Sample records for safety critical structures

  1. Structural empowerment and patient safety culture among registered nurses working in adult critical care units.

    PubMed

    Armellino, Donna; Quinn Griffin, Mary T; Fitzpatrick, Joyce J

    2010-10-01

    The aim of the present study was to examine the relationship between structural empowerment and patient safety culture among staff level Registered Nurses (RNs) within adult critical care units (ACCU). There is literature to support the value of RNs' structurally empowered work environments and emerging literature towards patient safety culture; the link between empowerment and patient safety culture is being discovered. A sample of 257 RNs, working within adult critical care of a tertiary hospital in the United States, was surveyed. Instruments included a background data sheet, the Conditions of Workplace Effectiveness and the Hospital Survey on Patient Safety Culture. Structural empowerment and patient safety culture were significantly correlated. As structural empowerment increased so did the RNs' perception of patient safety culture. To foster patient safety culture, nurse leaders should consider providing structurally empowering work environments for RNs. This study contributes to the body of knowledge linking structural empowerment and patient safety culture. Results link structurally empowered RNs and increased patient safety culture, essential elements in delivering efficient, competent, quality care. They inform nursing management of key factors in the nurses' environment that promote safe patient care environments. © 2010 The Authors. Journal compilation © 2010 Blackwell Publishing Ltd.

  2. Brazed Joints Design and Allowables: Discuss Margins of Safety in Critical Brazed Structures

    NASA Technical Reports Server (NTRS)

    FLom, Yury

    2009-01-01

    This slide presentation tutorial discusses margins of safety in critical brazed structures. It reviews: (1) the present situation (2) definition of strength (3) margins of safety (4) design allowables (5) mechanical testing (6) failure criteria (7) design flowchart (8) braze gap (9) residual stresses and (10) delayed failures. This presentation addresses the strength of the brazed joints, the methods of mechanical testing, and our ability to evaluate the margins of safety of the brazed joints as it applies to the design of critical and expensive brazed assemblies.

  3. Certification Processes for Safety-Critical and Mission-Critical Aerospace Software

    NASA Technical Reports Server (NTRS)

    Nelson, Stacy

    2003-01-01

    This document is a quick reference guide with an overview of the processes required to certify safety-critical and mission-critical flight software at selected NASA centers and the FAA. Researchers and software developers can use this guide to jumpstart their understanding of how to get new or enhanced software onboard an aircraft or spacecraft. The introduction contains aerospace industry definitions of safety and safety-critical software, as well as, the current rationale for certification of safety-critical software. The Standards for Safety-Critical Aerospace Software section lists and describes current standards including NASA standards and RTCA DO-178B. The Mission-Critical versus Safety-Critical software section explains the difference between two important classes of software: safety-critical software involving the potential for loss of life due to software failure and mission-critical software involving the potential for aborting a mission due to software failure. The DO-178B Safety-critical Certification Requirements section describes special processes and methods required to obtain a safety-critical certification for aerospace software flying on vehicles under auspices of the FAA. The final two sections give an overview of the certification process used at Dryden Flight Research Center and the approval process at the Jet Propulsion Lab (JPL).

  4. CRITICALITY SAFETY CONTROLS AND THE SAFETY BASIS AT PFP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kessler, S

    2009-04-21

    With the implementation of DOE Order 420.1B, Facility Safety, and DOE-STD-3007-2007, 'Guidelines for Preparing Criticality Safety Evaluations at Department of Energy Non-Reactor Nuclear Facilities', a new requirement was imposed that all criticality safety controls be evaluated for inclusion in the facility Documented Safety Analysis (DSA) and that the evaluation process be documented in the site Criticality Safety Program Description Document (CSPDD). At the Hanford site in Washington State the CSPDD, HNF-31695, 'General Description of the FH Criticality Safety Program', requires each facility develop a linking document called a Criticality Control Review (CCR) to document performance of these evaluations. Chapter 5,more » Appendix 5B of HNF-7098, Criticality Safety Program, provided an example of a format for a CCR that could be used in lieu of each facility developing its own CCR. Since the Plutonium Finishing Plant (PFP) is presently undergoing Deactivation and Decommissioning (D&D), new procedures are being developed for cleanout of equipment and systems that have not been operated in years. Existing Criticality Safety Evaluations (CSE) are revised, or new ones written, to develop the controls required to support D&D activities. Other Hanford facilities, including PFP, had difficulty using the basic CCR out of HNF-7098 when first implemented. Interpretation of the new guidelines indicated that many of the controls needed to be elevated to TSR level controls. Criterion 2 of the standard, requiring that the consequence of a criticality be examined for establishing the classification of a control, was not addressed. Upon in-depth review by PFP Criticality Safety staff, it was not clear that the programmatic interpretation of criterion 8C could be applied at PFP. Therefore, the PFP Criticality Safety staff decided to write their own CCR. The PFP CCR provides additional guidance for the evaluation team to use by clarifying the evaluation criteria in DOE-STD-3007

  5. 2011 Annual Criticality Safety Program Performance Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrea Hoffman

    The 2011 review of the INL Criticality Safety Program has determined that the program is robust and effective. The review was prepared for, and fulfills Contract Data Requirements List (CDRL) item H.20, 'Annual Criticality Safety Program performance summary that includes the status of assessments, issues, corrective actions, infractions, requirements management, training, and programmatic support.' This performance summary addresses the status of these important elements of the INL Criticality Safety Program. Assessments - Assessments in 2011 were planned and scheduled. The scheduled assessments included a Criticality Safety Program Effectiveness Review, Criticality Control Area Inspections, a Protection of Controlled Unclassified Information Inspection,more » an Assessment of Criticality Safety SQA, and this management assessment of the Criticality Safety Program. All of the assessments were completed with the exception of the 'Effectiveness Review' for SSPSF, which was delayed due to emerging work. Although minor issues were identified in the assessments, no issues or combination of issues indicated that the INL Criticality Safety Program was ineffective. The identification of issues demonstrates the importance of an assessment program to the overall health and effectiveness of the INL Criticality Safety Program. Issues and Corrective Actions - There are relatively few criticality safety related issues in the Laboratory ICAMS system. Most were identified by Criticality Safety Program assessments. No issues indicate ineffectiveness in the INL Criticality Safety Program. All of the issues are being worked and there are no imminent criticality concerns. Infractions - There was one criticality safety related violation in 2011. On January 18, 2011, it was discovered that a fuel plate bundle in the Nuclear Materials Inspection and Storage (NMIS) facility exceeded the fissionable mass limit, resulting in a technical safety requirement (TSR) violation. The TSR limits

  6. A primer on criticality safety

    DOE PAGES

    Costa, David A.; Cournoyer, Michael E.; Merhege, James F.; ...

    2017-05-01

    Criticality is the state of a nuclear chain reacting medium when the chain reaction is just self-sustaining (or critical). Criticality is dependent on nine interrelated parameters. Moreover, we design criticality safety controls in order to constrain these parameters to minimize fissions and maximize neutron leakage and absorption in other materials, which makes criticality more difficult or impossible to achieve. We present the consequences of criticality accidents are discussed, the nine interrelated parameters that combine to affect criticality are described, and criticality safety controls used to minimize the likelihood of a criticality accident are presented.

  7. Nuclear criticality safety: 5-day training course

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlesser, J.A.

    1992-11-01

    This compilation of notes is presented as a source reference for the criticality safety course. It represents the contributions of many people, particularly Tom McLaughlin, the course's primary instructor. At the completion of this training course, the attendee will: be able to define terms commonly used in nuclear criticality safety; be able to appreciate the fundamentals of nuclear criticality safety; be able to identify factors which affect nuclear criticality safety; be able to identify examples of criticality controls as used at Los Alamos; be able to identify examples of circumstances present during criticality accidents; be able to identify examples ofmore » computer codes used by the nuclear criticality safety specialist; be able to identify examples of safety consciousness required in nuclear criticality safety.« less

  8. Software Safety Risk in Legacy Safety-Critical Computer Systems

    NASA Technical Reports Server (NTRS)

    Hill, Janice; Baggs, Rhoda

    2007-01-01

    Safety-critical computer systems must be engineered to meet system and software safety requirements. For legacy safety-critical computer systems, software safety requirements may not have been formally specified during development. When process-oriented software safety requirements are levied on a legacy system after the fact, where software development artifacts don't exist or are incomplete, the question becomes 'how can this be done?' The risks associated with only meeting certain software safety requirements in a legacy safety-critical computer system must be addressed should such systems be selected as candidates for reuse. This paper proposes a method for ascertaining formally, a software safety risk assessment, that provides measurements for software safety for legacy systems which may or may not have a suite of software engineering documentation that is now normally required. It relies upon the NASA Software Safety Standard, risk assessment methods based upon the Taxonomy-Based Questionnaire, and the application of reverse engineering CASE tools to produce original design documents for legacy systems.

  9. Safety Critical Mechanisms

    NASA Technical Reports Server (NTRS)

    Robertson, Brandan

    2008-01-01

    Spaceflight mechanisms have a reputation for being difficult to develop and operate successfully. This reputation is well earned. Many circumstances conspire to make this so: the environments in which the mechanisms are used are extremely severe, there is usually limited or no maintenance opportunity available during operation due to this environment, the environments are difficult to replicate accurately on the ground, the expense of the mechanism development makes it impractical to build and test many units for long periods of time before use, mechanisms tend to be highly specialized and not prone to interchangeability or off-the-shelf use, they can generate and store a lot of energy, and the nature of mechanisms themselves, as a combination of structures, electronics, etc. designed to accomplish specific dynamic performance, makes them very complex and subject to many unpredictable interactions of many types. In addition to their complexities, mechanism are often counted upon to provide critical vehicle functions that can result in catastrophic events should the functions not be performed. It is for this reason that mechanisms are frequently subjected to special scrutiny in safety processes. However, a failure tolerant approach, along with good design and development practices and detailed design reviews, can be developed to allow such notoriously troublesome mechanisms to be utilized confidently in safety-critical applications.

  10. Traceability of Software Safety Requirements in Legacy Safety Critical Systems

    NASA Technical Reports Server (NTRS)

    Hill, Janice L.

    2007-01-01

    How can traceability of software safety requirements be created for legacy safety critical systems? Requirements in safety standards are imposed most times during contract negotiations. On the other hand, there are instances where safety standards are levied on legacy safety critical systems, some of which may be considered for reuse for new applications. Safety standards often specify that software development documentation include process-oriented and technical safety requirements, and also require that system and software safety analyses are performed supporting technical safety requirements implementation. So what can be done if the requisite documents for establishing and maintaining safety requirements traceability are not available?

  11. Rethinking healthcare as a safety--critical industry.

    PubMed

    Lwears, Robert

    2012-01-01

    The discipline of ergonomics, or human factors engineering, has made substantial contributions to both the development of a science of safety, and to the improvement of safety in a wide variety of hazardous industries, including nuclear power, aviation, shipping, energy extraction and refining, military operations, and finance. It is notable that healthcare, which in most advanced societies is a substantial sector of the economy (eg, 15% of US gross domestic product) and has been associated with large volumes of potentially preventable morbidity and mortality, has heretofore not been viewed as a safety-critical industry. This paper proposes that improving safety performance in healthcare must involve a re-envisioning of healthcare itself as a safety-critical industry, but one with considerable differences from most engineered safety-critical systems. This has implications both for healthcare, and for conceptions of safety-critical industries.

  12. Criticality Safety Evaluation for the TACS at DAF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Percher, C. M.; Heinrichs, D. P.

    2011-06-10

    Hands-on experimental training in the physical behavior of multiplying systems is one of ten key areas of training required for practitioners to become qualified in the discipline of criticality safety as identified in DOE-STD-1135-99, Guidance for Nuclear Criticality Safety Engineer Training and Qualification. This document is a criticality safety evaluation of the training activities and operations associated with HS-3201-P, Nuclear Criticality 4-Day Training Course (Practical). This course was designed to also address the training needs of nuclear criticality safety professionals under the auspices of the NNSA Nuclear Criticality Safety Program1. The hands-on, or laboratory, portion of the course will utilizemore » the Training Assembly for Criticality Safety (TACS) and will be conducted in the Device Assembly Facility (DAF) at the Nevada Nuclear Security Site (NNSS). The training activities will be conducted by Lawrence Livermore National Laboratory following the requirements of an Integrated Work Sheet (IWS) and associated Safety Plan. Students will be allowed to handle the fissile material under the supervision of an LLNL Certified Fissile Material Handler.« less

  13. The Department of Energy Nuclear Criticality Safety Program

    NASA Astrophysics Data System (ADS)

    Felty, James R.

    2005-05-01

    This paper broadly covers key events and activities from which the Department of Energy Nuclear Criticality Safety Program (NCSP) evolved. The NCSP maintains fundamental infrastructure that supports operational criticality safety programs. This infrastructure includes continued development and maintenance of key calculational tools, differential and integral data measurements, benchmark compilation, development of training resources, hands-on training, and web-based systems to enhance information preservation and dissemination. The NCSP was initiated in response to Defense Nuclear Facilities Safety Board Recommendation 97-2, Criticality Safety, and evolved from a predecessor program, the Nuclear Criticality Predictability Program, that was initiated in response to Defense Nuclear Facilities Safety Board Recommendation 93-2, The Need for Critical Experiment Capability. This paper also discusses the role Dr. Sol Pearlstein played in helping the Department of Energy lay the foundation for a robust and enduring criticality safety infrastructure.

  14. Critical Characteristics of Radiation Detection System Components to be Dedicated for use in Safety Class and Safety Significant System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DAVIS, S.J.

    2000-05-25

    This document identifies critical characteristics of components to be dedicated for use in Safety Class (SC) or Safety Significant (SS) Systems, Structures, or Components (SSCs). This document identifies the requirements for the components of the common radiation area monitor alarm in the WESF pool cell. These are procured as Commercial Grade Items (CGI), with the qualification testing and formal dedication to be performed at the Waste Encapsulation Storage Facility (WESF), in safety class, safety significant systems. System modifications are to be performed in accordance with the instructions provided on ECN 658230. Components for this change are commercially available and interchangeablemore » with the existing alarm configuration This document focuses on the operational requirements for alarm, declaration of the safety classification, identification of critical characteristics, and interpretation of requirements for procurement. Critical characteristics are identified herein and must be verified, followed by formal dedication, prior to the components being used in safety related applications.« less

  15. Proceedings of the Nuclear Criticality Technology Safety Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rene G. Sanchez

    1998-04-01

    This document contains summaries of most of the papers presented at the 1995 Nuclear Criticality Technology Safety Project (NCTSP) meeting, which was held May 16 and 17 at San Diego, Ca. The meeting was broken up into seven sessions, which covered the following topics: (1) Criticality Safety of Project Sapphire; (2) Relevant Experiments For Criticality Safety; (3) Interactions with the Former Soviet Union; (4) Misapplications and Limitations of Monte Carlo Methods Directed Toward Criticality Safety Analyses; (5) Monte Carlo Vulnerabilities of Execution and Interpretation; (6) Monte Carlo Vulnerabilities of Representation; and (7) Benchmark Comparisons.

  16. Taking ownership of safety. What are the active ingredients of safety coaching and how do they impact safety outcomes in critical offshore working environments?

    PubMed

    Krauesslar, Victoria; Avery, Rachel E; Passmore, Jonathan

    2015-01-01

    Safety coaching interventions have become a common feature in the safety critical offshore working environments of the North Sea. Whilst the beneficial impact of coaching as an organizational tool has been evidenced, there remains a question specifically over the use of safety coaching and its impact on behavioural change and producing safe working practices. A series of 24 semi-structured interviews were conducted with three groups of experts in the offshore industry: safety coaches, offshore managers and HSE directors. Using a thematic analysis approach, several significant themes were identified across the three expert groups including connecting with and creating safety ownership in the individual, personal significance and humanisation, ingraining safety and assessing and measuring a safety coach's competence. Results suggest clear utility of safety coaching when applied by safety coaches with appropriate coach training and understanding of safety issues in an offshore environment. The current work has found that the use of safety coaching in the safety critical offshore oil and gas industry is a powerful tool in managing and promoting a culture of safety and care.

  17. SRTC criticality safety technical review: Nuclear Criticality Safety Evaluation 93-04 enriched uranium receipt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rathbun, R.

    Review of NMP-NCS-930087, {open_quotes}Nuclear Criticality Safety Evaluation 93-04 Enriched Uranium Receipt (U), July 30, 1993, {close_quotes} was requested of SRTC (Savannah River Technology Center) Applied Physics Group. The NCSE is a criticality assessment to determine the mass limit for Engineered Low Level Trench (ELLT) waste uranium burial. The intent is to bury uranium in pits that would be separated by a specified amount of undisturbed soil. The scope of the technical review, documented in this report, consisted of (1) an independent check of the methods and models employed, (2) independent HRXN/KENO-V.a calculations of alternate configurations, (3) application of ANSI/ANS 8.1,more » and (4) verification of WSRC Nuclear Criticality Safety Manual procedures. The NCSE under review concludes that a 500 gram limit per burial position is acceptable to ensure the burial site remains in a critically safe configuration for all normal and single credible abnormal conditions. This reviewer agrees with that conclusion.« less

  18. Nuclear Criticality Safety Data Book

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollenbach, D. F.

    The objective of this document is to support the revision of criticality safety process studies (CSPSs) for the Uranium Processing Facility (UPF) at the Y-12 National Security Complex (Y-12). This design analysis and calculation (DAC) document contains development and justification for generic inputs typically used in Nuclear Criticality Safety (NCS) DACs to model both normal and abnormal conditions of processes at UPF to support CSPSs. This will provide consistency between NCS DACs and efficiency in preparation and review of DACs, as frequently used data are provided in one reference source.

  19. Critical Characteristics of Radiation Detection System Components to be Dedicated for use in Safety Class and Safety Significant System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DAVIS, S.J.

    2000-12-28

    This document identifies critical characteristics of components to be dedicated for use in Safety Significant (SS) Systems, Structures, or Components (SSCs). This document identifies the requirements for the components of the common, radiation area, monitor alarm in the WESF pool cell. These are procured as Commercial Grade Items (CGI), with the qualification testing and formal dedication to be performed at the Waste Encapsulation Storage Facility (WESF) for use in safety significant systems. System modifications are to be performed in accordance with the approved design. Components for this change are commercially available and interchangeable with the existing alarm configuration This documentmore » focuses on the operational requirements for alarm, declaration of the safety classification, identification of critical characteristics, and interpretation of requirements for procurement. Critical characteristics are identified herein and must be verified, followed by formal dedication, prior to the components being used in safety related applications.« less

  20. HSE's safety assessment principles for criticality safety.

    PubMed

    Simister, D N; Finnerty, M D; Warburton, S J; Thomas, E A; Macphail, M R

    2008-06-01

    The Health and Safety Executive (HSE) published its revised Safety Assessment Principles for Nuclear Facilities (SAPs) in December 2006. The SAPs are primarily intended for use by HSE's inspectors when judging the adequacy of safety cases for nuclear facilities. The revised SAPs relate to all aspects of safety in nuclear facilities including the technical discipline of criticality safety. The purpose of this paper is to set out for the benefit of a wider audience some of the thinking behind the final published words and to provide an insight into the development of UK regulatory guidance. The paper notes that it is HSE's intention that the Safety Assessment Principles should be viewed as a reflection of good practice in the context of interpreting primary legislation such as the requirements under site licence conditions for arrangements for producing an adequate safety case and for producing a suitable and sufficient risk assessment under the Ionising Radiations Regulations 1999 (SI1999/3232 www.opsi.gov.uk/si/si1999/uksi_19993232_en.pdf).

  1. Software Safety Risk in Legacy Safety-Critical Computer Systems

    NASA Technical Reports Server (NTRS)

    Hill, Janice L.; Baggs, Rhoda

    2007-01-01

    Safety Standards contain technical and process-oriented safety requirements. Technical requirements are those such as "must work" and "must not work" functions in the system. Process-Oriented requirements are software engineering and safety management process requirements. Address the system perspective and some cover just software in the system > NASA-STD-8719.13B Software Safety Standard is the current standard of interest. NASA programs/projects will have their own set of safety requirements derived from the standard. Safety Cases: a) Documented demonstration that a system complies with the specified safety requirements. b) Evidence is gathered on the integrity of the system and put forward as an argued case. [Gardener (ed.)] c) Problems occur when trying to meet safety standards, and thus make retrospective safety cases, in legacy safety-critical computer systems.

  2. Criticality Safety Basics for INL FMHs and CSOs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    V. L. Putman

    2012-04-01

    Nuclear power is a valuable and efficient energy alternative in our energy-intensive society. However, material that can generate nuclear power has properties that require this material be handled with caution. If improperly handled, a criticality accident could result, which could severely harm workers. This document is a modular self-study guide about Criticality Safety Principles. This guide's purpose it to help you work safely in areas where fissionable nuclear materials may be present, avoiding the severe radiological and programmatic impacts of a criticality accident. It is designed to stress the fundamental physical concepts behind criticality controls and the importance of criticalitymore » safety when handling fissionable materials outside nuclear reactors. This study guide was developed for fissionable-material-handler and criticality-safety-officer candidates to use with related web-based course 00INL189, BEA Criticality Safety Principles, and to help prepare for the course exams. These individuals must understand basic information presented here. This guide may also be useful to other Idaho National Laboratory personnel who must know criticality safety basics to perform their assignments safely or to design critically safe equipment or operations. This guide also includes additional information that will not be included in 00INL189 tests. The additional information is in appendices and paragraphs with headings that begin with 'Did you know,' or with, 'Been there Done that'. Fissionable-material-handler and criticality-safety-officer candidates may review additional information at their own discretion. This guide is revised as needed to reflect program changes, user requests, and better information. Issued in 2006, Revision 0 established the basic text and integrated various programs from former contractors. Revision 1 incorporates operation and program changes implemented since 2006. It also incorporates suggestions, clarifications, and additional

  3. Medication safety infrastructure in critical-access hospitals in Florida.

    PubMed

    Winterstein, Almut G; Hartzema, Abraham G; Johns, Thomas E; De Leon, Jessica M; McDonald, Kathie; Henshaw, Zak; Pannell, Robert

    2006-03-01

    The medication safety infrastructure of critical-access hospitals (CAHs) in Florida was evaluated. Qualitative assessments, including a self-administered survey and site visits, were conducted in seven of nine CAHs between January and June 2003. The survey consisted of the Institute for Safe Medication Practices Medication Safety Self-assessment, the 2003 Joint Commission on Accreditation of Healthcare Organizations patient safety goals, health information technology (HIT) questions, and medication-use-process flow charts. On-site visits included interviews of CAH personnel who had safety responsibility and inspections of pharmacy facilities. The findings were compiled into a matrix reflecting structural and procedural components of the CAH medication safety infrastructure. The nine characteristics that emerged as targets for quality improvement (QI) were medication accessibility and storage, sterile product compounding, access to drug information, access to and utilization of patient information in medication order review, advanced safety technology, drug formularies and standardized medication protocols, safety culture, and medication reconciliation. Based on weighted importance and feasibility, QI efforts in CAHs should focus on enhancing medication order review systems, standardizing procedures for handling high-risk medications, promoting an appropriate safety culture, involvement in seamless care, and investment in HIT.

  4. Aluminum Data Measurements and Evaluation for Criticality Safety Applications

    NASA Astrophysics Data System (ADS)

    Leal, L. C.; Guber, K. H.; Spencer, R. R.; Derrien, H.; Wright, R. Q.

    2002-12-01

    The Defense Nuclear Facility Safety Board (DNFSB) Recommendation 93-2 motivated the US Department of Energy (DOE) to develop a comprehensive criticality safety program to maintain and to predict the criticality of systems throughout the DOE complex. To implement the response to the DNFSB Recommendation 93-2, a Nuclear Criticality Safety Program (NCSP) was created including the following tasks: Critical Experiments, Criticality Benchmarks, Training, Analytical Methods, and Nuclear Data. The Nuclear Data portion of the NCSP consists of a variety of differential measurements performed at the Oak Ridge Electron Linear Accelerator (ORELA) at the Oak Ridge National Laboratory (ORNL), data analysis and evaluation using the generalized least-squares fitting code SAMMY in the resolved, unresolved, and high energy ranges, and the development and benchmark testing of complete evaluations for a nuclide for inclusion into the Evaluated Nuclear Data File (ENDF/B). This paper outlines the work performed at ORNL to measure, evaluate, and test the nuclear data for aluminum for applications in criticality safety problems.

  5. Nuclear criticality safety staff training and qualifications at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monahan, S.P.; McLaughlin, T.P.

    1997-05-01

    Operations involving significant quantities of fissile material have been conducted at Los Alamos National Laboratory continuously since 1943. Until the advent of the Laboratory`s Nuclear Criticality Safety Committee (NCSC) in 1957, line management had sole responsibility for controlling criticality risks. From 1957 until 1961, the NCSC was the Laboratory body which promulgated policy guidance as well as some technical guidance for specific operations. In 1961 the Laboratory created the position of Nuclear Criticality Safety Office (in addition to the NCSC). In 1980, Laboratory management moved the Criticality Safety Officer (and one other LACEF staff member who, by that time, wasmore » also working nearly full-time on criticality safety issues) into the Health Division office. Later that same year the Criticality Safety Group, H-6 (at that time) was created within H-Division, and staffed by these two individuals. The training and education of these individuals in the art of criticality safety was almost entirely self-regulated, depending heavily on technical interactions between each other, as well as NCSC, LACEF, operations, other facility, and broader criticality safety community personnel. Although the Los Alamos criticality safety group has grown both in size and formality of operations since 1980, the basic philosophy that a criticality specialist must be developed through mentoring and self motivation remains the same. Formally, this philosophy has been captured in an internal policy, document ``Conduct of Business in the Nuclear Criticality Safety Group.`` There are no short cuts or substitutes in the development of a criticality safety specialist. A person must have a self-motivated personality, excellent communications skills, a thorough understanding of the principals of neutron physics, a safety-conscious and helpful attitude, a good perspective of real risk, as well as a detailed understanding of process operations and credible upsets.« less

  6. Additional nuclear criticality safety calculations for small-diameter containers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hone, M.J.

    This report documents additional criticality safety analysis calculations for small diameter containers, which were originally documented in Reference 1. The results in Reference 1 indicated that some of the small diameter containers did not meet the criteria established for criticality safety at the Portsmouth facility (K{sub eff} +2{sigma}<.95) when modeled under various contingency assumptions of reflection and moderation. The calculations performed in this report reexamine those cases which did not meet the criticality safety criteria. In some cases, unnecessary conservatism is removed, and in other cases mass or assay limits are established for use with the respective containers.

  7. Providing Nuclear Criticality Safety Analysis Education through Benchmark Experiment Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John D. Bess; J. Blair Briggs; David W. Nigg

    2009-11-01

    One of the challenges that today's new workforce of nuclear criticality safety engineers face is the opportunity to provide assessment of nuclear systems and establish safety guidelines without having received significant experience or hands-on training prior to graduation. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and/or the International Reactor Physics Experiment Evaluation Project (IRPhEP) provides students and young professionals the opportunity to gain experience and enhance critical engineering skills.

  8. 48 CFR 209.270 - Aviation and ship critical safety items.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 3 2012-10-01 2012-10-01 false Aviation and ship critical safety items. 209.270 Section 209.270 Federal Acquisition Regulations System DEFENSE ACQUISITION... Requirements 209.270 Aviation and ship critical safety items. ...

  9. 48 CFR 209.270 - Aviation and ship critical safety items.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Aviation and ship critical safety items. 209.270 Section 209.270 Federal Acquisition Regulations System DEFENSE ACQUISITION... Requirements 209.270 Aviation and ship critical safety items. ...

  10. 48 CFR 209.270 - Aviation and ship critical safety items.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 3 2013-10-01 2013-10-01 false Aviation and ship critical safety items. 209.270 Section 209.270 Federal Acquisition Regulations System DEFENSE ACQUISITION... Requirements 209.270 Aviation and ship critical safety items. ...

  11. 48 CFR 209.270 - Aviation and ship critical safety items.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Aviation and ship critical safety items. 209.270 Section 209.270 Federal Acquisition Regulations System DEFENSE ACQUISITION... Requirements 209.270 Aviation and ship critical safety items. ...

  12. 48 CFR 209.270 - Aviation and ship critical safety items.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Requirements 209.270 Aviation and ship critical safety items. ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Aviation and ship critical safety items. 209.270 Section 209.270 Federal Acquisition Regulations System DEFENSE ACQUISITION...

  13. Product Engineering Class in the Software Safety Risk Taxonomy for Building Safety-Critical Systems

    NASA Technical Reports Server (NTRS)

    Hill, Janice; Victor, Daniel

    2008-01-01

    When software safety requirements are imposed on legacy safety-critical systems, retrospective safety cases need to be formulated as part of recertifying the systems for further use and risks must be documented and managed to give confidence for reusing the systems. The SEJ Software Development Risk Taxonomy [4] focuses on general software development issues. It does not, however, cover all the safety risks. The Software Safety Risk Taxonomy [8] was developed which provides a construct for eliciting and categorizing software safety risks in a straightforward manner. In this paper, we present extended work on the taxonomy for safety that incorporates the additional issues inherent in the development and maintenance of safety-critical systems with software. An instrument called a Software Safety Risk Taxonomy Based Questionnaire (TBQ) is generated containing questions addressing each safety attribute in the Software Safety Risk Taxonomy. Software safety risks are surfaced using the new TBQ and then analyzed. In this paper we give the definitions for the specialized Product Engineering Class within the Software Safety Risk Taxonomy. At the end of the paper, we present the tool known as the 'Legacy Systems Risk Database Tool' that is used to collect and analyze the data required to show traceability to a particular safety standard

  14. Tank waste remediation system nuclear criticality safety program management review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BRADY RAAP, M.C.

    1999-06-24

    This document provides the results of an internal management review of the Tank Waste Remediation System (TWRS) criticality safety program, performed in advance of the DOE/RL assessment for closure of the TWRS Nuclear Criticality Safety Issue, March 1994. Resolution of the safety issue was identified as Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-40-12, due September 1999.

  15. Criticality Safety Evaluation of the LLNL Inherently Safe Subcritical Assembly (ISSA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Percher, Catherine

    2012-06-19

    The LLNL Nuclear Criticality Safety Division has developed a training center to illustrate criticality safety and reactor physics concepts through hands-on experimental training. The experimental assembly, the Inherently Safe Subcritical Assembly (ISSA), uses surplus highly enriched research reactor fuel configured in a water tank. The training activities will be conducted by LLNL following the requirements of an Integration Work Sheet (IWS) and associated Safety Plan. Students will be allowed to handle the fissile material under the supervision of LLNL instructors. This report provides the technical criticality safety basis for instructional operations with the ISSA experimental assembly.

  16. Overview of Risk Mitigation for Safety-Critical Computer-Based Systems

    NASA Technical Reports Server (NTRS)

    Torres-Pomales, Wilfredo

    2015-01-01

    This report presents a high-level overview of a general strategy to mitigate the risks from threats to safety-critical computer-based systems. In this context, a safety threat is a process or phenomenon that can cause operational safety hazards in the form of computational system failures. This report is intended to provide insight into the safety-risk mitigation problem and the characteristics of potential solutions. The limitations of the general risk mitigation strategy are discussed and some options to overcome these limitations are provided. This work is part of an ongoing effort to enable well-founded assurance of safety-related properties of complex safety-critical computer-based aircraft systems by developing an effective capability to model and reason about the safety implications of system requirements and design.

  17. 48 CFR 252.209-7010 - Critical Safety Items.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... personal injury or loss of life; or (iii) An uncommanded engine shutdown that jeopardizes safety. Design... personal injury or loss of life. (b) Identification of critical safety items. One or more of the items... control activity: (Insert additional lines as necessary) (c) Heightened quality assurance surveillance...

  18. 48 CFR 252.209-7010 - Critical Safety Items.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... personal injury or loss of life; or (iii) An uncommanded engine shutdown that jeopardizes safety. Design... personal injury or loss of life. (b) Identification of critical safety items. One or more of the items... control activity: (Insert additional lines as necessary) (c) Heightened quality assurance surveillance...

  19. 48 CFR 252.209-7010 - Critical Safety Items.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... personal injury or loss of life; or (iii) An uncommanded engine shutdown that jeopardizes safety. Design... personal injury or loss of life. (b) Identification of critical safety items. One or more of the items... control activity: (Insert additional lines as necessary) (c) Heightened quality assurance surveillance...

  20. 48 CFR 252.209-7010 - Critical Safety Items.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... personal injury or loss of life; or (iii) An uncommanded engine shutdown that jeopardizes safety. Design... personal injury or loss of life. (b) Identification of critical safety items. One or more of the items... control activity: (Insert additional lines as necessary) (c) Heightened quality assurance surveillance...

  1. 76 FR 52138 - Defense Federal Acquisition Regulation Supplement; Identification of Critical Safety Items (DFARS...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-19

    ...; or (iii) An uncommanded engine shutdown that jeopardizes safety. Design control activity. (i) With... aviation critical safety item is to be used; and (ii) With respect to a ship critical safety item, means...-AG92 Defense Federal Acquisition Regulation Supplement; Identification of Critical Safety Items (DFARS...

  2. Nuclear Data Activities in Support of the DOE Nuclear Criticality Safety Program

    NASA Astrophysics Data System (ADS)

    Westfall, R. M.; McKnight, R. D.

    2005-05-01

    The DOE Nuclear Criticality Safety Program (NCSP) provides the technical infrastructure maintenance for those technologies applied in the evaluation and performance of safe fissionable-material operations in the DOE complex. These technologies include an Analytical Methods element for neutron transport as well as the development of sensitivity/uncertainty methods, the performance of Critical Experiments, evaluation and qualification of experiments as Benchmarks, and a comprehensive Nuclear Data program coordinated by the NCSP Nuclear Data Advisory Group (NDAG). The NDAG gathers and evaluates differential and integral nuclear data, identifies deficiencies, and recommends priorities on meeting DOE criticality safety needs to the NCSP Criticality Safety Support Group (CSSG). Then the NDAG identifies the required resources and unique capabilities for meeting these needs, not only for performing measurements but also for data evaluation with nuclear model codes as well as for data processing for criticality safety applications. The NDAG coordinates effort with the leadership of the National Nuclear Data Center, the Cross Section Evaluation Working Group (CSEWG), and the Working Party on International Evaluation Cooperation (WPEC) of the OECD/NEA Nuclear Science Committee. The overall objective is to expedite the issuance of new data and methods to the DOE criticality safety user. This paper describes these activities in detail, with examples based upon special studies being performed in support of criticality safety for a variety of DOE operations.

  3. Investigation of criticality safety control infraction data at a nuclear facility

    DOE PAGES

    Cournoyer, Michael E.; Merhege, James F.; Costa, David A.; ...

    2014-10-27

    Chemical and metallurgical operations involving plutonium and other nuclear materials account for most activities performed at the LANL's Plutonium Facility (PF-4). The presence of large quantities of fissile materials in numerous forms at PF-4 makes it necessary to maintain an active criticality safety program. The LANL Nuclear Criticality Safety (NCS) Program provides guidance to enable efficient operations while ensuring prevention of criticality accidents in the handling, storing, processing and transportation of fissionable material at PF-4. In order to achieve and sustain lower criticality safety control infraction (CSCI) rates, PF-4 operations are continuously improved, through the use of Lean Manufacturing andmore » Six Sigma (LSS) business practices. Employing LSS, statistically significant variations (trends) can be identified in PF-4 CSCI reports. In this study, trends have been identified in the NCS Program using the NCS Database. An output metric has been developed that measures ADPSM Management progress toward meeting its NCS objectives and goals. Using a Pareto Chart, the primary CSCI attributes have been determined in order of those requiring the most management support. Data generated from analysis of CSCI data help identify and reduce number of corresponding attributes. In-field monitoring of CSCI's contribute to an organization's scientific and technological excellence by providing information that can be used to improve criticality safety operation safety. This increases technical knowledge and augments operational safety.« less

  4. Lecture Notes on Criticality Safety Validation Using MCNP & Whisper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Forrest B.; Rising, Michael Evan; Alwin, Jennifer Louise

    Training classes for nuclear criticality safety, MCNP documentation. The need for, and problems surrounding, validation of computer codes and data area considered first. Then some background for MCNP & Whisper is given--best practices for Monte Carlo criticality calculations, neutron spectra, S(α,β) thermal neutron scattering data, nuclear data sensitivities, covariance data, and correlation coefficients. Whisper is computational software designed to assist the nuclear criticality safety analyst with validation studies with the Monte Carlo radiation transport package MCNP. Whisper's methodology (benchmark selection – C k's, weights; extreme value theory – bias, bias uncertainty; MOS for nuclear data uncertainty – GLLS) and usagemore » are discussed.« less

  5. MISSION: Mission and Safety Critical Support Environment. Executive overview

    NASA Technical Reports Server (NTRS)

    Mckay, Charles; Atkinson, Colin

    1992-01-01

    For mission and safety critical systems it is necessary to: improve definition, evolution and sustenance techniques; lower development and maintenance costs; support safe, timely and affordable system modifications; and support fault tolerance and survivability. The goal of the MISSION project is to lay the foundation for a new generation of integrated systems software providing a unified infrastructure for mission and safety critical applications and systems. This will involve the definition of a common, modular target architecture and a supporting infrastructure.

  6. 49 CFR 229.309 - Safety-critical changes and failures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Safety-critical changes and failures. 229.309 Section 229.309 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Locomotive Electronics § 229...

  7. 49 CFR 229.309 - Safety-critical changes and failures.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Safety-critical changes and failures. 229.309 Section 229.309 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Locomotive Electronics § 229...

  8. 49 CFR 229.309 - Safety-critical changes and failures.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Safety-critical changes and failures. 229.309 Section 229.309 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Locomotive Electronics § 229...

  9. DOE standard 3009 - a reasoned, practical approach to integrating criticality safety into SARs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vessard, S.G.

    1995-12-31

    In the past there have been efforts by the U.S. Department of Energy (DOE) to provide guidance on those elements that should be included in a facility`s safety analysis report (SAR). In particular, there are two DOE Orders (5480.23, {open_quotes}Nuclear Safety Analysis Reports,{close_quotes} and 5480.24, {open_quotes}Nuclear Criticality Safety{close_quotes}), an interpretive guidance document (NE-70, Interpretive Guidance for DOE Order 5480.24, {open_quotes}Nuclear Criticality Safety{close_quotes}), and DOE Standard DOE-STD-3009-94 {open_quotes}Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports.{close_quotes} Of these, the most practical and useful (pertaining to the application of criticality safety) is DOE-STD-3009-94. This paper is a reviewmore » of Chapters 3, 4, and 6 of this standard and how they provide very clear, helpful, and reasoned criticality safety guidance.« less

  10. Cultural safety and the challenges of translating critically oriented knowledge in practice.

    PubMed

    Browne, Annette J; Varcoe, Colleen; Smye, Victoria; Reimer-Kirkham, Sheryl; Lynam, M Judith; Wong, Sabrina

    2009-07-01

    Cultural safety is a relatively new concept that has emerged in the New Zealand nursing context and is being taken up in various ways in Canadian health care discourses. Our research team has been exploring the relevance of cultural safety in the Canadian context, most recently in relation to a knowledge-translation study conducted with nurses practising in a large tertiary hospital. We were drawn to using cultural safety because we conceptualized it as being compatible with critical theoretical perspectives that foster a focus on power imbalances and inequitable social relationships in health care; the interrelated problems of culturalism and racialization; and a commitment to social justice as central to the social mandate of nursing. Engaging in this knowledge-translation study has provided new perspectives on the complexities, ambiguities and tensions that need to be considered when using the concept of cultural safety to draw attention to racialization, culturalism, and health and health care inequities. The philosophic analysis discussed in this paper represents an epistemological grounding for the concept of cultural safety that links directly to particular moral ends with social justice implications. Although cultural safety is a concept that we have firmly positioned within the paradigm of critical inquiry, ambiguities associated with the notions of 'culture', 'safety', and 'cultural safety' need to be anticipated and addressed if they are to be effectively used to draw attention to critical social justice issues in practice settings. Using cultural safety in practice settings to draw attention to and prompt critical reflection on politicized knowledge, therefore, brings an added layer of complexity. To address these complexities, we propose that what may be required to effectively use cultural safety in the knowledge-translation process is a 'social justice curriculum for practice' that would foster a philosophical stance of critical inquiry at both the

  11. Parametric Criticality Safety Calculations for Arrays of TRU Waste Containers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gough, Sean T.

    The Nuclear Criticality Safety Division (NCSD) has performed criticality safety calculations for finite and infinite arrays of transuranic (TRU) waste containers. The results of these analyses may be applied in any technical area onsite (e.g., TA-54, TA-55, etc.), as long as the assumptions herein are met. These calculations are designed to update the existing reference calculations for waste arrays documented in Reference 1, in order to meet current guidance on calculational methodology.

  12. Recognising safety critical events: can automatic video processing improve naturalistic data analyses?

    PubMed

    Dozza, Marco; González, Nieves Pañeda

    2013-11-01

    New trends in research on traffic accidents include Naturalistic Driving Studies (NDS). NDS are based on large scale data collection of driver, vehicle, and environment information in real world. NDS data sets have proven to be extremely valuable for the analysis of safety critical events such as crashes and near crashes. However, finding safety critical events in NDS data is often difficult and time consuming. Safety critical events are currently identified using kinematic triggers, for instance searching for deceleration below a certain threshold signifying harsh braking. Due to the low sensitivity and specificity of this filtering procedure, manual review of video data is currently necessary to decide whether the events identified by the triggers are actually safety critical. Such reviewing procedure is based on subjective decisions, is expensive and time consuming, and often tedious for the analysts. Furthermore, since NDS data is exponentially growing over time, this reviewing procedure may not be viable anymore in the very near future. This study tested the hypothesis that automatic processing of driver video information could increase the correct classification of safety critical events from kinematic triggers in naturalistic driving data. Review of about 400 video sequences recorded from the events, collected by 100 Volvo cars in the euroFOT project, suggested that drivers' individual reaction may be the key to recognize safety critical events. In fact, whether an event is safety critical or not often depends on the individual driver. A few algorithms, able to automatically classify driver reaction from video data, have been compared. The results presented in this paper show that the state of the art subjective review procedures to identify safety critical events from NDS can benefit from automated objective video processing. In addition, this paper discusses the major challenges in making such video analysis viable for future NDS and new potential

  13. University education and nuclear criticality safety professionals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, R.E.; Stachowiak, R.V.; Knief, R.A.

    1996-12-31

    The problem of developing a productive criticality safety specialist at a nuclear fuel facility has long been with us. The normal practice is to hire a recent undergraduate or graduate degree recipient and invest at least a decade in on-the-job training. In the early 1980s, the U.S. Department of Energy (DOE) developed a model intern program in an attempt to speed up the process. The program involved working at assigned projects for extended periods at a working critical mass laboratory, a methods development group, and a fuel cycle facility. This never gained support as it involved extended time away frommore » the job. At the Rocky Flats Environmental Technology Site, the training method is currently the traditional one involving extensive experience. The flaw is that the criticality safety staff turnover has been such that few individuals continue for the decade some consider necessary for maturity in the discipline. To maintain quality evaluations and controls as well as interpretation decisions, extensive group review is used. This has proved costly to the site and professionally unsatisfying to the current staff. The site contractor has proposed a training program to remedy the basic problem.« less

  14. Critical factors and paths influencing construction workers' safety risk tolerances.

    PubMed

    Wang, Jiayuan; Zou, Patrick X W; Li, Penny P

    2016-08-01

    While workers' safety risk tolerances have been regarded as a main reason for their unsafe behaviors, little is known about why different people have different risk tolerances even when confronting the same situation. The aim of this research is to identify the critical factors and paths that influence workers' safety risk tolerance and to explore how they contribute to accident causal model from a system thinking perceptive. A number of methods were carried out to analyze the data collected through interviews and questionnaire surveys. In the first and second steps of the research, factor identification, factor ranking and factor analysis were carried out, and the results show that workers' safety risk tolerance can be influenced by four groups of factors, namely: (1) personal subjective perception; (2) work knowledge and experiences; (3) work characteristics; and (4) safety management. In the third step of the research, hypothetical influencing path model was developed and tested by using structural equation modeling (SEM). It is found that the effects of external factors (safety management and work characteristics) on risk tolerance are larger than that of internal factors (personal subjective perception and work knowledge & experiences). Specifically, safety management contributes the most to workers' safety risk tolerance through its direct effect and indirect effect; while personal subjective perception comes the second and can act as an intermedia for work characteristics. This research provides an in-depth insight of workers' unsafe behaviors by depicting the contributing factors as shown in the accident causal model developed in this research. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Analyzing Software Requirements Errors in Safety-Critical, Embedded Systems

    NASA Technical Reports Server (NTRS)

    Lutz, Robyn R.

    1993-01-01

    This paper analyzes the root causes of safety-related software errors in safety-critical, embedded systems. The results show that software errors identified as potentially hazardous to the system tend to be produced by different error mechanisms than non- safety-related software errors. Safety-related software errors are shown to arise most commonly from (1) discrepancies between the documented requirements specifications and the requirements needed for correct functioning of the system and (2) misunderstandings of the software's interface with the rest of the system. The paper uses these results to identify methods by which requirements errors can be prevented. The goal is to reduce safety-related software errors and to enhance the safety of complex, embedded systems.

  16. Safety impacts of bicycle infrastructure: A critical review.

    PubMed

    DiGioia, Jonathan; Watkins, Kari Edison; Xu, Yanzhi; Rodgers, Michael; Guensler, Randall

    2017-06-01

    This paper takes a critical look at the present state of bicycle infrastructure treatment safety research, highlighting data needs. Safety literature relating to 22 bicycle treatments is examined, including findings, study methodologies, and data sources used in the studies. Some preliminary conclusions related to research efficacy are drawn from the available data and findings in the research. While the current body of bicycle safety literature points toward some defensible conclusions regarding the safety and effectiveness of certain bicycle treatments, such as bike lanes and removal of on-street parking, the vast majority treatments are still in need of rigorous research. Fundamental questions arise regarding appropriate exposure measures, crash measures, and crash data sources. This research will aid transportation departments with regard to decisions about bicycle infrastructure and guide future research efforts toward understanding safety impacts of bicycle infrastructure. Copyright © 2017 Elsevier Ltd and National Safety Council. All rights reserved.

  17. Natural Language Interface for Safety Certification of Safety-Critical Software

    NASA Technical Reports Server (NTRS)

    Denney, Ewen; Fischer, Bernd

    2011-01-01

    Model-based design and automated code generation are being used increasingly at NASA. The trend is to move beyond simulation and prototyping to actual flight code, particularly in the guidance, navigation, and control domain. However, there are substantial obstacles to more widespread adoption of code generators in such safety-critical domains. Since code generators are typically not qualified, there is no guarantee that their output is correct, and consequently the generated code still needs to be fully tested and certified. The AutoCert generator plug-in supports the certification of automatically generated code by formally verifying that the generated code is free of different safety violations, by constructing an independently verifiable certificate, and by explaining its analysis in a textual form suitable for code reviews.

  18. Agile Methods for Open Source Safety-Critical Software.

    PubMed

    Gary, Kevin; Enquobahrie, Andinet; Ibanez, Luis; Cheng, Patrick; Yaniv, Ziv; Cleary, Kevin; Kokoori, Shylaja; Muffih, Benjamin; Heidenreich, John

    2011-08-01

    The introduction of software technology in a life-dependent environment requires the development team to execute a process that ensures a high level of software reliability and correctness. Despite their popularity, agile methods are generally assumed to be inappropriate as a process family in these environments due to their lack of emphasis on documentation, traceability, and other formal techniques. Agile methods, notably Scrum, favor empirical process control, or small constant adjustments in a tight feedback loop. This paper challenges the assumption that agile methods are inappropriate for safety-critical software development. Agile methods are flexible enough to encourage the rightamount of ceremony; therefore if safety-critical systems require greater emphasis on activities like formal specification and requirements management, then an agile process will include these as necessary activities. Furthermore, agile methods focus more on continuous process management and code-level quality than classic software engineering process models. We present our experiences on the image-guided surgical toolkit (IGSTK) project as a backdrop. IGSTK is an open source software project employing agile practices since 2004. We started with the assumption that a lighter process is better, focused on evolving code, and only adding process elements as the need arose. IGSTK has been adopted by teaching hospitals and research labs, and used for clinical trials. Agile methods have matured since the academic community suggested they are not suitable for safety-critical systems almost a decade ago, we present our experiences as a case study for renewing the discussion.

  19. Planning the Unplanned Experiment: Assessing the Efficacy of Standards for Safety Critical Software

    NASA Technical Reports Server (NTRS)

    Graydon, Patrick J.; Holloway, C. Michael

    2015-01-01

    We need well-founded means of determining whether software is t for use in safety-critical applications. While software in industries such as aviation has an excellent safety record, the fact that software aws have contributed to deaths illustrates the need for justi ably high con dence in software. It is often argued that software is t for safety-critical use because it conforms to a standard for software in safety-critical systems. But little is known about whether such standards `work.' Reliance upon a standard without knowing whether it works is an experiment; without collecting data to assess the standard, this experiment is unplanned. This paper reports on a workshop intended to explore how standards could practicably be assessed. Planning the Unplanned Experiment: Assessing the Ecacy of Standards for Safety Critical Software (AESSCS) was held on 13 May 2014 in conjunction with the European Dependable Computing Conference (EDCC). We summarize and elaborate on the workshop's discussion of the topic, including both the presented positions and the dialogue that ensued.

  20. Cyber Security Threats to Safety-Critical, Space-Based Infrastructures

    NASA Astrophysics Data System (ADS)

    Johnson, C. W.; Atencia Yepez, A.

    2012-01-01

    Space-based systems play an important role within national critical infrastructures. They are being integrated into advanced air-traffic management applications, rail signalling systems, energy distribution software etc. Unfortunately, the end users of communications, location sensing and timing applications often fail to understand that these infrastructures are vulnerable to a wide range of security threats. The following pages focus on concerns associated with potential cyber-attacks. These are important because future attacks may invalidate many of the safety assumptions that support the provision of critical space-based services. These safety assumptions are based on standard forms of hazard analysis that ignore cyber-security considerations This is a significant limitation when, for instance, security attacks can simultaneously exploit multiple vulnerabilities in a manner that would never occur without a deliberate enemy seeking to damage space based systems and ground infrastructures. We address this concern through the development of a combined safety and security risk assessment methodology. The aim is to identify attack scenarios that justify the allocation of additional design resources so that safety barriers can be strengthened to increase our resilience against security threats.

  1. Agile Methods for Open Source Safety-Critical Software

    PubMed Central

    Enquobahrie, Andinet; Ibanez, Luis; Cheng, Patrick; Yaniv, Ziv; Cleary, Kevin; Kokoori, Shylaja; Muffih, Benjamin; Heidenreich, John

    2011-01-01

    The introduction of software technology in a life-dependent environment requires the development team to execute a process that ensures a high level of software reliability and correctness. Despite their popularity, agile methods are generally assumed to be inappropriate as a process family in these environments due to their lack of emphasis on documentation, traceability, and other formal techniques. Agile methods, notably Scrum, favor empirical process control, or small constant adjustments in a tight feedback loop. This paper challenges the assumption that agile methods are inappropriate for safety-critical software development. Agile methods are flexible enough to encourage the right amount of ceremony; therefore if safety-critical systems require greater emphasis on activities like formal specification and requirements management, then an agile process will include these as necessary activities. Furthermore, agile methods focus more on continuous process management and code-level quality than classic software engineering process models. We present our experiences on the image-guided surgical toolkit (IGSTK) project as a backdrop. IGSTK is an open source software project employing agile practices since 2004. We started with the assumption that a lighter process is better, focused on evolving code, and only adding process elements as the need arose. IGSTK has been adopted by teaching hospitals and research labs, and used for clinical trials. Agile methods have matured since the academic community suggested they are not suitable for safety-critical systems almost a decade ago, we present our experiences as a case study for renewing the discussion. PMID:21799545

  2. An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses--Criticality (keff) Predictions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scaglione, John M; Mueller, Don; Wagner, John C

    2011-01-01

    One of the most significant remaining challenges associated with expanded implementation of burnup credit in the United States is the validation of depletion and criticality calculations used in the safety evaluation - in particular, the availability and use of applicable measured data to support validation, especially for fission products. Applicants and regulatory reviewers have been constrained by both a scarcity of data and a lack of clear technical basis or approach for use of the data. U.S. Nuclear Regulatory Commission (NRC) staff have noted that the rationale for restricting their Interim Staff Guidance on burnup credit (ISG-8) to actinide-only ismore » based largely on the lack of clear, definitive experiments that can be used to estimate the bias and uncertainty for computational analyses associated with using burnup credit. To address the issue of validation, the NRC initiated a project with the Oak Ridge National Laboratory to (1) develop and establish a technically sound validation approach (both depletion and criticality) for commercial spent nuclear fuel (SNF) criticality safety evaluations based on best-available data and methods and (2) apply the approach for representative SNF storage and transport configurations/conditions to demonstrate its usage and applicability, as well as to provide reference bias results. The purpose of this paper is to describe the criticality (k{sub eff}) validation approach, and resulting observations and recommendations. Validation of the isotopic composition (depletion) calculations is addressed in a companion paper at this conference. For criticality validation, the approach is to utilize (1) available laboratory critical experiment (LCE) data from the International Handbook of Evaluated Criticality Safety Benchmark Experiments and the French Haut Taux de Combustion (HTC) program to support validation of the principal actinides and (2) calculated sensitivities, nuclear data uncertainties, and the limited available

  3. An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses: Criticality (k eff) Predictions

    DOE PAGES

    Scaglione, John M.; Mueller, Don E.; Wagner, John C.

    2014-12-01

    One of the most important remaining challenges associated with expanded implementation of burnup credit in the United States is the validation of depletion and criticality calculations used in the safety evaluation—in particular, the availability and use of applicable measured data to support validation, especially for fission products (FPs). Applicants and regulatory reviewers have been constrained by both a scarcity of data and a lack of clear technical basis or approach for use of the data. In this study, this paper describes a validation approach for commercial spent nuclear fuel (SNF) criticality safety (k eff) evaluations based on best-available data andmore » methods and applies the approach for representative SNF storage and transport configurations/conditions to demonstrate its usage and applicability, as well as to provide reference bias results. The criticality validation approach utilizes not only available laboratory critical experiment (LCE) data from the International Handbook of Evaluated Criticality Safety Benchmark Experiments and the French Haut Taux de Combustion program to support validation of the principal actinides but also calculated sensitivities, nuclear data uncertainties, and limited available FP LCE data to predict and verify individual biases for relevant minor actinides and FPs. The results demonstrate that (a) sufficient critical experiment data exist to adequately validate k eff calculations via conventional validation approaches for the primary actinides, (b) sensitivity-based critical experiment selection is more appropriate for generating accurate application model bias and uncertainty, and (c) calculated sensitivities and nuclear data uncertainties can be used for generating conservative estimates of bias for minor actinides and FPs. Results based on the SCALE 6.1 and the ENDF/B-VII.0 cross-section libraries indicate that a conservative estimate of the bias for the minor actinides and FPs is 1.5% of their worth within the

  4. Management of the aging of critical safety-related concrete structures in light-water reactor plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naus, D.J.; Oland, C.B.; Arndt, E.G.

    1990-01-01

    The Structural Aging Program has the overall objective of providing the USNRC with an improved basis for evaluating nuclear power plant safety-related structures for continued service. The program consists of a management task and three technical tasks: materials property data base, structural component assessment/repair technology, and quantitative methodology for continued-service determinations. Objectives, accomplishments, and planned activities under each of these tasks are presented. Major program accomplishments include development of a materials property data base for structural materials as well as an aging assessment methodology for concrete structures in nuclear power plants. Furthermore, a review and assessment of inservice inspection techniquesmore » for concrete materials and structures has been complete, and work on development of a methodology which can be used for performing current as well as reliability-based future condition assessment of concrete structures is well under way. 43 refs., 3 tabs.« less

  5. Bus operator safety : critical issues examination and model practices.

    DOT National Transportation Integrated Search

    2014-01-01

    In this study, researchers at the National Center for Transit Research performed a multi-topic comprehensive : examination of bus operator-related critical safety and personal security issues. The goals of this research : effort were to: : 1. Identif...

  6. Nuclear criticality safety evaluation of SRS 9971 shipping package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vescovi, P.J.

    1993-02-01

    This evaluation is requested to revise the criticality evaluation used to generate Chapter 6 (Criticality Evaluation) of the Safety Analysis Report for Packaging (SARP) for shipment Of UO{sub 3} product from the Uranium Solidification Facility (USF) in the SRS 9971 shipping package. The pertinent document requesting this evaluation is included as Attachment I. The results of the evaluation are given in Attachment II which is written as Chapter 6 of a NRC format SARP.

  7. 76 FR 14641 - Defense Federal Acquisition Regulation Supplement; Identification of Critical Safety Items (DFARS...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-17

    ... Federal Acquisition Regulation Supplement; Identification of Critical Safety Items (DFARS Case 2010-D022... contract clause that clearly identifies any items being purchased that are critical safety items so that.... SUPPLEMENTARY INFORMATION: I. Background This DFARS case was initiated at the request of the Defense Contract...

  8. Water Resistant Container Technical Basis Document for the TA-55 Criticality Safety Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Paul Herrick; Teague, Jonathan Gayle

    Criticality safety at TA-55 relies on nuclear material containers that are water resistant to prevent significant amounts of water from coming into contact with fissile material in the event of a fire that causes a breach of glovevbox confinement and subsequent fire water ingress. A “water tight container” is a container that will not allow more than 50ml of water ingress when fully submerged, except when under sufficient pressure to produce structural discontinuity. There are many types of containers, welded containers, hermetically sealed containers, filtered containers, etc.

  9. Security for safety critical space borne systems

    NASA Technical Reports Server (NTRS)

    Legrand, Sue

    1987-01-01

    The Space Station contains safety critical computer software components in systems that can affect life and vital property. These components require a multilevel secure system that provides dynamic access control of the data and processes involved. A study is under way to define requirements for a security model providing access control through level B3 of the Orange Book. The model will be prototyped at NASA-Johnson Space Center.

  10. Collegiate Aviation Research and Education Solutions to Critical Safety Issues. UNO Aviation Monograph Series. UNOAI Report.

    ERIC Educational Resources Information Center

    Bowen, Brent, Ed.

    This document contains four papers concerning collegiate aviation research and education solutions to critical safety issues. "Panel Proposal Titled Collegiate Aviation Research and Education Solutions to Critical Safety Issues for the Tim Forte Collegiate Aviation Safety Symposium" (Brent Bowen) presents proposals for panels on the…

  11. Critical Incident Stress Management (CISM) in complex systems: cultural adaptation and safety impacts in healthcare.

    PubMed

    Müller-Leonhardt, Alice; Mitchell, Shannon G; Vogt, Joachim; Schürmann, Tim

    2014-07-01

    In complex systems, such as hospitals or air traffic control operations, critical incidents (CIs) are unavoidable. These incidents can not only become critical for victims but also for professionals working at the "sharp end" who may have to deal with critical incident stress (CIS) reactions that may be severe and impede emotional, physical, cognitive and social functioning. These CIS reactions may occur not only under exceptional conditions but also during every-day work and become an important safety issue. In contrast to air traffic management (ATM) operations in Europe, which have readily adopted critical incident stress management (CISM), most hospitals have not yet implemented comprehensive peer support programs. This survey was conducted in 2010 at the only European general hospital setting which implemented CISM program since 2004. The aim of the article is to describe possible contribution of CISM in hospital settings framed from the perspective of organizational safety and individual health for healthcare professionals. Findings affirm that daily work related incidents also can become critical for healthcare professionals. Program efficiency appears to be influenced by the professional culture, as well as organizational structure and policies. Overall, findings demonstrate that the adaptation of the CISM program in general hospitals takes time but, once established, it may serve as a mechanism for changing professional culture, thereby permitting the framing of even small incidents or near misses as an opportunity to provide valuable feedback to the system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Evolution of safety-critical requirements post-launch

    NASA Technical Reports Server (NTRS)

    Lutz, R. R.; Mikulski, I. C.

    2001-01-01

    This paper reports the results of a small study of requirements changes to the onboard software of three spacecraft subsequent to launch. Only those requirement changes that resulted from post-launch anoma-lies (i.e., during operations) were of interest here, since the goal was to better understand the relation-ship between critical anomalies during operations and how safety-critical requirements evolve. The results of the study were surprising in that anomaly-driven, post-launch requirements changes were rarely due to previous requirements having been incorrect. Instead, changes involved new requirements (1) for the software to handle rare events or (2) for the software to compensate for hardware failures or limitations. The prevalence of new requirements as a result of post-launch anomalies suggests a need for increased requirements-engineering support of maintenance activities in these systems. The results also confirm both the difficulty and the benefits of pursuing requirements completeness, especially in terms of fault tolerance, during development of critical systems.

  13. Ending on a positive: Examining the role of safety leadership decisions, behaviours and actions in a safety critical situation.

    PubMed

    Donovan, Sarah-Louise; Salmon, Paul M; Horberry, Timothy; Lenné, Michael G

    2018-01-01

    Safety leadership is an important factor in supporting safe performance in the workplace. The present case study examined the role of safety leadership during the Bingham Canyon Mine high-wall failure, a significant mining incident in which no fatalities or injuries were incurred. The Critical Decision Method (CDM) was used in conjunction with a self-reporting approach to examine safety leadership in terms of decisions, behaviours and actions that contributed to the incidents' safe outcome. Mapping the analysis onto Rasmussen's Risk Management Framework (Rasmussen, 1997), the findings demonstrate clear links between safety leadership decisions, and emergent behaviours and actions across the work system. Communication and engagement based decisions featured most prominently, and were linked to different leadership practices across the work system. Further, a core sub-set of CDM decision elements were linked to the open flow and exchange of information across the work system, which was critical to supporting the safe outcome. The findings provide practical implications for the development of safety leadership capability to support safety within the mining industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Safety assessment of Cracked K-joint Structure Based on Fracture Mechanics

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Pengyu, Yan; Jianwei, Du; Fuhai, Cai

    2017-05-01

    The K-joint is the main bearing structure of lattice jib crane. During frequent operation of the crane, surface cracks often occur at its weld toe, and then continue to expand until failure. The safety of the weak structure K-joint of the crane jib can be evaluated by BS7910 failure assessment standard in order to improve its utilization. The finite element model of K-joint structure with cracks is established, and its mechanical properties is analyzed by ABAQUS software, the results show that the crack depth has a great influence on the bearing capacity of the structure compared with the crack length. It is assumed that the K-joint with the semi-elliptical surface crack under the action of the tension propagate stably under the condition that the c/a (ratio of short axis to long axis of ellipse) is about 0.3. The safety assessment of K-joint with different lengths crack is presented according to the 2A failure assessment diagram of BS7910, and the critical crack of K-joint under different loads can be obtained.

  15. GROWTH OF THE INTERNATIONAL CRITICALITY SAFETY AND REACTOR PHYSICS EXPERIMENT EVALUATION PROJECTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Blair Briggs; John D. Bess; Jim Gulliford

    2011-09-01

    Since the International Conference on Nuclear Criticality Safety (ICNC) 2007, the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) have continued to expand their efforts and broaden their scope. Eighteen countries participated on the ICSBEP in 2007. Now, there are 20, with recent contributions from Sweden and Argentina. The IRPhEP has also expanded from eight contributing countries in 2007 to 16 in 2011. Since ICNC 2007, the contents of the 'International Handbook of Evaluated Criticality Safety Benchmark Experiments1' have increased from 442 evaluations (38000 pages), containing benchmark specifications for 3955 critical ormore » subcritical configurations to 516 evaluations (nearly 55000 pages), containing benchmark specifications for 4405 critical or subcritical configurations in the 2010 Edition of the ICSBEP Handbook. The contents of the Handbook have also increased from 21 to 24 criticality-alarm-placement/shielding configurations with multiple dose points for each, and from 20 to 200 configurations categorized as fundamental physics measurements relevant to criticality safety applications. Approximately 25 new evaluations and 150 additional configurations are expected to be added to the 2011 edition of the Handbook. Since ICNC 2007, the contents of the 'International Handbook of Evaluated Reactor Physics Benchmark Experiments2' have increased from 16 different experimental series that were performed at 12 different reactor facilities to 53 experimental series that were performed at 30 different reactor facilities in the 2011 edition of the Handbook. Considerable effort has also been made to improve the functionality of the searchable database, DICE (Database for the International Criticality Benchmark Evaluation Project) and verify the accuracy of the data contained therein. DICE will be discussed in separate papers at ICNC 2011. The status of the ICSBEP and

  16. System Guidelines for EMC Safety-Critical Circuits: Design, Selection, and Margin Demonstration

    NASA Technical Reports Server (NTRS)

    Lawton, R. M.

    1996-01-01

    Demonstration of safety margins for critical points (circuits) has traditionally been required since it first became a part of systems-level Electromagnetic Compatibility (EMC) requirements of MIL-E-6051C. The goal of this document is to present cost-effective guidelines for ensuring adequate Electromagnetic Effects (EME) safety margins on spacecraft critical circuits. It is for the use of NASA and other government agencies and their contractors to prevent loss of life, loss of spacecraft, or unacceptable degradation. This document provides practical definition and treatment guidance to contain costs within affordable limits.

  17. Activities of the DOE Nuclear Criticality Safety Program (NCSP) at the Oak Ridge Electron Linear Accelerator (ORELA)

    NASA Astrophysics Data System (ADS)

    Valentine, Timothy E.; Leal, Luiz C.; Guber, Klaus H.

    2002-12-01

    The Department of Energy established the Nuclear Criticality Safety Program (NCSP) in response to the Recommendation 97-2 by the Defense Nuclear Facilities Safety Board. The NCSP consists of seven elements of which nuclear data measurements and evaluations is a key component. The intent of the nuclear data activities is to provide high resolution nuclear data measurements that are evaluated, validated, and formatted for use by the nuclear criticality safety community to provide improved and reliable calculations for nuclear criticality safety evaluations. High resolution capture, fission, and transmission measurements are performed at the Oak Ridge Electron Linear Accelerator (ORELA) to address the needs of the criticality safety community and to address known deficiencies in nuclear data evaluations. The activities at ORELA include measurements on both light and heavy nuclei and have been used to identify improvements in measurement techniques that greatly improve the measurement of small capture cross sections. The measurement activities at ORELA provide precise and reliable high-resolution nuclear data for the nuclear criticality safety community.

  18. 10 CFR 72.124 - Criteria for nuclear criticality safety.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Criteria for nuclear criticality safety. 72.124 Section 72.124 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C...

  19. 10 CFR 72.124 - Criteria for nuclear criticality safety.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Criteria for nuclear criticality safety. 72.124 Section 72.124 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C...

  20. 10 CFR 72.124 - Criteria for nuclear criticality safety.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Criteria for nuclear criticality safety. 72.124 Section 72.124 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C...

  1. 10 CFR 72.124 - Criteria for nuclear criticality safety.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Criteria for nuclear criticality safety. 72.124 Section 72.124 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C...

  2. 10 CFR 72.124 - Criteria for nuclear criticality safety.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Criteria for nuclear criticality safety. 72.124 Section 72.124 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C...

  3. Linking empowering leadership to safety participation in nuclear power plants: a structural equation model.

    PubMed

    Martínez-Córcoles, Mario; Schöbel, Markus; Gracia, Francisco J; Tomás, Inés; Peiró, José M

    2012-07-01

    Safety participation is of paramount importance in guaranteeing the safe running of nuclear power plants. The present study examined the effects of empowering leadership on safety participation. Based on a sample of 495 employees from two Spanish nuclear power plants, structural equation modeling showed that empowering leadership has a significant relationship with safety participation, which is mediated by collaborative team learning. In addition, the results revealed that the relationship between empowering leadership and collaborative learning is partially mediated by the promotion of dialogue and open communication. The implications of these findings for safety research and their practical applications are outlined. An empowering leadership style enhances workers' safety performance, particularly safety participation behaviors. Safety participation is recommended to detect possible rule inconsistencies or misunderstood procedures and make workers aware of critical safety information and issues. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  4. Criticality Safety Evaluation of Standard Criticality Safety Requirements #1-520 g Operations in PF-4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamanaka, Alan Joseph Jr.

    Guidance has been requested from the Nuclear Criticality Safety Division (NCSD) regarding processes that involve 520 grams of fissionable material or less. This Level-3 evaluation was conducted and documented in accordance with NCS-AP-004 (Ref. 1), formerly NCS-GUIDE-01. This evaluation is being written as a generic evaluation for all operations that will be able to operate using a 520-gram mass limit. Implementation for specific operations will be performed using a Level 1 CSED, which will confirm and document that this CSED can be used for the specific operation as discussed in NCS-MEMO-17-007 (Ref. 2). This Level 3 CSED updates and supersedesmore » the analysis performed in NCS-TECH-14-014 (Ref. 3).« less

  5. PRELIMINARY NUCLEAR CRITICALITY NUCLEAR SAFETY EVLAUATION FOR THE CONTAINER SURVEILLANCE AND STORAGE CAPABILITY PROJECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Low, M; Matthew02 Miller, M; Thomas Reilly, T

    2007-04-30

    Washington Safety Management Solutions (WSMS) provides criticality safety services to Washington Savannah River Company (WSRC) at the Savannah River Site. One activity at SRS is the Container Surveillance and Storage Capability (CSSC) Project, which will perform surveillances on 3013 containers (hereafter referred to as 3013s) to verify that they meet the Department of Energy (DOE) Standard (STD) 3013 for plutonium storage. The project will handle quantities of material that are greater than ANS/ANSI-8.1 single parameter mass limits, and thus required a Nuclear Criticality Safety Evaluation (NCSE). The WSMS methodology for conducting an NCSE is outlined in the WSMS methods manual.more » The WSMS methods manual currently follows the requirements of DOE-O-420.1B, DOE-STD-3007-2007, and the Washington Savannah River Company (WSRC) SCD-3 manual. DOE-STD-3007-2007 describes how a NCSE should be performed, while DOE-O-420.1B outlines the requirements for a Criticality Safety Program (CSP). The WSRC SCD-3 manual implements DOE requirements and ANS standards. NCSEs do not address the Nuclear Criticality Safety (NCS) of non-reactor nuclear facilities that may be affected by overt or covert activities of sabotage, espionage, terrorism or other security malevolence. Events which are beyond the Design Basis Accidents (DBAs) are outside the scope of a double contingency analysis.« less

  6. Criticality Safety Evaluations on the Use of 200-gram Pu Mass Limit for RHWM Waste Storage Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, P

    This work establishes the criticality safety technical basis to increase the fissile mass limit from 120 grams to 200 grams for Type A 55-gallon drums and their equivalents. Current RHWM fissile mass limit is 120 grams Pu for Type A 55-gallon containers and their equivalent. In order to increase the Type A 55-gallon drum limit to 200 grams, a few additional criticality safety control requirements are needed on moderators, reflectors, and array controls to ensure that the 200-gram Pu drums remain criticality safe with inadvertent criticality remains incredible. The purpose of this work is to analyze the use of 200-grammore » Pu drum mass limit for waste storage operations in Radioactive and Hazardous Waste Management (RHWM) Facilities. In this evaluation, the criticality safety controls associated with the 200-gram Pu drums are established for the RHWM waste storage operations. With the implementation of these criticality safety controls, the 200-gram Pu waste drum storage operations are demonstrated to be criticality safe and meet the double-contingency-principle requirement per DOE O 420.1.« less

  7. Advanced structures technology and aircraft safety

    NASA Technical Reports Server (NTRS)

    Mccomb, H. G., Jr.

    1983-01-01

    NASA research and development on advanced aeronautical structures technology related to flight safety is reviewed. The effort is categorized as research in the technology base and projects sponsored by the Aircraft Energy Efficiency (ACEE) Project Office. Base technology research includes mechanics of composite structures, crash dynamics, and landing dynamics. The ACEE projects involve development and fabrication of selected composite structural components for existing commercial transport aircraft. Technology emanating from this research is intended to result in airframe structures with improved efficiency and safety.

  8. Some Challenges in the Design of Human-Automation Interaction for Safety-Critical Systems

    NASA Technical Reports Server (NTRS)

    Feary, Michael S.; Roth, Emilie

    2014-01-01

    Increasing amounts of automation are being introduced to safety-critical domains. While the introduction of automation has led to an overall increase in reliability and improved safety, it has also introduced a class of failure modes, and new challenges in risk assessment for the new systems, particularly in the assessment of rare events resulting from complex inter-related factors. Designing successful human-automation systems is challenging, and the challenges go beyond good interface development (e.g., Roth, Malin, & Schreckenghost 1997; Christoffersen & Woods, 2002). Human-automation design is particularly challenging when the underlying automation technology generates behavior that is difficult for the user to anticipate or understand. These challenges have been recognized in several safety-critical domains, and have resulted in increased efforts to develop training, procedures, regulations and guidance material (CAST, 2008, IAEA, 2001, FAA, 2013, ICAO, 2012). This paper points to the continuing need for new methods to describe and characterize the operational environment within which new automation concepts are being presented. We will describe challenges to the successful development and evaluation of human-automation systems in safety-critical domains, and describe some approaches that could be used to address these challenges. We will draw from experience with the aviation, spaceflight and nuclear power domains.

  9. Planning the Unplanned Experiment: Towards Assessing the Efficacy of Standards for Safety-Critical Software

    NASA Technical Reports Server (NTRS)

    Graydon, Patrick J.; Holloway, C. M.

    2015-01-01

    Safe use of software in safety-critical applications requires well-founded means of determining whether software is fit for such use. While software in industries such as aviation has a good safety record, little is known about whether standards for software in safety-critical applications 'work' (or even what that means). It is often (implicitly) argued that software is fit for safety-critical use because it conforms to an appropriate standard. Without knowing whether a standard works, such reliance is an experiment; without carefully collecting assessment data, that experiment is unplanned. To help plan the experiment, we organized a workshop to develop practical ideas for assessing software safety standards. In this paper, we relate and elaborate on the workshop discussion, which revealed subtle but important study design considerations and practical barriers to collecting appropriate historical data and recruiting appropriate experimental subjects. We discuss assessing standards as written and as applied, several candidate definitions for what it means for a standard to 'work,' and key assessment strategies and study techniques and the pros and cons of each. Finally, we conclude with thoughts about the kinds of research that will be required and how academia, industry, and regulators might collaborate to overcome the noted barriers.

  10. Who is in control of road safety? A STAMP control structure analysis of the road transport system in Queensland, Australia.

    PubMed

    Salmon, Paul M; Read, Gemma J M; Stevens, Nicholas J

    2016-11-01

    Despite significant progress, road trauma continues to represent a global safety issue. In Queensland (Qld), Australia, there is currently a focus on preventing the 'fatal five' behaviours underpinning road trauma (drug and drink driving, distraction, seat belt wearing, speeding, and fatigue), along with an emphasis on a shared responsibility for road safety that spans road users, vehicle manufacturers, designers, policy makers etc. The aim of this article is to clarify who shares the responsibility for road safety in Qld and to determine what control measures are enacted to prevent the fatal five behaviours. This is achieved through the presentation of a control structure model that depicts the actors and organisations within the Qld road transport system along with the control and feedback relationships that exist between them. Validated through a Delphi study, the model shows a diverse set of actors and organisations who share the responsibility for road safety that goes beyond those discussed in road safety policies and strategies. The analysis also shows that, compared to other safety critical domains, there are less formal control structures in road transport and that opportunities exist to add new controls and strengthen existing ones. Relationships that influence rather than control are also prominent. Finally, when compared to other safety critical domains, the strength of road safety controls is brought into question. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. A Practical Risk Assessment Methodology for Safety-Critical Train Control Systems

    DOT National Transportation Integrated Search

    2009-07-01

    This project proposes a Practical Risk Assessment Methodology (PRAM) for analyzing railroad accident data and assessing the risk and benefit of safety-critical train control systems. This report documents in simple steps the algorithms and data input...

  12. An aspect-oriented approach for designing safety-critical systems

    NASA Astrophysics Data System (ADS)

    Petrov, Z.; Zaykov, P. G.; Cardoso, J. P.; Coutinho, J. G. F.; Diniz, P. C.; Luk, W.

    The development of avionics systems is typically a tedious and cumbersome process. In addition to the required functions, developers must consider various and often conflicting non-functional requirements such as safety, performance, and energy efficiency. Certainly, an integrated approach with a seamless design flow that is capable of requirements modelling and supporting refinement down to an actual implementation in a traceable way, may lead to a significant acceleration of development cycles. This paper presents an aspect-oriented approach supported by a tool chain that deals with functional and non-functional requirements in an integrated manner. It also discusses how the approach can be applied to development of safety-critical systems and provides experimental results.

  13. 75 FR 8239 - School Food Safety Program Based on Hazard Analysis and Critical Control Point Principles (HACCP...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-24

    ... 0584-AD65 School Food Safety Program Based on Hazard Analysis and Critical Control Point Principles... Safety Program Based on Hazard Analysis and Critical Control Point Principles (HACCP) was published on... of Management and Budget (OMB) cleared the associated information collection requirements (ICR) on...

  14. 47 CFR 27.56 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Antenna structures; air navigation safety. 27... SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.56 Antenna structures; air navigation safety. A licensee that owns its antenna structure(s) must not allow such antenna structure(s) to...

  15. 47 CFR 27.56 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Antenna structures; air navigation safety. 27... SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.56 Antenna structures; air navigation safety. A licensee that owns its antenna structure(s) must not allow such antenna structure(s) to...

  16. 47 CFR 27.56 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Antenna structures; air navigation safety. 27... SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.56 Antenna structures; air navigation safety. A licensee that owns its antenna structure(s) must not allow such antenna structure(s) to...

  17. 47 CFR 27.56 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Antenna structures; air navigation safety. 27... SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.56 Antenna structures; air navigation safety. A licensee that owns its antenna structure(s) must not allow such antenna structure(s) to...

  18. Shielding calculation and criticality safety analysis of spent fuel transportation cask in research reactors.

    PubMed

    Mohammadi, A; Hassanzadeh, M; Gharib, M

    2016-02-01

    In this study, shielding calculation and criticality safety analysis were carried out for general material testing reactor (MTR) research reactors interim storage and relevant transportation cask. During these processes, three major terms were considered: source term, shielding, and criticality calculations. The Monte Carlo transport code MCNP5 was used for shielding calculation and criticality safety analysis and ORIGEN2.1 code for source term calculation. According to the results obtained, a cylindrical cask with body, top, and bottom thicknesses of 18, 13, and 13 cm, respectively, was accepted as the dual-purpose cask. Furthermore, it is shown that the total dose rates are below the normal transport criteria that meet the standards specified. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. 47 CFR 22.365 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Antenna structures; air navigation safety. 22... Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a hazard to air navigation. In general, antenna structure owners are...

  20. 47 CFR 22.365 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Antenna structures; air navigation safety. 22... Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a hazard to air navigation. In general, antenna structure owners are...

  1. 47 CFR 22.365 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Antenna structures; air navigation safety. 22... Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a hazard to air navigation. In general, antenna structure owners are...

  2. 47 CFR 22.365 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Antenna structures; air navigation safety. 22... Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a hazard to air navigation. In general, antenna structure owners are...

  3. 47 CFR 22.365 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Antenna structures; air navigation safety. 22... Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a hazard to air navigation. In general, antenna structure owners are...

  4. Development of a structural health monitoring system for the life assessment of critical transportation infrastructure.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roach, Dennis Patrick; Jauregui, David Villegas; Daumueller, Andrew Nicholas

    2012-02-01

    Recent structural failures such as the I-35W Mississippi River Bridge in Minnesota have underscored the urgent need for improved methods and procedures for evaluating our aging transportation infrastructure. This research seeks to develop a basis for a Structural Health Monitoring (SHM) system to provide quantitative information related to the structural integrity of metallic structures to make appropriate management decisions and ensuring public safety. This research employs advanced structural analysis and nondestructive testing (NDT) methods for an accurate fatigue analysis. Metal railroad bridges in New Mexico will be the focus since many of these structures are over 100 years old andmore » classified as fracture-critical. The term fracture-critical indicates that failure of a single component may result in complete collapse of the structure such as the one experienced by the I-35W Bridge. Failure may originate from sources such as loss of section due to corrosion or cracking caused by fatigue loading. Because standard inspection practice is primarily visual, these types of defects can go undetected due to oversight, lack of access to critical areas, or, in riveted members, hidden defects that are beneath fasteners or connection angles. Another issue is that it is difficult to determine the fatigue damage that a structure has experienced and the rate at which damage is accumulating due to uncertain history and load distribution in supporting members. A SHM system has several advantages that can overcome these limitations. SHM allows critical areas of the structure to be monitored more quantitatively under actual loading. The research needed to apply SHM to metallic structures was performed and a case study was carried out to show the potential of SHM-driven fatigue evaluation to assess the condition of critical transportation infrastructure and to guide inspectors to potential problem areas. This project combines the expertise in transportation infrastructure

  5. Approach for validating actinide and fission product compositions for burnup credit criticality safety analyses

    DOE PAGES

    Radulescu, Georgeta; Gauld, Ian C.; Ilas, Germina; ...

    2014-11-01

    This paper describes a depletion code validation approach for criticality safety analysis using burnup credit for actinide and fission product nuclides in spent nuclear fuel (SNF) compositions. The technical basis for determining the uncertainties in the calculated nuclide concentrations is comparison of calculations to available measurements obtained from destructive radiochemical assay of SNF samples. Probability distributions developed for the uncertainties in the calculated nuclide concentrations were applied to the SNF compositions of a criticality safety analysis model by the use of a Monte Carlo uncertainty sampling method to determine bias and bias uncertainty in effective neutron multiplication factor. Application ofmore » the Monte Carlo uncertainty sampling approach is demonstrated for representative criticality safety analysis models of pressurized water reactor spent fuel pool storage racks and transportation packages using burnup-dependent nuclide concentrations calculated with SCALE 6.1 and the ENDF/B-VII nuclear data. Furthermore, the validation approach and results support a recent revision of the U.S. Nuclear Regulatory Commission Interim Staff Guidance 8.« less

  6. Educating Next Generation Nuclear Criticality Safety Engineers at the Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. D. Bess; J. B. Briggs; A. S. Garcia

    2011-09-01

    One of the challenges in educating our next generation of nuclear safety engineers is the limitation of opportunities to receive significant experience or hands-on training prior to graduation. Such training is generally restricted to on-the-job-training before this new engineering workforce can adequately provide assessment of nuclear systems and establish safety guidelines. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) can provide students and young professionals the opportunity to gain experience and enhance critical engineering skills. The ICSBEP and IRPhEP publish annual handbooks that contain evaluations of experiments along withmore » summarized experimental data and peer-reviewed benchmark specifications to support the validation of neutronics codes, nuclear cross-section data, and the validation of reactor designs. Participation in the benchmark process not only benefits those who use these Handbooks within the international community, but provides the individual with opportunities for professional development, networking with an international community of experts, and valuable experience to be used in future employment. Traditionally students have participated in benchmarking activities via internships at national laboratories, universities, or companies involved with the ICSBEP and IRPhEP programs. Additional programs have been developed to facilitate the nuclear education of students while participating in the benchmark projects. These programs include coordination with the Center for Space Nuclear Research (CSNR) Next Degree Program, the Collaboration with the Department of Energy Idaho Operations Office to train nuclear and criticality safety engineers, and student evaluations as the basis for their Master's thesis in nuclear engineering.« less

  7. Confirming criticality safety of TRU waste with neutron measurements and risk analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winn, W.G.; Hochel, R.D.

    1992-04-01

    The criticality safety of {sup 239}Pu in 55-gallon drums stored in TRU waste containers (culverts) is confirmed using NDA neutron measurements and risk analyses. The neutron measurements yield a {sup 239}Pu mass and k{sub eff} for a culvert, which contains up to 14 drums. Conservative probabilistic risk analyses were developed for both drums and culverts. Overall {sup 239}Pu mass estimates are less than a calculated safety limit of 2800 g per culvert. The largest measured k{sub eff} is 0.904. The largest probability for a critical drum is 6.9 {times} 10{sup {minus}8} and that for a culvert is 1.72 {times} 10{supmore » {minus}7}. All examined suspect culverts, totaling 118 in number, are appraised as safe based on these observations.« less

  8. 47 CFR 24.55 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Antenna structures; air navigation safety. 24... SERVICES PERSONAL COMMUNICATIONS SERVICES Technical Standards § 24.55 Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a...

  9. 47 CFR 24.55 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Antenna structures; air navigation safety. 24... SERVICES PERSONAL COMMUNICATIONS SERVICES Technical Standards § 24.55 Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a...

  10. 47 CFR 24.55 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Antenna structures; air navigation safety. 24... SERVICES PERSONAL COMMUNICATIONS SERVICES Technical Standards § 24.55 Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a...

  11. 47 CFR 24.55 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Antenna structures; air navigation safety. 24... SERVICES PERSONAL COMMUNICATIONS SERVICES Technical Standards § 24.55 Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a...

  12. 47 CFR 24.55 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Antenna structures; air navigation safety. 24... SERVICES PERSONAL COMMUNICATIONS SERVICES Technical Standards § 24.55 Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a...

  13. Querying Safety Cases

    NASA Technical Reports Server (NTRS)

    Denney, Ewen W.; Naylor, Dwight; Pai, Ganesh

    2014-01-01

    Querying a safety case to show how the various stakeholders' concerns about system safety are addressed has been put forth as one of the benefits of argument-based assurance (in a recent study by the Health Foundation, UK, which reviewed the use of safety cases in safety-critical industries). However, neither the literature nor current practice offer much guidance on querying mechanisms appropriate for, or available within, a safety case paradigm. This paper presents a preliminary approach that uses a formal basis for querying safety cases, specifically Goal Structuring Notation (GSN) argument structures. Our approach semantically enriches GSN arguments with domain-specific metadata that the query language leverages, along with its inherent structure, to produce views. We have implemented the approach in our toolset AdvoCATE, and illustrate it by application to a fragment of the safety argument for an Unmanned Aircraft System (UAS) being developed at NASA Ames. We also discuss the potential practical utility of our query mechanism within the context of the existing framework for UAS safety assurance.

  14. Is Model-Based Development a Favorable Approach for Complex and Safety-Critical Computer Systems on Commercial Aircraft?

    NASA Technical Reports Server (NTRS)

    Torres-Pomales, Wilfredo

    2014-01-01

    A system is safety-critical if its failure can endanger human life or cause significant damage to property or the environment. State-of-the-art computer systems on commercial aircraft are highly complex, software-intensive, functionally integrated, and network-centric systems of systems. Ensuring that such systems are safe and comply with existing safety regulations is costly and time-consuming as the level of rigor in the development process, especially the validation and verification activities, is determined by considerations of system complexity and safety criticality. A significant degree of care and deep insight into the operational principles of these systems is required to ensure adequate coverage of all design implications relevant to system safety. Model-based development methodologies, methods, tools, and techniques facilitate collaboration and enable the use of common design artifacts among groups dealing with different aspects of the development of a system. This paper examines the application of model-based development to complex and safety-critical aircraft computer systems. Benefits and detriments are identified and an overall assessment of the approach is given.

  15. Feasibility and safety of virtual-reality-based early neurocognitive stimulation in critically ill patients.

    PubMed

    Turon, Marc; Fernandez-Gonzalo, Sol; Jodar, Mercè; Gomà, Gemma; Montanya, Jaume; Hernando, David; Bailón, Raquel; de Haro, Candelaria; Gomez-Simon, Victor; Lopez-Aguilar, Josefina; Magrans, Rudys; Martinez-Perez, Melcior; Oliva, Joan Carles; Blanch, Lluís

    2017-12-01

    Growing evidence suggests that critical illness often results in significant long-term neurocognitive impairments in one-third of survivors. Although these neurocognitive impairments are long-lasting and devastating for survivors, rehabilitation rarely occurs during or after critical illness. Our aim is to describe an early neurocognitive stimulation intervention based on virtual reality for patients who are critically ill and to present the results of a proof-of-concept study testing the feasibility, safety, and suitability of this intervention. Twenty critically ill adult patients undergoing or having undergone mechanical ventilation for ≥24 h received daily 20-min neurocognitive stimulation sessions when awake and alert during their ICU stay. The difficulty of the exercises included in the sessions progressively increased over successive sessions. Physiological data were recorded before, during, and after each session. Safety was assessed through heart rate, peripheral oxygen saturation, and respiratory rate. Heart rate variability analysis, an indirect measure of autonomic activity sensitive to cognitive demands, was used to assess the efficacy of the exercises in stimulating attention and working memory. Patients successfully completed the sessions on most days. No sessions were stopped early for safety concerns, and no adverse events occurred. Heart rate variability analysis showed that the exercises stimulated attention and working memory. Critically ill patients considered the sessions enjoyable and relaxing without being overly fatiguing. The results in this proof-of-concept study suggest that a virtual-reality-based neurocognitive intervention is feasible, safe, and tolerable, stimulating cognitive functions and satisfying critically ill patients. Future studies will evaluate the impact of interventions on neurocognitive outcomes. Trial registration Clinical trials.gov identifier: NCT02078206.

  16. System Guidelines for EMC Safety-Critical Circuits: Design, Selection, and Margin Demonstration

    NASA Technical Reports Server (NTRS)

    Lawton, R. M.

    1996-01-01

    Demonstration of required safety margins on critical electrical/electronic circuits in large complex systems has become an implementation and cost problem. These margins are the difference between the activation level of the circuit and the electrical noise on the circuit in the actual operating environment. This document discusses the origin of the requirement and gives a detailed process flow for the identification of the system electromagnetic compatibility (EMC) critical circuit list. The process flow discusses the roles of engineering disciplines such as systems engineering, safety, and EMC. Design and analysis guidelines are provided to assist the designer in assuring the system design has a high probability of meeting the margin requirements. Examples of approaches used on actual programs (Skylab and Space Shuttle Solid Rocket Booster) are provided to show how variations of the approach can be used successfully.

  17. Impact of IgG Fc-Oligosaccharides on Recombinant Monoclonal Antibody Structure, Stability, Safety, and Efficacy.

    PubMed

    Liu, Hongcheng; Nowak, Christine; Andrien, Bruce; Shao, Mei; Ponniah, Gomathinayagam; Neill, Alyssa

    2017-09-01

    Glycosylation of the conserved asparagine residue in the CH2 domain is the most common posttranslational modification of recombinant monoclonal antibodies. Ideally, a consistent oligosaccharide profile should be maintained from early clinical material to commercial material for the development of recombinant monoclonal therapeutics, though variation in the profile is a typical result of process changes. The risk of oligosaccharide variation posed to further development is required to be thoroughly evaluated based on its impact on antibody structure, stability, efficacy and safety. The variation should be controlled within a range so that there is no detrimental impact on safety and efficacy and thus allowing the use of early phase safety and efficacy data to support project advancement to later phase. This review article focuses on the current scientific understanding of the commonly observed oligosaccharides found in recombinant monoclonal antibodies and their impact on structure, stability and biological functions, which are the basis to evaluate safety and efficacy. It also provides a brief discussion on critical quality attribute (CQA) assessment with regard to oligosaccharides based on the mechanism of action (MOA). © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1173-1181, 2017. © 2017 American Institute of Chemical Engineers.

  18. Investigation of structural factors of safety for the space shuttle

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A study was made of the factors governing the structural design of the fully reusable space shuttle booster to establish a rational approach to select optimum structural factors of safety. The study included trade studies of structural factors of safety versus booster service life, weight, cost, and reliability. Similar trade studies can be made on other vehicles using the procedures developed. The major structural components of a selected baseline booster were studied in depth, each being examined to determine the fatigue life, safe-life, and fail-safe capabilities of the baseline design. Each component was further examined to determine its reliability and safety requirements, and the change of structural weight with factors of safety. The apparent factors of safety resulting from fatigue, safe-life, proof test, and fail-safe requirements were identified. The feasibility of reduced factors of safety for design loads such as engine thrust, which are well defined, was examined.

  19. RICIS Symposium 1992: Mission and Safety Critical Systems Research and Applications

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This conference deals with computer systems which control systems whose failure to operate correctly could produce the loss of life and or property, mission and safety critical systems. Topics covered are: the work of standards groups, computer systems design and architecture, software reliability, process control systems, knowledge based expert systems, and computer and telecommunication protocols.

  20. CSER 98-003: Criticality safety evaluation report for PFP glovebox HC-21A with button can opening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ERICKSON, D.G.

    1999-02-23

    Glovebox HC-21A is an enclosure where cans containing plutonium metal buttons or other plutonium bearing materials are prepared for thermal stabilization in the muffle furnaces. The Inert Atmosphere Confinement (IAC), a new feature added to Glovebox HC-21A, allows the opening of containers suspected of containing hydrided plutonium metal. The argon atmosphere in the IAC prevents an adverse reaction between oxygen and the hydride. The hydride is then stabilized in a controlled manner to prevent glovebox over pressurization. After removal from the containers, the plutonium metal buttons or plutonium bearing materials will be placed into muffle furnace boats and then bemore » sent to one of the muffle furnace gloveboxes for stabilization. The materials allowed to be brought into GloveboxHC-21 A are limited to those with a hydrogen to fissile atom ratio (H/X) {le} 20. Glovebox HC-21A is classified as a DRY glovebox, meaning it has no internal liquid lines, and no free liquids or solutions are allowed to be introduced. The double contingency principle states that designs shall incorporate sufficient factors of safety to require at least two unlikely, independent, and concurrent changes in process conditions before a criticality accident is possible. This criticality safety evaluation report (CSER) shows that the operations to be performed in this glovebox are safe from a criticality standpoint. No single identified event that causes criticality controls to be lost exceeded the criticality safety limit of k{sub eff} = 0.95. Therefore, this CSER meets the requirements for a criticality analysis contained in the Hanford Site Nuclear Criticality Safety Manual, HNF-PRO-334, and meets the double contingency principle.« less

  1. Testing of Safety-Critical Software Embedded in an Artificial Heart

    NASA Astrophysics Data System (ADS)

    Cha, Sungdeok; Jeong, Sehun; Yoo, Junbeom; Kim, Young-Gab

    Software is being used more frequently to control medical devices such as artificial heart or robotic surgery system. While much of software safety issues in such systems are similar to other safety-critical systems (e.g., nuclear power plants), domain-specific properties may warrant development of customized techniques to demonstrate fitness of the system on patients. In this paper, we report results of a preliminary analysis done on software controlling a Hybrid Ventricular Assist Device (H-VAD) developed by Korea Artificial Organ Centre (KAOC). It is a state-of-the-art artificial heart which completed animal testing phase. We performed software testing in in-vitro experiments and animal experiments. An abnormal behaviour, never detected during extensive in-vitro analysis and animal testing, was found.

  2. Four Pillars for Improving the Quality of Safety-Critical Software-Reliant Systems

    DTIC Science & Technology

    2013-04-01

    Studies of safety-critical software-reliant systems developed using the current practices of build-then-test show that requirements and architecture ... design defects make up approximately 70% of all defects, many system level related to operational quality attributes, and 80% of these defects are

  3. Criticality safety strategy for the Fuel Cycle Facility electrorefiner at Argonne National Laboratory, West

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mariani, R.D.; Benedict, R.W.; Lell, R.M.

    1993-09-01

    The Integral Fast Reactor being developed by Argonne National Laboratory (ANL) combines the advantages of metal-fueled, liquid-metal-cooled reactors and a closed fuel cycle. Presently, the Fuel Cycle Facility (FCF) at ANL-West in Idaho Falls, Idaho is being modified to recycle spent metallic fuel from Experimental Breeder Reactor II as part of a demonstration project sponsored by the Department of Energy. A key component of the FCF is the electrorefiner (ER) in which the actinides are separated from the fission products. In the electrorefining process, the metal fuel is anodically dissolved into a high-temperature molten salt and refined uranium or uranium/plutoniummore » products are deposited at cathodes. In this report, the criticality safety strategy for the FCF ER is summarized. FCF ER operations and processes formed the basis for evaluating criticality safety and control during actinide metal fuel refining. In order to show criticality safety for the FCF ER, the reference operating conditions for the ER had to be defined. Normal operating envelopes (NOES) were then defined to bracket the important operating conditions. To keep the operating conditions within their NOES, process controls were identified that can be used to regulate the actinide forms and content within the ER. A series of operational checks were developed for each operation that wig verify the extent or success of an operation. The criticality analysis considered the ER operating conditions at their NOE values as the point of departure for credible and incredible failure modes. As a result of the analysis, FCF ER operations were found to be safe with respect to criticality.« less

  4. Verification of MCNP6.2 for Nuclear Criticality Safety Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Forrest B.; Rising, Michael Evan; Alwin, Jennifer Louise

    2017-05-10

    Several suites of verification/validation benchmark problems were run in early 2017 to verify that the new production release of MCNP6.2 performs correctly for nuclear criticality safety applications (NCS). MCNP6.2 results for several NCS validation suites were compared to the results from MCNP6.1 [1] and MCNP6.1.1 [2]. MCNP6.1 is the production version of MCNP® released in 2013, and MCNP6.1.1 is the update released in 2014. MCNP6.2 includes all of the standard features for NCS calculations that have been available for the past 15 years, along with new features for sensitivity-uncertainty based methods for NCS validation [3]. Results from the benchmark suitesmore » were compared with results from previous verification testing [4-8]. Criticality safety analysts should consider testing MCNP6.2 on their particular problems and validation suites. No further development of MCNP5 is planned. MCNP6.1 is now 4 years old, and MCNP6.1.1 is now 3 years old. In general, released versions of MCNP are supported only for about 5 years, due to resource limitations. All future MCNP improvements, bug fixes, user support, and new capabilities are targeted only to MCNP6.2 and beyond.« less

  5. Structural Deterministic Safety Factors Selection Criteria and Verification

    NASA Technical Reports Server (NTRS)

    Verderaime, V.

    1992-01-01

    Though current deterministic safety factors are arbitrarily and unaccountably specified, its ratio is rooted in resistive and applied stress probability distributions. This study approached the deterministic method from a probabilistic concept leading to a more systematic and coherent philosophy and criterion for designing more uniform and reliable high-performance structures. The deterministic method was noted to consist of three safety factors: a standard deviation multiplier of the applied stress distribution; a K-factor for the A- or B-basis material ultimate stress; and the conventional safety factor to ensure that the applied stress does not operate in the inelastic zone of metallic materials. The conventional safety factor is specifically defined as the ratio of ultimate-to-yield stresses. A deterministic safety index of the combined safety factors was derived from which the corresponding reliability proved the deterministic method is not reliability sensitive. The bases for selecting safety factors are presented and verification requirements are discussed. The suggested deterministic approach is applicable to all NASA, DOD, and commercial high-performance structures under static stresses.

  6. Effect of geometry structure on critical properties

    NASA Astrophysics Data System (ADS)

    Jiang, Qing; Jiang, Xue-fan

    1997-02-01

    The effective-field renormalization group (EFRG) scheme is utilized to compute critical properties of the transverse Ising model (TIM) in a quantum-spin system. We distinguish differences between lattices of the same coordination number but of different structures and take effects of the first fluctuation correction into account. The improved results for the critical transverse field are obtained for several lattice structures even by considering the smallest possible cluster, which is in good agreement with series results.

  7. Nuclear criticality safety evaluation of SRS 9971 shipping package. [SRS (Savannah River Site)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vescovi, P.J.

    1993-02-01

    This evaluation is requested to revise the criticality evaluation used to generate Chapter 6 (Criticality Evaluation) of the Safety Analysis Report for Packaging (SARP) for shipment Of UO[sub 3] product from the Uranium Solidification Facility (USF) in the SRS 9971 shipping package. The pertinent document requesting this evaluation is included as Attachment I. The results of the evaluation are given in Attachment II which is written as Chapter 6 of a NRC format SARP.

  8. Nuclear criticality safety assessment of the low level radioactive waste disposal facility trenches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahook, S.D.

    1994-04-01

    Results of the analyses performed to evaluate the possibility of nuclear criticality in the Low Level Radioactive Waste Disposal Facility (LLRWDF) trenches are documented in this report. The studies presented in this document are limited to assessment of the possibility of criticality due to existing conditions in the LLRWDF. This document does not propose nor set limits for enriched uranium (EU) burial in the LLRWDF and is not a nuclear criticality safety evaluation nor analysis. The calculations presented in the report are Level 2 calculations as defined by the E7 Procedure 2.31, Engineering Calculations.

  9. Keeping patients safe in healthcare organizations: a structuration theory of safety culture.

    PubMed

    Groves, Patricia S; Meisenbach, Rebecca J; Scott-Cawiezell, Jill

    2011-08-01

    This paper presents a discussion of the use of structuration theory to facilitate understanding and improvement of safety culture in healthcare organizations. Patient safety in healthcare organizations is an important problem worldwide. Safety culture has been proposed as a means to keep patients safe. However, lack of appropriate theory limits understanding and improvement of safety culture. The proposed structuration theory of safety culture was based on a critique of available English-language literature, resulting in literature published from 1983 to mid-2009. CINAHL, Communication and Mass Media Complete, ABI/Inform and Google Scholar databases were searched using the following terms: nursing, safety, organizational culture and safety culture. When viewed through the lens of structuration theory, safety culture is a system involving both individual actions and organizational structures. Healthcare organization members, particularly nurses, share these values through communication and enact them in practice, (re)producing an organizational safety culture system that reciprocally constrains and enables the actions of the members in terms of patient safety. This structurational viewpoint illuminates multiple opportunities for safety culture improvement. Nurse leaders should be cognizant of competing value-based culture systems in the organization and attend to nursing agency and all forms of communication when attempting to create or strengthen a safety culture. Applying structuration theory to the concept of safety culture reveals a dynamic system of individual action and organizational structure constraining and enabling safety practice. Nurses are central to the (re)production of this safety culture system. © 2011 Blackwell Publishing Ltd.

  10. Assuring NASA's Safety and Mission Critical Software

    NASA Technical Reports Server (NTRS)

    Deadrick, Wesley

    2015-01-01

    What is IV&V? Independent Verification and Validation (IV&V) is an objective examination of safety and mission critical software processes and products. Independence: 3 Key parameters: Technical Independence; Managerial Independence; Financial Independence. NASA IV&V perspectives: Will the system's software: Do what it is supposed to do?; Not do what it is not supposed to do?; Respond as expected under adverse conditions?. Systems Engineering: Determines if the right system has been built and that it has been built correctly. IV&V Technical Approaches: Aligned with IEEE 1012; Captured in a Catalog of Methods; Spans the full project lifecycle. IV&V Assurance Strategy: The IV&V Project's strategy for providing mission assurance; Assurance Strategy is driven by the specific needs of an individual project; Implemented via an Assurance Design; Communicated via Assurance Statements.

  11. Definition and means of maintaining the criticality detectors and alarms portion of the PFP safety envelope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, W.F.

    The purpose of this document is to provide the definition and means of maintaining the Safety Envelope (SE) related to the Criticality Alarm System (CAS). This document provides amplification of the Limiting Condition for Operation (LCO) described in the Plutonium Finishing Plant (PFP) Operational Safety Requirements (OSR), WHC-SD-CP-OSR-010, Rev. 0, 1994, Section 3.1.2, Criticality Detectors and Alarms. This document, with its appendices, provides the following: (1) System functional requirements for determining system operability (Section 3); (2) A list of annotated system block diagrams which indicate the safety envelope boundaries (Appendix C); (3) A list of the Safety Class 1 andmore » 2 Safety Envelope (SC-1/2 SE) equipment for input into the Master Component Index (Appendix B); (4) Functional requirements for individual SC-1/2 SE components, including appropriate setpoints and process parameters (Section 6 and Appendix A); (5) A list of the operational, maintenance and surveillance procedures necessary to operate and maintain the SC-1/2 SE components as required by the LCO (Section 6 and Appendix A).« less

  12. Validation of Safety-Critical Systems for Aircraft Loss-of-Control Prevention and Recovery

    NASA Technical Reports Server (NTRS)

    Belcastro, Christine M.

    2012-01-01

    Validation of technologies developed for loss of control (LOC) prevention and recovery poses significant challenges. Aircraft LOC can result from a wide spectrum of hazards, often occurring in combination, which cannot be fully replicated during evaluation. Technologies developed for LOC prevention and recovery must therefore be effective under a wide variety of hazardous and uncertain conditions, and the validation framework must provide some measure of assurance that the new vehicle safety technologies do no harm (i.e., that they themselves do not introduce new safety risks). This paper summarizes a proposed validation framework for safety-critical systems, provides an overview of validation methods and tools developed by NASA to date within the Vehicle Systems Safety Project, and develops a preliminary set of test scenarios for the validation of technologies for LOC prevention and recovery

  13. Critical review of controlled release packaging to improve food safety and quality.

    PubMed

    Chen, Xi; Chen, Mo; Xu, Chenyi; Yam, Kit L

    2018-03-19

    Controlled release packaging (CRP) is an innovative technology that uses the package to release active compounds in a controlled manner to improve safety and quality for a wide range of food products during storage. This paper provides a critical review of the uniqueness, design considerations, and research gaps of CRP, with a focus on the kinetics and mechanism of active compounds releasing from the package. Literature data and practical examples are presented to illustrate how CRP controls what active compounds to release, when and how to release, how much and how fast to release, in order to improve food safety and quality.

  14. Ares I-X Upper Stage Simulator Structural Analyses Supporting the NESC Critical Initial Flaw Size Assessment

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Phillips, Dawn R.; Raju, Ivatury S.

    2008-01-01

    The structural analyses described in the present report were performed in support of the NASA Engineering and Safety Center (NESC) Critical Initial Flaw Size (CIFS) assessment for the ARES I-X Upper Stage Simulator (USS) common shell segment. The structural analysis effort for the NESC assessment had three thrusts: shell buckling analyses, detailed stress analyses of the single-bolt joint test; and stress analyses of two-segment 10 degree-wedge models for the peak axial tensile running load. Elasto-plastic, large-deformation simulations were performed. Stress analysis results indicated that the stress levels were well below the material yield stress for the bounding axial tensile design load. This report also summarizes the analyses and results from parametric studies on modeling the shell-to-gusset weld, flange-surface mismatch, bolt preload, and washer-bearing-surface modeling. These analyses models were used to generate the stress levels specified for the fatigue crack growth assessment using the design load with a factor of safety.

  15. Nursing practice environment, job outcomes and safety climate: a structural equation modelling analysis.

    PubMed

    Dos Santos Alves, Daniela Fernanda; da Silva, Dirceu; de Brito Guirardello, Edinêis

    2017-01-01

    To assess correlations between the characteristics of the nursing practice environment, job outcomes and safety climate. The nursing practice environment is critical to the well-being of professionals and to patient safety, as highlighted by national and international studies; however, there is a lack of evidence regarding this theme in paediatric units. A cross-sectional study, in two paediatric hospitals in Brazil, was conducted from December 2013 to February 2014. For data collection, we used the Nursing Work Index - Revised, Safety Attitudes Questionnaire - Short Form 2006 and the Maslach Burnout Inventory, and for analysis Spearman's correlation coefficient and structural equation modelling were used. Two hundred and sixty-seven professional nurses participated in the study. Autonomy, control over the work environment and the relationship between nursing and medical staff are factors associated with job outcomes and safety climate and can be considered their predictors. Professional nurses with greater autonomy, good working relationships and control over their work environment have lower levels of emotional exhaustion, higher job satisfaction, less intention of leaving the job and the safety climate is positive. Initiatives to improve the professional practice environment can improve the safety of paediatric patients and the well-being of professional nurses. © 2016 John Wiley & Sons Ltd.

  16. Automated Transfer Vehicle (ATV) Critical Safety Software Overview

    NASA Astrophysics Data System (ADS)

    Berthelier, D.

    2002-01-01

    The European Automated Transfer Vehicle is an unmanned transportation system designed to dock to International Space Station (ISS) and to contribute to the logistic servicing of the ISS. Concisely, ATV control is realized by a nominal flight control function (using computers, softwares, sensors, actuators). In order to cover the extreme situations where this nominal chain can not ensure safe trajectory with respect to ISS, a segregated proximity flight safety function is activated, where unsafe free drift trajectories can be encountered. This function relies notably on a segregated computer, the Monitoring and Safing Unit (MSU) ; in case of major ATV malfunction detection, ATV is then controlled by MSU software. Therefore, this software is critical because a MSU software failure could result in catastrophic consequences. This paper provides an overview both of this software functions and of the software development and validation method which is specific considering its criticality. First part of the paper describes briefly the proximity flight safety chain. Second part deals with the software functions. Indeed, MSU software is in charge of monitoring nominal computers and ATV corridors, using its own navigation algorithms, and, if an abnormal situation is detected, it is in charge of the ATV control during the Collision Avoidance Manoeuvre (CAM) consisting in an attitude controlled braking boost, followed by a Post-CAM manoeuvre : a Sun-pointed ATV attitude control during up to 24 hours on a safe trajectory. Monitoring, navigation and control algorithms principles are presented. Third part of this paper describes the development and validation process : algorithms functional studies , ADA coding and unit validations ; algorithms ADA code integration and validation on a specific non real-time MATLAB/SIMULINK simulator ; global software functional engineering phase, architectural design, unit testing, integration and validation on target computer.

  17. Stress Analysis for the Critical Metal Structure of Bridge Crane

    NASA Astrophysics Data System (ADS)

    Ling, Zhangwei; Wang, Min; Xia, Junfang; Wang, Songhua; Guo, Xiaolian

    2018-01-01

    Based on the type of connection between the main girder and end beam of electrical single beam crane, the finite element analysis model of a full portal crane was established. The stress distribution of the critical structure under different loading conditions was analyzed. The results shown that the maximum Mises stress and deflection of the main girder were within the allowable range. And the connecting location between end beam web and main girder had higher stress than other region, especially at the lower edge and upper edge of the end beam web and the area near the bolt hole of upper wing panel. Therefore it is important to inspect the connection status, the stress condition and the crack situation nearing connection location during the regular inspection process to ensure the safety of the connection between the main girder and end beam.

  18. Packaging Strategies for Criticality Safety for "Other" DOE Fuels in a Repository

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larry L Taylor

    2004-06-01

    Since 1998, there has been an ongoing effort to gain acceptance of U.S. Department of Energy (DOE)-owned spent nuclear fuel (SNF) in the national repository. To accomplish this goal, the fuel matrix was used as a discriminating feature to segregate fuels into nine distinct groups. From each of those groups, a characteristic fuel was selected and analyzed for criticality safety based on a proposed packaging strategy. This report identifies and quantifies the important criticality parameters for the canisterized fuels within each criticality group to: (1) demonstrate how the “other” fuels in the group are bounded by the baseline calculations ormore » (2) allow identification of individual type fuels that might require special analysis and packaging.« less

  19. Using the Job Demands-Resources model to investigate risk perception, safety climate and job satisfaction in safety critical organizations.

    PubMed

    Nielsen, Morten Birkeland; Mearns, Kathryn; Matthiesen, Stig Berge; Eid, Jarle

    2011-10-01

    Using the Job Demands-Resources model (JD-R) as a theoretical framework, this study investigated the relationship between risk perception as a job demand and psychological safety climate as a job resource with regard to job satisfaction in safety critical organizations. In line with the JD-R model, it was hypothesized that high levels of risk perception is related to low job satisfaction and that a positive perception of safety climate is related to high job satisfaction. In addition, it was hypothesized that safety climate moderates the relationship between risk perception and job satisfaction. Using a sample of Norwegian offshore workers (N = 986), all three hypotheses were supported. In summary, workers who perceived high levels of risk reported lower levels of job satisfaction, whereas this effect diminished when workers perceived their safety climate as positive. Follow-up analyses revealed that this interaction was dependent on the type of risks in question. The results of this study supports the JD-R model, and provides further evidence for relationships between safety-related concepts and work-related outcomes indicating that organizations should not only develop and implement sound safety procedures to reduce the effects of risks and hazards on workers, but can also enhance other areas of organizational life through a focus on safety. © 2011 The Authors. Scandinavian Journal of Psychology © 2011 The Scandinavian Psychological Associations.

  20. Instructional games and activities for criticality safety training

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bullard, B.; McBride, J.

    1993-01-01

    During the past several years, the Training and Management Systems Division (TMSD) staff of Oak Ridge Institute for Science and Education (ORISE) has designed and developed nuclear criticality safety (NCS) training programs that focus on high trainee involvement through the use of instructional games and activities. This paper discusses the instructional game, initial considerations for developing games, advantages and limitations of games, and how games may be used in developing and implementing NCS training. It also provides examples of the various instructional games and activities used in separate courses designed for Martin Marietta Energy Systems (MMES's) supervisors and U.S. Nuclearmore » Regulatory Commission (NRC) fuel facility inspectors.« less

  1. Mechanical and structural properties of bone in non-critical and critical healing in rat.

    PubMed

    Hoerth, Rebecca M; Seidt, Britta M; Shah, Miheer; Schwarz, Carolin; Willie, Bettina M; Duda, Georg N; Fratzl, Peter; Wagermaier, Wolfgang

    2014-09-01

    A fracture in bone results in a dramatic change of mechanical loading conditions at the site of injury. Usually, bone injuries heal normally but with increasing fracture gaps, healing is retarded, eventually leading to non-unions. The clinical situation of these two processes with different outcomes is well described. However, the exact relation between the mechanical environment and characteristics of the tissues at all levels of structural hierarchy remains unclear. Here we studied the differences in material formation of non-critical (1mm) and critical (5mm gap) healing. We employed a rat osteotomy model to explore bone material structure depending upon the different mechanical conditions. In both cases, primary bone formation was followed by secondary bone deposition with mineral particle sizes changing from on average short and thick to long and thin particles. Bony bridging occurred at first in the endosteal callus and the nanostructure and microstructure developed towards cortical ordered material organization. In contrast, in critical healing, instead of bridging, a marrow cavity closure was formed endosteal, exhibiting tissue structure oriented along the curvature and a periosteal callus with less mature material structure. The two healing processes separated between 4 and 6 weeks post-osteotomy. The outcome of healing was determined by the varied geometrical conditions in critical and non-critical healing, inducing completely different mechanical situations. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Nuclear criticality safety bounding analysis for the in-tank-precipitation (ITP) process, impacted by fissile isotopic weight fractions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bess, C.E.

    The In-Tank Precipitation process (ITP) receives High Level Waste (HLW) supernatant liquid containing radionuclides in waste processing tank 48H. Sodium tetraphenylborate, NaTPB, and monosodium titanate (MST), NaTi{sub 2}O{sub 5}H, are added for removal of radioactive Cs and Sr, respectively. In addition to removal of radio-strontium, MST will also remove plutonium and uranium. The majority of the feed solutions to ITP will come from the dissolution of supernate that had been concentrated by evaporation to a crystallized salt form, commonly referred to as saltcake. The concern for criticality safety arises from the adsorption of U and Pt onto MST. If sufficientmore » mass and optimum conditions are achieved then criticality is credible. The concentration of u and Pt from solution into the smaller volume of precipitate represents a concern for criticality. This report supplements WSRC-TR-93-171, Nuclear Criticality Safety Bounding Analysis For The In-Tank-Precipitation (ITP) Process. Criticality safety in ITP can be analyzed by two bounding conditions: (1) the minimum safe ratio of MST to fissionable material and (2) the maximum fissionable material adsorption capacity of the MST. Calculations have provided the first bounding condition and experimental analysis has established the second. This report combines these conditions with canyon facility data to evaluate the potential for criticality in the ITP process due to the adsorption of the fissionable material from solution. In addition, this report analyzes the potential impact of increased U loading onto MST. Results of this analysis demonstrate a greater safety margin for ITP operations than the previous analysis. This report further demonstrates that the potential for criticality in the ITP process due to adsorption of fissionable material by MST is not credible.« less

  3. Overview of critical risk factors in Power-Two-Wheeler safety.

    PubMed

    Vlahogianni, Eleni I; Yannis, George; Golias, John C

    2012-11-01

    Power-Two-Wheelers (PTWs) constitute a vulnerable class of road users with increased frequency and severity of accidents. The present paper focuses of the PTW accident risk factors and reviews existing literature with regard to the PTW drivers' interactions with the automobile drivers, as well as interactions with infrastructure elements and weather conditions. Several critical risk factors are revealed with different levels of influence to PTW accident likelihood and severity. A broad classification based on the magnitude and the need for further research for each risk factor is proposed. The paper concludes by discussing the importance of dealing with accident configurations, the data quality and availability, methods implemented to model risk and exposure and risk identification which are critical for a thorough understanding of the determinants of PTW safety. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Understanding safety-critical interactions with a home medical device through Distributed Cognition.

    PubMed

    Rajkomar, Atish; Mayer, Astrid; Blandford, Ann

    2015-08-01

    As healthcare shifts from the hospital to the home, it is becoming increasingly important to understand how patients interact with home medical devices, to inform the safe and patient-friendly design of these devices. Distributed Cognition (DCog) has been a useful theoretical framework for understanding situated interactions in the healthcare domain. However, it has not previously been applied to study interactions with home medical devices. In this study, DCog was applied to understand renal patients' interactions with Home Hemodialysis Technology (HHT), as an example of a home medical device. Data was gathered through ethnographic observations and interviews with 19 renal patients and interviews with seven professionals. Data was analyzed through the principles summarized in the Distributed Cognition for Teamwork methodology. In this paper we focus on the analysis of system activities, information flows, social structures, physical layouts, and artefacts. By explicitly considering different ways in which cognitive processes are distributed, the DCog approach helped to understand patients' interaction strategies, and pointed to design opportunities that could improve patients' experiences of using HHT. The findings highlight the need to design HHT taking into consideration likely scenarios of use in the home and of the broader home context. A setting such as home hemodialysis has the characteristics of a complex and safety-critical socio-technical system, and a DCog approach effectively helps to understand how safety is achieved or compromised in such a system. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Robust optical sensors for safety critical automotive applications

    NASA Astrophysics Data System (ADS)

    De Locht, Cliff; De Knibber, Sven; Maddalena, Sam

    2008-02-01

    Optical sensors for the automotive industry need to be robust, high performing and low cost. This paper focuses on the impact of automotive requirements on optical sensor design and packaging. Main strategies to lower optical sensor entry barriers in the automotive market include: Perform sensor calibration and tuning by the sensor manufacturer, sensor test modes on chip to guarantee functional integrity at operation, and package technology is key. As a conclusion, optical sensor applications are growing in automotive. Optical sensor robustness matured to the level of safety critical applications like Electrical Power Assisted Steering (EPAS) and Drive-by-Wire by optical linear arrays based systems and Automated Cruise Control (ACC), Lane Change Assist and Driver Classification/Smart Airbag Deployment by camera imagers based systems.

  6. 49 CFR 176.704 - Requirements relating to transport indices and criticality safety indices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Requirements relating to transport indices and... Requirements relating to transport indices and criticality safety indices. (a) The sum of the transport indices..., transport and unloading are to be supervised by persons qualified in the transport of radioactive material...

  7. 49 CFR 176.704 - Requirements relating to transport indices and criticality safety indices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Requirements relating to transport indices and... Requirements relating to transport indices and criticality safety indices. (a) The sum of the transport indices..., transport and unloading are to be supervised by persons qualified in the transport of radioactive material...

  8. Nuclear criticality safety evaluation of the passage of decontaminated salt solution from the ITP filters into tank 50H for interim storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hobbs, D.T.; Davis, J.R.

    This report assesses the nuclear criticality safety associated with the decontaminated salt solution after passing through the In-Tank Precipitation (ITP) filters, through the stripper columns and into Tank 50H for interim storage until transfer to the Saltstone facility. The criticality safety basis for the ITP process is documented. Criticality safety in the ITP filtrate has been analyzed under normal and process upset conditions. This report evaluates the potential for criticality due to the precipitation or crystallization of fissionable material from solution and an ITP process filter failure in which insoluble material carryover from salt dissolution is present. It is concludedmore » that no single inadvertent error will cause criticality and that the process will remain subcritical under normal and credible abnormal conditions.« less

  9. Evaluating Models of Human Performance: Safety-Critical Systems Applications

    NASA Technical Reports Server (NTRS)

    Feary, Michael S.

    2012-01-01

    This presentation is part of panel discussion on Evaluating Models of Human Performance. The purpose of this panel is to discuss the increasing use of models in the world today and specifically focus on how to describe and evaluate models of human performance. My presentation will focus on discussions of generating distributions of performance, and the evaluation of different strategies for humans performing tasks with mixed initiative (Human-Automation) systems. I will also discuss issues with how to provide Human Performance modeling data to support decisions on acceptability and tradeoffs in the design of safety critical systems. I will conclude with challenges for the future.

  10. Application of the SCALE TSUNAMI Tools for the Validation of Criticality Safety Calculations Involving 233U

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Don; Rearden, Bradley T; Hollenbach, Daniel F

    2009-02-01

    The Radiochemical Development Facility at Oak Ridge National Laboratory has been storing solid materials containing 233U for decades. Preparations are under way to process these materials into a form that is inherently safe from a nuclear criticality safety perspective. This will be accomplished by down-blending the {sup 233}U materials with depleted or natural uranium. At the request of the U.S. Department of Energy, a study has been performed using the SCALE sensitivity and uncertainty analysis tools to demonstrate how these tools could be used to validate nuclear criticality safety calculations of selected process and storage configurations. ISOTEK nuclear criticality safetymore » staff provided four models that are representative of the criticality safety calculations for which validation will be needed. The SCALE TSUNAMI-1D and TSUNAMI-3D sequences were used to generate energy-dependent k{sub eff} sensitivity profiles for each nuclide and reaction present in the four safety analysis models, also referred to as the applications, and in a large set of critical experiments. The SCALE TSUNAMI-IP module was used together with the sensitivity profiles and the cross-section uncertainty data contained in the SCALE covariance data files to propagate the cross-section uncertainties ({Delta}{sigma}/{sigma}) to k{sub eff} uncertainties ({Delta}k/k) for each application model. The SCALE TSUNAMI-IP module was also used to evaluate the similarity of each of the 672 critical experiments with each application. Results of the uncertainty analysis and similarity assessment are presented in this report. A total of 142 experiments were judged to be similar to application 1, and 68 experiments were judged to be similar to application 2. None of the 672 experiments were judged to be adequately similar to applications 3 and 4. Discussion of the uncertainty analysis and similarity assessment is provided for each of the four applications. Example upper subcritical limits (USLs) were

  11. The effects of organizational commitment and structural empowerment on patient safety culture.

    PubMed

    Horwitz, Sujin K; Horwitz, Irwin B

    2017-03-20

    Purpose The purpose of this paper is to investigate the relationship between patient safety culture and two attitudinal constructs: affective organizational commitment and structural empowerment. In doing so, the main and interaction effects of the two constructs on the perception of patient safety culture were assessed using a cohort of physicians. Design/methodology/approach Affective commitment was measured with the Organizational Commitment Questionnaire, whereas structural empowerment was assessed with the Conditions of Work Effectiveness Questionnaire-II. The abbreviated versions of these surveys were administered to a cohort of 71 post-doctoral medical residents. For the data analysis, hierarchical regression analyses were performed for the main and interaction effects of affective commitment and structural empowerment on the perception of patient safety culture. Findings A total of 63 surveys were analyzed. The results revealed that both affective commitment and structural empowerment were positively related to patient safety culture. A potential interaction effect of the two attitudinal constructs on patient safety culture was tested but no such effect was detected. Research limitations/implications This study suggests that there are potential benefits of promoting affective commitment and structural empowerment for patient safety culture in health care organizations. By identifying the positive associations between the two constructs and patient safety culture, this study provides additional empirical support for Kanter's theoretical tenet that structural and organizational support together helps to shape the perceptions of patient safety culture. Originality/value Despite the wide recognition of employee empowerment and commitment in organizational research, there has still been a paucity of empirical studies specifically assessing their effects on patient safety culture in health care organizations. To the authors' knowledge, this study is the first

  12. Modeling patient safety incidents knowledge with the Categorial Structure method.

    PubMed

    Souvignet, Julien; Bousquet, Cédric; Lewalle, Pierre; Trombert-Paviot, Béatrice; Rodrigues, Jean Marie

    2011-01-01

    Following the WHO initiative named World Alliance for Patient Safety (PS) launched in 2004 a conceptual framework developed by PS national reporting experts has summarized the knowledge available. As a second step, the Department of Public Health of the University of Saint Etienne team elaborated a Categorial Structure (a semi formal structure not related to an upper level ontology) identifying the elements of the semantic structure underpinning the broad concepts contained in the framework for patient safety. This knowledge engineering method has been developed to enable modeling patient safety information as a prerequisite for subsequent full ontology development. The present article describes the semantic dissection of the concepts, the elicitation of the ontology requirements and the domain constraints of the conceptual framework. This ontology includes 134 concepts and 25 distinct relations and will serve as basis for an Information Model for Patient Safety.

  13. Determination of Slope Safety Factor with Analytical Solution and Searching Critical Slip Surface with Genetic-Traversal Random Method

    PubMed Central

    2014-01-01

    In the current practice, to determine the safety factor of a slope with two-dimensional circular potential failure surface, one of the searching methods for the critical slip surface is Genetic Algorithm (GA), while the method to calculate the slope safety factor is Fellenius' slices method. However GA needs to be validated with more numeric tests, while Fellenius' slices method is just an approximate method like finite element method. This paper proposed a new method to determine the minimum slope safety factor which is the determination of slope safety factor with analytical solution and searching critical slip surface with Genetic-Traversal Random Method. The analytical solution is more accurate than Fellenius' slices method. The Genetic-Traversal Random Method uses random pick to utilize mutation. A computer automatic search program is developed for the Genetic-Traversal Random Method. After comparison with other methods like slope/w software, results indicate that the Genetic-Traversal Random Search Method can give very low safety factor which is about half of the other methods. However the obtained minimum safety factor with Genetic-Traversal Random Search Method is very close to the lower bound solutions of slope safety factor given by the Ansys software. PMID:24782679

  14. Critical safety assurance factors for manned spacecraft - A fire safety perspective

    NASA Technical Reports Server (NTRS)

    Rodney, George A.

    1990-01-01

    Safety assurance factors for manned spacecraft are discussed with a focus on the Space Station Freedom. A hazard scenario is provided to demonstrate a process commonly used by safety engineers and other analysts to identify onboard safety risks. Fire strategies are described, including a review of fire extinguishing agents being considered for the Space Station. Lessons learned about fire safety technology in other areas are also noted. NASA and industry research on fire safety applications is discussed. NASA's approach to ensuring safety for manned spacecraft is addressed in the context of its multidiscipline program.

  15. Labor unions and safety climate: perceived union safety values and retail employee safety outcomes.

    PubMed

    Sinclair, Robert R; Martin, James E; Sears, Lindsay E

    2010-09-01

    Although trade unions have long been recognized as a critical advocate for employee safety and health, safety climate research has not paid much attention to the role unions play in workplace safety. We proposed a multiple constituency model of workplace safety which focused on three central safety stakeholders: top management, ones' immediate supervisor, and the labor union. Safety climate research focuses on management and supervisors as key stakeholders, but has not considered whether employee perceptions about the priority their union places on safety contributes contribute to safety outcomes. We addressed this gap in the literature by investigating unionized retail employee (N=535) perceptions about the extent to which their top management, immediate supervisors, and union valued safety. Confirmatory factor analyses demonstrated that perceived union safety values could be distinguished from measures of safety training, workplace hazards, top management safety values, and supervisor values. Structural equation analyses indicated that union safety values influenced safety outcomes through its association with higher safety motivation, showing a similar effect as that of supervisor safety values. These findings highlight the need for further attention to union-focused measures related to workplace safety as well as further study of retail employees in general. We discuss the practical implications of our findings and identify several directions for future safety research. 2009 Elsevier Ltd. All rights reserved.

  16. Criticality safety strategy and analysis summary for the fuel cycle facility electrorefiner at Argonne National Laboratory West

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mariani, R.D.; Benedict, R.W.; Lell, R.M.

    1996-05-01

    As part of the termination activities of Experimental Breeder Reactor II (EBR-II) at Argonne National Laboratory (ANL) West, the spent metallic fuel from EBR-II will be treated in the fuel cycle facility (FCF). A key component of the spent-fuel treatment process in the FCF is the electrorefiner (ER) in which the actinide metals are separated from the active metal fission products and the reactive bond sodium. In the electrorefining process, the metal fuel is anodically dissolved into a high-temperature molten salt, and refined uranium or uranium/plutonium products are deposited at cathodes. The criticality safety strategy and analysis for the ANLmore » West FCF ER is summarized. The FCF ER operations and processes formed the basis for evaluating criticality safety and control during actinide metal fuel refining. To show criticality safety for the FCF ER, the reference operating conditions for the ER had to be defined. Normal operating envelopes (NOEs) were then defined to bracket the important operating conditions. To keep the operating conditions within their NOEs, process controls were identified that can be used to regulate the actinide forms and content within the ER. A series of operational checks were developed for each operation that will verify the extent or success of an operation. The criticality analysis considered the ER operating conditions at their NOE values as the point of departure for credible and incredible failure modes. As a result of the analysis, FCF ER operations were found to be safe with respect to criticality.« less

  17. Structural safety evaluation of Gerber Arch Dam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrie, R.E.

    1995-12-31

    Gerber Dam, a variable radius arch structure, has experienced seepage and extensive freeze-thaw damage since its construction. A construction key was found cracked at its crest. A finite element investigation was made to evaluate the safety of the arch structure. Design methods and assumptions are evaluated. Historical performance is used in the evaluation. Stress levels, patterns, and distributions were evaluated for loads the structure has experienced to determine behavior contributing to seepage and cracking.

  18. Priming patient safety: A middle-range theory of safety goal priming via safety culture communication.

    PubMed

    Groves, Patricia S; Bunch, Jacinda L

    2018-05-18

    The aim of this paper is discussion of a new middle-range theory of patient safety goal priming via safety culture communication. Bedside nurses are key to safe care, but there is little theory about how organizations can influence nursing behavior through safety culture to improve patient safety outcomes. We theorize patient safety goal priming via safety culture communication may support organizations in this endeavor. According to this theory, hospital safety culture communication activates a previously held patient safety goal and increases the perceived value of actions nurses can take to achieve that goal. Nurses subsequently prioritize and are motivated to perform tasks and risk assessment related to achieving patient safety. These efforts continue until nurses mitigate or ameliorate identified risks and hazards during the patient care encounter. Critically, this process requires nurses to have a previously held safety goal associated with a repertoire of appropriate actions. This theory suggests undergraduate educators should foster an outcomes focus emphasizing the connections between nursing interventions and safety outcomes, hospitals should strategically structure patient safety primes into communicative activities, and organizations should support professional development including new skills and the latest evidence supporting nursing practice for patient safety. © 2018 John Wiley & Sons Ltd.

  19. Materials Safety - Not just Flammability and Toxic Offgassing

    NASA Technical Reports Server (NTRS)

    Pedley, Michael D.

    2007-01-01

    For many years, the safety community has focused on a limited subset of materials and processes requirements as key to safety: Materials flammability, Toxic offgassing, Propellant compatibility, Oxygen compatibility, and Stress-corrosion cracking. All these items are important, but the exclusive focus on these items neglects many other items that are equally important to materials safety. Examples include (but are not limited to): 1. Materials process control -- proper qualification and execution of manufacturing processes such as structural adhesive bonding, welding, and forging are crucial to materials safety. Limitation of discussions on materials process control to an arbitrary subset of processes, known as "critical processes" is a mistake, because any process where the quality of the product cannot be verified by inspection can potentially result in unsafe hardware 2 Materials structural design allowables -- development of valid design allowables when none exist in the literature requires extensive testing of multiple lots of materials and is extremely expensive. But, without valid allowables, structural analysis cannot verify structural safety 3. Corrosion control -- All forms of corrosion, not just stress corrosion, can affect structural integrity of hardware 4. Contamination control during ground processing -- contamination control is critical to manufacturing processes such as adhesive bonding and also to elimination foreign objects and debris (FOD) that are hazardous to the crew of manned spacecraft in microgravity environments. 5. Fasteners -- Fastener design, the use of verifiable secondary locking features, and proper verification of fastener torque are essential for proper structural performance This presentation discusses some of these key factors and the importance of considering them in ensuring the safety of space hardware.

  20. Relationship between critical mechanical properties and age for structural lightweight concrete.

    DOT National Transportation Integrated Search

    1964-02-25

    The necessity to use structural lightweight concrete has created : a need for investigations into its critical mechanical properties that : affect the design and performance of structures. The primary critical : properties were found to be direct ten...

  1. Critical Seismic Vector Random Excitations for Multiply Supported Structures

    NASA Astrophysics Data System (ADS)

    Sarkar, A.; Manohar, C. S.

    1998-05-01

    A method for determining critical power spectral density matrix models for earthquake excitations which maximize steady response variance of linear multiply supported extended structures and which also satisfy constraints on input variance, zero crossing rates, frequency content and transmission time lag has been developed. The optimization problem is shown to be non-linear in nature and solutions are obtained by using an iterative technique which is based on linear programming method. A constraint on entropy rate as a measure of uncertainty which can be expected in realistic earthquake ground motions is proposed which makes the critical excitations more realistic. Two special cases are also considered. Firstly, when knowledge of autospectral densities is available, the critical response is shown to be produced by fully coherent excitations which are neither in-phase nor out-of-phase. The critical phase between the excitation components depends on structural parameters, but independent of the auto-spectral densities of the excitations. Secondly, when the knowledge of autospectral densities and phase spectrum of the excitations is available, the critical response is shown to be produced by a system dependent coherence function representing neither fully coherent nor fully incoherent ground motions. The applications of these special cases are discussed in the context of land-based extended structures and secondary systems such as nuclear piping assembly. Illustrative examples on critical inputs and response of sdof and a long-span suspended cable which demonstrated the various features of the approach developed are presented.

  2. Vocabulary of aerospace safety terms pertaining to cryogenic safety, fires, explosions, and structure failure

    NASA Technical Reports Server (NTRS)

    Pelouch, J. J., Jr.; Mandel, G.; Ordin, P. M.

    1976-01-01

    This vocabulary listing characterizes the contents of over 10,000 documents of the NASA Aerospace Safety Research and Data Institute's (ASRDI) safety engineering collection. The ASRDI collection is now one of the series accessible on the NASA RECON data base. There are approximately 6,300 postable terms that describe literature in the areas of cryogenic fluid safety, specifically hydrogen, oxygen, liquified natural gas; fire and explosion technology; and the mechanics of structural failure. To facilitate the proper selection of information nonpostable, related and array terms have been included in this listing.

  3. ESAS Deliverable PS 1.1.2.3: Customer Survey on Code Generations in Safety-Critical Applications

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Denney, Ewen

    2006-01-01

    Automated code generators (ACG) are tools that convert a (higher-level) model of a software (sub-)system into executable code without the necessity for a developer to actually implement the code. Although both commercially supported and in-house tools have been used in many industrial applications, little data exists on how these tools are used in safety-critical domains (e.g., spacecraft, aircraft, automotive, nuclear). The aims of the survey, therefore, were threefold: 1) to determine if code generation is primarily used as a tool for prototyping, including design exploration and simulation, or for fiight/production code; 2) to determine the verification issues with code generators relating, in particular, to qualification and certification in safety-critical domains; and 3) to determine perceived gaps in functionality of existing tools.

  4. Mission and Safety Critical (MASC) plans for the MASC Kernel simulation

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This report discusses a prototype for Mission and Safety Critical (MASC) kernel simulation which explains the intended approach and how the simulation will be used. Smalltalk is chosen for the simulation because of usefulness in quickly building working models of the systems and its object-oriented approach to software. A scenario is also introduced to give details about how the simulation works. The eventual system will be a fully object-oriented one implemented in Ada via Dragoon. To implement the simulation, a scenario using elements typical of those in the Space Station, was created.

  5. Formal Foundations for Hierarchical Safety Cases

    NASA Technical Reports Server (NTRS)

    Denney, Ewen; Pai, Ganesh; Whiteside, Iain

    2015-01-01

    Safety cases are increasingly being required in many safety-critical domains to assure, using structured argumentation and evidence, that a system is acceptably safe. However, comprehensive system-wide safety arguments present appreciable challenges to develop, understand, evaluate, and manage, partly due to the volume of information that they aggregate, such as the results of hazard analysis, requirements analysis, testing, formal verification, and other engineering activities. Previously, we have proposed hierarchical safety cases, hicases, to aid the comprehension of safety case argument structures. In this paper, we build on a formal notion of safety case to formalise the use of hierarchy as a structuring technique, and show that hicases satisfy several desirable properties. Our aim is to provide a formal, theoretical foundation for safety cases. In particular, we believe that tools for high assurance systems should be granted similar assurance to the systems to which they are applied. To this end, we formally specify and prove the correctness of key operations for constructing and managing hicases, which gives the specification for implementing hicases in AdvoCATE, our toolset for safety case automation. We motivate and explain the theory with the help of a simple running example, extracted from a real safety case and developed using AdvoCATE.

  6. Validation and Verification of Future Integrated Safety-Critical Systems Operating under Off-Nominal Conditions

    NASA Technical Reports Server (NTRS)

    Belcastro, Christine M.

    2010-01-01

    Loss of control remains one of the largest contributors to aircraft fatal accidents worldwide. Aircraft loss-of-control accidents are highly complex in that they can result from numerous causal and contributing factors acting alone or (more often) in combination. Hence, there is no single intervention strategy to prevent these accidents and reducing them will require a holistic integrated intervention capability. Future onboard integrated system technologies developed for preventing loss of vehicle control accidents must be able to assure safe operation under the associated off-nominal conditions. The transition of these technologies into the commercial fleet will require their extensive validation and verification (V and V) and ultimate certification. The V and V of complex integrated systems poses major nontrivial technical challenges particularly for safety-critical operation under highly off-nominal conditions associated with aircraft loss-of-control events. This paper summarizes the V and V problem and presents a proposed process that could be applied to complex integrated safety-critical systems developed for preventing aircraft loss-of-control accidents. A summary of recent research accomplishments in this effort is also provided.

  7. Nuclear reactor fuel containment safety structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosewell, M.P.

    A nuclear reactor fuel containment safety structure is disclosed and is shown to include an atomic reactor fuel shield with a fuel containment chamber and exhaust passage means, and a deactivating containment base attached beneath the fuel reactor shield and having exhaust passages, manifold, and fluxing and control material and vessels. 1 claim, 8 figures.

  8. Critical roles of orthopaedic surgeon leadership in healthcare systems to improve orthopaedic surgical patient safety.

    PubMed

    Kuo, Calvin C; Robb, William J

    2013-06-01

    The prevention of medical and surgical harm remains an important public health problem despite increased awareness and implementation of safety programs. Successful introduction and maintenance of surgical safety programs require both surgeon leadership and collaborative surgeon-hospital alignment. Documentation of success of such surgical safety programs in orthopaedic practice is limited. We describe the scope of orthopaedic surgical patient safety issues, define critical elements of orthopaedic surgical safety, and outline leadership roles for orthopaedic surgeons needed to establish and sustain a culture of safety in contemporary healthcare systems. We identified the most common causes of preventable surgical harm based on adverse and sentinel surgical events reported to The Joint Commission. A comprehensive literature review through a MEDLINE(®) database search (January 1982 through April 2012) to identify pertinent orthopaedic surgical safety articles found 14 articles. Where gaps in orthopaedic literature were identified, the review was supplemented by 22 nonorthopaedic surgical references. Our final review included 36 articles. Six important surgical safety program elements needed to eliminate preventable surgical harm were identified: (1) effective surgical team communication, (2) proper informed consent, (3) implementation and regular use of surgical checklists, (4) proper surgical site/procedure identification, (5) reduction of surgical team distractions, and (6) routine surgical data collection and analysis to improve the safety and quality of surgical patient care. Successful surgical safety programs require a culture of safety supported by all six key surgical safety program elements, active surgeon champions, and collaborative hospital and/or administrative support designed to enhance surgical safety and improve surgical patient outcomes. Further research measuring improvements from such surgical safety systems in orthopaedic care is needed.

  9. Investigations of plastic composite materials for highway safety structures

    DOT National Transportation Integrated Search

    1998-08-01

    This report presents a basic overview and assessment of different concepts and technologies of using polymer composites in structures generally used for highway safety. The structural systems included a highway barrier guardrail with its posts and bl...

  10. Safety Criticality Standards Using the French CRISTAL Code Package: Application to the AREVA NP UO{sub 2} Fuel Fabrication Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doucet, M.; Durant Terrasson, L.; Mouton, J.

    2006-07-01

    Criticality safety evaluations implement requirements to proof of sufficient sub critical margins outside of the reactor environment for example in fuel fabrication plants. Basic criticality data (i.e., criticality standards) are used in the determination of sub critical margins for all processes involving plutonium or enriched uranium. There are several criticality international standards, e.g., ARH-600, which is one the US nuclear industry relies on. The French Nuclear Safety Authority (DGSNR and its advising body IRSN) has requested AREVA NP to review the criticality standards used for the evaluation of its Low Enriched Uranium fuel fabrication plants with CRISTAL V0, the recentlymore » updated French criticality evaluation package. Criticality safety is a concern for every phase of the fabrication process including UF{sub 6} cylinder storage, UF{sub 6}-UO{sub 2} conversion, powder storage, pelletizing, rod loading, assembly fabrication, and assembly transportation. Until 2003, the accepted criticality standards were based on the French CEA work performed in the late seventies with the APOLLO1 cell/assembly computer code. APOLLO1 is a spectral code, used for evaluating the basic characteristics of fuel assemblies for reactor physics applications, which has been enhanced to perform criticality safety calculations. Throughout the years, CRISTAL, starting with APOLLO1 and MORET 3 (a 3D Monte Carlo code), has been improved to account for the growth of its qualification database and for increasing user requirements. Today, CRISTAL V0 is an up-to-date computational tool incorporating a modern basic microscopic cross section set based on JEF2.2 and the comprehensive APOLLO2 and MORET 4 codes. APOLLO2 is well suited for criticality standards calculations as it includes a sophisticated self shielding approach, a P{sub ij} flux determination, and a 1D transport (S{sub n}) process. CRISTAL V0 is the result of more than five years of development work focusing on

  11. The Integrated Safety-Critical Advanced Avionics Communication and Control (ISAACC) System Concept: Infrastructure for ISHM

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; Briscoe, Jeri M.

    2005-01-01

    Integrated System Health Management (ISHM) architectures for spacecraft will include hard real-time, critical subsystems and soft real-time monitoring subsystems. Interaction between these subsystems will be necessary and an architecture supporting multiple criticality levels will be required. Demonstration hardware for the Integrated Safety-Critical Advanced Avionics Communication & Control (ISAACC) system has been developed at NASA Marshall Space Flight Center. It is a modular system using a commercially available time-triggered protocol, ?Tp/C, that supports hard real-time distributed control systems independent of the data transmission medium. The protocol is implemented in hardware and provides guaranteed low-latency messaging with inherent fault-tolerance and fault-containment. Interoperability between modules and systems of modules using the TTP/C is guaranteed through definition of messages and the precise message schedule implemented by the master-less Time Division Multiple Access (TDMA) communications protocol. "Plug-and-play" capability for sensors and actuators provides automatically configurable modules supporting sensor recalibration and control algorithm re-tuning without software modification. Modular components of controlled physical system(s) critical to control algorithm tuning, such as pumps or valve components in an engine, can be replaced or upgraded as "plug and play" components without modification to the ISAACC module hardware or software. ISAACC modules can communicate with other vehicle subsystems through time-triggered protocols or other communications protocols implemented over Ethernet, MIL-STD- 1553 and RS-485/422. Other communication bus physical layers and protocols can be included as required. In this way, the ISAACC modules can be part of a system-of-systems in a vehicle with multi-tier subsystems of varying criticality. The goal of the ISAACC architecture development is control and monitoring of safety critical systems of a

  12. Regulatory Anatomy: How "Safety Logics" Structure European Transplant Medicine.

    PubMed

    Hoeyer, Klaus

    2015-07-01

    This article proposes the term "safety logics" to understand attempts within the European Union (EU) to harmonize member state legislation to ensure a safe and stable supply of human biological material for transplants and transfusions. With safety logics, I refer to assemblages of discourses, legal documents, technological devices, organizational structures, and work practices aimed at minimizing risk. I use this term to reorient the analytical attention with respect to safety regulation. Instead of evaluating whether safety is achieved, the point is to explore the types of "safety" produced through these logics as well as to consider the sometimes unintended consequences of such safety work. In fact, the EU rules have been giving rise to complaints from practitioners finding the directives problematic and inadequate. In this article, I explore the problems practitioners face and why they arise. In short, I expose the regulatory anatomy of the policy landscape.

  13. Probabilistic safety analysis of earth retaining structures during earthquakes

    NASA Astrophysics Data System (ADS)

    Grivas, D. A.; Souflis, C.

    1982-07-01

    A procedure is presented for determining the probability of failure of Earth retaining structures under static or seismic conditions. Four possible modes of failure (overturning, base sliding, bearing capacity, and overall sliding) are examined and their combined effect is evaluated with the aid of combinatorial analysis. The probability of failure is shown to be a more adequate measure of safety than the customary factor of safety. As Earth retaining structures may fail in four distinct modes, a system analysis can provide a single estimate for the possibility of failure. A Bayesian formulation of the safety retaining walls is found to provide an improved measure for the predicted probability of failure under seismic loading. The presented Bayesian analysis can account for the damage incurred to a retaining wall during an earthquake to provide an improved estimate for its probability of failure during future seismic events.

  14. Surveying wearable human assistive technology for life and safety critical applications: standards, challenges and opportunities.

    PubMed

    Alam, Muhammad Mahtab; Ben Hamida, Elyes

    2014-05-23

    In this survey a new application paradigm life and safety for critical operations and missions using wearable Wireless Body Area Networks (WBANs) technology is introduced. This paradigm has a vast scope of applications, including disaster management, worker safety in harsh environments such as roadside and building workers, mobile health monitoring, ambient assisted living and many more. It is often the case that during the critical operations and the target conditions, the existing infrastructure is either absent, damaged or overcrowded. In this context, it is envisioned that WBANs will enable the quick deployment of ad-hoc/on-the-fly communication networks to help save many lives and ensuring people's safety. However, to understand the applications more deeply and their specific characteristics and requirements, this survey presents a comprehensive study on the applications scenarios, their context and specific requirements. It explores details of the key enabling standards, existing state-of-the-art research studies, and projects to understand their limitations before realizing aforementioned applications. Application-specific challenges and issues are discussed comprehensively from various perspectives and future research and development directions are highlighted as an inspiration for new innovative solutions. To conclude, this survey opens up a good opportunity for companies and research centers to investigate old but still new problems, in the realm of wearable technologies, which are increasingly evolving and getting more and more attention recently.

  15. Surveying Wearable Human Assistive Technology for Life and Safety Critical Applications: Standards, Challenges and Opportunities

    PubMed Central

    Alam, Muhammad Mahtab; Ben Hamida, Elyes

    2014-01-01

    In this survey a new application paradigm life and safety for critical operations and missions using wearable Wireless Body Area Networks (WBANs) technology is introduced. This paradigm has a vast scope of applications, including disaster management, worker safety in harsh environments such as roadside and building workers, mobile health monitoring, ambient assisted living and many more. It is often the case that during the critical operations and the target conditions, the existing infrastructure is either absent, damaged or overcrowded. In this context, it is envisioned that WBANs will enable the quick deployment of ad-hoc/on-the-fly communication networks to help save many lives and ensuring people's safety. However, to understand the applications more deeply and their specific characteristics and requirements, this survey presents a comprehensive study on the applications scenarios, their context and specific requirements. It explores details of the key enabling standards, existing state-of-the-art research studies, and projects to understand their limitations before realizing aforementioned applications. Application-specific challenges and issues are discussed comprehensively from various perspectives and future research and development directions are highlighted as an inspiration for new innovative solutions. To conclude, this survey opens up a good opportunity for companies and research centers to investigate old but still new problems, in the realm of wearable technologies, which are increasingly evolving and getting more and more attention recently. PMID:24859024

  16. Brief history of patient safety culture and science.

    PubMed

    Ilan, Roy; Fowler, Robert

    2005-03-01

    The science of safety is well established in such disciplines as the automotive and aviation industry. In this brief history of safety science as it pertains to patient care, we review remote and recent publications that have guided the maturation of this field that has particular relevance to the complex structure of systems, personnel, and therapies involved in caring for the critically ill.

  17. An Anesthesia Preinduction Checklist to Improve Information Exchange, Knowledge of Critical Information, Perception of Safety, and Possibly Perception of Teamwork in Anesthesia Teams.

    PubMed

    Tscholl, David W; Weiss, Mona; Kolbe, Michaela; Staender, Sven; Seifert, Burkhardt; Landert, Daniel; Grande, Bastian; Spahn, Donat R; Noethiger, Christoph B

    2015-10-01

    An anesthesia preinduction checklist (APIC) to be performed before anesthesia induction was introduced and evaluated with respect to 5 team-level outcomes, each being a surrogate end point for patient safety: information exchange (the percentage of checklist items exchanged by a team, out of 12 total items); knowledge of critical information (the percentage of critical information items out of 5 total items such as allergies, reported as known by the members of a team); team members' perceptions of safety (the median scores given by the members of a team on a continuous rating scale); their perception of teamwork (the median scores given by the members of a team on a continuous rating scale); and clinical performance (the percentage of completed items out of 14 required tasks, e.g., suction device checked). A prospective interventional study comparing anesthesia teams using the APIC with a control group not using the APIC was performed using a multimethod design. Trained observers rated information exchange and clinical performance during on-site observations of anesthesia inductions. After the observations, each team member indicated the critical information items they knew and their perceptions of safety and teamwork. One hundred five teams using the APIC were compared with 100 teams not doing so. The medians of the team-level outcome scores in the APIC group versus the control group were as follows: information exchange: 100% vs 33% (P < 0.001), knowledge of critical information: 100% vs 90% (P < 0.001), perception of safety: 91% vs 84% (P < 0.001), perception of teamwork: 90% vs 86% (P = 0.028), and clinical performance: 93% vs 93% (P = 0.60). This study provides empirical evidence that the use of a preinduction checklist significantly improves information exchange, knowledge of critical information, and perception of safety in anesthesia teams-all parameters contributing to patient safety. There was a trend indicating improved perception of teamwork.

  18. Software development for safety-critical medical applications

    NASA Technical Reports Server (NTRS)

    Knight, John C.

    1992-01-01

    There are many computer-based medical applications in which safety and not reliability is the overriding concern. Reduced, altered, or no functionality of such systems is acceptable as long as no harm is done. A precise, formal definition of what software safety means is essential, however, before any attempt can be made to achieve it. Without this definition, it is not possible to determine whether a specific software entity is safe. A set of definitions pertaining to software safety will be presented and a case study involving an experimental medical device will be described. Some new techniques aimed at improving software safety will also be discussed.

  19. Concentration-Discharge Relations in the Critical Zone: Implications for Resolving Critical Zone Structure, Function, and Evolution

    NASA Astrophysics Data System (ADS)

    Chorover, Jon; Derry, Louis A.; McDowell, William H.

    2017-11-01

    Critical zone science seeks to develop mechanistic theories that describe critical zone structure, function, and long-term evolution. One postulate is that hydrogeochemical controls on critical zone evolution can be inferred from solute discharges measured down-gradient of reactive flow paths. These flow paths have variable lengths, interfacial compositions, and residence times, and their mixing is reflected in concentration-discharge (C-Q) relations. Motivation for this special section originates from a U.S. Critical Zone Observatories workshop that was held at the University of New Hampshire, 20-22 July 2015. The workshop focused on resolving mechanistic CZ controls over surface water chemical dynamics across the full range of lithogenic (e.g., nonhydrolyzing and hydrolyzing cations and oxyanions) and bioactive solutes (e.g., organic and inorganic forms of C, N, P, and S), including dissolved and colloidal species that may cooccur for a given element. Papers submitted to this special section on "concentration-discharge relations in the critical zone" include those from authors who attended the workshop, as well as others who responded to the open solicitation. Submissions were invited that utilized information pertaining to internal, integrated catchment function (relations between hydrology, biogeochemistry, and landscape structure) to help illuminate controls on observed C-Q relations.

  20. Safety survey report EBR-II safety survey, ANL-west health protection, industrial safety and fire protection survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunbar, K.A.

    1972-01-10

    A safety survey covering the disciplines of Reactor Safety, Nuclear Criticality Safety, Health Protection and Industrial Safety and Fire Protection was conducted at the ANL-West EBR-II FEF Complex during the period January 10-18, 1972. In addition, the entire ANL-West site was surveyed for Health Protection and Industrial Safety and Fire Protection. The survey was conducted by members of the AEC Chicago Operations Office, a member of RDT-HQ and a member of the RDT-ID site office. Eighteen recommendations resulted from the survey, eleven in the area of Industrial Safety and Fire Protection, five in the area of Reactor Safety and twomore » in the area of Nuclear Criticality Safety.« less

  1. Sensitivity-Uncertainty Based Nuclear Criticality Safety Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Forrest B.

    2016-09-20

    These are slides from a seminar given to the University of Mexico Nuclear Engineering Department. Whisper is a statistical analysis package developed to support nuclear criticality safety validation. It uses the sensitivity profile data for an application as computed by MCNP6 along with covariance files for the nuclear data to determine a baseline upper-subcritical-limit for the application. Whisper and its associated benchmark files are developed and maintained as part of MCNP6, and will be distributed with all future releases of MCNP6. Although sensitivity-uncertainty methods for NCS validation have been under development for 20 years, continuous-energy Monte Carlo codes such asmore » MCNP could not determine the required adjoint-weighted tallies for sensitivity profiles. The recent introduction of the iterated fission probability method into MCNP led to the rapid development of sensitivity analysis capabilities for MCNP6 and the development of Whisper. Sensitivity-uncertainty based methods represent the future for NCS validation – making full use of today’s computer power to codify past approaches based largely on expert judgment. Validation results are defensible, auditable, and repeatable as needed with different assumptions and process models. The new methods can supplement, support, and extend traditional validation approaches.« less

  2. Criticality safety evaluation for the Advanced Test Reactor enhanced low enriched uranium fuel elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montierth, Leland M.

    2016-07-19

    The Global Threat Reduction Initiative (GTRI) convert program is developing a high uranium density fuel based on a low enriched uranium (LEU) uranium-molybdenum alloy. Testing of prototypic GTRI fuel elements is necessary to demonstrate integrated fuel performance behavior and scale-up of fabrication techniques. GTRI Enhanced LEU Fuel (ELF) elements based on the ATR-Standard Size elements (all plates fueled) are to be fabricated for testing in the Advanced Test Reactor (ATR). While a specific ELF element design will eventually be provided for detailed analyses and in-core testing, this criticality safety evaluation (CSE) is intended to evaluate a hypothetical ELF element designmore » for criticality safety purposes. Existing criticality analyses have analyzed Standard (HEU) ATR elements from which controls have been derived. This CSE documents analysis that determines the reactivity of the hypothetical ELF fuel elements relative to HEU ATR elements and whether the existing HEU ATR element controls bound the ELF element. The initial calculations presented in this CSE analyzed the original ELF design, now referred to as Mod 0.1. In addition, as part of a fuel meat thickness optimization effort for reactor performance, other designs have been evaluated. As of early 2014 the most current conceptual designs are Mk1A and Mk1B, that were previously referred to as conceptual designs Mod 0.10 and Mod 0.11, respectively. Revision 1 evaluates the reactivity of the ATR HEU Mark IV elements for a comparison with the Mark VII elements.« less

  3. A patient safety objective structured clinical examination.

    PubMed

    Singh, Ranjit; Singh, Ashok; Fish, Reva; McLean, Don; Anderson, Diana R; Singh, Gurdev

    2009-06-01

    There are international calls for improving education for health care workers around certain core competencies, of which patient safety and quality are integral and transcendent parts. Although relevant teaching programs have been developed, little is known about how best to assess their effectiveness. The objective of this work was to develop and implement an objective structured clinical examination (OSCE) to evaluate the impact of a patient safety curriculum. The curriculum was implemented in a family medicine residency program with 47 trainees. Two years after commencing the curriculum, a patient safety OSCE was developed and administered at this program and, for comparison purposes, to incoming residents at the same program and to residents at a neighboring residency program. All 47 residents exposed to the training, all 16 incoming residents, and 10 of 12 residents at the neighboring program participated in the OSCE. In a standardized patient case, error detection and error disclosure skills were better among trained residents. In a chart-based case, trained residents showed better performance in identifying deficiencies in care and described more appropriate means of addressing them. Third year residents exposed to a "Systems Approach" course performed better at system analysis and identifying system-based solutions after the course than before. Results suggest increased systems thinking and inculcation of a culture of safety among residents exposed to a patient safety curriculum. The main weaknesses of the study are its small size and suboptimal design. Much further investigation is needed into the effectiveness of patient safety curricula.

  4. 77 FR 60479 - Burnup Credit in the Criticality Safety Analyses of Pressurized Water Reactor Spent Fuel in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ... Pressurized Water Reactor Spent Fuel in Transportation and Storage Casks AGENCY: Nuclear Regulatory Commission... 3, entitled, ``Burnup Credit in the Criticality Safety Analyses of PWR [Pressurized Water Reactor... water reactor spent nuclear fuel (SNF) in transportation packages and storage casks. SFST-ISG-8...

  5. Software Reliability Issues Concerning Large and Safety Critical Software Systems

    NASA Technical Reports Server (NTRS)

    Kamel, Khaled; Brown, Barbara

    1996-01-01

    This research was undertaken to provide NASA with a survey of state-of-the-art techniques using in industrial and academia to provide safe, reliable, and maintainable software to drive large systems. Such systems must match the complexity and strict safety requirements of NASA's shuttle system. In particular, the Launch Processing System (LPS) is being considered for replacement. The LPS is responsible for monitoring and commanding the shuttle during test, repair, and launch phases. NASA built this system in the 1970's using mostly hardware techniques to provide for increased reliability, but it did so often using custom-built equipment, which has not been able to keep up with current technologies. This report surveys the major techniques used in industry and academia to ensure reliability in large and critical computer systems.

  6. Towards Measurement of Confidence in Safety Cases

    NASA Technical Reports Server (NTRS)

    Denney, Ewen; Paim Ganesh J.; Habli, Ibrahim

    2011-01-01

    Arguments in safety cases are predominantly qualitative. This is partly attributed to the lack of sufficient design and operational data necessary to measure the achievement of high-dependability targets, particularly for safety-critical functions implemented in software. The subjective nature of many forms of evidence, such as expert judgment and process maturity, also contributes to the overwhelming dependence on qualitative arguments. However, where data for quantitative measurements is systematically collected, quantitative arguments provide far more benefits over qualitative arguments, in assessing confidence in the safety case. In this paper, we propose a basis for developing and evaluating integrated qualitative and quantitative safety arguments based on the Goal Structuring Notation (GSN) and Bayesian Networks (BN). The approach we propose identifies structures within GSN-based arguments where uncertainties can be quantified. BN are then used to provide a means to reason about confidence in a probabilistic way. We illustrate our approach using a fragment of a safety case for an unmanned aerial system and conclude with some preliminary observations

  7. Critical issues in sensor science to aid food and water safety.

    PubMed

    Farahi, R H; Passian, A; Tetard, L; Thundat, T

    2012-06-26

    The stability of food and water supplies is widely recognized as a global issue of fundamental importance. Sensor development for food and water safety by nonconventional assays continues to overcome technological challenges. The delicate balance between attaining adequate limits of detection, chemical fingerprinting of the target species, dealing with the complex food matrix, and operating in difficult environments are still the focus of current efforts. While the traditional pursuit of robust recognition methods remains important, emerging engineered nanomaterials and nanotechnology promise better sensor performance but also bring about new challenges. Both advanced receptor-based sensors and emerging non-receptor-based physical sensors are evaluated for their critical challenges toward out-of-laboratory applications.

  8. Exploring the possibility of a common structural model measuring associations between safety climate factors and safety behaviour in health care and the petroleum sectors.

    PubMed

    Olsen, Espen

    2010-09-01

    The aim of the present study was to explore the possibility of identifying general safety climate concepts in health care and petroleum sectors, as well as develop and test the possibility of a common cross-industrial structural model. Self-completion questionnaire surveys were administered in two organisations and sectors: (1) a large regional hospital in Norway that offers a wide range of hospital services, and (2) a large petroleum company that produces oil and gas worldwide. In total, 1919 and 1806 questionnaires were returned from the hospital and petroleum organisation, with response rates of 55 percent and 52 percent, respectively. Using a split sample procedure principal factor analysis and confirmatory factor analysis revealed six identical cross-industrial measurement concepts in independent samples-five measures of safety climate and one of safety behaviour. The factors' psychometric properties were explored with satisfactory internal consistency and concept validity. Thus, a common cross-industrial structural model was developed and tested using structural equation modelling (SEM). SEM revealed that a cross-industrial structural model could be identified among health care workers and offshore workers in the North Sea. The most significant contributing variables in the model testing stemmed from organisational management support for safety and supervisor/manager expectations and actions promoting safety. These variables indirectly enhanced safety behaviour (stop working in dangerous situations) through transitions and teamwork across units, and teamwork within units as well as learning, feedback, and improvement. Two new safety climate instruments were validated as part of the study: (1) Short Safety Climate Survey (SSCS) and (2) Hospital Survey on Patient Safety Culture-short (HSOPSC-short). Based on development of measurements and structural model assessment, this study supports the possibility of a common safety climate structural model across health

  9. Patient safety goals for the proposed Federal Health Information Technology Safety Center.

    PubMed

    Sittig, Dean F; Classen, David C; Singh, Hardeep

    2015-03-01

    The Office of the National Coordinator for Health Information Technology is expected to oversee creation of a Health Information Technology (HIT) Safety Center. While its functions are still being defined, the center is envisioned as a public-private entity focusing on promotion of HIT related patient safety. We propose that the HIT Safety Center leverages its unique position to work with key administrative and policy stakeholders, healthcare organizations (HCOs), and HIT vendors to achieve four goals: (1) facilitate creation of a nationwide 'post-marketing' surveillance system to monitor HIT related safety events; (2) develop methods and governance structures to support investigation of major HIT related safety events; (3) create the infrastructure and methods needed to carry out random assessments of HIT related safety in complex HCOs; and (4) advocate for HIT safety with government and private entities. The convening ability of a federally supported HIT Safety Center could be critically important to our transformation to a safe and effective HIT enabled healthcare system. © The Author 2014. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Towards a Formal Basis for Modular Safety Cases

    NASA Technical Reports Server (NTRS)

    Denney, Ewen; Pai, Ganesh

    2015-01-01

    Safety assurance using argument-based safety cases is an accepted best-practice in many safety-critical sectors. Goal Structuring Notation (GSN), which is widely used for presenting safety arguments graphically, provides a notion of modular arguments to support the goal of incremental certification. Despite the efforts at standardization, GSN remains an informal notation whereas the GSN standard contains appreciable ambiguity especially concerning modular extensions. This, in turn, presents challenges when developing tools and methods to intelligently manipulate modular GSN arguments. This paper develops the elements of a theory of modular safety cases, leveraging our previous work on formalizing GSN arguments. Using example argument structures we highlight some ambiguities arising through the existing guidance, present the intuition underlying the theory, clarify syntax, and address modular arguments, contracts, well-formedness and well-scopedness of modules. Based on this theory, we have a preliminary implementation of modular arguments in our toolset, AdvoCATE.

  11. Software Safety Progress in NASA

    NASA Technical Reports Server (NTRS)

    Radley, Charles F.

    1995-01-01

    NASA has developed guidelines for development and analysis of safety-critical software. These guidelines have been documented in a Guidebook for Safety Critical Software Development and Analysis. The guidelines represent a practical 'how to' approach, to assist software developers and safety analysts in cost effective methods for software safety. They provide guidance in the implementation of the recent NASA Software Safety Standard NSS-1740.13 which was released as 'Interim' version in June 1994, scheduled for formal adoption late 1995. This paper is a survey of the methods in general use, resulting in the NASA guidelines for safety critical software development and analysis.

  12. Damage criticality and inspection concerns of composite-metallic aircraft structures under blunt impact

    NASA Astrophysics Data System (ADS)

    Zou, D.; Haack, C.; Bishop, P.; Bezabeh, A.

    2015-04-01

    Composite aircraft structures such as fuselage and wings are subject to impact from many sources. Ground service equipment (GSE) vehicles are regarded as realistic sources of blunt impact damage, where the protective soft rubber is used. With the use of composite materials, blunt impact damage is of special interest, since potential significant structural damage may be barely visible or invisible on the structure's outer surface. Such impact can result in local or non-local damage, in terms of internal delamination in skin, interfacial delamination between stiffeners and skin, and fracture of internal reinforced component such as stringers and frames. The consequences of these events result in aircraft damage, delays, and financial cost to the industry. Therefore, it is necessary to understand the criticality of damage under this impact and provide reliable recommendations for safety and inspection technologies. This investigation concerns a composite-metallic 4-hat-stiffened and 5-frame panel, designed to represent a fuselage structure panel generic to the new generation of composite aircraft. The test fixtures were developed based on the correlation between finite element analyses of the panel model and the barrel model. Three static tests at certain amount of impact energy were performed, in order to improve the understanding of the influence of the variation in shear ties, and the added rotational stiffness. The results of this research demonstrated low velocity high mass impacts on composite aircraft fuselages beyond 82.1 kN of impact load, which may cause extensive internal structural damage without clear visual detectability on the external skin surface.

  13. A Comparison of Bus Architectures for Safety-Critical Embedded Systems

    NASA Technical Reports Server (NTRS)

    Rushby, John; Miner, Paul S. (Technical Monitor)

    2003-01-01

    We describe and compare the architectures of four fault-tolerant, safety-critical buses with a view to deducing principles common to all of them, the main differences in their design choices, and the tradeoffs made. Two of the buses come from an avionics heritage, and two from automobiles, though all four strive for similar levels of reliability and assurance. The avionics buses considered are the Honeywell SAFEbus (the backplane data bus used in the Boeing 777 Airplane Information Management System) and the NASA SPIDER (an architecture being developed as a demonstrator for certification under the new DO-254 guidelines); the automobile buses considered are the TTTech Time-Triggered Architecture (TTA), recently adopted by Audi for automobile applications, and by Honeywell for avionics and aircraft control functions, and FlexRay, which is being developed by a consortium of BMW, DaimlerChrysler, Motorola, and Philips.

  14. Positive organizational behavior and safety in the offshore oil industry: Exploring the determinants of positive safety climate.

    PubMed

    Hystad, Sigurd W; Bartone, Paul T; Eid, Jarle

    2014-01-01

    Much research has now documented the substantial influence of safety climate on a range of important outcomes in safety critical organizations, but there has been scant attention to the question of what factors might be responsible for positive or negative safety climate. The present paper draws from positive organizational behavior theory to test workplace and individual factors that may affect safety climate. Specifically, we explore the potential influence of authentic leadership style and psychological capital on safety climate and risk outcomes. Across two samples of offshore oil-workers and seafarers working on oil platform supply ships, structural equation modeling yielded results that support a model in which authentic leadership exerts a direct effect on safety climate, as well as an indirect effect via psychological capital. This study shows the importance of leadership qualities as well as psychological factors in shaping a positive work safety climate and lowering the risk of accidents.

  15. Enhancing the Safety of Children in Foster Care and Family Support Programs: Automated Critical Incident Reporting

    ERIC Educational Resources Information Center

    Brenner, Eliot; Freundlich, Madelyn

    2006-01-01

    The Adoption and Safe Families Act of 1997 has made child safety an explicit focus in child welfare. The authors describe an automated critical incident reporting program designed for use in foster care and family-support programs. The program, which is based in Lotus Notes and uses e-mail to route incident reports from direct service staff to…

  16. Deriving Safety Cases from Machine-Generated Proofs

    NASA Technical Reports Server (NTRS)

    Basir, Nurlida; Fischer, Bernd; Denney, Ewen

    2009-01-01

    Proofs provide detailed justification for the validity of claims and are widely used in formal software development methods. However, they are often complex and difficult to understand, because they use machine-oriented formalisms; they may also be based on assumptions that are not justified. This causes concerns about the trustworthiness of using formal proofs as arguments in safety-critical applications. Here, we present an approach to develop safety cases that correspond to formal proofs found by automated theorem provers and reveal the underlying argumentation structure and top-level assumptions. We concentrate on natural deduction proofs and show how to construct the safety cases by covering the proof tree with corresponding safety case fragments.

  17. Critical review of the current literature on the safety of sucralose.

    PubMed

    Magnuson, Bernadene A; Roberts, Ashley; Nestmann, Earle R

    2017-08-01

    Sucralose is a non-caloric high intensity sweetener that is approved globally for use in foods and beverages. This review provides an updated summary of the literature addressing the safety of use of sucralose. Studies reviewed include chemical characterization and stability, toxicokinetics in animals and humans, assessment of genotoxicity, and animal and human feeding studies. Endpoints evaluated include effects on growth, development, reproduction, neurotoxicity, immunotoxicity, carcinogenicity and overall health status. Human clinical studies investigated potential effects of repeated consumption in individuals with diabetes. Recent studies on the safety of sucralose focused on carcinogenic potential and the effect of sucralose on the gut microflora are reviewed. Following the discovery of sweet taste receptors in the gut and studies investigating the activation of these receptors by sucralose lead to numerous human clinical studies assessing the effect of sucralose on overall glycemic control. Estimated daily intakes of sucralose in different population subgroups, including recent studies on children with special dietary needs, consistently find that the intakes of sucralose in all members of the population remain well below the acceptable daily intake. Collectively, critical review of the extensive database of research demonstrates that sucralose is safe for its intended use as a non-caloric sugar alternative. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Building effective critical care teams

    PubMed Central

    2011-01-01

    Critical care is formulated and delivered by a team. Accordingly, behavioral scientific principles relevant to teams, namely psychological safety, transactive memory and leadership, apply to critical care teams. Two experts in behavioral sciences review the impact of psychological safety, transactive memory and leadership on medical team outcomes. A clinician then applies those principles to two routine critical care paradigms: daily rounds and resuscitations. Since critical care is a team endeavor, methods to maximize teamwork should be learned and mastered by critical care team members, and especially leaders. PMID:21884639

  19. 3 CFR 8672 - Proclamation 8672 of May 9, 2011. National Building Safety Month, 2011

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... public and private sectors—to implement effective standards and codes that sustain safe and resilient structures. We need innovation and partnerships at all levels of society to develop transformative... Proclamation Building safety is a critical component of our homeland security, our personal and public safety...

  20. Structural equation modeling of pesticide poisoning, depression, safety, and injury.

    PubMed

    Beseler, Cheryl L; Stallones, Lorann

    2013-01-01

    The role of pesticide poisoning in risk of injuries may operate through a link between pesticide-induced depressive symptoms and reduced engagement in safety behaviors. The authors conducted structural equation modeling of cross-sectional data to examine the pattern of associations between pesticide poisoning, depressive symptoms, safety knowledge, safety behaviors, and injury. Interviews of 1637 Colorado farm operators and their spouses from 964 farms were conducted during 1993-1997. Pesticide poisoning was assessed based on a history of ever having been poisoned. The Center for Epidemiologic Studies-Depression scale was used to assess depressive symptoms. Safety knowledge and safety behaviors were assessed using ten items for each latent variable. Outcomes were safety behaviors and injuries. A total of 154 injuries occurred among 1604 individuals with complete data. Pesticide poisoning, financial problems, health, and age predicted negative affect/somatic depressive symptoms with similar effect sizes; sex did not. Depression was more strongly associated with safety behavior than was safety knowledge. Two safety behaviors were significantly associated with an increased risk of injury. This study emphasizes the importance of financial problems and health on depression, and provides further evidence for the link between neurological effects of past pesticide poisoning on risk-taking behaviors and injury.

  1. MODU marine safety: Structural inspection and readiness surveys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, M.W.; Marucci, T.F.; Taft, D.G.

    1987-11-01

    Several years ago, Exxon instituted a survey of mobile offshore drilling units (MODU's) under contract to the corporation to evaluate structural integrity and readiness to respond properly to marine emergencies. This paper briefly describes results of the inspections and our on-going marine safety program. Industry activity is also highlighted.

  2. Positive organizational behavior and safety in the offshore oil industry: Exploring the determinants of positive safety climate

    PubMed Central

    Hystad, Sigurd W.; Bartone, Paul T.; Eid, Jarle

    2013-01-01

    Much research has now documented the substantial influence of safety climate on a range of important outcomes in safety critical organizations, but there has been scant attention to the question of what factors might be responsible for positive or negative safety climate. The present paper draws from positive organizational behavior theory to test workplace and individual factors that may affect safety climate. Specifically, we explore the potential influence of authentic leadership style and psychological capital on safety climate and risk outcomes. Across two samples of offshore oil-workers and seafarers working on oil platform supply ships, structural equation modeling yielded results that support a model in which authentic leadership exerts a direct effect on safety climate, as well as an indirect effect via psychological capital. This study shows the importance of leadership qualities as well as psychological factors in shaping a positive work safety climate and lowering the risk of accidents. PMID:24454524

  3. [Structural elements of critical thinking of nurses in emergency care].

    PubMed

    Crossetti, Maria da Graça Oliveira; Bittencourt, Greicy Kelly Gouveia Dias; Lima, Ana Amélia Antunes; de Góes, Marta Georgina Oliveira; Saurin, Gislaine

    2014-09-01

    The objective of this study was to analyze the structural elements of critical thinking (CT) of nurses in the clinical decision-making process. This exploratory, qualitative study was conducted with 20 emergency care nurses in three hospitals in southern Brazil. Data were collected from April to June 2009, and a validated clinical case was applied from which nurses listed health problems, prescribed care and listed the structural elements of CT. Content analysis resulted in categories used to determine priority structural elements of CT, namely theoretical foundations and practical relationship to clinical decision making; technical and scientific knowledge and clinical experience, thought processes and clinical decision making: clinical reasoning and basis for clinical judgments of nurses: patient assessment and ethics. It was concluded that thinking critically is a skill that enables implementation of a secure and effective nursing care process.

  4. Structural Design Methodology Based on Concepts of Uncertainty

    NASA Technical Reports Server (NTRS)

    Lin, K. Y.; Du, Jiaji; Rusk, David

    2000-01-01

    In this report, an approach to damage-tolerant aircraft structural design is proposed based on the concept of an equivalent "Level of Safety" that incorporates past service experience in the design of new structures. The discrete "Level of Safety" for a single inspection event is defined as the compliment of the probability that a single flaw size larger than the critical flaw size for residual strength of the structure exists, and that the flaw will not be detected. The cumulative "Level of Safety" for the entire structure is the product of the discrete "Level of Safety" values for each flaw of each damage type present at each location in the structure. Based on the definition of "Level of Safety", a design procedure was identified and demonstrated on a composite sandwich panel for various damage types, with results showing the sensitivity of the structural sizing parameters to the relative safety of the design. The "Level of Safety" approach has broad potential application to damage-tolerant aircraft structural design with uncertainty.

  5. Use of Unified Modeling Language (UML) in Model-Based Development (MBD) For Safety-Critical Applications

    DTIC Science & Technology

    2014-12-01

    appears that UML is becoming the de facto MBD language. OMG® states the following on the MDA® FAQ page: “Although not formally required [for MBD], UML...a known limitation [42], so UML users should plan accordingly, especially for safety-critical programs. For example, “models are not used to...description of the MBD tool chain can be produced. That description could be resident in a Plan for Software Aspects of Certification (PSAC) or Software

  6. Reductions in invasive device use and care costs after institution of a daily safety checklist in a pediatric critical care unit.

    PubMed

    Tarrago, Rod; Nowak, Jeffrey E; Leonard, Christopher S; Payne, Nathaniel R

    2014-06-01

    In the critical care unit, complexity of care can contribute to both medical errors and increased costs, particularly when clinicians are forced to rely on memory. Checklists can be used to improve safety and reduce cost. A number of omission-related adverse events in 2010 prompted the development of a checklist to reduce the possibility of similar future events. The PICU Safety Checklist was implemented in the pediatric ICU (PICU) at Children's Hospitals and Clinics of Minnesota. During a 21-month period, the checklist was used to prompt the care team to address quality and safety items during rounds. The initial checklist was paper, with two subsequent versions being incorporated into the electronic medical record (EMR). The daily safety checklist was successfully implemented in the PICU. Work-flow improvements based on regular multidisciplinary feedback led to more consistent use of the checklist. Improvements on all quality and safety metrics were identified, including invasive device use, medication costs, antibiotic and laboratory test use, and compliance with standards of care. Staff satisfaction rates were > 80% for safety, communication, and collaboration. By using a daily safety checklist in the pediatric critical care unit, we improved quality and safety, as well as the collaborative culture among all clinicians. Incorporating the checklist into the EMR improved compliance and accountability, ensuring its application to all patients. Clinicians now often individually address many checklist items outside the formal rounding process, indicating that the checklist content has become part of their usual practice. A successful implementation showing tangible clinical improvements can lead to interest and adoption in other clinical areas within the institution.

  7. Safety envelope for load tolerance of structural element design based on multi-stage testing

    DOE PAGES

    Park, Chanyoung; Kim, Nam H.

    2016-09-06

    Structural elements, such as stiffened panels and lap joints, are basic components of aircraft structures. For aircraft structural design, designers select predesigned elements satisfying the design load requirement based on their load-carrying capabilities. Therefore, estimation of safety envelope of structural elements for load tolerances would be a good investment for design purpose. In this article, a method of estimating safety envelope is presented using probabilistic classification, which can estimate a specific level of failure probability under both aleatory and epistemic uncertainties. An important contribution of this article is that the calculation uncertainty is reflected in building a safety envelope usingmore » Gaussian process, and the effect of element test data on reducing the calculation uncertainty is incorporated by updating the Gaussian process model with the element test data. It is shown that even one element test can significantly reduce the calculation uncertainty due to lacking knowledge of actual physics, so that conservativeness in a safety envelope is significantly reduced. The proposed approach was demonstrated with a cantilever beam example, which represents a structural element. The example shows that calculation uncertainty provides about 93% conservativeness against the uncertainty due to a few element tests. As a result, it is shown that even a single element test can increase the load tolerance modeled with the safety envelope by 20%.« less

  8. Implementation of safety management systems in Hong Kong construction industry - A safety practitioner's perspective.

    PubMed

    Yiu, Nicole S N; Sze, N N; Chan, Daniel W M

    2018-02-01

    In the 1980s, the safety management system (SMS) was introduced in the construction industry to mitigate against workplaces hazards, reduce the risk of injuries, and minimize property damage. Also, the Factories and Industrial Undertakings (Safety Management) Regulation was introduced on 24 November 1999 in Hong Kong to empower the mandatory implementation of a SMS in certain industries including building construction. Therefore, it is essential to evaluate the effectiveness of the SMS in improving construction safety and identify the factors that influence its implementation in Hong Kong. A review of the current state-of-the-practice helped to establish the critical success factors (CSFs), benefits, and difficulties of implementing the SMS in the construction industry, while structured interviews were used to establish the key factors of the SMS implementation. Results of the state-of-the-practice review and structured interviews indicated that visible senior commitment, in terms of manpower and cost allocation, and competency of safety manager as key drivers for the SMS implementation. More so, reduced accident rates and accident costs, improved organization framework, and increased safety audit ratings were identified as core benefits of implementing the SMS. Meanwhile, factors such as insufficient resources, tight working schedule, and high labor turnover rate were the key challenges to the effective SMS implementation in Hong Kong. The findings of the study were consistent and indicative of the future development of safety management practice and the sustainable safety improvement of Hong Kong construction industry in the long run. Copyright © 2018 National Safety Council and Elsevier Ltd. All rights reserved.

  9. Extended Aging Theories for Predictions of Safe Operational Life of Critical Airborne Structural Components

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Chen, Tony

    2006-01-01

    The previously developed Ko closed-form aging theory has been reformulated into a more compact mathematical form for easier application. A new equivalent loading theory and empirical loading theories have also been developed and incorporated into the revised Ko aging theory for the prediction of a safe operational life of airborne failure-critical structural components. The new set of aging and loading theories were applied to predict the safe number of flights for the B-52B aircraft to carry a launch vehicle, the structural life of critical components consumed by load excursion to proof load value, and the ground-sitting life of B-52B pylon failure-critical structural components. A special life prediction method was developed for the preflight predictions of operational life of failure-critical structural components of the B-52H pylon system, for which no flight data are available.

  10. NASA Software Safety Standard

    NASA Technical Reports Server (NTRS)

    Rosenberg, Linda

    1997-01-01

    If software is a critical element in a safety critical system, it is imperative to implement a systematic approach to software safety as an integral part of the overall system safety programs. The NASA-STD-8719.13A, "NASA Software Safety Standard", describes the activities necessary to ensure that safety is designed into software that is acquired or developed by NASA, and that safety is maintained throughout the software life cycle. A PDF version, is available on the WWW from Lewis. A Guidebook that will assist in the implementation of the requirements in the Safety Standard is under development at the Lewis Research Center (LeRC). After completion, it will also be available on the WWW from Lewis.

  11. Stress Analysis of B-52B and B-52H Air-Launching Systems Failure-Critical Structural Components

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    2005-01-01

    The operational life analysis of any airborne failure-critical structural component requires the stress-load equation, which relates the applied load to the maximum tangential tensile stress at the critical stress point. The failure-critical structural components identified are the B-52B Pegasus pylon adapter shackles, B-52B Pegasus pylon hooks, B-52H airplane pylon hooks, B-52H airplane front fittings, B-52H airplane rear pylon fitting, and the B-52H airplane pylon lower sway brace. Finite-element stress analysis was performed on the said structural components, and the critical stress point was located and the stress-load equation was established for each failure-critical structural component. The ultimate load, yield load, and proof load needed for operational life analysis were established for each failure-critical structural component.

  12. Application of Advanced Fracture Mechanics Technology to Ensure Structural Reliability in Critical Titanium Structures,

    DTIC Science & Technology

    1982-11-22

    RD-Ri42 354 APPLICATION OF ADVANCED FRACTURE MECHANICS TECHNOLOGY i/i TT ENSURE STRUCTURA..(U) 1WESTINGHOUSE RESEARCH FND DEVELOPMENT CENTER...I Iml .4. 47 Igo 12. 4 %B 1. __ ~. ~% ski Z L __ 12 APPLICATION OF ADVANCED FRACTURE MECHANICS -p TECHNOLOGY TO ENSURE STRUCTURAL RELIABILITY IN...Road W Pilttsburgh. Pennsylvania 15235 84 06 18 207 APPLICATION OF ADVANCED FRACTURE MECHANICS TECHNOLOGY TO ENSURE STRUCTURAL RELIABILITY IN CRITICAL

  13. Structural empowerment, Magnet hospital characteristics, and patient safety culture: making the link.

    PubMed

    Armstrong, Kevin J; Laschinger, Heather

    2006-01-01

    Nurse managers are seeking ways to improve patient safety in their organizations. At the same time, they struggle to address nurse recruitment and retention concerns by focusing on the quality of nurses' work environment. This exploratory study tested a theoretical model, linking the quality of the nursing practice environments to a culture of patient safety. Specific strategies to increase nurses' access to empowerment structures and thereby increase the culture of patient safety are suggested.

  14. OECD/NEA expert group on uncertainty analysis for criticality safety assessment: Results of benchmark on sensitivity calculation (phase III)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanova, T.; Laville, C.; Dyrda, J.

    2012-07-01

    The sensitivities of the k{sub eff} eigenvalue to neutron cross sections have become commonly used in similarity studies and as part of the validation algorithm for criticality safety assessments. To test calculations of the sensitivity coefficients, a benchmark study (Phase III) has been established by the OECD-NEA/WPNCS/EG UACSA (Expert Group on Uncertainty Analysis for Criticality Safety Assessment). This paper presents some sensitivity results generated by the benchmark participants using various computational tools based upon different computational methods: SCALE/TSUNAMI-3D and -1D, MONK, APOLLO2-MORET 5, DRAGON-SUSD3D and MMKKENO. The study demonstrates the performance of the tools. It also illustrates how model simplificationsmore » impact the sensitivity results and demonstrates the importance of 'implicit' (self-shielding) sensitivities. This work has been a useful step towards verification of the existing and developed sensitivity analysis methods. (authors)« less

  15. Mission and Safety Critical (MASC): An EVACS simulation with nested transactions

    NASA Technical Reports Server (NTRS)

    Auty, David; Atkinson, Colin; Randall, Charlie

    1992-01-01

    The Extra-Vehicular Activity Control System (EVACS) Simulation with Nested Transactions, a recent effort of the MISSION Kernel Team, is documented. The EVACS simulation is a simulation of some aspects of the Extra-Vehicular Activity Control System, in particular, just the selection of communication frequencies. The simulation is a tool to explore mission and safety critical (MASC) applications. For the purpose of this effort, its current definition is quite narrow serving only as a starting point for prototyping purposes. (Note that EVACS itself has been supplanted in a larger scenario of a lunar outpost with astronauts and a lunar rover). The frequency selection scenario was modified to embed its processing in nested transactions. Again as a first step, only two aspects of transaction support were implemented in this prototype: architecture and state recovery. Issues of concurrency and distribution are yet to be addressed.

  16. NASA's Software Safety Standard

    NASA Technical Reports Server (NTRS)

    Ramsay, Christopher M.

    2005-01-01

    NASA (National Aeronautics and Space Administration) relies more and more on software to control, monitor, and verify its safety critical systems, facilities and operations. Since the 1960's there has hardly been a spacecraft (manned or unmanned) launched that did not have a computer on board that provided vital command and control services. Despite this growing dependence on software control and monitoring, there has been no consistent application of software safety practices and methodology to NASA's projects with safety critical software. Led by the NASA Headquarters Office of Safety and Mission Assurance, the NASA Software Safety Standard (STD-18l9.13B) has recently undergone a significant update in an attempt to provide that consistency. This paper will discuss the key features of the new NASA Software Safety Standard. It will start with a brief history of the use and development of software in safety critical applications at NASA. It will then give a brief overview of the NASA Software Working Group and the approach it took to revise the software engineering process across the Agency.

  17. Nuclear criticality safety calculational analysis for small-diameter containers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LeTellier, M.S.; Smallwood, D.J.; Henkel, J.A.

    This report documents calculations performed to establish a technical basis for the nuclear criticality safety of favorable geometry containers, sometimes referred to as 5-inch containers, in use at the Portsmouth Gaseous Diffusion Plant. A list of containers currently used in the plant is shown in Table 1.0-1. These containers are currently used throughout the plant with no mass limits. The use of containers with geometries or material types other than those addressed in this evaluation must be bounded by this analysis or have an additional analysis performed. The following five basic container geometries were modeled and bound all container geometriesmore » in Table 1.0-1: (1) 4.32-inch-diameter by 50-inch-high polyethylene bottle; (2) 5.0-inch-diameter by 24-inch-high polyethylene bottle; (3) 5.25-inch-diameter by 24-inch-high steel can ({open_quotes}F-can{close_quotes}); (4) 5.25-inch-diameter by 15-inch-high steel can ({open_quotes}Z-can{close_quotes}); and (5) 5.0-inch-diameter by 9-inch-high polybottle ({open_quotes}CO-4{close_quotes}). Each container type is evaluated using five basic reflection and interaction models that include single containers and multiple containers in normal and in credible abnormal conditions. The uranium materials evaluated are UO{sub 2}F{sub 2}+H{sub 2}O and UF{sub 4}+oil materials at 100% and 10% enrichments and U{sub 3}O{sub 8}, and H{sub 2}O at 100% enrichment. The design basis safe criticality limit for the Portsmouth facility is k{sub eff} + 2{sigma} < 0.95. The KENO study results may be used as the basis for evaluating general use of these containers in the plant.« less

  18. Discerning Thermodynamic Basis of Self-Organization in Critical Zone Structure and Function

    NASA Astrophysics Data System (ADS)

    Richardson, M.; Kumar, P.

    2017-12-01

    Self-organization characterizes the spontaneous emergence of order. Self-organization in the Critical Zone, the region of Earth's skin from below the groundwater table to the top of the vegetation canopy, involves the interaction of biotic and abiotic processes occurring through a hierarchy of temporal and spatial scales. The self-organization is sustained through input of energy and material in an open system framework, and the resulting formations are called dissipative structures. Why do these local states of organization form and how are they thermodynamically favorable? We hypothesize that structure formation is linked to energy conversion and matter throughput rates across driving gradients. Furthermore, we predict that structures in the Critical Zone evolve based on local availability of nutrients, water, and energy. By considering ecosystems as open thermodynamic systems, we model and study the throughput signatures on short times scales to determine origins and characteristics of ecosystem structure. This diagnostic approach allows us to use fluxes of matter and energy to understand the thermodynamic drivers of the system. By classifying the fluxes and dynamics in a system, we can identify patterns to determine the thermodynamic drivers for organized states. Additionally, studying the partitioning of nutrients, water, and energy throughout ecosystems through dissipative structures will help identify reasons for structure shapes and how these shapes impact major Critical Zone functions.

  19. 10 CFR 70.62 - Safety program and integrated safety analysis.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...; (iv) Potential accident sequences caused by process deviations or other events internal to the... of occurrence of each potential accident sequence identified pursuant to paragraph (c)(1)(iv) of this... have experience in nuclear criticality safety, radiation safety, fire safety, and chemical process...

  20. 10 CFR 70.62 - Safety program and integrated safety analysis.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...; (iv) Potential accident sequences caused by process deviations or other events internal to the... of occurrence of each potential accident sequence identified pursuant to paragraph (c)(1)(iv) of this... have experience in nuclear criticality safety, radiation safety, fire safety, and chemical process...

  1. 10 CFR 70.62 - Safety program and integrated safety analysis.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...; (iv) Potential accident sequences caused by process deviations or other events internal to the... of occurrence of each potential accident sequence identified pursuant to paragraph (c)(1)(iv) of this... have experience in nuclear criticality safety, radiation safety, fire safety, and chemical process...

  2. Cannabis for therapeutic purposes and public health and safety: a systematic and critical review.

    PubMed

    Sznitman, Sharon R; Zolotov, Yuval

    2015-01-01

    The use of Cannabis for Therapeutic Purposes (CTP) has recently become legal in many places. These policy and legal modifications may be related to changes in cannabis perceptions, availability and use and in the way cannabis is grown and sold. This may in turn have effects on public health and safety. To better understand the potential effects of CTP legalization on public health and safety, the current paper synthesizes and critically discusses the relevant literature. Twenty-eight studies were identified by a comprehensive search strategy, and their characteristics and main findings were systematically reviewed according to the following content themes: CTP and illegal cannabis use; CTP and other public health issues; CTP, crime and neighbourhood disadvantage. The research field is currently limited by a lack of theoretical and methodological rigorous studies. The review shows that the most prevalent theme of investigation so far has been the relation between CTP and illegal cannabis use. In addition, the literature review shows that there is an absence of evidence to support many common concerns related to detrimental public health and safety effects of CTP legalization. Although lack of evidence provides some reassurance that CTP legalization may not have posed a substantial threat to public health and safety, this conclusion needs to be examined in light of the limitations of studies conducted so far. Furthermore, as CTP policy continues to evolve, including incorporation of greater commercialization, it is possible that the full effects of CTP legalization have yet to take place. Ensuring study quality will allow future research to better investigate the complex role that CTP plays in relation to society at large, and public health and safety in particular. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Problem of unity of measurements in ensuring safety of hydraulic structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kheifits, V.Z.; Markov, A.I.; Braitsev, V.V.

    1994-07-01

    Ensuring the safety of hydraulic structures (HSs) is not only an industry but also a national and global concern, since failure of large water impounding structures can entail large losses of lives and enormous material losses related to destruction downstream. The main information on the degree of safety of a structure is obtained by comparing information about the actual state of the structure obtained on the basis of measurements in key zones of the structure with the predicted state on basis of the design model used when designing the structure for given conditions of external actions. Numerous, from hundreds tomore » thousands, string type transducers are placed in large HSs. This system of transducers monitor the stress-strain rate, seepage, and thermal regimes. These measurements are supported by the State Standards Committee which certifies the accuracy of the checking methods. To improve the instrumental monitoring of HSs, the author recommends: Calibration of methods and means of reliable diagnosis for each measuring channel in the HS, improvements to reduce measurement error, support for the system software programs, and development of appropriate standards for the design and examination of HSs.« less

  4. Regenerative braking strategies, vehicle safety and stability control systems: critical use-case proposals

    NASA Astrophysics Data System (ADS)

    Oleksowicz, Selim A.; Burnham, Keith J.; Southgate, Adam; McCoy, Chris; Waite, Gary; Hardwick, Graham; Harrington, Cian; McMurran, Ross

    2013-05-01

    The sustainable development of vehicle propulsion systems that have mainly focused on reduction of fuel consumption (i.e. CO2 emission) has led, not only to the development of systems connected with combustion processes but also to legislation and testing procedures. In recent years, the low carbon policy has made hybrid vehicles and fully electric vehicles (H/EVs) popular. The main virtue of these propulsion systems is their ability to restore some of the expended energy from kinetic movement, e.g. the braking process. Consequently new research and testing methods for H/EVs are currently being developed. This especially concerns the critical 'use-cases' for functionality tests within dynamic events for both virtual simulations, as well as real-time road tests. The use-case for conventional vehicles for numerical simulations and road tests are well established. However, the wide variety of tests and their great number (close to a thousand) creates a need for selection, in the first place, and the creation of critical use-cases suitable for testing H/EVs in both virtual and real-world environments. It is known that a marginal improvement in the regenerative braking ratio can significantly improve the vehicle range and, therefore, the economic cost of its operation. In modern vehicles, vehicle dynamics control systems play the principal role in safety, comfort and economic operation. Unfortunately, however, the existing standard road test scenarios are insufficient for H/EVs. Sector knowledge suggests that there are currently no agreed tests scenarios to fully investigate the effects of brake blending between conventional and regenerative braking as well as the regenerative braking interaction with active driving safety systems (ADSS). The paper presents seven manoeuvres, which are considered to be suitable and highly informative for the development and examination of H/EVs with regenerative braking capability. The critical manoeuvres presented are considered to be

  5. Critical current and electric transport properties of superconducting epitaxial Nb(Ti)N submicron structures

    NASA Astrophysics Data System (ADS)

    Klimov, A.; Słysz, W.; Guziewicz, M.; Kolkovsky, V.; Wegrzecki, M.; Bar, J.; Marchewka, M.; Seredyński, B.

    2016-12-01

    Critical current and current-voltage characteristics of epitaxial Nb(Ti)N submicron ultrathin structures were measured as function of temperature. For 700-nm-wide bridge we found current-driven vortex de-pinning at low temperatures and thermally activated flux flow closer to the transition temperature, as the limiting factors for the critical current density. For 100-nm-wide meander we observed combination of phase-slip activation and vortex-anti-vortex pair (VAP) thermal excitation. Our Nb(Ti)N meander structure demonstrates high de-pairing critical current densities 107 A/cm2 at low temperatures, but the critical currents are much smaller due to presence of the local constrictions.

  6. Structured Case Analysis: Developing Critical Thinking Skills in a Marketing Case Course

    ERIC Educational Resources Information Center

    Klebba, Joanne M.; Hamilton, Janet G.

    2007-01-01

    Structured case analysis is a hybrid pedagogy that flexibly combines diverse instructional methods with comprehensive case analysis as a mechanism to develop critical thinking skills. An incremental learning framework is proposed that allows instructors to develop and monitor content-specific theory and the corresponding critical thinking skills.…

  7. Design of Critical Components

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Zaretsky, Erwin V.

    2001-01-01

    Critical component design is based on minimizing product failures that results in loss of life. Potential catastrophic failures are reduced to secondary failures where components removed for cause or operating time in the system. Issues of liability and cost of component removal become of paramount importance. Deterministic design with factors of safety and probabilistic design address but lack the essential characteristics for the design of critical components. In deterministic design and fabrication there are heuristic rules and safety factors developed over time for large sets of structural/material components. These factors did not come without cost. Many designs failed and many rules (codes) have standing committees to oversee their proper usage and enforcement. In probabilistic design, not only are failures a given, the failures are calculated; an element of risk is assumed based on empirical failure data for large classes of component operations. Failure of a class of components can be predicted, yet one can not predict when a specific component will fail. The analogy is to the life insurance industry where very careful statistics are book-kept on classes of individuals. For a specific class, life span can be predicted within statistical limits, yet life-span of a specific element of that class can not be predicted.

  8. Resilience Engineering in Critical Long Term Aerospace Software Systems: A New Approach to Spacecraft Software Safety

    NASA Astrophysics Data System (ADS)

    Dulo, D. A.

    Safety critical software systems permeate spacecraft, and in a long term venture like a starship would be pervasive in every system of the spacecraft. Yet software failure today continues to plague both the systems and the organizations that develop them resulting in the loss of life, time, money, and valuable system platforms. A starship cannot afford this type of software failure in long journeys away from home. A single software failure could have catastrophic results for the spaceship and the crew onboard. This paper will offer a new approach to developing safe reliable software systems through focusing not on the traditional safety/reliability engineering paradigms but rather by focusing on a new paradigm: Resilience and Failure Obviation Engineering. The foremost objective of this approach is the obviation of failure, coupled with the ability of a software system to prevent or adapt to complex changing conditions in real time as a safety valve should failure occur to ensure safe system continuity. Through this approach, safety is ensured through foresight to anticipate failure and to adapt to risk in real time before failure occurs. In a starship, this type of software engineering is vital. Through software developed in a resilient manner, a starship would have reduced or eliminated software failure, and would have the ability to rapidly adapt should a software system become unstable or unsafe. As a result, long term software safety, reliability, and resilience would be present for a successful long term starship mission.

  9. Critical Drivers for Safety Culture: Examining Department of Energy and U.S. Army Operational Experiences - 12382

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowes, Elizabeth A.

    2012-07-01

    Evaluating operational incidents can provide a window into the drivers most critical to establishing and maintaining a strong safety culture, thereby minimizing the potential project risk associated with safety incidents. By examining U.S. Department of Energy (DOE) versus U.S. Army drivers in terms of regulatory and contract requirements, programs implemented to address the requirements, and example case studies of operational events, a view of the elements most critical to making a positive influence on safety culture is presented. Four case studies are used in this evaluation; two from DOE and two from U.S. Army experiences. Although the standards guiding operationsmore » at these facilities are different, there are many similarities in the level of hazards, as well as the causes and the potential consequences of the events presented. Two of the incidents examined, one from a DOE operation and the other from a U.S. Army facility, resulted in workers receiving chemical burns. The remaining two incidents are similar in that significant conduct of operations failures occurred resulting in high-level radioactive waste (in the case of the DOE facility) or chemical agent (in the case of the Army facility) being transferred outside of engineering controls. A review of the investigation reports for all four events indicates the primary causes to be failures in work planning leading to ineffective hazard evaluation and control, lack of procedure adherence, and most importantly, lack of management oversight to effectively reinforce expectations for safe work planning and execution. DOE and Army safety programs are similar, and although there are some differences in contractual requirements, the expectations for safe performance are essentially the same. This analysis concludes that instilling a positive safety culture comes down to management leadership and engagement to (1) cultivate an environment that values a questioning attitude and (2) continually reinforce

  10. Use of failure mode, effect and criticality analysis to improve safety in the medication administration process.

    PubMed

    Rodriguez-Gonzalez, Carmen Guadalupe; Martin-Barbero, Maria Luisa; Herranz-Alonso, Ana; Durango-Limarquez, Maria Isabel; Hernandez-Sampelayo, Paloma; Sanjurjo-Saez, Maria

    2015-08-01

    To critically evaluate the causes of preventable adverse drug events during the nurse medication administration process in inpatient units with computerized prescription order entry and profiled automated dispensing cabinets in order to prioritize interventions that need to be implemented and to evaluate the impact of specific interventions on the criticality index. This is a failure mode, effects and criticality analysis (FMECA) study. A multidisciplinary consensus committee composed of pharmacists, nurses and doctors evaluated the process of administering medications in a hospital setting in Spain. By analysing the process, all failure modes were identified and criticality was determined by rating severity, frequency and likelihood of failure detection on a scale of 1 to 10, using adapted versions of already published scales. Safety strategies were identified and prioritized. Through consensus, the committee identified eight processes and 40 failure modes, of which 20 were classified as high risk. The sum of the criticality indices was 5254. For the potential high-risk failure modes, 21 different potential causes were found resulting in 24 recommendations. Thirteen recommendations were prioritized and developed over a 24-month period, reducing total criticality from 5254 to 3572 (a 32.0% reduction). The recommendations with a greater impact on criticality were the development of an electronic medication administration record (-582) and the standardization of intravenous drug compounding in the unit (-168). Other improvements, such as barcode medication administration technology (-1033), were scheduled for a longer period of time because of lower feasibility. FMECA is a useful approach that can improve the medication administration process. © 2015 John Wiley & Sons, Ltd.

  11. Safety and efficacy of autologous cell therapy in critical limb ischemia: a systematic review.

    PubMed

    Benoit, Eric; O'Donnell, Thomas F; Patel, Amit N

    2013-01-01

    Researchers have accumulated a decade of experience with autologous cell therapy in the treatment of critical limb ischemia (CLI). We conducted a systematic review of clinical trials in the literature to determine the safety and efficacy of cell therapy in CLI. We searched the literature for clinical trials of autologous cell therapy in CLI, including observational series of five or more patients to accrue a large pool of patients for safety analysis. Safety analysis included evaluation of death, cancer, unregulated angiogenesis, and procedural adverse events such as bleeding. Efficacy analysis included the clinical endpoints amputation and death as well as functional and surrogate endpoints. We identified 45 clinical trials, including seven RCTs, and 1,272 patients who received cell therapy. The overall adverse event rate was low (4.2%). Cell therapy patients did not have a higher mortality rate than control patients and demonstrated no increase in cancer incidence when analyzed against population rates. With regard to efficacy, cell therapy patients had a significantly lower amputation rate than control patients (OR 0.36, p = 0.0004). Cell therapy also demonstrated efficacy in a variety of functional and surrogate outcomes. Clinical trials differed in the proportion of patients with risk factors for clinical outcomes, and these influenced rates of amputation and death. Cell therapy presents a favorable safety profile with a low adverse event rate and no increase in severe events such as mortality and cancer and treatment with cell therapy decreases the risk of amputation. Cell therapy has a positive benefit-to-risk ratio in CLI and may be a valuable treatment option, particularly for those challenging patients who cannot undergo arterial reconstruction.

  12. Criticality Safety Evaluation for Small Sample Preparation and Non-Destructive Assay (NDA) Operations in Wing 7 Basement of the CMR Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunkle, Paige Elizabeth; Zhang, Ning

    Nuclear Criticality Safety (NCS) has reviewed the fissionable material small sample preparation and NDA operations in Wing 7 Basement of the CMR Facility. This is a Level-1 evaluation conducted in accordance with NCS-AP-004 [Reference 1], formerly NCS-GUIDE-01, and the guidance set forth on use of the Standard Criticality Safety Requirements (SCSRs) [Reference 2]. As stated in Reference 2, the criticality safety evaluation consists of both the SCSR CSED and the SCSR Application CSED. The SCSR CSED is a Level-3 CSED [Reference 3]. This Level-1 CSED is the SCSR Application CSED. This SCSR Application (Level-1) evaluation does not derive controls, itmore » simply applies controls derived from the SCSR CSED (Level-3) for the application of operations conducted here. The controls derived in the SCSR CSED (Level-3) were evaluated via the process described in Section 6.6.5 of SD-130 (also reproduced in Section 4.3.5 of NCS-AP-004 [Reference 1]) and were determined to not meet the requirements for consideration of elevation into the safety basis documentation for CMR. According to the guidance set forth on use of the SCSRs [Reference 2], the SCSR CSED (Level-3) is also applicable to the CMR Facility because the process and the normal and credible abnormal conditions in question are bounded by those that are described in the SCSR CSED. The controls derived in the SCSR CSED include allowances for solid materials and solution operations. Based on the operations conducted at this location, there are less-than-accountable (LTA) amounts of 233U. Based on the evaluation documented herein, the normal and credible abnormal conditions that might arise during the execution of this process will remain subcritical with the following recommended controls.« less

  13. Y-12 PLANT NUCLEAR SAFETY HANDBOOK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wachter, J.W. ed.; Bailey, M.L.; Cagle, T.J.

    1963-03-27

    Information needed to solve nuclear safety problems is condensed into a reference book for use by persons familiar with the field. Included are a glossary of terms; useful tables; nuclear constants; criticality calculations; basic nuclear safety limits; solution geometries and critical values; metal critical values; criticality values for intermediate, heterogeneous, and interacting systems; miscellaneous and related information; and report number, author, and subject indexes. (C.H.)

  14. Work-family conflict and safety participation of high-speed railway drivers: Job satisfaction as a mediator.

    PubMed

    Wei, Wei; Guo, Ming; Ye, Long; Liao, Ganli; Yang, Zhehan

    2016-10-01

    Despite the large body of work on the work-family interface, hardly any literature has addressed the work-family interface in safety-critical settings. This study draws from social exchange theory to examine the effect of employees' strain-based work-to-family conflict on their supervisors' rating of their safety participation through job satisfaction. The sample consisted of 494 drivers from a major railway company in China. The results of a structural equation model revealed that drivers' strain-based work-to-family conflict negatively influences safety participation, and the relationship was partially mediated by job satisfaction. These findings highlight the importance of reducing employees' work-to-family conflict in safety-critical organizations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Managing Risk in Safety Critical Operations - Lessons Learned from Space Operations

    NASA Technical Reports Server (NTRS)

    Gonzalez, Steven A.

    2002-01-01

    The Mission Control Center (MCC) at Johnson Space Center (JSC) has a rich legacy of supporting Human Space Flight operations throughout the Apollo, Shuttle and International Space Station eras. Through the evolution of ground operations and the Mission Control Center facility, NASA has gained a wealth of experience of what it takes to manage the risk in Safety Critical Operations, especially when human life is at risk. The focus of the presentation will be on the processes (training, operational rigor, team dynamics) that enable the JSC/MCC team to be so successful. The presentation will also share the evolution of the Mission Control Center architecture and how the evolution was introduced while managing the risk to the programs supported by the team. The details of the MCC architecture (e.g., the specific software, hardware or tools used in the facility) will not be shared at the conference since it would not give any additional insight as to how risk is managed in Space Operations.

  16. Bounding criticality safety analyses for shipments of unconfigured spent nuclear fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lichtenwalter, J.J.; Parks, C.V.

    1998-06-01

    In November 1996, a request was made to the US Department of Energy for a waiver for three shipments of spent nuclear fuel (SNF) from Oak Ridge National Laboratory (ORNL) to the Savannah River Site (SRS) in the US NRC certified BMI-1 cask (CoC 5957). Although the post-irradiation fissile mass (based on chemical assays) in each shipment was less than 800 g, a criticality safety analysis was needed because the pre-irradiation mass exceeded 800 g, the fissile material limit in the CoC. The analyses were performed on SNF consisting of aluminum-clad U{sub 3}O{sub 8}, UAl{sub x}, and U{sub 3}Si{sub 2}more » plates, fragments and pieces that had been irradiated at ORNL during the Reduced Enrichment Research and Test Reactor Program of the 1980s. The highlights of the approach used to analyze this unique SNF and the benefits of the waiver are presented in this paper.« less

  17. Microtraps for neutral atoms using superconducting structures in the critical state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emmert, A.; Brune, M.; Raimond, J.-M.

    Recently demonstrated superconducting atom chips provide a platform for trapping atoms and coupling them to solid-state quantum systems. Controlling these devices requires a full understanding of the supercurrent distribution in the trapping structures. For type-II superconductors, this distribution is hysteretic in the critical state due to the partial penetration of the magnetic field in the thin superconducting film through pinned vortices. We report here an experimental observation of this memory effect. Our results are in good agreement with the predictions of the Bean model of the critical state without adjustable parameters. The memory effect allows to write and store permanentmore » currents in micron-sized superconducting structures and paves the way toward engineered trapping potentials.« less

  18. Protection and Safety.

    ERIC Educational Resources Information Center

    American School Board Journal, 1964

    1964-01-01

    Several aspects of school safety and protection are presented for school administrators and architects. Among those topics discussed are--(1) life safety, (2) vandalism controlled through proper design, (3) personal protective devices, and (4) fire alarm systems. Another critical factor in providing a complete school safety program is proper…

  19. Comparing safety climate for nurses working in operating theatres, critical care and ward areas in the UK: a mixed methods study

    PubMed Central

    Tarling, Maggie; Jones, Anne; Murrells, Trevor; McCutcheon, Helen

    2017-01-01

    Objectives The main aim of the study was to explore the potential sources of variation and understand the meaning of safety climate for nursing practice in acute hospital settings in the UK. Design A sequential mixed methods design included a cross-sectional survey using the Safety Climate Questionnaire (SCQ) and thematic analysis of focus group discussions. Confirmatory factor analysis (CFA) was used to validate the factor structure of the SCQ. Factor scores were compared between nurses working in operating theatres, critical care and ward areas. Results from the survey and the thematic analysis were then compared and synthesised. Setting A London University. Participants 319 registered nurses working in acute hospital settings completed the SCQ and a further 23 nurses participated in focus groups. Results CFA indicated that there was a good model fit on some criteria (χ2=1683.699, df=824, p<0.001; χ2/df=2.04; root mean square error of approximation=0.058) but a less acceptable fit on comparative fit index which is 0.804. There was a statistically significant difference between clinical specialisms in management commitment (F (4,266)=4.66, p=0.001). Nurses working in operating theatres had lower scores compared with ward areas and they also reported negative perceptions about management in their focus group. There was significant variation in scores for communication across clinical specialism (F (4,266)=2.62, p=0.035) but none of the pairwise comparisons achieved statistical significance. Thematic analysis identified themes of human factors, clinical management and protecting patients. The system and the human side of caring was identified as a meta-theme. Conclusions The results suggest that the SCQ has some utility but requires further exploration. The findings indicate that safety in nursing practice is a complex interaction between safety systems and the social and interpersonal aspects of clinical practice. PMID:29084793

  20. Applications of Advanced Nondestructive Measurement Techniques to Address Safety of Flight Issues on NASA Spacecraft

    NASA Technical Reports Server (NTRS)

    Prosser, Bill

    2016-01-01

    Advanced nondestructive measurement techniques are critical for ensuring the reliability and safety of NASA spacecraft. Techniques such as infrared thermography, THz imaging, X-ray computed tomography and backscatter X-ray are used to detect indications of damage in spacecraft components and structures. Additionally, sensor and measurement systems are integrated into spacecraft to provide structural health monitoring to detect damaging events that occur during flight such as debris impacts during launch and assent or from micrometeoroid and orbital debris, or excessive loading due to anomalous flight conditions. A number of examples will be provided of how these nondestructive measurement techniques have been applied to resolve safety critical inspection concerns for the Space Shuttle, International Space Station (ISS), and a variety of launch vehicles and unmanned spacecraft.

  1. A structural equation modelling approach examining the pathways between safety climate, behaviour performance and workplace slipping

    PubMed Central

    Swedler, David I; Verma, Santosh K; Huang, Yueng-Hsiang; Lombardi, David A; Chang, Wen-Ruey; Brennan, Melayne; Courtney, Theodore K

    2015-01-01

    Objective Safety climate has previously been associated with increasing safe workplace behaviours and decreasing occupational injuries. This study seeks to understand the structural relationship between employees’ perceptions of safety climate, performing a safety behaviour (ie, wearing slip-resistant shoes) and risk of slipping in the setting of limited-service restaurants. Methods At baseline, we surveyed 349 employees at 30 restaurants for their perceptions of their safety training and management commitment to safety as well as demographic data. Safety performance was identified as wearing slip-resistant shoes, as measured by direct observation by the study team. We then prospectively collected participants’ hours worked and number of slips weekly for the next 12 weeks. Using a confirmatory factor analysis, we modelled safety climate as a higher order factor composed of previously identified training and management commitment factors. Results The 349 study participants experienced 1075 slips during the 12-week follow-up. Confirmatory factor analysis supported modelling safety climate as a higher order factor composed of safety training and management commitment. In a structural equation model, safety climate indirectly affected prospective risk of slipping through safety performance, but no direct relationship between safety climate and slips was evident. Conclusions Results suggest that safety climate can reduce workplace slips through performance of a safety behaviour as well as suggesting a potential causal mechanism through which safety climate can reduce workplace injuries. Safety climate can be modelled as a higher order factor composed of safety training and management commitment. PMID:25710968

  2. Safety of High Speed Guided Ground Transportation Systems: Work Breakdown Structure

    DOT National Transportation Integrated Search

    1994-11-30

    This report provides a systems approach to the assessment, evaluation and application of high-speed guided ground transportation (HSGGT) safety criteria and : presents one potential methodology by combining a work breakdown structure (WBS) : approach...

  3. The occupational health and safety of flight attendants.

    PubMed

    Griffiths, Robin F; Powell, David M C

    2012-05-01

    In order to perform safety-critical roles in emergency situations, flight attendants should meet minimum health standards and not be impaired by factors such as fatigue. In addition, the unique occupational and environmental characteristics of flight attendant employment may have consequential occupational health and safety implications, including radiation exposure, cancer, mental ill-health, musculoskeletal injury, reproductive disorders, and symptoms from cabin air contamination. The respective roles of governments and employers in managing these are controversial. A structured literature review was undertaken to identify key themes for promoting a future agenda for flight attendant health and safety. Recommendations include breast cancer health promotion, implementation of Fatigue Risk Management Systems, standardization of data collection on radiation exposure and health outcomes, and more coordinated approaches to occupational health and safety risk management. Research is ongoing into cabin air contamination incidents, cancer, and fatigue as health and safety concerns. Concerns are raised that statutory medical certification for flight attendants will not benefit either flight safety or occupational health.

  4. Structural insights of ZIP4 extracellular domain critical for optimal zinc transport

    NASA Astrophysics Data System (ADS)

    Zhang, Tuo; Sui, Dexin; Hu, Jian

    2016-06-01

    The ZIP zinc transporter family is responsible for zinc uptake from the extracellular milieu or intracellular vesicles. The LIV-1 subfamily, containing nine out of the 14 human ZIP proteins, is featured with a large extracellular domain (ECD). The critical role of the ECD is manifested by disease-causing mutations on ZIP4, a representative LIV-1 protein. Here we report the first crystal structure of a mammalian ZIP4-ECD, which reveals two structurally independent subdomains and an unprecedented dimer centred at the signature PAL motif. Structure-guided mutagenesis, cell-based zinc uptake assays and mapping of the disease-causing mutations indicate that the two subdomains play pivotal but distinct roles and that the bridging region connecting them is particularly important for ZIP4 function. These findings lead to working hypotheses on how ZIP4-ECD exerts critical functions in zinc transport. The conserved dimeric architecture in ZIP4-ECD is also demonstrated to be a common structural feature among the LIV-1 proteins.

  5. Urban street structure and traffic safety.

    PubMed

    Mohan, Dinesh; Bangdiwala, Shrikant I; Villaveces, Andres

    2017-09-01

    This paper reports the influence of road type and junction density on road traffic fatality rates in U.S. cities. The Fatality Analysis Reporting System (FARS) files were used to obtain fatality rates for all cities for the years 2005-2010. A stratified random sample of 16 U.S. cities was taken, and cities with high and low road traffic fatality rates were compared on their road layout details (TIGER maps were used). Statistical analysis was done to determine the effect of junction density and road type on road traffic fatality rates. The analysis of road network and road traffic crash fatality rates in these randomly selected U.S. cities shows that, (a) higher number of junctions per road length was significantly associated with a lower motor- vehicle crash and pedestrian mortality rates, and, (b) increased number of kilometers of roads of any kind was associated with higher fatality rates, but an additional kilometer of main arterial road was associated with a significantly higher increase in total fatalities. When compared to non-arterial roads, the higher the ratio of highways and main arterial roads, there was an association with higher fatality rates. These results have important implications for road safety professionals. They suggest that once the road and street structure is put in place, that will influence whether a city has low or high traffic fatality rates. A city with higher proportion of wider roads and large city blocks will tend to have higher traffic fatality rates, and therefore in turn require much more efforts in police enforcement and other road safety measures. Urban planners need to know that smaller block size with relatively less wide roads will result in lower traffic fatality rates and this needs to be incorporated at the planning stage. Copyright © 2017 National Safety Council and Elsevier Ltd. All rights reserved.

  6. Submersion criticality safety of tungsten-rhenium urania cermet fuel for space propulsion and power applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A.E. Craft; R. C. O'Brien; S. D. Howe

    Nuclear thermal rockets are the preferred propulsion technology for a manned mission to Mars, and tungsten–uranium oxide cermet fuels could provide significant performance and cost advantages for nuclear thermal rockets. A nuclear reactor intended for use in space must remain subcritical before and during launch, and must remain subcritical in launch abort scenarios where the reactor falls back to Earth and becomes submerged in terrestrial materials (including seawater, wet sand, or dry sand). Submersion increases reflection of neutrons and also thermalizes the neutron spectrum, which typically increases the reactivity of the core. This effect is typically very significant for compact,more » fast-spectrum reactors. This paper provides a submersion criticality safety analysis for a representative tungsten/uranium oxide fueled reactor with a range of fuel compositions. Each submersion case considers both the rhenium content in the matrix alloy and the uranium oxide volume fraction in the cermet. The inclusion of rhenium significantly improves the submersion criticality safety of the reactor. While increased uranium oxide content increases the reactivity of the core, it does not significantly affect the submersion behavior of the reactor. There is no significant difference in submersion behavior between reactors with rhenium distributed within the cermet matrix and reactors with a rhenium clad in the coolant channels. The combination of the flooding of the coolant channels in submersion scenarios and the presence of a significant amount of spectral shift absorbers (i.e. high rhenium concentration) further decreases reactivity for short reactor cores compared to longer cores.« less

  7. Aerial View: SLS Intertank Arrives at Marshall for Critical Structural Testing

    NASA Image and Video Library

    2018-03-08

    A structural test version of the intertank for NASA's new deep-space rocket, the Space Launch System, arrives at NASA’s Marshall Space Flight Center in Huntsville, Alabama, March 4, aboard the barge Pegasus. The intertank is the second piece of structural hardware for the massive SLS core stage built at NASA's Michoud Assembly Facility in New Orleans delivered to Marshall for testing. The structural test article will undergo critical testing as engineers push, pull and bend the hardware with millions of pounds of force to ensure it can withstand the forces of launch and ascent. The test hardware is structurally identical to the flight version of the intertank that will connect the core stage's two colossal propellant tanks, serve as the upper-connection point for the two solid rocket boosters and house critical avionics and electronics. Pegasus, originally used during the Space Shuttle Program, has been redesigned and extended to accommodate the SLS rocket's massive, 212-foot-long core stage -- the backbone of the rocket. The 310-foot-long barge will ferry the flight core stage from Michoud to other NASA centers for tests and launch.

  8. How often do surgeons obtain the critical view of safety during laparoscopic cholecystectomy?

    PubMed

    Stefanidis, Dimitrios; Chintalapudi, Nikita; Anderson-Montoya, Brittany; Oommen, Bindhu; Tobben, Daniel; Pimentel, Manuel

    2017-01-01

    The reported incidence (0.16-1.5 %) of bile duct injury (BDI) during laparoscopic cholecystectomy (LC) is higher than during open cholecystectomy and has not decreased over time despite increasing experience with the procedure. The "critical view of safety" (CVS) technique may help to prevent BDI when certain criteria are met prior to division of any structures. This study aimed to evaluate the adherence of practicing surgeons to the CVS criteria during LC and the impact of a training intervention on CVS identification. LC procedures of general surgeons were video-recorded. De-identified recordings were reviewed by a blinded observer and rated on a 6-point scale using the previously published CVS criteria. A coaching program was conducted, and participating surgeons were re-assessed in the same manner. The observer assessed ten LC videos, each involving a different surgeon. The CVS was adequately achieved by two surgeons (20 %). The remaining eight surgeons (80 %) did not obtain adequate CVS prior to division of any structures, despite two surgeons dictating that they did; the mean score of this group was 1.75. After training, five participating surgeons (50 %) scored > 4, and the mean increased from 1.75 (baseline) to 3.75 (p < 0.05). The CVS criteria were not routinely used by the majority of participating surgeons. Further, one-fourth of those who claimed to obtain the CVS did so inadequately. All surgeons who participated in training showed improvement during their post-assessment. Our findings suggest that education of practicing surgeons in the application of the CVS during LC can result in increased implementation and quality of the CVS. Pending studies with larger samples, our findings may partly explain the sustained BDI incidence despite increased experience with LC. Our study also supports the value of direct observation of surgical practices and subsequent training for quality improvement.

  9. Structural and critical current properties in Al-doped MgB 2

    NASA Astrophysics Data System (ADS)

    Zheng, D. N.; Xiang, J. Y.; Lang, P. L.; Li, J. Q.; Che, G. C.; Zhao, Z. W.; Wen, H. H.; Tian, H. Y.; Ni, Y. M.; Zhao, Z. X.

    2004-08-01

    A series of Al-doped Mg 1- xAl xB 2 samples have been fabricated and systematic study on structure and superconducting properties have been carried out for the samples. In addition to a structural transition observed by XRD, TEM micrographs showed the existence of a superstructure of double c-axis lattice constant along the direction perpendicular to the boron honeycomb sheet. In order to investigate the effect of Al doping on flux pinning and critical current properties in MgB 2, measurements on the superconducting transition temperature Tc, irreversible field Birr and critical current density Jc were performed too, for the samples with the doping levels lower than 0.15 in particular. These experimental observations were discussed in terms of Al doping induced changes in carrier concentration.

  10. Critical classroom structures for empowering students to participate in science discourse

    NASA Astrophysics Data System (ADS)

    Belleau, Shelly N.; Otero, Valerie K.

    2013-01-01

    We compared contextual characteristics that impacted the nature and substance of "summarizing discussions" in a physics and a chemistry classroom in an Hispanic-serving urban high school. Specifically, we evaluated structural components of curricula and classrooms necessary to develop a culture of critical inquiry. Using the Physics and Everyday Thinking (PET) curriculum in the physics course, we found that students demonstrated critical thinking, critical evaluation, and used laboratory evidence to support ideas in whole-class summarizing discussions. We then implemented a model similar to PET in the chemistry course. However, chemistry students' statements lacked evidence, opposition and critical evaluation, and required greater teacher facilitation. We hypothesize that the designed laboratories and the research basis of PET influenced the extent to which physics students verbalized substantive scientific thought, authentic appeals to evidence, and a sense of empowerment to participate in the classroom scientific community.

  11. The Role of the Critical Incident Stress Debriefing (CISD) Process in Disaster Counseling.

    ERIC Educational Resources Information Center

    Everly, George S., Jr.

    1995-01-01

    Posttraumatic stress is an occupational hazard for certain high-risk groups such as personnel in emergency services, public safety, and disaster response. Critical Incident Stress Debriefing (CISD) represents a structured group intervention designed for the mitigation of posttraumatic stress. Provides an introduction to and an overview of the CISD…

  12. CRITICAL MECHANICAL PROPERTIES OF STRUCTURAL LIGHT-WEIGHT CONCRETE AND THE EFFECTS OF THESE PROPERTIES ON THE DESIGN OF THE PAVEMENT STRUCTURE.

    DOT National Transportation Integrated Search

    1965-01-01

    In this study, critical mechanical properties of structural lightweight concrete were determined and utilized in the evaluation of a design of concrete pavements. Also presented are the critical mechanical properties resulting from unrestrained and r...

  13. Developing a 'critical' approach to patient and public involvement in patient safety in the NHS: learning lessons from other parts of the public sector?

    PubMed

    Ocloo, Josephine E; Fulop, Naomi J

    2012-12-01

    There has been considerable momentum within the NHS over the last 10 years to develop greater patient and public involvement (PPI). This commitment has been reflected in numerous policy initiatives. In patient safety, the drive to increase involvement has increasingly been seen as an important way of building a safety culture. Evidence suggests, however, that progress has been slow and even more variable than in health care generally. Given this context, the paper analyses some of the key underlying drivers for involvement in the wider context of health and social care and makes some suggestions on what lessons can be learned for developing the PPI agenda in patient safety. To develop PPI further, it is argued that a greater understanding is needed of the contested nature of involvement in patient safety and how this has similarities to the emergence of user involvement in other parts of the public services. This understanding has led to the development of a range of critical theories to guide involvement that also make more explicit the underlying factors that support and hinder involvement processes, often related to power inequities and control. Achieving greater PPI in patient safety is therefore seen to require a more critical framework for understanding processes of involvement that can also help guide and evaluate involvement practices. © 2011 Blackwell Publishing Ltd.

  14. NASA's Software Safety Standard

    NASA Technical Reports Server (NTRS)

    Ramsay, Christopher M.

    2007-01-01

    NASA relies more and more on software to control, monitor, and verify its safety critical systems, facilities and operations. Since the 1960's there has hardly been a spacecraft launched that does not have a computer on board that will provide command and control services. There have been recent incidents where software has played a role in high-profile mission failures and hazardous incidents. For example, the Mars Orbiter, Mars Polar Lander, the DART (Demonstration of Autonomous Rendezvous Technology), and MER (Mars Exploration Rover) Spirit anomalies were all caused or contributed to by software. The Mission Control Centers for the Shuttle, ISS, and unmanned programs are highly dependant on software for data displays, analysis, and mission planning. Despite this growing dependence on software control and monitoring, there has been little to no consistent application of software safety practices and methodology to NASA's projects with safety critical software. Meanwhile, academia and private industry have been stepping forward with procedures and standards for safety critical systems and software, for example Dr. Nancy Leveson's book Safeware: System Safety and Computers. The NASA Software Safety Standard, originally published in 1997, was widely ignored due to its complexity and poor organization. It also focused on concepts rather than definite procedural requirements organized around a software project lifecycle. Led by NASA Headquarters Office of Safety and Mission Assurance, the NASA Software Safety Standard has recently undergone a significant update. This new standard provides the procedures and guidelines for evaluating a project for safety criticality and then lays out the minimum project lifecycle requirements to assure the software is created, operated, and maintained in the safest possible manner. This update of the standard clearly delineates the minimum set of software safety requirements for a project without detailing the implementation for those

  15. Evaluation and Customization of WHO Safety Checklist for Patient Safety in Otorhinolaryngology.

    PubMed

    Dabholkar, Yogesh; Velankar, Haritosh; Suryanarayan, Sneha; Dabholkar, Twinkle Y; Saberwal, Akanksha A; Verma, Bhavika

    2018-03-01

    The WHO has designed a safe surgery checklist to enhance communication and awareness of patient safety during surgery and to minimise complications. WHO recommends that the check-list be evaluated and customised by end users as a tool to promote safe surgery. The aim of present study was to evaluate the impact of WHO safety checklist on patient safety awareness in otorhinolaryngology and to customise it for the speciality. A prospective structured questionnaire based study was done in ENT operating room for duration of 1 month each for cases, before and after implementation of safe surgery checklist. The feedback from respondents (surgeons, nurses and anaesthetists) was used to arrive at a customised checklist for otolaryngology as per WHO guidelines. The checklist significantly improved team member's awareness of patient's identity (from 17 to 86%) and each other's identity and roles (from 46 to 94%) and improved team communication (from 73 to 92%) in operation theatre. There was a significant improvement in preoperative check of equipment and critical events were discussed more frequently. The checklist could be effectively customised to suit otolaryngology needs as per WHO guidelines. The modified checklist needs to be validated by otolaryngology associations. We conclude from our study that the WHO Surgical safety check-list has a favourable impact on patient safety awareness, team-work and communication of operating team and can be customised for otolaryngology setting.

  16. A Silent Safety Program

    NASA Technical Reports Server (NTRS)

    Goodin, James Ronald

    2006-01-01

    NASA's Columbia Accident Investigation Board (CAIB) referred 8 times to the NASA "Silent Safety Program." This term, "Silent Safety Program" was not an original observation but first appeared in the Rogers Commission's Investigation of the Challenger Mishap. The CAIB on page 183 of its report in the paragraph titled 'Encouraging Minority Opinion,' stated "The Naval Reactor Program encourages minority opinions and "bad news." Leaders continually emphasize that when no minority opinions are present, the responsibility for a thorough and critical examination falls to management. . . Board interviews revealed that it is difficult for minority and dissenting opinions to percolate up through the agency's hierarchy. . ." The first question and perhaps the only question is - what is a silent safety program? Well, a silent safety program may be the same as the dog that didn't bark in Sherlock Holmes' "Adventure of the Silver Blaze" because system safety should behave as a devil's advocate for the program barking on every occasion to insure a critical review inclusion. This paper evaluates the NASA safety program and provides suggestions to prevent the recurrence of the silent safety program alluded to in the Challenger Mishap Investigation. Specifically targeted in the CAM report, "The checks and balances the safety system was meant to provide were not working." A silent system safety program is not unique to NASA but could emerge in any and every organization. Principles developed by Irving Janis in his book, Groupthink, listed criteria used to evaluate an organization's cultural attributes that allows a silent safety program to evolve. If evidence validates Jams's criteria, then Jams's recommendations for preventing groupthink can also be used to improve a critical evaluation and thus prevent the development of a silent safety program.

  17. Criticality Safety Analysis on the Mixed Be, Nat-U, and C (Graphite) Reflectors in 55-Gallon Waste Drums and Their Equivalents for HWM Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, P

    The objective of this analysis is to develop and establish the technical basis on the criticality safety controls for the storage of mixed beryllium (Be), natural uranium (Nat-U), and carbon (C)/graphite reflectors in 55-gallon waste containers and/or their equivalents in Hazardous Waste Management (HWM) facilities. Based on the criticality safety limits and controls outlined in Section 3.0, the operations involving the use of mixed-reflector drums satisfy the double-contingency principle as required by DOE Order 420.1 and are therefore criticality safe. The mixed-reflector mass limit is 120 grams for each 55-gallon drum or its equivalent. a reflector waiver of 50 gramsmore » is allowed for Be, Nat-U, or C/graphite combined. The waived reflectors may be excluded from the reflector mass calculations when determining if a drum is compliant. The mixed-reflector drums are allowed to mix with the typical 55-gallon one-reflector drums with a Pu mass limit of 120 grams. The fissile mass limit for the mixed-reflector container is 65 grams of Pu equivalent each. The corresponding reflector mass limits are 300 grams of Be, and/or 100 kilograms of Nat-U, and/or 110 kilograms of C/graphite for each container. All other unaffected control parameters for the one-reflector containers remain in effect for the mixed-reflector drums. For instance, Superior moderators, such as TrimSol, Superla white mineral oil No. 9, paraffin, and polyethylene, are allowed in unlimited quantities. Hydrogenous materials with a hydrogen density greater than 0.133 gram/cc are not allowed. Also, an isolation separation of no less than 76.2 cm (30-inch) is required between a mixed array and any other array. Waste containers in the action of being transported are exempted from this 76.2-cm (30-inch) separation requirement. All deviations from the CS controls and mass limits listed in Section 3.0 will require individual criticality safety analyses on a case-by-case basis for each of them to confirm their

  18. Deriving Safety Cases from Automatically Constructed Proofs

    NASA Technical Reports Server (NTRS)

    Basir, Nurlida; Denney, Ewen; Fischer, Bernd

    2009-01-01

    Formal proofs provide detailed justification for the validity of claims and are widely used in formal software development methods. However, they are often complex and difficult to understand, because the formalism in which they are constructed and encoded is usually machine-oriented, and they may also be based on assumptions that are not justified. This causes concerns about the trustworthiness of using formal proofs as arguments in safety-critical applications. Here, we present an approach to develop safety cases that correspond to formal proofs found by automated theorem provers and reveal the underlying argumentation structure and top-level assumptions. We concentrate on natural deduction style proofs, which are closer to human reasoning than resolution proofs, and show how to construct the safety cases by covering the natural deduction proof tree with corresponding safety case fragments. We also abstract away logical book-keeping steps, which reduces the size of the constructed safety cases. We show how the approach can be applied to the proofs found by the Muscadet prover.

  19. HYGIENE PRACTICES IN URBAN RESTAURANTS AND CHALLENGES TO IMPLEMENTING FOOD SAFETY AND HAZARD ANALYSIS CRITICAL CONTROL POINTS (HACCP) PROGRAMMES IN THIKA TOWN, KENYA.

    PubMed

    Muinde, R K; Kiinyukia, C; Rombo, G O; Muoki, M A

    2012-12-01

    To determine the microbial load in food, examination of safety measures and possibility of implementing an Hazard Analysis Critical Control Points (HACCP) system. The target population for this study consisted of restaurants owners in Thika. Municipality (n = 30). Simple randomsamples of restaurantswere selected on a systematic sampling method of microbial analysis in cooked, non-cooked, raw food and water sanitation in the selected restaurants. Two hundred and ninety eight restaurants within Thika Municipality were selected. Of these, 30 were sampled for microbiological testing. From the study, 221 (74%) of the restaurants were ready to eat establishments where food was prepared early enough to hold and only 77(26%) of the total restaurants, customers made an order of food they wanted. 118(63%) of the restaurant operators/staff had knowledge on quality control on food safety measures, 24 (8%) of the restaurants applied these knowledge while 256 (86%) of the restaurants staff showed that food contains ingredients that were hazard if poorly handled. 238 (80%) of the resultants used weighing and sorting of food materials, 45 (15%) used preservation methods and the rest used dry foods as critical control points on food safety measures. The study showed that there was need for implementation of Hazard Analysis Critical Control Points (HACCP) system to enhance food safety. Knowledge of HACCP was very low with 89 (30%) of the restaurants applying some of quality measures to the food production process systems. There was contamination with Coliforms, Escherichia coli and Staphylococcus aureus microbial though at very low level. The means of Coliforms, Escherichia coli and Staphylococcus aureas microbial in sampled food were 9.7 x 103CFU/gm, 8.2 x 103 CFU/gm and 5.4 x 103 CFU/gm respectively with Coliforms taking the highest mean.

  20. Critical joints in large composite aircraft structure

    NASA Technical Reports Server (NTRS)

    Nelson, W. D.; Bunin, B. L.; Hart-Smith, L. J.

    1983-01-01

    A program was conducted at Douglas Aircraft Company to develop the technology for critical structural joints of composite wing structure that meets design requirements for a 1990 commercial transport aircraft. The prime objective of the program was to demonstrate the ability to reliably predict the strength of large bolted composite joints. Ancillary testing of 180 specimens generated data on strength and load-deflection characteristics which provided input to the joint analysis. Load-sharing between fasteners in multirow bolted joints was computed by the nonlinear analysis program A4EJ. This program was used to predict strengths of 20 additional large subcomponents representing strips from a wing root chordwise splice. In most cases, the predictions were accurate to within a few percent of the test results. In some cases, the observed mode of failure was different than anticipated. The highlight of the subcomponent testing was the consistent ability to achieve gross-section failure strains close to 0.005. That represents a considerable improvement over the state of the art.

  1. Medication safety in the home care setting: Development and piloting of a Critical Incident Reporting System

    PubMed

    Meyer-Massetti, Carla; Krummenacher, Evelyne; Hedinger-Grogg, Barbara; Luterbacher, Stephan; Hersberger, Kurt E

    2016-09-01

    Background: While drug-related problems are among the most frequent adverse events in health care, little is known about their type and prevalence in home care in the current literature. The use of a Critical Incident Reporting System (CIRS), known as an economic and efficient tool to record medication errors for subsequent analysis, is widely implemented in inpatient care, but less established in ambulatory care. Recommendations on a possible format are scarce. A manual CIRS was developed based on the literature and subsequently piloted and implemented in a Swiss home care organization. Aim: The aim of this work was to implement a critical incident reporting system specifically for medication safety in home care. Results: The final CIRS form was well accepted among staff. Requiring limited resources, it allowed preliminary identification and trending of medication errors in home care. The most frequent error reports addressed medication preparation at the patients’ home, encompassing the following errors: omission (30 %), wrong dose (17.5 %) and wrong time (15 %). The most frequent underlying causes were related to working conditions (37.9 %), lacking attention (68.2 %), time pressure (22.7 %) and interruptions by patients (9.1 %). Conclusions: A manual CIRS allowed efficient data collection and subsequent analysis of medication errors in order to plan future interventions for improvement of medication safety. The development of an electronic CIRS would allow a reduction of the expenditure of time regarding data collection and analysis. In addition, it would favour the development of a national CIRS network among home care institutions.

  2. A Validation Metrics Framework for Safety-Critical Software-Intensive Systems

    DTIC Science & Technology

    2009-03-01

    so does its definition, tools, and techniques, including means for measuring the validation activity, its outputs, and impact on development...independent of the SDLP. When considering the above SDLPs from the safety engineering team’s perspective, there are also large impacts on the way... impact . Interpretation of any actionable metric data will need to be undertaken in the context of the SDLP. 2. Safety Input The software safety

  3. Safety and feasibility of an exercise prescription approach to rehabilitation across the continuum of care for survivors of critical illness.

    PubMed

    Berney, Sue; Haines, Kimberley; Skinner, Elizabeth H; Denehy, Linda

    2012-12-01

    Survivors of critical illness can experience long-standing functional limitations that negatively affect their health-related quality of life. To date, no model of rehabilitation has demonstrated sustained improvements in physical function for survivors of critical illness beyond hospital discharge. The aims of this study were: (1) to describe a model of rehabilitation for survivors of critical illness, (2) to compare the model to local standard care, and (3) to report the safety and feasibility of the program. This was a cohort study. As part of a larger randomized controlled trial, 74 participants were randomly assigned, 5 days following admission to the intensive care unit (ICU), to a protocolized rehabilitation program that commenced in the ICU and continued on the acute care ward and for a further 8 weeks following hospital discharge as an outpatient program. Exercise training was prescribed based on quantitative outcome measures to achieve a physiological training response. During acute hospitalization, 60% of exercise sessions were able to be delivered. The most frequently occurring barriers to exercise were patient safety and patient refusal due to fatigue. Point prevalence data showed patients were mobilized more often and for longer periods compared with standard care. Outpatient classes were poorly attended, with only 41% of the patients completing more than 70% of outpatient classes. No adverse events occurred. Limitations included patient heterogeneity and delayed commencement of exercise in the ICU due to issues of consent and recruitment. Exercise training that commences in the ICU and continues through to an outpatient program is safe and feasible for survivors of critical illness. Models of care that maximize patient participation across the continuum of care warrant further investigation.

  4. Safety Hazards During Intrahospital Transport: A Prospective Observational Study.

    PubMed

    Bergman, Lina M; Pettersson, Monica E; Chaboyer, Wendy P; Carlström, Eric D; Ringdal, Mona L

    2017-10-01

    To identify, classify, and describe safety hazards during the process of intrahospital transport of critically ill patients. A prospective observational study. Data from participant observations of the intrahospital transport process were collected over a period of 3 months. The study was undertaken at two ICUs in one university hospital. Critically ill patients transported within the hospital by critical care nurses, unlicensed nurses, and physicians. None. Content analysis was performed using deductive and inductive approaches. We detected a total of 365 safety hazards (median, 7; interquartile range, 4-10) during 51 intrahospital transports of critically ill patients, 80% of whom were mechanically ventilated. The majority of detected safety hazards were assessed as increasing the risk of harm, compromising patient safety (n = 204). Using the System Engineering Initiative for Patient Safety, we identified safety hazards related to the work system, as follows: team (n = 61), tasks (n = 83), tools and technologies (n = 124), environment (n = 48), and organization (n = 49). Inductive analysis provided an in-depth description of those safety hazards, contributing factors, and process-related outcomes. Findings suggest that intrahospital transport is a hazardous process for critically ill patients. We have identified several factors that may contribute to transport-related adverse events, which will provide the opportunity for the redesign of systems to enhance patient safety.

  5. Hybrid Aluminum and Natural Fiber Composite Structure for Crash Safety Improvement

    NASA Astrophysics Data System (ADS)

    Helaili, S.; Chafra, M.; Chevalier, Y.

    There is a growing interest on pedestrian's protection in automotive safety standards. Pedestrians head impact is one of the most important tests. In this paper, a hybrid composite structure made from natural fiber and aluminum, which improve the head protection when impact is taken place, is presented. The structure is made from a honeycomb composite made from unidirectional and woven composites and a thin aluminum layer. A head impact model is developed. The number of hexagonal layers is fixed and the thickness of the aluminum layer of the honeycomb structure is varied. The specific absorption energy is then calculated.

  6. Optically-based Sensor System for Critical Nuclear Facilities Post-Event Seismic Structural Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCallen, David; Petrone, Floriana; Buckle, Ian

    The U.S. Department of Energy (DOE) has ownership and operational responsibility for a large enterprise of nuclear facilities that provide essential functions to DOE missions ranging from national security to discovery science and energy research. These facilities support a number of DOE programs and offices including the National Nuclear Security Administration, Office of Science, and Office of Environmental Management. With many unique and “one of a kind” functions, these facilities represent a tremendous national investment, and assuring their safety and integrity is fundamental to the success of a breadth of DOE programs. Many DOE critical facilities are located in regionsmore » with significant natural phenomenon hazards including major earthquakes and DOE has been a leader in developing standards for the seismic analysis of nuclear facilities. Attaining and sustaining excellence in nuclear facility design and management must be a core competency of the DOE. An important part of nuclear facility management is the ability to monitor facilities and rapidly assess the response and integrity of the facilities after any major upset event. Experience in the western U.S. has shown that understanding facility integrity after a major earthquake is a significant challenge which, lacking key data, can require extensive effort and significant time. In the work described in the attached report, a transformational approach to earthquake monitoring of facilities is described and demonstrated. An entirely new type of optically-based sensor that can directly and accurately measure the earthquake-induced deformations of a critical facility has been developed and tested. This report summarizes large-scale shake table testing of the sensor concept on a representative steel frame building structure, and provides quantitative data on the accuracy of the sensor measurements.« less

  7. Critical Features of Fragment Libraries for Protein Structure Prediction

    PubMed Central

    dos Santos, Karina Baptista

    2017-01-01

    The use of fragment libraries is a popular approach among protein structure prediction methods and has proven to substantially improve the quality of predicted structures. However, some vital aspects of a fragment library that influence the accuracy of modeling a native structure remain to be determined. This study investigates some of these features. Particularly, we analyze the effect of using secondary structure prediction guiding fragments selection, different fragments sizes and the effect of structural clustering of fragments within libraries. To have a clearer view of how these factors affect protein structure prediction, we isolated the process of model building by fragment assembly from some common limitations associated with prediction methods, e.g., imprecise energy functions and optimization algorithms, by employing an exact structure-based objective function under a greedy algorithm. Our results indicate that shorter fragments reproduce the native structure more accurately than the longer. Libraries composed of multiple fragment lengths generate even better structures, where longer fragments show to be more useful at the beginning of the simulations. The use of many different fragment sizes shows little improvement when compared to predictions carried out with libraries that comprise only three different fragment sizes. Models obtained from libraries built using only sequence similarity are, on average, better than those built with a secondary structure prediction bias. However, we found that the use of secondary structure prediction allows greater reduction of the search space, which is invaluable for prediction methods. The results of this study can be critical guidelines for the use of fragment libraries in protein structure prediction. PMID:28085928

  8. Critical Features of Fragment Libraries for Protein Structure Prediction.

    PubMed

    Trevizani, Raphael; Custódio, Fábio Lima; Dos Santos, Karina Baptista; Dardenne, Laurent Emmanuel

    2017-01-01

    The use of fragment libraries is a popular approach among protein structure prediction methods and has proven to substantially improve the quality of predicted structures. However, some vital aspects of a fragment library that influence the accuracy of modeling a native structure remain to be determined. This study investigates some of these features. Particularly, we analyze the effect of using secondary structure prediction guiding fragments selection, different fragments sizes and the effect of structural clustering of fragments within libraries. To have a clearer view of how these factors affect protein structure prediction, we isolated the process of model building by fragment assembly from some common limitations associated with prediction methods, e.g., imprecise energy functions and optimization algorithms, by employing an exact structure-based objective function under a greedy algorithm. Our results indicate that shorter fragments reproduce the native structure more accurately than the longer. Libraries composed of multiple fragment lengths generate even better structures, where longer fragments show to be more useful at the beginning of the simulations. The use of many different fragment sizes shows little improvement when compared to predictions carried out with libraries that comprise only three different fragment sizes. Models obtained from libraries built using only sequence similarity are, on average, better than those built with a secondary structure prediction bias. However, we found that the use of secondary structure prediction allows greater reduction of the search space, which is invaluable for prediction methods. The results of this study can be critical guidelines for the use of fragment libraries in protein structure prediction.

  9. Physics of reactor safety. Quarterly report, January--March 1977. [LMFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1977-06-01

    This report summarizes work done on reactor safety, Monte Carlo analysis of safety-related critical assembly experiments, and planning of DEMI safety-related critical experiments. Work on reactor core thermal-hydraulics is also included.

  10. Reaching Agreement: The Structure & Pragmatics of Critical Care Nurses' Informal Argument

    ERIC Educational Resources Information Center

    Hagler, Debra A.; Brem, Sarah K.

    2008-01-01

    The hospital critical care unit provides an authentic, high-stakes setting for studying reasoning, argumentation, and discourse. In particular, it allows examination of structural and pragmatic features of informal collaborative argument created while participants are engaged in familiar, meaningful activities central to their work. The nursing…

  11. [High-quality nursing health care environment: the patient safety perspective].

    PubMed

    Tu, Yu-Ching; Wang, Ruey-Hsia

    2011-06-01

    Patient safety is regarded as an important indicator of nursing care quality, and nurses hold frontline responsibility to maintain patient safety. Many countries now face healthcare provider shortfalls, and recognize a close correlation between adequate manpower and patient safety. Many healthcare organizations work to foster positive work environments in order to improve health service quality. The active participation and "buy in" of nurses, patients and policymakers are critical to maximize healthcare environment quality and improve patient safety. This article adopts Donabedian's theoretical "Structure-Process-Outcome" model of quality (Donabedian, 1988) and presumes all high-quality healthcare environment indicators to be linked to patient safety. In addition to raising public awareness regarding the influence of healthcare environment quality on patient safety, this research suggests certain indicators for tracking and assessing healthcare environment quality. Future research may design an empirical study based on these indicators to help further enhance healthcare environment quality and the professional development of nurses.

  12. Structural versus dynamical origins of mean-field behavior in a self-organized critical model of neuronal avalanches

    NASA Astrophysics Data System (ADS)

    Moosavi, S. Amin; Montakhab, Afshin

    2015-11-01

    Critical dynamics of cortical neurons have been intensively studied over the past decade. Neuronal avalanches provide the main experimental as well as theoretical tools to consider criticality in such systems. Experimental studies show that critical neuronal avalanches show mean-field behavior. There are structural as well as recently proposed [Phys. Rev. E 89, 052139 (2014), 10.1103/PhysRevE.89.052139] dynamical mechanisms that can lead to mean-field behavior. In this work we consider a simple model of neuronal dynamics based on threshold self-organized critical models with synaptic noise. We investigate the role of high-average connectivity, random long-range connections, as well as synaptic noise in achieving mean-field behavior. We employ finite-size scaling in order to extract critical exponents with good accuracy. We conclude that relevant structural mechanisms responsible for mean-field behavior cannot be justified in realistic models of the cortex. However, strong dynamical noise, which can have realistic justifications, always leads to mean-field behavior regardless of the underlying structure. Our work provides a different (dynamical) origin than the conventionally accepted (structural) mechanisms for mean-field behavior in neuronal avalanches.

  13. Critical Review of Commercial Secondary Lithium-Ion Battery Safety Standards

    NASA Astrophysics Data System (ADS)

    Jones, Harry P.; Chapin, Thomas, J.; Tabaddor, Mahmod

    2010-09-01

    The development of Li-ion cells with greater energy density has lead to safety concerns that must be carefully assessed as Li-ion cells power a wide range of products from consumer electronics to electric vehicles to space applications. Documented field failures and product recalls for Li-ion cells, mostly for consumer electronic products, highlight the risk of fire, smoke, and even explosion. These failures have been attributed to the occurrence of internal short circuits and the subsequent thermal runaway that can lead to fire and explosion. As packaging for some applications include a large number of cells, the risk of failure is likely to be magnified. To address concerns about the safety of battery powered products, safety standards have been developed. This paper provides a review of various international safety standards specific to lithium-ion cells. This paper shows that though the standards are harmonized on a host of abuse conditions, most lack a test simulating internal short circuits. This paper describes some efforts to introduce internal short circuit tests into safety standards.

  14. Recognizing nurse stakeholder dissonance as a critical determinant of patient safety in new healthcare information technologies.

    PubMed

    Samaras, Elizabeth A; Real, Sara D; Curtis, Amber M; Meunier, Tessa S

    2012-01-01

    Proper identification of all stakeholders and the comprehensive assessment of their evolving and often conflicting Needs, Wants, and Desires (NWDs) is a fundamental principle of human factors science and human-centered systems engineering; it is not yet a consistent element in development and deployment of new health information technologies (HIT). As the single largest group of healthcare professionals, nurses are critical stakeholders for these new technologies. Careful analysis can reveal nurse stakeholder dissonance (NSD) when integrating new technologies into the healthcare environment. Stakeholder dissonance is a term that describes the conflict between the NWDs of different stakeholders which, if left unresolved, can result in dissatisfaction, workarounds, errors, and threats to patient safety. Three case studies drawn from the authors' experience in a variety of acute-care settings where new HITs have been recently deployed are examined to illustrate the concept of NSD. Conflicting NWDs, other stakeholders, and possible root causes of the NSD are analyzed and mapped to threats to patient safety. Lessons learned, practical guidance for anticipating, identifying, and mitigating NSD, future research and implications for HFE and nursing practice are discussed.

  15. A Software Safety Risk Taxonomy for Use in Retrospective Safety Cases

    NASA Technical Reports Server (NTRS)

    Hill, Janice L.

    2007-01-01

    Safety standards contain technical and process-oriented safely requirements. The best time to include these requirements is early in the development lifecycle of the system. When software safety requirements are levied on a legacy system after the fact, a retrospective safety case will need to be constructed for the software in the system. This can be a difficult task because there may be few to no art facts available to show compliance to the software safely requirements. The risks associated with not meeting safely requirements in a legacy safely-critical computer system must be addressed to give confidence for reuse. This paper introduces a proposal for a software safely risk taxonomy for legacy safely-critical computer systems, by specializing the Software Engineering Institute's 'Software Development Risk Taxonomy' with safely elements and attributes.

  16. Does the concept of safety culture help or hinder systems thinking in safety?

    PubMed

    Reiman, Teemu; Rollenhagen, Carl

    2014-07-01

    The concept of safety culture has become established in safety management applications in all major safety-critical domains. The idea that safety culture somehow represents a "systemic view" on safety is seldom explicitly spoken out, but nevertheless seem to linger behind many safety culture discourses. However, in this paper we argue that the "new" contribution to safety management from safety culture never really became integrated with classical engineering principles and concepts. This integration would have been necessary for the development of a more genuine systems-oriented view on safety; e.g. a conception of safety in which human, technological, organisational and cultural factors are understood as mutually interacting elements. Without of this integration, researchers and the users of the various tools and methods associated with safety culture have sometimes fostered a belief that "safety culture" in fact represents such a systemic view about safety. This belief is, however, not backed up by theoretical or empirical evidence. It is true that safety culture, at least in some sense, represents a holistic term-a totality of factors that include human, organisational and technological aspects. However, the departure for such safety culture models is still human and organisational factors rather than technology (or safety) itself. The aim of this paper is to critically review the various uses of the concept of safety culture as representing a systemic view on safety. The article will take a look at the concepts of culture and safety culture based on previous studies, and outlines in more detail the theoretical challenges in safety culture as a systems concept. The paper also presents recommendations on how to make safety culture more systemic. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Introduction of structural health and safety monitoring warning systems for Shenzhen-Hong Kong Western Corridor Shenzhen Bay Bridge

    NASA Astrophysics Data System (ADS)

    Li, N.; Zhang, X. Y.; Zhou, X. T.; Leng, J.; Liang, Z.; Zheng, C.; Sun, X. F.

    2008-03-01

    Though the brief introduction of the completed structural health and safety monitoring warning systems for Shenzhen-Hongkong western corridor Shenzhen bay highway bridge (SZBHMS), the self-developed system frame, hardware and software scheme of this practical research project are systematically discussed in this paper. The data acquisition and transmission hardware and the basic software based on the NI (National Instruments) Company virtual instruments technology were selected in this system, which adopted GPS time service receiver technology and so on. The objectives are to establish the structural safety monitoring and status evaluation system to monitor the structural responses and working conditions in real time and to analyze the structural working statue using information obtained from the measured data. It will be also provided the scientific decision-making bases for the bridge management and maintenance. Potential technical approaches to the structural safety warning systems, status identification and evaluation method are presented. The result indicated that the performance of the system has achieved the desired objectives, ensure the longterm high reliability, real time concurrence and advanced technology of SZBHMS. The innovate achievement which is the first time to implement in domestic, provide the reference for long-span bridge structural health and safety monitoring warning systems design.

  18. Nanotechnology and MEMS-based systems for civil infrastructure safety and security: Opportunities and challenges

    NASA Astrophysics Data System (ADS)

    Robinson, Nidia; Saafi, Mohamed

    2006-03-01

    Critical civil infrastructure systems such as bridges, high rises, dams, nuclear power plants and pipelines present a major investment and the health of the United States' economy and the lifestyle of its citizens both depend on their safety and security. The challenge for engineers is to maintain the safety and security of these large structures in the face of terrorism threats, natural disasters and long-term deterioration, as well as to meet the demands of emergency response times. With the significant negative impact that these threats can have on the structural environment, health monitoring of civil infrastructure holds promise as a way to provide information for near real-time condition assessment of the structure's safety and security. This information can be used to assess the integrity of the structure for post-earthquake and terrorist attacks rescue and recovery, and to safely and rapidly remove the debris and to temporary shore specific structural elements. This information can also be used for identification of incipient damage in structures experiencing long-term deterioration. However, one of the major obstacles preventing sensor-based monitoring is the lack of reliable, easy-to-install, cost-effective and harsh environment resistant sensors that can be densely embedded into large-scale civil infrastructure systems. Nanotechnology and MEMS-based systems which have matured in recent years represent an innovative solution to current damage detection systems, leading to wireless, inexpensive, durable, compact, and high-density information collection. In this paper, ongoing research activities at Alabama A&M University (AAMU) Center for Transportation Infrastructure Safety and Security on the application of nanotechnology and MEMS to Civil Infrastructure for health monitoring will presented. To date, research showed that nanotechnology and MEMS-based systems can be used to wirelessly detect and monitor different damage mechanisms in concrete structures

  19. Real-world aspects of the nuclear criticality safety program at the University of Tennessee-Knoxville

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bentley, C.L.; Dunn, M.E.; Goluoglu, S.

    1996-12-31

    The nuclear criticality safety (NCS) program at the University of Tennessee-Knoxville (UTK) emphasizes the {open_quotes}real world{close_quotes} in the NCS courses that are offered and also the NCS research that is conducted. Two NCS courses are offered at UTK. The first course is an introduction to the NCS field, which uses the text by Knief and includes an overview of criticality accidents that have actually happened, standards that are currently in use and being developed, and state-of-the-art computer methods and codes. The students learn the same codes, including both theory and application, that are used by most professionals in the NCSmore » field. Thus, if a student accepts a job offer in the NCS area after graduation, he or she is capable of doing productive NCS work the first day on the job. Subcritical limits, hand-calculation methods, current regulations [both U.S. Department of Energy (DOE) and U.S. Nuclear Regulatory Commission (NRC)] and current practices are also discussed in the introductory course. The second course emphasizes real world experience and is taught by five instructors with over 100 years of combined experience.« less

  20. Understanding procedural violations using Safety-I and Safety-II: The case of community pharmacies.

    PubMed

    Jones, Christian E L; Phipps, Denham L; Ashcroft, Darren M

    2018-06-01

    Procedural violations are known to occur in a range of work settings, and are an important topic of interest with regard to safety management. A Safety-I perspective sees violations as undesirable digressions from standardised procedures, while a Safety-II perspective sees violations as adaptations to a complex work system. This study aimed to apply both perspectives to the examination of violations in community pharmacies. Twenty-four participants (13 pharmacists and 11 pharmacy support staff) were purposively sampled to participate in semi-structured interviews using the critical incident technique. Participants described violations they made during the course of their work. Interviews were digitally recorded, transcribed verbatim and analysed using template analysis. Community pharmacies located in England and Wales. 31 procedural violations were described during the interviews revealing multiple reasons for violations in this setting. Our findings suggest that from a Safety-II perspective, staff violated to adapt to situations and to manage safety. However, participants also violated procedures in order to maintain productivity which was found to increase risk in some, but not all situations. Procedural violations often relied on the context in which staff were working, resulting in the violation being deemed rational to the individual making the violation, yet the behaviour may be difficult to justify from an outside perspective. Combining Safety-I and Safety-II perspectives provided a detailed understanding of the underlying reasons for procedural violations. Our findings identify aspects of practice that could benefit from targeted interventions to help support staff in providing safe patient care.

  1. Criticality Safety Evaluation Report CSER-96-019 for Spent Nuclear Fuel (SNF) Processing and Storage Facilities Multi Canister Overpack (MCO)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KESSLER, S.F.

    This criticality evaluation is for Spent N Reactor fuel unloaded from the existing canisters in both KE and KW Basins, and loaded into multiple canister overpack (MCO) containers with specially built baskets containing a maximum of either 54 Mark IV or 48 Mark IA fuel assemblies. The criticality evaluations include loading baskets into the cask-MCO, operation at the Cold Vacuum Drying Facility,a nd storage in the Canister Storage Building. Many conservatisms have been built into this analysis, the primary one being the selection of the K{sub eff} = 0.95 criticality safety limit. This revision incorporates the analyses for the sampling/weldmore » station in the Canister Storage Building and additional analysis of the MCO during the draining at CVDF. Additional discussion of the scrap basket model was added to show why the addition of copper divider plates was not included in the models.« less

  2. Selecting an Architecture for a Safety-Critical Distributed Computer System with Power, Weight and Cost Considerations

    NASA Technical Reports Server (NTRS)

    Torres-Pomales, Wilfredo

    2014-01-01

    This report presents an example of the application of multi-criteria decision analysis to the selection of an architecture for a safety-critical distributed computer system. The design problem includes constraints on minimum system availability and integrity, and the decision is based on the optimal balance of power, weight and cost. The analysis process includes the generation of alternative architectures, evaluation of individual decision criteria, and the selection of an alternative based on overall value. In this example presented here, iterative application of the quantitative evaluation process made it possible to deliberately generate an alternative architecture that is superior to all others regardless of the relative importance of cost.

  3. Automated Translation of Safety Critical Application Software Specifications into PLC Ladder Logic

    NASA Technical Reports Server (NTRS)

    Leucht, Kurt W.; Semmel, Glenn S.

    2008-01-01

    The numerous benefits of automatic application code generation are widely accepted within the software engineering community. A few of these benefits include raising the abstraction level of application programming, shorter product development time, lower maintenance costs, and increased code quality and consistency. Surprisingly, code generation concepts have not yet found wide acceptance and use in the field of programmable logic controller (PLC) software development. Software engineers at the NASA Kennedy Space Center (KSC) recognized the need for PLC code generation while developing their new ground checkout and launch processing system. They developed a process and a prototype software tool that automatically translates a high-level representation or specification of safety critical application software into ladder logic that executes on a PLC. This process and tool are expected to increase the reliability of the PLC code over that which is written manually, and may even lower life-cycle costs and shorten the development schedule of the new control system at KSC. This paper examines the problem domain and discusses the process and software tool that were prototyped by the KSC software engineers.

  4. Piaget's Structural Developmental Psychology. v. Ideology-Critique and the Possibility of a Critical Developmental Theory.

    ERIC Educational Resources Information Center

    Broughton, John M.

    1981-01-01

    This final essay in a five-part series examining Piaget's structural developmental psychology suggests that a psychological theory which integrates aspects of developmental structuralism within a critical social framework can be developed. (Author/RH)

  5. Electron-density critical points analysis and catastrophe theory to forecast structure instability in periodic solids.

    PubMed

    Merli, Marcello; Pavese, Alessandro

    2018-03-01

    The critical points analysis of electron density, i.e. ρ(x), from ab initio calculations is used in combination with the catastrophe theory to show a correlation between ρ(x) topology and the appearance of instability that may lead to transformations of crystal structures, as a function of pressure/temperature. In particular, this study focuses on the evolution of coalescing non-degenerate critical points, i.e. such that ∇ρ(x c ) = 0 and λ 1 , λ 2 , λ 3 ≠ 0 [λ being the eigenvalues of the Hessian of ρ(x) at x c ], towards degenerate critical points, i.e. ∇ρ(x c ) = 0 and at least one λ equal to zero. The catastrophe theory formalism provides a mathematical tool to model ρ(x) in the neighbourhood of x c and allows one to rationalize the occurrence of instability in terms of electron-density topology and Gibbs energy. The phase/state transitions that TiO 2 (rutile structure), MgO (periclase structure) and Al 2 O 3 (corundum structure) undergo because of pressure and/or temperature are here discussed. An agreement of 3-5% is observed between the theoretical model and experimental pressure/temperature of transformation.

  6. Methods for forewarning of critical condition changes in monitoring civil structures

    DOEpatents

    Abercrombie, Robert K.; Hively, Lee M.

    2013-04-02

    Sensor modules (12) including accelerometers (20) are placed on a physical structure (10) and tri-axial accelerometer data is converted to mechanical power (P) data (41) which then processed to provide a forewarning (57) of a critical event concerning the physical structure (10). The forewarning is based on a number of occurrences of a composite measure of dissimilarity (C.sub.i) exceeding a forewarning threshold over a defined sampling time; and a forewarning signal (58) is provided to a human observer through a visual, audible or tangible signal. A forewarning of a structural failure can also be provided based on a number of occurrences of (C.sub.i) above a failure value threshold.

  7. An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses-Isotopic Composition Predictions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radulescu, Georgeta; Gauld, Ian C; Ilas, Germina

    2011-01-01

    The expanded use of burnup credit in the United States (U.S.) for storage and transport casks, particularly in the acceptance of credit for fission products, has been constrained by the availability of experimental fission product data to support code validation. The U.S. Nuclear Regulatory Commission (NRC) staff has noted that the rationale for restricting the Interim Staff Guidance on burnup credit for storage and transportation casks (ISG-8) to actinide-only is based largely on the lack of clear, definitive experiments that can be used to estimate the bias and uncertainty for computational analyses associated with using burnup credit. To address themore » issues of burnup credit criticality validation, the NRC initiated a project with the Oak Ridge National Laboratory to (1) develop and establish a technically sound validation approach for commercial spent nuclear fuel (SNF) criticality safety evaluations based on best-available data and methods and (2) apply the approach for representative SNF storage and transport configurations/conditions to demonstrate its usage and applicability, as well as to provide reference bias results. The purpose of this paper is to describe the isotopic composition (depletion) validation approach and resulting observations and recommendations. Validation of the criticality calculations is addressed in a companion paper at this conference. For isotopic composition validation, the approach is to determine burnup-dependent bias and uncertainty in the effective neutron multiplication factor (keff) due to bias and uncertainty in isotopic predictions, via comparisons of isotopic composition predictions (calculated) and measured isotopic compositions from destructive radiochemical assay utilizing as much assay data as is available, and a best-estimate Monte Carlo based method. This paper (1) provides a detailed description of the burnup credit isotopic validation approach and its technical bases, (2) describes the application of the

  8. Identification of safety-critical events using kinematic vehicle data and the discrete fourier transform.

    PubMed

    Kluger, Robert; Smith, Brian L; Park, Hyungjun; Dailey, Daniel J

    2016-11-01

    Recent technological advances have made it both feasible and practical to identify unsafe driving behaviors using second-by-second trajectory data. Presented in this paper is a unique approach to detecting safety-critical events using vehicles' longitudinal accelerations. A Discrete Fourier Transform is used in combination with K-means clustering to flag patterns in the vehicles' accelerations in time-series that are likely to be crashes or near-crashes. The algorithm was able to detect roughly 78% of crasjavascript:void(0)hes and near-crashes (71 out of 91 validated events in the Naturalistic Driving Study data used), while generating about 1 false positive every 2.7h. In addition to presenting the promising results, an implementation strategy is discussed and further research topics that can improve this method are suggested in the paper. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Motor vehicle occupant safety survey

    DOT National Transportation Integrated Search

    1995-09-01

    This report presents findings from the first Motor Vehicle Occupant Safety Survey. The National Highway Traffic Safety Administration (NHTSA) conducted this survey to collect critical information needed by the agency to develop and implement effectiv...

  10. Analyzing Software Errors in Safety-Critical Embedded Systems

    NASA Technical Reports Server (NTRS)

    Lutz, Robyn R.

    1994-01-01

    This paper analyzes the root causes of safty-related software faults identified as potentially hazardous to the system are distributed somewhat differently over the set of possible error causes than non-safety-related software faults.

  11. 10 CFR 76.89 - Criticality accident requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Criticality accident requirements. 76.89 Section 76.89 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safety § 76.89 Criticality accident requirements. (a) The Corporation must maintain and operate a criticality monitoring and...

  12. 10 CFR 76.89 - Criticality accident requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Criticality accident requirements. 76.89 Section 76.89 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safety § 76.89 Criticality accident requirements. (a) The Corporation must maintain and operate a criticality monitoring and...

  13. 10 CFR 76.89 - Criticality accident requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Criticality accident requirements. 76.89 Section 76.89 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safety § 76.89 Criticality accident requirements. (a) The Corporation must maintain and operate a criticality monitoring and...

  14. 10 CFR 76.89 - Criticality accident requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Criticality accident requirements. 76.89 Section 76.89 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safety § 76.89 Criticality accident requirements. (a) The Corporation must maintain and operate a criticality monitoring and...

  15. 10 CFR 76.89 - Criticality accident requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Criticality accident requirements. 76.89 Section 76.89 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safety § 76.89 Criticality accident requirements. (a) The Corporation must maintain and operate a criticality monitoring and...

  16. Structural Safety of a Hubble Space Telescope Science Instrument

    NASA Technical Reports Server (NTRS)

    Lou, M. C.; Brent, D. N.

    1993-01-01

    This paper gives an overview of safety requirements related to structural design and verificationof payloads to be launched and/or retrieved by the Space Shuttle. To demonstrate the generalapproach used to implement these requirements in the development of a typical Shuttle payload, theWide Field/Planetary Camera II, a second generation science instrument currently being developed bythe Jet Propulsion Laboratory (JPL) for the Hubble Space Telescope is used as an example. Inaddition to verification of strength and dynamic characteristics, special emphasis is placed upon thefracture control implementation process, including parts classification and fracture controlacceptability.

  17. A Human Reliability Based Usability Evaluation Method for Safety-Critical Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillippe Palanque; Regina Bernhaupt; Ronald Boring

    2006-04-01

    Recent years have seen an increasing use of sophisticated interaction techniques including in the field of safety critical interactive software [8]. The use of such techniques has been required in order to increase the bandwidth between the users and systems and thus to help them deal efficiently with increasingly complex systems. These techniques come from research and innovation done in the field of humancomputer interaction (HCI). A significant effort is currently being undertaken by the HCI community in order to apply and extend current usability evaluation techniques to these new kinds of interaction techniques. However, very little has been donemore » to improve the reliability of software offering these kinds of interaction techniques. Even testing basic graphical user interfaces remains a challenge that has rarely been addressed in the field of software engineering [9]. However, the non reliability of interactive software can jeopardize usability evaluation by showing unexpected or undesired behaviors. The aim of this SIG is to provide a forum for both researchers and practitioners interested in testing interactive software. Our goal is to define a roadmap of activities to cross fertilize usability and reliability testing of these kinds of systems to minimize duplicate efforts in both communities.« less

  18. Quantifying Vermont transportation safety factors.

    DOT National Transportation Integrated Search

    2010-01-01

    VTrans and its partners have selected traffic safety : priority areas in their Strategic Highway Safety Plan. : In this project, researchers focus on three of these : prioritized critical emphasis areas: 1) Keeping vehicles : on the roadway, 2) Young...

  19. Structural analysis of a rehabilitative training system based on a ceiling rail for safety of hemiplegia patients.

    PubMed

    Kim, Kyong; Song, Won Kyung; Chong, Woo Suk; Yu, Chang Ho

    2018-04-17

    The body-weight support (BWS) function, which helps to decrease load stresses on a user, is an effective tool for gait and balance rehabilitation training for elderly people with weakened lower-extremity muscular strength, hemiplegic patients, etc. This study conducts structural analysis to secure user safety in order to develop a rail-type gait and balance rehabilitation training system (RRTS). The RRTS comprises a rail, trolley, and brain-machine interface. The rail (platform) is connected to the ceiling structure, bearing the loads of the RRTS and of the user and allowing locomobility. The trolley consists of a smart drive unit (SDU) that assists the user with forward and backward mobility and a body-weight support (BWS) unit that helps the user to control his/her body-weight load, depending on the severity of his/her hemiplegia. The brain-machine interface estimates and measures on a real-time basis the body-weight (load) of the user and the intended direction of his/her movement. Considering the weight of the system and the user, the mechanical safety performance of the system frame under an applied 250-kg static load is verified through structural analysis using ABAQUS (6.14-3) software. The maximum stresses applied on the rail and trolley under the given gravity load of 250 kg, respectively, are 18.52 MPa and 48.44 MPa. The respective safety factors are computed to be 7.83 and 5.26, confirming the RRTS's mechanical safety. An RRTS with verified structural safety could be utilized for gait movement and balance rehabilitation and training for patients with hemiplegia.

  20. Management commitment to safety as organizational support: relationships with non-safety outcomes in wood manufacturing employees

    Treesearch

    Judd H. Michael; Demetrice D. Evans; Karen J. Jansen; Joel M. Haight

    2005-01-01

    Employee perceptions of management commitment to safety are known to influence important safety-related outcomes. However, little work has been conducted to explore nonsafety-related outcomes resulting from a commitment to safety. Method: Employee-level outcomes critical to the effective functioning of an organization, including attitudes such as job...

  1. A method for identifying EMI critical circuits during development of a large C3

    NASA Astrophysics Data System (ADS)

    Barr, Douglas H.

    The circuit analysis methods and process Boeing Aerospace used on a large, ground-based military command, control, and communications (C3) system are described. This analysis was designed to help identify electromagnetic interference (EMI) critical circuits. The methodology used the MIL-E-6051 equipment criticality categories as the basis for defining critical circuits, relational database technology to help sort through and account for all of the approximately 5000 system signal cables, and Macintosh Plus personal computers to predict critical circuits based on safety margin analysis. The EMI circuit analysis process systematically examined all system circuits to identify which ones were likely to be EMI critical. The process used two separate, sequential safety margin analyses to identify critical circuits (conservative safety margin analysis, and detailed safety margin analysis). These analyses used field-to-wire and wire-to-wire coupling models using both worst-case and detailed circuit parameters (physical and electrical) to predict circuit safety margins. This process identified the predicted critical circuits that could then be verified by test.

  2. The role of electronic checklists - case study on MRI-safety.

    PubMed

    Landmark, Andreas; Selnes, May-Britt; Larsen, Elisabeth; Svensli, Astrid; Solum, Linda; Brattheim, Berit

    2012-01-01

    Checklists can be used to improve and standardize safety critical processes and their communication. The introduction of potentially harmful medical technology and equipment has created additional requirements for the safe delivery of health care. We have studied the implementation of an electronic checklist to ensure the safety of patients scheduled for Magnetic Resonance Imaging examinations. Through a combination of observations and semi-structured interviews we investigated how health care workers in a Norwegian University hospital dealt with variations in checklist compliance, missing and lack of information. The checklist provided different functionality for the different users, ranging from a memory/attention support to a standardized form of communication on safety matters. However, the rigidity afforded by the electronic implementation, showed some serious drawbacks over the prior, simpler, paper-based versions.

  3. 76 FR 71081 - Public Aircraft Oversight Safety Forum

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-16

    ... NATIONAL TRANSPORTATION SAFETY BOARD Public Aircraft Oversight Safety Forum The National Transportation Safety Board (NTSB) will convene a Public Aircraft Oversight Safety Forum which will begin at 9 a... ``Public Aircraft Oversight Forum: Ensuring Safety for Critical Missions'', are to (1) raise awareness of...

  4. Strategies to curb structural changes of lithium/transition metal oxide cathode materials & the changes' effects on thermal & cycling stability

    DOE PAGES

    Yu, Xiqian; Hu, Enyuan; Bak, Seongmin; ...

    2015-12-07

    Structural transformation behaviors of several typical oxide cathode materials during a heating process are reviewed in detail to provide in-depth understanding of the key factors governing the thermal stability of these materials. Furthermore, we also discuss applying the information about heat induced structural evolution in the study of electrochemically induced structural changes. All these discussions are expected to provide valuable insights for designing oxide cathode materials with significantly improved structural stability for safe, long-life lithium ion batteries, as the safety of lithium-ion batteries is a critical issue. As a result, it is widely accepted that the thermal instability of themore » cathodes is one of the most critical factors in thermal runaway and related safety problems.« less

  5. Development of a multimedia tutorial to educate how to assess the critical view of safety in laparoscopic cholecystectomy using expert review and crowd-sourcing.

    PubMed

    Deal, Shanley B; Stefanidis, Dimitrios; Brunt, L Michael; Alseidi, Adnan

    2017-05-01

    We sought to determine the feasibility of developing a multimedia educational tutorial to teach learners to assess the critical view of safety using input from expert surgeons, non-surgeons and crowd-sourcing. We intended to develop a tutorial that would teach learners how to identify the basic anatomy and physiology of the gallbladder, identify the components of the critical view of safety criteria, and understand its significance for performing a safe gallbladder removal. Using rounds of assessment with experts, laypersons and crowd-workers we developed an educational video with improving comprehension after each round of revision. We demonstrate that the development of a multimedia educational tool to educate learners of various backgrounds is feasible using an iterative review process that incorporates the input of experts and crowd sourcing. When planning the development of an educational tutorial, a step-wise approach as described herein should be considered. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. 14 CFR 35.16 - Propeller critical parts.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Propeller critical parts. 35.16 Section 35... AIRWORTHINESS STANDARDS: PROPELLERS Design and Construction § 35.16 Propeller critical parts. The integrity of each propeller critical part identified by the safety analysis required by § 35.15 must be established...

  7. Critical Care Delivery: The Importance of Process of Care and ICU Structure to Improved Outcomes: An Update From the American College of Critical Care Medicine Task Force on Models of Critical Care.

    PubMed

    Weled, Barry J; Adzhigirey, Lana A; Hodgman, Tudy M; Brilli, Richard J; Spevetz, Antoinette; Kline, Andrea M; Montgomery, Vicki L; Puri, Nitin; Tisherman, Samuel A; Vespa, Paul M; Pronovost, Peter J; Rainey, Thomas G; Patterson, Andrew J; Wheeler, Derek S

    2015-07-01

    In 2001, the Society of Critical Care Medicine published practice model guidelines that focused on the delivery of critical care and the roles of different ICU team members. An exhaustive review of the additional literature published since the last guideline has demonstrated that both the structure and process of care in the ICU are important for achieving optimal patient outcomes. Since the publication of the original guideline, several authorities have recognized that improvements in the processes of care, ICU structure, and the use of quality improvement science methodologies can beneficially impact patient outcomes and reduce costs. Herein, we summarize findings of the American College of Critical Care Medicine Task Force on Models of Critical Care: 1) An intensivist-led, high-performing, multidisciplinary team dedicated to the ICU is an integral part of effective care delivery; 2) Process improvement is the backbone of achieving high-quality ICU outcomes; 3) Standardized protocols including care bundles and order sets to facilitate measurable processes and outcomes should be used and further developed in the ICU setting; and 4) Institutional support for comprehensive quality improvement programs as well as tele-ICU programs should be provided.

  8. The Dual Role of Vegetation as a Constraint on Mass and Energy Flux into the Critical Zone and as an Emergent Property of Geophysical Critical Zone Structure

    NASA Astrophysics Data System (ADS)

    Brooks, P. D.; Swetnam, T. L.; Barnard, H. R.; Singha, K.; Harpold, A.; Litvak, M. E.

    2017-12-01

    Spatial patterns in vegetation long have been used to scale both landsurface-atmosphere exchanges of water and carbon as well as to infer subsurface structure. These pursuits typical proceed in isolation and rarely do inferences gained from one community propagate to related efforts in another. Perhaps more importantly, vegetation often is treated as an emergent property of landscape-climate interactions rather than an active modifier of both critical zone structure and energy fluxes. We posit that vegetation structure and activity are under utilized as a tool towards understanding landscape evolution and present examples that begin to disentangle the role of vegetation as both an emergent property and an active control on critical zone structure and function. As climate change, population growth, and land use changes threaten water resources worldwide, the need for the new insights vegetation can provide becomes not just a basic science priority, but a pressing applied science question with clear societal importance. This presentation will provide an overview of recent efforts to address the dual role of vegetation in both modifying and reflecting critical zone structure in the western North American forests. For example, interactions between topography and stand scale vegetation structure influence both solar radiation and turbulence altering landscape scale partitioning of evaporation vs transpiration with major impacts of surface water supply. Similarly, interactions between topographic shading, lateral redistribution of plant available water, and subsurface storage create a mosaic of drought resistance and resilience across complex terrain. These complex interactions between geophysical and vegetation components of critical zone structure result in predictable patterns in catchment scale hydrologic partitioning within individual watersheds while simultaneously suggesting testable hypotheses for why catchments under similar climate regimes respond so

  9. Challenges of postgraduate critical care nursing program in Iran.

    PubMed

    Dehghan Nayeri, Nahid; Shariat, Esmaeil; Tayebi, Zahra; Ghorbanzadeh, Majid

    2017-01-01

    Background: The main philosophy of postgraduate preparation for working in critical care units is to ensure the safety and quality of patients' care. Increasing the complexity of technology, decision-making challenges and the high demand for advanced communication skills necessitate the need to educate learners. Within this aim, a master's degree in critical care nursing has been established in Iran. Current study was designed to collect critical care nursing students' experiences as well as their feedback to the field critical care nursing. Methods: This study used qualitative content analysis through in-depth semi-structured interviews. Graneheim and Lundman method was used for data analysis. Results: The results of the total 15 interviews were classified in the following domains: The vision of hope and illusion; shades of grey attitude; inefficient program and planning; inadequacy to run the program; and multiple outcomes: Far from the effectiveness. Overall findings indicated the necessity to review the curriculum and the way the program is implemented. Conclusion: The findings of this study provided valuable information to improve the critical care-nursing program. It also facilitated the next review of the program by the authorities.

  10. Collegiate Aviation Research and Education Solutions to Critical Safety Issues

    NASA Technical Reports Server (NTRS)

    Bowen, Brent (Editor)

    2002-01-01

    This Conference Proceedings is a collection of 6 abstracts and 3 papers presented April 19-20, 2001 in Denver, CO. The conference focus was "Best Practices and Benchmarking in Collegiate and Industry Programs". Topics covered include: satellite-based aviation navigation; weather safety training; human-behavior and aircraft maintenance issues; disaster preparedness; the collegiate aviation emergency response checklist; aviation safety research; and regulatory status of maintenance resource management.

  11. Safety cases for medical devices and health information technology: involving health-care organisations in the assurance of safety.

    PubMed

    Sujan, Mark A; Koornneef, Floor; Chozos, Nick; Pozzi, Simone; Kelly, Tim

    2013-09-01

    In the United Kingdom, there are more than 9000 reports of adverse events involving medical devices annually. The regulatory processes in Europe and in the United States have been challenged as to their ability to protect patients effectively from unreasonable risk and harm. Two of the major shortcomings of current practice include the lack of transparency in the safety certification process and the lack of involvement of service providers. We reviewed recent international standardisation activities in this area, and we reviewed regulatory practices in other safety-critical industries. The review showed that the use of safety cases is an accepted practice in UK safety-critical industries, but at present, there is little awareness of this concept in health care. Safety cases have the potential to provide greater transparency and confidence in safety certification and to act as a communication tool between manufacturers, service providers, regulators and patients.

  12. System modeling with the DISC framework: evidence from safety-critical domains.

    PubMed

    Reiman, Teemu; Pietikäinen, Elina; Oedewald, Pia; Gotcheva, Nadezhda

    2012-01-01

    The objective of this paper is to illustrate the development and application of the Design for Integrated Safety Culture (DISC) framework for system modeling by evaluating organizational potential for safety in nuclear and healthcare domains. The DISC framework includes criteria for good safety culture and a description of functions that the organization needs to implement in order to orient the organization toward the criteria. Three case studies will be used to illustrate the utilization of the DISC framework in practice.

  13. Generalized implementation of software safety policies

    NASA Technical Reports Server (NTRS)

    Knight, John C.; Wika, Kevin G.

    1994-01-01

    As part of a research program in the engineering of software for safety-critical systems, we are performing two case studies. The first case study, which is well underway, is a safety-critical medical application. The second, which is just starting, is a digital control system for a nuclear research reactor. Our goal is to use these case studies to permit us to obtain a better understanding of the issues facing developers of safety-critical systems, and to provide a vehicle for the assessment of research ideas. The case studies are not based on the analysis of existing software development by others. Instead, we are attempting to create software for new and novel systems in a process that ultimately will involve all phases of the software lifecycle. In this abstract, we summarize our results to date in a small part of this project, namely the determination and classification of policies related to software safety that must be enforced to ensure safe operation. We hypothesize that this classification will permit a general approach to the implementation of a policy enforcement mechanism.

  14. Elective Self-Care Course Emphasizing Critical Reasoning Principles

    PubMed Central

    2011-01-01

    Objectives. To create, implement, and assess a self-directed online course based on 3 critical reasoning principles to develop pharmacy students’ skills in literature appraisal, content, metacognition, and assessment. Design. Students completed 3 assignments for the course: compile a literature appraisal on a healthcare topic; plan learning objectives and meta-cognitive skills for a learning module; and create a case-based online lesson with multi-structured feedback. Assessment. An online exit survey evaluated students’ perceptions regarding development of ACE (agency, collaboration, expertise) principles and preparation for competency. Students reported acquisition of ACE principles and noted improvements in their learning approaches, sense of responsibility for individual and community learning, skills, and confidence. Conclusions. An online elective course in self-care addressed practice standards for patient safety, maintenance of competency, and interprofessional education by emphasizing critical reasoning skills. PMID:22171110

  15. The relationship between amplitude modulation, coherent structure and critical layers in wall turbulence

    NASA Astrophysics Data System (ADS)

    McKeon, Beverley

    2015-11-01

    The importance of critical layers in determining aspects of the structure of wall turbulence is discussed. We have shown (Jacobi & McKeon, 2013) that the amplitude modulation coefficient investigated most recently by Hutchins & Marusic (2007) and co-authors, which describes the correlation between large scales above a (spatial) wavelength filter with the envelope of small scales below the filter, is dominated by very large scale motion (VLSM) at a single wavelength. The resolvent analysis of McKeon & Sharma (2010) gives a suitable model for the three-dimensional, three-component form of the VLSM and energetic structure at other wavelengths. This model is used to identify the three-dimensional spatial variation of instantaneous critical layers in the presence of a mean velocity profile and to relate this to earlier observations of coherent structure in unperturbed flows (both experimental and via the resolvent model, Sharma & McKeon, 2013); to the phase relationships between scales identified by Chung & McKeon (2010, 2014); and to the structure of wall turbulence that has been modified by the addition of single synthetic scales, e.g. Jacobi & McKeon (2011), Duvvuri & McKeon (2015). The support of AFOSR under grant number FA 9550-12-1-0469 is gratefully acknowledged.

  16. Road safety forecasts in five European countries using structural time series models.

    PubMed

    Antoniou, Constantinos; Papadimitriou, Eleonora; Yannis, George

    2014-01-01

    Modeling road safety development is a complex task and needs to consider both the quantifiable impact of specific parameters as well as the underlying trends that cannot always be measured or observed. The objective of this research is to apply structural time series models for obtaining reliable medium- to long-term forecasts of road traffic fatality risk using data from 5 countries with different characteristics from all over Europe (Cyprus, Greece, Hungary, Norway, and Switzerland). Two structural time series models are considered: (1) the local linear trend model and the (2) latent risk time series model. Furthermore, a structured decision tree for the selection of the applicable model for each situation (developed within the Road Safety Data, Collection, Transfer and Analysis [DaCoTA] research project, cofunded by the European Commission) is outlined. First, the fatality and exposure data that are used for the development of the models are presented and explored. Then, the modeling process is presented, including the model selection process, introduction of intervention variables, and development of mobility scenarios. The forecasts using the developed models appear to be realistic and within acceptable confidence intervals. The proposed methodology is proved to be very efficient for handling different cases of data availability and quality, providing an appropriate alternative from the family of structural time series models in each country. A concluding section providing perspectives and directions for future research is presented.

  17. Identifying the Critical Links in Road Transportation Networks: Centrality-based approach utilizing structural properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chinthavali, Supriya

    Surface transportation road networks share structural properties similar to other complex networks (e.g., social networks, information networks, biological networks, and so on). This research investigates the structural properties of road networks for any possible correlation with the traffic characteristics such as link flows those determined independently. Additionally, we define a criticality index for the links of the road network that identifies the relative importance in the network. We tested our hypotheses with two sample road networks. Results show that, correlation exists between the link flows and centrality measures of a link of the road (dual graph approach is followed) andmore » the criticality index is found to be effective for one test network to identify the vulnerable nodes.« less

  18. Terrestrial laser scanning-based bridge structural condition assessment : InTrans project reports.

    DOT National Transportation Integrated Search

    2016-05-01

    Objective, accurate, and fast assessment of a bridges structural condition is critical to the timely assessment of safety risks. : Current practices for bridge condition assessment rely on visual observations and manual interpretation of reports a...

  19. Dynamical Signatures of Structural Connectivity Damage to a Model of the Brain Posed at Criticality.

    PubMed

    Haimovici, Ariel; Balenzuela, Pablo; Tagliazucchi, Enzo

    2016-12-01

    Synchronization of brain activity fluctuations is believed to represent communication between spatially distant neural processes. These interareal functional interactions develop in the background of a complex network of axonal connections linking cortical and subcortical neurons, termed the human "structural connectome." Theoretical considerations and experimental evidence support the view that the human brain can be modeled as a system operating at a critical point between ordered (subcritical) and disordered (supercritical) phases. Here, we explore the hypothesis that pathologies resulting from brain injury of different etiologies are related to this model of a critical brain. For this purpose, we investigate how damage to the integrity of the structural connectome impacts on the signatures of critical dynamics. Adopting a hybrid modeling approach combining an empirical weighted network of human structural connections with a conceptual model of critical dynamics, we show that lesions located at highly transited connections progressively displace the model toward the subcritical regime. The topological properties of the nodes and links are of less importance when considered independently of their weight in the network. We observe that damage to midline hubs such as the middle and posterior cingulate cortex is most crucial for the disruption of criticality in the model. However, a similar effect can be achieved by targeting less transited nodes and links whose connection weights add up to an equivalent amount. This implies that brain pathology does not necessarily arise due to insult targeted at well-connected areas and that intersubject variability could obscure lesions located at nonhub regions. Finally, we discuss the predictions of our model in the context of clinical studies of traumatic brain injury and neurodegenerative disorders.

  20. Critical joints in large composite primary aircraft structures. Volume 2: Technology demonstration test report

    NASA Technical Reports Server (NTRS)

    Bunin, Bruce L.

    1985-01-01

    A program was conducted to develop the technology for critical structural joints in composite wing structure that meets all the design requirements of a 1990 commercial transport aircraft. The results of four large composite multirow bolted joint tests are presented. The tests were conducted to demonstrate the technology for critical joints in highly loaded composite structure and to verify the analytical methods that were developed throughout the program. The test consisted of a wing skin-stringer transition specimen representing a stringer runout and skin splice on the wing lower surface at the side of the fuselage attachment. All tests were static tension tests. The composite material was Toray T-300 fiber with Ciba-Geigy 914 resin in 10 mil tape form. The splice members were metallic, using combinations of aluminum and titanium. Discussions are given of the test article, instrumentation, test setup, test procedures, and test results for each of the four specimens. Some of the analytical predictions are also included.

  1. A critical review of social and structural conditions that influence HIV risk among Mexican deportees

    PubMed Central

    Pinedo, Miguel; Burgos, José Luis; Ojeda, Victoria D.

    2014-01-01

    Mexican migrants who are deported from the US may be at elevated risk for HIV infection. Deportations of Mexican migrants by the US have reached record numbers. We critically reviewed existing literature to assess how social and structural conditions in post-deportation settings can influence Mexican deported migrants' HIV risk. We also identify critical research gaps and make research recommendations. PMID:24583278

  2. Safety Control and Safety Education at Technical Institutes

    NASA Astrophysics Data System (ADS)

    Iino, Hiroshi

    The importance of safety education for students at technical institutes is emphasized on three grounds including safety of all working members and students in their education, research and other activities. The Kanazawa Institute of Technology re-organized the safety organization into a line structure and improved safety minds of all their members and now has a chemical materials control system and a set of compulsory safety education programs for their students, although many problems still remain.

  3. The Critical Mass Laboratory at Rocky Flats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rothe, Robert E

    2003-10-15

    The Critical Mass Laboratory (CML) at Rocky Flats northwest of Denver, Colorado, was built in 1964 and commissioned to conduct nuclear experiments on January 28, 1965. It was built to attain more accurate and precise experimental data to ensure nuclear criticality safety at the plant than were previously possible. Prior to its construction, safety data were obtained from long extrapolations of subcritical data (called in situ experiments), calculated parameters from reactor engineering 'models', and a few other imprecise methods. About 1700 critical and critical-approach experiments involving several chemical forms of enriched uranium and plutonium were performed between then and 1988.more » These experiments included single units and arrays of fissile materials, reflected and 'bare' systems, and configurations with various degrees of moderation, as well as some containing strong neutron absorbers. In 1989, a raid by the Federal Bureau of Investigation (FBI) caused the plant as a whole to focus on 'resumption' instead of further criticality safety experiments. Though either not recognized or not admitted for a few years, that FBI raid did sound the death knell for the CML. The plant's optimistic goal of resumption evolved to one of deactivation, decommissioning, and plantwide demolition during the 1990s. The once-proud CML facility was finally demolished in April of 2002.« less

  4. 78 FR 11737 - Improving Critical Infrastructure Cybersecurity

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-19

    ... of America, it is hereby ordered as follows: Section 1. Policy. Repeated cyber intrusions into critical infrastructure demonstrate the need for improved cybersecurity. The cyber threat to critical... cyber environment that encourages efficiency, innovation, and economic prosperity while promoting safety...

  5. Critical thresholds in species` responses to landscape structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    With, K.A.; Crist, T.O.

    1995-12-01

    Critical thresholds are transition ranges across which small changes in spatial pattern produce abrupt shifts in ecological responses. Habitat fragmentation provides a familiar example of a critical threshold. As the landscape becomes dissected into smaller parcels of habitat. landscape connectivity-the functional linkage among habitat patches - may suddenly become disrupted, which may have important consequences for the distribution and persistence of populations. Landscape connectivity depends not only on the abundance and spatial patterning of habitat. but also on the habitat specificity and dispersal abilities of species. Habitat specialists with limited dispersal capabilities presumably have a much lower threshold to habitatmore » fragmentation than highly vagile species, which may perceive the landscape as functionally connected across a greater range of fragmentation severity. To determine where threshold effects in species, responses to landscape structure are likely to occur, a simulation model modified from percolation theory was developed. Our simulations predicted the distributional patterns of populations in different landscape mosaics, which we tested empirically using two grasshopper species (Orthoptera: Acrididae) that occur in the shortgrass prairie of north-central Colorado. The distribution of these two species in this grassland mosaic matched the predictions from our simulations. By providing quantitative predictions of threshold effects, this modelling approach may prove useful in the formulation of conservation strategies and assessment of land-use changes on species` distributional patterns and persistence.« less

  6. Is It Safe? Reliability and Validity of Structured versus Unstructured Child Safety Judgments

    ERIC Educational Resources Information Center

    Bartelink, Cora; de Kwaadsteniet, Leontien; ten Berge, Ingrid J.; Witteman, Cilia L. M.

    2017-01-01

    Background: The LIRIK, an instrument for the assessment of child safety and risk, is designed to improve assessments by guiding professionals through a structured evaluation of relevant signs, risk factors, and protective factors. Objective: We aimed to assess the interrater agreement and the predictive validity of professionals' judgments made…

  7. Final Technical Report on Quantifying Dependability Attributes of Software Based Safety Critical Instrumentation and Control Systems in Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smidts, Carol; Huang, Funqun; Li, Boyuan

    With the current transition from analog to digital instrumentation and control systems in nuclear power plants, the number and variety of software-based systems have significantly increased. The sophisticated nature and increasing complexity of software raises trust in these systems as a significant challenge. The trust placed in a software system is typically termed software dependability. Software dependability analysis faces uncommon challenges since software systems’ characteristics differ from those of hardware systems. The lack of systematic science-based methods for quantifying the dependability attributes in software-based instrumentation as well as control systems in safety critical applications has proved itself to be amore » significant inhibitor to the expanded use of modern digital technology in the nuclear industry. Dependability refers to the ability of a system to deliver a service that can be trusted. Dependability is commonly considered as a general concept that encompasses different attributes, e.g., reliability, safety, security, availability and maintainability. Dependability research has progressed significantly over the last few decades. For example, various assessment models and/or design approaches have been proposed for software reliability, software availability and software maintainability. Advances have also been made to integrate multiple dependability attributes, e.g., integrating security with other dependability attributes, measuring availability and maintainability, modeling reliability and availability, quantifying reliability and security, exploring the dependencies between security and safety and developing integrated analysis models. However, there is still a lack of understanding of the dependencies between various dependability attributes as a whole and of how such dependencies are formed. To address the need for quantification and give a more objective basis to the review process -- therefore reducing regulatory

  8. A focused approach to safety guidebook.

    DOT National Transportation Integrated Search

    2011-08-23

    "The Federal Highway Administration (FHWA) has developed the Focused Approach to Safety in order to better address the most critical safety challenges by devoting additional attention to high priority States. The purpose of the Focused Approach is to...

  9. The Inside Information about Safety Surfacing.

    ERIC Educational Resources Information Center

    Thompson, Donna; Hudson, Susan

    2003-01-01

    Tested the impact attenuation characteristics of safety surfaces used in indoor child care play settings. Found that the most common surfaces used were indoor/outdoor carpet, various types of mats, and safety floor tiles. Nearly 60 percent of tested materials had a critical fall height of 1 foot or less. Concluded that carpet, safety tile, and…

  10. Safety of intravenous lacosamide in critically ill children.

    PubMed

    Welsh, Sarah S; Lin, Nan; Topjian, Alexis A; Abend, Nicholas S

    2017-11-01

    Acute seizures are common in critically ill children. These patients would benefit from intravenous anti-seizure medications with few adverse effects. We reviewed the usage and effects of intravenous lacosamide in critically ill children with seizures or status epilepticus. This retrospective series included consecutive patients who received at least one dose of intravenous lacosamide from April 2011 to February 2016 in the pediatric intensive care unit of a quaternary care children's hospital, including patients with new lacosamide initiation and continuation of outpatient oral lacosamide. Dosing and prescribing practices were reviewed. Adverse effects were defined by predefined criteria, and most were evaluated during the full admission. We identified 51 intensive care unit admissions (47 unique patients) with intravenous lacosamide administration. Lacosamide was utilized as a third or fourth-line anti-seizure medication for acute seizures or status epilepticus in the lacosamide-naïve cohort. One patient experienced bradycardia and one patient experienced a rash that were considered potentially related to lacosamide. No other adverse effects were identified, including no evidence of PR interval prolongation. Lacosamide was well tolerated in critically ill children. Further study is warranted to evaluate the effectiveness of earlier lacosamide use for pediatric status epilepticus and acute seizures. Copyright © 2017 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  11. Failure Modes Effects and Criticality Analysis, an Underutilized Safety, Reliability, Project Management and Systems Engineering Tool

    NASA Astrophysics Data System (ADS)

    Mullin, Daniel Richard

    2013-09-01

    The majority of space programs whether manned or unmanned for science or exploration require that a Failure Modes Effects and Criticality Analysis (FMECA) be performed as part of their safety and reliability activities. This comes as no surprise given that FMECAs have been an integral part of the reliability engineer's toolkit since the 1950s. The reasons for performing a FMECA are well known including fleshing out system single point failures, system hazards and critical components and functions. However, in the author's ten years' experience as a space systems safety and reliability engineer, findings demonstrate that the FMECA is often performed as an afterthought, simply to meet contract deliverable requirements and is often started long after the system requirements allocation and preliminary design have been completed. There are also important qualitative and quantitative components often missing which can provide useful data to all of project stakeholders. These include; probability of occurrence, probability of detection, time to effect and time to detect and, finally, the Risk Priority Number. This is unfortunate as the FMECA is a powerful system design tool that when used effectively, can help optimize system function while minimizing the risk of failure. When performed as early as possible in conjunction with writing the top level system requirements, the FMECA can provide instant feedback on the viability of the requirements while providing a valuable sanity check early in the design process. It can indicate which areas of the system will require redundancy and which areas are inherently the most risky from the onset. Based on historical and practical examples, it is this author's contention that FMECAs are an immense source of important information for all involved stakeholders in a given project and can provide several benefits including, efficient project management with respect to cost and schedule, system engineering and requirements management

  12. Operating safely in surgery and critical care with perioperative automation.

    PubMed

    Grover, Christopher; Barney, Kate

    2004-01-01

    A study by the Institute of Medicine (IOM) found that as many as 98,000 Americans die each year from preventable medical errors. These findings, combined with a growing spate of negative publicity, have brought patient safety to its rightful place at the healthcare forefront. Nowhere are patient safety issues more critical than in the anesthesia, surgery and critical care environments. These high-acuity settings--with their fast pace, complex and rapidly changing care regimens and mountains of diverse clinical data-arguably pose the greatest patient safety risk in the hospital.

  13. Critical review of the safety assessment of nano-structured silica additives in food.

    PubMed

    Winkler, Hans Christian; Suter, Mark; Naegeli, Hanspeter

    2016-06-10

    The development of nano-materials is viewed as one of the most important technological advances of the 21st century and new applications of nano-sized particles in the production, processing, packaging or storage of food are expected to emerge soon. This trend of growing commercialization of engineered nano-particles as part of modern diet will substantially increase oral exposure. Contrary to the proven benefits of nano-materials, however, possible adverse health effects have generally received less attention. This problem is very well illustrated by nano-structured synthetic amorphous silica (SAS), which is a common food additive since several decades although the relevant risk assessment has never been satisfactorily completed. A no observed adverse effect level of 2500 mg SAS particles/kg body weight per day was derived from the only available long-term administration study in rodents. However, extrapolation to a safe daily intake for humans is problematic due to limitations of this chronic animal study and knowledge gaps as to possible local intestinal effects of SAS particles, primarily on the gut-associated lymphoid system. This uncertainty is aggravated by digestion experiments indicating that dietary SAS particles preserve their nano-sized structure when reaching the intestinal lumen. An important aspect is whether food-borne particles like SAS alter the function of dendritic cells that, embedded in the intestinal mucosa, act as first-line sentinels of foreign materials. We conclude that nano-particles do not represent a completely new threat and that most potential risks can be assessed following procedures established for conventional chemical hazards. However, specific properties of food-borne nano-particles should be further examined and, for that purpose, in vitro tests with decision-making cells of the immune system are needed to complement existing in vivo studies.

  14. Safety issues in cultural heritage management and critical infrastructures management

    NASA Astrophysics Data System (ADS)

    Soldovieri, Francesco; Masini, Nicola; Alvarez de Buergo, Monica; Dumoulin, Jean

    2013-12-01

    This special issue is the fourth of its kind in Journal of Geophysics and Engineering , containing studies and applications of geophysical methodologies and sensing technologies for the knowledge, conservation and security of products of human activity ranging from civil infrastructures to built and cultural heritage. The first discussed the application of novel instrumentation, surface and airborne remote sensing techniques, as well as data processing oriented to both detection and characterization of archaeological buried remains and conservation of cultural heritage (Eppelbaum et al 2010). The second stressed the importance of an integrated and multiscale approach for the study and conservation of architectural, archaeological and artistic heritage, from SAR to GPR to imaging based diagnostic techniques (Masini and Soldovieri 2011). The third enlarged the field of analysis to civil engineering structures and infrastructures, providing an overview of the effectiveness and the limitations of single diagnostic techniques, which can be overcome through the integration of different methods and technologies and/or the use of robust and novel data processing techniques (Masini et al 2012). As a whole, the special issue put in evidence the factors that affect the choice of diagnostic strategy, such as the material, the spatial characteristics of the objects or sites, the value of the objects to be investigated (cultural or not), the aim of the investigation (knowledge, conservation, restoration) and the issues to be addressed (monitoring, decay assessment). In order to complete the overview of the application fields of sensing technologies this issue has been dedicated to monitoring of cultural heritage and critical infrastructures to address safety and security issues. Particular attention has been paid to the data processing methods of different sensing techniques, from infrared thermography through GPR to SAR. Cascini et al (2013) present the effectiveness of a

  15. Predicting Fatigue and Psychophysiological Test Performance from Speech for Safety-Critical Environments.

    PubMed

    Baykaner, Khan Richard; Huckvale, Mark; Whiteley, Iya; Andreeva, Svetlana; Ryumin, Oleg

    2015-01-01

    Automatic systems for estimating operator fatigue have application in safety-critical environments. A system which could estimate level of fatigue from speech would have application in domains where operators engage in regular verbal communication as part of their duties. Previous studies on the prediction of fatigue from speech have been limited because of their reliance on subjective ratings and because they lack comparison to other methods for assessing fatigue. In this paper, we present an analysis of voice recordings and psychophysiological test scores collected from seven aerospace personnel during a training task in which they remained awake for 60 h. We show that voice features and test scores are affected by both the total time spent awake and the time position within each subject's circadian cycle. However, we show that time spent awake and time-of-day information are poor predictors of the test results, while voice features can give good predictions of the psychophysiological test scores and sleep latency. Mean absolute errors of prediction are possible within about 17.5% for sleep latency and 5-12% for test scores. We discuss the implications for the use of voice as a means to monitor the effects of fatigue on cognitive performance in practical applications.

  16. Predicting Fatigue and Psychophysiological Test Performance from Speech for Safety-Critical Environments

    PubMed Central

    Baykaner, Khan Richard; Huckvale, Mark; Whiteley, Iya; Andreeva, Svetlana; Ryumin, Oleg

    2015-01-01

    Automatic systems for estimating operator fatigue have application in safety-critical environments. A system which could estimate level of fatigue from speech would have application in domains where operators engage in regular verbal communication as part of their duties. Previous studies on the prediction of fatigue from speech have been limited because of their reliance on subjective ratings and because they lack comparison to other methods for assessing fatigue. In this paper, we present an analysis of voice recordings and psychophysiological test scores collected from seven aerospace personnel during a training task in which they remained awake for 60 h. We show that voice features and test scores are affected by both the total time spent awake and the time position within each subject’s circadian cycle. However, we show that time spent awake and time-of-day information are poor predictors of the test results, while voice features can give good predictions of the psychophysiological test scores and sleep latency. Mean absolute errors of prediction are possible within about 17.5% for sleep latency and 5–12% for test scores. We discuss the implications for the use of voice as a means to monitor the effects of fatigue on cognitive performance in practical applications. PMID:26380259

  17. Identification of three critical regions within mouse interleukin 2 by fine structural deletion analysis.

    PubMed Central

    Zurawski, S M; Zurawski, G

    1988-01-01

    We have analyzed structure--function relationships of the protein hormone murine interleukin 2 by fine structural deletion mapping. A total of 130 deletion mutant proteins, together with some substitution and insertion mutant proteins, was expressed in Escherichia coli and analyzed for their ability to sustain the proliferation of a cloned murine T cell line. This analysis has permitted a functional map of the protein to be drawn and classifies five segments of the protein, which together contain 48% of the sequence, as unessential to the biological activity of the protein. A further 26% of the protein is classified as important, but not crucial, for the activity. Three regions, consisting of amino acids 32-35, 66-77 and 119-141 contain the remaining 26% of the protein and are critical to the biological activity of the protein. The functional map is discussed in the context of the possible role of the identified critical regions in the structure of the hormone and its binding to the interleukin 2 receptor complex. Images PMID:3261239

  18. Autonomous Assembly of Modular Structures in Space and on Extraterrestrial Locations

    NASA Astrophysics Data System (ADS)

    Alhorn, Dean C.

    2005-02-01

    The new U.S. National Vision for Space Exploration requires many new enabling technologies to accomplish the goals of space commercialization and returning humans to the moon and extraterrestrial environments. Traditionally, flight elements are complete sub-systems requiring humans to complete the integration and assembly. These bulky structures also require the use of heavy launch vehicles to send the units to a desired location. This philosophy necessitates a high degree of safety, numerous space walks at a significant cost. Future space mission costs must be reduced and safety increased to reasonably achieve exploration goals. One proposed concept is the autonomous assembly of space structures. This concept is an affordable, reliable solution to in-space and extraterrestrial assembly. Assembly is autonomously performed when two components join after determining that specifications are correct. Local sensors continue monitor joint integrity post assembly, which is critical for safety and structural reliability. Achieving this concept requires a change in space structure design philosophy and the development of innovative technologies to perform autonomous assembly. Assembly of large space structures will require significant numbers of integrity sensors. Thus simple, low-cost sensors are integral to the success of this concept. This paper addresses these issues and proposes a novel concept for assembling space structures autonomously. Core technologies required to achieve in space assembly are presented. These core technologies are critical to the goal of utilizing space in a cost efficient and safe manner. Additionally, these novel technologies can be applied to other systems both on earth and extraterrestrial environments.

  19. Autonomous Assembly of Modular Structures in Space and on Extraterrestrial Locations

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C.

    2005-01-01

    The new U.S. National Vision for Space Exploration requires many new enabling technologies to accomplish the goals of space commercialization and returning humans to the moon and extraterrestrial environments. Traditionally, flight elements are complete subsystems requiring humans to complete the integration and assembly. These bulky structures also require the use of heavy launch vehicles to send the units to a desired location. This philosophy necessitates a high degree of safety, numerous space walks at a significant cost. Future space mission costs must be reduced and safety increased to reasonably achieve exploration goals. One proposed concept is the autonomous assembly of space structures. This concept is an affordable, reliable solution to in-space and extraterrestrial assembly. Assembly is autonomously performed when two components join after determining that specifications are correct. Local sensors continue monitor joint integrity post assembly, which is critical for safety and structural reliability. Achieving this concept requires a change in space structure design philosophy and the development of innovative technologies to perform autonomous assembly. Assembly of large space structures will require significant numbers of integrity sensors. Thus simple, low-cost sensors are integral to the success of this concept. This paper addresses these issues and proposes a novel concept for assembling space structures autonomously. Core technologies required to achieve in space assembly are presented. These core technologies are critical to the goal of utilizing space in a cost efficient and safe manner. Additionally, these novel technologies can be applied to other systems both on earth and extraterrestrial environments.

  20. Strategies to curb structural changes of lithium/transition metal oxide cathode materials & the changes’ effects on thermal & cycling stability

    NASA Astrophysics Data System (ADS)

    Xiqian, Yu; Enyuan, Hu; Seongmin, Bak; Yong-Ning, Zhou; Xiao-Qing, Yang

    2016-01-01

    Structural transformation behaviors of several typical oxide cathode materials during a heating process are reviewed in detail to provide in-depth understanding of the key factors governing the thermal stability of these materials. We also discuss applying the information about heat induced structural evolution in the study of electrochemically induced structural changes. All these discussions are expected to provide valuable insights for designing oxide cathode materials with significantly improved structural stability for safe, long-life lithium ion batteries, as the safety of lithium-ion batteries is a critical issue; it is widely accepted that the thermal instability of the cathodes is one of the most critical factors in thermal runaway and related safety problems. Project supported by the U.S. Department of Energy, the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies (Grant No. DE-SC0012704).

  1. A new technology perspective and engineering tools approach for large, complex and distributed mission and safety critical systems components

    NASA Technical Reports Server (NTRS)

    Carrio, Miguel A., Jr.

    1988-01-01

    Rapidly emerging technology and methodologies have out-paced the systems development processes' ability to use them effectively, if at all. At the same time, the tools used to build systems are becoming obsolescent themselves as a consequence of the same technology lag that plagues systems development. The net result is that systems development activities have not been able to take advantage of available technology and have become equally dependent on aging and ineffective computer-aided engineering tools. New methods and tools approaches are essential if the demands of non-stop and Mission and Safety Critical (MASC) components are to be met.

  2. A critical review of social and structural conditions that influence HIV risk among Mexican deportees.

    PubMed

    Pinedo, Miguel; Burgos, José Luis; Ojeda, Victoria D

    2014-05-01

    Mexican migrants who are deported from the US may be at elevated risk for HIV infection. Deportations of Mexican migrants by the US have reached record numbers. We critically reviewed existing literature to assess how social and structural conditions in post-deportation settings can influence Mexican deported migrants' HIV risk. We also identify critical research gaps and make research recommendations. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  3. 76 FR 67020 - Railroad Safety Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-28

    ... Device Distraction, Critical Incident, Track Safety Standards, Dark Territory, Passenger Safety, and... railroad safety matters. The RSAC is composed of 54 voting representatives from 31 member organizations...

  4. The impact of nursing leadership on patient safety in a developing country.

    PubMed

    Stewart, Lee; Usher, Kim

    2010-11-01

    This article is a report of a study to identify the ways nursing leaders and managers in a developing country have an impact on patient safety. The attempt to address the problem of patient safety in health care is a global issue. Literature addressing the significant impact that nursing leadership has on patient safety is extensive and focuses almost exclusively on the developed world. A critical ethnography was conducted with senior registered nursing leaders and managers throughout the Fiji Islands, specifically those in the Head Office of the Fiji Ministry of Health and the most senior nurse in a hospital or community health service. Semi-structured interviews were conducted with senior nursing leaders and managers in Fiji. Thematic analysis of the interviews was undertaken from a critical theory perspective, with reference to the macro socio-political system of the Fiji Ministry of Health. Four interrelated issues regarding the nursing leaders and managers' impact on patient safety emerged from the study. Empowerment of nursing leaders and managers, an increased focus on the patient, the necessity to explore conditions for front-line nurses and the direct relationship between improved nursing conditions and increased patient safety mirrored literature from developed countries. The findings have significant implications for developing countries and it is crucial that support for patient safety in developing countries become a focus for the international nursing community. Nursing leaders and managers' increased focus on their own place in the hierarchy of the health care system and on nursing conditions as these affect patient safety could decrease adverse patient outcomes. The findings could assist the global nursing community to better support developing countries in pursuing a patient safety agenda. © 2010 Blackwell Publishing Ltd.

  5. Hydrologic Synthesis Across the Critical Zone Observatory Network: A Step Towards Understanding the Coevolution of Critical Zone Function and Structure

    NASA Astrophysics Data System (ADS)

    Wlostowski, A. N.; Harman, C. J.; Molotch, N. P.

    2017-12-01

    The physical and biological architecture of the Earth's Critical Zone controls hydrologic partitioning, storage, and chemical evolution of precipitated water. The Critical Zone Observatory (CZO) Network provides an ideal platform to explore linkages between catchment structure and hydrologic function across a gradient of geologic and climatic settings. A legacy of hypothesis-motivated research at each site has generated a wealth of data characterizing the architecture and hydrologic function of the critical zone. We will present a synthesis of this data that aims to elucidate and explain (in the sense of making mutually intelligible) variations in hydrologic function across the CZO network. Top-down quantitative signatures of the storage and partitioning of water at catchment scales extracted from precipitation, streamflow, and meteorological data will be compared with each other, and provide quantitative benchmarks to assess differences in perceptual models of hydrologic function at each CZO site. Annual water balance analyses show that CZO sites span a wide gradient of aridity and evaporative partitioning. The aridity index (PET/P) ranges from 0.3 at Luquillo to 4.3 at Reynolds Creek, while the evaporative index (E/P) ranges from 0.3 at Luquillo (Rio Mamayes) to 0.9 at Reynolds Creek (Reynolds Creek Outlet). Snow depth and SWE observations reveal that snowpack is an important seasonal storage reservoir at three sites: Boulder, Jemez, Reynolds Creek and Southern Sierra. Simple dynamical models are also used to infer seasonal patterns of subsurface catchment storage. A root-zone water balance model reveals unique seasonal variations in plant-available water storage. Seasonal patterns of plant-available storage are driven by the asynchronicity of seasonal precipitation and evaporation cycles. Catchment sensitivity functions are derived at each site to infer relative changes in hydraulic storage (the apparent storage reservoir responsible for modulating streamflow

  6. Social Security: Strengthening a Vital Safety Net for Latinos

    ERIC Educational Resources Information Center

    Cruz, Jeff

    2012-01-01

    Since 1935, Social Security has provided a vital safety net for millions of Americans who cannot work because of age or disability. This safety net has been especially critical for Americans of Latino decent, who number more than 50 million or nearly one out of every six Americans. Social Security is critical to Latinos because it is much more…

  7. [Structured medication management in primary care - a tool to promote medication safety].

    PubMed

    Mahler, Cornelia; Freund, Tobias; Baldauf, Annika; Jank, Susanne; Ludt, Sabine; Peters-Klimm, Frank; Haefeli, Walter Emil; Szecsenyi, Joachim

    2014-01-01

    Patients with chronic disease usually need to take multiple medications. Drug-related interactions, adverse events, suboptimal adherence, and self-medication are components that can affect medication safety and lead to serious consequences for the patient. At present, regular medication reviews to check what medicines have been prescribed and what medicines are actually taken by the patient or the structured evaluation of drug-related problems rarely take place in Germany. The process of "medication reconciliation" or "medication review" as developed in the USA and the UK aim at increasing medication safety and therefore represent an instrument of quality assurance. Within the HeiCare(®) project a structured medication management was developed for general practice, with medical assistants playing a major role in the implementation of the process. Both the structured medication management and the tools developed for the medication check and medication counselling will be outlined in this article; also, findings on feasibility and acceptance in various projects and experiences from a total of 200 general practices (56 HeiCare(®), 29 HiCMan,115 PraCMan) will be described. The results were obtained from questionnaires and focus group discussions. The implementation of a structured medication management intervention into daily routine was seen as a challenge. Due to the high relevance of medication reconciliation for daily clinical practice, however, the checklists - once implemented successfully - have been applied even after the end of the project. They have led to the regular review and reconciliation of the physicians' documentation of the medicines prescribed (medication chart) with the medicines actually taken by the patient. Copyright © 2013. Published by Elsevier GmbH.

  8. Future Data Communication Architectures for Safety Critical Aircraft Cabin Systems

    NASA Astrophysics Data System (ADS)

    Berkhahn, Sven-Olaf

    2012-05-01

    The cabin of modern aircraft is subject to increasing demands for fast reconfiguration and hence flexibility. These demands require studies for new network architectures and technologies of the electronic cabin systems, which consider also weight and cost reductions as well as safety constraints. Two major approaches are in consideration to reduce the complex and heavy wiring harness: the usage of a so called hybrid data bus technology, which enables the common usage of the same data bus for several electronic cabin systems with different safety and security requirements and the application of wireless data transfer technologies for electronic cabin systems.

  9. Sensitivity-Uncertainty Techniques for Nuclear Criticality Safety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Forrest B.; Rising, Michael Evan; Alwin, Jennifer Louise

    2017-08-07

    The sensitivity and uncertainty analysis course will introduce students to k eff sensitivity data, cross-section uncertainty data, how k eff sensitivity data and k eff uncertainty data are generated and how they can be used. Discussion will include how sensitivity/uncertainty data can be used to select applicable critical experiments, to quantify a defensible margin to cover validation gaps and weaknesses, and in development of upper subcritical limits.

  10. Developing Digital Image Techniques with Low-Cost Unmanned Mobile to Monitor the Safety of Dam and Affiliated Structure

    NASA Astrophysics Data System (ADS)

    Sung, Wen-Pei; Shih, Ming-Hsiang

    2016-04-01

    Global warming phenomena are increasingly serious, the El Niño and La Niña continue to occur repeatedly, causing the irregular drought and flood problem repeatedly. Mountain form of Taiwan is steep and storage ability of rainwater is insufficient to supply the livelihood of people and usage of industry which need to rely on rainwater reservoir. Thus, to ensure the water supply and self-reliance energy supply, one of ways to keep water resource is to build reservoir. Nevertheless, Taiwan is located on Pacific seismic belt; additionally, geological conditions are not fine, over-developed in the hills lead to more natural disasters in the future. Thus, strong shakes and typhoons which caused a degree of severe landslides around dam lead to reduce catchment of dam to result in affecting the safety of dam. Otherwise, the cracks and rusts in dam, induced by the defects of material, bad construction and seismic excitation respectively, thus, the mechanics phenomena of dam and its affiliated structures with crack are probing into the cause of stress concentration, induced high crack increase rate, affect the safety and usage of dam. This research is aimed at the safety evaluation technique of dam and its affiliated structures to develop three dimensional digital image correlation techniques for monitoring the safety of dam and its affiliated structures. Namely, developing the unmanned mobile on two axis of digital image correlation method is to detect the digital images from geometric scanning techniques for dam structure. This developed technique combined with Unmanned Aerial Vehicle (UAV) to develop the near filed scanning and monitoring techniques for local deformation and cracks on dam and its affiliated structures.

  11. Safety climate and mindful safety practices in the oil and gas industry.

    PubMed

    Dahl, Øyvind; Kongsvik, Trond

    2018-02-01

    The existence of a positive association between safety climate and the safety behavior of sharp-end workers in high-risk organizations is supported by a considerable body of research. Previous research has primarily analyzed two components of safety behavior, namely safety compliance and safety participation. The present study extends previous research by looking into the relationship between safety climate and another component of safety behavior, namely mindful safety practices. Mindful safety practices are defined as the ability to be aware of critical factors in the environment and to act appropriately when dangers arise. Regression analysis was used to examine whether mindful safety practices are, like compliance and participation, promoted by a positive safety climate, in a questionnaire-based study of 5712 sharp-end workers in the oil and gas industry. The analysis revealed that a positive safety climate promotes mindful safety practices. The regression model accounted for roughly 31% of the variance in mindful safety practices. The most important safety climate factor was safety leadership. The findings clearly demonstrate that mindful safety practices are highly context-dependent, hence, manageable and susceptible to change. In order to improve safety climate in a direction which is favorable for mindful safety practices, the results demonstrate that it is important to give the fundamental features of safety climate high priority and in particular that of safety leadership. Copyright © 2017 National Safety Council and Elsevier Ltd. All rights reserved.

  12. Validation and Verification (V&V) of Safety-Critical Systems Operating Under Off-Nominal Conditions

    NASA Technical Reports Server (NTRS)

    Belcastro, Christine M.

    2012-01-01

    Loss of control (LOC) remains one of the largest contributors to aircraft fatal accidents worldwide. Aircraft LOC accidents are highly complex in that they can result from numerous causal and contributing factors acting alone or more often in combination. Hence, there is no single intervention strategy to prevent these accidents. Research is underway at the National Aeronautics and Space Administration (NASA) in the development of advanced onboard system technologies for preventing or recovering from loss of vehicle control and for assuring safe operation under off-nominal conditions associated with aircraft LOC accidents. The transition of these technologies into the commercial fleet will require their extensive validation and verification (V&V) and ultimate certification. The V&V of complex integrated systems poses highly significant technical challenges and is the subject of a parallel research effort at NASA. This chapter summarizes the V&V problem and presents a proposed process that could be applied to complex integrated safety-critical systems developed for preventing aircraft LOC accidents. A summary of recent research accomplishments in this effort is referenced.

  13. The MIRTE Experimental Program: An Opportunity to Test Structural Materials in Various Configurations in Thermal Energy Spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leclaire, Nicolas; Le Dauphin, Francois-Xavier; Duhamel, Isabelle

    2014-11-04

    The MIRTE (Materials in Interacting and Reflecting configurations, all Thicknesses) program was established to answer the needs of criticality safety practitioners in terms of experimental validation of structural materials and to possibly contribute to nuclear data improvement, which ultimately supports reactor safety analysis as well. MIRTE took the shape of a collaboration between the AREVA and ANDRA French industrialists and a noncommercial international funding partner such as the U.S. Department of Energy. The aim of this paper is to present the configurations of the MIRTE 1 and MIRTE 2 programs and to highlight the results of the titanium experiments recentlymore » published in the International Handbook of Evaluated Criticality Safety Benchmark Experiments.« less

  14. Experimental criticality specifications. An annotated bibliography through 1977

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paxton, H.C.

    1978-05-01

    The compilation of approximately 300 references gives sources of experimental criticality parameters of systems containing /sup 235/U, /sup 233/U, and /sup 239/Pu. The intent is to cover basic data for criticality safety applications. The references are arranged by subject.

  15. Fault Injection Validation of a Safety-Critical TMR Sysem

    NASA Astrophysics Data System (ADS)

    Irrera, Ivano; Madeira, Henrique; Zentai, Andras; Hergovics, Beata

    2016-08-01

    Digital systems and their software are the core technology for controlling and monitoring industrial systems in practically all activity domains. Functional safety standards such as the European standard EN 50128 for railway applications define the procedures and technical requirements for the development of software for railway control and protection systems. The validation of such systems is a highly demanding task. In this paper we discuss the use of fault injection techniques, which have been used extensively in several domains, particularly in the space domain, to complement the traditional procedures to validate a SIL (Safety Integrity Level) 4 system for railway signalling, implementing a TMR (Triple Modular Redundancy) architecture. The fault injection tool is based on JTAG technology. The results of our injection campaign showed a high degree of tolerance to most of the injected faults, but several cases of unexpected behaviour have also been observed, helping understanding worst-case scenarios.

  16. Laboratory safety and the WHO World Alliance for Patient Safety.

    PubMed

    McCay, Layla; Lemer, Claire; Wu, Albert W

    2009-06-01

    Laboratory medicine has been a pioneer in the field of patient safety; indeed, the College of American Pathology first called attention to the issue in 1946. Delivering reliable laboratory results has long been considered a priority, as the data produced in laboratory medicine have the potential to critically influence individual patients' diagnosis and management. Until recently, most attention on laboratory safety has focused on the analytic stage of laboratory medicine. Addressing this stage has led to significant and impressive improvements in the areas over which laboratories have direct control. However, recent data demonstrate that pre- and post-analytical phases are at least as vulnerable to errors; to further improve patient safety in laboratory medicine, attention must now be focused on the pre- and post-analytic phases, and the concept of patient safety as a multi-disciplinary, multi-stage and multi-system concept better understood. The World Alliance for Patient Safety (WAPS) supports improvement of patient safety globally and provides a potential framework for considering the total testing process.

  17. Investigating point zero: The artificial catchment 'Chicken Creek' as an observatory to study critical zone structures and processes of the critical zone in an initial ecosystem

    NASA Astrophysics Data System (ADS)

    Hüttl, Reinhard F.; Gerwin, Werner

    2010-05-01

    Recently, earth surface structures reaching from vegetation to the groundwater in the near underground have been termed "critical zone". This zone is "critical" to supporting life on Earth and, thus, the understanding of processes within this zone is of great importance in environmental sciences. Investigating the critical zone requires interdisciplinary and integrative research approaches across the fields of geomorphology, ecology, biology, soil science, hydrology and environmental modeling. A central motivation of the critical zone concept is the need for moving beyond traditional disciplinary boundaries to a more holistic and integrated study of the Earth surface system. However, the critical zone is characterized by complex interactions between abiotic and biotic structures and processes which need to be analyzed for improving our understanding of ecosystem functioning as well as of ecosystem development. To gain a better understanding of these fundamental questions it might be helpful to look at initial ecosystems, i.e. at ecosystems in the initial phase of development. It can be hypothesized that the complexity of a very young ecosystem is lower compared to mature systems and, therefore, structure-process interactions might become more obvious at early than at later stages of development. In this context, an artificial watershed was constructed with well known boundary conditions to investigate the initial ecosystem phase. The catchment ‘Chicken Creek' in Lusatia (Germany; 150 km SE from Berlin) has an area of 6 ha. It was set up with a layer of post-glacial sandy sediments overlying an aquiclude made of clay at the base. These hydrological starting conditions allowed for the formation of a groundwater body within the sandy layer of the experimental catchment. Further, after completion of the construction works in September 2005 the site was left to natural succession and no measures like planting or fertilization were carried out. As the initial phase of

  18. Cultural differences in dealing with critical incidents.

    PubMed

    Leonhardt, Jörg; Vogt, Joachim

    2009-01-01

    This article discusses the cultural aspects of High Reliability Organizations (HROs), such as air navigation services. HROs must maintain a highly professional safety culture and constantly be prepared to handle crises. The article begins with a general discussion of the concept of organizational culture. The special characteristics of HROs and their safety culture is then described. Finally the article illustrates how Critical Incident Stress Management (CISM) is becoming an ingrained feature of the organizational culture in air traffic control systems. Critical Incident Stress Management is a prevention program that can successfully guard against the negative effects of critical incidents. The CISM program of DFS (Deutsche Flugsicherung) was recently evaluated by the University of Copenhagen. This evaluation not only confirmed the successful prevention of negative effects at the operation's employee level (especially air traffic controllers), but also showed a sustained improvement of its safety culture and its overall organizational performance. The special aspects of cross-cultural crisis intervention and the challenges it faces, as well as the importance of prevention programs, such as CISM, are illustrated using the examples of two aircraft accidents: the crash landing of a calibration aircraft and the Lake Constance air disaster.

  19. Does safety climate moderate the influence of staffing adequacy and work conditions on nurse injuries?

    PubMed

    Mark, Barbara A; Hughes, Linda C; Belyea, Michael; Chang, Yunkyung; Hofmann, David; Jones, Cheryl B; Bacon, Cynthia T

    2007-01-01

    Hospital nurses have one of the highest work-related injury rates in the United States. Yet, approaches to improving employee safety have generally focused on attempts to modify individual behavior through enforced compliance with safety rules and mandatory participation in safety training. We examined a theoretical model that investigated the impact on nurse injuries (back injuries and needlesticks) of critical structural variables (staffing adequacy, work engagement, and work conditions) and further tested whether safety climate moderated these effects. A longitudinal, non-experimental, organizational study, conducted in 281 medical-surgical units in 143 general acute care hospitals in the United States. Work engagement and work conditions were positively related to safety climate, but not directly to nurse back injuries or needlesticks. Safety climate moderated the relationship between work engagement and needlesticks, while safety climate moderated the effect of work conditions on both needlesticks and back injuries, although in unexpected ways. DISCUSSION AND IMPACT ON INDUSTRY: Our findings suggest that positive work engagement and work conditions contribute to enhanced safety climate and can reduce nurse injuries.

  20. Causal Relationship Analysis of the Patient Safety Culture Based on Safety Attitudes Questionnaire in Taiwan.

    PubMed

    Lee, Yii-Ching; Zeng, Pei-Shan; Huang, Chih-Hsuan; Wu, Hsin-Hung

    2018-01-01

    This study uses the decision-making trial and evaluation laboratory method to identify critical dimensions of the safety attitudes questionnaire in Taiwan in order to improve the patient safety culture from experts' viewpoints. Teamwork climate, stress recognition, and perceptions of management are three causal dimensions, while safety climate, job satisfaction, and working conditions are receiving dimensions. In practice, improvements on effect-based dimensions might receive little effects when a great amount of efforts have been invested. In contrast, improving a causal dimension not only improves itself but also results in better performance of other dimension(s) directly affected by this particular dimension. Teamwork climate and perceptions of management are found to be the most critical dimensions because they are both causal dimensions and have significant influences on four dimensions apiece. It is worth to note that job satisfaction is the only dimension affected by the other dimensions. In order to effectively enhance the patient safety culture for healthcare organizations, teamwork climate, and perceptions of management should be closely monitored.

  1. Causal Relationship Analysis of the Patient Safety Culture Based on Safety Attitudes Questionnaire in Taiwan

    PubMed Central

    Zeng, Pei-Shan; Huang, Chih-Hsuan

    2018-01-01

    This study uses the decision-making trial and evaluation laboratory method to identify critical dimensions of the safety attitudes questionnaire in Taiwan in order to improve the patient safety culture from experts' viewpoints. Teamwork climate, stress recognition, and perceptions of management are three causal dimensions, while safety climate, job satisfaction, and working conditions are receiving dimensions. In practice, improvements on effect-based dimensions might receive little effects when a great amount of efforts have been invested. In contrast, improving a causal dimension not only improves itself but also results in better performance of other dimension(s) directly affected by this particular dimension. Teamwork climate and perceptions of management are found to be the most critical dimensions because they are both causal dimensions and have significant influences on four dimensions apiece. It is worth to note that job satisfaction is the only dimension affected by the other dimensions. In order to effectively enhance the patient safety culture for healthcare organizations, teamwork climate, and perceptions of management should be closely monitored. PMID:29686825

  2. 78 FR 21197 - Advisory Committee on Structural Safety of Department of Veterans Affairs Facilities, Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-09

    ...:30 a.m. until 12:30 p.m. on April 26. The meeting is open to the public. The purpose of the Committee... should be sent to Krishna K. Banga, Senior Structural Engineer, Facilities Standards Service, Office of..., 2012 (Tele-Conf.) meetings--10:00 a.m. Break for lunch--12:00 p.m. Structural and Fire-Safety sub...

  3. Leader-member exchange and safety citizenship behavior: The mediating role of coworker trust.

    PubMed

    Jiang, Li; Li, Feng; Li, YongJuan; Li, Rui

    2017-01-01

    To achieve high safety levels, mere compliance with safety regulations is not sufficient; employees must be proactive and demonstrate safety citizenship behaviors. Trust is considered as a mechanism for facilitating the effects of a leader on employee citizenship behaviors. Increasingly research has focused on the role of trust in a safety context; however, the role of coworker trust has been overlooked. The mediating role of coworker trust in the relationship between the leader-member exchange and safety citizenship behavior is the focus of this field study. Front-line employees from an air traffic control center and an airline maintenance department completed surveys measuring leader-member exchange, co-worker trust, and safety citizenship behavior. Structural Equation Modeling revealed affective and cognitive trust in coworkers is influenced by leader-member exchange. A trust-based mediation model where cognitive trust and affective trust mediate the relationship between the leader-member exchange and safety citizenship behavior emerged. Results of this study add to our understanding of the relationship between leader-member exchange and safety behavior. The effect of co-worker trust and the extent to which employees participate in workplace safety practice were identified as critical factors. The findings show that managers need to focus on developing cognitive and affective coworker trust to improve safety citizenship behaviors.

  4. Key performance outcomes of patient safety curricula: root cause analysis, failure mode and effects analysis, and structured communications skills.

    PubMed

    Fassett, William E

    2011-10-10

    As colleges and schools of pharmacy develop core courses related to patient safety, course-level outcomes will need to include both knowledge and performance measures. Three key performance outcomes for patient safety coursework, measured at the course level, are the ability to perform root cause analyses and healthcare failure mode effects analyses, and the ability to generate effective safety communications using structured formats such as the Situation-Background-Assessment-Recommendation (SBAR) situational briefing model. Each of these skills is widely used in patient safety work and competence in their use is essential for a pharmacist's ability to contribute as a member of a patient safety team.

  5. Preharvest food safety.

    PubMed

    Childers, A B; Walsh, B

    1996-07-23

    Preharvest food safety is essential for the protection of our food supply. The production and transport of livestock and poultry play an integral part in the safety of these food products. The goals of this safety assurance include freedom from pathogenic microorganisms, disease, and parasites, and from potentially harmful residues and physical hazards. Its functions should be based on hazard analysis and critical control points from producer to slaughter plant with emphasis on prevention of identifiable hazards rather than on removal of contaminated products. The production goal is to minimize infection and insure freedom from potentially harmful residues and physical hazards. The marketing goal is control of exposure to pathogens and stress. Both groups should have functional hazard analysis and critical control points management programs which include personnel training and certification of producers. These programs must cover production procedures, chemical usage, feeding, treatment practices, drug usage, assembly and transportation, and animal identification. Plans must use risk assessment principles, and the procedures must be defined. Other elements would include preslaughter certification, environmental protection, control of chemical hazards, live-animal drug-testing procedures, and identification of physical hazards.

  6. [Risk management in anesthesia and critical care medicine].

    PubMed

    Eisold, C; Heller, A R

    2017-03-01

    Throughout its history, anesthesia and critical care medicine has experienced vast improvements to increase patient safety. Consequently, anesthesia has never been performed on such a high level as it is being performed today. As a result, we do not always fully perceive the risks involved in our daily activity. A survey performed in Swiss hospitals identified a total of 169 hot spots which endanger patient safety. It turned out that there is a complex variety of possible errors that can only be tackled through consistent implementation of a safety culture. The key elements to reduce complications are continuing staff education, algorithms and standard operating procedures (SOP), working according to the principles of crisis resource management (CRM) and last but not least the continuous work-up of mistakes identified by critical incident reporting systems.

  7. PFP Public Automatic Exchange (PAX) Commercial Grade Item (CGI) Critical Characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WHITE, W.F.

    2000-04-04

    This document specifies the critical characteristics for Commercial Grade Items (CGI) procured for use within the safety envelope of PFP's PAX system as required by HNF-PRO-268 and HNF-PRO-1819. These are the minimum specifications that the equipment must meet in order to properly perform its safety function. There may be several manufacturers or models that meet the critical characteristics for any one item.

  8. Elastic critical moment for bisymmetric steel profiles and its sensitivity by the finite difference method

    NASA Astrophysics Data System (ADS)

    Kamiński, M.; Supeł, Ł.

    2016-02-01

    It is widely known that lateral-torsional buckling of a member under bending and warping restraints of its cross-sections in the steel structures are crucial for estimation of their safety and durability. Although engineering codes for steel and aluminum structures support the designer with the additional analytical expressions depending even on the boundary conditions and internal forces diagrams, one may apply alternatively the traditional Finite Element or Finite Difference Methods (FEM, FDM) to determine the so-called critical moment representing this phenomenon. The principal purpose of this work is to compare three different ways of determination of critical moment, also in the context of structural sensitivity analysis with respect to the structural element length. Sensitivity gradients are determined by the use of both analytical and the central finite difference scheme here and contrasted also for analytical, FEM as well as FDM approaches. Computational study is provided for the entire family of the steel I- and H - beams available for the practitioners in this area, and is a basis for further stochastic reliability analysis as well as durability prediction including possible corrosion progress.

  9. Are your employees sick of hearing about safety? Ways to improve how safety is communicated at your company

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pollari, Roger A.

    2008-06-02

    Companies that care about their employees care about their employees’ safety and will go to great lengths to communicate the importance of working safely. Monthly safety meetings, creative safety contests, safety websites, sharing lessons learned—safety communicators tend to use a variety of methods to distribute procedures and critical safety information to help employees plan and perform work. However, the safety message falls on deaf ears in some cases, especially when employees feel they’re being overloaded with safety information to the point where they are sick of hearing about it. This poses a conundrum for safety communicators: Should they keep pouringmore » on the safety, or should they lighten up? How much is the right amount?« less

  10. Nuclear safety policy working group recommendations on nuclear propulsion safety for the space exploration initiative

    NASA Technical Reports Server (NTRS)

    Marshall, Albert C.; Lee, James H.; Mcculloch, William H.; Sawyer, J. Charles, Jr.; Bari, Robert A.; Cullingford, Hatice S.; Hardy, Alva C.; Niederauer, George F.; Remp, Kerry; Rice, John W.

    1993-01-01

    An interagency Nuclear Safety Working Group (NSPWG) was chartered to recommend nuclear safety policy, requirements, and guidelines for the Space Exploration Initiative (SEI) nuclear propulsion program. These recommendations, which are contained in this report, should facilitate the implementation of mission planning and conceptual design studies. The NSPWG has recommended a top-level policy to provide the guiding principles for the development and implementation of the SEI nuclear propulsion safety program. In addition, the NSPWG has reviewed safety issues for nuclear propulsion and recommended top-level safety requirements and guidelines to address these issues. These recommendations should be useful for the development of the program's top-level requirements for safety functions (referred to as Safety Functional Requirements). The safety requirements and guidelines address the following topics: reactor start-up, inadvertent criticality, radiological release and exposure, disposal, entry, safeguards, risk/reliability, operational safety, ground testing, and other considerations.

  11. Extended time-to-collision measures for road traffic safety assessment.

    PubMed

    Minderhoud, M M; Bovy, P H

    2001-01-01

    This article describes two new safety indicators based on the time-to-collision notion suitable for comparative road traffic safety analyses. Such safety indicators can be applied in the comparison of a do-nothing case with an adapted situation, e.g. the introduction of intelligent driver support systems. In contrast to the classical time-to-collision value, measured at a cross section, the improved safety indicators use vehicle trajectories collected over a specific time horizon for a certain roadway segment to calculate the overall safety indicator value. Vehicle-specific indicator values as well as safety-critical probabilities can easily be determined from the developed safety measures. Application of the derived safety indicators is demonstrated for the assessment of the potential safety impacts of driver support systems from which it appears that some Autonomous Intelligent Cruise Control (AICC) designs are more safety-critical than the reference case without these systems. It is suggested that the indicator threshold value to be applied in the safety assessment has to be adapted when advanced AICC-systems with safe characteristics are introduced.

  12. A Critical Examination of Safety Texts: Implications for Trade and Industrial Education.

    ERIC Educational Resources Information Center

    Gregson, James A.

    1996-01-01

    Qualitative content analysis of three texts used to prepare trade and industrial teachers in occupational safety and health examined definitions of health/safety problems, allocation of responsibility, social context, and collective responsibility. Implementing practices from these texts could free teachers from responsibility for negligence and…

  13. Safety-critical event risk associated with cell phone tasks as measured in naturalistic driving studies: A systematic review and meta-analysis.

    PubMed

    Simmons, Sarah M; Hicks, Anne; Caird, Jeff K

    2016-02-01

    A systematic review and meta-analysis of naturalistic driving studies involving estimates of safety-critical event risk associated with handheld device use while driving is described. Fifty-seven studies identified from targeted databases, journals and websites were reviewed in depth, and six were ultimately included. These six studies, published between 2006 and 2014, encompass seven sets of naturalistic driver data and describe original research that utilized naturalistic methods to assess the effects of distracting behaviors. Four studies involved non-commercial drivers of light vehicles and two studies involved commercial drivers of trucks and buses. Odds ratios quantifying safety-critical event (SCE) risk associated with talking, dialing, locating or answering, and texting or browsing were extracted. Stratified meta-analysis of pooled odds ratios was used to estimate SCE risk by distraction type; meta-regression was used to test for sources of heterogeneity. The results indicate that tasks that require drivers to take their eyes off the road, such as dialing, locating a phone and texting, increase SCE risk to a greater extent than tasks that do not require eyes off the road such as talking. Although talking on a handheld device did not increase SCE risk, further research is required to determine whether it indirectly influences SCE risk (e.g., by encouraging other cell phone activities). In addition, a number of study biases and quality issues of naturalistic driving studies are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Use of a safety climate questionnaire in UK health care: factor structure, reliability and usability.

    PubMed

    Hutchinson, A; Cooper, K L; Dean, J E; McIntosh, A; Patterson, M; Stride, C B; Laurence, B E; Smith, C M

    2006-10-01

    To explore the factor structure, reliability, and potential usefulness of a patient safety climate questionnaire in UK health care. Four acute hospital trusts and nine primary care trusts in England. The questionnaire used was the 27 item Teamwork and Safety Climate Survey. Thirty three healthcare staff commented on the wording and relevance. The questionnaire was then sent to 3650 staff within the 13 NHS trusts, seeking to achieve at least 600 responses as the basis for the factor analysis. 1307 questionnaires were returned (36% response). Factor analyses and reliability analyses were carried out on 897 responses from staff involved in direct patient care, to explore how consistently the questions measured the underlying constructs of safety climate and teamwork. Some questionnaire items related to multiple factors or did not relate strongly to any factor. Five items were discarded. Two teamwork factors were derived from the remaining 11 teamwork items and three safety climate factors were derived from the remaining 11 safety items. Internal consistency reliabilities were satisfactory to good (Cronbach's alpha > or =0.69 for all five factors). This is one of the few studies to undertake a detailed evaluation of a patient safety climate questionnaire in UK health care and possibly the first to do so in primary as well as secondary care. The results indicate that a 22 item version of this safety climate questionnaire is useable as a research instrument in both settings, but also demonstrates a more general need for thorough validation of safety climate questionnaires before widespread usage.

  15. Safety and Feasibility of a Neuroscience Critical Care Program to Mobilize Patients With Primary Intracerebral Hemorrhage.

    PubMed

    Bahouth, Mona N; Power, Melinda C; Zink, Elizabeth K; Kozeniewski, Kate; Kumble, Sowmya; Deluzio, Sandra; Urrutia, Victor C; Stevens, Robert D

    2018-06-01

    To measure the impact of a progressive mobility program on patients admitted to a neurocritical critical care unit (NCCU) with intracerebral hemorrhage (ICH). The early mobilization of critically ill patients with spontaneous ICH is a challenge owing to the potential for neurologic deterioration and hemodynamic lability in the acute phase of injury. Patients admitted to the intensive care unit have been excluded from randomized trials of early mobilization after stroke. An interdisciplinary working group developed a formalized NCCU Mobility Algorithm that allocates patients to incremental passive or active mobilization pathways on the basis of level of consciousness and motor function. In a quasi-experimental consecutive group comparison, patients with ICH admitted to the NCCU were analyzed in two 6-month epochs, before and after rollout of the algorithm. Mobilization and safety endpoints were compared between epochs. NCCU in an urban, academic hospital. Adult patients admitted to the NCCU with primary intracerebral hemorrhage. Progressive mobilization after stroke using a formalized mobility algorithm. Time to first mobilization. The 2 groups of patients with ICH (pre-algorithm rolllout, n=28; post-algorithm rollout, n=29) were similar on baseline characteristics. Patients in the postintervention group were significantly more likely to undergo mobilization within the first 7 days after admission (odds ratio 8.7, 95% confidence interval 2.1, 36.6; P=.003). No neurologic deterioration, hypotension, falls, or line dislodgments were reported in association with mobilization. A nonsignificant difference in mortality was noted before and after rollout of the algorithm (4% vs 24%, respectively, P=.12). The implementation of a progressive mobility algorithm was safe and associated with a higher likelihood of mobilization in the first week after spontaneous ICH. Research is needed to investigate methods and the timing for the first mobilization in critically ill stroke

  16. A short, structured skills training course for critical care physiotherapists in a lower-middle income country.

    PubMed

    Tunpattu, Sanjeewa; Newey, Victoria; Sigera, Chathurani; De Silva, Pubudu; Goonarathna, Amal; Aluthge, Iranga; Thambavita, Pasan; Perera, Rohan; Meegahawatte, Amila; Isaam, Ilhaam; Dondorp, Arjen M; Haniffa, Rashan

    2018-01-10

    The aim of this article is to describe the delivery and acceptability of a short, structured training course for critical care physiotherapy and its effects on the knowledge and skills of the participants in Sri Lanka, a lower-middle income country. The two-day program combining short didactic sessions with small group workshops and skills stations was developed and delivered by local facilitators in partnership with an overseas specialist physiotherapist trainer. The impact was assessed using pre/post-course self-assessment, pre/post-course multiple-choice-question (MCQ) papers, and an end-of-course feedback questionnaire. Fifty-six physiotherapists (26% of critical care physiotherapists in Sri Lanka) participated. Overall confidence in common critical care physiotherapy skills improved from 11.6% to 59.2% in pre/post-training self-assessments, respectively. Post-course MCQ scores (mean score = 63.2) and percentage of passes (87.5%) were higher than pre-course scores (mean score = 36.6; percentage of passes = 12.5%). Overall feedback was very positive as 75% of the participants were highly satisfied with the course's contribution to improved critical care knowledge. This short, structured, critical care focused physiotherapy training has potential benefit to participating physiotherapists. Further, it provides an evidence that collaborative program can be planned and conducted successfully in a resource poor setting. This sustainable short course model may be adaptable to other resource-limited settings.

  17. A review of the current state-of-the-art methodology for handling bias and uncertainty in performing criticality safety evaluations. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Disney, R.K.

    1994-10-01

    The methodology for handling bias and uncertainty when calculational methods are used in criticality safety evaluations (CSE`s) is a rapidly evolving technology. The changes in the methodology are driven by a number of factors. One factor responsible for changes in the methodology for handling bias and uncertainty in CSE`s within the overview of the US Department of Energy (DOE) is a shift in the overview function from a ``site`` perception to a more uniform or ``national`` perception. Other causes for change or improvement in the methodology for handling calculational bias and uncertainty are; (1) an increased demand for benchmark criticalsmore » data to expand the area (range) of applicability of existing data, (2) a demand for new data to supplement existing benchmark criticals data, (3) the increased reliance on (or need for) computational benchmarks which supplement (or replace) experimental measurements in critical assemblies, and (4) an increased demand for benchmark data applicable to the expanded range of conditions and configurations encountered in DOE site restoration and remediation.« less

  18. 78 FR 45052 - Critical Parts for Airplane Propellers; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-26

    ..., early warning devices, maintenance checks, and other similar equipment or procedures. If items of the..., and maintenance processes for propeller critical parts. An unintentional error was introduced in Sec... transportation, Aircraft, Aviation safety, Safety. The Correcting Amendment In consideration of the foregoing...

  19. Multicenter, Randomized Study of the Efficacy and Safety of Intravenous Iclaprim in Complicated Skin and Skin Structure Infections▿

    PubMed Central

    Krievins, D.; Brandt, R.; Hawser, S.; Hadvary, P.; Islam, K.

    2009-01-01

    Iclaprim is a novel antibacterial agent that is currently in development for the treatment of complicated skin and skin structure infections (cSSSI). Iclaprim specifically and selectively inhibits bacterial dihydrofolate reductase, a critical enzyme in the bacterial folate pathway, and exhibits an extended spectrum of activity against various resistant pathogens, including methicillin (meticillin)-resistant Staphylococcus aureus (MRSA). The objective of this randomized, double-blind phase II study was to compare the efficacy and safety of iclaprim to those of vancomycin in patients with cSSSI. Patients were randomized to receive 0.8 mg iclaprim/kg of body weight, 1.6 mg/kg iclaprim, or 1 g vancomycin twice a day for 10 days. Clinical cure rates for the 0.8- and 1.6-mg/kg-iclaprim treatment groups were comparable to that for the vancomycin treatment group (26/28 patients [92.9%], 28/31 patients [90.3%], and 26/28 patients [92.9%], respectively). Iclaprim also showed high microbiological eradication rates. Iclaprim exhibited an eradication rate of 80% and 72% versus 59% observed with vancomycin for S. aureus, the pathogen most frequently isolated at baseline. Five MRSA cases were observed, four in the 0.8-mg/kg-iclaprim arm and one in the vancomycin arm, and all were both clinically and microbiologically cured. Iclaprim exhibited a safety profile similar to that of vancomycin, an established drug for the treatment of cSSSI. Results from this study indicate that iclaprim is a promising new therapy for the treatment of cSSSI, in particular those caused by S. aureus, including MRSA. PMID:19414572

  20. Meeting the global demand of sports safety: the intersection of science and policy in sports safety.

    PubMed

    Timpka, Toomas; Finch, Caroline F; Goulet, Claude; Noakes, Tim; Yammine, Kaissar

    2008-01-01

    Sports and physical activity are transforming, and being transformed by, the societies in which they are practised. From the perspectives of both competitive and non-competitive sports, the complexity of their integration into today's society has led to neither sports federations nor governments being able to manage the safety problem alone. In other words, these agencies, whilst promoting sport and physical activity, deliver policy and practices in an uncoordinated way that largely ignores the need for a concurrent overall policy for sports safety. This article reviews and analyses the possibility of developing an overall sports safety policy from a global viewpoint. Firstly, we describe the role of sports in today's societies and the context within which much sport is delivered. We then discuss global issues related to injury prevention and safety in sports, with practical relevance to this important sector, including an analysis of critical policy issues necessary for the future development of the area and significant safety gains for all. We argue that there is a need to establish the sports injury problem as a critical component of general global health policy agendas, and to introduce sports safety as a mandatory component of all sustainable sports organizations. We conclude that the establishment of an explicit intersection between science and policy making is necessary for the future development of sports and the necessary safety gains required for all participants around the world. The Safe Sports International safety promotion programme is outlined as an example of an international organization active within this arena.

  1. SU-E-T-346: Effect of Jaw Position On Dose to Critical Structures in 3-D Conformal Radiotherapy Treatment of Pancreatic Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paudel, N; Han, E; Liang, X

    Purpose: Three-dimensional conformal therapy remains a valid and widely used modality for pancreatic radiotherapy treatment. It usually meets dose constraints on critical structures. However, careful positioning of collimation jaws can reduce dose to the critical structures. Here we investigate the dosimetric effect of jaw position in MLC-based 3-D conformal treatment planning on critical structures. Methods: We retrospectively selected seven pancreatic cancer patients treated with 3-D conformal radiotherapy. We started with treatment plans (Varian Truebeam LINAC, Eclipse TPS, AAA, 18MV) having both x and y jaws aligned with the farthest extent of the block outline (8mm around PTV). Then we subsequentlymore » moved either both x-jaws or all x and y jaws outwards upto 3 cm in 1 cm increments and investigated their effect on average and maximum dose to neighboring critical structures keeping the same coverage to treatment volume. Results: Lateral displacement of both x-jaws by 1cm each increased kidney and spleen mean dose by as much as 1.7% and 1.3% respectively and superior inferior displacement increased liver, right kidney, stomach and spleen dose by as much as 2.1%, 2%, 5.2% and 1.6% respectively. Displacement of all x and y-jaws away by 1cm increased the mean dose to liver, right kidney, left kidney, bowels, cord, stomach and spleen by as much as 4.9%, 5.9%, 2.1%, 2.8%, 7.4%, 10.4% and 4.2% respectively. Percentage increase in mean dose due to 2 and 3cm jaw displacement increased almost linearly with the displaced distance. Changes in maximum dose were much smaller (mostly negligible) than the changes in mean dose. Conclusion: Collimation jaw position affects dose mostly to critical structures adjacent to it. Though treatment plans with MLCs conforming the block margin usually meet dose constraints to critical structures, keeping jaws all the way in, to the edge of the block reduces dose to the critical structures during radiation treatment.« less

  2. Development of a highway safety fundamental course.

    DOT National Transportation Integrated Search

    2015-05-01

    Although the need for road safety education was first recognized in the 1960s, it has become an increasingly urgent issue : in recent years. To fulfill the hefty goal set up by the AASHTO Highway Safety Strategy and by state DOTS, it is critical : to...

  3. European perspectives of food safety.

    PubMed

    Bánáti, Diána

    2014-08-01

    Food safety has been a growing concern among European Union (EU) citizens over the last decades. Despite the fact that food has never been safer, consumers are considerably uncertain and increasingly critical about the safety of their food. The introduction of new principles, such as the primary responsibility of producers, traceability, risk analysis, the separation of risk assessment and risk management provided a more transparent, science-based system in Europe, which can help to restore consumers' lost confidence. The present EU integrated approach to food safety 'from farm to fork' aims to assure a high level of food safety within the EU. © 2014 Society of Chemical Industry.

  4. Efficacy and safety of novel antipsychotics: a critical review.

    PubMed

    Balestrieri, Matteo; Vampini, Claudio; Bellantuono, Cesario

    2000-10-01

    Efficacy and safety of novel antipsychotic (AP) drugs (amisulpride, olanzapine, quetiapine, ziprasidone and zotepine) have been reviewed. Data on their antipsychotic efficacy and side effects profile have been evaluated only on the basis of controlled trials so far published. Overall, all these drugs have shown an antipsychotic efficacy on positive symptoms of schizophrenia similar to that of the conventional AP drugs. On negative symptoms, all novel AP drugs, except quetiapine and ziprasidone, demonstrated a better efficacy than haloperidol. Long-term efficacy of these AP drugs in the maintenance treatment of schizophrenia needs to be explored by further, better-designed, epidemiological studies. The safety profile shows that the novel AP drugs are generally well-tolerated and induce significantly less acute extrapyramidal side effects in comparison with haloperidol. Some methodological flaws in the experimental design of the clinical trials analysed are discussed. Although these novel AP drugs have potential clinical advantages, a number of relevant questions still remain to be addressed, in order to establish the impact of these drugs in the overall treatment of schizophrenia. Copyright 2000 John Wiley & Sons, Ltd.

  5. A critical care network pressure ulcer prevention quality improvement project.

    PubMed

    McBride, Joanna; Richardson, Annette

    2015-03-30

    Pressure ulcer prevention is an important safety issue, often underrated and an extremely painful event harming patients. Critically ill patients are one of the highest risk groups in hospital. The impact of pressure ulcers are wide ranging, and they can result in increased critical care and the hospital length of stay, significant interference with functional recovery and rehabilitation and increase cost. This quality improvement project had four aims: (1) to establish a critical care network pressure ulcer prevention group; (2) to establish baseline pressure ulcer prevention practices; (3) to measure, compare and monitor pressure ulcers prevalence; (4) to develop network pressure ulcer prevention standards. The approach used to improve quality included strong critical care nursing leadership to develop a cross-organisational pressure ulcer prevention group and a benchmarking exercise of current practices across a well-established critical care Network in the North of England. The National Safety Thermometer tool was used to measure pressure ulcer prevalence in 23 critical care units, and best available evidence, local consensus and another Critical Care Networks' bundle of interventions were used to develop a local pressure ulcer prevention standards document. The aims of the quality improvement project were achieved. This project was driven by successful leadership and had an agreed common goal. The National Safety Thermometer tool was an innovative approach to measure and compare pressure ulcer prevalence rates at a regional level. A limitation was the exclusion of moisture lesions. The project showed excellent engagement and collaborate working in the quest to prevent pressure ulcers from many critical care nurses with the North of England Critical Care Network. A concise set of Network standards was developed for use in conjunction with local guidelines to enhance pressure ulcer prevention. © 2015 British Association of Critical Care Nurses.

  6. Critical Multimodal Literacy: How Nigerian Female Students Critique Texts and Reconstruct Unequal Social Structures

    ERIC Educational Resources Information Center

    Ajayi, Lasisi

    2015-01-01

    This research investigates how three female Nigerian high school students were taught to deploy critical multimodal literacy to interrogate texts and reconstruct unequal social structures. A class of ninth-grade students in an all-women school was given instruction through the analysis of how multiple modes were used to represent meanings in…

  7. Structure, Organization, and Delivery of Critical Care in Asian ICUs.

    PubMed

    Arabi, Yaseen M; Phua, Jason; Koh, Younsuck; Du, Bin; Faruq, Mohammad Omar; Nishimura, Masaji; Fang, Wen-Feng; Gomersall, Charles; Al Rahma, Hussain N; Tamim, Hani; Al-Dorzi, Hasan M; Al-Hameed, Fahad M; Adhikari, Neill K J; Sadat, Musharaf

    2016-10-01

    Despite being the epicenter of recent pandemics, little is known about critical care in Asia. Our objective was to describe the structure, organization, and delivery in Asian ICUs. A web-based survey with the following domains: hospital organizational characteristics, ICU organizational characteristics, staffing, procedures and therapies available in the ICU and written protocols and policies. ICUs from 20 Asian countries from April 2013 to January 2014. Countries were divided into low-, middle-, and high-income based on the 2011 World Bank Classification. ICU directors or representatives. Of 672 representatives, 335 (50%) responded. The average number of hospital beds was 973 (SE of the mean [SEM], 271) with 9% (SEM, 3%) being ICU beds. In the index ICUs, the average number of beds was 21 (SEM, 3), of single rooms 8 (SEM, 2), of negative-pressure rooms 3 (SEM, 1), and of board-certified intensivists 7 (SEM, 3). Most ICUs (65%) functioned as closed units. The nurse-to-patient ratio was 1:1 or 1:2 in most ICUs (84%). On multivariable analysis, single rooms were less likely in low-income countries (p = 0.01) and nonreferral hospitals (p = 0.01); negative-pressure rooms were less likely in private hospitals (p = 0.03) and low-income countries (p = 0.005); 1:1 nurse-to-patient ratio was lower in private hospitals (p = 0.005); board-certified intensivists were less common in low-income countries (p < 0.0001) and closed ICUs were less likely in private (p = 0.02) and smaller hospitals (p < 0.001). This survey highlights considerable variation in critical care structure, organization, and delivery in Asia, which was related to hospital funding source and size, and country income. The lack of single and negative-pressure rooms in many Asian ICUs should be addressed before any future pandemic of severe respiratory illness.

  8. SU-E-T-201: Safety-Focused Customization of Treatment Plan Documentation.

    PubMed

    Schubert, L; Westerly, D; Stuhr, K; Miften, M

    2012-06-01

    Plan report documentation contains numerous details about the treatment plan, but critical information for patient safety is often presented without special emphasis. This can make it difficult to detect errors from treatment planning and data transfer during the initial chart review. The objective of this work is to improve safety measures in radiation therapy practice by customizing the treatment plan report to emphasize safety-critical information. Commands within the template file from a commercial planning system (Eclipse, Varian Medical Systems) that automatically generates the treatment plan report were reviewed and modified. Safety-critical plan parameters were identified from published risks known to be inherent in the treatment planning process. Risks having medium to high potential impact on patient safety included incorrect patient identifiers, erroneous use of the treatment prescription, and incorrect transfer of beam parameters or consideration of accessories. Specific examples of critical information in the treatment plan report that can be overlooked during a chart review included prescribed dose per fraction and number of fractions, wedge and open field monitor units, presence of beam accessories, and table shifts for patient setup. Critical information was streamlined and concentrated. Patient and plan identification, dose prescription details, and patient positioning couch shift instructions were placed on the first page. Plan information to verify the correct data transfer to the record and verify system was re-organized in an easy to review tabular format and placed in the second page of the customized printout. Placeholders were introduced to indicate both the presence and absence of beam modifiers. Font sizes and spacing were adjusted for clarity, and departmental standards and terminology were introduced to streamline data communication among staff members. Plan reporting documentation has been customized to concentrate and emphasize safety-critical

  9. Genetic variation and structure in remnant population of critically endangered Melicope zahlbruckneri

    USGS Publications Warehouse

    Raji, J. A.; Atkinson, Carter T.

    2016-01-01

    The distribution and amount of genetic variation within and between populations of plant species are important for their adaptability to future habitat changes and also critical for their restoration and overall management. This study was initiated to assess the genetic status of the remnant population of Melicope zahlbruckneri–a critically endangered species in Hawaii, and determine the extent of genetic variation and diversity in order to propose valuable conservation approaches. Estimated genetic structure of individuals based on molecular marker allele frequencies identified genetic groups with low overall differentiation but identified the most genetically diverse individuals within the population. Analysis of Amplified Fragment Length Polymorphic (AFLP) marker loci in the population based on Bayesian model and multivariate statistics classified the population into four subgroups. We inferred a mixed species population structure based on Bayesian clustering and frequency of unique alleles. The percentage of Polymorphic Fragment (PPF) ranged from 18.8 to 64.6% for all marker loci with an average of 54.9% within the population. Inclusion of all surviving M. zahlbruckneri trees in future restorative planting at new sites are suggested, and approaches for longer term maintenance of genetic variability are discussed. To our knowledge, this study represents the first report of molecular genetic analysis of the remaining population of M. zahlbruckneri and also illustrates the importance of genetic variability for conservation of a small endangered population.

  10. Software Dependability and Safety Evaluations ESA's Initiative

    NASA Astrophysics Data System (ADS)

    Hernek, M.

    ESA has allocated funds for an initiative to evaluate Dependability and Safety methods of Software. The objectives of this initiative are; · More extensive validation of Safety and Dependability techniques for Software · Provide valuable results to improve the quality of the Software thus promoting the application of Dependability and Safety methods and techniques. ESA space systems are being developed according to defined PA requirement specifications. These requirements may be implemented through various design concepts, e.g. redundancy, diversity etc. varying from project to project. Analysis methods (FMECA. FTA, HA, etc) are frequently used during requirements analysis and design activities to assure the correct implementation of system PA requirements. The criticality level of failures, functions and systems is determined and by doing that the critical sub-systems are identified, on which dependability and safety techniques are to be applied during development. Proper performance of the software development requires the development of a technical specification for the products at the beginning of the life cycle. Such technical specification comprises both functional and non-functional requirements. These non-functional requirements address characteristics of the product such as quality, dependability, safety and maintainability. Software in space systems is more and more used in critical functions. Also the trend towards more frequent use of COTS and reusable components pose new difficulties in terms of assuring reliable and safe systems. Because of this, its dependability and safety must be carefully analysed. ESA identified and documented techniques, methods and procedures to ensure that software dependability and safety requirements are specified and taken into account during the design and development of a software system and to verify/validate that the implemented software systems comply with these requirements [R1].

  11. A Passage into Critical Theory.

    ERIC Educational Resources Information Center

    Lynn, Steven

    1990-01-01

    Shows how a single passage might be handled by New Criticism, structuralism, deconstructionism, psychological criticism, and feminist criticism. Concludes that a plurality of critical approaches is better than a unity of approach. (RS)

  12. Function of Several Critical Amino Acids in Human Pyruvate Dehydrogenase Revealed by Its Structure

    NASA Technical Reports Server (NTRS)

    Korotchkina, Lioubov G.; Ciszak, E.; Patel, M.

    2004-01-01

    Pyruvate dehydrogenase (E1), an alpha 2 beta 2 tetramer, catalyzes the oxidative decarboxylation of pyruvate and reductive acetylation of lipoyl moieties of the dihydrolipoamide acetyltransferase. The roles of beta W135, alpha P188, alpha M181, alpha H15 and alpha R349 of E1 determined by kinetic analysis were reassessed by analyzing the three-dimensional structure of human E1. The residues identified above are found to play a structural role rather than being directly involved in catalysis: beta W135 is the center residue in the hydrophobic interaction between beta and beta' subunits; alpha P188 and alpha M181 are critical for the conformation of the TPP-binding motif and interaction between alpha and beta subunits; alpha H15, is necessary for the organization of the N-terminus of alpha and alpha'; subunits and alpha R349 supports the interaction of the C-terminus of the alpha subunits with the beta subunits. Analysis of several critical E1 residues confirms the importance of residues distant from the active site for subunit interactions and enzyme function.

  13. Patient Safety Learning Systems: A Systematic Review and Qualitative Synthesis.

    PubMed

    2017-01-01

    A patient safety learning system (sometimes called a critical incident reporting system) refers to structured reporting, collation, and analysis of critical incidents. To inform a provincial working group's recommendations for an Ontario Patient Safety Event Learning System, a systematic review was undertaken to determine design features that would optimize its adoption into the health care system and would inform implementation strategies. The objective of this review was to address two research questions: (a) what are the barriers to and facilitators of successful adoption of a patient safety learning system reported by health professionals and (b) what design components maximize successful adoption and implementation? To answer the first question, we used a published systematic review. To answer the second question, we used scoping study methodology. Common barriers reported in the literature by health care professionals included fear of blame, legal penalties, the perception that incident reporting does not improve patient safety, lack of organizational support, inadequate feedback, lack of knowledge about incident reporting systems, and lack of understanding about what constitutes an error. Common facilitators included a non-accusatory environment, the perception that incident reporting improves safety, clarification of the route of reporting and of how the system uses reports, enhanced feedback, role models (such as managers) using and promoting reporting, legislated protection of those who report, ability to report anonymously, education and training opportunities, and clear guidelines on what to report. Components of a patient safety learning system that increased successful adoption and implementation were emphasis on a blame-free culture that encourages reporting and learning, clear guidelines on how and what to report, making sure the system is user-friendly, organizational development support for data analysis to generate meaningful learning outcomes

  14. A new method for the assessment of patient safety competencies during a medical school clerkship using an objective structured clinical examination

    PubMed Central

    Daud-Gallotti, Renata Mahfuz; Morinaga, Christian Valle; Arlindo-Rodrigues, Marcelo; Velasco, Irineu Tadeu; Arruda Martins, Milton; Tiberio, Iolanda Calvo

    2011-01-01

    INTRODUCTION: Patient safety is seldom assessed using objective evaluations during undergraduate medical education. OBJECTIVE: To evaluate the performance of fifth-year medical students using an objective structured clinical examination focused on patient safety after implementation of an interactive program based on adverse events recognition and disclosure. METHODS: In 2007, a patient safety program was implemented in the internal medicine clerkship of our hospital. The program focused on human error theory, epidemiology of incidents, adverse events, and disclosure. Upon completion of the program, students completed an objective structured clinical examination with five stations and standardized patients. One station focused on patient safety issues, including medical error recognition/disclosure, the patient-physician relationship and humanism issues. A standardized checklist was completed by each standardized patient to assess the performance of each student. The student's global performance at each station and performance in the domains of medical error, the patient-physician relationship and humanism were determined. The correlations between the student performances in these three domains were calculated. RESULTS: A total of 95 students participated in the objective structured clinical examination. The mean global score at the patient safety station was 87.59±1.24 points. Students' performance in the medical error domain was significantly lower than their performance on patient-physician relationship and humanistic issues. Less than 60% of students (n = 54) offered the simulated patient an apology after a medical error occurred. A significant correlation was found between scores obtained in the medical error domains and scores related to both the patient-physician relationship and humanistic domains. CONCLUSIONS: An objective structured clinical examination is a useful tool to evaluate patient safety competencies during the medical student clerkship

  15. Increasing Safety of a Robotic System for Inner Ear Surgery Using Probabilistic Error Modeling Near Vital Anatomy

    PubMed Central

    Dillon, Neal P.; Siebold, Michael A.; Mitchell, Jason E.; Blachon, Gregoire S.; Balachandran, Ramya; Fitzpatrick, J. Michael; Webster, Robert J.

    2017-01-01

    Safe and effective planning for robotic surgery that involves cutting or ablation of tissue must consider all potential sources of error when determining how close the tool may come to vital anatomy. A pre-operative plan that does not adequately consider potential deviations from ideal system behavior may lead to patient injury. Conversely, a plan that is overly conservative may result in ineffective or incomplete performance of the task. Thus, enforcing simple, uniform-thickness safety margins around vital anatomy is insufficient in the presence of spatially varying, anisotropic error. Prior work has used registration error to determine a variable-thickness safety margin around vital structures that must be approached during mastoidectomy but ultimately preserved. In this paper, these methods are extended to incorporate image distortion and physical robot errors, including kinematic errors and deflections of the robot. These additional sources of error are discussed and stochastic models for a bone-attached robot for otologic surgery are developed. An algorithm for generating appropriate safety margins based on a desired probability of preserving the underlying anatomical structure is presented. Simulations are performed on a CT scan of a cadaver head and safety margins are calculated around several critical structures for planning of a robotic mastoidectomy. PMID:29200595

  16. Increasing safety of a robotic system for inner ear surgery using probabilistic error modeling near vital anatomy

    NASA Astrophysics Data System (ADS)

    Dillon, Neal P.; Siebold, Michael A.; Mitchell, Jason E.; Blachon, Gregoire S.; Balachandran, Ramya; Fitzpatrick, J. Michael; Webster, Robert J.

    2016-03-01

    Safe and effective planning for robotic surgery that involves cutting or ablation of tissue must consider all potential sources of error when determining how close the tool may come to vital anatomy. A pre-operative plan that does not adequately consider potential deviations from ideal system behavior may lead to patient injury. Conversely, a plan that is overly conservative may result in ineffective or incomplete performance of the task. Thus, enforcing simple, uniform-thickness safety margins around vital anatomy is insufficient in the presence of spatially varying, anisotropic error. Prior work has used registration error to determine a variable-thickness safety margin around vital structures that must be approached during mastoidectomy but ultimately preserved. In this paper, these methods are extended to incorporate image distortion and physical robot errors, including kinematic errors and deflections of the robot. These additional sources of error are discussed and stochastic models for a bone-attached robot for otologic surgery are developed. An algorithm for generating appropriate safety margins based on a desired probability of preserving the underlying anatomical structure is presented. Simulations are performed on a CT scan of a cadaver head and safety margins are calculated around several critical structures for planning of a robotic mastoidectomy.

  17. Preparing Florida for deployment of SafetyAnalyst for all roads : [summary].

    DOT National Transportation Integrated Search

    2012-01-01

    Safety on Floridas roads is a top priority for the : Florida Department of Transportation (FDOT). : Identifying and prioritizing locations with high : potential for safety improvement is the critical : step in roadway safety management. New : tech...

  18. Hierarchical Safety Cases

    NASA Technical Reports Server (NTRS)

    Denney, Ewen W.; Whiteside, Iain J.

    2012-01-01

    We introduce hierarchical safety cases (or hicases) as a technique to overcome some of the difficulties that arise creating and maintaining industrial-size safety cases. Our approach extends the existing Goal Structuring Notation with abstraction structures, which allow the safety case to be viewed at different levels of detail. We motivate hicases and give a mathematical account of them as well as an intuition, relating them to other related concepts. We give a second definition which corresponds closely to our implementation of hicases in the AdvoCATE Assurance Case Editor and prove the correspondence between the two. Finally, we suggest areas of future enhancement, both theoretically and practically.

  19. Evaluation of Patient Safety Indicators in Semnan City Hospitals by Using the Patient Safety Friendly Hospital Initiative (PSFHI).

    PubMed

    Babamohamadi, Hassan; Nemati, Roghayeh Khabiri; Nobahar, Monir; Keighobady, Seifullah; Ghazavi, Soheila; Izadi-Sabet, Farideh; Najafpour, Zhila

    2016-08-01

    Nowadays, patient safety issue is among one of the main concerns of the hospital policy worldwide. This study aimed to evaluate the patient safety status in hospitals affiliated to Semnan city, using the WHO model for Patient Safety Friendly Hospital Initiatives (PSFHI) in summer 2014. That was a cross sectional descriptive study that addressed patient safety , which explained the current status of safety in the Semnan hospitals using by instrument of Patient safety friendly initiative standards (PSFHI). Data was collected from 5 hospitals in Semnan city during four weeks in May 2014. The finding of 5 areas examined showed that some components in critical standards had disadvantages. Critical standards of hospitals including areas of leadership and administration, patient and public involvement and safe evidence-based clinical practice, safe environment with and lifetime education in a safe and secure environment were analyzed. The domain of patient and public involvement obtained the lowest mean score and the domain of safe environment obtained the highest mean score in the surveyed hospitals. All the surveyed hospitals had a poor condition regarding standards based on patient safety. Further, the identified weak points are almost the same in the hospitals. Therefore, In order to achieve a good level of all aspects of the protocol, the goals should be considered in the level of strategic planning at hospitals. An effective execution of patient safety creatively may depend on the legal infrastructure and enforcement of standards by hospital management, organizational liability to expectation of patients, safety culture in hospitals.

  20. 77 FR 19054 - Railroad Safety Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-29

    ... Safety Standards, Critical Incident, Dark Territory, Fatigue Management, Risk Reduction, Electronic... FRA on railroad safety matters. The RSAC is composed of 54 voting representatives from 31 member...

  1. Study on the frame body structure of micro-electric vehicle based on frontal crash safety

    NASA Astrophysics Data System (ADS)

    Lu, Yaoquan; Zhang, Sanchuan

    2017-08-01

    In order to research the safety of skeleton type body of micro-electric vehicles in the frontal collision, the method of finite element modeling and simulation are used to analyze frame body that is fitted with the energy absorption structure, the simulation results show that On the basis of absorbing the most energy and the least of body acceleration, the absorbent structure parameters can be optimized, the optimized parameters are length 180 mm, wall thickness 3 mm and materials Q460.

  2. The potential application of behavior-based safety in the trucking industry

    DOT National Transportation Integrated Search

    2000-04-01

    Behavior-based safety (BBS) is a set of methods to improve safety performance in the workplace by engaging workers in the improvement process, identifying critical safety behaviors, performing observations to gather data, providing feedback to encour...

  3. Estimation of Inherent Safety Margins in Loaded Commercial Spent Nuclear Fuel Casks

    DOE PAGES

    Banerjee, Kaushik; Robb, Kevin R.; Radulescu, Georgeta; ...

    2016-06-15

    We completed a novel assessment to determine the unquantified and uncredited safety margins (i.e., the difference between the licensing basis and as-loaded calculations) available in as-loaded spent nuclear fuel (SNF) casks. This assessment was performed as part of a broader effort to assess issues and uncertainties related to the continued safety of casks during extended storage and transportability following extended storage periods. Detailed analyses crediting the actual as-loaded cask inventory were performed for each of the casks at three decommissioned pressurized water reactor (PWR) sites to determine their characteristics relative to regulatory safety criteria for criticality, thermal, and shielding performance.more » These detailed analyses were performed in an automated fashion by employing a comprehensive and integrated data and analysis tool—Used Nuclear Fuel-Storage, Transportation & Disposal Analysis Resource and Data System (UNF-ST&DARDS). Calculated uncredited criticality margins from 0.07 to almost 0.30 Δk eff were observed; calculated decay heat margins ranged from 4 to almost 22 kW (as of 2014); and significant uncredited transportation dose rate margins were also observed. The results demonstrate that, at least for the casks analyzed here, significant uncredited safety margins are available that could potentially be used to compensate for SNF assembly and canister structural performance related uncertainties associated with long-term storage and subsequent transportation. The results also suggest that these inherent margins associated with how casks are loaded could support future changes in cask licensing to directly or indirectly credit the margins. Work continues to quantify the uncredited safety margins in the SNF casks loaded at other nuclear reactor sites.« less

  4. Measuring safety climate in elderly homes.

    PubMed

    Yeung, Koon-Chuen; Chan, Charles C

    2012-02-01

    Provision of a valid and reliable safety climate dimension brings enormous benefits to the elderly home sector. The aim of the present study was to make use of the safety climate instrument developed by OSHC to measure the safety perceptions of employees in elderly homes such that the factor structure of the safety climate dimensions of elderly homes could be explored. In 2010, surveys by mustering on site method were administered in 27 elderly homes that had participated in the "Hong Kong Safe and Healthy Residential Care Home Accreditation Scheme" organized by the Occupational Safety and Health Council. Six hundred and fifty-one surveys were returned with a response rate of 54.3%. To examine the factor structure of safety climate dimensions in our study, an exploratory factor analysis (EFA) using principal components analysis method was conducted to identify the underlying factors. The results of the modified seven-factor's safety climate structure extracted from 35 items better reflected the safety climate dimensions of elderly homes. The Cronbach alpha range for this study (0.655 to 0.851) indicated good internal consistency among the seven-factor structure. Responses from managerial level, supervisory and professional level, and front-line staff were analyzed to come up with the suggestion on effective ways of improving the safety culture of elderly homes. The overall results showed that managers generally gave positive responses in the factors evaluated, such as "management commitment and concern to safety," "perception of work risks and some contributory influences," "safety communication and awareness," and "safe working attitude and participation." Supervisors / professionals, and frontline level staff on the other hand, have less positive responses. The result of the lowest score in the factors - "perception of safety rules and procedures" underlined the importance of the relevance and practicability of safety rules and procedures. The modified OSHC

  5. Ambient Pressure Structural Quantum Critical Point in the Phase Diagram of (CaxSr1-x)3Rh4Sn13

    NASA Astrophysics Data System (ADS)

    Goh, Swee K.; Tompsett, D. A.; Saines, P. J.; Chang, H. C.; Matsumoto, T.; Imai, M.; Yoshimura, K.; Grosche, F. M.

    The quasiskutterudite superconductor Sr3Rh4Sn13 features a pronounced anomaly in electrical resistivity at T* ~ 138 K. The anomaly is caused by a second-order structural transition, which can be tuned to 0 K by applying physical pressure and chemical pressure via the substitution of Ca for Sr. A broad superconducting dome is centered around the structural quantum critical point. Detailed analysis of the tuning parameter dependence of T* as well as insights from lattice dynamics calculations strongly support the existence of a structural quantum critical point at ambient pressure when the fraction of Ca is 0.9 (xc=0.9). This establishes the (CaxSr1-x)3Rh4Sn13 series as an important system for exploring the physics of structural quantum criticality and its interplay with the superconductivity, without the need of applying high pressures. This work was supported by CUHK (Startup Grant, Direct Grant No. 4053071), UGC Hong Kong (ECS/24300214), Trinity College (Cam- bridge), Grants-in-Aid from MEXT (No. 22350029 and 23550152) and Glasstone Bequest (Oxford).

  6. Safety climate and safety behaviors in the construction industry: The importance of co-workers commitment to safety.

    PubMed

    Schwatka, Natalie V; Rosecrance, John C

    2016-06-16

    There is growing empirical evidence that as safety climate improves work site safety practice improve. Safety climate is often measured by asking workers about their perceptions of management commitment to safety. However, it is less common to include perceptions of their co-workers commitment to safety. While the involvement of management in safety is essential, working with co-workers who value and prioritize safety may be just as important. To evaluate a concept of safety climate that focuses on top management, supervisors and co-workers commitment to safety, which is relatively new and untested in the United States construction industry. Survey data was collected from a cohort of 300 unionized construction workers in the United States. The significance of direct and indirect (mediation) effects among safety climate and safety behavior factors were evaluated via structural equation modeling. Results indicated that safety climate was associated with safety behaviors on the job. More specifically, perceptions of co-workers commitment to safety was a mediator between both management commitment to safety climate factors and safety behaviors. These results support workplace health and safety interventions that build and sustain safety climate and a commitment to safety amongst work teams.

  7. Do European hospitals have quality and safety governance systems and structures in place?

    PubMed

    Shaw, C; Kutryba, B; Crisp, H; Vallejo, P; Suñol, R

    2009-02-01

    Internal systems for quality and safety were assessed in 89 hospitals in six European states, by external teams using standardised criteria and procedures, as part of the Methods of Assessing Response to Quality Improvement Strategies (MARQuIS) project. The assessments were made primarily to identify the current use of quality management systems in the sample hospitals, and also to demonstrate a potential tool for comparable assessment of hospitals in general. The large majority of the hospitals had a formal, documented infrastructure to manage quality and safety, but a significant minority had no designated mission, programme or coordination. In two-thirds of hospitals, the governing body was active in defining policy and programmes for improvement, and received reports on quality, safety and patient satisfaction at least once a year. The brief on-site assessments identified systematic variations, within and between countries, in structures and processes of governance and to document the uptake of best practice. Unacceptable variations in practice could be reduced, to the benefit of consumers and providers, by developing and publishing basic organisational standards relevant to all European states. The simple assessment criteria designed for this project could be developed into a practical tool for self-assessment, peer review or benchmarking of hospitals across national borders. This assessment, combined with explicit, relevant and achievable standards, could provide a vehicle to promote the voluntary uptake of best practice and consistency in quality and safety among hospitals in Europe.

  8. Safety Picks up "STEAM"

    ERIC Educational Resources Information Center

    Roy, Ken

    2016-01-01

    This column shares safety information for the classroom. STEAM subjects--science, technology, engineering, art, and mathematics--are essential for fostering students' 21st-century skills. STEAM promotes critical-thinking skills, including analysis, assessment, categorization, classification, interpretation, justification, and prediction, and are…

  9. Planning the Safety of Atrial Fibrillation Ablation Registry Initiative (SAFARI) as a Collaborative Pan-Stakeholder Critical Path Registry Model: a Cardiac Safety Research Consortium "Incubator" Think Tank.

    PubMed

    Al-Khatib, Sana M; Calkins, Hugh; Eloff, Benjamin C; Packer, Douglas L; Ellenbogen, Kenneth A; Hammill, Stephen C; Natale, Andrea; Page, Richard L; Prystowsky, Eric; Jackman, Warren M; Stevenson, William G; Waldo, Albert L; Wilber, David; Kowey, Peter; Yaross, Marcia S; Mark, Daniel B; Reiffel, James; Finkle, John K; Marinac-Dabic, Danica; Pinnow, Ellen; Sager, Phillip; Sedrakyan, Art; Canos, Daniel; Gross, Thomas; Berliner, Elise; Krucoff, Mitchell W

    2010-01-01

    Atrial fibrillation (AF) is a major public health problem in the United States that is associated with increased mortality and morbidity. Of the therapeutic modalities available to treat AF, the use of percutaneous catheter ablation of AF is expanding rapidly. Randomized clinical trials examining the efficacy and safety of AF ablation are currently underway; however, such trials can only partially determine the safety and durability of the effect of the procedure in routine clinical practice, in more complex patients, and over a broader range of techniques and operator experience. These limitations of randomized trials of AF ablation, particularly with regard to safety issues, could be addressed using a synergistically structured national registry, which is the intention of the SAFARI. To facilitate discussions about objectives, challenges, and steps for such a registry, the Cardiac Safety Research Consortium and the Duke Clinical Research Institute, Durham, NC, in collaboration with the US Food and Drug Administration, the American College of Cardiology, and the Heart Rhythm Society, organized a Think Tank meeting of experts in the field. Other participants included the National Heart, Lung and Blood Institute, the Centers for Medicare and Medicaid Services, the Agency for Healthcare Research and Quality, the Society of Thoracic Surgeons, the AdvaMed AF working group, and additional industry representatives. The meeting took place on April 27 to 28, 2009, at the US Food and Drug Administration headquarters in Silver Spring, MD. This article summarizes the issues and directions presented and discussed at the meeting. Copyright 2010 Mosby, Inc. All rights reserved.

  10. Analytical methodology for safety validation of computer controlled subsystems. Volume 1 : state-of-the-art and assessment of safety verification/validation methodologies

    DOT National Transportation Integrated Search

    1995-09-01

    This report describes the development of a methodology designed to assure that a sufficiently high level of safety is achieved and maintained in computer-based systems which perform safety critical functions in high-speed rail or magnetic levitation ...

  11. Model-Based Safety Analysis

    NASA Technical Reports Server (NTRS)

    Joshi, Anjali; Heimdahl, Mats P. E.; Miller, Steven P.; Whalen, Mike W.

    2006-01-01

    System safety analysis techniques are well established and are used extensively during the design of safety-critical systems. Despite this, most of the techniques are highly subjective and dependent on the skill of the practitioner. Since these analyses are usually based on an informal system model, it is unlikely that they will be complete, consistent, and error free. In fact, the lack of precise models of the system architecture and its failure modes often forces the safety analysts to devote much of their effort to gathering architectural details about the system behavior from several sources and embedding this information in the safety artifacts such as the fault trees. This report describes Model-Based Safety Analysis, an approach in which the system and safety engineers share a common system model created using a model-based development process. By extending the system model with a fault model as well as relevant portions of the physical system to be controlled, automated support can be provided for much of the safety analysis. We believe that by using a common model for both system and safety engineering and automating parts of the safety analysis, we can both reduce the cost and improve the quality of the safety analysis. Here we present our vision of model-based safety analysis and discuss the advantages and challenges in making this approach practical.

  12. Cybersecurity: The Nation’s Greatest Threat to Critical Infrastructure

    DTIC Science & Technology

    2013-03-01

    protection has become a matter of national security, public safety, and economic stability . It is imperative the U.S. Government (USG) examine current...recommendations for federal responsibilities and legislation to direct nation critical infrastructure efforts to ensure national security, public safety and economic stability .

  13. Additive-manufactured sandwich lattice structures: A numerical and experimental investigation

    NASA Astrophysics Data System (ADS)

    Fergani, Omar; Tronvoll, Sigmund; Brøtan, Vegard; Welo, Torgeir; Sørby, Knut

    2017-10-01

    The utilization of additive-manufactured lattice structures in engineered products is becoming more and more common as the competitiveness of AM as a production technology has increased during the past several years. Lattice structures may enable important weight reductions as well as open opportunities to build products with customized functional properties, thanks to the flexibility of AM for producing complex geometrical configurations. One of the most critical aspects related to taking AM into new application areas—such as safety critical products—is currently the limited understanding of the mechanical behavior of sandwich-based lattice structure mechanical under static and dynamic loading. In this study, we evaluate manufacturability of lattice structures and the impact of AM processing parameters on the structural behavior of this type of sandwich structures. For this purpose, we conducted static compression testing for a variety of geometry and manufacturing parameters. Further, the study discusses a numerical model capable of predicting the behavior of different lattice structure. A reasonably good correlation between the experimental and numerical results was observed.

  14. The Structural Enzymology of Iterative Aromatic Polyketide Synthases: A Critical Comparison with Fatty Acid Synthases.

    PubMed

    Tsai, Shiou-Chuan Sheryl

    2018-06-20

    Polyketides are a large family of structurally complex natural products including compounds with important bioactivities. Polyketides are biosynthesized by polyketide synthases (PKSs), multienzyme complexes derived evolutionarily from fatty acid synthases (FASs). The focus of this review is to critically compare the properties of FASs with iterative aromatic PKSs, including type II PKSs and fungal type I nonreducing PKSs whose chemical logic is distinct from that of modular PKSs. This review focuses on structural and enzymological studies that reveal both similarities and striking differences between FASs and aromatic PKSs. The potential application of FAS and aromatic PKS structures for bioengineering future drugs and biofuels is highlighted.

  15. Energy Neutral Wireless Bolt for Safety Critical Fastening

    PubMed Central

    Seyoum, Biruk B.

    2017-01-01

    Thermoelectric generators (TEGs) are now capable of powering the abundant low power electronics from very small (just a few degrees Celsius) temperature gradients. This factor along with the continuously lowering cost and size of TEGs, has contributed to the growing number of miniaturized battery-free sensor modules powered by TEGs. In this article, we present the design of an ambient-powered wireless bolt for high-end electro-mechanical systems. The bolt is equipped with a temperature sensor and a low power RF chip powered from a TEG. A DC-DC converter interfacing the TEG with the RF chip is used to step-up the low TEG voltage. The work includes the characterizations of different TEGs and DC-DC converters to determine the optimal design based on the amount of power that can be generated from a TEG under different loads and at temperature gradients typical of industrial environments. A prototype system was implemented and the power consumption of this system under different conditions was also measured. Results demonstrate that the power generated by the TEG at very low temperature gradients is sufficient to guarantee continuous wireless monitoring of the critical fasteners in critical systems such as avionics, motorsport and aerospace. PMID:28954432

  16. Energy Neutral Wireless Bolt for Safety Critical Fastening.

    PubMed

    Seyoum, Biruk B; Rossi, Maurizio; Brunelli, Davide

    2017-09-26

    Thermoelectric generators (TEGs) are now capable of powering the abundant low power electronics from very small (just a few degrees Celsius) temperature gradients. This factor along with the continuously lowering cost and size of TEGs, has contributed to the growing number of miniaturized battery-free sensor modules powered by TEGs. In this article, we present the design of an ambient-powered wireless bolt for high-end electro-mechanical systems. The bolt is equipped with a temperature sensor and a low power RF chip powered from a TEG. A DC-DC converter interfacing the TEG with the RF chip is used to step-up the low TEG voltage. The work includes the characterizations of different TEGs and DC-DC converters to determine the optimal design based on the amount of power that can be generated from a TEG under different loads and at temperature gradients typical of industrial environments. A prototype system was implemented and the power consumption of this system under different conditions was also measured. Results demonstrate that the power generated by the TEG at very low temperature gradients is sufficient to guarantee continuous wireless monitoring of the critical fasteners in critical systems such as avionics, motorsport and aerospace.

  17. Safety and efficacy of intravenous hypotonic 0.225% sodium chloride infusion for the treatment of hypernatremia in critically ill patients.

    PubMed

    Dickerson, Roland N; Maish, George O; Weinberg, Jordan A; Croce, Martin A; Minard, Gayle; Brown, Rex O

    2013-06-01

    The purpose of this study was to evaluate the safety and efficacy of central venous administration of a hypotonic 0.225% sodium chloride (one-quarter normal saline [¼ NS]) infusion for critically ill patients with hypernatremia. Critically ill, adult patients with traumatic injuries and hypernatremia (serum sodium [Na] >150 mEq/L) who were given ¼ NS were retrospectively studied. Serum sodium, fluid balance, free water intake, sodium intake, and plasma free hemoglobin concentration (fHgb) were assessed. Twenty patients (age, 50 ± 18 years; Injury Severity Score, 29 ± 12) were evaluated. The ¼ NS infusion was given at 1.5 ± 1.0 L/d for 4.6 ± 1.6 days. Serum sodium concentration decreased from 156 ± 4 to 143 ± 6 mEq/L (P < .001) over 3-7 days. Total sodium intake was decreased from 210 ± 153 to 156 ± 112 mEq/d (P < .05). Daily net fluid balance was not significantly increased. Plasma fHgb increased from 4.9 ± 5.4 mg/dL preinfusion to 8.9 ± 7.4 mg/dL after 2.6 ± 1.3 days of continuous intravenous (IV) ¼ NS in 10 patients (P = .055). An additional 10 patients had a plasma fHgb of 10.2 ± 9.0 mg/dL during the infusion. Hematocrit and hemoglobin decreased (26% ± 3% to 24% ± 2%, P < .001 and 9.1 ± 1.1 to 8.2 ± 0.8 g/dL, P < .001, respectively). Although IV ¼ NS was effective for decreasing serum sodium concentration, evidence for minor hemolysis warrants further research to establish its safety before its routine use can be recommended.

  18. Principles and Benefits of Explicitly Designed Medical Device Safety Architecture.

    PubMed

    Larson, Brian R; Jones, Paul; Zhang, Yi; Hatcliff, John

    The complexity of medical devices and the processes by which they are developed pose considerable challenges to producing safe designs and regulatory submissions that are amenable to effective reviews. Designing an appropriate and clearly documented architecture can be an important step in addressing this complexity. Best practices in medical device design embrace the notion of a safety architecture organized around distinct operation and safety requirements. By explicitly separating many safety-related monitoring and mitigation functions from operational functionality, the aspects of a device most critical to safety can be localized into a smaller and simpler safety subsystem, thereby enabling easier verification and more effective reviews of claims that causes of hazardous situations are detected and handled properly. This article defines medical device safety architecture, describes its purpose and philosophy, and provides an example. Although many of the presented concepts may be familiar to those with experience in realization of safety-critical systems, this article aims to distill the essence of the approach and provide practical guidance that can potentially improve the quality of device designs and regulatory submissions.

  19. The Development and Implementation of Cognitive Aids for Critical Events in Pediatric Anesthesia: The Society for Pediatric Anesthesia Critical Events Checklists.

    PubMed

    Clebone, Anna; Burian, Barbara K; Watkins, Scott C; Gálvez, Jorge A; Lockman, Justin L; Heitmiller, Eugenie S

    2017-03-01

    Cognitive aids such as checklists are commonly used in modern operating rooms for routine processes, and the use of such aids may be even more important during critical events. The Quality and Safety Committee of the Society for Pediatric Anesthesia (SPA) has developed a set of critical-event checklists and cognitive aids designed for 3 purposes: (1) as a repository of the latest evidence-based and expert opinion-based information to guide response and management of critical events, (2) as a source of just-in-time information during critical events, and (3) as a method to facilitate a shared understanding of required actions among team members during a critical event. Committee members, who represented children's hospitals from across the nation, used the recent literature and established guidelines (where available) and incorporated the expertise of colleagues at their institutions to develop these checklists, which included relevant factors to consider and steps to take in response to critical events. Human factors principles were incorporated to enhance checklist usability, facilitate error-free accomplishment, and ensure a common approach to checklist layout, formatting, structure, and design.The checklists were made available in multiple formats: a PDF version for easy printing, a mobile application, and at some institutions, a Web-based application using the anesthesia information management system. After the checklists were created, training commenced, and plans for validation were begun. User training is essential for successful implementation and should ideally include explanation of the organization of the checklists; familiarization of users with the layout, structure, and formatting of the checklists; coaching in how to use the checklists in a team environment; reviewing of the items; and simulation of checklist use. Because of the rare and unpredictable nature of critical events, clinical trials that use crisis checklists are difficult to conduct

  20. Evaluation of Margins of Safety in Brazed Joints

    NASA Technical Reports Server (NTRS)

    Flom, Yury; Wang, Len; Powell, Mollie M.; Soffa, Matthew A.; Rommel, Monica L.

    2009-01-01

    One of the essential steps in assuring reliable performance of high cost critical brazed structures is the assessment of the Margin of Safety (MS) of the brazed joints. In many cases the experimental determination of the failure loads by destructive testing of the brazed assembly is not practical and cost prohibitive. In such cases the evaluation of the MS is performed analytically by comparing the maximum design loads with the allowable ones and incorporating various safety or knock down factors imposed by the customer. Unfortunately, an industry standard methodology for the design and analysis of brazed joints has not been developed. This paper provides an example of an approach that was used to analyze an AlBeMet 162 (38%Be-62%Al) structure brazed with the AWS BAlSi-4 (Al-12%Si) filler metal. A practical and conservative interaction equation combining shear and tensile allowables was developed and validated to evaluate an acceptable (safe) combination of tensile and shear stresses acting in the brazed joint. These allowables are obtained from testing of standard tensile and lap shear brazed specimens. The proposed equation enables the assessment of the load carrying capability of complex brazed joints subjected to multi-axial loading.

  1. [Improving patient safety through voluntary peer review].

    PubMed

    Kluge, S; Bause, H

    2015-01-01

    The intensive care unit (ICU) is one area of the hospital in which processes and communication are of primary importance. Errors in intensive care units can lead to serious adverse events with significant consequences for patients. Therefore quality and risk-management are important measures when treating critically ill patients. A pragmatic approach to support quality and safety in intensive care is peer review. This approach has gained significant acceptance over the past years. It consists of mutual visits by colleagues who conduct standardised peer reviews. These reviews focus on the systematic evaluation of the quality of an ICU's structure, its processes and outcome. Together with different associations, the State Chambers of Physicians and the German Medical Association have developed peer review as a standardized tool for quality improvement. The common goal of all stakeholders is the continuous and sustainable improvement in intensive care with peer reviews significantly increasing and improving communication between professions and disciplines. Peer reviews secure the sustainability of planned change processes and consequently lead the way to an improved culture of quality and safety.

  2. Structural safety assessment for FLNG-LNGC system during offloading operation scenario

    NASA Astrophysics Data System (ADS)

    Hu, Zhi-qiang; Zhang, Dong-wei; Zhao, Dong-ya; Chen, Gang

    2017-04-01

    The crashworthiness of the cargo containment systems (CCSs) of a floating liquid natural gas (FLNG) and the side structures in side-by-side offloading operations scenario are studied in this paper. An FLNG vessel is exposed to potential threats from collisions with a liquid natural gas carrier (LNGC) during the offloading operations, which has been confirmed by a model test of FLNG-LNGC side-by-side offloading operations. A nonlinear finite element code LS-DYNA is used to simulate the collision scenarios during the offloading operations. Finite element models of an FLNG vessel and an LNGC are established for the purpose of this study, including a detailed LNG cargo containment system in the FLNG side model. Based on the parameters obtained from the model test and potential dangerous accidents, typical collision scenarios are defined to conduct a comprehensive study. To evaluate the safety of the FLNG vessel, a limit state is proposed based on the structural responses of the LNG CCS. The different characteristics of the structural responses for the primary structural components, energy dissipation and collision forces are obtained for various scenarios. Deformation of the inner hull is found to have a great effect on the responses of the LNG CCS, with approximately 160 mm deformation corresponding to the limit state. Densely arranged web frames can absorb over 35% of the collision energy and be proved to greatly enhance the crashworthiness of the FLNG side structures.

  3. Technical Excellence and Communication: The Cornerstones for Successful Safety and Mission Assurance Programs

    NASA Technical Reports Server (NTRS)

    Malone, Roy W.; Livingston, John M.

    2010-01-01

    The paper describes the role of technical excellence and communication in the development and maintenance of safety and mission assurance programs. The Marshall Space Flight Center (MSFC) Safety and Mission Assurance (S&MA) organization is used to illustrate philosophies and techniques that strengthen safety and mission assurance efforts and that contribute to healthy and effective organizational cultures. The events and conditions leading to the development of the MSFC S&MA organization are reviewed. Historic issues and concerns are identified. The adverse effects of resource limitations and risk assessment roles are discussed. The structure and functions of the core safety, reliability, and quality assurance functions are presented. The current organization s mission and vision commitments serve as the starting points for the description of the current organization. The goals and objectives are presented that address the criticisms of the predecessor organizations. Additional improvements are presented that address the development of technical excellence and the steps taken to improve communication within the Center, with program customers, and with other Agency S&MA organizations.

  4. Technical Excellence and Communication, the Cornerstones for Successful Safety and Mission Assurance Programs

    NASA Astrophysics Data System (ADS)

    Malone, Roy W.; Livingston, John M.

    2010-09-01

    The paper describes the role of technical excellence and communication in the development and maintenance of safety and mission assurance programs. The Marshall Space Flight Center(MSFC) Safety and Mission Assurance(S&MA) organization is used to illustrate philosophies and techniques that strengthen safety and mission assurance efforts and that contribute to healthy and effective organizational cultures. The events and conditions leading to the development of the MSFC S&MA organization are reviewed. Historic issues and concerns are identified. The adverse effects of resource limitations and risk assessment roles are discussed. The structure and functions of the core safety, reliability, and quality assurance functions are presented. The current organization’s mission and vision commitments serve as the starting points for the description of the current organization. The goals and objectives are presented that address the criticisms of the predecessor organizations. Additional improvements are presented that address the development of technical excellence and the steps taken to improve communication within the Center, with program customers, and with other Agency S&MA organizations.

  5. Effects of organizational safety on employees' proactivity safety behaviors and occupational health and safety management systems in Chinese high-risk small-scale enterprises.

    PubMed

    Mei, Qiang; Wang, Qiwei; Liu, Suxia; Zhou, Qiaomei; Zhang, Jingjing

    2018-06-07

    Based on the characteristics of small-scale enterprises, the improvement of occupational health and safety management systems (OHS MS) needs an effective intervention. This study proposed a structural equation model and examined the relationships of perceived organization support for safety (POSS), person-organization safety fit (POSF) and proactivity safety behaviors with safety management, safety procedures and safety hazards identification. Data were collected from 503 employees of 105 Chinese high-risk small-scale enterprises over 6 months. The results showed that both POSS and POSF were positively related to improvement in safety management, safety procedures and safety hazards identification through proactivity safety behaviors. Our findings provide a new perspective on organizational safety for improving OHS MS for small-scale enterprises and extend the application of proactivity safety behaviors.

  6. Can Student Nurse Critical Thinking Be Predicted from Perceptions of Structural Empowerment within the Undergraduate, Pre-Licensure Learning Environment?

    ERIC Educational Resources Information Center

    Caswell-Moore, Shelley P.

    2013-01-01

    The purpose of this study was to test a model using Rosabeth Kanter's theory (1977; 1993) of structural empowerment to determine if this model can predict student nurses' level of critical thinking. Major goals of nursing education are to cultivate graduates who can think critically with a keen sense of clinical judgment, and who can perform…

  7. Damage Characterization Using the Extended Finite Element Method for Structural Health Management

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, Thiagarajan; Gallegos, Adam M.

    2011-01-01

    The development of validated multidisciplinary Integrated Vehicle Health Management (IVHM) tools, technologies, and techniques to enable detection, diagnosis, prognosis, and mitigation in the presence of adverse conditions during flight will provide effective solutions to deal with safety related challenges facing next generation aircraft. The adverse conditions include loss of control caused by environmental factors, actuator and sensor faults or failures, and damage conditions. A major concern in these structures is the growth of undetected damage/cracks due to fatigue and low velocity foreign impact that can reach a critical size during flight, resulting in loss of control of the aircraft. Hence, development of efficient methodologies to determine the presence, location, and severity of damage/cracks in critical structural components is highly important in developing efficient structural health management systems.

  8. Safety Analysis of Soybean Processing for Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Hentges, Dawn L.

    1999-01-01

    Soybeans (cv. Hoyt) is one of the crops planned for food production within the Advanced Life Support System Integration Testbed (ALSSIT), a proposed habitat simulation for long duration lunar/Mars missions. Soybeans may be processed into a variety of food products, including soymilk, tofu, and tempeh. Due to the closed environmental system and importance of crew health maintenance, food safety is a primary concern on long duration space missions. Identification of the food safety hazards and critical control points associated with the closed ALSSIT system is essential for the development of safe food processing techniques and equipment. A Hazard Analysis Critical Control Point (HACCP) model was developed to reflect proposed production and processing protocols for ALSSIT soybeans. Soybean processing was placed in the type III risk category. During the processing of ALSSIT-grown soybeans, critical control points were identified to control microbiological hazards, particularly mycotoxins, and chemical hazards from antinutrients. Critical limits were suggested at each CCP. Food safety recommendations regarding the hazards and risks associated with growing, harvesting, and processing soybeans; biomass management; and use of multifunctional equipment were made in consideration of the limitations and restraints of the closed ALSSIT.

  9. Modelling safety of multistate systems with ageing components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kołowrocki, Krzysztof; Soszyńska-Budny, Joanna

    An innovative approach to safety analysis of multistate ageing systems is presented. Basic notions of the ageing multistate systems safety analysis are introduced. The system components and the system multistate safety functions are defined. The mean values and variances of the multistate systems lifetimes in the safety state subsets and the mean values of their lifetimes in the particular safety states are defined. The multi-state system risk function and the moment of exceeding by the system the critical safety state are introduced. Applications of the proposed multistate system safety models to the evaluation and prediction of the safty characteristics ofmore » the consecutive “m out of n: F” is presented as well.« less

  10. Efforts to update firefighter safety zone guidelines

    Treesearch

    Bret Butler

    2009-01-01

    One of the most critical decisions made on wildland fires is the identification of suitable safety zones for firefighters during daily fire management operations. To be effective (timely, repeatable, and accurate), these decisions rely on good training and judgment, but also on clear, concise guidelines. This article is a summary of safety zone guidelines and the...

  11. Nurses critical to quality, safety, and now financial performance.

    PubMed

    Kohlbrenner, Janis; Whitelaw, George; Cannaday, Denise

    2011-03-01

    Preventable hospital errors are the accepted impetus to the establishment of quality measures and served as a catalyst for the ongoing evolution of healthcare reform. Nurses are crucial members of the hospital quality team, and their actions are integral to the hospital's quality performance. The authors explore some of the practical challenges created by quality performance standards, specifically around venous thromboembolism, and the contribution nurses can make, to patient safety, quality of care, and the institutions financial performance.

  12. Long-term real-time structural health monitoring using wireless smart sensor

    NASA Astrophysics Data System (ADS)

    Jang, Shinae; Mensah-Bonsu, Priscilla O.; Li, Jingcheng; Dahal, Sushil

    2013-04-01

    Improving the safety and security of civil infrastructure has become a critical issue for decades since it plays a central role in the economics and politics of a modern society. Structural health monitoring of civil infrastructure using wireless smart sensor network has emerged as a promising solution recently to increase structural reliability, enhance inspection quality, and reduce maintenance costs. Though hardware and software framework are well prepared for wireless smart sensors, the long-term real-time health monitoring strategy are still not available due to the lack of systematic interface. In this paper, the Imote2 smart sensor platform is employed, and a graphical user interface for the long-term real-time structural health monitoring has been developed based on Matlab for the Imote2 platform. This computer-aided engineering platform enables the control, visualization of measured data as well as safety alarm feature based on modal property fluctuation. A new decision making strategy to check the safety is also developed and integrated in this software. Laboratory validation of the computer aided engineering platform for the Imote2 on a truss bridge and a building structure has shown the potential of the interface for long-term real-time structural health monitoring.

  13. School Safety under NCLB's Unsafe School Choice Option

    ERIC Educational Resources Information Center

    Gastic, Billie; Gasiewski, Josephine Ann

    2008-01-01

    Despite its flaws, the USCO created the conditions for an unprecedented national statement on school safety. This study asks: How do states conceptualize school safety? While critics have denounced the dizzying assortment of states' persistently dangerous criteria, we argue that these differences have been grossly exaggerated. We contend that…

  14. 77 FR 26647 - National Building Safety Month, 2012

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-04

    ... Building Safety Month, 2012 By the President of the United States of America A Proclamation In... to an America built to last, and during National Building Safety Month, we recommit to strengthening... critical role in making America safe, strong, and sustainable. This month, we celebrate their work, and we...

  15. The Impact of the Structure, Function, and Resources of the Campus Security Office on Campus Safety

    ERIC Educational Resources Information Center

    Bennett, Patricia Anne

    2012-01-01

    The topic of this dissertation is college and university safety. This national quantitative study utilized resource dependency theory to examine relationships between the incidence of reported campus crimes and the structure, function, and resources of campus security offices. This study uncovered a difference in reported total crime rates,…

  16. Structural equation model to investigate the dimensions influencing safety culture improvement in construction sector: A case in Indonesia

    NASA Astrophysics Data System (ADS)

    Machfudiyanto, Rossy Armyn; Latief, Yusuf; Yogiswara, Yoko; Setiawan, R. Mahendra Fitra

    2017-06-01

    In facing the ASEAN Economic Community, the level of prevailing working accidents becomes one of the competitiveness factors among the companies. A construction industry is one of the industries prone to high level of accidents. Improving the safety record will not be completely effective unless the occupational safety and healthy culture is enhanced. The aim of this research was to develop a model and to conduct empirical investigation on the relationships among the dimensions of construction occupational safety culture. This research used the structural equation model as a means to examine the hypothesis of positive relationships between dimensions and objectives. The method used in this research was questionnaire survey which was distributed to the respondents from construction companies in a state-owned enterprise in Indonesia. Moreover, there were dimensions of occupational safety culture that was established, such as leadership, behavior, value, strategy, policy, process, employee, safety cost, and contract system. The results of this study indicated that all dimensions were significant and inter-related in forming the safety culture. The result of R2 yielded the safety performance was 54%, which means it was in low category and evaluation of policies on construction companies was required in addressing the issue of working accidents.

  17. Columbus safety and reliability

    NASA Astrophysics Data System (ADS)

    Longhurst, F.; Wessels, H.

    1988-10-01

    Analyses carried out to ensure Columbus reliability, availability, and maintainability, and operational and design safety are summarized. Failure modes/effects/criticality is the main qualitative tool used. The main aspects studied are fault tolerance, hazard consequence control, risk minimization, human error effects, restorability, and safe-life design.

  18. Health and safety at work in the transport industry (TRANS-18): factorial structure, reliability and validity.

    PubMed

    Boada-Grau, Joan; Sánchez-García, José-Carlos; Prizmic-Kuzmica, Aldo-Javier; Vigil-Colet, Andreu

    2012-03-01

    In this article, we study the psychometric properties of a short scale (TRANS-18) which was designed to detect safe behaviors (personal and vehicle-related) and psychophysiological disorders. 244 drivers participated in the study, including drivers of freight transport vehicles (regular, dangerous and special), cranes, and passenger transport (regular transport and chartered coaches), ambulances and taxis. After carrying out an exploratory factor analysis of the scale, the findings show a structure comprised of three factors related to psychophysiological disorders, and to both personal and vehicle-related safety behaviors. Furthermore, these three factors had adequate reliability and all three also showed validity with regard to burnout, fatigue and job tension. In short, this scale may be ideally suited for adequately identifying the safety behaviors and safety problems of transport drivers. Future research could use the TRANS-18 as a screening tool in combination with other instruments.

  19. Reactor safety method

    DOEpatents

    Vachon, Lawrence J.

    1980-03-11

    This invention relates to safety means for preventing a gas cooled nuclear reactor from attaining criticality prior to start up in the event the reactor core is immersed in hydrogenous liquid. This is accomplished by coating the inside surface of the reactor coolant channels with a neutral absorbing material that will vaporize at the reactor's operating temperature.

  20. Nurse characteristics, leadership, safety climate, emotional labour and intention to stay for nurses: a structural equation modelling approach.

    PubMed

    Liang, Hui-Yu; Tang, Fu-In; Wang, Tze-Fang; Lin, Kai-Ching; Yu, Shu

    2016-12-01

    The aim of this study was to propose a theoretical model and apply it to examine the structural relationships among nurse characteristics, leadership characteristics, safety climate, emotional labour and intention to stay for hospital nurses. Global nursing shortages negatively affect the quality of care. The shortages can be reduced by retaining nurses. Few studies have independently examined the relationships among leadership, safety climate, emotional labour and nurses' intention to stay; more comprehensive theoretical foundations for examining nurses' intention to stay and its related factors are lacking. Cross-sectional. A purposive sample of 414 full-time nurses was recruited from two regional hospitals in Taiwan. A structured questionnaire was used to collect data from November 2013-June 2014. Structural equation modelling was employed to test the theoretical models of the relationships among the constructs. Our data supported the theoretical model. Intention to stay was positively correlated with age and the safety climate, whereas working hours per week and emotional labour were negatively correlated. The nursing position and transformational leadership indirectly affected intention to stay; this effect was mediated separately by emotional labour and the safety climate. Our data supported the model fit. Our findings provide practical implications for healthcare organizations and administrators to increase nurses' intent to stay. Strategies including a safer climate, appropriate working hours and lower emotional labour can directly increase nurses' intent to stay. Transformational leadership did not directly influence nurses' intention to stay; however, it reduced emotional labour, thereby increasing intention to stay. © 2016 John Wiley & Sons Ltd.

  1. The structure and emerging trends of construction safety management research: a bibliometric review.

    PubMed

    Liang, Huakang; Zhang, Shoujian; Su, Yikun

    2018-03-29

    Recently, construction safety management (CSM) practices and systems have become important topics for stakeholders to take care of human resources. However, few studies have attempted to map the global research on CSM. A comprehensive bibliometric review was conducted in this study based on multiple methods. In total, 1172 CSM-related papers from the Web of Science Core Collection database were examined. The analyses focused on publication year, country-institute, publication source, author and research topics. The results indicated that the USA, China, Australia and the UK took leading positions in CSM research. Two branches of journals were identified, namely the branch of engineering science and that of safety science and social science. Additionally, seven themes together with 28 specific topics were detected to allow researchers to track the main structure and temporal evolution of CSM research. Finally, the main research trends and potential research directions were discussed to guide the future research.

  2. Smoke Detection: Critical Element of a University Residential Fire Safety Program.

    ERIC Educational Resources Information Center

    Robinson, Donald A.

    1979-01-01

    A program at the University of Massachusetts/Amherst to assess the fire protection needs of its residential system is described. The study culminated in a multiphase fire safety improvement plan. (JMF)

  3. Target Highlights in CASP9: Experimental Target Structures for the Critical Assessment of Techniques for Protein Structure Prediction

    PubMed Central

    Kryshtafovych, Andriy; Moult, John; Bartual, Sergio G.; Bazan, J. Fernando; Berman, Helen; Casteel, Darren E.; Christodoulou, Evangelos; Everett, John K.; Hausmann, Jens; Heidebrecht, Tatjana; Hills, Tanya; Hui, Raymond; Hunt, John F.; Jayaraman, Seetharaman; Joachimiak, Andrzej; Kennedy, Michael A.; Kim, Choel; Lingel, Andreas; Michalska, Karolina; Montelione, Gaetano T.; Otero, José M.; Perrakis, Anastassis; Pizarro, Juan C.; van Raaij, Mark J.; Ramelot, Theresa A.; Rousseau, Francois; Tong, Liang; Wernimont, Amy K.; Young, Jasmine; Schwede, Torsten

    2011-01-01

    One goal of the CASP Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction is to identify the current state of the art in protein structure prediction and modeling. A fundamental principle of CASP is blind prediction on a set of relevant protein targets, i.e. the participating computational methods are tested on a common set of experimental target proteins, for which the experimental structures are not known at the time of modeling. Therefore, the CASP experiment would not have been possible without broad support of the experimental protein structural biology community. In this manuscript, several experimental groups discuss the structures of the proteins which they provided as prediction targets for CASP9, highlighting structural and functional peculiarities of these structures: the long tail fibre protein gp37 from bacteriophage T4, the cyclic GMP-dependent protein kinase Iβ (PKGIβ) dimerization/docking domain, the ectodomain of the JTB (Jumping Translocation Breakpoint) transmembrane receptor, Autotaxin (ATX) in complex with an inhibitor, the DNA-Binding J-Binding Protein 1 (JBP1) domain essential for biosynthesis and maintenance of DNA base-J (β-D-glucosyl-hydroxymethyluracil) in Trypanosoma and Leishmania, an so far uncharacterized 73 residue domain from Ruminococcus gnavus with a fold typical for PDZ-like domains, a domain from the Phycobilisome (PBS) core-membrane linker (LCM) phycobiliprotein ApcE from Synechocystis, the Heat shock protein 90 (Hsp90) activators PFC0360w and PFC0270w from Plasmodium falciparum, and 2-oxo-3-deoxygalactonate kinase from Klebsiella pneumoniae. PMID:22020785

  4. The critical care air transport program.

    PubMed

    Beninati, William; Meyer, Michael T; Carter, Todd E

    2008-07-01

    The critical care air transport team program is a component of the U.S. Air Force Aeromedical Evacuation system. A critical care air transport team consists of a critical care physician, critical care nurse, and respiratory therapist along with the supplies and equipment to operate a portable intensive care unit within a cargo aircraft. This capability was developed to support rapidly mobile surgical teams with high capability for damage control resuscitation and limited capacity for postresuscitation care. The critical care air transport team permits rapid evacuation of stabilizing casualties to a higher level of care. The aeromedical environment presents important challenges for the delivery of critical care. All equipment must be tested for safety and effectiveness in this environment before use in flight. The team members must integrate the current standards of care with the limitation imposed by stresses of flight on their patient. The critical care air transport team capability has been used successfully in a range of settings from transport within the United States, to disaster response, to support of casualties in combat.

  5. Danger zone: Men, masculinity and occupational health and safety in high risk occupations

    PubMed Central

    Stergiou-Kita, Mary; Mansfield, Elizabeth; Bezo, Randy; Colantonio, Angela; Garritano, Enzo; Lafrance, Marc; Lewko, John; Mantis, Steve; Moody, Joel; Power, Nicole; Theberge, Nancy; Westwood, Eleanor; Travers, Krista

    2016-01-01

    The workplace is a key setting where gender issues and organizational structures may influence occupational health and safety practices. The enactment of dominant norms of masculinity in high risk occupations can be particularly problematic, as it exposes men to significant risks for injuries and fatalities. To encourage multi-disciplinary collaborations and advance knowledge in the intersecting areas of gender studies, men’s health, work and workplace health and safety, a national network of thirteen researchers and health and safety stakeholders completed a critical literature review examining the intersection between masculinities and men’s workplace health and safety in order to: (i) account for research previously undertaken in this area; (ii) identify themes that may inform our understanding of masculinity and workplace health and safety and; (iii) identify research and practice gaps in relation to men’s workplace health and safety. In this paper we present key themes from this review. Recommendations are made regarding: (i) how to define gender; (ii) how to attend to and identify how masculinities may influence workers’ identities, perceptions of occupational risks and how institutionalized practices can reinforce norms of masculinity; (iii) the importance of considering how masculinities may intersect with other variables (e.g. historical context, age, class, race, geographical location) and; (iv) the added significance of present-day labour market forces on men’s occupational health and safety. PMID:27239098

  6. Danger zone: Men, masculinity and occupational health and safety in high risk occupations.

    PubMed

    Stergiou-Kita, Mary; Mansfield, Elizabeth; Bezo, Randy; Colantonio, Angela; Garritano, Enzo; Lafrance, Marc; Lewko, John; Mantis, Steve; Moody, Joel; Power, Nicole; Theberge, Nancy; Westwood, Eleanor; Travers, Krista

    2015-12-01

    The workplace is a key setting where gender issues and organizational structures may influence occupational health and safety practices. The enactment of dominant norms of masculinity in high risk occupations can be particularly problematic, as it exposes men to significant risks for injuries and fatalities. To encourage multi-disciplinary collaborations and advance knowledge in the intersecting areas of gender studies, men's health, work and workplace health and safety, a national network of thirteen researchers and health and safety stakeholders completed a critical literature review examining the intersection between masculinities and men's workplace health and safety in order to: (i) account for research previously undertaken in this area; (ii) identify themes that may inform our understanding of masculinity and workplace health and safety and; (iii) identify research and practice gaps in relation to men's workplace health and safety. In this paper we present key themes from this review. Recommendations are made regarding: (i) how to define gender; (ii) how to attend to and identify how masculinities may influence workers' identities, perceptions of occupational risks and how institutionalized practices can reinforce norms of masculinity; (iii) the importance of considering how masculinities may intersect with other variables (e.g. historical context, age, class, race, geographical location) and; (iv) the added significance of present-day labour market forces on men's occupational health and safety.

  7. Damage Evaluation in Shear-Critical Reinforced Concrete Beam using Piezoelectric Transducers as Smart Aggregates

    NASA Astrophysics Data System (ADS)

    Chalioris, Constantin E.; Papadopoulos, Nikos A.; Angeli, Georgia M.; Karayannis, Chris G.; Liolios, Asterios A.; Providakis, Costas P.

    2015-10-01

    Damage detection at early cracking stages in shear-critical reinforced concrete beams, before further deterioration and their inevitable brittle shear failure is crucial for structural safety and integrity. The effectiveness of a structural health monitoring technique using the admittance measurements of piezoelectric transducers mounted on a reinforced concrete beam without shear reinforcement is experimentally investigated. Embedded "smart aggregate" transducers and externally bonded piezoelectric patches have been placed in arrays at both shear spans of the beam. Beam were tested till total shear failure and monitored at three different states; healthy, flexural cracking and diagonal cracking. Test results showed that transducers close to the critical diagonal crack provided sound and graduated discrepancies between the admittance responses at the healthy state and thedamage levels.Damage assessment using statistical indices calculated from the measurements of all transducers was also attempted. Rational changes of the index values were obtained with respect to the increase of the damage. Admittance responses and index values of the transducers located on the shear span where the critical diagonal crack formed provided cogent evidence of damage. On the contrary, negligible indication of damage was yielded by the responses of the transducers located on the other shear span, where no diagonal cracking occurred.

  8. Visual warning system for worker safety on roadside work-zones.

    DOT National Transportation Integrated Search

    2016-08-01

    Growing traffic on US roadways and heavy construction machinery on road construction sites pose a critical safety : threat to construction workers. This report summarizes the design and development of a worker safety system using : Dedicated Short Ra...

  9. Autonomous Flight Safety System

    NASA Technical Reports Server (NTRS)

    Ferrell, Bob; Santuro, Steve; Simpson, James; Zoerner, Roger; Bull, Barton; Lanzi, Jim

    2004-01-01

    Autonomous Flight Safety System (AFSS) is an independent flight safety system designed for small to medium sized expendable launch vehicles launching from or needing range safety protection while overlying relatively remote locations. AFSS replaces the need for a man-in-the-loop to make decisions for flight termination. AFSS could also serve as the prototype for an autonomous manned flight crew escape advisory system. AFSS utilizes onboard sensors and processors to emulate the human decision-making process using rule-based software logic and can dramatically reduce safety response time during critical launch phases. The Range Safety flight path nominal trajectory, its deviation allowances, limit zones and other flight safety rules are stored in the onboard computers. Position, velocity and attitude data obtained from onboard global positioning system (GPS) and inertial navigation system (INS) sensors are compared with these rules to determine the appropriate action to ensure that people and property are not jeopardized. The final system will be fully redundant and independent with multiple processors, sensors, and dead man switches to prevent inadvertent flight termination. AFSS is currently in Phase III which includes updated algorithms, integrated GPS/INS sensors, large scale simulation testing and initial aircraft flight testing.

  10. Automatic Identification of Critical Follow-Up Recommendation Sentences in Radiology Reports

    PubMed Central

    Yetisgen-Yildiz, Meliha; Gunn, Martin L.; Xia, Fei; Payne, Thomas H.

    2011-01-01

    Communication of follow-up recommendations when abnormalities are identified on imaging studies is prone to error. When recommendations are not systematically identified and promptly communicated to referrers, poor patient outcomes can result. Using information technology can improve communication and improve patient safety. In this paper, we describe a text processing approach that uses natural language processing (NLP) and supervised text classification methods to automatically identify critical recommendation sentences in radiology reports. To increase the classification performance we enhanced the simple unigram token representation approach with lexical, semantic, knowledge-base, and structural features. We tested different combinations of those features with the Maximum Entropy (MaxEnt) classification algorithm. Classifiers were trained and tested with a gold standard corpus annotated by a domain expert. We applied 5-fold cross validation and our best performing classifier achieved 95.60% precision, 79.82% recall, 87.0% F-score, and 99.59% classification accuracy in identifying the critical recommendation sentences in radiology reports. PMID:22195225

  11. Automatic identification of critical follow-up recommendation sentences in radiology reports.

    PubMed

    Yetisgen-Yildiz, Meliha; Gunn, Martin L; Xia, Fei; Payne, Thomas H

    2011-01-01

    Communication of follow-up recommendations when abnormalities are identified on imaging studies is prone to error. When recommendations are not systematically identified and promptly communicated to referrers, poor patient outcomes can result. Using information technology can improve communication and improve patient safety. In this paper, we describe a text processing approach that uses natural language processing (NLP) and supervised text classification methods to automatically identify critical recommendation sentences in radiology reports. To increase the classification performance we enhanced the simple unigram token representation approach with lexical, semantic, knowledge-base, and structural features. We tested different combinations of those features with the Maximum Entropy (MaxEnt) classification algorithm. Classifiers were trained and tested with a gold standard corpus annotated by a domain expert. We applied 5-fold cross validation and our best performing classifier achieved 95.60% precision, 79.82% recall, 87.0% F-score, and 99.59% classification accuracy in identifying the critical recommendation sentences in radiology reports.

  12. Damage Characterization Method for Structural Health Management Using Reduced Number of Sensor Inputs

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, T.; Hochhalter, Jacob D.; Gallegos, Adam M.

    2012-01-01

    The development of validated multidisciplinary Integrated Vehicle Health Management (IVHM) tools, technologies, and techniques to enable detection, diagnosis, prognosis, and mitigation in the presence of adverse conditions during flight will provide effective solutions to deal with safety related challenges facing next generation aircraft. The adverse conditions include loss of control caused by environmental factors, actuator and sensor faults or failures, and damage conditions. A major concern in these structures is the growth of undetected damage (cracks) due to fatigue and low velocity foreign impacts that can reach a critical size during flight, resulting in loss of control of the aircraft. Hence, development of efficient methodologies to determine the presence, location, and severity of damage in critical structural components is highly important in developing efficient structural health management systems.

  13. The perceptions of patient safety culture: A difference between physicians and nurses in Taiwan.

    PubMed

    Huang, Chih-Hsuan; Wu, Hsin-Hung; Lee, Yii-Ching

    2018-04-01

    In order to pursue a better patient safety culture and provide a superior medical service for patients, this study aims to respectively investigate the perceptions of patient safety from the viewpoints of physicians and nurses in Taiwan. Little knowledge has clearly identified the difference of perceptions between physicians and nurses in patient safety culture. Understanding physicians and nurses' attitudes toward patient safety is a critical issue for healthcare organizations to improve medical quality. Confirmatory factor analysis (CFA) is used to verify the structure of data (e.g. reliability and validity), and Pearson's correlation analysis is conducted to demonstrate the relationships among seven patient safety culture dimensions. Research results illustrate that more teamwork is exhibited among team members, the more safety of a patient is committed. Perceptions of management and emotional exhaustion are important components that contribute to a better patient safety. More importantly, working conditions and stress recognition are found to be negatively related from the perceptions of nurses. Compared to physicians, nurses reported higher stress and challenges which result from multi-task working conditions in the hospital. This study focused on the contribution of a better patient safety culture from different viewpoints of physicians and nurses for healthcare organizations in Taiwan. A different attitudes toward patient safety is found between physicians and nurses. The results enable the hospital management to realize and design appropriate implications for hospital staffs to establish a better patient safety culture. Copyright © 2017. Published by Elsevier Inc.

  14. Obtaining Valid Safety Data for Software Safety Measurement and Process Improvement

    NASA Technical Reports Server (NTRS)

    Basili, Victor r.; Zelkowitz, Marvin V.; Layman, Lucas; Dangle, Kathleen; Diep, Madeline

    2010-01-01

    We report on a preliminary case study to examine software safety risk in the early design phase of the NASA Constellation spaceflight program. Our goal is to provide NASA quality assurance managers with information regarding the ongoing state of software safety across the program. We examined 154 hazard reports created during the preliminary design phase of three major flight hardware systems within the Constellation program. Our purpose was two-fold: 1) to quantify the relative importance of software with respect to system safety; and 2) to identify potential risks due to incorrect application of the safety process, deficiencies in the safety process, or the lack of a defined process. One early outcome of this work was to show that there are structural deficiencies in collecting valid safety data that make software safety different from hardware safety. In our conclusions we present some of these deficiencies.

  15. Safety management system needs assessment.

    DOT National Transportation Integrated Search

    2016-04-01

    The safety of the traveling public is critical as each year there are approximately 200 highway fatalities in Nebraska and numerous crash injuries. The objective of this research was to conduct a needs assessment to identify the requirements of a sta...

  16. Educating for Safety.

    ERIC Educational Resources Information Center

    Rothe, J. Peter

    1991-01-01

    To enhance the chance for success in educating young drivers, there should be a balance between the content, structure, and goals of traffic safety programs and the normative rules governing young people's lives. Presents recommendations for safety education based on the notion of complementarity and using a multiperspective approach. (AF)

  17. Probabilistic Structural Analysis Methods (PSAM) for select space propulsion system structural components

    NASA Technical Reports Server (NTRS)

    Cruse, T. A.

    1987-01-01

    The objective is the development of several modular structural analysis packages capable of predicting the probabilistic response distribution for key structural variables such as maximum stress, natural frequencies, transient response, etc. The structural analysis packages are to include stochastic modeling of loads, material properties, geometry (tolerances), and boundary conditions. The solution is to be in terms of the cumulative probability of exceedance distribution (CDF) and confidence bounds. Two methods of probability modeling are to be included as well as three types of structural models - probabilistic finite-element method (PFEM); probabilistic approximate analysis methods (PAAM); and probabilistic boundary element methods (PBEM). The purpose in doing probabilistic structural analysis is to provide the designer with a more realistic ability to assess the importance of uncertainty in the response of a high performance structure. Probabilistic Structural Analysis Method (PSAM) tools will estimate structural safety and reliability, while providing the engineer with information on the confidence that should be given to the predicted behavior. Perhaps most critically, the PSAM results will directly provide information on the sensitivity of the design response to those variables which are seen to be uncertain.

  18. Probabilistic Structural Analysis Methods for select space propulsion system structural components (PSAM)

    NASA Technical Reports Server (NTRS)

    Cruse, T. A.; Burnside, O. H.; Wu, Y.-T.; Polch, E. Z.; Dias, J. B.

    1988-01-01

    The objective is the development of several modular structural analysis packages capable of predicting the probabilistic response distribution for key structural variables such as maximum stress, natural frequencies, transient response, etc. The structural analysis packages are to include stochastic modeling of loads, material properties, geometry (tolerances), and boundary conditions. The solution is to be in terms of the cumulative probability of exceedance distribution (CDF) and confidence bounds. Two methods of probability modeling are to be included as well as three types of structural models - probabilistic finite-element method (PFEM); probabilistic approximate analysis methods (PAAM); and probabilistic boundary element methods (PBEM). The purpose in doing probabilistic structural analysis is to provide the designer with a more realistic ability to assess the importance of uncertainty in the response of a high performance structure. Probabilistic Structural Analysis Method (PSAM) tools will estimate structural safety and reliability, while providing the engineer with information on the confidence that should be given to the predicted behavior. Perhaps most critically, the PSAM results will directly provide information on the sensitivity of the design response to those variables which are seen to be uncertain.

  19. Structural Priming: A Critical Review

    PubMed Central

    Pickering, Martin J.; Ferreira, Victor S.

    2009-01-01

    Repetition is a central phenomenon of behavior, and researchers make extensive use of it to illuminate psychological functioning. In the language sciences, a ubiquitous form of such repetition is structural priming, a tendency to repeat or better process a current sentence because of its structural similarity to a previously experienced (“prime”) sentence (Bock, 1986). The recent explosion of research in structural priming has made it the dominant means of investigating the processes involved in the production (and increasingly, comprehension) of complex expressions such as sentences. This review considers its implications for the representation of syntax and the mechanisms of production, comprehension, and their relationship. It then addresses the potential functions of structural priming, before turning to its implications for first language acquisition, bilingualism, and aphasia We close with theoretical and empirical recommendations for future investigations. PMID:18444704

  20. Setting culture apart: distinguishing culture from behavior and social structure in safety and injury research.

    PubMed

    Myers, Douglas J; Nyce, James M; Dekker, Sidney W A

    2014-07-01

    The concept of culture is now widely used by those who conduct research on safety and work-related injury outcomes. We argue that as the term has been applied by an increasingly diverse set of disciplines, its scope has broadened beyond how it was defined and intended for use by sociologists and anthropologists. As a result, this more inclusive concept has lost some of its precision and analytic power. We suggest that the utility of this "new" understanding of culture could be improved if researchers more clearly delineated the ideological - the socially constructed abstract systems of meaning, norms, beliefs and values (which we refer to as culture) - from concrete behaviors, social relations and other properties of workplaces (e.g., organizational structures) and of society itself. This may help researchers investigate how culture and social structures can affect safety and injury outcomes with increased analytic rigor. In addition, maintaining an analytical distinction between culture and other social factors can help intervention efforts better understand the target of the intervention and therefore may improve chances of both scientific and instrumental success. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Safety and Mission Assurance for In-House Design Lessons Learned from Ares I Upper Stage

    NASA Technical Reports Server (NTRS)

    Anderson, Joel M.

    2011-01-01

    This viewgraph presentation identifies lessons learned in the course of the Ares I Upper Stage design and in-house development effort. The contents include: 1) Constellation Organization; 2) Upper Stage Organization; 3) Presentation Structure; 4) Lesson-Importance of Systems Engineering/Integration; 5) Lesson-Importance of Early S&MA Involvement; 6) Lesson-Importance of Appropriate Staffing Levels; 7) Lesson-Importance S&MA Team Deployment; 8) Lesson-Understanding of S&MA In-Line Engineering versus Assurance; 9) Lesson-Importance of Close Coordination between Supportability and Reliability/Maintainability; 10) Lesson-Importance of Engineering Data Systems; 11) Lesson-Importance of Early Development of Supporting Databases; 12) Lesson-Importance of Coordination with Safety Assessment/Review Panels; 13) Lesson-Implementation of Software Reliability; 14) Lesson-Implementation of S&MA Technical Authority/Chief S&MA Officer; 15) Lesson-Importance of S&MA Evaluation of Project Risks; 16) Lesson-Implementation of Critical Items List and Government Mandatory Inspections; 17) Lesson-Implementation of Critical Items List Mandatory Inspections; 18) Lesson-Implementation of Test Article Safety Analysis; and 19) Lesson-Importance of Procurement Quality.

  2. An artificial intelligence-based structural health monitoring system for aging aircraft

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Tang, Stanley S.; Chen, K. L.

    1993-01-01

    To reduce operating expenses, airlines are now using the existing fleets of commercial aircraft well beyond their originally anticipated service lives. The repair and maintenance of these 'aging aircraft' has therefore become a critical safety issue, both to the airlines and the Federal Aviation Administration. This paper presents the results of an innovative research program to develop a structural monitoring system that will be used to evaluate the integrity of in-service aerospace structural components. Currently in the final phase of its development, this monitoring system will indicate when repair or maintenance of a damaged structural component is necessary.

  3. Cultural safety, diversity and the servicer user and carer movement in mental health research.

    PubMed

    Cox, Leonie G; Simpson, Alan

    2015-12-01

    This study will be of interest to anyone concerned with a critical appraisal of mental health service users' and carers' participation in research collaboration and with the potential of the postcolonial paradigm of cultural safety to contribute to the service user research (SUR) movement. The history and nature of the mental health field and its relationship to colonial processes provokes a consideration of whether cultural safety could focus attention on diversity, power imbalance, cultural dominance and structural inequality, identified as barriers and tensions in SUR. We consider these issues in the context of state-driven approaches towards SUR in planning and evaluation and the concurrent rise of the SUR movement in the UK and Australia, societies with an intimate involvement in processes of colonisation. We consider the principles and motivations underlying cultural safety and SUR in the context of the policy agenda informing SUR. We conclude that while both cultural safety and SUR are underpinned by social constructionism constituting similarities in principles and intent, cultural safety has additional dimensions. Hence, we call on researchers to use the explicitly political and self-reflective process of cultural safety to think about and address issues of diversity, power and social justice in research collaboration. © 2015 John Wiley & Sons Ltd.

  4. Implementation of a critical incident reporting system in a neurosurgical department.

    PubMed

    Kantelhardt, P; Müller, M; Giese, A; Rohde, V; Kantelhardt, S R

    2011-02-01

    Critical incident monitoring is an important tool for quality improvement and the maintenance of high safety standards. It was developed for aviation safety and is now widely accepted as a useful tool to reduce medical care-related morbidity and mortality. Despite this widespread acceptance, the literature has no reports on any neurosurgical applications of critical incident monitoring. We describe the introduction of a mono-institutional critical incident reporting system in a neurosurgical department. Furthermore, we have developed a formula to assess possible counterstrategies. All staff members of a neurosurgical department were advised to report critical incidents. The anonymous reporting form contained a box for the description of the incident, several multiple-choice questions on specific risk factors, place and reason for occurrence of the incident, severity of the consequences and suggested counterstrategies. The incident data was entered into an online documentation system (ADKA DokuPik) and evaluated by an external specialist. For data analysis we applied a modified assessment scheme initially designed for flight safety. Data collection was started in September 2008. The average number of reported incidents was 18 per month (currently 216 in total). Most incidents occurred on the neurosurgical ward (64%). Human error was involved in 86% of the reported incidents. The largest group of incidents consisted of medication-related problems. Accordingly, counterstrategies were developed, resulting in a decrease in the relative number of reported medication-related incidents from 42% (March 09) to 30% (September 09). Implementation of the critical incident reporting system presented no technical problems. The reporting rate was high compared to that reported in the current literature. The formulation, evaluation and introduction of specific counterstrategies to guard against selected groups of incidents may improve patient safety in neurosurgical departments.

  5. Safety considerations in the design and operation of large wind turbines

    NASA Technical Reports Server (NTRS)

    Reilly, D. H.

    1979-01-01

    The engineering and safety techniques used to assure the reliable and safe operation of large wind turbine generators utilizing the Mod 2 Wind Turbine System Program as an example is described. The techniques involve a careful definition of the wind turbine's natural and operating environments, use of proven structural design criteria and analysis techniques, an evaluation of potential failure modes and hazards, and use of a fail safe and redundant component engineering philosophy. The role of an effective quality assurance program, tailored to specific hardware criticality, and the checkout and validation program developed to assure system integrity are described.

  6. Materials for lithium-ion battery safety.

    PubMed

    Liu, Kai; Liu, Yayuan; Lin, Dingchang; Pei, Allen; Cui, Yi

    2018-06-01

    Lithium-ion batteries (LIBs) are considered to be one of the most important energy storage technologies. As the energy density of batteries increases, battery safety becomes even more critical if the energy is released unintentionally. Accidents related to fires and explosions of LIBs occur frequently worldwide. Some have caused serious threats to human life and health and have led to numerous product recalls by manufacturers. These incidents are reminders that safety is a prerequisite for batteries, and serious issues need to be resolved before the future application of high-energy battery systems. This Review aims to summarize the fundamentals of the origins of LIB safety issues and highlight recent key progress in materials design to improve LIB safety. We anticipate that this Review will inspire further improvement in battery safety, especially for emerging LIBs with high-energy density.

  7. Materials for lithium-ion battery safety

    PubMed Central

    Liu, Kai

    2018-01-01

    Lithium-ion batteries (LIBs) are considered to be one of the most important energy storage technologies. As the energy density of batteries increases, battery safety becomes even more critical if the energy is released unintentionally. Accidents related to fires and explosions of LIBs occur frequently worldwide. Some have caused serious threats to human life and health and have led to numerous product recalls by manufacturers. These incidents are reminders that safety is a prerequisite for batteries, and serious issues need to be resolved before the future application of high-energy battery systems. This Review aims to summarize the fundamentals of the origins of LIB safety issues and highlight recent key progress in materials design to improve LIB safety. We anticipate that this Review will inspire further improvement in battery safety, especially for emerging LIBs with high-energy density. PMID:29942858

  8. Structural Priming: A Critical Review

    ERIC Educational Resources Information Center

    Pickering, Martin J.; Ferreira, Victor S.

    2008-01-01

    Repetition is a central phenomenon of behavior, and researchers have made extensive use of it to illuminate psychological functioning. In the language sciences, a ubiquitous form of such repetition is "structural priming," a tendency to repeat or better process a current sentence because of its structural similarity to a previously experienced…

  9. Multilevel model of safety climate for furniture industries.

    PubMed

    Rodrigues, Matilde A; Arezes, Pedro M; Leão, Celina P

    2015-01-01

    Furniture companies can analyze their safety status using quantitative measures. However, the data needed are not always available and the number of accidents is under-reported. Safety climate scales may be an alternative. However, there are no validated Portuguese scales that account for the specific attributes of the furniture sector. The current study aims to develop and validate an instrument that uses a multilevel structure to measure the safety climate of the Portuguese furniture industry. The Safety Climate in Wood Industries (SCWI) model was developed and applied to the safety climate analysis using three different scales: organizational, group and individual. A multilevel exploratory factor analysis was performed to analyze the factorial structure. The studied companies' safety conditions were also analyzed. Different factorial structures were found between and within levels. In general, the results show the presence of a group-level safety climate. The scores of safety climates are directly and positively related to companies' safety conditions; the organizational scale is the one that best reflects the actual safety conditions. The SCWI instrument allows for the identification of different safety climates in groups that comprise the same furniture company and it seems to reflect those groups' safety conditions. The study also demonstrates the need for a multilevel analysis of the studied instrument.

  10. Relationships among Safety Climate, Safety Behavior, and Safety Outcomes for Ethnic Minority Construction Workers

    PubMed Central

    Lyu, Sainan; Chan, Albert P. C.; Wong, Francis K. W.

    2018-01-01

    In many countries, it is common practice to attract and employ ethnic minority (EM) or migrant workers in the construction industry. This primarily occurs in order to alleviate the labor shortage caused by an aging workforce with a lack of new entrants. Statistics show that EM construction workers are more likely to have occupational fatal and nonfatal injuries than their local counterparts; however, the mechanism underlying accidents and injuries in this vulnerable population has been rarely examined. This study aims to investigate relationships among safety climate, safety behavior, and safety outcomes for EM construction workers. To this end, a theoretical research model was developed based on a comprehensive review of the current literature. In total, 289 valid questionnaires were collected face-to-face from 223 Nepalese construction workers and 56 Pakistani construction workers working on 15 construction sites in Hong Kong. Structural equation modelling was employed to validate the constructs and test the hypothesized model. Results show that there were significant positive relationships between safety climate and safety behaviors, and significant negative relationships between safety behaviors and safety outcomes for EM construction workers. This research contributes to the literature regarding EM workers by providing empirical evidence of the mechanisms by which safety climate affects safety behaviors and outcomes. It also provides insights in order to help the key stakeholders formulate safety strategies for EM workers in many areas where numerous EM workers are employed, such as in the U.S., the UK, Australia, Singapore, Malaysia, and the Middle East. PMID:29522503

  11. Relationships among Safety Climate, Safety Behavior, and Safety Outcomes for Ethnic Minority Construction Workers.

    PubMed

    Lyu, Sainan; Hon, Carol K H; Chan, Albert P C; Wong, Francis K W; Javed, Arshad Ali

    2018-03-09

    In many countries, it is common practice to attract and employ ethnic minority (EM) or migrant workers in the construction industry. This primarily occurs in order to alleviate the labor shortage caused by an aging workforce with a lack of new entrants. Statistics show that EM construction workers are more likely to have occupational fatal and nonfatal injuries than their local counterparts; however, the mechanism underlying accidents and injuries in this vulnerable population has been rarely examined. This study aims to investigate relationships among safety climate, safety behavior, and safety outcomes for EM construction workers. To this end, a theoretical research model was developed based on a comprehensive review of the current literature. In total, 289 valid questionnaires were collected face-to-face from 223 Nepalese construction workers and 56 Pakistani construction workers working on 15 construction sites in Hong Kong. Structural equation modelling was employed to validate the constructs and test the hypothesized model. Results show that there were significant positive relationships between safety climate and safety behaviors, and significant negative relationships between safety behaviors and safety outcomes for EM construction workers. This research contributes to the literature regarding EM workers by providing empirical evidence of the mechanisms by which safety climate affects safety behaviors and outcomes. It also provides insights in order to help the key stakeholders formulate safety strategies for EM workers in many areas where numerous EM workers are employed, such as in the U.S., the UK, Australia, Singapore, Malaysia, and the Middle East.

  12. Influence Map Methodology for Evaluating Systemic Safety Issues

    NASA Technical Reports Server (NTRS)

    2008-01-01

    "Raising the bar" in safety performance is a critical challenge for many organizations, including Kennedy Space Center. Contributing-factor taxonomies organize information about the reasons accidents occur and therefore are essential elements of accident investigations and safety reporting systems. Organizations must balance efforts to identify causes of specific accidents with efforts to evaluate systemic safety issues in order to become more proactive about improving safety. This project successfully addressed the following two problems: (1) methods and metrics to support the design of effective taxonomies are limited and (2) influence relationships among contributing factors are not explicitly modeled within a taxonomy.

  13. Integrated deterministic and probabilistic safety analysis for safety assessment of nuclear power plants

    DOE PAGES

    Di Maio, Francesco; Zio, Enrico; Smith, Curtis; ...

    2015-07-06

    The present special issue contains an overview of the research in the field of Integrated Deterministic and Probabilistic Safety Assessment (IDPSA) of Nuclear Power Plants (NPPs). Traditionally, safety regulation for NPPs design and operation has been based on Deterministic Safety Assessment (DSA) methods to verify criteria that assure plant safety in a number of postulated Design Basis Accident (DBA) scenarios. Referring to such criteria, it is also possible to identify those plant Structures, Systems, and Components (SSCs) and activities that are most important for safety within those postulated scenarios. Then, the design, operation, and maintenance of these “safety-related” SSCs andmore » activities are controlled through regulatory requirements and supported by Probabilistic Safety Assessment (PSA).« less

  14. Who Does Critical Pedagogy Think You Are? Investigating How Teachers Are Produced in Critical Pedagogy Scholarship to Inform Teacher Education

    ERIC Educational Resources Information Center

    Pittard, Elizabeth

    2015-01-01

    In this post-structural feminist analysis, I review recent literature focusing on critical pedagogy to analyse the ways teachers are discursively produced within the sampled literature to ask: who does critical pedagogy think you are? Additionally, I extend earlier post-structural feminist critiques of critical pedagogy and underlying assumptions…

  15. Safety of nicotine replacement therapy in critically ill smokers: a retrospective cohort study.

    PubMed

    Kerr, A; McVey, J T; Wood, A M; Van Haren, Fmp

    2016-11-01

    Nicotine replacement therapy (NRT) is a common first-line treatment to prevent nicotine withdrawal in smokers. However, available literature reports conflicting results regarding its efficacy and safety in critically ill patients. The objective of this study was to evaluate the relationship between NRT in smokers in the intensive care unit (ICU) and outcomes. This case-control study was conducted in a university-affiliated tertiary hospital ICU. Over a period of five years, 126 active smokers who received transdermal NRT were matched to 126 active smokers who did not receive NRT. The groups were case-matched for sex, age and Acute Physiology and Chronic Health Evaluation II (APACHE II) score. The primary outcome was administration of antipsychotic medication. Secondary outcomes included use of physical restraints, 30-day mortality, and ventilation requirements. Antipsychotic medication was prescribed in 43 (34.1%) patients who received NRT compared to 14 (11.1%) in controls ( P <0.01). Physical restraints were used in 37 (29.4%) patients who received NRT, compared to 12 (9.5%) of controls ( P <0.01). The 30-day mortality and number of patients intubated was not statistically different between groups. Average length of intubation time was greater in the NRT group (2.56 days; standard deviation 4.16) compared to the control group (1.44 days; standard deviation 2.68) ( P =0.012). The use of NRT to prevent nicotine withdrawal in ICU patients is associated with increased use of antipsychotic medication and physical restraint, and with prolonged mechanical ventilation.

  16. Technology and Tool Development to Support Safety and Mission Assurance

    NASA Technical Reports Server (NTRS)

    Denney, Ewen; Pai, Ganesh

    2017-01-01

    The Assurance Case approach is being adopted in a number of safety-mission-critical application domains in the U.S., e.g., medical devices, defense aviation, automotive systems, and, lately, civil aviation. This paradigm refocuses traditional, process-based approaches to assurance on demonstrating explicitly stated assurance goals, emphasizing the use of structured rationale, and concrete product-based evidence as the means for providing justified confidence that systems and software are fit for purpose in safely achieving mission objectives. NASA has also been embracing assurance cases through the concepts of Risk Informed Safety Cases (RISCs), as documented in the NASA System Safety Handbook, and Objective Hierarchies (OHs) as put forth by the Agency's Office of Safety and Mission Assurance (OSMA). This talk will give an overview of the work being performed by the SGT team located at NASA Ames Research Center, in developing technologies and tools to engineer and apply assurance cases in customer projects pertaining to aviation safety. We elaborate how our Assurance Case Automation Toolset (AdvoCATE) has not only extended the state-of-the-art in assurance case research, but also demonstrated its practical utility. We have successfully developed safety assurance cases for a number of Unmanned Aircraft Systems (UAS) operations, which underwent, and passed, scrutiny both by the aviation regulator, i.e., the FAA, as well as the applicable NASA boards for airworthiness and flight safety, flight readiness, and mission readiness. We discuss our efforts in expanding AdvoCATE capabilities to support RISCs and OHs under a project recently funded by OSMA under its Software Assurance Research Program. Finally, we speculate on the applicability of our innovations beyond aviation safety to such endeavors as robotic, and human spaceflight.

  17. Structure of the dimerization domain of DiGeorge Critical Region 8

    PubMed Central

    Senturia, Rachel; Faller, Michael; Yin, Sheng; Loo, Joseph A; Cascio, Duilio; Sawaya, Michael R; Hwang, Daniel; Clubb, Robert T; Guo, Feng

    2010-01-01

    Maturation of microRNAs (miRNAs, ∼22nt) from long primary transcripts [primary miRNAs (pri-miRNAs)] is regulated during development and is altered in diseases such as cancer. The first processing step is a cleavage mediated by the Microprocessor complex containing the Drosha nuclease and the RNA-binding protein DiGeorge critical region 8 (DGCR8). We previously reported that dimeric DGCR8 binds heme and that the heme-bound DGCR8 is more active than the heme-free form. Here, we identified a conserved dimerization domain in DGCR8. Our crystal structure of this domain (residues 298–352) at 1.7 Å resolution demonstrates a previously unknown use of a WW motif as a platform for extensive dimerization interactions. The dimerization domain of DGCR8 is embedded in an independently folded heme-binding domain and directly contributes to association with heme. Heme-binding-deficient DGCR8 mutants have reduced pri-miRNA processing activity in vitro. Our study provides structural and biochemical bases for understanding how dimerization and heme binding of DGCR8 may contribute to regulation of miRNA biogenesis. PMID:20506313

  18. Napping during breaks on night shift: critical care nurse managers' perceptions.

    PubMed

    Edwards, Marie P; McMillan, Diana E; Fallis, Wendy M

    2013-01-01

    Fatigue associated with shiftwork can threaten the safety and health of nurses and the patients in their care. Napping during night shift breaks has been shown to be an effective strategy to decrease fatigue and enhance performance in a variety of work environments, but appears to have mixed support within health care. The purpose of this study was to explore critical care unit managers'perceptions of and experiences with their nursing staff's napping practices on night shift, including their perceptions of the benefits and barriers to napping/not napping in terms of patient safety and nurses'personal health and safety. A survey design was used. Forty-seven Canadian critical care unit managers who were members of the Canadian Association of Critical Care Nurses responded to the web-based survey. Data analysis involved calculation of frequencies and percentages for demographic data, use of the Friedman rank test for comparison of managers' perceptions, and content analysis for responses to open-ended questions. The findings of this study offer valuable insights into the complexities and conflicts perceived by managers with respect to napping on night shift breaks by nursing staff Staff and patient health and safety issues, work and break expectations and experiences, and strengths and deficits related to organizational napping resources and policy are considerations that will be instrumental in the development of effective napping strategies and guidelines.

  19. Segmentation of 3d Models for Cultural Heritage Structural Analysis - Some Critical Issues

    NASA Astrophysics Data System (ADS)

    Gonizzi Barsanti, S.; Guidi, G.; De Luca, L.

    2017-08-01

    Cultural Heritage documentation and preservation has become a fundamental concern in this historical period. 3D modelling offers a perfect aid to record ancient buildings and artefacts and can be used as a valid starting point for restoration, conservation and structural analysis, which can be performed by using Finite Element Methods (FEA). The models derived from reality-based techniques, made up of the exterior surfaces of the objects captured at high resolution, are - for this reason - made of millions of polygons. Such meshes are not directly usable in structural analysis packages and need to be properly pre-processed in order to be transformed in volumetric meshes suitable for FEA. In addition, dealing with ancient objects, a proper segmentation of 3D volumetric models is needed to analyse the behaviour of the structure with the most suitable level of detail for the different sections of the structure under analysis. Segmentation of 3D models is still an open issue, especially when dealing with ancient, complicated and geometrically complex objects that imply the presence of anomalies and gaps, due to environmental agents such as earthquakes, pollution, wind and rain, or human factors. The aims of this paper is to critically analyse some of the different methodologies and algorithms available to segment a 3D point cloud or a mesh, identifying difficulties and problems by showing examples on different structures.

  20. Strong Coupling Superconductivity in the Vicinity of the Structural Quantum Critical Point in (CaxSr1-x)3Rh4Sn13

    NASA Astrophysics Data System (ADS)

    Yu, Wing Chi; Cheung, Yiu Wing; Saines, Paul J.; Imai, Masaki; Matsumoto, Takuya; Michioka, Chishiro; Yoshimura, Kazuyoshi; Goh, Swee K.

    The family of the superconducting quasiskutterudites (CaxSr1-x)3Rh4Sn13 features a structural quantum critical point at xc = 0 . 9 , around which a dome-shaped variation of the superconducting transition temperature Tc is found. In this talk, we present the specific heat data for the normal and the superconducting states of the entire series straddling the quantum critical point. Our analysis indicates a significant lowering of the effective Debye temperature on approaching xc, which we interpret as a result of phonon softening accompanying the structural instability. Furthermore, a remarkably large enhancement of 2 Δ /kBTc and ΔC / γTc beyond the Bardeen-Cooper-Schrieffer values is found in the vicinity of the structural quantum critical point. Reference: Wing Chi Yu et al. Phys. Rev. Lett. (in press, 2015) This work was supported by the CUHK (Startup Grant, Direct Grant No. 4053071), UGC Hong Kong (ECS/24300214), Grants-in-Aid from MEXT (22350029 and 23550152), and Glasstone Bequest, Oxford.

  1. Safety interventions on the labor and delivery unit.

    PubMed

    Kacmar, Rachel M

    2017-06-01

    The present review highlights recent advances in efforts to improve patient safety on labor and delivery units and well tolerated care for pregnant patients in general. Recent studies in obstetric patient safety have a broad focus but repetitive themes for interdisciplinary training include: simulating critical events, having open multidisciplinary communication, frequent reviews of cases of maternal morbidity, and implementing maternal early warning systems. The National Partnership for Maternal Safety is also active in promoting care bundles across many topics on maternal safety. A culture of safety is the goal for all obstetric units. Achieving that ideal requires multidisciplinary collaboration, frequent reassessment for areas of improvement, and a culture of openness to change when improvement opportunities arise.

  2. Cockpit emergency safety system

    NASA Astrophysics Data System (ADS)

    Keller, Leo

    2000-06-01

    A comprehensive safety concept is proposed for aircraft's experiencing an incident to the development of fire and smoke in the cockpit. Fire or excessive heat development caused by malfunctioning electrical appliance may produce toxic smoke, may reduce the clear vision to the instrument panel and may cause health-critical respiration conditions. Immediate reaction of the crew, safe respiration conditions and a clear undisturbed view to critical flight information data can be assumed to be the prerequisites for a safe emergency landing. The personal safety equipment of the aircraft has to be effective in supporting the crew to divert the aircraft to an alternate airport in the shortest possible amount of time. Many other elements in the cause-and-effect context of the emergence of fire, such as fire prevention, fire detection, the fire extinguishing concept, systematic redundancy, the wiring concept, the design of the power supplying system and concise emergency checklist procedures are briefly reviewed, because only a comprehensive and complete approach will avoid fatal accidents of complex aircraft in the future.

  3. Electron beam processing of fresh produce - A critical review

    NASA Astrophysics Data System (ADS)

    Pillai, Suresh D.; Shayanfar, Shima

    2018-02-01

    To meet the increasing global demand for fresh produce, robust processing methods that ensures both the safety and quality of fresh produce are needed. Since fresh produce cannot withstand thermal processing conditions, most of common safety interventions used in other foods are ineffective. Electron beam (eBeam) is a non-thermal technology that can be used to extend the shelf life and ensure the microbiological safety of fresh produce. There have been studies documenting the application of eBeam to ensure both safety and quality in fresh produce, however, there are still unexplored areas that still need further research. This is a critical review on the current literature on the application of eBeam technology for fresh produce.

  4. The Impact of Information Culture on Patient Safety Outcomes. Development of a Structural Equation Model.

    PubMed

    Jylhä, Virpi; Mikkonen, Santtu; Saranto, Kaija; Bates, David W

    2017-03-08

    An organization's information culture and information management practices create conditions for processing patient information in hospitals. Information management incidents are failures that could lead to adverse events for the patient if they are not detected. To test a theoretical model that links information culture in acute care hospitals to information management incidents and patient safety outcomes. Reason's model for the stages of development of organizational accidents was applied. Study data were collected from a cross-sectional survey of 909 RNs who work in medical or surgical units at 32 acute care hospitals in Finland. Structural equation modeling was used to assess how well the hypothesized model fit the study data. Fit indices indicated a good fit for the model. In total, 18 of the 32 paths tested were statistically significant. Documentation errors had the strongest total effect on patient safety outcomes. Organizational guidance positively affected information availability and utilization of electronic patient records, whereas the latter had the strongest total effect on the reduction of information delays. Patient safety outcomes are associated with information management incidents and information culture. Further, the dimensions of the information culture create work conditions that generate errors in hospitals.

  5. Hospital safety climate and safety behavior: A social exchange perspective.

    PubMed

    Ancarani, Alessandro; Di Mauro, Carmela; Giammanco, Maria D

    Safety climate is considered beneficial to the improvement of hospital safety outcomes. Nevertheless, the relations between two of its key constituents, namely those stemming from leader-subordinate relations and coworker support for safety, are still to be fully ascertained. This article uses the theoretical lens of Social Exchange Theory to study the joint impact of leader-member exchange in the safety sphere and coworker support for safety on safety-related behavior at the hospital ward level. Social exchange constructs are further related to the existence of a shame-/blame-free environment, seen as a potential antecedent of safety behavior. A cross-sectional study including 166 inpatients in hospital wards belonging to 10 public hospitals in Italy was undertaken to test the hypotheses developed. Hypothesized relations have been analyzed through a fully mediated multilevel structural equation model. This methodology allows studying behavior at the individual level, while keeping into account the heterogeneity among hospital specialties. Results suggest that the linkage between leader support for safety and individual safety behavior is mediated by coworker support on safety issues and by the creation of a shame-free environment. These findings call for the creation of a safety climate in which managerial efforts should be directed not only to the provision of new safety resources and the enforcement of safety rules but also to the encouragement of teamwork and freedom to report errors as ways to foster the capacity of the staff to communicate, share, and learn from each other.

  6. Qualitative Future Safety Risk Identification an Update

    NASA Technical Reports Server (NTRS)

    Barr, Lawrence C.

    2017-01-01

    The purpose of this report is to document the results of a high-level qualitative study that was conducted to identify future aviation safety risks and to assess the potential impacts to the National Airspace System (NAS) of NASA Aviation Safety research on these risks. Multiple external sources (for example, the National Transportation Safety Board, the Flight Safety Foundation, the National Research Council, and the Joint Planning and Development Office) were used to develop a compilation of future safety issues risks, also referred to as future tall poles. The primary criterion used to identify the most critical future safety risk issues was that the issue must be cited in several of these sources as a safety area of concern. The tall poles in future safety risk, in no particular order of importance, are as follows: Runway Safety, Loss of Control In Flight, Icing Ice Detection, Loss of Separation, Near Midair Collision Human Fatigue, Increasing Complexity and Reliance on Automation, Vulnerability Discovery, Data Sharing and Dissemination, and Enhanced Survivability in the Event of an Accident.

  7. Work Practice Simulation of Complex Human-Automation Systems in Safety Critical Situations: The Brahms Generalized berlingen Model

    NASA Technical Reports Server (NTRS)

    Clancey, William J.; Linde, Charlotte; Seah, Chin; Shafto, Michael

    2013-01-01

    The transition from the current air traffic system to the next generation air traffic system will require the introduction of new automated systems, including transferring some functions from air traffic controllers to on­-board automation. This report describes a new design verification and validation (V&V) methodology for assessing aviation safety. The approach involves a detailed computer simulation of work practices that includes people interacting with flight-critical systems. The research is part of an effort to develop new modeling and verification methodologies that can assess the safety of flight-critical systems, system configurations, and operational concepts. The 2002 Ueberlingen mid-air collision was chosen for analysis and modeling because one of the main causes of the accident was one crew's response to a conflict between the instructions of the air traffic controller and the instructions of TCAS, an automated Traffic Alert and Collision Avoidance System on-board warning system. It thus furnishes an example of the problem of authority versus autonomy. It provides a starting point for exploring authority/autonomy conflict in the larger system of organization, tools, and practices in which the participants' moment-by-moment actions take place. We have developed a general air traffic system model (not a specific simulation of Überlingen events), called the Brahms Generalized Ueberlingen Model (Brahms-GUeM). Brahms is a multi-agent simulation system that models people, tools, facilities/vehicles, and geography to simulate the current air transportation system as a collection of distributed, interactive subsystems (e.g., airports, air-traffic control towers and personnel, aircraft, automated flight systems and air-traffic tools, instruments, crew). Brahms-GUeM can be configured in different ways, called scenarios, such that anomalous events that contributed to the Überlingen accident can be modeled as functioning according to requirements or in an

  8. Application of hazard analysis and critical control point methodology and risk-based grading to consumer food safety surveys.

    PubMed

    Røssvoll, Elin Halbach; Ueland, Øydis; Hagtvedt, Therese; Jacobsen, Eivind; Lavik, Randi; Langsrud, Solveig

    2012-09-01

    Traditionally, consumer food safety survey responses have been classified as either "right" or "wrong" and food handling practices that are associated with high risk of infection have been treated in the same way as practices with lower risks. In this study, a risk-based method for consumer food safety surveys has been developed, and HACCP (hazard analysis and critical control point) methodology was used for selecting relevant questions. We conducted a nationally representative Web-based survey (n = 2,008), and to fit the self-reported answers we adjusted a risk-based grading system originally developed for observational studies. The results of the survey were analyzed both with the traditional "right" and "wrong" classification and with the risk-based grading system. The results using the two methods were very different. Only 5 of the 10 most frequent food handling violations were among the 10 practices associated with the highest risk. These 10 practices dealt with different aspects of heat treatment (lacking or insufficient), whereas the majority of the most frequent violations involved storing food at room temperature for too long. Use of the risk-based grading system for survey responses gave a more realistic picture of risks associated with domestic food handling practices. The method highlighted important violations and minor errors, which are performed by most people and are not associated with significant risk. Surveys built on a HACCP-based approach with risk-based grading will contribute to a better understanding of domestic food handling practices and will be of great value for targeted information and educational activities.

  9. Adaptive Constrained Optimal Control Design for Data-Based Nonlinear Discrete-Time Systems With Critic-Only Structure.

    PubMed

    Luo, Biao; Liu, Derong; Wu, Huai-Ning

    2018-06-01

    Reinforcement learning has proved to be a powerful tool to solve optimal control problems over the past few years. However, the data-based constrained optimal control problem of nonaffine nonlinear discrete-time systems has rarely been studied yet. To solve this problem, an adaptive optimal control approach is developed by using the value iteration-based Q-learning (VIQL) with the critic-only structure. Most of the existing constrained control methods require the use of a certain performance index and only suit for linear or affine nonlinear systems, which is unreasonable in practice. To overcome this problem, the system transformation is first introduced with the general performance index. Then, the constrained optimal control problem is converted to an unconstrained optimal control problem. By introducing the action-state value function, i.e., Q-function, the VIQL algorithm is proposed to learn the optimal Q-function of the data-based unconstrained optimal control problem. The convergence results of the VIQL algorithm are established with an easy-to-realize initial condition . To implement the VIQL algorithm, the critic-only structure is developed, where only one neural network is required to approximate the Q-function. The converged Q-function obtained from the critic-only VIQL method is employed to design the adaptive constrained optimal controller based on the gradient descent scheme. Finally, the effectiveness of the developed adaptive control method is tested on three examples with computer simulation.

  10. Childbirth traditions and cultural perceptions of safety in Nepal: critical spaces to ensure the survival of mothers and newborns in remote mountain villages.

    PubMed

    Kaphle, Sabitra; Hancock, Heather; Newman, Lareen A

    2013-10-01

    to uncover local beliefs regarding pregnancy and birth in remote mountainous villages of Nepal in order to understand the factors which impact on women's experiences of pregnancy and childbirth and the related interplay of tradition, spiritual beliefs, risk and safety which impact on those experiences. this study used a qualitative methodological approach with in-depth interviews framework within social constructionist and feminist critical theories. the setting comprised two remote Nepalese mountain villages where women have high rates of illiteracy, poverty, disadvantage, maternal and newborn mortality, and low life expectancy. Interviews were conducted between February and June, 2010. twenty five pregnant/postnatal women, five husbands, five mothers-in-law, one father-in-law, five service providers and five community stakeholders from the local communities were involved. Nepalese women, their families and most of their community strongly value their childbirth traditions and associated spiritual beliefs and they profoundly shape women's views of safety and risk during pregnancy and childbirth, influencing how birth and new motherhood fit into daily life. These intense culturally-based views of childbirth safety and risk conflict starkly with the medical view of childbirth safety and risk. if maternity services are to improve maternal and neonatal survival rates in Nepal, maternity care providers must genuinely partner with local women inclusive of their cultural beliefs, and provide locally based primary maternity care. Women will then be more likely to attend maternity care services, and benefit from feeling culturally safe and culturally respected within their spiritual traditions of birth supported by the reduction of risk provided by informed and reverent medicalised care. © 2013 Elsevier Ltd. All rights reserved.

  11. Stories from the Sharp End: Case Studies in Safety Improvement

    PubMed Central

    McCarthy, Douglas; Blumenthal, David

    2006-01-01

    Motivated by pressure and a wish to improve, health care organizations are implementing programs to improve patient safety. This article describes six natural experiments in health care safety that show where the safety field is heading and opportunities for and barriers to improvement. All these programs identified organizational culture change as critical to making patients safer, differing chiefly in their methods of creating a patient safety culture. Their goal is a safety culture that promotes continuing innovation and improvement, transcending whatever particular safety methodology is used. Policymakers could help stimulate a culture of safety by linking regulatory goals to safety culture expectations, sponsoring voluntary learning collaborations, rewarding safety improvements, better using publicly reported data, encouraging consumer involvement, and supporting research and education. PMID:16529572

  12. Knowledge, attitude and practices for design for safety: A study on civil & structural engineers.

    PubMed

    Goh, Yang Miang; Chua, Sijie

    2016-08-01

    Design for safety (DfS) (also known as prevention through design, safe design and Construction (Design and Management)) promotes early consideration of safety and health hazards during the design phase of a construction project. With early intervention, hazards can be more effectively eliminated or controlled leading to safer worksites and construction processes. DfS is practiced in many countries, including Australia, the UK, and Singapore. In Singapore, the Manpower Ministry enacted the DfS Regulations in July 2015, which will be enforced from August 2016 onwards. Due to the critical role of civil and structural (C&S) engineers during design and construction, the DfS knowledge, attitude and practices (KAP) of C&S engineers have significant impact on the successful implementation of DfS. Thus, this study aims to explore the DfS KAP of C&S engineers so as to guide further research in measuring and improving DfS KAP of designers. During the study, it was found that there is a lack of KAP studies in construction management. Therefore, this study also aims to provide useful lessons for future applications of the KAP framework in construction management research. A questionnaire was developed to assess the DfS KAP of C&S engineers. The responses provided by 43 C&S engineers were analyzed. In addition, interviews with experienced construction professionals were carried out to further understand perceptions of DfS and related issues. The results suggest that C&S engineers are supportive of DfS, but the level of DfS knowledge and practices need to be improved. More DfS guidelines and training should be made available to the engineers. To ensure that DfS can be implemented successfully, there is a need to study the contractual arrangements between clients and designers and the effectiveness of different implementation approaches for the DfS process. The questionnaire and findings in this study provided the foundation for a baseline survey with larger sample size, which is

  13. Workplace accidents and self-organized criticality

    NASA Astrophysics Data System (ADS)

    Mauro, John C.; Diehl, Brett; Marcellin, Richard F.; Vaughn, Daniel J.

    2018-09-01

    The occurrence of workplace accidents is described within the context of self-organized criticality, a theory from statistical physics that governs a wide range of phenomena across physics, biology, geosciences, economics, and the social sciences. Workplace accident data from the U.S. Bureau of Labor Statistics reveal a power-law relationship between the number of accidents and their severity as measured by the number of days lost from work. This power-law scaling is indicative of workplace accidents being governed by self-organized criticality, suggesting that nearly all workplace accidents have a common underlying cause, independent of their severity. Such power-law scaling is found for all labor categories documented by the U.S. Bureau of Labor Statistics. Our results provide scientific support for the Heinrich accident triangle, with the practical implication that suppressing the rate of severe accidents requires changing the attitude toward workplace safety in general. By creating a culture that values safety, empowers individuals, and strives to continuously improve, accident rates can be suppressed across the full range of severities.

  14. Safety behavior: Job demands, job resources, and perceived management commitment to safety.

    PubMed

    Hansez, Isabelle; Chmiel, Nik

    2010-07-01

    The job demands-resources model posits that job demands and resources influence outcomes through job strain and work engagement processes. We test whether the model can be extended to effort-related "routine" safety violations and "situational" safety violations provoked by the organization. In addition we test more directly the involvement of job strain than previous studies which have used burnout measures. Structural equation modeling provided, for the first time, evidence of predicted relationships between job strain and "routine" violations and work engagement with "routine" and "situational" violations, thereby supporting the extension of the job demands-resources model to safety behaviors. In addition our results showed that a key safety-specific construct 'perceived management commitment to safety' added to the explanatory power of the job demands-resources model. A predicted path from job resources to perceived management commitment to safety was highly significant, supporting the view that job resources can influence safety behavior through both general motivational involvement in work (work engagement) and through safety-specific processes.

  15. Evaluating Training to Promote Critical Thinking Skills for Determining Children's Safety

    ERIC Educational Resources Information Center

    Hatton-Bowers, Holly; Pecora, Peter J.; Johnson, Kristen; Brooks, Susan; Schindell, Melanie

    2015-01-01

    This study examined changes in training participants' satisfaction with the instruction, knowledge gain, transfer of new skills, and beliefs about family involvement and engagement in working with families to help ensure children have safety. One hundred and forty-five practitioners participated in the training. Findings revealed shifts in…

  16. The Joint Convention on the Safety of Spent fuel Management and on the safety of Radioactive Waste Management: A UK Regulator's Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lacey, D.; Bacon, M.L.

    The UK fully supports the objective of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management to achieve and maintain a high level of safety worldwide in spent fuel and radioactive waste management, through the enhancement of national measures and international co-operation, including where appropriate, safety-related co-operation. The UK's Health and Safety Executive, through its Nuclear Safety Directorate (NSD), has been committed to the Convention since the initial negotiations to set up the Convention and provided the president of the first review meeting in 2003. It would be wrong of anymore » nation to believe that they have all the best solutions to managing spent fuel and radioactive waste. The process of compiling reports for the Convention review meetings provides a structured process through which every contracting party can review its provisions against a common set of standards and identify for itself possible areas of improvements. The sharing of reports and the asking and answering of questions then provides a further opportunity for both sharing of experience and learning. The UK was encouraged by the spirit of constructive discussion rather than negative criticism that pervaded the first review meeting that provided an incentive for all to learn and improve. While, as could be expected of the first meeting of such a group, not everything worked as well as could be hoped for, all parties seemed committed to learn from mistakes and to make the process more effective. Lessons were learned from the Nuclear Safety Convention on the process of submitting reports electronically and the UK actively supported aims to use IAEA requirements documents as an additional focus for reports. This should, we hope, provide for even better benchmarking of achievements and provide feedback for improvements of the IAEA requirements where appropriate. In summary, the UK finds the Joint Convention process to be a

  17. Health information technology and hospital patient safety: a conceptual model to guide research.

    PubMed

    Paez, Kathryn; Roper, Rebecca A; Andrews, Roxanne M

    2013-09-01

    The literature indicates that health information technology (IT) use may lead to some gains in the quality and safety of care in some situations but provides little insight into this variability in the results that has been found. The inconsistent findings point to the need for a conceptual model that will guide research in sorting out the complex relationships between health IT and the quality and safety of care. A conceptual model was developed that describes how specific health IT functions could affect different types of inpatient safety errors and that include contextual factors that influence successful health IT implementation. The model was applied to a readily available patient safety measure and nationwide data (2009 AHA Annual Survey Information Technology Supplement and 2009 Healthcare Cost and Utilization Project State Inpatient Databases). The model was difficult to operationalize because (1) available health IT adoption data did not characterize health IT features and extent of usage, and (2) patient safety measures did not elucidate the process failures leading to safety-related outcomes. The sample patient safety measure--Postoperative Physiologic and Metabolic Derangement Rate--was not significantly related to self-reported health IT capabilities when adjusted for hospital structural characteristics. These findings illustrate the critical need for collecting data that are germane to health IT and the possible mechanisms by which health IT may affect inpatient safety. Well-defined and sufficiently granular measures of provider's correct use of health IT functions, the contextual factors surrounding health IT use, and patient safety errors leading to health care-associated conditions are needed to illuminate the impact of health IT on patient safety.

  18. Towards patient safety in anaesthesia.

    PubMed

    Cooper, J B

    1994-07-01

    The anaesthesia specialty has focused on the safety of the patient and examination of untoward outcomes. Serious injuries are now rare in medically advanced countries. Still, anaesthesia deaths and complications are important because the anaesthetic itself has no intended therapeutic effect. Safety is a never-ending battle that requires continued effort because many forces have the potential to diminish whatever progress is made. This paper describes the modern movement in anaesthesia patient safety--the reasons it started, the major foci and explanations for why anaesthesia seems now to be safer than at any time in history. The American legal system, critical incident studies, studies of malpractice claims and large-scale studies of anaesthesia outcomes played a role in increasing the awareness of the need to enhance anaesthesia safety. Many efforts are believed to have contributed to improvements in the safety of anaesthesia: improved training of anaesthesia clinicians, new pharmaceuticals, new technologies for monitoring (especially pulse oximetry and capnography), standards for monitoring and other aspects of anaesthesia care, safety enhancements in anaesthesia equipment and the implementation of quality assurance and risk management programmes. The creation of the Anesthesia Patient Safety Foundation in the United States and a similar organization in Australia have helped to bring about awareness of safety issues and to support study of patient safety. Ultimately, the motto of the Anesthesia Patient Safety Foundation should be the goal of all anaesthesia professionals: "That no patient shall be harmed by anaesthesia".

  19. Critical Joints in Large Composite Primary Aircraft Structures. Volume 3: Ancillary Test Results

    NASA Technical Reports Server (NTRS)

    Bunin, Bruce L.; Sagui, R. L.

    1985-01-01

    A program was conducted to develop the technology for critical structural joints for composite wing structure that meets all the design requirements of a 1990 commercial transport aircraft. The results of a comprehensive ancillary test program are summarized, consisting of single-bolt composite joint specimens tested in a variety of configurations. These tests were conducted to characterize the strength and load deflection properties that are required for multirow joint analysis. The composite material was Toray 300 fiber and Ciba-Geigy 914 resin, in the form of 0.005 and 0.01 inch thick unidirectional tape. Tests were conducted in single and double shear for loaded and unloaded hole configurations under both tensile and compressive loading. Two different layup patterns were examined. All tests were conducted at room temperature. In addition, the results of NASA Standard Toughness Test (NASA RP 1092) are reported, which were conducted for several material systems.

  20. Culture, language, and patient safety: Making the link.

    PubMed

    Johnstone, Megan-Jane; Kanitsaki, Olga

    2006-10-01

    It has been well recognized internationally that hospitals are not as safe as they should be. In order to redress this situation, health care services around the world have turned their attention to strategically implementing robust patient safety and quality care programmes to identify circumstances that put patients at risk of harm and then acting to prevent or control those risks. Despite the progress that has been made in improving hospital safety in recent years, there is emerging evidence that patients of minority cultural and language backgrounds are disproportionately at risk of experiencing preventable adverse events while in hospital compared with mainstream patient groups. One reason for this is that patient safety programmes have tended to underestimate and understate the critical relationship that exists between culture, language, and the safety and quality of care of patients from minority racial, ethno-cultural, and language backgrounds. This article suggests that the failure to recognize the critical link between culture and language (of both the providers and recipients of health care) and patient safety stands as a 'resident pathogen' within the health care system that, if not addressed, unacceptably exposes patients from minority ethno-cultural and language backgrounds to preventable adverse events in hospital contexts. It is further suggested that in order to ensure that minority as well as majority patient interests in receiving safe and quality care are properly protected, the culture-language-patient-safety link needs to be formally recognized and the vulnerabilities of patients from minority cultural and language backgrounds explicitly identified and actively addressed in patient safety systems and processes.