on the nature of the new regulatory system and on the constraints that may impact its efficacy following implementation. Importantly, the analysis suggests that the new system's functional purpose of ensuring safe activities is not fully supported in terms of the functions and objects available to fulfil them. Potential improvements to the design of the system are discussed along with the implications for regulatory system design and evaluation across the safety critical domains generally. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Insulation commonality assessment (phase 1). Volume 2: Section 7.0 through 16.0. [evaluation of materials used for spacecraft thermal insulation

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The heat transfer characteristics of various materials used for the thermal insulation of spacecraft are discussed. Techniques for conducting thermal performance analysis, structural performance analysis, and dynamic analysis are described. Processes for producing and finishing the materials are explained. The methods for determining reliability, system safety, materials tests, and design effectiveness are explained.

  20. Automated Analysis of Stateflow Models

    NASA Technical Reports Server (NTRS)

    Bourbouh, Hamza; Garoche, Pierre-Loic; Garion, Christophe; Gurfinkel, Arie; Kahsaia, Temesghen; Thirioux, Xavier

    2017-01-01

    Stateflow is a widely used modeling framework for embedded and cyber physical systems where control software interacts with physical processes. In this work, we present a framework a fully automated safety verification technique for Stateflow models. Our approach is two-folded: (i) we faithfully compile Stateflow models into hierarchical state machines, and (ii) we use automated logic-based verification engine to decide the validity of safety properties. The starting point of our approach is a denotational semantics of State flow. We propose a compilation process using continuation-passing style (CPS) denotational semantics. Our compilation technique preserves the structural and modal behavior of the system. The overall approach is implemented as an open source toolbox that can be integrated into the existing Mathworks Simulink Stateflow modeling framework. We present preliminary experimental evaluations that illustrate the effectiveness of our approach in code generation and safety verification of industrial scale Stateflow models.

  1. From cognition to the system: developing a multilevel taxonomy of patient safety in general practice.

    PubMed

    Kostopoulou, O

    The paper describes the process of developing a taxonomy of patient safety in general practice. The methodologies employed included fieldwork, task analysis and confidential reporting of patient-safety events in five West Midlands practices. Reported events were traced back to their root causes and contributing factors. The resulting taxonomy is based on a theoretical model of human cognition, includes multiple levels of classification to reflect the chain of causation and considers affective and physiological influences on performance. Events are classified at three levels. At level one, the information-processing model of cognition is used to classify errors. At level two, immediate causes are identified, internal and external to the individual. At level three, more remote causal factors are classified as either 'work organization' or 'technical' with subcategories. The properties of the taxonomy (validity, reliability, comprehensiveness) as well as its usability and acceptability remain to be tested with potential users.

  2. WE-G-BRA-07: Analyzing the Safety Implications of a Brachytherapy Process Improvement Project Utilizing a Novel System-Theory-Based Hazard-Analysis Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, A; Samost, A; Viswanathan, A

    Purpose: To investigate the hazards in cervical-cancer HDR brachytherapy using a novel hazard-analysis technique, System Theoretic Process Analysis (STPA). The applicability and benefit of STPA to the field of radiation oncology is demonstrated. Methods: We analyzed the tandem and ring HDR procedure through observations, discussions with physicists and physicians, and the use of a previously developed process map. Controllers and their respective control actions were identified and arranged into a hierarchical control model of the system, modeling the workflow from applicator insertion through initiating treatment delivery. We then used the STPA process to identify potentially unsafe control actions. Scenarios weremore » then generated from the identified unsafe control actions and used to develop recommendations for system safety constraints. Results: 10 controllers were identified and included in the final model. From these controllers 32 potentially unsafe control actions were identified, leading to more than 120 potential accident scenarios, including both clinical errors (e.g., using outdated imaging studies for planning), and managerial-based incidents (e.g., unsafe equipment, budget, or staffing decisions). Constraints identified from those scenarios include common themes, such as the need for appropriate feedback to give the controllers an adequate mental model to maintain safe boundaries of operations. As an example, one finding was that the likelihood of the potential accident scenario of the applicator breaking during insertion might be reduced by establishing a feedback loop of equipment-usage metrics and equipment-failure reports to the management controller. Conclusion: The utility of STPA in analyzing system hazards in a clinical brachytherapy system was demonstrated. This technique, rooted in system theory, identified scenarios both technical/clinical and managerial in nature. These results suggest that STPA can be successfully used to analyze safety in brachytherapy and may prove to be an alternative to other hazard analysis techniques.« less

  3. Implications of electronic health record downtime: an analysis of patient safety event reports.

    PubMed

    Larsen, Ethan; Fong, Allan; Wernz, Christian; Ratwani, Raj M

    2018-02-01

    We sought to understand the types of clinical processes, such as image and medication ordering, that are disrupted during electronic health record (EHR) downtime periods by analyzing the narratives of patient safety event report data. From a database of 80 381 event reports, 76 reports were identified as explicitly describing a safety event associated with an EHR downtime period. These reports were analyzed and categorized based on a developed code book to identify the clinical processes that were impacted by downtime. We also examined whether downtime procedures were in place and followed. The reports were coded into categories related to their reported clinical process: Laboratory, Medication, Imaging, Registration, Patient Handoff, Documentation, History Viewing, Delay of Procedure, and General. A majority of reports (48.7%, n = 37) were associated with lab orders and results, followed by medication ordering and administration (14.5%, n = 11). Incidents commonly involved patient identification and communication of clinical information. A majority of reports (46%, n = 35) indicated that downtime procedures either were not followed or were not in place. Only 27.6% of incidents (n = 21) indicated that downtime procedures were successfully executed. Patient safety report data offer a lens into EHR downtime-related safety hazards. Important areas of risk during EHR downtime periods were patient identification and communication of clinical information; these should be a focus of downtime procedure planning to reduce safety hazards. EHR downtime events pose patient safety hazards, and we highlight critical areas for downtime procedure improvement. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  4. 10 CFR 830.203 - Unreviewed safety question process.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Unreviewed safety question process. 830.203 Section 830.203 Energy DEPARTMENT OF ENERGY NUCLEAR SAFETY MANAGEMENT Safety Basis Requirements § 830.203 Unreviewed safety question process. (a) The contractor responsible for a hazard category 1, 2, or 3 DOE...

  5. Proposal for Ground Safety Review Coordination at ISS Launch Sites

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, Paul D.

    2010-01-01

    As the transportation of ISS payloads and cargo shifts from KSC to other launch sites, close coordination of ground safety review processes would be of benefit to all parties. The benefit would have the launch sites receiving consistent data that would require less effort to review while still meeting their needs. Until recently, ground safety focus for the ISS program has been almost exclusively for prelaunch processing at KSC/post-landing processing at KSC/DFRC Each launch site, used by the ISS Program, has a ground safety review process. Ground safety viewed as local prerogative. Up till now, ground processing has consisted of low risk/low hazard items; but this will not always be the case. Recent coordination issues associated with the ground safety review of ORU's to be processed at Tanegashima for HTV-2, illustrate that IP ground safety review processes are not well understood by the ISS community at large. Confusion for data providers (US only?). Lack of internal review process for data being submitted to launch sites can lead to inconsistent submittals. NCRs/HRs. Majority of IP ground safety requirements are based upon old KHB 1700.7 (now KNPR 8715.3, Chapter 20). Proposals include: Establish a ground safety working group as part of the MS&MAP. Search for efficiencies in requirements and data submittal processes. Document processes in NSTS 13830/SSP 30599. Each launch site report out its payload ground safety status at the F2F (Monthly's as required). Completions/due dates/NCRs/issues/changes. Establish internal processes for review of ground safety submittals.

  6. A simple graphical method for measuring inherent safety.

    PubMed

    Gupta, J P; Edwards, David W

    2003-11-14

    Inherently safer design (ISD) concepts have been with us for over two decades since their elaboration by Kletz [Chem. Ind. 9 (1978) 124]. Interest has really taken off globally since the early nineties after several major mishaps occurred during the eighties (Bhopal, Mexico city, Piper-alfa, Philips Petroleum, to name a few). Academic and industrial research personnel have been actively involved into devising inherently safer ways of production. The regulatory bodies have also shown deep interest since ISD makes the production safer and hence their tasks easier. Research funding has also been forthcoming for new developments as well as for demonstration projects.A natural question that arises is as to how to measure ISD characteristics of a process? Several researchers have worked on this [Trans. IChemE, Process Safety Environ. Protect. B 71 (4) (1993) 252; Inherent safety in process plant design, Ph.D. Thesis, VTT Publication Number 384, Helsinki University of Technology, Espoo, Finland, 1999; Proceedings of the Mary Kay O'Connor Process Safety Center Symposium, 2001, p. 509]. Many of the proposed methods are very elegant, yet too involved for easy adoption by the industry which is scared of yet another safety analysis regime. In a recent survey [Trans. IChemE, Process Safety Environ. Prog. B 80 (2002) 115], companies desired a rather simple method to measure ISD. Simplification is also an important characteristic of ISD. It is therefore desirable to have a simple ISD measurement procedure. The ISD measurement procedure proposed in this paper can be used to differentiate between two or more processes for the same end product. The salient steps are: Consider each of the important parameters affecting the safety (e.g., temperature, pressure, toxicity, flammability, etc.) and the range of possible values these parameters can have for all the process routes under consideration for an end product. Plot these values for each step in each process route and compare. No addition of values for disparate hazards (temperature, pressure, inventory, toxicity, flammability, etc.) is being suggested to derive an overall ISD index value since that conceals the effects of different parameters. Further, addition of numbers with different units ( degrees C for temperature, atm/bar for pressure, t for inventory, etc.) is inappropriate in scientific sense. The proposed approach has a major advantage of expanding consideration in future to incorporate economic, regulatory, pollution control and worker health aspects, as well as factors such as the experience one has or 'the comfort level' one feels with each of the processes under consideration. Additionally, it would also guide the designers and decision makers into affecting specific changes in the processes to reduce the unsafe features. We demonstrate our simple approach by using the example of six routes to make methyl methacrylate as documented by Edwards and Lawrence [Trans. IChemE, Process Safety Environ. Protect. B 71 (4) (1993) 252; Quantifying inherent safety of chemical process routes, Ph.D. Thesis, Loughborough University, Loughborough, UK, 1996] and show that the decision could well have been different if addition of disparate hazards had not been done.

  7. Usability and Safety in Electronic Medical Records Interface Design: A Review of Recent Literature and Guideline Formulation.

    PubMed

    Zahabi, Maryam; Kaber, David B; Swangnetr, Manida

    2015-08-01

    The objectives of this study were to (a) review electronic medical record (EMR) and related electronic health record (EHR) interface usability issues, (b) review how EMRs have been evaluated with safety analysis techniques along with any hazard recognition, and (c) formulate design guidelines and a concept for enhanced EMR interfaces with a focus on diagnosis and documentation processes. A major impact of information technology in health care has been the introduction of EMRs. Although numerous studies indicate use of EMRs to increase health care quality, there remain concerns with usability issues and safety. A literature search was conducted using Compendex, PubMed, CINAHL, and Web of Science databases to find EMR research published since 2000. Inclusion criteria included relevant English-language papers with subsets of keywords and any studies (manually) identified with a focus on EMR usability. Fifty studies met the inclusion criteria. Results revealed EMR and EHR usability problems to include violations of natural dialog, control consistency, effective use of language, effective information presentation, and customization principles as well as a lack of error prevention, minimization of cognitive load, and feedback. Studies focusing on EMR system safety made no objective assessments and applied only inductive reasoning methods for hazard recognition. On the basis of the identified usability problems and structure of safety analysis techniques, we provide EMR design guidelines and a design concept focused on the diagnosis process and documentation. The design guidelines and new interface concept can be used for prototyping and testing enhanced EMRs. © 2015, Human Factors and Ergonomics Society.

  8. [Improving blood safety: errors management in transfusion medicine].

    PubMed

    Bujandrić, Nevenka; Grujić, Jasmina; Krga-Milanović, Mirjana

    2014-01-01

    The concept of blood safety includes the entire transfusion chain starting with the collection of blood from the blood donor, and ending with blood transfusion to the patient. The concept involves quality management system as the systematic monitoring of adverse reactions and incidents regarding the blood donor or patient. Monitoring of near-miss errors show the critical points in the working process and increase transfusion safety. The aim of the study was to present the analysis results of adverse and unexpected events in transfusion practice with a potential risk to the health of blood donors and patients. One-year retrospective study was based on the collection, analysis and interpretation of written reports on medical errors in the Blood Transfusion Institute of Vojvodina. Errors were distributed according to the type, frequency and part of the working process where they occurred. Possible causes and corrective actions were described for each error. The study showed that there were not errors with potential health consequences for the blood donor/patient. Errors with potentially damaging consequences for patients were detected throughout the entire transfusion chain. Most of the errors were identified in the preanalytical phase. The human factor was responsible for the largest number of errors. Error reporting system has an important role in the error management and the reduction of transfusion-related risk of adverse events and incidents. The ongoing analysis reveals the strengths and weaknesses of the entire process and indicates the necessary changes. Errors in transfusion medicine can be avoided in a large percentage and prevention is cost-effective, systematic and applicable.

  9. Real-Time Safety Risk Assessment Based on a Real-Time Location System for Hydropower Construction Sites

    PubMed Central

    Fan, Qixiang; Qiang, Maoshan

    2014-01-01

    The concern for workers' safety in construction industry is reflected in many studies focusing on static safety risk identification and assessment. However, studies on real-time safety risk assessment aimed at reducing uncertainty and supporting quick response are rare. A method for real-time safety risk assessment (RTSRA) to implement a dynamic evaluation of worker safety states on construction site has been proposed in this paper. The method provides construction managers who are in charge of safety with more abundant information to reduce the uncertainty of the site. A quantitative calculation formula, integrating the influence of static and dynamic hazards and that of safety supervisors, is established to link the safety risk of workers with the locations of on-site assets. By employing the hidden Markov model (HMM), the RTSRA provides a mechanism for processing location data provided by the real-time location system (RTLS) and analyzing the probability distributions of different states in terms of false positives and negatives. Simulation analysis demonstrated the logic of the proposed method and how it works. Application case shows that the proposed RTSRA is both feasible and effective in managing construction project safety concerns. PMID:25114958

  10. Real-time safety risk assessment based on a real-time location system for hydropower construction sites.

    PubMed

    Jiang, Hanchen; Lin, Peng; Fan, Qixiang; Qiang, Maoshan

    2014-01-01

    The concern for workers' safety in construction industry is reflected in many studies focusing on static safety risk identification and assessment. However, studies on real-time safety risk assessment aimed at reducing uncertainty and supporting quick response are rare. A method for real-time safety risk assessment (RTSRA) to implement a dynamic evaluation of worker safety states on construction site has been proposed in this paper. The method provides construction managers who are in charge of safety with more abundant information to reduce the uncertainty of the site. A quantitative calculation formula, integrating the influence of static and dynamic hazards and that of safety supervisors, is established to link the safety risk of workers with the locations of on-site assets. By employing the hidden Markov model (HMM), the RTSRA provides a mechanism for processing location data provided by the real-time location system (RTLS) and analyzing the probability distributions of different states in terms of false positives and negatives. Simulation analysis demonstrated the logic of the proposed method and how it works. Application case shows that the proposed RTSRA is both feasible and effective in managing construction project safety concerns.

  11. A socio-cognitive strategy to address farmers' tolerance of high risk work: Disrupting the effects of apprenticeship of observation.

    PubMed

    Mazur, Joan M; Westneat, Susan

    2017-02-01

    Why do generations of farmers tolerate the high-risk work of agricultural work and resist safe farm practices? This study presents an analysis inspired by empirical data from studies conducted from 1993 to 2012 on the differing effects of farm safety interventions between participants who live or work on farms and those who don't, when both were learning to be farm safety advocates. Both groups show statistically significant gains in knowledge and behavioral change proxy measures. However, non-farm participants' gains consistently outstripped their live/work farm counterparts. Drawing on socio-cultural perspectives, a grounded theory qualitative analysis focused on identifying useful constructs to understand the farmers' resistance to adopt safety practices. Understanding apprenticeships of observation and its relation to experiential learning over time can expose sources of deeply anchored beliefs and how they operate insidiously to promote familiar, albeit unsafe farming practices. The challenge for intervention-prevention programs becomes how to disrupt what has been learned during these apprenticeships of observation and to address what has been obscured during this powerful socialization process. Implications focus on the design and implementation of farm safety prevention and education programs. First, farm safety advocates and prevention researchers need to attend to demographics and explicitly explore the prior experiences and background of safety program participants. Second, farm youth in particular need to explore, explicitly, their own apprenticeships of observations, preferably through the use of new social media and or digital forms of expression, resulting in a story repair process. Third, careful study of the organization of work and farm experiences and practices need to provide the foundations for intervention programs. Finally, it is crucial that farm safety programs understand apprenticeships of observation are generational and ongoing over time, and interventions prevention programs need to be 'in it' for the long haul. Copyright © 2016. Published by Elsevier Ltd.

  12. What's gender got to do with it? Examining masculinities, health and safety and return to work in male dominated skilled trades.

    PubMed

    Stergiou-Kita, Mary; Mansfield, Elizabeth; Colantonio, Angela; Moody, Joel; Mantis, Steve

    2016-06-16

    Electrical injuries are a common cause of work-related injury in male dominated skilled trades. In this study we explored how issues of gender, masculinities and institutional workplace practices shape expectations of men and their choices when returning to work following a workplace electrical injury. Twelve workers, who suffered an electrical injury, and twelve employer representatives, completed semi-structured interviews. Using thematic analysis we identified key themes related to how masculinities influenced men's health and safety during the return to work process. Strong identification with worker roles can influence injured workers decisions to return to work 'too early'. A desire to be viewed as a strong, responsible, resilient worker may intersect with concerns about job loss, to influence participants' decisions to not report safety issues and workplace accidents, to not disclose post-injury work challenges, and to not request workplace supports. Institutionalized workplace beliefs regarding risk, de-legitimization of the severity of injuries, and the valorization of the "tough" worker can further re-enforce dominant masculine norms and influence return to work processes and health and safety practices. Workplaces are key sites where gender identities are constructed, affirmed and institutionalized. Further research is warranted to examine how established masculine norms and gendered workplace expectations can influence workplace health and safety in male dominated high risk occupations. Future research should also evaluate strategies that encourage men to discuss post-injury work challenges and request supports when work performance or health and safety issues arise during the return to work process.

  13. More than meets the eye: Using cognitive work analysis to identify design requirements for future rail level crossing systems.

    PubMed

    Salmon, Paul M; Lenné, Michael G; Read, Gemma J M; Mulvihill, Christine M; Cornelissen, Miranda; Walker, Guy H; Young, Kristie L; Stevens, Nicholas; Stanton, Neville A

    2016-03-01

    An increasing intensity of operations means that the longstanding safety issue of rail level crossings is likely to become worse in the transport systems of the future. It has been suggested that the failure to prevent collisions may be, in part, due to a lack of systems thinking during design, crash analysis, and countermeasure development. This paper presents a systems analysis of current active rail level crossing systems in Victoria, Australia that was undertaken to identify design requirements to improve safety in future rail level crossing environments. Cognitive work analysis was used to analyse rail level crossing systems using data derived from a range of activities. Overall the analysis identified a range of instances where modification or redesign in line with systems thinking could potentially improve behaviour and safety. A notable finding is that there are opportunities for redesign outside of the physical rail level crossing infrastructure, including improved data systems, in-vehicle warnings and modifications to design processes, standards and guidelines. The implications for future rail level crossing systems are discussed. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  14. Visual analytics for aviation safety: A collaborative approach to sensemaking

    NASA Astrophysics Data System (ADS)

    Wade, Andrew

    Visual analytics, the "science of analytical reasoning facilitated by interactive visual interfaces", is more than just visualization. Understanding the human reasoning process is essential for designing effective visualization tools and providing correct analyses. This thesis describes the evolution, application and evaluation of a new method for studying analytical reasoning that we have labeled paired analysis. Paired analysis combines subject matter experts (SMEs) and tool experts (TE) in an analytic dyad, here used to investigate aircraft maintenance and safety data. The method was developed and evaluated using interviews, pilot studies and analytic sessions during an internship at the Boeing Company. By enabling a collaborative approach to sensemaking that can be captured by researchers, paired analysis yielded rich data on human analytical reasoning that can be used to support analytic tool development and analyst training. Keywords: visual analytics, paired analysis, sensemaking, boeing, collaborative analysis.

  15. Enhancing the NASA Expendable Launch Vehicle Payload Safety Review Process Through Program Activities

    NASA Technical Reports Server (NTRS)

    Palo, Thomas E.

    2007-01-01

    The safety review process for NASA spacecraft flown on Expendable Launch Vehicles (ELVs) has been guided by NASA-STD 8719.8, Expendable Launch Vehicle Payload Safety Review Process Standard. The standard focused primarily on the safety approval required to begin pre-launch processing at the launch site. Subsequent changes in the contractual, technical, and operational aspects of payload processing, combined with lessons-learned supported a need for the reassessment of the standard. This has resulted in the formation of a NASA ELV Payload Safety Program. This program has been working to address the programmatic issues that will enhance and supplement the existing process, while continuing to ensure the safety of ELV payload activities.

  16. Health and safety impacts of nuclear, geothermal, and fossil-fuel electric generation in California. Volume 9. Methodologies for review of the health and safety aspects of proposed nuclear, geothermal, and fossil-fuel sites and facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nero, A.V.; Quinby-Hunt, M.S.

    1977-01-01

    This report sets forth methodologies for review of the health and safety aspects of proposed nuclear, geothermal, and fossil-fuel sites and facilities for electric power generation. The review is divided into a Notice of Intention process and an Application for Certification process, in accordance with the structure to be used by the California Energy Resources Conservation and Development Commission, the first emphasizing site-specific considerations, the second examining the detailed facility design as well. The Notice of Intention review is divided into three possible stages: an examination of emissions and site characteristics, a basic impact analysis, and an assessment of publicmore » impacts. The Application for Certification review is divided into five possible stages: a review of the Notice of Intention treatment, review of the emission control equipment, review of the safety design, review of the general facility design, and an overall assessment of site and facility acceptability.« less

  17. The Quality and Food Safety of Dry Smoke Garfish (Hemirhamphus far) Product From Maluku

    NASA Astrophysics Data System (ADS)

    Marthina Tapotubun, Alfonsina; Reiuwpassa, Fredrik; Apituley, Yolanda M. T. N.; Nanlohy, Hellen; Matrutty, Theodora E. A. A.

    2017-10-01

    Dry garfish is product of smoked process of “ikan julung” (Hemirhamphus far) and slowly the product getting dry, stiff and its colour become gold yellow-brown. The aim of this study is to find out quality and food safety of dry smoked “julung” from Maluku. The sample of this study is taken from production Keffing village, East Seram Regency, Maluku. Parameters to be analyzed are degrees of protein, fat, water, ash, TPC, Escherichia coli, Salmonella, Vibrio and total Staphylococcus aureus used standard analysis method for proximate (AOAC. 2005), sensosy parameters (BSN.2009) and food safety (BSN. 2006). Spreadsheet Ms Excel (Microsoft Inc., USA) is used for data processing; data is being analyzed descriptively to be interpreted in the research report. Dry smoked “julung” Keffing village, Maluku meet the good quality and food safety, that are ingredient degrees of water content 12.43%, protein 61.55%, fat 12.58%, ash 9.3%, TPC [6,8] × 101 CFU, total Staphylococcus sp [1,7] × 102, total E.coli 6.4 APM/g. and negatively for Salmonella and Vibrio.

  18. Plutonium Oxide Containment and the Potential for Water-Borne Transport as a Consequence of ARIES Oxide Processing Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wayne, David Matthew; Rowland, Joel C.

    2015-02-01

    The question of oxide containment during processing and storage has become a primary concern when considering the continued operability of the Plutonium Facility (PF-4) at Los Alamos National Laboratory (LANL). An Evaluation of the Safety of the Situation (ESS), “Potential for Criticality in a Glovebox Due to a Fire” (TA55-ESS-14-002-R2, since revised to R3) first issued in May, 2014 summarizes these concerns: “The safety issue of fire water potentially entering a glovebox is: the potential for the water to accumulate in the bottom of a glovebox and result in an inadvertent criticality due to the presence of fissionable materials inmore » the glovebox locations and the increased reflection and moderation of neutrons from the fire water accumulation.” As a result, the existing documented safety analysis (DSA) was judged inadequate and, while it explicitly considered the potential for criticality resulting from water intrusion into gloveboxes, criticality safety evaluation documents (CSEDs) for the affected locations did not evaluate the potential for fire water intrusion into a glovebox.« less

  19. Use of headspace gas chromatographic/FTIR for the monitoring of volatiles in commercial brand coffees

    NASA Astrophysics Data System (ADS)

    Compton, Senja V.; Compton, David A.

    1989-12-01

    Recently, the area of food analysis and product safety has become of major concern to consumers. Therefore, companies involved in the quality assurance of theirproducts have been encouraged to perform extensive analyses to guarantee safety and satisfaction. One of the largest consumer products in the beverage marketplace is coffee. Much emphasis has been placed upon the safety of the decaffeination processes used by various manufacturers; these involve extraction of the caffeine by a solvent system that may be aqueous or organic, and is sometimes,super-critical. Additionally, aroma (fragrance) of brewing coffee has been found to be of major concern to the individual by the marketing departments of the coffee companies. The heads ace analysis of coffees can be used to discover the species retained after the decaffeination of coffee, as well as to distinguish the volatile species released upon treatment of the coffee at boiling water temperatures.

  20. Monitoring Quality of Biotherapeutic Products Using Multivariate Data Analysis.

    PubMed

    Rathore, Anurag S; Pathak, Mili; Jain, Renu; Jadaun, Gaurav Pratap Singh

    2016-07-01

    Monitoring the quality of pharmaceutical products is a global challenge, heightened by the implications of letting subquality drugs come to the market on public safety. Regulatory agencies do their due diligence at the time of approval as per their prescribed regulations. However, product quality needs to be monitored post-approval as well to ensure patient safety throughout the product life cycle. This is particularly complicated for biotechnology-based therapeutics where seemingly minor changes in process and/or raw material attributes have been shown to have a significant effect on clinical safety and efficacy of the product. This article provides a perspective on the topic of monitoring the quality of biotech therapeutics. In the backdrop of challenges faced by the regulatory agencies, the potential use of multivariate data analysis as a tool for effective monitoring has been proposed. Case studies using data from several insulin biosimilars have been used to illustrate the key concepts.

  1. Upgrading the fuel-handling machine of the Novovoronezh nuclear power plant unit no. 5

    NASA Astrophysics Data System (ADS)

    Terekhov, D. V.; Dunaev, V. I.

    2014-02-01

    The calculation of safety parameters was carried out in the process of upgrading the fuel-handling machine (FHM) of the Novovoronezh nuclear power plant (NPP) unit no. 5 based on the results of quantitative safety analysis of nuclear fuel transfer operations using a dynamic logical-and-probabilistic model of the processing procedure. Specific engineering and design concepts that made it possible to reduce the probability of damaging the fuel assemblies (FAs) when performing various technological operations by an order of magnitude and introduce more flexible algorithms into the modernized FHM control system were developed. The results of pilot operation during two refueling campaigns prove that the total reactor shutdown time is lowered.

  2. Nuclear and chemical safety analysis: Purex Plant 1970 thorium campaign

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boldt, A.L.; Oberg, G.C.

    The purpose of this document is to discuss the flowsheet and the related processing equipment with respect to nuclear and chemical safety. The analyses presented are based on equipment utilization and revised piping as outlined in the design criteria. Processing of thorium and uranium-233 in the Purex Plant can be accomplished within currently accepted levels of risk with respect to chemical and nuclear safety if minor instrumentation changes are made. Uranium-233 processing is limited to a rate of about 670 grams per hour by equipment capacities and criticality safety considerations. The major criticality prevention problems result from the potential accumulationmore » of uranium-233 in a solvent phase in E-H4 (ICU concentrator), TK-J1 (IUC receiver), and TK-J21 (2AF pump tank). The same potential problems exist in TK-J5 (3AF pump tank) and TK-N1 (3BU receiver), but the probabilities of reaching a critical condition are not as great. In order to prevent the excessive accumulation of uranium-233 in any of these vessels by an extraction mechanism, it is necessary to maintain the uranium-233 and salting agent concentrations below the point at which a critical concentration of uranium-233 could be reached in a solvent phase.« less

  3. Comparison of the occupational safety applications in marble quarries of Carrara (Italy) and Iscehisar (Turkey) by using Elmeri method.

    PubMed

    Ersoy, Metin; Yesilkaya, Liyaddin

    2016-01-01

    In this paper, a brief summary is given about marble quarries in Carrara (Italy) and Iscehisar (Turkey), the Elmeri method is introduced, work accidents that can happen in marble quarries and their causes besides work safety behaviours in fields are explained, and the Elmeri monitoring method is applied and analysed. For this reason, marble quarries are divided into seven in terms of working conditions and active six quarries both in Carrara and Iscehisar areas, and work safety behaviours are analysed. Analysis process is based on True-False method; there are 18 items in total under six main topics; three items on each topic. The safety index for each section and the main topics are also calculated. According to the calculated safety indexes, Carrara area marble quarries (65.08%) are safer than Iscehisar area marble quarries (46.01%).

  4. The role of professional communities in governing patient safety.

    PubMed

    Turner, Simon; Ramsay, Angus; Fulop, Naomi

    2013-01-01

    Using the example of medication safety, this paper aims to explore the impact of three managerial interventions (adverse incident reporting, ward-level support by pharmacists, and a medication safety subcommittee) on different professional communities situated in the English National Health Service (NHS). Semi-structured interviews were conducted with clinical and managerial staff from two English NHS acute trusts, supplemented with meeting observations and documentary analysis. Attitudes toward managerial intervention differ by professional community (between doctors, nurses and pharmacists) according to their existing norms of safety and perceptions of formal governance processes. The heterogeneity of social norms across different professional communities and medical specialties has implications for the design of organisational learning mechanisms in the field of patient safety. The paper shows that theorisation of professional "resistance" to managerialism privileges the study of doctors' reactions to management with the consequent neglect of the perceptions of other professional communities.

  5. Medication safety--reliability of preference cards.

    PubMed

    Dawson, Anthony; Orsini, Michael J; Cooper, Mary R; Wollenburg, Karol

    2005-09-01

    A CLINICAL ANALYSIS of surgeons' preference cards was initiated in one hospital as part of a comprehensive analysis to reduce medication-error risks by standardizing and simplifying the intraoperative medication-use process specific to the sterile field. THE PREFERENCE CARD ANALYSIS involved two subanalyses: a review of the information as it appeared on the cards and a failure mode and effects analysis of the process involved in using and maintaining the cards. THE ANALYSIS FOUND that the preference card system in use at this hospital is outdated. Variations and inconsistencies within the preference card system indicate that the use of preference cards as guides for medication selection for surgical procedures presents an opportunity for medication errors to occur.

  6. Strategies to reduce safety violations for working from heights in construction companies: study protocol for a randomized controlled trial.

    PubMed

    van der Molen, Henk F; Frings-Dresen, Monique H W

    2014-05-31

    Safety measures should be applied to reduce work-related fatal and non-fatal fall injuries. However, according to the labor inspectorate, more than 80% of Dutch construction sites violate safety regulations for working from heights. To increase compliance with safety regulations, employers and workers have to select, implement and monitor safety measures. To facilitate this behavioral change, stimulating knowledge awareness and personalized feedback are frequently advocated behavior change techniques. For this study, two behavior change strategies have been developed in addition to the announcement of safety inspections by the labor inspectorate. These strategies consist of 1) face-to-face contacts with safety consultants and 2) direct mail with access to internet facilities. The objective of this study is to evaluate the effectiveness of these two strategies on the safety violations for working from heights, the process and the cost measures. This study is a block randomized intervention trial in 27 cities to establish the effects of the face-to-face guidance strategy (N = 9), a direct mailing strategy (N = 9) and a control condition of no guidance (N = 9) on safety violations to record by labor inspectors after three months. A process evaluation for both strategies will be performed to determine program implementation (reach, dose delivered and dose received), satisfaction, knowledge and perceived safety behavior. A cost analysis will be performed to establish the financial costs for both strategies. The present study is in accordance with the CONSORT statement. This study increases insight into performing practice-based randomized controlled trials. The outcome will help to evaluate the effect of two guidance strategies on safety violations. If these strategies are effective, implementation of these strategies through the national institute of safety and health or labor inspectorate can take place to guide construction companies in complying with safety regulations. NTR 4298 on 29-nov-2013.

  7. Implementing Software Safety in the NASA Environment

    NASA Technical Reports Server (NTRS)

    Wetherholt, Martha S.; Radley, Charles F.

    1994-01-01

    Until recently, NASA did not consider allowing computers total control of flight systems. Human operators, via hardware, have constituted the ultimate safety control. In an attempt to reduce costs, NASA has come to rely more and more heavily on computers and software to control space missions. (For example. software is now planned to control most of the operational functions of the International Space Station.) Thus the need for systematic software safety programs has become crucial for mission success. Concurrent engineering principles dictate that safety should be designed into software up front, not tested into the software after the fact. 'Cost of Quality' studies have statistics and metrics to prove the value of building quality and safety into the development cycle. Unfortunately, most software engineers are not familiar with designing for safety, and most safety engineers are not software experts. Software written to specifications which have not been safety analyzed is a major source of computer related accidents. Safer software is achieved step by step throughout the system and software life cycle. It is a process that includes requirements definition, hazard analyses, formal software inspections, safety analyses, testing, and maintenance. The greatest emphasis is placed on clearly and completely defining system and software requirements, including safety and reliability requirements. Unfortunately, development and review of requirements are the weakest link in the process. While some of the more academic methods, e.g. mathematical models, may help bring about safer software, this paper proposes the use of currently approved software methodologies, and sound software and assurance practices to show how, to a large degree, safety can be designed into software from the start. NASA's approach today is to first conduct a preliminary system hazard analysis (PHA) during the concept and planning phase of a project. This determines the overall hazard potential of the system to be built. Shortly thereafter, as the system requirements are being defined, the second iteration of hazard analyses takes place, the systems hazard analysis (SHA). During the systems requirements phase, decisions are made as to what functions of the system will be the responsibility of software. This is the most critical time to affect the safety of the software. From this point, software safety analyses as well as software engineering practices are the main focus for assuring safe software. While many of the steps proposed in this paper seem like just sound engineering practices, they are the best technical and most cost effective means to assure safe software within a safe system.

  8. The Safety Analysis of Shipborne Ammunition in Fire Environment

    NASA Astrophysics Data System (ADS)

    Ren, Junpeng; Wang, Xudong; Yue, Pengfei

    2017-12-01

    The safety of Ammunition has always been the focus of national military science and technology issues. And fire is one of the major safety threats to the ship’s ammunition storage environment, In this paper, Mk-82 shipborne aviation bomb has been taken as the study object, simulated the whole process of fire by using the FDS (Fire Detection System) software. According to the simulation results of FDS, ANSYS software was used to simulate the temperature field of Mk-82 carrier-based aviation bomb under fire environment, and the safety of aviation bomb in fire environment was analyzed. The result shows that the aviation bombs under the fire environment can occur the combustion or explosion after 70s constant cook-off, and it was a huge threat to the ship security.

  9. The role of work habits in the motivation of food safety behaviors.

    PubMed

    Hinsz, Verlin B; Nickell, Gary S; Park, Ernest S

    2007-06-01

    The authors considered work habits within an integrated framework of motivated behavior. A distinction made between automatic and controlled action led to 2 measures of work habits: a habit strength measure reflecting the 4 characteristics of automaticity and a measure of work routines under conscious control. Workers at a turkey processing plant (N = 162) responded to an extensive survey of these work habits measures with regard to food safety. Results indicated that attitudes and subjective norms predicted food safety intentions. These intentions, along with perceived behavior control and work habits, predicted reports of food safety behaviors. A mediation analysis indicated that the work routines measure accounted for the variance in self-reported behavior and mediated any effect of the habit strength measure. ((c) 2007 APA, all rights reserved).

  10. Safety assessment, detection and traceability, and societal aspects of genetically modified foods. European Network on Safety Assessment of Genetically Modified Food Crops (ENTRANSFOOD). Concluding remarks.

    PubMed

    Kuiper, H A; König, A; Kleter, G A; Hammes, W P; Knudsen, I

    2004-07-01

    The most important results from the EU-sponsored ENTRANSFOOD Thematic Network project are reviewed, including the design of a detailed step-wise procedure for the risk assessment of foods derived from genetically modified crops based on the latest scientific developments, evaluation of topical risk assessment issues, and the formulation of proposals for improved risk management and public involvement in the risk analysis process. Copyright 2004 Elsevier Ltd.

  11. 10 CFR 830.204 - Documented safety analysis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Documented safety analysis. 830.204 Section 830.204 Energy DEPARTMENT OF ENERGY NUCLEAR SAFETY MANAGEMENT Safety Basis Requirements § 830.204 Documented safety analysis... approval from DOE for the methodology used to prepare the documented safety analysis for the facility...

  12. Application of systems and control theory-based hazard analysis to radiation oncology.

    PubMed

    Pawlicki, Todd; Samost, Aubrey; Brown, Derek W; Manger, Ryan P; Kim, Gwe-Ya; Leveson, Nancy G

    2016-03-01

    Both humans and software are notoriously challenging to account for in traditional hazard analysis models. The purpose of this work is to investigate and demonstrate the application of a new, extended accident causality model, called systems theoretic accident model and processes (STAMP), to radiation oncology. Specifically, a hazard analysis technique based on STAMP, system-theoretic process analysis (STPA), is used to perform a hazard analysis. The STPA procedure starts with the definition of high-level accidents for radiation oncology at the medical center and the hazards leading to those accidents. From there, the hierarchical safety control structure of the radiation oncology clinic is modeled, i.e., the controls that are used to prevent accidents and provide effective treatment. Using STPA, unsafe control actions (behaviors) are identified that can lead to the hazards as well as causal scenarios that can lead to the identified unsafe control. This information can be used to eliminate or mitigate potential hazards. The STPA procedure is demonstrated on a new online adaptive cranial radiosurgery procedure that omits the CT simulation step and uses CBCT for localization, planning, and surface imaging system during treatment. The STPA procedure generated a comprehensive set of causal scenarios that are traced back to system hazards and accidents. Ten control loops were created for the new SRS procedure, which covered the areas of hospital and department management, treatment design and delivery, and vendor service. Eighty three unsafe control actions were identified as well as 472 causal scenarios that could lead to those unsafe control actions. STPA provides a method for understanding the role of management decisions and hospital operations on system safety and generating process design requirements to prevent hazards and accidents. The interaction of people, hardware, and software is highlighted. The method of STPA produces results that can be used to improve safety and prevent accidents and warrants further investigation.

  13. Criticality safety strategy for the Fuel Cycle Facility electrorefiner at Argonne National Laboratory, West

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mariani, R.D.; Benedict, R.W.; Lell, R.M.

    1993-09-01

    The Integral Fast Reactor being developed by Argonne National Laboratory (ANL) combines the advantages of metal-fueled, liquid-metal-cooled reactors and a closed fuel cycle. Presently, the Fuel Cycle Facility (FCF) at ANL-West in Idaho Falls, Idaho is being modified to recycle spent metallic fuel from Experimental Breeder Reactor II as part of a demonstration project sponsored by the Department of Energy. A key component of the FCF is the electrorefiner (ER) in which the actinides are separated from the fission products. In the electrorefining process, the metal fuel is anodically dissolved into a high-temperature molten salt and refined uranium or uranium/plutoniummore » products are deposited at cathodes. In this report, the criticality safety strategy for the FCF ER is summarized. FCF ER operations and processes formed the basis for evaluating criticality safety and control during actinide metal fuel refining. In order to show criticality safety for the FCF ER, the reference operating conditions for the ER had to be defined. Normal operating envelopes (NOES) were then defined to bracket the important operating conditions. To keep the operating conditions within their NOES, process controls were identified that can be used to regulate the actinide forms and content within the ER. A series of operational checks were developed for each operation that wig verify the extent or success of an operation. The criticality analysis considered the ER operating conditions at their NOE values as the point of departure for credible and incredible failure modes. As a result of the analysis, FCF ER operations were found to be safe with respect to criticality.« less

  14. The affect heuristic in occupational safety.

    PubMed

    Savadori, Lucia; Caovilla, Jessica; Zaniboni, Sara; Fraccaroli, Franco

    2015-07-08

    The affect heuristic is a rule of thumb according to which, in the process of making a judgment or decision, people use affect as a cue. If a stimulus elicits positive affect then risks associated to that stimulus are viewed as low and benefits as high; conversely, if the stimulus elicits negative affect, then risks are perceived as high and benefits as low. The basic tenet of this study is that affect heuristic guides worker's judgment and decision making in a risk situation. The more the worker likes her/his organization the less she/he will perceive the risks as high. A sample of 115 employers and 65 employees working in small family agricultural businesses completed a questionnaire measuring perceived safety costs, psychological safety climate, affective commitment and safety compliance. A multi-sample structural analysis supported the thesis that safety compliance can be explained through an affect-based heuristic reasoning, but only for employers. Positive affective commitment towards their family business reduced employers' compliance with safety procedures by increasing the perceived cost of implementing them.

  15. Safety assessment guidance in the International Atomic Energy Agency RADWASS Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vovk, I.F.; Seitz, R.R.

    1995-12-31

    The IAEA RADWASS programme is aimed at establishing a coherent and comprehensive set of principles and standards for the safe management of waste and formulating the guidelines necessary for their application. A large portion of this programme has been devoted to safety assessments for various waste management activities. Five Safety Guides are planned to be developed to provide general guidance to enable operators and regulators to develop necessary framework for safety assessment process in accordance with international recommendations. They cover predisposal, near surface disposal, geological disposal, uranium/thorium mining and milling waste, and decommissioning and environmental restoration. The Guide on safetymore » assessment for near surface disposal is at the most advanced stage of preparation. This draft Safety Guide contains guidance on description of the disposal system, development of a conceptual model, identification and description of relevant scenarios and pathways, consequence analysis, presentation of results and confidence building. The set of RADWASS publications is currently undergoing in-depth review to ensure a harmonized approach throughout the Safety Series.« less

  16. An Accident Precursor Analysis Process Tailored for NASA Space Systems

    NASA Technical Reports Server (NTRS)

    Groen, Frank; Stamatelatos, Michael; Dezfuli, Homayoon; Maggio, Gaspare

    2010-01-01

    Accident Precursor Analysis (APA) serves as the bridge between existing risk modeling activities, which are often based on historical or generic failure statistics, and system anomalies, which provide crucial information about the failure mechanisms that are actually operative in the system and which may differ in frequency or type from those in the various models. These discrepancies between the models (perceived risk) and the system (actual risk) provide the leading indication of an underappreciated risk. This paper presents an APA process developed specifically for NASA Earth-to-Orbit space systems. The purpose of the process is to identify and characterize potential sources of system risk as evidenced by anomalous events which, although not necessarily presenting an immediate safety impact, may indicate that an unknown or insufficiently understood risk-significant condition exists in the system. Such anomalous events are considered accident precursors because they signal the potential for severe consequences that may occur in the future, due to causes that are discernible from their occurrence today. Their early identification allows them to be integrated into the overall system risk model used to intbrm decisions relating to safety.

  17. Risk-Informed Decision Making: Application to Technology Development Alternative Selection

    NASA Technical Reports Server (NTRS)

    Dezfuli, Homayoon; Maggio, Gaspare; Everett, Christopher

    2010-01-01

    NASA NPR 8000.4A, Agency Risk Management Procedural Requirements, defines risk management in terms of two complementary processes: Risk-informed Decision Making (RIDM) and Continuous Risk Management (CRM). The RIDM process is used to inform decision making by emphasizing proper use of risk analysis to make decisions that impact all mission execution domains (e.g., safety, technical, cost, and schedule) for program/projects and mission support organizations. The RIDM process supports the selection of an alternative prior to program commitment. The CRM process is used to manage risk associated with the implementation of the selected alternative. The two processes work together to foster proactive risk management at NASA. The Office of Safety and Mission Assurance at NASA Headquarters has developed a technical handbook to provide guidance for implementing the RIDM process in the context of NASA risk management and systems engineering. This paper summarizes the key concepts and procedures of the RIDM process as presented in the handbook, and also illustrates how the RIDM process can be applied to the selection of technology investments as NASA's new technology development programs are initiated.

  18. Good practices on cost - effective road infrastructure safety investments.

    PubMed

    Yannis, George; Papadimitriou, Eleonora; Evgenikos, Petros; Dragomanovits, Anastasios

    2016-12-01

    The paper presents the findings of a research project aiming to quantify and subsequently classify several infrastructure-related road safety measures, based on the international experience attained through extensive and selected literature review and additionally on a full consultation process including questionnaire surveys addressed to experts and relevant workshops. Initially, a review of selected research reports was carried out and an exhaustive list of road safety infrastructure investments covering all types of infrastructure was compiled. Individual investments were classified according to the infrastructure investment area and the type of investment and were thereafter analysed on the basis of key safety components. These investments were subsequently ranked in relation to their safety effects and implementation costs and on the basis of this ranking, a set of five most promising investments was selected for an in-depth analysis. The results suggest that the overall cost effectiveness of a road safety infrastructure investment is not always in direct correlation with the safety effect and is recommended that cost-benefit ratios and safety effects are always examined in conjunction with each other in order to identify the optimum solution for a specific road safety problem in specific conditions and with specific objectives.

  19. Exploring how ward staff engage with the implementation of a patient safety intervention: a UK-based qualitative process evaluation

    PubMed Central

    Sheard, Laura; Marsh, Claire; O’Hara, Jane; Armitage, Gerry; Wright, John; Lawton, Rebecca

    2017-01-01

    Objectives A patient safety intervention was tested in a 33-ward randomised controlled trial. No statistically significant difference between intervention and control wards was found. We conducted a process evaluation of the trial and our aim in this paper is to understand staff engagement across the 17 intervention wards. Design Large qualitative process evaluation of the implementation of a patient safety intervention. Setting and participants National Health Service staff based on 17 acute hospital wards located at five hospital sites in the North of England. Data We concentrate on three sources here: (1) analysis of taped discussion between ward staff during action planning meetings; (2) facilitators’ field notes and (3) follow-up telephone interviews with staff focusing on whether action plans had been achieved. The analysis involved the use of pen portraits and adaptive theory. Findings First, there were palpable differences in the ways that the 17 ward teams engaged with the key components of the intervention. Five main engagement typologies were evident across the life course of the study: consistent, partial, increasing, decreasing and disengaged. Second, the intensity of support for the intervention at the level of the organisation does not predict the strength of engagement at the level of the individual ward team. Third, the standardisation of facilitative processes provided by the research team does not ensure that implementation standardisation of the intervention occurs by ward staff. Conclusions A dilution of the intervention occurred during the trial because wards engaged with Patient Reporting and Action for a Safe Environment (PRASE) in divergent ways, despite the standardisation of key components. Facilitative processes were not sufficiently adequate to enable intervention wards to successfully engage with PRASE components. PMID:28710206

  20. Safety assessment on pedestrian crossing environments using MLS data.

    PubMed

    Soilán, Mario; Riveiro, Belén; Sánchez-Rodríguez, Ana; Arias, Pedro

    2018-02-01

    In the framework of infrastructure analysis and maintenance in an urban environment, it is important to address the safety of every road user. This paper presents a methodology for the evaluation of several safety indicators on pedestrian crossing environments using geometric and radiometric information extracted from 3D point clouds collected by a Mobile Mapping System (MMS). The methodology is divided in four main modules which analyze the accessibility of the crossing area, the presence of traffic lights and traffic signs, and the visibility between a driver and a pedestrian on the proximities of a pedestrian crossing. The outputs of the analysis are exported to a Geographic Information System (GIS) where they are visualized and can be further processed in the context of city management. The methodology has been tested on approximately 30 pedestrian crossings in cluttered urban environments of two different cities. Results show that MMS are a valid mean to assess the safety of a specific urban environment, regarding its geometric conditions. Remarkable results are presented on traffic light classification, with a global F-score close to 95%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Obtaining Valid Safety Data for Software Safety Measurement and Process Improvement

    NASA Technical Reports Server (NTRS)

    Basili, Victor r.; Zelkowitz, Marvin V.; Layman, Lucas; Dangle, Kathleen; Diep, Madeline

    2010-01-01

    We report on a preliminary case study to examine software safety risk in the early design phase of the NASA Constellation spaceflight program. Our goal is to provide NASA quality assurance managers with information regarding the ongoing state of software safety across the program. We examined 154 hazard reports created during the preliminary design phase of three major flight hardware systems within the Constellation program. Our purpose was two-fold: 1) to quantify the relative importance of software with respect to system safety; and 2) to identify potential risks due to incorrect application of the safety process, deficiencies in the safety process, or the lack of a defined process. One early outcome of this work was to show that there are structural deficiencies in collecting valid safety data that make software safety different from hardware safety. In our conclusions we present some of these deficiencies.

  2. Preliminary Results Obtained in Integrated Safety Analysis of NASA Aviation Safety Program Technologies

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This is a listing of recent unclassified RTO technical publications processed by the NASA Center for AeroSpace Information from January 1, 2001 through March 31, 2001 available on the NASA Aeronautics and Space Database. Contents include 1) Cognitive Task Analysis; 2) RTO Educational Notes; 3) The Capability of Virtual Reality to Meet Military Requirements; 4) Aging Engines, Avionics, Subsystems and Helicopters; 5) RTO Meeting Proceedings; 6) RTO Technical Reports; 7) Low Grazing Angle Clutter...; 8) Verification and Validation Data for Computational Unsteady Aerodynamics; 9) Space Observation Technology; 10) The Human Factor in System Reliability...; 11) Flight Control Design...; 12) Commercial Off-the-Shelf Products in Defense Applications.

  3. Environmental Impact Analysis Process. Deployment Area Selection and Land Withdrawal/Acquisition DEIS. Chapter II. Comparative Analysis of Alternatives.

    DTIC Science & Technology

    1980-12-01

    2.3.17 Housing 2-139 2.3.18 Public Finance 2-142 2.3.19 Educational Services 2-143 2.3.20 Health Services Personnel 2-143 2.3.21 Public Safety 2...2-161 2.4.16 Population 2-161 2.4.17 Housing 2-161 2.4.18 Public Finance 2-162 2.4.19 Educational Services 2-162 2.4.20 Health Services Personnel 2...2.5.17 Housing 2-167 2.5.18 Public Finance 2-168 2.5.19 Educational Services 2-168 2.5.20 Health Services Personnel 2-168 2.5.21 Public Safety 2-168

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harper, Kyle; Truong, Thanh-Tam; Magwood, Leroy

    In the process of decontaminating and decommissioning (D&D) older nuclear facilities, special precautions must be taken with removable or airborne contamination. One possible strategy utilizes foams and fixatives to affix these loose contaminants. Many foams and fixatives are already commercially available, either generically or sold specifically for D&D. However, due to a lack of revelant testing in a radioactive environment, additional verification is needed to confirm that these products not only affix contamination to their surfaces, but also will function in a D&D environment. Several significant safety factors, including flammability and worker safety, can be analyzed through the process ofmore » headspace analysis, a technique that analyzes the off gas formed before or during the curing process of the foam/fixative, usually using gas chromatography-mass spectrometry (GC-MS). This process focuses on the volatile components of a chemical, which move freely between the solid/liquid form within the sample and the gaseous form in the area above the sample (the headspace). Between possibly hot conditions in a D&D situation and heat created in a foaming reaction, the volatility of many chemicals can change, and thus different gasses can be released at different times throughout the reaction. This project focused on analysis of volatile chemicals involved in the process of using foams and fixatives to identify any potential hazardous or flammable compounds.« less

  5. Software Safety Risk in Legacy Safety-Critical Computer Systems

    NASA Technical Reports Server (NTRS)

    Hill, Janice L.; Baggs, Rhoda

    2007-01-01

    Safety Standards contain technical and process-oriented safety requirements. Technical requirements are those such as "must work" and "must not work" functions in the system. Process-Oriented requirements are software engineering and safety management process requirements. Address the system perspective and some cover just software in the system > NASA-STD-8719.13B Software Safety Standard is the current standard of interest. NASA programs/projects will have their own set of safety requirements derived from the standard. Safety Cases: a) Documented demonstration that a system complies with the specified safety requirements. b) Evidence is gathered on the integrity of the system and put forward as an argued case. [Gardener (ed.)] c) Problems occur when trying to meet safety standards, and thus make retrospective safety cases, in legacy safety-critical computer systems.

  6. Application of the SCALE TSUNAMI Tools for the Validation of Criticality Safety Calculations Involving 233U

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Don; Rearden, Bradley T; Hollenbach, Daniel F

    2009-02-01

    The Radiochemical Development Facility at Oak Ridge National Laboratory has been storing solid materials containing 233U for decades. Preparations are under way to process these materials into a form that is inherently safe from a nuclear criticality safety perspective. This will be accomplished by down-blending the {sup 233}U materials with depleted or natural uranium. At the request of the U.S. Department of Energy, a study has been performed using the SCALE sensitivity and uncertainty analysis tools to demonstrate how these tools could be used to validate nuclear criticality safety calculations of selected process and storage configurations. ISOTEK nuclear criticality safetymore » staff provided four models that are representative of the criticality safety calculations for which validation will be needed. The SCALE TSUNAMI-1D and TSUNAMI-3D sequences were used to generate energy-dependent k{sub eff} sensitivity profiles for each nuclide and reaction present in the four safety analysis models, also referred to as the applications, and in a large set of critical experiments. The SCALE TSUNAMI-IP module was used together with the sensitivity profiles and the cross-section uncertainty data contained in the SCALE covariance data files to propagate the cross-section uncertainties ({Delta}{sigma}/{sigma}) to k{sub eff} uncertainties ({Delta}k/k) for each application model. The SCALE TSUNAMI-IP module was also used to evaluate the similarity of each of the 672 critical experiments with each application. Results of the uncertainty analysis and similarity assessment are presented in this report. A total of 142 experiments were judged to be similar to application 1, and 68 experiments were judged to be similar to application 2. None of the 672 experiments were judged to be adequately similar to applications 3 and 4. Discussion of the uncertainty analysis and similarity assessment is provided for each of the four applications. Example upper subcritical limits (USLs) were generated for application 1 based on trending of the energy of average lethargy of neutrons causing fission, trending of the TSUNAMI similarity parameters, and use of data adjustment techniques.« less

  7. Quality assurance of radiotherapy in cancer treatment: toward improvement of patient safety and quality of care.

    PubMed

    Ishikura, Satoshi

    2008-11-01

    The process of radiotherapy (RT) is complex and involves understanding of the principles of medical physics, radiobiology, radiation safety, dosimetry, radiation treatment planning, simulation and interaction of radiation with other treatment modalities. Each step in the integrated process of RT needs quality control and quality assurance (QA) to prevent errors and to give high confidence that patients will receive the prescribed treatment correctly. Recent advances in RT, including intensity-modulated and image-guided RT, focus on the need for a systematic RTQA program that balances patient safety and quality with available resources. It is necessary to develop more formal error mitigation and process analysis methods, such as failure mode and effect analysis, to focus available QA resources optimally on process components. External audit programs are also effective. The International Atomic Energy Agency has operated both an on-site and off-site postal dosimetry audit to improve practice and to assure the dose from RT equipment. Several countries have adopted a similar approach for national clinical auditing. In addition, clinical trial QA has a significant role in enhancing the quality of care. The Advanced Technology Consortium has pioneered the development of an infrastructure and QA method for advanced technology clinical trials, including credentialing and individual case review. These activities have an impact not only on the treatment received by patients enrolled in clinical trials, but also on the quality of treatment administered to all patients treated in each institution, and have been adopted globally; by the USA, Europe and Japan also.

  8. Interface design of VSOP'94 computer code for safety analysis

    NASA Astrophysics Data System (ADS)

    Natsir, Khairina; Yazid, Putranto Ilham; Andiwijayakusuma, D.; Wahanani, Nursinta Adi

    2014-09-01

    Today, most software applications, also in the nuclear field, come with a graphical user interface. VSOP'94 (Very Superior Old Program), was designed to simplify the process of performing reactor simulation. VSOP is a integrated code system to simulate the life history of a nuclear reactor that is devoted in education and research. One advantage of VSOP program is its ability to calculate the neutron spectrum estimation, fuel cycle, 2-D diffusion, resonance integral, estimation of reactors fuel costs, and integrated thermal hydraulics. VSOP also can be used to comparative studies and simulation of reactor safety. However, existing VSOP is a conventional program, which was developed using Fortran 65 and have several problems in using it, for example, it is only operated on Dec Alpha mainframe platforms and provide text-based output, difficult to use, especially in data preparation and interpretation of results. We develop a GUI-VSOP, which is an interface program to facilitate the preparation of data, run the VSOP code and read the results in a more user friendly way and useable on the Personal 'Computer (PC). Modifications include the development of interfaces on preprocessing, processing and postprocessing. GUI-based interface for preprocessing aims to provide a convenience way in preparing data. Processing interface is intended to provide convenience in configuring input files and libraries and do compiling VSOP code. Postprocessing interface designed to visualized the VSOP output in table and graphic forms. GUI-VSOP expected to be useful to simplify and speed up the process and analysis of safety aspects.

  9. 14 CFR Appendix B to Part 415 - Safety Review Document Outline

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ....0Flight Safety (§ 415.115) 4.1Initial Flight Safety Analysis 4.1.1Flight Safety Sub-Analyses, Methods, and... Analysis Data 4.2Radionuclide Data (where applicable) 4.3Flight Safety Plan 4.3.1Flight Safety Personnel 4... Safety (§ 415.117) 5.1Ground Safety Analysis Report 5.2Ground Safety Plan 6.0Launch Plans (§ 415.119 and...

  10. 14 CFR Appendix B to Part 415 - Safety Review Document Outline

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ....0Flight Safety (§ 415.115) 4.1Initial Flight Safety Analysis 4.1.1Flight Safety Sub-Analyses, Methods, and... Analysis Data 4.2Radionuclide Data (where applicable) 4.3Flight Safety Plan 4.3.1Flight Safety Personnel 4... Safety (§ 415.117) 5.1Ground Safety Analysis Report 5.2Ground Safety Plan 6.0Launch Plans (§ 415.119 and...

  11. EVALUATION OF SAFETY IN A RADIATION ONCOLOGY SETTING USING FAILURE MODE AND EFFECTS ANALYSIS

    PubMed Central

    Ford, Eric C.; Gaudette, Ray; Myers, Lee; Vanderver, Bruce; Engineer, Lilly; Zellars, Richard; Song, Danny Y.; Wong, John; DeWeese, Theodore L.

    2013-01-01

    Purpose Failure mode and effects analysis (FMEA) is a widely used tool for prospectively evaluating safety and reliability. We report our experiences in applying FMEA in the setting of radiation oncology. Methods and Materials We performed an FMEA analysis for our external beam radiation therapy service, which consisted of the following tasks: (1) create a visual map of the process, (2) identify possible failure modes; assign risk probability numbers (RPN) to each failure mode based on tabulated scores for the severity, frequency of occurrence, and detectability, each on a scale of 1 to 10; and (3) identify improvements that are both feasible and effective. The RPN scores can span a range of 1 to 1000, with higher scores indicating the relative importance of a given failure mode. Results Our process map consisted of 269 different nodes. We identified 127 possible failure modes with RPN scores ranging from 2 to 160. Fifteen of the top-ranked failure modes were considered for process improvements, representing RPN scores of 75 and more. These specific improvement suggestions were incorporated into our practice with a review and implementation by each department team responsible for the process. Conclusions The FMEA technique provides a systematic method for finding vulnerabilities in a process before they result in an error. The FMEA framework can naturally incorporate further quantification and monitoring. A general-use system for incident and near miss reporting would be useful in this regard. PMID:19409731

  12. Medical students' perceptions of a novel institutional incident reporting system : A thematic analysis.

    PubMed

    Gordon, Morris; Parakh, Dillan

    2017-10-01

    Errors in healthcare are a major patient safety issue, with incident reporting a key solution. The incident reporting system has been integrated within a new medical curriculum, encouraging medical students to take part in this key safety process. The aim of this study was to describe the system and assess how students perceived the reporting system with regards to its role in enhancing safety. Employing a thematic analysis, this study used interviews with medical students at the end of the first year. Thematic indices were developed according to the information emerging from the data. Through open, axial and then selective stages of coding, an understanding of how the system was perceived was established. Analysis of the interview specified five core themes: (1) Aims of the incident reporting system; (2) internalized cognition of the system; (3) the impact of the reporting system; (4) threshold for reporting; (5) feedback on the systems operation. Selective analysis revealed three overriding findings: lack of error awareness and error wisdom as underpinned by key theoretical constructs, student support of the principle of safety, and perceptions of a blame culture. Students did not interpret reporting as a manner to support institutional learning and safety, rather many perceived it as a tool for a blame culture. The impact reporting had on students was unexpected and may give insight into how other undergraduates and early graduates interpret such a system. Future studies should aim to produce interventions that can support a reporting culture.

  13. Variable dynamic testbed vehicle : safety plan

    DOT National Transportation Integrated Search

    1997-02-01

    This safety document covers the entire safety process from inception to delivery of the Variable Dynamic Testbed Vehicle. In addition to addressing the process of safety on the vehicle , it should provide a basis on which to build future safety proce...

  14. A Smartphone-Based Driver Safety Monitoring System Using Data Fusion

    PubMed Central

    Lee, Boon-Giin; Chung, Wan-Young

    2012-01-01

    This paper proposes a method for monitoring driver safety levels using a data fusion approach based on several discrete data types: eye features, bio-signal variation, in-vehicle temperature, and vehicle speed. The driver safety monitoring system was developed in practice in the form of an application for an Android-based smartphone device, where measuring safety-related data requires no extra monetary expenditure or equipment. Moreover, the system provides high resolution and flexibility. The safety monitoring process involves the fusion of attributes gathered from different sensors, including video, electrocardiography, photoplethysmography, temperature, and a three-axis accelerometer, that are assigned as input variables to an inference analysis framework. A Fuzzy Bayesian framework is designed to indicate the driver’s capability level and is updated continuously in real-time. The sensory data are transmitted via Bluetooth communication to the smartphone device. A fake incoming call warning service alerts the driver if his or her safety level is suspiciously compromised. Realistic testing of the system demonstrates the practical benefits of multiple features and their fusion in providing a more authentic and effective driver safety monitoring. PMID:23247416

  15. The development of a 3D risk analysis method.

    PubMed

    I, Yet-Pole; Cheng, Te-Lung

    2008-05-01

    Much attention has been paid to the quantitative risk analysis (QRA) research in recent years due to more and more severe disasters that have happened in the process industries. Owing to its calculation complexity, very few software, such as SAFETI, can really make the risk presentation meet the practice requirements. However, the traditional risk presentation method, like the individual risk contour in SAFETI, is mainly based on the consequence analysis results of dispersion modeling, which usually assumes that the vapor cloud disperses over a constant ground roughness on a flat terrain with no obstructions and concentration fluctuations, which is quite different from the real situations of a chemical process plant. All these models usually over-predict the hazardous regions in order to maintain their conservativeness, which also increases the uncertainty of the simulation results. On the other hand, a more rigorous model such as the computational fluid dynamics (CFD) model can resolve the previous limitations; however, it cannot resolve the complexity of risk calculations. In this research, a conceptual three-dimensional (3D) risk calculation method was proposed via the combination of results of a series of CFD simulations with some post-processing procedures to obtain the 3D individual risk iso-surfaces. It is believed that such technique will not only be limited to risk analysis at ground level, but also be extended into aerial, submarine, or space risk analyses in the near future.

  16. Application of the statistical process control method for prospective patient safety monitoring during the learning phase: robotic kidney transplantation with regional hypothermia (IDEAL phase 2a-b).

    PubMed

    Sood, Akshay; Ghani, Khurshid R; Ahlawat, Rajesh; Modi, Pranjal; Abaza, Ronney; Jeong, Wooju; Sammon, Jesse D; Diaz, Mireya; Kher, Vijay; Menon, Mani; Bhandari, Mahendra

    2014-08-01

    Traditional evaluation of the learning curve (LC) of an operation has been retrospective. Furthermore, LC analysis does not permit patient safety monitoring. To prospectively monitor patient safety during the learning phase of robotic kidney transplantation (RKT) and determine when it could be considered learned using the techniques of statistical process control (SPC). From January through May 2013, 41 patients with end-stage renal disease underwent RKT with regional hypothermia at one of two tertiary referral centers adopting RKT. Transplant recipients were classified into three groups based on the robotic training and kidney transplant experience of the surgeons: group 1, robot trained with limited kidney transplant experience (n=7); group 2, robot trained and kidney transplant experienced (n=20); and group 3, kidney transplant experienced with limited robot training (n=14). We employed prospective monitoring using SPC techniques, including cumulative summation (CUSUM) and Shewhart control charts, to perform LC analysis and patient safety monitoring, respectively. Outcomes assessed included post-transplant graft function and measures of surgical process (anastomotic and ischemic times). CUSUM and Shewhart control charts are time trend analytic techniques that allow comparative assessment of outcomes following a new intervention (RKT) relative to those achieved with established techniques (open kidney transplant; target value) in a prospective fashion. CUSUM analysis revealed an initial learning phase for group 3, whereas groups 1 and 2 had no to minimal learning time. The learning phase for group 3 varied depending on the parameter assessed. Shewhart control charts demonstrated no compromise in functional outcomes for groups 1 and 2. Graft function was compromised in one patient in group 3 (p<0.05) secondary to reasons unrelated to RKT. In multivariable analysis, robot training was significantly associated with improved task-completion times (p<0.01). Graft function was not adversely affected by either the lack of robotic training (p=0.22) or kidney transplant experience (p=0.72). The LC and patient safety of a new surgical technique can be assessed prospectively using CUSUM and Shewhart control chart analytic techniques. These methods allow determination of the duration of mentorship and identification of adverse events in a timely manner. A new operation can be considered learned when outcomes achieved with the new intervention are at par with outcomes following established techniques. Statistical process control techniques allowed for robust, objective, and prospective monitoring of robotic kidney transplantation and can similarly be applied to other new interventions during the introduction and adoption phase. Copyright © 2014 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  17. Incident reporting: Its role in aviation safety and the acquisition of human error data

    NASA Technical Reports Server (NTRS)

    Reynard, W. D.

    1983-01-01

    The rationale for aviation incident reporting systems is presented and contrasted to some of the shortcomings of accident investigation procedures. The history of the United State's Aviation Safety Reporting System (ASRS) is outlined and the program's character explained. The planning elements that resulted in the ASRS program's voluntary, confidential, and non-punitive design are discussed. Immunity, from enforcement action and misuse of the volunteered data, is explained and evaluated. Report generation techniques and the ASRS data analysis process are described; in addition, examples of the ASRS program's output and accomplishments are detailed. Finally, the value of incident reporting for the acquisition of safety information, particularly human error data, is explored.

  18. An Online Risk Monitor System (ORMS) to Increase Safety and Security Levels in Industry

    NASA Astrophysics Data System (ADS)

    Zubair, M.; Rahman, Khalil Ur; Hassan, Mehmood Ul

    2013-12-01

    The main idea of this research is to develop an Online Risk Monitor System (ORMS) based on Living Probabilistic Safety Assessment (LPSA). The article highlights the essential features and functions of ORMS. The basic models and modules such as, Reliability Data Update Model (RDUM), running time update, redundant system unavailability update, Engineered Safety Features (ESF) unavailability update and general system update have been described in this study. ORMS not only provides quantitative analysis but also highlights qualitative aspects of risk measures. ORMS is capable of automatically updating the online risk models and reliability parameters of equipment. ORMS can support in the decision making process of operators and managers in Nuclear Power Plants.

  19. Quality and Safety Aspects of Cereals (Wheat) and Their Products.

    PubMed

    Varzakas, Theo

    2016-11-17

    Cereals and, most specifically, wheat are described in this chapter highlighting on their safety and quality aspects. Moreover, wheat quality aspects are adequately addressed since they are used to characterize dough properties and baking quality. Determination of dough properties is also mentioned and pasta quality is also described in this chapter. Chemometrics-multivariate analysis is one of the analyses carried out. Regarding production weighing/mixing of flours, kneading, extruded wheat flours, and sodium chloride are important processing steps/raw materials used in the manufacturing of pastry products. Staling of cereal-based products is also taken into account. Finally, safety aspects of cereal-based products are well documented with special emphasis on mycotoxins, acrylamide, and near infrared methodology.

  20. Safety self-efficacy and safety performance: potential antecedents and the moderation effect of standardization.

    PubMed

    Katz-Navon, Tal; Naveh, Eitan; Stern, Zvi

    2007-01-01

    The purpose of this paper is to suggest a new safety self-efficacy construct and to explore its antecedents and interaction with standardization to influence in-patient safety. The paper used a survey of 161 nurses using a self-administered questionnaire over a 14-day period in two large Israeli general hospitals. Nurses answered questions relating to four safety self-efficacy antecedents: enactive mastery experiences; managers as safety role models; verbal persuasion; and safety priority, that relate to the perceived level of standardization and safety self-efficacy. Confirmatory factor analysis was used to assess the scale's construct validity. Regression models were used to test hypotheses regarding the antecedents and influence of safety self-efficacy. Results indicate that: managers as safety role models; distributing safety information; and priority given to safety, contributed to safety self-efficacy. Additionally, standardization moderated the effects of safety self-efficacy and patient safety such that safety self-efficacy was positively associated with patient safety when standardization was low rather than high. Hospital managers should be aware of individual motivations as safety self-efficacy when evaluating the potential influence of standardization on patient safety. Theoretically, the study introduces a new safety self-efficacy concept, and captures its antecedents and influence on safety performance. Also, the study suggests safety self-efficacy as a boundary condition for the influence of standardization on safety performance. Implementing standardization in healthcare is problematic because not all processes can be standardized. In this case, self-efficacy plays an important role in securing patient safety. Hence, safety self-efficacy may serve as a "substitute-for-standardization," by promoting staff behaviors that affect patient safety.

  1. Exploring the delivery of antiretroviral therapy for symptomatic HIV in Swaziland: threats to the successful treatment and safety of outpatients attending regional and district clinics.

    PubMed

    Armitage, Gerry; Hodgson, Ian; Wright, John; Bailey, Kerry; Mkhwana, Estel

    2011-01-01

    To examine the safety and acceptability of providing antiretroviral therapy (ART) in a resource poor setting. Two-stage observational and qualitative study. Rural hospital in Southern Africa. Structured observation using failure modes and effects analysis (FMEA) of the drug supply, dispensing, prescribing and administration processes. The findings from the FMEA were explored further in qualitative interviews with eight health professionals involved in the delivery of ART. To obtain a patient perspective, a stratified sample of 14 patients receiving ART was also interviewed. Key vulnerabilities in the process of ART provision include supply problems, poor packaging and labelling, inadequate knowledge among staff and lack of staff. Key barriers to successful patient adherence include transport inconsistency in supply and personal financial difficulties. There is, however, strong evidence of patient commitment and adherence. IMPLICATIONS AND CONCLUSION: Medication safety is relatively unexplored in the developing world. This study reveals an encouraging resilience in the health system and adherence among patients in the delivery of complex ART. The vulnerabilities identified, however, undermine patient safety and effectiveness of ART. There are implications for drug manufacturers; international aid agencies funding and supplying ART; and local practitioners. FMEA can help identify potential vulnerabilities and inform safety improvement interventions.

  2. Safety at work: a meta-analytic investigation of the link between job demands, job resources, burnout, engagement, and safety outcomes.

    PubMed

    Nahrgang, Jennifer D; Morgeson, Frederick P; Hofmann, David A

    2011-01-01

    In this article, we develop and meta-analytically test the relationship between job demands and resources and burnout, engagement, and safety outcomes in the workplace. In a meta-analysis of 203 independent samples (N = 186,440), we found support for a health impairment process and for a motivational process as mechanisms through which job demands and resources relate to safety outcomes. In particular, we found that job demands such as risks and hazards and complexity impair employees' health and positively relate to burnout. Likewise, we found support for job resources such as knowledge, autonomy, and a supportive environment motivating employees and positively relating to engagement. Job demands were found to hinder an employee with a negative relationship to engagement, whereas job resources were found to negatively relate to burnout. Finally, we found that burnout was negatively related to working safely but that engagement motivated employees and was positively related to working safely. Across industries, risks and hazards was the most consistent job demand and a supportive environment was the most consistent job resource in terms of explaining variance in burnout, engagement, and safety outcomes. The type of job demand that explained the most variance differed by industry, whereas a supportive environment remained consistent in explaining the most variance in all industries.

  3. Comparative physicochemical evaluation of a marketed herbomineral formulation: naga bhasma.

    PubMed

    Garg, M; Das, S; Singh, G

    2012-11-01

    In the practice of Ayurveda, where herbomineral formulations are said to be made biocompatible through specific processes like Shodhana and Marana, the western medical science on the contrary has raised the safety concerns of these formulations in the recent past. In the present study, comparative physico-chemical analysis of Naga bhasma, a herbo-mineral preparation having a reputation of miraculous drug commonly used to treat several health disorders, was carried out using five marketed formulations through analytical methods like differential scanning calorimetry, X-ray difraction, thermogravimetric analysis, Fourier Transform infrared spectroscopy and also subjected for particle size analysis and estimation of trace and heavy metals to access the safety of these formulation. The results revealed variable observations regarding particle size, metal form and content of lead. The presence of free lead in five different formulations indicated towards the possible risk of severe side effects to the consumer. Present findings certainly put doubt over the safety of this formulation but at the same time, variation in the results with all five formulations also indicated that these formulations were not prepared as per the mentioned Ayurvedic text. Hence, enforcement of strict regulatory guidelines is strongly warranted before launching into the market. Further, a series of biological studies need to be conducted before taking any final verdict on the safety of this formulation.

  4. 49 CFR 1106.4 - The Safety Integration Plan process.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 8 2011-10-01 2011-10-01 false The Safety Integration Plan process. 1106.4... CONSIDERATION OF SAFETY INTEGRATION PLANS IN CASES INVOLVING RAILROAD CONSOLIDATIONS, MERGERS, AND ACQUISITIONS OF CONTROL § 1106.4 The Safety Integration Plan process. (a) Each applicant in a transaction subject...

  5. 49 CFR 1106.4 - The Safety Integration Plan process.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 8 2013-10-01 2013-10-01 false The Safety Integration Plan process. 1106.4... CONSIDERATION OF SAFETY INTEGRATION PLANS IN CASES INVOLVING RAILROAD CONSOLIDATIONS, MERGERS, AND ACQUISITIONS OF CONTROL § 1106.4 The Safety Integration Plan process. (a) Each applicant in a transaction subject...

  6. 49 CFR 1106.4 - The Safety Integration Plan process.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 8 2014-10-01 2014-10-01 false The Safety Integration Plan process. 1106.4... CONSIDERATION OF SAFETY INTEGRATION PLANS IN CASES INVOLVING RAILROAD CONSOLIDATIONS, MERGERS, AND ACQUISITIONS OF CONTROL § 1106.4 The Safety Integration Plan process. (a) Each applicant in a transaction subject...

  7. 49 CFR 1106.4 - The Safety Integration Plan process.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 8 2012-10-01 2012-10-01 false The Safety Integration Plan process. 1106.4... CONSIDERATION OF SAFETY INTEGRATION PLANS IN CASES INVOLVING RAILROAD CONSOLIDATIONS, MERGERS, AND ACQUISITIONS OF CONTROL § 1106.4 The Safety Integration Plan process. (a) Each applicant in a transaction subject...

  8. 49 CFR 1106.4 - The Safety Integration Plan process.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 8 2010-10-01 2010-10-01 false The Safety Integration Plan process. 1106.4... CONSIDERATION OF SAFETY INTEGRATION PLANS IN CASES INVOLVING RAILROAD CONSOLIDATIONS, MERGERS, AND ACQUISITIONS OF CONTROL § 1106.4 The Safety Integration Plan process. (a) Each applicant in a transaction subject...

  9. When paradigms collide at the road rail interface: evaluation of a sociotechnical systems theory design toolkit for cognitive work analysis.

    PubMed

    Read, Gemma J M; Salmon, Paul M; Lenné, Michael G

    2016-09-01

    The Cognitive Work Analysis Design Toolkit (CWA-DT) is a recently developed approach that provides guidance and tools to assist in applying the outputs of CWA to design processes to incorporate the values and principles of sociotechnical systems theory. In this paper, the CWA-DT is evaluated based on an application to improve safety at rail level crossings. The evaluation considered the extent to which the CWA-DT met pre-defined methodological criteria and aligned with sociotechnical values and principles. Both process and outcome measures were taken based on the ratings of workshop participants and human factors experts. Overall, workshop participants were positive about the process and indicated that it met the methodological criteria and sociotechnical values. However, expert ratings suggested that the CWA-DT achieved only limited success in producing RLX designs that fully aligned with the sociotechnical approach. Discussion about the appropriateness of the sociotechnical approach in a public safety context is provided. Practitioner Summary: Human factors and ergonomics practitioners need evidence of the effectiveness of methods. A design toolkit for cognitive work analysis, incorporating values and principles from sociotechnical systems theory, was applied to create innovative designs for rail level crossings. Evaluation results based on the application are provided and discussed.

  10. Emergency Management Operations Process Mapping: Public Safety Technical Program Study

    DTIC Science & Technology

    2011-02-01

    Enterprise Architectures in industry, and have been successfully applied to assist companies to optimise interdependencies and relationships between...model for more in-depth analysis of EM processes, and for use in tandem with other studies that apply modeling and simulation to assess EM...for use in tandem with other studies that apply modeling and simulation to assess EM operational effectiveness before and after changing elements

  11. Ares I-X Range Safety Simulation Verification and Analysis Independent Validation and Verification

    NASA Technical Reports Server (NTRS)

    Merry, Carl M.; Tarpley, Ashley F.; Craig, A. Scott; Tartabini, Paul V.; Brewer, Joan D.; Davis, Jerel G.; Dulski, Matthew B.; Gimenez, Adrian; Barron, M. Kyle

    2011-01-01

    NASA s Ares I-X vehicle launched on a suborbital test flight from the Eastern Range in Florida on October 28, 2009. To obtain approval for launch, a range safety final flight data package was generated to meet the data requirements defined in the Air Force Space Command Manual 91-710 Volume 2. The delivery included products such as a nominal trajectory, trajectory envelopes, stage disposal data and footprints, and a malfunction turn analysis. The Air Force s 45th Space Wing uses these products to ensure public and launch area safety. Due to the criticality of these data, an independent validation and verification effort was undertaken to ensure data quality and adherence to requirements. As a result, the product package was delivered with the confidence that independent organizations using separate simulation software generated data to meet the range requirements and yielded consistent results. This document captures Ares I-X final flight data package verification and validation analysis, including the methodology used to validate and verify simulation inputs, execution, and results and presents lessons learned during the process

  12. MO-F-16A-04: Case Study: Estimation of Peak Skin Dose Following a Physician Reported “High Dose” Case and Sentinel Event Considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Supanich, M; Chu, J; Wehmeyer, A

    2014-06-15

    Purpose: This work offers as a teaching example a reported high dose fluoroscopy case and the workflow the institution followed to self-report a radiation overdose sentinel event to the Joint Commission. Methods: Following the completion of a clinical case in a hybrid OR room with a reported air kerma of >18 Gy at the Interventional Reference Point (IRP) the physicians involved in the case referred study to the institution's Radiation Safety Committee (RSC) for review. The RSC assigned a Diagnostic Medical Physicist (DMP) to estimate the patient's Peak Skin Dose (PSD) and analyze the case. Following the DMP's analysis andmore » estimate of a PSD of >15 Gy the institution's adverse event committee was convened to discuss the case and to self-report the case as a radiation overdose sentinel event to the Joint Commission. The committee assigned a subgroup to perform the root cause analysis and develop institutional responses to the event. Results: The self-reporting of the sentinel event and the associated root cause analysis resulted in several institutional action items that are designed to improve process and safety. A formal reporting and analysis mechanism was adopted to review fluoroscopy cases with air kerma greater than 6 Gy at the IRP. An improved and formalized radiation safety training program for physicians using fluoroscopy equipment was implemented. Additionally efforts already under way to monitor radiation exposure in the Radiology department were expanded to include all fluoroscopy equipment capable of automated dose reporting. Conclusion: The adverse event review process and the root cause analysis following the self-reporting of the sentinel event resulted in policies and procedures that are expected to improve the quality and safe usage of fluoroscopy throughout the institution.« less

  13. [Preliminary studies on critical control point of traceability system in wolfberry].

    PubMed

    Liu, Sai; Xu, Chang-Qing; Li, Jian-Ling; Lin, Chen; Xu, Rong; Qiao, Hai-Li; Guo, Kun; Chen, Jun

    2016-07-01

    As a traditional Chinese medicine, wolfberry (Lycium barbarum) has a long cultivation history and a good industrial development foundation. With the development of wolfberry production, the expansion of cultivation area and the increased attention of governments and consumers on food safety, the quality and safety requirement of wolfberry is higher demanded. The quality tracing and traceability system of production entire processes is the important technology tools to protect the wolfberry safety, and to maintain sustained and healthy development of the wolfberry industry. Thus, this article analyzed the wolfberry quality management from the actual situation, the safety hazard sources were discussed according to the HACCP (hazard analysis and critical control point) and GAP (good agricultural practice for Chinese crude drugs), and to provide a reference for the traceability system of wolfberry. Copyright© by the Chinese Pharmaceutical Association.

  14. 75 FR 17604 - Federal Motor Vehicle Safety Standards; Roof Crush Resistance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-07

    ... Safety Analysis & Forensic Engineering, LLC (SAFE) brought to our attention errors in the preamble that incorrectly attributed to it the comments of another organization, Safety Analysis, Inc. Both of these... Safety Analysis, Inc. SAFE noted that there is no affiliation between SAFE and Safety Analysis, Inc. and...

  15. Nimbus/TOMS Science Data Operations Support

    NASA Technical Reports Server (NTRS)

    Childs, Jeff

    1998-01-01

    1. Participate in and provide analysis of laboratory and in-flight calibration of UV sensors used for space observations of backscattered UV radiation. 2. Provide support to the TOMS Science Operations Center, including generating instrument command lists and analysis of TOMS health and safety data. 3. Develop and maintain software and algorithms designed to capture and process raw spacecraft and instrument data, convert the instrument output into measured radiance and irradiances, and produce scientifically valid products. 4. Process the TOMS data into Level 1, Level 2, and Level 3 data products. 5. Provide analysis of the science data products in support of NASA GSFC Code 916's research.

  16. Nimbus/TOMS Science Data Operations Support

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Projected goals include the following: (1) Participate in and provide analysis of laboratory and in-flight calibration of LTV sensors used for space observations of backscattered LTV radiation; (2) Provide support to the TOMS Science Operations Center, including generating instrument command lists and analysis of TOMS health and safety data; (3) Develop and maintain software and algorithms designed to capture and process raw spacecraft and instrument data, convert the instrument output into measured radiance and irradiances, and produce scientifically valid products; (4) Process the TOMS data into Level 1, Level 2, and Level 3 data products; (5) Provide analysis of the science data products in support of NASA GSFC Code 916's research.

  17. Analysis of Risk Compensation Behavior on Night Vision Enhancement System

    NASA Astrophysics Data System (ADS)

    Hiraoka, Toshihiro; Masui, Junya; Nishikawa, Seimei

    Advanced driver assistance systems (ADAS) such as a forward obstacle collision warning system (FOCWS) and a night vision enhancement system (NVES) aim to decrease driver's mental workload and enhance vehicle safety by provision of useful information to support driver's perception process and judgment process. On the other hand, the risk homeostasis theory (RHT) cautions that an enhanced safety and a reduced risk would cause a risk compensation behavior such as increasing the vehicle velocity. Therefore, the present paper performed the driving simulator experiments to discuss dependence on the NVES and emergence of the risk compensation behavior. Moreover, we verified the side-effects of spontaneous behavioral adaptation derived from the presentation of the fuel-consumption meter on the risk compensation behavior.

  18. Kombucha brewing under the Food and Drug Administration model Food Code: risk analysis and processing guidance.

    PubMed

    Nummer, Brian A

    2013-11-01

    Kombucha is a fermented beverage made from brewed tea and sugar. The taste is slightly sweet and acidic and it may have residual carbon dioxide. Kombucha is consumed in many countries as a health beverage and it is gaining in popularity in the U.S. Consequently, many retailers and food service operators are seeking to brew this beverage on site. As a fermented beverage, kombucha would be categorized in the Food and Drug Administration model Food Code as a specialized process and would require a variance with submission of a food safety plan. This special report was created to assist both operators and regulators in preparing or reviewing a kombucha food safety plan.

  19. Spent nuclear fuel project cold vacuum drying facility operations manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    IRWIN, J.J.

    This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998) and, the HNF-SD-SNF-DRD-002, 1997, Cold Vacuum Drying Facility Design Requirements, Rev. 3a. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence, and has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of themore » CVDF until the CVDF final ORR is approved.« less

  20. Longitudinal safety evaluation of electric vehicles with the partial wireless charging lane on freeways.

    PubMed

    Li, Ye; Wang, Wei; Xing, Lu; Fan, Qi; Wang, Hao

    2018-02-01

    As an environment friendly transportation mode, the electric vehicle (EV) has drawn an increasing amount of attention from governments, vehicle manufactories and researchers recently. One of the biggest issue impeding EV's popularization associates with the charging process. The wireless charging lane (WCL) has been proposed as a convenient charging facility for EVs. Due to the high costs, the application of WCL on the entire freeways is impractical in the near future, while the partial WCL (PWCL) may be a feasible solution. This study aims to evaluate longitudinal safety of EVs with PWCL on freeways based on simulations. The simulation experiments are firstly designed, including deployment of PWCL on freeways and distribution of state of charge (SOC) of EVs. Then, a vehicle behavior model for EVs is proposed based on the intelligent driver model (IDM). Two surrogate safety measures, derived from time-to-collision (TTC), are utilized as indicators for safety evaluations. Sensitivity analysis is also conducted for related factors. Results show that the distribution of EVs' SOC significantly affect longitudinal safety when the PWCL is utilized. The low SOC in traffic consisting of EVs has the negative effect on longitudinal safety. The randomness and incompliance of EV drivers worsens the safety performance. The sensitivity analysis indicates that the larger maximum deceleration rate results in the higher longitudinal crash risks of EVs, while the length of PWCL has no monotonous effect. Different TTC thresholds also show no impact on results. A case study shows the consistent results. Based on the findings, several suggestions are discussed for EVs' safety improvement. Results of this study provide useful information for freeway safety when EVs are applied in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Software-Based Safety Systems in Space - Learning from other Domains

    NASA Astrophysics Data System (ADS)

    Klicker, M.; Putzer, H.

    2012-01-01

    Increasing complexity and new emerging capabilities for manned and unmanned missions have been the hallmark of the past decades of space exploration. One of the drivers in this process was the ever increasing use of software and software-intensive systems to implement system functions necessary to the capabilities needed. The course of technological evolution suggests that this development will continue well into the future with a number of challenges for the safety community some of which shall be discussed in this paper. The current state of the art reveals a number of problems with developing and assessing safety critical software which explains the reluctance of the space community to rely on software-based safety measures to mitigate hazards. Among others, usually lack of trustworthy evidence of software integrity in all foreseeable situations and the difficulties to integrate software in the traditional safety analysis framework are cited. Experience from other domains and recent developments in modern software development methodologies and verification techniques are analysed for the suitability for space systems and an avionics architectural framework (see STANAG 4626) for the implementation of safety critical software is proposed. This is shown to create among other features the possibility of numerous degradation modes enhancing overall system safety and interoperability of computerized space systems. It also potentially simplifies international cooperation on a technical level by introducing a higher degree of compatibility. As software safety cannot be tested or argued into a system in hindsight, the development process and especially the architecture chosen are essential to establish safety properties for the software used to implement safety functions. The core of the safety argument revolves around the separation of different functions and software modules from each other by minimal coupling of functions and credible separation mechanisms in the architecture combined with rigorous development methodologies for the software itself.

  2. Practical Implementation of Failure Mode and Effects Analysis for Safety and Efficiency in Stereotactic Radiosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Younge, Kelly Cooper, E-mail: kyounge@med.umich.edu; Wang, Yizhen; Thompson, John

    2015-04-01

    Purpose: To improve the safety and efficiency of a new stereotactic radiosurgery program with the application of failure mode and effects analysis (FMEA) performed by a multidisciplinary team of health care professionals. Methods and Materials: Representatives included physicists, therapists, dosimetrists, oncologists, and administrators. A detailed process tree was created from an initial high-level process tree to facilitate the identification of possible failure modes. Group members were asked to determine failure modes that they considered to be the highest risk before scoring failure modes. Risk priority numbers (RPNs) were determined by each group member individually and then averaged. Results: A totalmore » of 99 failure modes were identified. The 5 failure modes with an RPN above 150 were further analyzed to attempt to reduce these RPNs. Only 1 of the initial items that the group presumed to be high-risk (magnetic resonance imaging laterality reversed) was ranked in these top 5 items. New process controls were put in place to reduce the severity, occurrence, and detectability scores for all of the top 5 failure modes. Conclusions: FMEA is a valuable team activity that can assist in the creation or restructuring of a quality assurance program with the aim of improved safety, quality, and efficiency. Performing the FMEA helped group members to see how they fit into the bigger picture of the program, and it served to reduce biases and preconceived notions about which elements of the program were the riskiest.« less

  3. Application of Natural Language Processing and Network Analysis Techniques to Post-market Reports for the Evaluation of Dose-related Anti-Thymocyte Globulin Safety Patterns.

    PubMed

    Botsis, Taxiarchis; Foster, Matthew; Arya, Nina; Kreimeyer, Kory; Pandey, Abhishek; Arya, Deepa

    2017-04-26

    To evaluate the feasibility of automated dose and adverse event information retrieval in supporting the identification of safety patterns. We extracted all rabbit Anti-Thymocyte Globulin (rATG) reports submitted to the United States Food and Drug Administration Adverse Event Reporting System (FAERS) from the product's initial licensure in April 16, 1984 through February 8, 2016. We processed the narratives using the Medication Extraction (MedEx) and the Event-based Text-mining of Health Electronic Records (ETHER) systems and retrieved the appropriate medication, clinical, and temporal information. When necessary, the extracted information was manually curated. This process resulted in a high quality dataset that was analyzed with the Pattern-based and Advanced Network Analyzer for Clinical Evaluation and Assessment (PANACEA) to explore the association of rATG dosing with post-transplant lymphoproliferative disorder (PTLD). Although manual curation was necessary to improve the data quality, MedEx and ETHER supported the extraction of the appropriate information. We created a final dataset of 1,380 cases with complete information for rATG dosing and date of administration. Analysis in PANACEA found that PTLD was associated with cumulative doses of rATG >8 mg/kg, even in periods where most of the submissions to FAERS reported low doses of rATG. We demonstrated the feasibility of investigating a dose-related safety pattern for a particular product in FAERS using a set of automated tools.

  4. 14 CFR 415.115 - Flight safety.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Flight safety. 415.115 Section 415.115... From a Non-Federal Launch Site § 415.115 Flight safety. (a) Flight safety analysis. An applicant's safety review document must describe each analysis method employed to meet the flight safety analysis...

  5. 14 CFR 415.115 - Flight safety.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Flight safety. 415.115 Section 415.115... From a Non-Federal Launch Site § 415.115 Flight safety. (a) Flight safety analysis. An applicant's safety review document must describe each analysis method employed to meet the flight safety analysis...

  6. 14 CFR 415.115 - Flight safety.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Flight safety. 415.115 Section 415.115... From a Non-Federal Launch Site § 415.115 Flight safety. (a) Flight safety analysis. An applicant's safety review document must describe each analysis method employed to meet the flight safety analysis...

  7. 14 CFR 415.115 - Flight safety.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Flight safety. 415.115 Section 415.115... From a Non-Federal Launch Site § 415.115 Flight safety. (a) Flight safety analysis. An applicant's safety review document must describe each analysis method employed to meet the flight safety analysis...

  8. 14 CFR 415.115 - Flight safety.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Flight safety. 415.115 Section 415.115... From a Non-Federal Launch Site § 415.115 Flight safety. (a) Flight safety analysis. An applicant's safety review document must describe each analysis method employed to meet the flight safety analysis...

  9. A Systems Approach to Evaluating Ionizing Radiation: Six Focus Areas to Improve Quality, Efficiency, and Patient Safety

    PubMed Central

    Mower, Laura; Bushe, Chris

    2015-01-01

    Abstract: Ionizing radiation is an essential component of the care process. However, providers and patients may not be fully aware of the risks involved, the level of ionizing radiation delivered with various procedures, or the potential for harm through incidental overexposure or cumulative dose. Recent high-profile incidents demonstrating the devastating short-term consequences of radiation overexposure have drawn attention to these risks, but applicable solutions are lacking. Although various recommendations and guidelines have been proposed, organizational variability challenges providers to identify their own practical solutions. To identify potential failure modes and develop solutions to preserve patient safety within a large, national healthcare system, we assembled a multidisciplinary team to conduct a comprehensive analysis of practices surrounding the delivery of ionizing radiation. Workgroups were developed to analyze existing culture, processes, and technology to identify deficiencies and propose solutions. Six focus areas were identified: competency and certification; equipment; monitoring and auditing; education; clinical pathways; and communication and marketing. This manuscript summarizes this comprehensive, multidisciplinary, and systemic analysis of risk and provides examples to illustrate how these focus areas can be used to improve the use of ionizing radiation. The proposed solutions, once fully implemented, may advance patient safety and care. PMID:26042626

  10. A formative evaluation of the implementation of a medication safety data collection tool in English healthcare settings: A qualitative interview study using normalisation process theory.

    PubMed

    Rostami, Paryaneh; Ashcroft, Darren M; Tully, Mary P

    2018-01-01

    Reducing medication-related harm is a global priority; however, impetus for improvement is impeded as routine medication safety data are seldom available. Therefore, the Medication Safety Thermometer was developed within England's National Health Service. This study aimed to explore the implementation of the tool into routine practice from users' perspectives. Fifteen semi-structured interviews were conducted with purposely sampled National Health Service staff from primary and secondary care settings. Interview data were analysed using an initial thematic analysis, and subsequent analysis using Normalisation Process Theory. Secondary care staff understood that the Medication Safety Thermometer's purpose was to measure medication safety and improvement. However, other uses were reported, such as pinpointing poor practice. Confusion about its purpose existed in primary care, despite further training, suggesting unsuitability of the tool. Decreased engagement was displayed by staff less involved with medication use, who displayed less ownership. Nonetheless, these advocates often lacked support from management and frontline levels, leading to an overall lack of engagement. Many participants reported efforts to drive scale-up of the use of the tool, for example, by securing funding, despite uncertainty around how to use data. Successful improvement was often at ward-level and went unrecognised within the wider organisation. There was mixed feedback regarding the value of the tool, often due to a perceived lack of "capacity". However, participants demonstrated interest in learning how to use their data and unexpected applications of data were reported. Routine medication safety data collection is complex, but achievable and facilitates improvements. However, collected data must be analysed, understood and used for further work to achieve improvement, which often does not happen. The national roll-out of the tool has accelerated shared learning; however, a number of difficulties still exist, particularly in primary care settings, where a different approach is likely to be required.

  11. A formative evaluation of the implementation of a medication safety data collection tool in English healthcare settings: A qualitative interview study using normalisation process theory

    PubMed Central

    Ashcroft, Darren M.; Tully, Mary P.

    2018-01-01

    Background Reducing medication-related harm is a global priority; however, impetus for improvement is impeded as routine medication safety data are seldom available. Therefore, the Medication Safety Thermometer was developed within England’s National Health Service. This study aimed to explore the implementation of the tool into routine practice from users’ perspectives. Method Fifteen semi-structured interviews were conducted with purposely sampled National Health Service staff from primary and secondary care settings. Interview data were analysed using an initial thematic analysis, and subsequent analysis using Normalisation Process Theory. Results Secondary care staff understood that the Medication Safety Thermometer’s purpose was to measure medication safety and improvement. However, other uses were reported, such as pinpointing poor practice. Confusion about its purpose existed in primary care, despite further training, suggesting unsuitability of the tool. Decreased engagement was displayed by staff less involved with medication use, who displayed less ownership. Nonetheless, these advocates often lacked support from management and frontline levels, leading to an overall lack of engagement. Many participants reported efforts to drive scale-up of the use of the tool, for example, by securing funding, despite uncertainty around how to use data. Successful improvement was often at ward-level and went unrecognised within the wider organisation. There was mixed feedback regarding the value of the tool, often due to a perceived lack of “capacity”. However, participants demonstrated interest in learning how to use their data and unexpected applications of data were reported. Conclusion Routine medication safety data collection is complex, but achievable and facilitates improvements. However, collected data must be analysed, understood and used for further work to achieve improvement, which often does not happen. The national roll-out of the tool has accelerated shared learning; however, a number of difficulties still exist, particularly in primary care settings, where a different approach is likely to be required. PMID:29489842

  12. Safe and effective nursing shift handover with NURSEPASS: An interrupted time series.

    PubMed

    Smeulers, Marian; Dolman, Christine D; Atema, Danielle; van Dieren, Susan; Maaskant, Jolanda M; Vermeulen, Hester

    2016-11-01

    Implementation of a locally developed evidence based nursing shift handover blueprint with a bedside-safety-check to determine the effect size on quality of handover. A mixed methods design with: (1) an interrupted time series analysis to determine the effect on handover quality in six domains; (2) descriptive statistics to analyze the intercepted discrepancies by the bedside-safety-check; (3) evaluation sessions to gather experiences with the new handover process. We observed a continued trend of improvement in handover quality and a significant improvement in two domains of handover: organization/efficiency and contents. The bedside-safety-check successfully identified discrepancies on drains, intravenous medications, bandages or general condition and was highly appreciated. Use of the nursing shift handover blueprint showed promising results on effectiveness as well as on feasibility and acceptability. However, to enable long term measurement on effectiveness, evaluation with large scale interrupted times series or statistical process control is needed. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Development, fabrication and test of a high purity silica heat shield

    NASA Technical Reports Server (NTRS)

    Rusert, E. L.; Drennan, D. N.; Biggs, M. S.

    1978-01-01

    A highly reflective hyperpure ( 25 ppm ion impurities) slip cast fused silica heat shield material developed for planetary entry probes was successfully scaled up. Process development activities for slip casting large parts included green strength improvements, casting slip preparation, aggregate casting, strength, reflectance, and subscale fabrication. Successful fabrication of a one-half scale Saturn probe (shape and size) heat shield was accomplished while maintaining the silica high purity and reflectance through the scale-up process. However, stress analysis of this original aggregate slip cast material indicated a small margin of safety (MS. = +4%) using a factor of safety of 1.25. An alternate hyperpure material formulation to increase the strength and toughness for a greater safety margin was evaluated. The alternate material incorporates short hyperpure silica fibers into the casting slip. The best formulation evaluated has a 50% by weight fiber addition resulting in an 80% increase in flexural strength and a 170% increase in toughness over the original aggregate slip cast materials with comparable reflectance.

  14. Verification and Validation in a Rapid Software Development Process

    NASA Technical Reports Server (NTRS)

    Callahan, John R.; Easterbrook, Steve M.

    1997-01-01

    The high cost of software production is driving development organizations to adopt more automated design and analysis methods such as rapid prototyping, computer-aided software engineering (CASE) tools, and high-level code generators. Even developers of safety-critical software system have adopted many of these new methods while striving to achieve high levels Of quality and reliability. While these new methods may enhance productivity and quality in many cases, we examine some of the risks involved in the use of new methods in safety-critical contexts. We examine a case study involving the use of a CASE tool that automatically generates code from high-level system designs. We show that while high-level testing on the system structure is highly desirable, significant risks exist in the automatically generated code and in re-validating releases of the generated code after subsequent design changes. We identify these risks and suggest process improvements that retain the advantages of rapid, automated development methods within the quality and reliability contexts of safety-critical projects.

  15. Improving Food Safety in Meat and Poultry: Will New Regulations Benefit Consumers?

    ERIC Educational Resources Information Center

    Unnevehr, Laurian J.; Roberts, Tanya; Jensen, Helen H.

    1997-01-01

    The U.S. Department of Agriculture's Hazard Analysis and Critical Control Point System for meat and poultry processing will benefit consumers by reducing food-borne illnesses. The benefits are likely to exceed the additional costs from implementing the regulations. (SK)

  16. An overview of safety assessment, regulation, and control of hazardous material use at NREL

    NASA Astrophysics Data System (ADS)

    Nelson, B. P.; Crandall, R. S.; Moskowitz, P. D.; Fthenakis, V. M.

    1992-12-01

    This paper summarizes the methodology we use to ensure the safe use of hazardous materials at the National Renewable Energy Laboratory (NREL). First, we analyze the processes and the materials used in those processes to identify the hazards presented. Then we study federal, state, and local regulations and apply the relevant requirements to our operations. When necessary, we generate internal safety documents to consolidate this information. We design research operations and support systems to conform to these requirements. Before we construct the systems, we perform a semiquantitative risk analysis on likely accident scenarios. All scenarios presenting an unacceptable risk require system or procedural modifications to reduce the risk. Following these modifications, we repeat the risk analysis to ensure that the respective accident scenarios present an acceptable risk. Once all risks are acceptable, we conduct an operational readiness review (ORR). A management-appointed panel performs the ORR ensuring compliance with all relevant requirements. After successful completion of the ORR, operations can begin.

  17. Video capture of clinical care to enhance patient safety

    PubMed Central

    Weinger, M; Gonzales, D; Slagle, J; Syeed, M

    2004-01-01

    

 Experience from other domains suggests that videotaping and analyzing actual clinical care can provide valuable insights for enhancing patient safety through improvements in the process of care. Methods are described for the videotaping and analysis of clinical care using a high quality portable multi-angle digital video system that enables simultaneous capture of vital signs and time code synchronization of all data streams. An observer can conduct clinician performance assessment (such as workload measurements or behavioral task analysis) either in real time (during videotaping) or while viewing previously recorded videotapes. Supplemental data are synchronized with the video record and stored electronically in a hierarchical database. The video records are transferred to DVD, resulting in a small, cheap, and accessible archive. A number of technical and logistical issues are discussed, including consent of patients and clinicians, maintaining subject privacy and confidentiality, and data security. Using anesthesiology as a test environment, over 270 clinical cases (872 hours) have been successfully videotaped and processed using the system. PMID:15069222

  18. [Introduction of hazard analysis and critical control points (HACCP) principles at the flight catering food production plant].

    PubMed

    Popova, A Yu; Trukhina, G M; Mikailova, O M

    In the article there is considered the quality control and safety system implemented in the one of the largest flight catering food production plant for airline passengers and flying squad. The system for the control was based on the Hazard Analysis And Critical Control Points (HACCP) principles and developed hygienic and antiepidemic measures. There is considered the identification of hazard factors at stages of the technical process. There are presented results of the analysis data of monitoring for 6 critical control points over the five-year period. The quality control and safety system permit to decline food contamination risk during acceptance, preparation and supplying of in-flight meal. There was proved the efficiency of the implemented system. There are determined further ways of harmonization and implementation for HACCP principles in the plant.

  19. SLUDGE TREATMENT PROJECT KOP DISPOSITION - THERMAL AND GAS ANALYSIS FOR THE COLD VACUUM DRYING FACILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SWENSON JA; CROWE RD; APTHORPE R

    2010-03-09

    The purpose of this document is to present conceptual design phase thermal process calculations that support the process design and process safety basis for the cold vacuum drying of K Basin KOP material. This document is intended to demonstrate that the conceptual approach: (1) Represents a workable process design that is suitable for development in preliminary design; and (2) Will support formal safety documentation to be prepared during the definitive design phase to establish an acceptable safety basis. The Sludge Treatment Project (STP) is responsible for the disposition of Knock Out Pot (KOP) sludge within the 105-K West (KW) Basin.more » KOP sludge consists of size segregated material (primarily canister particulate) from the fuel and scrap cleaning process used in the Spent Nuclear Fuel process at K Basin. The KOP sludge will be pre-treated to remove fines and some of the constituents containing chemically bound water, after which it is referred to as KOP material. The KOP material will then be loaded into a Multi-Canister Overpack (MCO), dried at the Cold Vacuum Drying Facility (CVDF) and stored in the Canister Storage Building (CSB). This process is patterned after the successful drying of 2100 metric tons of spent fuel, and uses the same facilities and much of the same equipment that was used for drying fuel and scrap. Table ES-l present similarities and differences between KOP material and fuel and between MCOs loaded with these materials. The potential content of bound water bearing constituents limits the mass ofKOP material in an MCO load to a fraction of that in an MCO containing fuel and scrap; however, the small particle size of the KOP material causes the surface area to be significantly higher. This relatively large reactive surface area represents an input to the KOP thermal calculations that is significantly different from the calculations for fuel MCOs. The conceptual design provides for a copper insert block that limits the volume available to receive KOP material, enhances heat conduction, and functions as a heat source and sink during drying operations. This use of the copper insert represents a significant change to the thermal model compared to that used for the fuel calculations. A number of cases were run representing a spectrum of normal and upset conditions for the drying process. Dozens of cases have been run on cold vacuum drying of fuel MCOs. Analysis of these previous calculations identified four cases that provide a solid basis for judgments on the behavior of MCO in drying operations. These four cases are: (1) Normal Process; (2) Degraded vacuum pumping; (3) Open MCO with loss of annulus water; and (4) Cool down after vacuum drying. The four cases were run for two sets of input parameters for KOP MCOs: (1) a set of parameters drawn from safety basis values from the technical data book and (2) a sensitivity set using parameters selected to evaluate the impact of lower void volume and smaller particle size on MCO behavior. Results of the calculations for the drying phase cases are shown in Table ES-2. Cases using data book safety basis values showed dry out in 9.7 hours and heat rejection sufficient to hold temperature rise to less than 25 C. Sensitivity cases which included unrealistically small particle sizes and corresponding high reactive surface area showed higher temperature increases that were limited by water consumption. In this document and in the attachment (Apthorpe, R. and M.G. Plys, 2010) cases using Technical Databook safety basis values are referred to as nominal cases. In future calculations such cases will be called safety basis cases. Also in these documents cases using parameters that are less favorable to acceptable performance than databook safety values are referred to as safety cases. In future calculations such cases will be called sensitivity cases or sensitivity evaluations Calculations to be performed in support of the detailed design and formal safety basis documentation will expand the calculations presented in this document to include: additional features of the drying cycle, more realistic treatment of uranium metal consumption during oxidation, larger water inventory, longer time scales, and graphing of results of hydrogen gas concentration.« less

  20. Safer Systems: A NextGen Aviation Safety Strategic Goal

    NASA Technical Reports Server (NTRS)

    Darr, Stephen T.; Ricks, Wendell R.; Lemos, Katherine A.

    2008-01-01

    The Joint Planning and Development Office (JPDO), is charged by Congress with developing the concepts and plans for the Next Generation Air Transportation System (NextGen). The National Aviation Safety Strategic Plan (NASSP), developed by the Safety Working Group of the JPDO, focuses on establishing the goals, objectives, and strategies needed to realize the safety objectives of the NextGen Integrated Plan. The three goal areas of the NASSP are Safer Practices, Safer Systems, and Safer Worldwide. Safer Practices emphasizes an integrated, systematic approach to safety risk management through implementation of formalized Safety Management Systems (SMS) that incorporate safety data analysis processes, and the enhancement of methods for ensuring safety is an inherent characteristic of NextGen. Safer Systems emphasizes implementation of safety-enhancing technologies, which will improve safety for human-centered interfaces and enhance the safety of airborne and ground-based systems. Safer Worldwide encourages coordinating the adoption of the safer practices and safer systems technologies, policies and procedures worldwide, such that the maximum level of safety is achieved across air transportation system boundaries. This paper introduces the NASSP and its development, and focuses on the Safer Systems elements of the NASSP, which incorporates three objectives for NextGen systems: 1) provide risk reducing system interfaces, 2) provide safety enhancements for airborne systems, and 3) provide safety enhancements for ground-based systems. The goal of this paper is to expose avionics and air traffic management system developers to NASSP objectives and Safer Systems strategies.

  1. Certification Processes for Safety-Critical and Mission-Critical Aerospace Software

    NASA Technical Reports Server (NTRS)

    Nelson, Stacy

    2003-01-01

    This document is a quick reference guide with an overview of the processes required to certify safety-critical and mission-critical flight software at selected NASA centers and the FAA. Researchers and software developers can use this guide to jumpstart their understanding of how to get new or enhanced software onboard an aircraft or spacecraft. The introduction contains aerospace industry definitions of safety and safety-critical software, as well as, the current rationale for certification of safety-critical software. The Standards for Safety-Critical Aerospace Software section lists and describes current standards including NASA standards and RTCA DO-178B. The Mission-Critical versus Safety-Critical software section explains the difference between two important classes of software: safety-critical software involving the potential for loss of life due to software failure and mission-critical software involving the potential for aborting a mission due to software failure. The DO-178B Safety-critical Certification Requirements section describes special processes and methods required to obtain a safety-critical certification for aerospace software flying on vehicles under auspices of the FAA. The final two sections give an overview of the certification process used at Dryden Flight Research Center and the approval process at the Jet Propulsion Lab (JPL).

  2. The FAA's Approach to Quality Assurance in the Flight Safety Analysis of Launch and Reentry Vehicles

    NASA Astrophysics Data System (ADS)

    Murray, Daniel P.; Weil, Andre

    2010-09-01

    The U.S. Federal Aviation Administration(FAA) Office of Commercial Space Transportation’s safety mission is to ensure protection of the public, property, and the national security and foreign policy interests of the United States during commercial launch and reentry activities. As part of this mission, the FAA issues licenses to the operators of launch and reentry vehicles who successfully demonstrate compliance with FAA regulations. To meet these regulations, vehicle operators submit an application that contains, among other things, flight safety analyses of their proposed missions. In the process of evaluating these submitted analyses, the FAA often conducts its own independent analyses, using input data from the submitted license application. These analyses are conducted according to approved procedures using industry developed tools. To assist in achieving the highest levels of quality in these independent analyses, the FAA has developed a quality assurance program that consists of multiple levels of review. These reviews rely on the work of multiple teams, as well as additional, independently performed work of support contractors. This paper describes the FAA’s quality assurance process for flight safety analyses. Members of the commercial space industry may find that elements of this process can be easily applied to their own analyses, improving the quality of the material they submit to the FAA in their license applications.

  3. Ares I-X Range Safety Trajectory Analyses Overview and Independent Validation and Verification

    NASA Technical Reports Server (NTRS)

    Tarpley, Ashley F.; Starr, Brett R.; Tartabini, Paul V.; Craig, A. Scott; Merry, Carl M.; Brewer, Joan D.; Davis, Jerel G.; Dulski, Matthew B.; Gimenez, Adrian; Barron, M. Kyle

    2011-01-01

    All Flight Analysis data products were successfully generated and delivered to the 45SW in time to support the launch. The IV&V effort allowed data generators to work through issues early. Data consistency proved through the IV&V process provided confidence that the delivered data was of high quality. Flight plan approval was granted for the launch. The test flight was successful and had no safety related issues. The flight occurred within the predicted flight envelopes. Post flight reconstruction results verified the simulations accurately predicted the FTV trajectory.

  4. Development and Assessment of a Medication Safety Measurement Program in a Long-Term Care Pharmacy.

    PubMed

    Hertig, John B; Hultgren, Kyle E; Parks, Scott; Rondinelli, Rick

    2016-02-01

    Medication errors continue to be a major issue in the health care system, including in long-term care facilities. While many hospitals and health systems have developed methods to identify, track, and prevent these errors, long-term care facilities historically have not invested in these error-prevention strategies. The objective of this study was two-fold: 1) to develop a set of medication-safety process measures for dispensing in a long-term care pharmacy, and 2) to analyze the data from those measures to determine the relative safety of the process. The study was conducted at In Touch Pharmaceuticals in Valparaiso, Indiana. To assess the safety of the medication-use system, each step was documented using a comprehensive flowchart (process flow map) tool. Once completed and validated, the flowchart was used to complete a "failure modes and effects analysis" (FMEA) identifying ways a process may fail. Operational gaps found during FMEA were used to identify points of measurement. The research identified a set of eight measures as potential areas of failure; data were then collected on each one of these. More than 133,000 medication doses (opportunities for errors) were included in the study during the research time frame (April 1, 2014, and ended on June 4, 2014). Overall, there was an approximate order-entry error rate of 15.26%, with intravenous errors at 0.37%. A total of 21 errors migrated through the entire medication-use system. These 21 errors in 133,000 opportunities resulted in a final check error rate of 0.015%. A comprehensive medication-safety measurement program was designed and assessed. This study demonstrated the ability to detect medication errors in a long-term pharmacy setting, thereby making process improvements measureable. Future, larger, multi-site studies should be completed to test this measurement program.

  5. Application of the SEIPS Model to Analyze Medication Safety in a Crisis Residential Center.

    PubMed

    Steele, Maria L; Talley, Brenda; Frith, Karen H

    2018-02-01

    Medication safety and error reduction has been studied in acute and long-term care settings, but little research is found in the literature regarding mental health settings. Because mental health settings are complex, medication administration is vulnerable to a variety of errors from transcription to administration. The purpose of this study was to analyze critical factors related to a mental health work system structure and processes that threaten safe medication administration practices. The Systems Engineering Initiative for Patient Safety (SEIPS) model provides a framework to analyze factors affecting medication safety. The model approach analyzes the work system concepts of technology, tasks, persons, environment, and organization to guide the collection of data. In the study, the Lean methodology tools were used to identify vulnerabilities in the system that could be targeted later for improvement activities. The project director completed face-to-face interviews, asked nurses to record disruptions in a log, and administered a questionnaire to nursing staff. The project director also conducted medication chart reviews and recorded medication errors using a standardized taxonomy for errors that allowed categorization of the prevalent types of medication errors. Results of the study revealed disruptions during the medication process, pharmacology training needs, and documentation processes as the primary opportunities for improvement. The project engaged nurses to identify sustainable quality improvement strategies to improve patient safety. The mental health setting carries challenges for safe medication administration practices. Through analysis of the structure, process, and outcomes of medication administration, opportunities for quality improvement and sustainable interventions were identified, including minimizing the number of distractions during medication administration, training nurses on psychotropic medications, and improving the documentation system. A task force was created to analyze the descriptive data and to establish objectives aimed at improving efficiency of the work system and care process involved in medication administration at the end of the project. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Identification of priorities for medication safety in neonatal intensive care.

    PubMed

    Kunac, Desireé L; Reith, David M

    2005-01-01

    Although neonates are reported to be at greater risk of medication error than infants and older children, little is known about the causes and characteristics of error in this patient group. Failure mode and effects analysis (FMEA) is a technique used in industry to evaluate system safety and identify potential hazards in advance. The aim of this study was to identify and prioritize potential failures in the neonatal intensive care unit (NICU) medication use process through application of FMEA. Using the FMEA framework and a systems-based approach, an eight-member multidisciplinary panel worked as a team to create a flow diagram of the neonatal unit medication use process. Then by brainstorming, the panel identified all potential failures, their causes and their effects at each step in the process. Each panel member independently rated failures based on occurrence, severity and likelihood of detection to allow calculation of a risk priority score (RPS). The panel identified 72 failures, with 193 associated causes and effects. Vulnerabilities were found to be distributed across the entire process, but multiple failures and associated causes were possible when prescribing the medication and when preparing the drug for administration. The top ranking issue was a perceived lack of awareness of medication safety issues (RPS score 273), due to a lack of medication safety training. The next highest ranking issues were found to occur at the administration stage. Common potential failures related to errors in the dose, timing of administration, infusion pump settings and route of administration. Perceived causes were multiple, but were largely associated with unsafe systems for medication preparation and storage in the unit, variable staff skill level and lack of computerised technology. Interventions to decrease medication-related adverse events in the NICU should aim to increase staff awareness of medication safety issues and focus on medication administration processes.

  7. Identifying medication error chains from critical incident reports: a new analytic approach.

    PubMed

    Huckels-Baumgart, Saskia; Manser, Tanja

    2014-10-01

    Research into the distribution of medication errors usually focuses on isolated stages within the medication use process. Our study aimed to provide a novel process-oriented approach to medication incident analysis focusing on medication error chains. Our study was conducted across a 900-bed teaching hospital in Switzerland. All reported 1,591 medication errors 2009-2012 were categorized using the Medication Error Index NCC MERP and the WHO Classification for Patient Safety Methodology. In order to identify medication error chains, each reported medication incident was allocated to the relevant stage of the hospital medication use process. Only 25.8% of the reported medication errors were detected before they propagated through the medication use process. The majority of medication errors (74.2%) formed an error chain encompassing two or more stages. The most frequent error chain comprised preparation up to and including medication administration (45.2%). "Non-consideration of documentation/prescribing" during the drug preparation was the most frequent contributor for "wrong dose" during the administration of medication. Medication error chains provide important insights for detecting and stopping medication errors before they reach the patient. Existing and new safety barriers need to be extended to interrupt error chains and to improve patient safety. © 2014, The American College of Clinical Pharmacology.

  8. Delivering on the Promise of CLER: A Patient Safety Rotation That Aligns Resident Education With Hospital Processes.

    PubMed

    Patel, Ekta; Muthusamy, Veena; Young, John Q

    2018-06-01

    Residency programs must provide training in patient safety. Yet, significant gaps exist among published patient safety curricula. The authors developed a rotation designed to be scalable to an entire residency, built on sound pedagogy, aligned with hospital safety processes, and effective in improving educational outcomes. From July 2015 to May 2017, each second-year resident completed the two-week rotation. Residents engaged the foundational science asynchronously via multiple modalities and then practiced applying key concepts during a mock root cause analysis. Next, each resident performed a special review of an actual adverse patient event and presented findings to the hospital's Special Review Committee (SRC). Multiple educational outcomes were assessed, including resident satisfaction and attitudes (postrotation survey), changes in knowledge via pre- and posttest, quality of the residents' written safety analyses and oral presentations (per survey of SRC members), and organizational changes that resulted from the residents' reviews. Twenty-two residents completed the rotation. Most components were rated favorably; 80% (12/15 respondents) indicated interest in future patient safety work. Knowledge improved by 44.3% (P < .0001; pretest mean 23.7, posttest mean 34.2). Compared to faculty, SRC members rated the quality of residents' written reviews as superior and the quality of the rated oral presentations as either comparable or superior. The reviews identified a variety of safety vulnerabilities and led to multiple corrective actions. The authors will evaluate the curriculum in a controlled trial with better measures of change in behavior. Further tests of the curriculum's scalability to other contexts are needed.

  9. Impact of the Global Food Safety Initiative on Food Safety Worldwide: Statistical Analysis of a Survey of International Food Processors.

    PubMed

    Crandall, Philip G; Mauromoustakos, Andy; O'Bryan, Corliss A; Thompson, Kevin C; Yiannas, Frank; Bridges, Kerry; Francois, Catherine

    2017-10-01

    In 2000, the Consumer Goods Forum established the Global Food Safety Initiative (GFSI) to increase the safety of the world's food supply and to harmonize food safety regulations worldwide. In 2013, a university research team in conjunction with Diversey Consulting (Sealed Air), the Consumer Goods Forum, and officers of GFSI solicited input from more than 15,000 GFSI-certified food producers worldwide to determine whether GFSI certification had lived up to these expectations. A total of 828 usable questionnaires were analyzed, representing about 2,300 food manufacturing facilities and food suppliers in 21 countries, mainly across Western Europe, Australia, New Zealand, and North America. Nearly 90% of these certified suppliers perceived GFSI as being beneficial for addressing their food safety concerns, and respondents were eight times more likely to repeat the certification process knowing what it entailed. Nearly three-quarters (74%) of these food manufacturers would choose to go through the certification process again even if certification were not required by one of their current retail customers. Important drivers for becoming GFSI certified included continuing to do business with an existing customer, starting to do business with new customer, reducing the number of third-party food safety audits, and continuing improvement of their food safety program. Although 50% or fewer respondents stated that they saw actual increases in sales, customers, suppliers, or employees, significantly more companies agreed than disagreed that there was an increase in these key performance indicators in the year following GFSI certification. A majority of respondents (81%) agreed that there was a substantial investment in staff time since certification, and 50% agreed there was a significant capital investment. This survey is the largest and most representative of global food manufacturers conducted to date.

  10. Effects of patient safety auditing in hospital care: results of a mixed-method evaluation (part 1).

    PubMed

    Hanskamp-Sebregts, Mirelle; Zegers, Marieke; Westert, Gert P; Boeijen, Wilma; Teerenstra, Steven; van Gurp, Petra J; Wollersheim, Hub

    2018-06-15

    To evaluate the effectiveness of internal auditing in hospital care focussed on improving patient safety. A before-and-after mixed-method evaluation study was carried out in eight departments of a university medical center in the Netherlands. Internal auditing and feedback focussed on improving patient safety. The effect of internal auditing was assessed 15 months after the audit, using linear mixed models, on the patient, professional, team and departmental levels. The measurement methods were patient record review on adverse events (AEs), surveys regarding patient experiences, safety culture and team climate, analysis of administrative hospital data (standardized mortality rate, SMR) and safety walk rounds (SWRs) to observe frontline care processes on safety. The AE rate decreased from 36.1% to 31.3% and the preventable AE rate from 5.5% to 3.6%; however, the differences before and after auditing were not statistically significant. The patient-reported experience measures regarding patient safety improved slightly over time (P < 0.001). The SMR, patient safety culture and team climate remained unchanged after the internal audit. The SWRs showed that medication safety and information security were improved (P < 0.05). Internal auditing was associated with improved patient experiences and observed safety on wards. No effects were found on adverse outcomes, safety culture and team climate 15 months after the internal audit.

  11. Design and analysis of automobile components using industrial procedures

    NASA Astrophysics Data System (ADS)

    Kedar, B.; Ashok, B.; Rastogi, Nisha; Shetty, Siddhanth

    2017-11-01

    Today’s automobiles depend upon mechanical systems that are crucial for aiding in the movement and safety features of the vehicle. Various safety systems such as Antilock Braking System (ABS) and passenger restraint systems have been developed to ensure that in the event of a collision be it head on or any other type, the safety of the passenger is ensured. On the other side, manufacturers also want their customers to have a good experience while driving and thus aim to improve the handling and the drivability of the vehicle. Electronics systems such as Cruise Control and active suspension systems are designed to ensure passenger comfort. Finally, to ensure optimum and safe driving the various components of a vehicle must be manufactured using the latest state of the art processes and must be tested and inspected with utmost care so that any defective component can be prevented from being sent out right at the beginning of the supply chain. Therefore, processes which can improve the lifetime of their respective components are in high demand and much research and development is done on these processes. With a solid base research conducted, these processes can be used in a much more versatile manner for different components, made up of different materials and under different input conditions. This will help increase the profitability of the process and also upgrade its value to the industry.

  12. Good Manufacturing Practices and Microbial Contamination Sources in Orange Fleshed Sweet Potato Puree Processing Plant in Kenya

    PubMed Central

    Abong', George Ooko

    2018-01-01

    Limited information exists on the status of hygiene and probable sources of microbial contamination in Orange Fleshed Sweet Potato (OFSP) puree processing. The current study is aimed at determining the level of compliance to Good Manufacturing Practices (GMPs), hygiene, and microbial quality in OFSP puree processing plant in Kenya. Intensive observation and interviews using a structured GMPs checklist, environmental sampling, and microbial analysis by standard microbiological methods were used in data collection. The results indicated low level of compliance to GMPs with an overall compliance score of 58%. Microbial counts on food equipment surfaces, installations, and personnel hands and in packaged OFSP puree were above the recommended microbial safety and quality legal limits. Steaming significantly (P < 0.05) reduced microbial load in OFSP cooked roots but the counts significantly (P < 0.05) increased in the puree due to postprocessing contamination. Total counts, yeasts and molds, Enterobacteriaceae, total coliforms, and E. coli and S. aureus counts in OFSP puree were 8.0, 4.0, 6.6, 5.8, 4.8, and 5.9 log10 cfu/g, respectively. In conclusion, equipment surfaces, personnel hands, and processing water were major sources of contamination in OFSP puree processing and handling. Plant hygiene inspection, environmental monitoring, and food safety trainings are recommended to improve hygiene, microbial quality, and safety of OFSP puree. PMID:29808161

  13. Good Manufacturing Practices and Microbial Contamination Sources in Orange Fleshed Sweet Potato Puree Processing Plant in Kenya.

    PubMed

    Malavi, Derick Nyabera; Muzhingi, Tawanda; Abong', George Ooko

    2018-01-01

    Limited information exists on the status of hygiene and probable sources of microbial contamination in Orange Fleshed Sweet Potato (OFSP) puree processing. The current study is aimed at determining the level of compliance to Good Manufacturing Practices (GMPs), hygiene, and microbial quality in OFSP puree processing plant in Kenya. Intensive observation and interviews using a structured GMPs checklist, environmental sampling, and microbial analysis by standard microbiological methods were used in data collection. The results indicated low level of compliance to GMPs with an overall compliance score of 58%. Microbial counts on food equipment surfaces, installations, and personnel hands and in packaged OFSP puree were above the recommended microbial safety and quality legal limits. Steaming significantly ( P < 0.05) reduced microbial load in OFSP cooked roots but the counts significantly ( P < 0.05) increased in the puree due to postprocessing contamination. Total counts, yeasts and molds, Enterobacteriaceae, total coliforms, and E. coli and S. aureus counts in OFSP puree were 8.0, 4.0, 6.6, 5.8, 4.8, and 5.9 log 10 cfu/g, respectively. In conclusion, equipment surfaces, personnel hands, and processing water were major sources of contamination in OFSP puree processing and handling. Plant hygiene inspection, environmental monitoring, and food safety trainings are recommended to improve hygiene, microbial quality, and safety of OFSP puree.

  14. En route care patient safety: thoughts from the field.

    PubMed

    McNeill, Margaret M; Pierce, Penny; Dukes, Susan; Bridges, Elizabeth J

    2014-08-01

    The purpose of this study was to describe the patient safety culture of en route care in the United States Air Force aeromedical evacuation system. Almost 100,000 patients have been transported since 2001. Safety concerns in this unique environment are complex because of the extraordinary demands of multitasking, time urgency, long duty hours, complex handoffs, and multiple stressors of flight. An internet-based survey explored the perceptions and experiences of safety issues among nursing personnel involved throughout the continuum of aeromedical evacuation care. A convenience sample of 236 nurses and medical technicians from settings representing the continuum was studied. Descriptive and nonparametric statistics were used to analyze the quantitative data, and thematic analysis was applied to the qualitative data. Results indicate that over 90% of respondents agree or strongly agree safety is a priority in their unit and that their unit is responsive to patient safety initiatives. Many respondents described safety incidents or near misses, and these have been categorized as personnel physical capability limitations, environmental threats, medication and equipment issues, and care process problems. Results suggest the care of patients during transport is influenced by the safety culture, human factors, training, experience, and communication. Suggestions to address safety issues emerged from the survey data. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.

  15. Visual Analysis of Air Traffic Data

    NASA Technical Reports Server (NTRS)

    Albrecht, George Hans; Pang, Alex

    2012-01-01

    In this paper, we present visual analysis tools to help study the impact of policy changes on air traffic congestion. The tools support visualization of time-varying air traffic density over an area of interest using different time granularity. We use this visual analysis platform to investigate how changing the aircraft separation volume can reduce congestion while maintaining key safety requirements. The same platform can also be used as a decision aid for processing requests for unmanned aerial vehicle operations.

  16. [Analysis of projects funded by NSFC in field of processing Chinese materia medica in recent five years].

    PubMed

    Chen, Lei; Xia, Xing; He, Bo-sai; Hah, Li-wei

    2015-05-01

    The general situation of the approved and concluded projects of National Natural Science Foundation of China in the field of processing Chinese Materia Medica in recent five years has been reviewed. The progresses and achievements of some projects have been summarized in accordance with research area such as the processing principle, the processing technology, quality evaluation, toxicity and safety evaluation, etc. The researchers and project support units of the funded projects have been analyzed, and the problems of the applications have been also summarized.

  17. Continuous quality improvement using intelligent infusion pump data analysis.

    PubMed

    Breland, Burnis D

    2010-09-01

    The use of continuous quality-improvement (CQI) processes in the implementation of intelligent infusion pumps in a community teaching hospital is described. After the decision was made to implement intelligent i.v. infusion pumps in a 413-bed, community teaching hospital, drug libraries for use in the safety software had to be created. Before drug libraries could be created, it was necessary to determine the epidemiology of medication use in various clinical care areas. Standardization of medication administration was performed through the CQI process, using practical knowledge of clinicians at the bedside and evidence-based drug safety parameters in the scientific literature. Post-implementation, CQI allowed refinement of clinically important safety limits while minimizing inappropriate, meaningless soft limit alerts on a few select agents. Assigning individual clinical care areas (CCAs) to individual patient care units facilitated customization of drug libraries and identification of specific CCA compliance concerns. Between June 2007 and June 2008, there were seven library updates. These involved drug additions and deletions, customization of individual CCAs, and alterations of limits. Overall compliance with safety software use rose over time, from 33% in November 2006 to over 98% in December 2009. Many potentially clinically significant dosing errors were intercepted by the safety software, prompting edits by end users. Only 4-6% of soft limit alerts resulted in edits. Compliance rates for use of infusion pump safety software varied among CCAs over time. Education, auditing, and refinement of drug libraries led to improved compliance in most CCAs.

  18. Food safety systems in a small dairy factory: implementation, major challenges, and assessment of systems' performances.

    PubMed

    Cusato, Sueli; Gameiro, Augusto H; Corassin, Carlos H; Sant'ana, Anderson S; Cruz, Adriano G; Faria, José de Assis F; de Oliveira, Carlos Augusto F

    2013-01-01

    The present study describes the implementation of a food safety system in a dairy processing plant located in the State of São Paulo, Brazil, and the challenges found during the process. In addition, microbiological indicators have been used to assess system's implementation performance. The steps involved in the implementation of a food safety system included a diagnosis of the prerequisites, implementation of the good manufacturing practices (GMPs), sanitation standard operating procedures (SSOPs), training of the food handlers, and hazard analysis and critical control point (HACCP). In the initial diagnosis, conformity with 70.7% (n=106) of the items analyzed was observed. A total of 12 critical control points (CCPs) were identified: (1) reception of the raw milk, (2) storage of the raw milk, (3 and 4) reception of the ingredients and packaging, (5) milk pasteurization, (6 and 7) fermentation and cooling, (8) addition of ingredients, (9) filling, (10) storage of the finished product, (11) dispatching of the product, and (12) sanitization of the equipment. After implementation of the food safety system, a significant reduction in the yeast and mold count was observed (p<0.05). The main difficulties encountered for the implementation of food safety system were related to the implementation of actions established in the flow chart and to the need for constant training/adherence of the workers to the system. Despite this, the implementation of the food safety system was shown to be challenging, but feasible to be reached by small-scale food industries.

  19. 14 CFR 417.221 - Time delay analysis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.221 Time delay analysis. (a) General. A flight safety analysis must include a time delay analysis that establishes the mean elapsed time between the violation of a flight termination rule and the time when the flight safety system is...

  20. 14 CFR 417.221 - Time delay analysis.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.221 Time delay analysis. (a) General. A flight safety analysis must include a time delay analysis that establishes the mean elapsed time between the violation of a flight termination rule and the time when the flight safety system is...

  1. The role of microbiological testing in systems for assuring the safety of beef.

    PubMed

    Brown, M H; Gill, C O; Hollingsworth, J; Nickelson, R; Seward, S; Sheridan, J J; Stevenson, T; Sumner, J L; Theno, D M; Usborne, W R; Zink, D

    2000-12-05

    The use of microbiological testing in systems for assuring the safety of beef was considered at a meeting arranged by the International Livestock Educational Foundation as part of the International Livestock Congress, TX, USA, during February, 2000. The 11 invited participants from industry and government research organizations concurred in concluding that microbiological testing is necessary for the implementation and maintenance of effective Hazard Analysis Critical Control Point (HACCP) systems, which are the only means of assuring the microbiological safety of beef; that microbiological testing for HACCP purposes must involve the enumeration of indicator organisms rather than the detection of pathogens; that the efficacy of process control should be assessed against performance criteria and food safety objectives that refer to the numbers of indicator organisms in product; that sampling procedures should allow indicator organisms to be enumerated at very low numbers; and that food safety objectives and microbiological criteria are better related to variables, rather than attributes sampling plans.

  2. Design for Reliability and Safety Approach for the NASA New Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Safie, Fayssal, M.; Weldon, Danny M.

    2007-01-01

    The United States National Aeronautics and Space Administration (NASA) is in the midst of a space exploration program intended for sending crew and cargo to the international Space Station (ISS), to the moon, and beyond. This program is called Constellation. As part of the Constellation program, NASA is developing new launch vehicles aimed at significantly increase safety and reliability, reduce the cost of accessing space, and provide a growth path for manned space exploration. Achieving these goals requires a rigorous process that addresses reliability, safety, and cost upfront and throughout all the phases of the life cycle of the program. This paper discusses the "Design for Reliability and Safety" approach for the NASA new crew launch vehicle called ARES I. The ARES I is being developed by NASA Marshall Space Flight Center (MSFC) in support of the Constellation program. The ARES I consists of three major Elements: A solid First Stage (FS), an Upper Stage (US), and liquid Upper Stage Engine (USE). Stacked on top of the ARES I is the Crew exploration vehicle (CEV). The CEV consists of a Launch Abort System (LAS), Crew Module (CM), Service Module (SM), and a Spacecraft Adapter (SA). The CEV development is being led by NASA Johnson Space Center (JSC). Designing for high reliability and safety require a good integrated working environment and a sound technical design approach. The "Design for Reliability and Safety" approach addressed in this paper discusses both the environment and the technical process put in place to support the ARES I design. To address the integrated working environment, the ARES I project office has established a risk based design group called "Operability Design and Analysis" (OD&A) group. This group is an integrated group intended to bring together the engineering, design, and safety organizations together to optimize the system design for safety, reliability, and cost. On the technical side, the ARES I project has, through the OD&A environment, implemented a probabilistic approach to analyze and evaluate design uncertainties and understand their impact on safety, reliability, and cost. This paper focuses on the use of the various probabilistic approaches that have been pursued by the ARES I project. Specifically, the paper discusses an integrated functional probabilistic analysis approach that addresses upffont some key areas to support the ARES I Design Analysis Cycle (DAC) pre Preliminary Design (PD) Phase. This functional approach is a probabilistic physics based approach that combines failure probabilities with system dynamics and engineering failure impact models to identify key system risk drivers and potential system design requirements. The paper also discusses other probabilistic risk assessment approaches planned by the ARES I project to support the PD phase and beyond.

  3. [Failure mode and effects analysis to improve quality in clinical trials].

    PubMed

    Mañes-Sevilla, M; Marzal-Alfaro, M B; Romero Jiménez, R; Herranz-Alonso, A; Sanchez Fresneda, M N; Benedi Gonzalez, J; Sanjurjo-Sáez, M

    The failure mode and effects analysis (FMEA) has been used as a tool in risk management and quality improvement. The objective of this study is to identify the weaknesses in processes in the clinical trials area, of a Pharmacy Department (PD) with great research activity, in order to improve the safety of the usual procedures. A multidisciplinary team was created to analyse each of the critical points, identified as possible failure modes, in the development of clinical trial in the PD. For each failure mode, the possible cause and effect were identified, criticality was calculated using the risk priority number and the possible corrective actions were discussed. Six sub-processes were defined in the development of the clinical trials in PD. The FMEA identified 67 failure modes, being the dispensing and prescription/validation sub-processes the most likely to generate errors. All the improvement actions established in the AMFE were implemented in the Clinical Trials area. The FMEA is a useful tool in proactive risk management because it allows us to identify where we are making mistakes and analyze the causes that originate them, to prioritize and to adopt solutions to risk reduction. The FMEA improves process safety and quality in PD. Copyright © 2018 SECA. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Leadership, safety climate, and continuous quality improvement: impact on process quality and patient safety.

    PubMed

    McFadden, Kathleen L; Stock, Gregory N; Gowen, Charles R

    2014-10-01

    Successful amelioration of medical errors represents a significant problem in the health care industry. There is a need for greater understanding of the factors that lead to improved process quality and patient safety outcomes in hospitals. We present a research model that shows how transformational leadership, safety climate, and continuous quality improvement (CQI) initiatives are related to objective quality and patient safety outcome measures. The proposed framework is tested using structural equation modeling, based on data collected for 204 hospitals, and supplemented with objective outcome data from the Centers for Medicare and Medicaid Services. The results provide empirical evidence that a safety climate, which is connected to the chief executive officer's transformational leadership style, is related to CQI initiatives, which are linked to improved process quality. A unique finding of this study is that, although CQI initiatives are positively associated with improved process quality, they are also associated with higher hospital-acquired condition rates, a measure of patient safety. Likewise, safety climate is directly related to improved patient safety outcomes. The notion that patient safety climate and CQI initiatives are not interchangeable or universally beneficial is an important contribution to the literature. The results confirm the importance of using CQI to effectively enhance process quality in hospitals, and patient safety climate to improve patient safety outcomes. The overall pattern of findings suggests that simultaneous implementation of CQI initiatives and patient safety climate produces greater combined benefits.

  5. Leadership, safety climate, and continuous quality improvement: impact on process quality and patient safety.

    PubMed

    McFadden, Kathleen L; Stock, Gregory N; Gowen, Charles R

    2015-01-01

    Successful amelioration of medical errors represents a significant problem in the health care industry. There is a need for greater understanding of the factors that lead to improved process quality and patient safety outcomes in hospitals. We present a research model that shows how transformational leadership, safety climate, and continuous quality improvement (CQI) initiatives are related to objective quality and patient safety outcome measures. The proposed framework is tested using structural equation modeling, based on data collected for 204 hospitals, and supplemented with objective outcome data from the Centers for Medicare and Medicaid Services. The results provide empirical evidence that a safety climate, which is connected to the chief executive officer's transformational leadership style, is related to CQI initiatives, which are linked to improved process quality. A unique finding of this study is that, although CQI initiatives are positively associated with improved process quality, they are also associated with higher hospital-acquired condition rates, a measure of patient safety. Likewise, safety climate is directly related to improved patient safety outcomes. The notion that patient safety climate and CQI initiatives are not interchangeable or universally beneficial is an important contribution to the literature. The results confirm the importance of using CQI to effectively enhance process quality in hospitals, and patient safety climate to improve patient safety outcomes. The overall pattern of findings suggests that simultaneous implementation of CQI initiatives and patient safety climate produces greater combined benefits.

  6. 10 CFR 830.206 - Preliminary documented safety analysis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Preliminary documented safety analysis. 830.206 Section 830.206 Energy DEPARTMENT OF ENERGY NUCLEAR SAFETY MANAGEMENT Safety Basis Requirements § 830.206 Preliminary documented safety analysis. If construction begins after December 11, 2000, the contractor...

  7. 9 CFR 417.1 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE REGULATORY REQUIREMENTS UNDER THE FEDERAL MEAT INSPECTION ACT AND THE POULTRY PRODUCTS INSPECTION ACT HAZARD ANALYSIS AND... control point. A point, step, or procedure in a food process at which control can be applied and, as a...

  8. 9 CFR 417.1 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE REGULATORY REQUIREMENTS UNDER THE FEDERAL MEAT INSPECTION ACT AND THE POULTRY PRODUCTS INSPECTION ACT HAZARD ANALYSIS AND... control point. A point, step, or procedure in a food process at which control can be applied and, as a...

  9. 9 CFR 417.1 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE REGULATORY REQUIREMENTS UNDER THE FEDERAL MEAT INSPECTION ACT AND THE POULTRY PRODUCTS INSPECTION ACT HAZARD ANALYSIS AND... control point. A point, step, or procedure in a food process at which control can be applied and, as a...

  10. 9 CFR 417.1 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE REGULATORY REQUIREMENTS UNDER THE FEDERAL MEAT INSPECTION ACT AND THE POULTRY PRODUCTS INSPECTION ACT HAZARD ANALYSIS AND... control point. A point, step, or procedure in a food process at which control can be applied and, as a...

  11. 9 CFR 417.1 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE REGULATORY REQUIREMENTS UNDER THE FEDERAL MEAT INSPECTION ACT AND THE POULTRY PRODUCTS INSPECTION ACT HAZARD ANALYSIS AND... control point. A point, step, or procedure in a food process at which control can be applied and, as a...

  12. TA-55 change control manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blum, T.W.; Selvage, R.D.; Courtney, K.H.

    This manual is the guide for initiating change at the Plutonium Facility, which handles the processing of plutonium as well as research on plutonium metallurgy. It describes the change and work control processes employed at TA-55 to ensure that all proposed changes are properly identified, reviewed, approved, implemented, tested, and documented so that operations are maintained within the approved safety envelope. All Laboratory groups, their contractors, and subcontractors doing work at TA-55 follow requirements set forth herein. This manual applies to all new and modified processes and experiments inside the TA-55 Plutonium Facility; general plant project (GPP) and line itemmore » funded construction projects at TA-55; temporary and permanent changes that directly or indirectly affect structures, systems, or components (SSCs) as described in the safety analysis, including Facility Control System (FCS) software; and major modifications to procedures. This manual does not apply to maintenance performed on process equipment or facility SSCs or the replacement of SSCs or equipment with documented approved equivalents.« less

  13. Commonalities and Differences in Functional Safety Systems Between ISS Payloads and Industrial Applications

    NASA Astrophysics Data System (ADS)

    Malyshev, Mikhail; Kreimer, Johannes

    2013-09-01

    Safety analyses for electrical, electronic and/or programmable electronic (E/E/EP) safety-related systems used in payload applications on-board the International Space Station (ISS) are often based on failure modes, effects and criticality analysis (FMECA). For industrial applications of E/E/EP safety-related systems, comparable strategies exist and are defined in the IEC-61508 standard. This standard defines some quantitative criteria based on potential failure modes (for example, Safe Failure Fraction). These criteria can be calculated for an E/E/EP system or components to assess their compliance to requirements of a particular Safety Integrity Level (SIL). The standard defines several SILs depending on how much risk has to be mitigated by a safety-critical system. When a FMECA is available for an ISS payload or its subsystem, it may be possible to calculate the same or similar parameters as defined in the 61508 standard. One example of a payload that has a dedicated functional safety subsystem is the Electromagnetic Levitator (EML). This payload for the ISS is planned to be operated on-board starting 2014. The EML is a high-temperature materials processing facility. The dedicated subsystem "Hazard Control Electronics" (HCE) is implemented to ensure compliance to failure tolerance in limiting samples processing parameters to maintain generation of the potentially toxic by-products to safe limits in line with the requirements applied to the payloads by the ISS Program. The objective of this paper is to assess the implementation of the HCE in the EML against criteria for functional safety systems in the IEC-61508 standard and to evaluate commonalities and differences with respect to safety requirements levied on ISS Payloads. An attempt is made to assess a possibility of using commercially available components and systems certified for compliance to industrial functional safety standards in ISS payloads.

  14. NASA Aviation Safety Program Systems Analysis/Program Assessment Metrics Review

    NASA Technical Reports Server (NTRS)

    Louis, Garrick E.; Anderson, Katherine; Ahmad, Tisan; Bouabid, Ali; Siriwardana, Maya; Guilbaud, Patrick

    2003-01-01

    The goal of this project is to evaluate the metrics and processes used by NASA's Aviation Safety Program in assessing technologies that contribute to NASA's aviation safety goals. There were three objectives for reaching this goal. First, NASA's main objectives for aviation safety were documented and their consistency was checked against the main objectives of the Aviation Safety Program. Next, the metrics used for technology investment by the Program Assessment function of AvSP were evaluated. Finally, other metrics that could be used by the Program Assessment Team (PAT) were identified and evaluated. This investigation revealed that the objectives are in fact consistent across organizational levels at NASA and with the FAA. Some of the major issues discussed in this study which should be further investigated, are the removal of the Cost and Return-on-Investment metrics, the lack of the metrics to measure the balance of investment and technology, the interdependencies between some of the metric risk driver categories, and the conflict between 'fatal accident rate' and 'accident rate' in the language of the Aviation Safety goal as stated in different sources.

  15. Safety evaluation of driver cognitive failures and driving errors on right-turn filtering movement at signalized road intersections based on Fuzzy Cellular Automata (FCA) model.

    PubMed

    Chai, Chen; Wong, Yiik Diew; Wang, Xuesong

    2017-07-01

    This paper proposes a simulation-based approach to estimate safety impact of driver cognitive failures and driving errors. Fuzzy Logic, which involves linguistic terms and uncertainty, is incorporated with Cellular Automata model to simulate decision-making process of right-turn filtering movement at signalized intersections. Simulation experiments are conducted to estimate the relationships between cognitive failures and driving errors with safety performance. Simulation results show Different types of cognitive failures are found to have varied relationship with driving errors and safety performance. For right-turn filtering movement, cognitive failures are more likely to result in driving errors with denser conflicting traffic stream. Moreover, different driving errors are found to have different safety impacts. The study serves to provide a novel approach to linguistically assess cognitions and replicate decision-making procedures of the individual driver. Compare to crash analysis, the proposed FCA model allows quantitative estimation of particular cognitive failures, and the impact of cognitions on driving errors and safety performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Analyzing system safety in lithium-ion grid energy storage

    NASA Astrophysics Data System (ADS)

    Rosewater, David; Williams, Adam

    2015-12-01

    As grid energy storage systems become more complex, it grows more difficult to design them for safe operation. This paper first reviews the properties of lithium-ion batteries that can produce hazards in grid scale systems. Then the conventional safety engineering technique Probabilistic Risk Assessment (PRA) is reviewed to identify its limitations in complex systems. To address this gap, new research is presented on the application of Systems-Theoretic Process Analysis (STPA) to a lithium-ion battery based grid energy storage system. STPA is anticipated to fill the gaps recognized in PRA for designing complex systems and hence be more effective or less costly to use during safety engineering. It was observed that STPA is able to capture causal scenarios for accidents not identified using PRA. Additionally, STPA enabled a more rational assessment of uncertainty (all that is not known) thereby promoting a healthy skepticism of design assumptions. We conclude that STPA may indeed be more cost effective than PRA for safety engineering in lithium-ion battery systems. However, further research is needed to determine if this approach actually reduces safety engineering costs in development, or improves industry safety standards.

  17. Integrated optimisation technique based on computer-aided capacity and safety evaluation for managing downstream lane-drop merging area of signalised junctions

    NASA Astrophysics Data System (ADS)

    Chen, CHAI; Yiik Diew, WONG

    2017-02-01

    This study provides an integrated strategy, encompassing microscopic simulation, safety assessment, and multi-attribute decision-making, to optimize traffic performance at downstream merging area of signalized intersections. A Fuzzy Cellular Automata (FCA) model is developed to replicate microscopic movement and merging behavior. Based on simulation experiment, the proposed FCA approach is able to provide capacity and safety evaluation of different traffic scenarios. The results are then evaluated through data envelopment analysis (DEA) and analytic hierarchy process (AHP). Optimized geometric layout and control strategies are then suggested for various traffic conditions. An optimal lane-drop distance that is dependent on traffic volume and speed limit can thus be established at the downstream merging area.

  18. De-boned beef - an example of a commodity for which specific standards could be developed to ensure an appropriate level of protection for international trade.

    PubMed

    Thomson, G R; Leyland, T J; Donaldson, A I

    2009-03-01

    De-boned beef from which lymph nodes and risk material associated with bovine spongiform encephalopathy have been removed, is a product which can be produced for safe international trade irrespective of whether the locality of production is recognized as free from so-called transboundary diseases or not. Further processing of such beef provides an additional safety factor. However, this approach requires specific control measures being in place, supported by appropriate auditing and certification procedures. This document presents the arguments supporting this concept and details how safety in respect of both animal diseases and human food safety can be achieved using an integrated hazard analysis and critical control points approach.

  19. Safety inspections in construction sites: A systems thinking perspective.

    PubMed

    Saurin, Tarcisio Abreu

    2016-08-01

    Although safety inspections carried out by government officers are important for the prevention of accidents, there is little in-depth knowledge on their outcomes and processes leading to these. This research deals with this gap by using systems thinking (ST) as a lens for obtaining insights into safety inspections in construction sites. Thirteen case studies of sites with prohibited works were carried out, discussing how four attributes of ST were used in the inspections. The studies were undertaken over 6 years, and sources of evidence involved participant observation, direct observations, analysis of documents and interviews. Two complementary ways for obtaining insights into inspections, based on ST, were identified: (i) the design of the study itself needs to be in line with ST; and (ii) data collection and analysis should focus on the agents involved in the inspections, the interactions between agents, the constraints and opportunities faced by agents, the outcomes of interactions, and the recommendations for influencing interactions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Inherent Safety Characteristics of Advanced Fast Reactors

    NASA Astrophysics Data System (ADS)

    Bochkarev, A. S.; Korsun, A. S.; Kharitonov, V. S.; Alekseev, P. N.

    2017-01-01

    The study presents SFR transient performance for ULOF events initiated by pump trip and pump seizure with simultaneous failure of all shutdown systems in both cases. The most severe cases leading to the pin cladding rupture and possible sodium boiling are demonstrated. The impact of various features on SFR inherent safety performance for ULOF events was analysed. The decrease in hydraulic resistance of primary loop and increase in primary pump coast down time were investigated. Performing analysis resulted in a set of recommendations to varying parameters for the purpose of enhancing the inherent safety performance of SFR. In order to prevent the safety barrier rupture for ULOF events the set of thermal hydraulic criteria defining the ULOF transient processes dynamics and requirements to these criteria were recommended based on achieved results: primary sodium flow dip under the natural circulation asymptotic level and natural circulation rise time.

  1. Improving patient safety by instructional systems design

    PubMed Central

    Battles, J B

    2006-01-01

    Education and training are important elements in patient safety, both as a potential contributing factor to risks and hazards of healthcare associated injury or harm and as an intervention to be used in eliminating or preventing such harm. All too often we have relied on training as the only interventions for patient safety without examining other alternatives or realizing that, in some cases, the training systems themselves are part of the problem. One way to ensure safety by design is to apply established design principles to education and training. Instructional systems design (ISD) is a systematic method of development of education and training programs for improved learner performance. The ISD process involves five integrated steps: analysis, development, design, implementation, and evaluation (ADDIE). The application of ISD using the ADDIE approach can eliminate or prevent education and training from being a contributing factor of health associated injury or harm, and can also be effective in preventing injury or harm. PMID:17142604

  2. Aptamer-based technology for food analysis.

    PubMed

    Liu, Xiaofei; Zhang, Xuewu

    2015-01-01

    Aptamers are short and functional single-stranded oligonucleotide sequences selected from systematic evolution of ligands by exponential enrichment (SELEX) process, which have the capacity to recognize various classes of target molecules with high affinity and specificity. Various analytical aptamers acquired by SELEX are widely used in many research fields, such as medicine, biology, and chemistry. However, the application of this innovative and emerging technology to food safety is just in infant stage. Food safety plays a very important role in our daily lives because varieties of poisonous and harmful substances in food affect human health. Aptamer technique is promising, which can overcome many disadvantages of existing detection methods in food safety, such as long detection time, low sensitivity, difficult, and expensive antibody preparation. This review provides an overview of various aptamer screening technologies and summarizes the recent applications of aptamers in food safety, and future prospects are also discussed.

  3. An Organizational Learning Framework for Patient Safety.

    PubMed

    Edwards, Marc T

    Despite concerted effort to improve quality and safety, high reliability remains a distant goal. Although this likely reflects the challenge of organizational change, persistent controversy over basic issues suggests that weaknesses in conceptual models may contribute. The essence of operational improvement is organizational learning. This article presents a framework for identifying leverage points for improvement based on organizational learning theory and applies it to an analysis of current practice and controversy. Organizations learn from others, from defects, from measurement, and from mindfulness. These learning modes correspond with contemporary themes of collaboration, no blame for human error, accountability for performance, and managing the unexpected. The collaborative model has dominated improvement efforts. Greater attention to the underdeveloped modes of organizational learning may foster more rapid progress in patient safety by increasing organizational capabilities, strengthening a culture of safety, and fixing more of the process problems that contribute to patient harm.

  4. Radiation exposure control from the application of nuclear gauges in the mining industry in Ghana.

    PubMed

    Faanu, A; Darko, E O; Awudu, A R; Schandorf, C; Emi-Reynolds, G; Yeboah, J; Glover, E T; Kattah, V K

    2010-05-01

    The use of nuclear gauges for process control and elemental analysis in the mining industry in Ghana, West Africa, is wide spread and on the increase in recent times. The Ghana Radiation Protection Board regulates nuclear gauges through a system of notification and authorization by registration or licensing, inspection, and enforcement. Safety assessments for authorization and enforcement have been established to ensure the safety and security of radiation sources as well as protection of workers and the general public. Appropriate training of mine staff is part of the efforts to develop the necessary awareness about the safety and security of radiation sources. The knowledge and skills acquired will ensure the required protection and safety at the workplaces. Doses received by workers monitored over a period between 1998 and 2007 are well below the annual dose limit of 20 mSv recommended by the International Commission on Radiological Protection.

  5. TU-EF-BRD-04: Summing It Up: The Future of Quality and Safety Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, E.

    Research related to quality and safety has been a staple of medical physics academic activities for a long time. From very early on, medical physicists have developed new radiation measurement equipment and analysis techniques, created ever increasingly accurate dose calculation models, and have vastly improved imaging, planning, and delivery techniques. These and other areas of interest have improved the quality and safety of radiotherapy for our patients. With the advent of TG-100, quality and safety is an area that will garner even more research interest in the future. As medical physicists pursue quality and safety research in greater numbers, itmore » is worthwhile to consider what actually constitutes research on quality and safety. For example, should the development of algorithms for real-time EPID-based in-vivo dosimetry be defined as “quality and safety” research? How about the clinical implementation of such as system? Surely the application of failure modes and effects analysis to a clinical process would be considered quality and safety research, but is this type of research that should be included in the medical physics peer-reviewed literature? The answers to such questions are of critical importance to set researchers in a direction that will provide the greatest benefit to our field and the patients we serve. The purpose of this symposium is to consider what constitutes research in the arena of quality and safety and differentiate it from other research directions. The key distinction here is developing the tool itself (e.g. algorithms for EPID dosimetry) vs. studying the impact of the tool with some quantitative metric. Only the latter would I call quality and safety research. Issues of ‘basic’ versus ‘applied’ quality and safety research will be covered as well as how the research results should be structured to provide increasing levels of support that a quality and safety intervention is effective and sustainable. Examples from existing peer-reviewed research will be used to highlight the main points. Historical, medical physicists have leveraged many areas of applied physics, engineering and biology to improve radiotherapy. Research on quality and safety is another area where physicists can have an impact. The key to further progress is to clearly define what constitutes quality and safety research for those interested in doing such research and the reviewers of that research. Learning Objectives: List several tools of quality and safety with references to peer-reviewed literature. Describe effects of mental workload on performance. Outline research in quality and safety indicators and technique analysis. Understand what quality and safety research needs to be going forward. Understand the links between cooperative group trials and quality and safety research.« less

  6. TU-EF-BRD-01: Topics in Quality and Safety Research and Level of Evidence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pawlicki, T.

    Research related to quality and safety has been a staple of medical physics academic activities for a long time. From very early on, medical physicists have developed new radiation measurement equipment and analysis techniques, created ever increasingly accurate dose calculation models, and have vastly improved imaging, planning, and delivery techniques. These and other areas of interest have improved the quality and safety of radiotherapy for our patients. With the advent of TG-100, quality and safety is an area that will garner even more research interest in the future. As medical physicists pursue quality and safety research in greater numbers, itmore » is worthwhile to consider what actually constitutes research on quality and safety. For example, should the development of algorithms for real-time EPID-based in-vivo dosimetry be defined as “quality and safety” research? How about the clinical implementation of such as system? Surely the application of failure modes and effects analysis to a clinical process would be considered quality and safety research, but is this type of research that should be included in the medical physics peer-reviewed literature? The answers to such questions are of critical importance to set researchers in a direction that will provide the greatest benefit to our field and the patients we serve. The purpose of this symposium is to consider what constitutes research in the arena of quality and safety and differentiate it from other research directions. The key distinction here is developing the tool itself (e.g. algorithms for EPID dosimetry) vs. studying the impact of the tool with some quantitative metric. Only the latter would I call quality and safety research. Issues of ‘basic’ versus ‘applied’ quality and safety research will be covered as well as how the research results should be structured to provide increasing levels of support that a quality and safety intervention is effective and sustainable. Examples from existing peer-reviewed research will be used to highlight the main points. Historical, medical physicists have leveraged many areas of applied physics, engineering and biology to improve radiotherapy. Research on quality and safety is another area where physicists can have an impact. The key to further progress is to clearly define what constitutes quality and safety research for those interested in doing such research and the reviewers of that research. Learning Objectives: List several tools of quality and safety with references to peer-reviewed literature. Describe effects of mental workload on performance. Outline research in quality and safety indicators and technique analysis. Understand what quality and safety research needs to be going forward. Understand the links between cooperative group trials and quality and safety research.« less

  7. Root Cause Analysis: Learning from Adverse Safety Events.

    PubMed

    Brook, Olga R; Kruskal, Jonathan B; Eisenberg, Ronald L; Larson, David B

    2015-10-01

    Serious adverse events continue to occur in clinical practice, despite our best preventive efforts. It is essential that radiologists, both as individuals and as a part of organizations, learn from such events and make appropriate changes to decrease the likelihood that such events will recur. Root cause analysis (RCA) is a process to (a) identify factors that underlie variation in performance or that predispose an event toward undesired outcomes and (b) allow for development of effective strategies to decrease the likelihood of similar adverse events occurring in the future. An RCA process should be performed within the environment of a culture of safety, focusing on underlying system contributors and, in a confidential manner, taking into account the emotional effects on the staff involved. The Joint Commission now requires that a credible RCA be performed within 45 days for all sentinel or major adverse events, emphasizing the need for all radiologists to understand the processes with which an effective RCA can be performed. Several RCA-related tools that have been found to be useful in the radiology setting include the "five whys" approach to determine causation; cause-and-effect, or Ishikawa, diagrams; causal tree mapping; affinity diagrams; and Pareto charts. © RSNA, 2015.

  8. Probing the heat sources during thermal runaway process by thermal analysis of different battery chemistries

    NASA Astrophysics Data System (ADS)

    Zheng, Siqi; Wang, Li; Feng, Xuning; He, Xiangming

    2018-02-01

    Safety issue is very important for the lithium ion battery used in electric vehicle or other applications. This paper probes the heat sources in the thermal runaway processes of lithium ion batteries composed of different chemistries using accelerating rate calorimetry (ARC) and differential scanning calorimetry (DSC). The adiabatic thermal runaway features for the 4 types of commercial lithium ion batteries are tested using ARC, whereas the reaction characteristics of the component materials, including the cathode, the anode and the separator, inside the 4 types of batteries are measured using DSC. The peaks and valleys of the critical component reactions measured by DSC can match the fluctuations in the temperature rise rate measured by ARC, therefore the relevance between the DSC curves and the ARC curves is utilized to probe the heat source in the thermal runaway process and reveal the thermal runaway mechanisms. The results and analysis indicate that internal short circuit is not the only way to thermal runaway, but can lead to extra electrical heat, which is comparable with the heat released by chemical reactions. The analytical approach of the thermal runaway mechanisms in this paper can guide the safety design of commercial lithium ion batteries.

  9. Proteomics in food: Quality, safety, microbes, and allergens.

    PubMed

    Piras, Cristian; Roncada, Paola; Rodrigues, Pedro M; Bonizzi, Luigi; Soggiu, Alessio

    2016-03-01

    Food safety and quality and their associated risks pose a major concern worldwide regarding not only the relative economical losses but also the potential danger to consumer's health. Customer's confidence in the integrity of the food supply could be hampered by inappropriate food safety measures. A lack of measures and reliable assays to evaluate and maintain a good control of food characteristics may affect the food industry economy and shatter consumer confidence. It is imperative to create and to establish fast and reliable analytical methods that allow a good and rapid analysis of food products during the whole food chain. Proteomics can represent a powerful tool to address this issue, due to its proven excellent quantitative and qualitative drawbacks in protein analysis. This review illustrates the applications of proteomics in the past few years in food science focusing on food of animal origin with some brief hints on other types. Aim of this review is to highlight the importance of this science as a valuable tool to assess food quality and safety. Emphasis is also posed in food processing, allergies, and possible contaminants like bacteria, fungi, and other pathogens. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Flight State Information Inference with Application to Helicopter Cockpit Video Data Analysis Using Data Mining Techniques

    NASA Astrophysics Data System (ADS)

    Shin, Sanghyun

    The National Transportation Safety Board (NTSB) has recently emphasized the importance of analyzing flight data as one of the most effective methods to improve eciency and safety of helicopter operations. By analyzing flight data with Flight Data Monitoring (FDM) programs, the safety and performance of helicopter operations can be evaluated and improved. In spite of the NTSB's effort, the safety of helicopter operations has not improved at the same rate as the safety of worldwide airlines, and the accident rate of helicopters continues to be much higher than that of fixed-wing aircraft. One of the main reasons is that the participation rates of the rotorcraft industry in the FDM programs are low due to the high costs of the Flight Data Recorder (FDR), the need of a special readout device to decode the FDR, anxiety of punitive action, etc. Since a video camera is easily installed, accessible, and inexpensively maintained, cockpit video data could complement the FDR in the presence of the FDR or possibly replace the role of the FDR in the absence of the FDR. Cockpit video data is composed of image and audio data: image data contains outside views through cockpit windows and activities on the flight instrument panels, whereas audio data contains sounds of the alarms within the cockpit. The goal of this research is to develop, test, and demonstrate a cockpit video data analysis algorithm based on data mining and signal processing techniques that can help better understand situations in the cockpit and the state of a helicopter by efficiently and accurately inferring the useful flight information from cockpit video data. Image processing algorithms based on data mining techniques are proposed to estimate a helicopter's attitude such as the bank and pitch angles, identify indicators from a flight instrument panel, and read the gauges and the numbers in the analogue gauge indicators and digital displays from cockpit image data. In addition, an audio processing algorithm based on signal processing and abrupt change detection techniques is proposed to identify types of warning alarms and to detect the occurrence times of individual alarms from cockpit audio data. Those proposed algorithms are then successfully applied to simulated and real helicopter cockpit video data to demonstrate and validate their performance.

  11. The Evolution of Process Safety: Current Status and Future Direction.

    PubMed

    Mannan, M Sam; Reyes-Valdes, Olga; Jain, Prerna; Tamim, Nafiz; Ahammad, Monir

    2016-06-07

    The advent of the industrial revolution in the nineteenth century increased the volume and variety of manufactured goods and enriched the quality of life for society as a whole. However, industrialization was also accompanied by new manufacturing and complex processes that brought about the use of hazardous chemicals and difficult-to-control operating conditions. Moreover, human-process-equipment interaction plus on-the-job learning resulted in further undesirable outcomes and associated consequences. These problems gave rise to many catastrophic process safety incidents that resulted in thousands of fatalities and injuries, losses of property, and environmental damages. These events led eventually to the necessity for a gradual development of a new multidisciplinary field, referred to as process safety. From its inception in the early 1970s to the current state of the art, process safety has come to represent a wide array of issues, including safety culture, process safety management systems, process safety engineering, loss prevention, risk assessment, risk management, and inherently safer technology. Governments and academic/research organizations have kept pace with regulatory programs and research initiatives, respectively. Understanding how major incidents impact regulations and contribute to industrial and academic technology development provides a firm foundation to address new challenges, and to continue applying science and engineering to develop and implement programs to keep hazardous materials within containment. Here the most significant incidents in terms of their impact on regulations and the overall development of the field of process safety are described.

  12. Feedback from incident reporting: information and action to improve patient safety.

    PubMed

    Benn, J; Koutantji, M; Wallace, L; Spurgeon, P; Rejman, M; Healey, A; Vincent, C

    2009-02-01

    Effective feedback from incident reporting systems in healthcare is essential if organisations are to learn from failures in the delivery of care. Despite the wide-scale development and implementation of incident reporting in healthcare, studies in the UK suggest that information concerning system vulnerabilities could be better applied to improve operational safety within organisations. In this article, the findings and implications of research to identify forms of effective feedback from incident reporting are discussed, to promote best practices in this area. The research comprised a mixed methods review to investigate mechanisms of effective feedback for healthcare, drawing upon experience within established reporting programmes in high-risk industry and transport domains. Systematic searches of published literature were undertaken, and 23 case studies describing incident reporting programmes with feedback were identified for analysis from the international healthcare literature. Semistructured interviews were undertaken with 19 subject matter experts across a range of domains, including: civil aviation, maritime, energy, rail, offshore production and healthcare. In analysis, qualitative information from several sources was synthesised into practical requirements for developing effective feedback in healthcare. Both action and information feedback mechanisms were identified, serving safety awareness, improvement and motivational functions. The provision of actionable feedback that visibly improved systems was highlighted as important in promoting future reporting. Fifteen requirements for the design of effective feedback systems were identified, concerning: the role of leadership, the credibility and content of information, effective dissemination channels, the capacity for rapid action and the need for feedback at all levels of the organisation, among others. Above all, the safety-feedback cycle must be closed by ensuring that reporting, analysis and investigation result in timely corrective actions that effectively address vulnerabilities in existing work systems. Limited research evidence exists concerning the issue of effective forms of safety feedback within healthcare. Much valuable operational knowledge resides in safety management communities within high-risk industries. Multiple means of feeding back recommended actions and safety information may be usefully employed to promote safety awareness, improve clinical processes and promote future reporting. Further work is needed to establish best practices for feedback systems in healthcare that effectively close the safety loop.

  13. Polyethylene terephthalate recycling for food-contact applications: testing, safety and technologies: a global perspective.

    PubMed

    Bayer, Forrest L

    2002-01-01

    Studies were undertaken to determine the composition of five different types of post-consumer polyethylene terephthalate (PET) feedstreams to ascertain the relative amounts of food containers and non-food containers. Deposit post-consumer PET feedstreams contained approximately 100% food containers, whereas curbside feedstreams contained from 0.04 to 6% non-food containers. Analysis of the PET containers from the different type feedstreams after the containers were subjected to a commercial PET wash system and after processing with a proprietary decontamination technology was accomplished to determine the levels of compounds in the post-consumer PET after the various stages of processing. Comprehensive thermal desorption/GC/MS, purge and trap GC/MS purge and trap GC quantitation, PET dissolution and extraction GC analysis and PET dissolution HPLC analysis established the types and concentrations of compounds that absorb in the PET from the various types of postconsumer feedstreams. A total of 121 compounds were identified in the five different feedstreams. The concentration of absorbed compounds remaining in the deposit material and the non-food applications material after the commercial wash was 28 and 39mgkg(-1) respectively. Analysis of the feedstreams after subjecting the material to a proprietary decontamination process demonstrated the ability of removing all the absorbed compounds to a level below the level of the threshold of regulation. The safety of sourcing of post-consumer PET from food use applications verses non-food use applications of PET has been established.

  14. [Application of root cause analysis in healthcare].

    PubMed

    Hsu, Tsung-Fu

    2007-12-01

    The main purpose of this study was to explore various aspects of root cause analysis (RCA), including its definition, rationale concept, main objective, implementation procedures, most common analysis methodology (fault tree analysis, FTA), and advantages and methodologic limitations in regard to healthcare. Several adverse events that occurred at a certain hospital were also analyzed by the author using FTA as part of this study. RCA is a process employed to identify basic and contributing causal factors underlying performance variations associated with adverse events. The rationale concept of RCA offers a systemic approach to improving patient safety that does not assign blame or liability to individuals. The four-step process involved in conducting an RCA includes: RCA preparation, proximate cause identification, root cause identification, and recommendation generation and implementation. FTA is a logical, structured process that can help identify potential causes of system failure before actual failures occur. Some advantages and significant methodologic limitations of RCA were discussed. Finally, we emphasized that errors stem principally from faults attributable to system design, practice guidelines, work conditions, and other human factors, which induce health professionals to make negligence or mistakes with regard to healthcare. We must explore the root causes of medical errors to eliminate potential RCA system failure factors. Also, a systemic approach is needed to resolve medical errors and move beyond a current culture centered on assigning fault to individuals. In constructing a real environment of patient-centered safety healthcare, we can help encourage clients to accept state-of-the-art healthcare services.

  15. Development of the just culture assessment tool: measuring the perceptions of health-care professionals in hospitals.

    PubMed

    Petschonek, Sarah; Burlison, Jonathan; Cross, Carl; Martin, Kathy; Laver, Joseph; Landis, Ronald S; Hoffman, James M

    2013-12-01

    Given the growing support for establishing a just patient safety culture in health-care settings, a valid tool is needed to assess and improve just patient safety culture. The purpose of this study was to develop a measure of individual perceptions of just culture for a hospital setting. The 27-item survey was administered to 998 members of a health-care staff in a pediatric research hospital as part of the hospital's ongoing patient safety culture assessment process. Subscales included balancing a blame-free approach with accountability, feedback and communication, openness of communication, quality of the event reporting process, continuous improvement, and trust. The final sample of 404 participants (40% response rate) included nurses, physicians, pharmacists, and other hospital staff members involved in patient care. Confirmatory factor analysis was used to test the internal structure of the measure and reliability analyses were conducted on the subscales. Moderate support for the factor structure was established with confirmatory factor analysis. After modifications were made to improve statistical fit, the final version of the measure included 6 subscales loading onto one higher-order dimension. Additionally, Cronbach α reliability scores for the subscales were positive, with each dimension being above 0.7 with the exception of one. The instrument designed and tested in this study demonstrated adequate structure and reliability. Given the uniqueness of the current sample, further verification of the JCAT is needed from hospitals that serve broader populations. A validated tool could also be used to evaluate the relation between just culture and patient safety outcomes.

  16. Development of the Just Culture Assessment Tool (JCAT): Measuring the Perceptions of HealthCare Professionals in Hospitals

    PubMed Central

    Petschonek, Sarah; Burlison, Jonathan; Cross, Carl; Martin, Kathy; Laver, Joseph; Landis, Ronald S.; Hoffman, James M.

    2014-01-01

    Objectives Given the growing support for establishing a just patient safety culture in healthcare settings, a valid tool is needed to assess and improve just patient safety culture. The purpose of this study was to develop a measure of individual perceptions of just culture for a hospital setting. Methods The 27 item survey was administered to 998 members of a healthcare staff in a pediatric research hospital as part of the hospital's ongoing patient safety culture assessment process. Subscales included balancing a blame-free approach with accountability, feedback and communication, openness of communication, quality of the event reporting process, continuous improvement, and trust. The final sample of 404 participants (40% response rate) included nurses, physicians, pharmacists and other hospital staff members involved in patient care. Confirmatory factor analysis was used to test the internal structure of the measure and reliability analyses were conducted on the subscales. Results Moderate support for the factor structure was established with confirmatory factor analysis. After modifications were made to improve statistical fit, the final version of the measure included six subscales loading onto one higher-order dimension. Additionally, Cronbach's alpha reliability scores for the subscales were positive, with each dimension being above 0.7 with the exception of one. Conclusions The instrument designed and tested in this study demonstrated adequate structure and reliability. Given the uniqueness of the current sample, further verification of the JCAT is needed from hospitals that serve broader populations. A validated tool could also be used to evaluate the relation between just culture and patient safety outcomes. PMID:24263549

  17. Bioinformatics and the allergy assessment of agricultural biotechnology products: industry practices and recommendations.

    PubMed

    Ladics, Gregory S; Cressman, Robert F; Herouet-Guicheney, Corinne; Herman, Rod A; Privalle, Laura; Song, Ping; Ward, Jason M; McClain, Scott

    2011-06-01

    Bioinformatic tools are being increasingly utilized to evaluate the degree of similarity between a novel protein and known allergens within the context of a larger allergy safety assessment process. Importantly, bioinformatics is not a predictive analysis that can determine if a novel protein will ''become" an allergen, but rather a tool to assess whether the protein is a known allergen or is potentially cross-reactive with an existing allergen. Bioinformatic tools are key components of the 2009 CodexAlimentarius Commission's weight-of-evidence approach, which encompasses a variety of experimental approaches for an overall assessment of the allergenic potential of a novel protein. Bioinformatic search comparisons between novel protein sequences, as well as potential novel fusion sequences derived from the genome and transgene, and known allergens are required by all regulatory agencies that assess the safety of genetically modified (GM) products. The objective of this paper is to identify opportunities for consensus in the methods of applying bioinformatics and to outline differences that impact a consistent and reliable allergy safety assessment. The bioinformatic comparison process has some critical features, which are outlined in this paper. One of them is a curated, publicly available and well-managed database with known allergenic sequences. In this paper, the best practices, scientific value, and food safety implications of bioinformatic analyses, as they are applied to GM food crops are discussed. Recommendations for conducting bioinformatic analysis on novel food proteins for potential cross-reactivity to known allergens are also put forth. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Application of failure mode and effects analysis (FMEA) to pretreatment phases in tomotherapy.

    PubMed

    Broggi, Sara; Cantone, Marie Claire; Chiara, Anna; Di Muzio, Nadia; Longobardi, Barbara; Mangili, Paola; Veronese, Ivan

    2013-09-06

    The aim of this paper was the application of the failure mode and effects analysis (FMEA) approach to assess the risks for patients undergoing radiotherapy treatments performed by means of a helical tomotherapy unit. FMEA was applied to the preplanning imaging, volume determination, and treatment planning stages of the tomotherapy process and consisted of three steps: 1) identification of the involved subprocesses; 2) identification and ranking of the potential failure modes, together with their causes and effects, using the risk probability number (RPN) scoring system; and 3) identification of additional safety measures to be proposed for process quality and safety improvement. RPN upper threshold for little concern of risk was set at 125. A total of 74 failure modes were identified: 38 in the stage of preplanning imaging and volume determination, and 36 in the stage of planning. The threshold of 125 for RPN was exceeded in four cases: one case only in the phase of preplanning imaging and volume determination, and three cases in the stage of planning. The most critical failures appeared related to (i) the wrong or missing definition and contouring of the overlapping regions, (ii) the wrong assignment of the overlap priority to each anatomical structure, (iii) the wrong choice of the computed tomography calibration curve for dose calculation, and (iv) the wrong (or not performed) choice of the number of fractions in the planning station. On the basis of these findings, in addition to the safety strategies already adopted in the clinical practice, novel solutions have been proposed for mitigating the risk of these failures and to increase patient safety.

  19. Can incident reporting improve safety? Healthcare practitioners' views of the effectiveness of incident reporting.

    PubMed

    Anderson, Janet E; Kodate, Naonori; Walters, Rhiannon; Dodds, Anneliese

    2013-04-01

    Recent critiques of incident reporting suggest that its role in managing safety has been over emphasized. The objective of this study was to examine the perceived effectiveness of incident reporting in improving safety in mental health and acute hospital settings by asking staff about their perceptions and experiences. Qualitative research design using documentary analysis and semi-structured interviews. Two large teaching hospitals in London; one providing acute and the other mental healthcare. Sixty-two healthcare practitioners with experience of reporting and analysing incidents. Incident reporting was perceived as having a positive effect on safety, not only by leading to changes in care processes but also by changing staff attitudes and knowledge. Staff discussed examples of both instrumental and conceptual uses of the knowledge generated by incident reports. There are difficulties in using incident reports to improve safety in healthcare at all stages of the incident reporting process. Differences in the risks encountered and the organizational systems developed in the two hospitals to review reported incidents could be linked to the differences we found in attitudes to incident reporting between the two hospitals. Incident reporting can be a powerful tool for developing and maintaining an awareness of risks in healthcare practice. Using incident reports to improve care is challenging and the study highlighted the complexities involved and the difficulties faced by staff in learning from incident data.

  20. Nutritional and safety assessment of foods and feeds nutritionally improved through biotechnology--case studies by the International Food Biotechnology Committee of ILSI.

    PubMed

    Glenn, Kevin C

    2008-01-01

    During the last two decades, the public and private sectors have made substantial research progress internationally toward improving the nutritional value of a wide range of food and feed crops. Nevertheless, significant numbers of people still suffer from the effects of undernutrition. As newly developed crops with nutritionally improved traits come closer to being available to producers and consumers, scientifically sound and efficient processes are needed to assess the safety and nutritional quality of these crops. In 2004, a Task Force of international scientific experts, convened by the International Food Biotechnology Committee (IFBiC) of ILSI, published recommendations for the safety and nutritional assessment of foods and feeds nutritionally improved through modern biotechnology (J. Food Science, 2004, 69:CRH62-CRH68). The comparative safety assessment process is a basic principle in this publication and is the starting point, not the conclusion, of the analysis. Significant differences in composition are expected to be observed in the case of nutritionally enhanced crops and must be assessed on a case-by-case basis. The Golden Rice 2 case study will be presented as an example of a food crop nutritionally enhanced through the application of modern biotechnology (i.e., recombinant DNA techniques) to illustrate how the 2004 recommendations provide a robust paradigm for the safety assessment of "real world" examples of improved nutrition crops.

  1. A longitudinal, multi-level comparative study of quality and safety in European hospitals: the QUASER study protocol.

    PubMed

    Robert, Glenn B; Anderson, Janet E; Burnett, Susan J; Aase, Karina; Andersson-Gare, Boel; Bal, Roland; Calltorp, Johan; Nunes, Francisco; Weggelaar, Anne-Marie; Vincent, Charles A; Fulop, Naomi J

    2011-10-26

    although there is a wealth of information available about quality improvement tools and techniques in healthcare there is little understanding about overcoming the challenges of day-to-day implementation in complex organisations like hospitals. The 'Quality and Safety in Europe by Research' (QUASER) study will investigate how hospitals implement, spread and sustain quality improvement, including the difficulties they face and how they overcome them. The overall aim of the study is to explore relationships between the organisational and cultural characteristics of hospitals and how these impact on the quality of health care; the findings will be designed to help policy makers, payers and hospital managers understand the factors and processes that enable hospitals in Europe to achieve-and sustain-high quality services for their patients. in-depth multi-level (macro, meso and micro-system) analysis of healthcare quality policies and practices in 5 European countries, including longitudinal case studies in a purposive sample of 10 hospitals. The project design has three major features: • a working definition of quality comprising three components: clinical effectiveness, patient safety and patient experience • a conceptualisation of quality as a human, social, technical and organisational accomplishment • an emphasis on translational research that is evidence-based and seeks to provide strategic and practical guidance for hospital practitioners and health care policy makers in the European Union. Throughout the study we will adopt a mixed methods approach, including qualitative (in-depth, narrative-based, ethnographic case studies using interviews, and direct non-participant observation of organisational processes) and quantitative research (secondary analysis of safety and quality data, for example: adverse incident reporting; patient complaints and claims). the protocol is based on the premise that future research, policy and practice need to address the sociology of improvement in equal measure to the science and technique of improvement, or at least expand the discipline of improvement to include these critical organisational and cultural processes. We define the 'organisational and cultural characteristics associated with better quality of care' in a broad sense that encompasses all the features of a hospital that might be hypothesised to impact upon clinical effectiveness, patient safety and/or patient experience.

  2. Driver Performance Problems of Intercity Bus Public Transportation Safety in Indonesia

    NASA Astrophysics Data System (ADS)

    Suraji, A.; Harnen, S.; Wicaksono, A.; Djakfar, L.

    2017-11-01

    The risk of an inter-city bus public accident can be influenced by various factors such as the driver’s performance. Therefore, knowing the various influential factors related to driver’s performance is very necessary as an effort to realize road traffic safety. This study aims to determine the factors that fall on the accident associated with the driver’s performance and make mathematical modeling factors that affect the accident. Methods of data retrieval were obtained from NTSC secondary data. The data was processed by identifying factors that cause the accident. Furthermore data processing and analysis used the PCA method to obtain mathematical modeling of factors influencing the inter-city bus accidents. The results showed that the main factors that cause accidents are health, discipline, and driver competence.

  3. High-level waste tank farm set point document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anthony, J.A. III

    1995-01-15

    Setpoints for nuclear safety-related instrumentation are required for actions determined by the design authorization basis. Minimum requirements need to be established for assuring that setpoints are established and held within specified limits. This document establishes the controlling methodology for changing setpoints of all classifications. The instrumentation under consideration involve the transfer, storage, and volume reduction of radioactive liquid waste in the F- and H-Area High-Level Radioactive Waste Tank Farms. The setpoint document will encompass the PROCESS AREA listed in the Safety Analysis Report (SAR) (DPSTSA-200-10 Sup 18) which includes the diversion box HDB-8 facility. In addition to the PROCESS AREASmore » listed in the SAR, Building 299-H and the Effluent Transfer Facility (ETF) are also included in the scope.« less

  4. Integrating system safety into the basic systems engineering process

    NASA Technical Reports Server (NTRS)

    Griswold, J. W.

    1971-01-01

    The basic elements of a systems engineering process are given along with a detailed description of what the safety system requires from the systems engineering process. Also discussed is the safety that the system provides to other subfunctions of systems engineering.

  5. NASA Expendable Launch Vehicle (ELV) Payload Safety Review Process

    NASA Technical Reports Server (NTRS)

    Starbus, Calvert S.; Donovan, Shawn; Dook, Mike; Palo, Tom

    2007-01-01

    Issues addressed by this program: (1) Complicated roles and responsibilities associated with multi-partner projects (2) Working relationships and communications between all organizations involved in the payload safety process (3) Consistent interpretation and implementation of safety requirements from one project to the rest (4) Consistent implementation of the Tailoring Process (5) Clearly defined NASA decision-making-authority (6) Bring Agency-wide perspective to each ElV payload project. Current process requires a Payload Safety Working Group (PSWG) for eac payload with representatives from all involved organizations.

  6. Effect of combination processing on the microbial, chemical and sensory quality of ready-to-eat (RTE) vegetable pulav

    NASA Astrophysics Data System (ADS)

    Kumar, R.; George, Johnsy; Rajamanickam, R.; Nataraju, S.; Sabhapathy, S. N.; Bawa, A. S.

    2011-12-01

    Effect of irradiation in combination with retort processing on the shelf life and safety aspects of an ethnic Indian food product like vegetable pulav was investigated. Gamma irradiation of RTE vegetable pulav was carried out at different dosage rates with 60Co followed by retort processing. The combination processed samples were analysed for microbiological, chemical and sensory characteristics. Microbiological analysis indicated that irradiation in combination with retort processing has significantly reduced the microbial loads whereas the chemical and sensory analysis proved that this combination processing is effective in retaining the properties even after storage for one year at ambient conditions. The results also indicated that a minimum irradiation dosage at 4.0 kGy along with retort processing at an F0 value of 2.0 is needed to achieve the desired shelf life with improved organoleptic qualities.

  7. 10 CFR 72.70 - Safety analysis report updating.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... original FSAR or, as appropriate, the last update to the FSAR under this section. The update shall include... for an ISFSI or MRS shall update periodically, as provided in paragraphs (b) and (c) of this section... applicant commitments developed during the license approval and/or hearing process. (b) Each update shall...

  8. 10 CFR 72.70 - Safety analysis report updating.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... original FSAR or, as appropriate, the last update to the FSAR under this section. The update shall include... for an ISFSI or MRS shall update periodically, as provided in paragraphs (b) and (c) of this section... applicant commitments developed during the license approval and/or hearing process. (b) Each update shall...

  9. 10 CFR 72.70 - Safety analysis report updating.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... original FSAR or, as appropriate, the last update to the FSAR under this section. The update shall include... for an ISFSI or MRS shall update periodically, as provided in paragraphs (b) and (c) of this section... applicant commitments developed during the license approval and/or hearing process. (b) Each update shall...

  10. 10 CFR 72.70 - Safety analysis report updating.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... original FSAR or, as appropriate, the last update to the FSAR under this section. The update shall include... for an ISFSI or MRS shall update periodically, as provided in paragraphs (b) and (c) of this section... applicant commitments developed during the license approval and/or hearing process. (b) Each update shall...

  11. Improving packaged food quality and safety. Part 1: synchrotron X-ray analysis.

    PubMed

    López-Rubio, A; Hernandez-Muñoz, P; Catala, R; Gavara, R; Lagarón, J M

    2005-10-01

    The objective was to demonstrate, as an example of an application, the potential of synchrotron X-ray analysis to detect morphological alterations that can occur in barrier packaging materials and structures. These changes can affect the packaging barrier characteristics when conventional food preservation treatments are applied to packaged food. The paper presents the results of a number of experiments where time-resolved combined wide-angle X-ray scattering and small-angle X-ray scattering analysis as a function of temperature and humidity were applied to ethylene-vinyl alcohol co-polymers (EVOH), polypropylene (PP)/EVOH/PP structures, aliphatic polyketone terpolymer (PK) and amorphous polyamide (aPA) materials. A comparison between conventional retorting and high-pressure processing treatments in terms of morphologic alterations are also presented for EVOH. The impact of retorting on the EVOH structure contrasts with the good behaviour of the PK during this treatment and with that of aPA. However, no significant structural changes were observed by wide-angle X-ray scattering in the EVOH structures after high-pressure processing treatment. These structural observations have also been correlated with oxygen permeability measurements that are of importance when guaranteeing the intended levels of safety and quality of packaged food.

  12. Improving Patient Safety in Public Hospitals: Developing Standard Measures to Track Medical Errors and Process Breakdowns.

    PubMed

    Ackerman, Sara L; Gourley, Gato; Le, Gem; Williams, Pamela; Yazdany, Jinoos; Sarkar, Urmimala

    2018-03-14

    The aim of the study was to develop standards for tracking patient safety gaps in ambulatory care in safety net health systems. Leaders from five California safety net health systems were invited to participate in a modified Delphi process sponsored by the Safety Promotion Action Research and Knowledge Network (SPARKNet) and the California Safety Net Institute in 2016. During each of the three Delphi rounds, the feasibility and validity of 13 proposed patient safety measures were discussed and prioritized. Surveys and transcripts from the meetings were analyzed to understand the decision-making process. The Delphi process included eight panelists. Consensus was reached to adopt 9 of 13 proposed measures. All 9 measures were unanimously considered valid, but concern was expressed about the feasibility of implementing several of the measures. Although safety net health systems face high barriers to standardized measurement, our study demonstrates that consensus can be reached on acceptable and feasible methods for tracking patient safety gaps in safety net health systems. If accompanied by the active participation key stakeholder groups, including patients, clinicians, staff, data system professionals, and health system leaders, the consensus measures reported here represent one step toward improving ambulatory patient safety in safety net health systems.

  13. Advanced Test Reactor Safety Basis Upgrade Lessons Learned Relative to Design Basis Verification and Safety Basis Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G. L. Sharp; R. T. McCracken

    The Advanced Test Reactor (ATR) is a pressurized light-water reactor with a design thermal power of 250 MW. The principal function of the ATR is to provide a high neutron flux for testing reactor fuels and other materials. The reactor also provides other irradiation services such as radioisotope production. The ATR and its support facilities are located at the Test Reactor Area of the Idaho National Engineering and Environmental Laboratory (INEEL). An audit conducted by the Department of Energy's Office of Independent Oversight and Performance Assurance (DOE OA) raised concerns that design conditions at the ATR were not adequately analyzedmore » in the safety analysis and that legacy design basis management practices had the potential to further impact safe operation of the facility.1 The concerns identified by the audit team, and issues raised during additional reviews performed by ATR safety analysts, were evaluated through the unreviewed safety question process resulting in shutdown of the ATR for more than three months while these concerns were resolved. Past management of the ATR safety basis, relative to facility design basis management and change control, led to concerns that discrepancies in the safety basis may have developed. Although not required by DOE orders or regulations, not performing design basis verification in conjunction with development of the 10 CFR 830 Subpart B upgraded safety basis allowed these potential weaknesses to be carried forward. Configuration management and a clear definition of the existing facility design basis have a direct relation to developing and maintaining a high quality safety basis which properly identifies and mitigates all hazards and postulated accident conditions. These relations and the impact of past safety basis management practices have been reviewed in order to identify lessons learned from the safety basis upgrade process and appropriate actions to resolve possible concerns with respect to the current ATR safety basis. The need for a design basis reconstitution program for the ATR has been identified along with the use of sound configuration management principles in order to support safe and efficient facility operation.« less

  14. SU-F-T-245: The Investigation of Failure Mode and Effects Analysis and PDCA for the Radiotherapy Risk Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, J; Wang, J; P, J

    2016-06-15

    Purpose: To optimize the clinical processes of radiotherapy and to reduce the radiotherapy risks by implementing the powerful risk management tools of failure mode and effects analysis(FMEA) and PDCA(plan-do-check-act). Methods: A multidiciplinary QA(Quality Assurance) team from our department consisting of oncologists, physicists, dosimetrists, therapists and administrator was established and an entire workflow QA process management using FMEA and PDCA tools was implemented for the whole treatment process. After the primary process tree was created, the failure modes and Risk priority numbers(RPNs) were determined by each member, and then the RPNs were averaged after team discussion. Results: 3 of 9 failuremore » modes with RPN above 100 in the practice were identified in the first PDCA cycle, which were further analyzed to investigate the RPNs: including of patient registration error, prescription error and treating wrong patient. New process controls reduced the occurrence, or detectability scores from the top 3 failure modes. Two important corrective actions reduced the highest RPNs from 300 to 50, and the error rate of radiotherapy decreased remarkably. Conclusion: FMEA and PDCA are helpful in identifying potential problems in the radiotherapy process, which was proven to improve the safety, quality and efficiency of radiation therapy in our department. The implementation of the FMEA approach may improve the understanding of the overall process of radiotherapy while may identify potential flaws in the whole process. Further more, repeating the PDCA cycle can bring us closer to the goal: higher safety and accuracy radiotherapy.« less

  15. Safety vs. privacy: elderly persons' experiences of a mobile safety alarm.

    PubMed

    Melander-Wikman, Anita; Fältholm, Ylva; Gard, Gunvor

    2008-07-01

    The demographic development indicates an increased elderly population in Sweden in the future. One of the greatest challenges for a society with an ageing population is to provide high-quality health and social care. New information and communication technology and services can be used to further improve health care. To enable elderly persons to stay at home as long as possible, various kinds of technology, such as safety alarms, are used at home. The aim of this study was to describe the experiences of elderly persons through testing a mobile safety alarm and their reasoning about safety, privacy and mobility. The mobile safety alarm tested was a prototype in development. Five elderly persons with functional limitations and four healthy elderly persons from a pensioner's organisation tested the alarm. The mobile alarm with a drop sensor and a positioning device was tested for 6 weeks. This intervention was evaluated with qualitative interviews, and analysed with latent content analysis. The result showed four main categories: feeling safe, being positioned and supervised, being mobile, and reflecting on new technology. From these categories, the overarching category 'Safety and mobility are more important than privacy' emerged. The mobile safety alarm was perceived to offer an increased opportunity for mobility in terms of being more active and as an aid for self-determination. The fact that the informants were located by means of the positioning device was not experienced as violating privacy as long as they could decide how to use the alarm. It was concluded that this mobile safety alarm was experienced as a tool to be active and mobile. As a way to keep self-determination and empowerment, the individual has to make a 'cost-benefit' analysis where privacy is sacrificed to the benefit of mobility and safety. The participants were actively contributing to the development process.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teixeira, Flavia C., E-mail: flavitiz@gmail.com; Almeida, Carlos E. de; Saiful Huq, M.

    Purpose: The goal of this study was to evaluate the safety and quality management program for stereotactic radiosurgery (SRS) treatment processes at three radiotherapy centers in Brazil by using three industrial engineering tools (1) process mapping, (2) failure modes and effects analysis (FMEA), and (3) fault tree analysis. Methods: The recommendations of Task Group 100 of American Association of Physicists in Medicine were followed to apply the three tools described above to create a process tree for SRS procedure for each radiotherapy center and then FMEA was performed. Failure modes were identified for all process steps and values of riskmore » priority number (RPN) were calculated from O, S, and D (RPN = O × S × D) values assigned by a professional team responsible for patient care. Results: The subprocess treatment planning was presented with the highest number of failure modes for all centers. The total number of failure modes were 135, 104, and 131 for centers I, II, and III, respectively. The highest RPN value for each center is as follows: center I (204), center II (372), and center III (370). Failure modes with RPN ≥ 100: center I (22), center II (115), and center III (110). Failure modes characterized by S ≥ 7, represented 68% of the failure modes for center III, 62% for center II, and 45% for center I. Failure modes with RPNs values ≥100 and S ≥ 7, D ≥ 5, and O ≥ 5 were considered as high priority in this study. Conclusions: The results of the present study show that the safety risk profiles for the same stereotactic radiotherapy process are different at three radiotherapy centers in Brazil. Although this is the same treatment process, this present study showed that the risk priority is different and it will lead to implementation of different safety interventions among the centers. Therefore, the current practice of applying universal device-centric QA is not adequate to address all possible failures in clinical processes at different radiotherapy centers. Integrated approaches to device-centric and process specific quality management program specific to each radiotherapy center are the key to a safe quality management program.« less

  17. TU-EF-BRD-03: Mental Workload and Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazur, L.

    Research related to quality and safety has been a staple of medical physics academic activities for a long time. From very early on, medical physicists have developed new radiation measurement equipment and analysis techniques, created ever increasingly accurate dose calculation models, and have vastly improved imaging, planning, and delivery techniques. These and other areas of interest have improved the quality and safety of radiotherapy for our patients. With the advent of TG-100, quality and safety is an area that will garner even more research interest in the future. As medical physicists pursue quality and safety research in greater numbers, itmore » is worthwhile to consider what actually constitutes research on quality and safety. For example, should the development of algorithms for real-time EPID-based in-vivo dosimetry be defined as “quality and safety” research? How about the clinical implementation of such as system? Surely the application of failure modes and effects analysis to a clinical process would be considered quality and safety research, but is this type of research that should be included in the medical physics peer-reviewed literature? The answers to such questions are of critical importance to set researchers in a direction that will provide the greatest benefit to our field and the patients we serve. The purpose of this symposium is to consider what constitutes research in the arena of quality and safety and differentiate it from other research directions. The key distinction here is developing the tool itself (e.g. algorithms for EPID dosimetry) vs. studying the impact of the tool with some quantitative metric. Only the latter would I call quality and safety research. Issues of ‘basic’ versus ‘applied’ quality and safety research will be covered as well as how the research results should be structured to provide increasing levels of support that a quality and safety intervention is effective and sustainable. Examples from existing peer-reviewed research will be used to highlight the main points. Historical, medical physicists have leveraged many areas of applied physics, engineering and biology to improve radiotherapy. Research on quality and safety is another area where physicists can have an impact. The key to further progress is to clearly define what constitutes quality and safety research for those interested in doing such research and the reviewers of that research. Learning Objectives: List several tools of quality and safety with references to peer-reviewed literature. Describe effects of mental workload on performance. Outline research in quality and safety indicators and technique analysis. Understand what quality and safety research needs to be going forward. Understand the links between cooperative group trials and quality and safety research.« less

  18. Another Approach to Enhance Airline Safety: Using Management Safety Tools

    NASA Technical Reports Server (NTRS)

    Lu, Chien-tsug; Wetmore, Michael; Przetak, Robert

    2006-01-01

    The ultimate goal of conducting an accident investigation is to prevent similar accidents from happening again and to make operations safer system-wide. Based on the findings extracted from the investigation, the "lesson learned" becomes a genuine part of the safety database making risk management available to safety analysts. The airline industry is no exception. In the US, the FAA has advocated the usage of the System Safety concept in enhancing safety since 2000. Yet, in today s usage of System Safety, the airline industry mainly focuses on risk management, which is a reactive process of the System Safety discipline. In order to extend the merit of System Safety and to prevent accidents beforehand, a specific System Safety tool needs to be applied; so a model of hazard prediction can be formed. To do so, the authors initiated this study by reviewing 189 final accident reports from the National Transportation Safety Board (NTSB) covering FAR Part 121 scheduled operations. The discovered accident causes (direct hazards) were categorized into 10 groups Flight Operations, Ground Crew, Turbulence, Maintenance, Foreign Object Damage (FOD), Flight Attendant, Air Traffic Control, Manufacturer, Passenger, and Federal Aviation Administration. These direct hazards were associated with 36 root factors prepared for an error-elimination model using Fault Tree Analysis (FTA), a leading tool for System Safety experts. An FTA block-diagram model was created, followed by a probability simulation of accidents. Five case studies and reports were provided in order to fully demonstrate the usefulness of System Safety tools in promoting airline safety.

  19. Launch Services Safety Overview

    NASA Technical Reports Server (NTRS)

    Loftin, Charles E.

    2008-01-01

    NASA/KSC Launch Services Division Safety (SA-D) services include: (1) Assessing the safety of the launch vehicle (2) Assessing the safety of NASA ELV spacecraft (S/C) / launch vehicle (LV) interfaces (3) Assessing the safety of spacecraft processing to ensure resource protection of: - KSC facilities - KSC VAFB facilities - KSC controlled property - Other NASA assets (4) NASA personnel safety (5) Interfacing with payload organizations to review spacecraft for adequate safety implementation and compliance for integrated activities (6) Assisting in the integration of safety activities between the payload, launch vehicle, and processing facilities

  20. Evaluation of pedestrian safety at intersections: A theoretical framework based on pedestrian-vehicle interaction patterns.

    PubMed

    Ni, Ying; Wang, Menglong; Sun, Jian; Li, Keping

    2016-11-01

    Pedestrians are the most vulnerable road users, and pedestrian safety has become a major research focus in recent years. Regarding the quality and quantity issues with collision data, conflict analysis using surrogate safety measures has become a useful method to study pedestrian safety. However, given the inequality between pedestrians and vehicles in encounters and the multiple interactions between pedestrians and vehicles, it is insufficient to simply use the same indicator(s) or the same way to aggregate indicators for all conditions. In addition, behavioral factors cannot be neglected. To better use information extracted from trajectories for safety evaluation and pay more attention on effects of behavioral factors, this paper develops a more sophisticated framework for pedestrian conflict analysis that takes pedestrian-vehicle interactions into consideration. A concept of three interaction patterns has been proposed for the first time, namely "hard interaction," "no interaction," and "soft-interaction." Interactions have been categorized under one of these patterns by analyzing profiles of speed and conflict indicators during the whole interactive processes. In this paper, a support vector machine (SVM) approach has been adopted to classify severity levels for a dataset including 1144 events extracted from three intersections in Shanghai, China, followed by an analysis of variable importance. The results revealed that different conflict indicators have different contributions to indicating the severity level under various interaction patterns. Therefore, it is recommended either to use specific conflict indicators or to use weighted indicator aggregation for each interaction pattern when evaluating pedestrian safety. The implementation has been carried out at the fourth crosswalk, and the results indicate that the proposed method can achieve a higher accuracy and better robustness than conventional methods. Furthermore, the method is helpful for better understanding underlying levels of safety from the behavioral perspective, which can also provide evidence for targeted traffic education on proper behaviors. Copyright © 2016 Elsevier Ltd. All rights reserved.

Top