Sample records for safety research center

  1. The Feasibility of Establishing Highway Safety Manpower Development and Research Centers at University-Level Institutions. Final Report, Volume I: Study Report.

    ERIC Educational Resources Information Center

    Chorness, Maury H.; And Others

    To examine the feasibility of establishing Highway Safety Manpower Development and Research (HSMDR) Centers at university-level institutions which would produce three types of manpower--safety specialists, safety professionals, and research manpower, previous National Highway Safety Bureau research studies and approximately 50 federally funded…

  2. Safety management of complex research operations

    NASA Technical Reports Server (NTRS)

    Brown, W. J.

    1981-01-01

    Complex research and technology operations present many varied potential hazards which must be addressed in a disciplined independent safety review and approval process. The research and technology effort at the Lewis Research Center is divided into programmatic areas of aeronautics, space and energy. Potential hazards vary from high energy fuels to hydrocarbon fuels, high pressure systems to high voltage systems, toxic chemicals to radioactive materials and high speed rotating machinery to high powered lasers. A Safety Permit System presently covers about 600 potentially hazardous operations. The Safety Management Program described in this paper is believed to be a major factor in maintaining an excellent safety record at the Lewis Research Center.

  3. 75 FR 12554 - Mine Safety and Health Research Advisory Committee, National Institute for Occupational Safety...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-16

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention Mine Safety and Health Research Advisory Committee, National Institute for Occupational Safety and Health (MSHRAC, NIOSH... priorities in mine safety and health research, including grants and contracts for such research, 30 U.S.C...

  4. 78 FR 40743 - Mine Safety and Health Research Advisory Committee, National Institute for Occupational Safety...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-08

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention Mine Safety and Health Research Advisory Committee, National Institute for Occupational Safety and Health (MSHRAC, NIOSH... Director, NIOSH, on priorities in mine safety and health research, including grants and contracts for such...

  5. Safety and economic impact of Texas travel information centers.

    DOT National Transportation Integrated Search

    2014-12-01

    The overall goal of this research was to develop a methodology and gather sufficient data to quantify the : impact of Texas Travel Information Center staff and services on the safety of travelers on Texas roadways. : Researchers used data and analyti...

  6. 46 CFR 50.10-23 - Marine Safety Center.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Marine Safety Center. 50.10-23 Section 50.10-23 Shipping... Definition of Terms Used in This Subchapter § 50.10-23 Marine Safety Center. The term Marine Safety Center refers to the Commanding Officer, U.S. Coast Guard Marine Safety Center, 1900 Half Street, SW., Suite...

  7. 77 FR 40622 - Mine Safety and Health Research Advisory Committee, National Institute for Occupational Safety...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention Mine Safety and Health Research Advisory Committee, National Institute for Occupational Safety and Health (MSHRAC, NIOSH..., oxygen supply partnership, safety culture, occupational health and safety management systems, preventing...

  8. New clinical trial tests safety and efficacy of combination therapy in ovarian cancer and other women's malignancies | Center for Cancer Research

    Cancer.gov

    The Center for Cancer Research has opened a new clinical trial in ovarian cancer that will test the safety and efficacy a therapy combining two drugs.   The phase I trial will test a combination therapy for ovarian, fallopian tube, and peritoneal cancers and is enrolling patients at the NIH Clinical Center. Learn more...  

  9. 46 CFR 50.10-23 - Marine Safety Center.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Marine Safety Center. 50.10-23 Section 50.10-23 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 50.10-23 Marine Safety Center. The term Marine Safety Center...

  10. 46 CFR 50.10-23 - Marine Safety Center.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Marine Safety Center. 50.10-23 Section 50.10-23 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 50.10-23 Marine Safety Center. The term Marine Safety Center...

  11. 46 CFR 50.10-23 - Marine Safety Center.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Marine Safety Center. 50.10-23 Section 50.10-23 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 50.10-23 Marine Safety Center. The term Marine Safety Center...

  12. 46 CFR 50.10-23 - Marine Safety Center.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Marine Safety Center. 50.10-23 Section 50.10-23 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 50.10-23 Marine Safety Center. The term Marine Safety Center...

  13. Explore The NASA Safety Center

    NASA Image and Video Library

    2015-07-01

    The NASA Safety Center (NSC) reports to NASA’s Office of Safety and Mission Assurance and supports the Safety and Mission Assurance (SMA) requirements of NASA’s portfolio of programs and projects. The NSC focuses on development of the personnel, processes and tools needed for the safe and successful achievement of NASA’s strategic goals.

  14. Patient safety goals for the proposed Federal Health Information Technology Safety Center.

    PubMed

    Sittig, Dean F; Classen, David C; Singh, Hardeep

    2015-03-01

    The Office of the National Coordinator for Health Information Technology is expected to oversee creation of a Health Information Technology (HIT) Safety Center. While its functions are still being defined, the center is envisioned as a public-private entity focusing on promotion of HIT related patient safety. We propose that the HIT Safety Center leverages its unique position to work with key administrative and policy stakeholders, healthcare organizations (HCOs), and HIT vendors to achieve four goals: (1) facilitate creation of a nationwide 'post-marketing' surveillance system to monitor HIT related safety events; (2) develop methods and governance structures to support investigation of major HIT related safety events; (3) create the infrastructure and methods needed to carry out random assessments of HIT related safety in complex HCOs; and (4) advocate for HIT safety with government and private entities. The convening ability of a federally supported HIT Safety Center could be critically important to our transformation to a safe and effective HIT enabled healthcare system. © The Author 2014. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Overview of the Mid-America Transportation Center Research Program

    DOT National Transportation Integrated Search

    2009-10-20

    MATC Research Overview: - U.S.D.O.T. Region VII University Transportation Center - 51 Current Research Projects - 63 Graduate RA's. Improving safety and minimizing risk associated with increasing multi-modal freight movements.

  16. Alternative Fuels Data Center: Biodiesel Codes, Standards, and Safety

    Science.gov Websites

    Codes, Standards, and Safety to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Codes, Standards, and Safety on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Codes , Standards, and Safety on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Codes, Standards, and

  17. General aviation crash safety program at Langley Research Center

    NASA Technical Reports Server (NTRS)

    Thomson, R. G.

    1976-01-01

    The purpose of the crash safety program is to support development of the technology to define and demonstrate new structural concepts for improved crash safety and occupant survivability in general aviation aircraft. The program involves three basic areas of research: full-scale crash simulation testing, nonlinear structural analyses necessary to predict failure modes and collapse mechanisms of the vehicle, and evaluation of energy absorption concepts for specific component design. Both analytical and experimental methods are being used to develop expertise in these areas. Analyses include both simplified procedures for estimating energy absorption capabilities and more complex computer programs for analysis of general airframe response. Full-scale tests of typical structures as well as tests on structural components are being used to verify the analyses and to demonstrate improved design concepts.

  18. The F-18 simulator at NASA's Dryden Flight Research Center, Edwards, California

    NASA Image and Video Library

    2004-10-04

    The F-18 simulator at NASA's Dryden Flight Research Center, Edwards, California. Simulators offer a safe and economical alternative to actual flights to gather data, as well as being excellent facilities for pilot practice and training. The F-18 Hornet is used primarily as a safety chase and mission support aircraft at NASA's Dryden Flight Research Center, Edwards, California. As support aircraft, the F-18's are used for safety chase, pilot proficiency, aerial photography and other mission support functions.

  19. Engaging Community Health Centers (CHCs) in research partnerships: the role of prior research experience on perceived needs and challenges.

    PubMed

    Beeson, Tishra; Jester, Michelle; Proser, Michelle; Shin, Peter

    2014-04-01

    Despite community health centers' substantial role in local communities and in the broader safety-net healthcare system, very limited research has been conducted on community health center research experience, infrastructure, or needs from a national perspective. A national survey of 386 community health centers was conducted in 2011 and 2012 to assess research engagement among community health centers and their perceived needs, barriers, challenges, and facilitators with respect to their involvement in public health and health services research. This paper analyzes the differences between health centers that currently conduct or participate in research and health centers that have no prior research experience to determine whether prior research experience is indicative of different perceived challenges and research needs in community health center settings. © 2014 Wiley Periodicals, Inc.

  20. Operator performance-enhancing technologies to improve safety. A US DOT safety initiative for meeting the human-centered systems challenge.

    DOT National Transportation Integrated Search

    1999-11-01

    The program implements DOT Human Factors Coordinating Committee (HFCC) recommendations for a coordinated Departmental Human Factors Research Program to advance the human-centered systems approach for enhancing transportation safety. Human error is a ...

  1. Concurrent engineering research center

    NASA Technical Reports Server (NTRS)

    Callahan, John R.

    1995-01-01

    The projects undertaken by The Concurrent Engineering Research Center (CERC) at West Virginia University are reported and summarized. CERC's participation in the Department of Defense's Defense Advanced Research Project relating to technology needed to improve the product development process is described, particularly in the area of advanced weapon systems. The efforts committed to improving collaboration among the diverse and distributed health care providers are reported, along with the research activities for NASA in Independent Software Verification and Validation. CERC also takes part in the electronic respirator certification initiated by The National Institute for Occupational Safety and Health, as well as in the efforts to find a solution to the problem of producing environment-friendly end-products for product developers worldwide. The 3M Fiber Metal Matrix Composite Model Factory Program is discussed. CERC technologies, facilities,and personnel-related issues are described, along with its library and technical services and recent publications.

  2. Marine Safety Center briefing book

    DOT National Transportation Integrated Search

    1997-10-30

    The U.S. Coast Guard Marine Safety Center was established in 1986 as a consolidation of district Merchant Marine Technical Offices. Our offices are located on the sixth floor of the DOT Headquarters building in Washington, DC. This document provides ...

  3. Alternative Fuels Data Center: Natural Gas Safety after a Traffic Accident

    Science.gov Websites

    Natural Gas Safety after a Traffic Accident to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Safety after a Traffic Accident on Facebook Tweet about Alternative Fuels Data Center : Natural Gas Safety after a Traffic Accident on Twitter Bookmark Alternative Fuels Data Center: Natural Gas

  4. Evaluating Patient-Centered Outcomes in Clinical Trials of Procedural Sedation, Part 2 Safety: Sedation Consortium on Endpoints and Procedures for Treatment, Education, and Research Recommendations.

    PubMed

    Ward, Denham S; Williams, Mark R; Berkenbosch, John W; Bhatt, Maala; Carlson, Douglas; Chappell, Phillip; Clark, Randall M; Constant, Isabelle; Conway, Aaron; Cravero, Joseph; Dahan, Albert; Dexter, Franklin; Dionne, Raymond; Dworkin, Robert H; Gan, Tong J; Gozal, David; Green, Steven; Irwin, Michael G; Karan, Suzanne; Kochman, Michael; Lerman, Jerrold; Lightdale, Jenifer R; Litman, Ronald S; Mason, Keira P; Miner, James; O'Connor, Robert E; Pandharipande, Pratik; Riker, Richard R; Roback, Mark G; Sessler, Daniel I; Sexton, Anne; Tobin, Joseph R; Turk, Dennis C; Twersky, Rebecca S; Urman, Richard D; Weiss, Mark; Wunsch, Hannah; Zhao-Wong, Anna

    2018-05-17

    The Sedation Consortium on Endpoints and Procedures for Treatment, Education, and Research, established by the Analgesic, Anesthetic, and Addiction Clinical Trial Translations, Innovations, Opportunities, and Networks, a public-private partnership with the US Food and Drug Administration, convened a second meeting of sedation experts from a variety of clinical specialties and research backgrounds to develop recommendations for procedural sedation research. The previous meeting addressed efficacy and patient- and/or family-centered outcomes. This meeting addressed issues of safety, which was defined as "the avoidance of physical or psychological harm." A literature review identified 133 articles addressing safety measures in procedural sedation clinical trials. After basic reporting of vital signs, the most commonly measured safety parameter was oxygen saturation. Adverse events were inconsistently defined throughout the studies. Only 6 of the 133 studies used a previously validated measure of safety. The meeting identified methodological problems associated with measuring infrequent adverse events. With a consensus discussion, a set of core and supplemental measures were recommended to code for safety in future procedural clinical trials. When adopted, these measures should improve the integration of safety data across studies and facilitate comparisons in systematic reviews and meta-analyses.

  5. Control centers design for ergonomics and safety.

    PubMed

    Quintana, Leonardo; Lizarazo, Cesar; Bernal, Oscar; Cordoba, Jorge; Arias, Claudia; Monroy, Magda; Cotrino, Carlos; Montoya, Olga

    2012-01-01

    This paper shows the general design conditions about ergonomics and safety for control centers in the petrochemical process industry. Some of the topics include guidelines for the optimized workstation design, control room layout, building layout, and lighting, acoustical and environmental design. Also takes into account the safety parameters in the control rooms and centers design. The conditions and parameters shown in this paper come from the standards and global advances on this topic on the most recent publications. And also the work was supplemented by field visits of our team to the control center operations in a petrochemical company, and technical literature search efforts. This guideline will be useful to increase the productivity and improve the working conditions at the control rooms.

  6. Researchers studying alternative to bladder removal for bladder cancer patients | Center for Cancer Research

    Cancer.gov

    A new phase I clinical trial conducted by researchers at the Center for Cancer Research (CCR) is evaluating the safety and tolerability, or the degree to which any side effects can be tolerated by patients, of a two-drug combination as a potential alternative to bladder removal for bladder cancer patients. The trial targets patients with non-muscle invasive bladder cancer

  7. Nuclear Safety Information Center, Its Products and Services

    ERIC Educational Resources Information Center

    Buchanan, J. R.

    1970-01-01

    The Nuclear Safety Information Center (NSIC) serves as a focal point for the collection, analysis and dissemination of information related to safety problems encountered in the design, analysis, and operation of nuclear facilities. (Author/AB)

  8. Biosurveillance at the United States Meat Animal Research Center

    USDA-ARS?s Scientific Manuscript database

    The mission of the 50 scientists and 165 support staff at the U.S. Meat Animal Research Center (USMARC) is to develop new technologies to increase the efficiency of livestock production and improve meat safety, quality, and animal health to benefit consumers worldwide. The facilities include 35,000 ...

  9. Transportation Safety Resource Center (TSRC) 2007.

    DOT National Transportation Integrated Search

    2009-11-01

    The Transportation Safety Resource Center (TSRC) is the vital link in a collaborative : partnership created among federal and state transportation agencies, local stakeholders, : academic institutions, and the private sector to provide resources and ...

  10. Advanced research workshop: nuclear materials safety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jardine, L J; Moshkov, M M

    The Advanced Research Workshop (ARW) on Nuclear Materials Safety held June 8-10, 1998, in St. Petersburg, Russia, was attended by 27 Russian experts from 14 different Russian organizations, seven European experts from six different organizations, and 14 U.S. experts from seven different organizations. The ARW was conducted at the State Education Center (SEC), a former Minatom nuclear training center in St. Petersburg. Thirty-three technical presentations were made using simultaneous translations. These presentations are reprinted in this volume as a formal ARW Proceedings in the NATO Science Series. The representative technical papers contained here cover nuclear material safety topics on themore » storage and disposition of excess plutonium and high enriched uranium (HEU) fissile materials, including vitrification, mixed oxide (MOX) fuel fabrication, plutonium ceramics, reprocessing, geologic disposal, transportation, and Russian regulatory processes. This ARW completed discussions by experts of the nuclear materials safety topics that were not covered in the previous, companion ARW on Nuclear Materials Safety held in Amarillo, Texas, in March 1997. These two workshops, when viewed together as a set, have addressed most nuclear material aspects of the storage and disposition operations required for excess HEU and plutonium. As a result, specific experts in nuclear materials safety have been identified, know each other from their participation in t he two ARW interactions, and have developed a partial consensus and dialogue on the most urgent nuclear materials safety topics to be addressed in a formal bilateral program on t he subject. A strong basis now exists for maintaining and developing a continuing dialogue between Russian, European, and U.S. experts in nuclear materials safety that will improve the safety of future nuclear materials operations in all the countries involved because of t he positive synergistic effects of focusing these diverse backgrounds

  11. Safety and Environment- Masterplan 2020 of DLR's Rocket Test Center Lampoldhausen

    NASA Astrophysics Data System (ADS)

    Haberzettl, Andreas; Dommers, Michael

    2013-09-01

    The German Aerospace Center DLR is the German research institute with approximately 7000 employees in 16 domestic locations. Among the research priorities of the German Aerospace Center DLR includes aerospace, energy and transport. DLR is institutionally supported by federal and state governments.Next funding sources arise in the context of third-party funds business (contract research and public contracts and subsidiaries). Main activities of the test center Lampoldshausen are testing of ARIANE's main and upper stage engines in the frame of ESA contracts.In the last years the test center of the DLR in Lampoldshausen has grown strongly, so that the number of employees is actually of about 230. The testing department is mainly responsible for rocket combustion testing according to customer requirements.Two kinds of test facilities are operated, sea level test benches and the altitude simulation test facilities.In addition to the DLR's growth also the activities of the industrial partner ASTRIUM has been elevated so that actually nearly 600 employees are present on site Lampoldshausen.The management of the site in relation to safety and security requires special measures with special respect to the presence of more people inside the testing area in order to guarantee trouble-free and safe experimental operation onsite the DLR's test plants. In order to meet with the future needs of continuing growth, the security and safety requirements have to be adopted.This report gives comprehensive outlook information about future possible scenarios of our coming tasks.Main driving force for future requests is the evolution of the rocket ARIANE. The testing of the new upper stage test facility for ARIANE 5 midlife evolution has been started. A new test position P5.2 is foreseen to perform the qualification of the new upper stage with the VINCI engine. This project will be very complex, in parallel running operation processes will require special procedures related to the overall

  12. NASA-Langley Research Center's Aircraft Condition Analysis and Management System Implementation

    NASA Technical Reports Server (NTRS)

    Frye, Mark W.; Bailey, Roger M.; Jessup, Artie D.

    2004-01-01

    This document describes the hardware implementation design and architecture of Aeronautical Radio Incorporated (ARINC)'s Aircraft Condition Analysis and Management System (ACAMS), which was developed at NASA-Langley Research Center (LaRC) for use in its Airborne Research Integrated Experiments System (ARIES) Laboratory. This activity is part of NASA's Aviation Safety Program (AvSP), the Single Aircraft Accident Prevention (SAAP) project to develop safety-enabling technologies for aircraft and airborne systems. The fundamental intent of these technologies is to allow timely intervention or remediation to improve unsafe conditions before they become life threatening.

  13. Researchers studying alternative to bladder removal for bladder cancer patients | Center for Cancer Research

    Cancer.gov

    A new phase I clinical trial conducted by researchers at the Center for Cancer Research (CCR) is evaluating the safety and tolerability, or the degree to which any side effects can be tolerated by patients, of a two-drug combination as a potential alternative to bladder removal for bladder cancer patients. The trial targets patients with non-muscle invasive bladder cancer (NMIBC) whose cancers have stopped responding to traditional therapies. Read more...

  14. Informatics for patient safety: a nursing research perspective.

    PubMed

    Bakken, Suzanne

    2006-01-01

    In Crossing the Quality Chasm, the Institute of Medicine (IOM) Committee on Quality of Health Care in America identified the critical role of information technology in designing a health system that produces care that is "safe, effective, patient-centered, timely, efficient, and equitable" (Committee on Quality of Health Care in America, 2001, p. 164). A subsequent IOM report contends that improved information systems are essential to a new health care delivery system that "both prevents errors and learns from them when they occur" (Committee on Data Standards for Patient Safety, 2004, p. 1). This review specifically highlights the role of informatics processes and information technology in promoting patient safety and summarizes relevant nursing research. First, the components of an informatics infrastructure for patient safety are described within the context of the national framework for delivering consumer-centric and information-rich health care and using the National Health Information Infrastructure (NHII) (Thompson & Brailer, 2004). Second, relevant nursing research is summarized; this includes research studies that contributed to the development of selected infrastructure components as well as studies specifically focused on patient safety. Third, knowledge gaps and opportunities for nursing research are identified for each main topic. The health information technologies deployed as part of the national framework must support nursing practice in a manner that enables prevention of medical errors and promotion of patient safety and contributes to the development of practice-based nursing knowledge as well as best practices for patient safety. The seminal work that has been completed to date is necessary, but not sufficient, to achieve this objective.

  15. Revitalizing Nuclear Safety Research.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC.

    This report covers the general issues involved in nuclear safety research and points out the areas needing detailed consideration. Topics included are: (1) "Principles of Nuclear Safety Research" (examining who should fund, who should conduct, and who should set the agenda for nuclear safety research); (2) "Elements of a Future…

  16. Information Services at the Nuclear Safety Analysis Center.

    ERIC Educational Resources Information Center

    Simard, Ronald

    This paper describes the operations of the Nuclear Safety Analysis Center. Established soon after an accident at the Three Mile Island nuclear power plant near Harrisburg, Pennsylvania, its efforts were initially directed towards a detailed analysis of the accident. Continuing functions include: (1) the analysis of generic nuclear safety issues,…

  17. Center Director Bridges opens Super Safety and Health Day at KSC.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Center Director Roy Bridges opens the second Super Safety and Health Day at Kennedy Space Center, an entire day when most normal work activities are suspended to allow personnel to attend safety- and health-related activities. The theme, 'Safety and Health Go Hand in Hand,' emphasized KSC's commitment to place the safety and health of the public, astronauts, employees and space- related resources first and foremost. Events included a keynote address, a panel session about related issues, vendor exhibits, and safety training in work groups. The keynote address and panel session were also broadcast internally over NASA television.

  18. Possible safety hazards associated with the operation of the 0.3-m transonic cryogenic tunnel at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Webster, T. J.

    1982-01-01

    The 0.3 m Transonic Cryogenic Tunnel (TCT) at the NASA Langley Research Center was built in 1973 as a facility intended to be used for no more than 60 hours in order to verify the validity of the cryogenic wind tunnel concept at transonic speeds. The role of the 0.3 m TCT has gradually changed until now, after over 3000 hours of operation, it is classified as a major NASA research facility and, under the administration of the Experimental Techniques Branch, it is used extensively for the testing of airfoils at high Reynolds numbers and for the development of various technologies related to the efficient operation and use of cryogenic wind tunnels. The purpose of this report is to document the results of a recent safety analysis of the 0.3 m TCT facility. This analysis was made as part of an on going program with the Experimental Techniques Branch designed to ensure that the existing equipment and current operating procedures of the 0.3 m TCT facility are acceptable in terms of today's standards of safety for cryogenic systems.

  19. Proceedings of Twenty-Seventh Annual Institute on Mining Health, Safety and Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bockosh, G.R.; Langton, J.; Karmis, M.

    1996-12-31

    This Proceedings contains the presentations made during the program of the Twenty-Seventh Annual Institute on Mining Health, Safety and Research held at Virginia Polytechnic Institute and State University, Blacksburg, Virginia, on August 26-28, 1996. The Twenty-Seventh Annual Institute on Mining, Health, Safety and Research was the latest in a series of conferences held at Virginia Polytechnic Institute and State University, cosponsored by the Mine Safety and Health Administration, United States Department of Labor, and the Pittsburgh Research Center, United States Department of Energy (formerly part of the Bureau of Mines, U. S. Department of Interior). The Institute provides an informationmore » forum for mine operators, managers, superintendents, safety directors, engineers, inspectors, researchers, teachers, state agency officials, and others with a responsible interest in the important field of mining health, safety and research. In particular, the Institute is designed to help mine operating personnel gain a broader knowledge and understanding of the various aspects of mining health and safety, and to present them with methods of control and solutions developed through research. Selected papers have been processed separately for inclusion in the Energy Science and Technology database.« less

  20. The occupational safety of health professionals working at community and family health centers.

    PubMed

    Ozturk, Havva; Babacan, Elif

    2014-10-01

    Healthcare professionals encounter many medical risks while providing healthcare services to individuals and the community. Thus, occupational safety studies are very important in health care organizations. They involve studies performed to establish legal, technical, and medical measures that must be taken to prevent employees from sustaining physical or mental damage because of work hazards. This study was conducted to determine if the occupational safety of health personnel at community and family health centers (CHC and FHC) has been achieved. The population of this cross-sectional study comprised 507 nurses, 199 physicians, and 237 other medical personnel working at a total of 18 family health centers (FHC) and community health centers (CHC) in Trabzon, Turkey. The sample consisted of a total of 418 nurses, 156 physicians, and 123 other medical personnel. Sampling method was not used, and the researchers tried to reach the whole population. Data were gathered with the Occupational Safety Scale (OSS) and a questionnaire regarding demographic characteristics and occupational safety. According to the evaluations of all the medical personnel, the mean ± SD of total score of the OSS was 3.57 ± 0.98; of the OSS's subscales, the mean ± SD of the health screening and registry systems was 2.76 ± 1.44, of occupational diseases and problems was 3.04 ± 1.3 and critical fields control was 3.12 ± 1.62. In addition, occupational safety was found more insufficient by nurses (F = 14.18; P < 0.001). All healthcare personnel, particularly nurses working in CHCs and FHCs found occupational safety to be insufficient as related to protective and supportive activities.

  1. ReactorHealth Physics operations at the NIST center for neutron research.

    PubMed

    Johnston, Thomas P

    2015-02-01

    Performing health physics and radiation safety functions under a special nuclear material license and a research and test reactor license at a major government research and development laboratory encompasses many elements not encountered by industrial, general, or broad scope licenses. This article reviews elements of the health physics and radiation safety program at the NIST Center for Neutron Research, including the early history and discovery of the neutron, applications of neutron research, reactor overview, safety and security of radiation sources and radioactive material, and general health physics procedures. These comprise precautions and control of tritium, training program, neutron beam sample processing, laboratory audits, inventory and leak tests, meter calibration, repair and evaluation, radioactive waste management, and emergency response. In addition, the radiation monitoring systems will be reviewed including confinement building monitoring, ventilation filter radiation monitors, secondary coolant monitors, gaseous fission product monitors, gas monitors, ventilation tritium monitor, and the plant effluent monitor systems.

  2. Propulsion Controls and Diagnostics Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2007-01-01

    With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. Also the propulsion systems required to enable the National Aeronautics and Space Administration (NASA) Vision for Space Exploration in an affordable manner will need to have high reliability, safety and autonomous operation capability. The Controls and Dynamics Branch (CDB) at NASA Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of Intelligent Propulsion Systems. This paper describes the current activities of the CDB under the NASA Aeronautics Research and Exploration Systems Missions. The programmatic structure of the CDB activities is described along with a brief overview of each of the CDB tasks including research objectives, technical challenges, and recent accomplishments. These tasks include active control of propulsion system components, intelligent propulsion diagnostics and control for reliable fault identification and accommodation, distributed engine control, and investigations into unsteady propulsion systems.

  3. Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug-In

    Science.gov Websites

    Electric Vehicles Maintenance and Safety of Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug

  4. Propulsion Controls and Health Management Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2002-01-01

    With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Technology Branch at NASA Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with the U.S. aerospace industry and academia to develop advanced controls and health management technologies that will help meet these challenges. These technologies are being developed with a view towards making the concept of "Intelligent Engines" a reality. The major research activities of the Controls and Dynamics Technology Branch are described in the following.

  5. Stennis Space Center observes 2009 Safety and Health Day

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Sue Smith, a medical clinic employee at NASA's John C. Stennis Space Center, takes the temperature of colleague Karen Badon during 2009 Safety and Health Day activities Oct. 22. Safety Day activities included speakers, informational sessions and a number of displays on safety and health issues. Astronaut Dominic Gorie also visited the south Mississippi rocket engine testing facility during the day to address employees and present several Silver Snoopy awards for outstanding contributions to flight safety and mission success. The activities were part of an ongoing safety and health emphasis at Stennis.

  6. Knowledge management: Role of the the Radiation Safety Information Computational Center (RSICC)

    NASA Astrophysics Data System (ADS)

    Valentine, Timothy

    2017-09-01

    The Radiation Safety Information Computational Center (RSICC) at Oak Ridge National Laboratory (ORNL) is an information analysis center that collects, archives, evaluates, synthesizes and distributes information, data and codes that are used in various nuclear technology applications. RSICC retains more than 2,000 software packages that have been provided by code developers from various federal and international agencies. RSICC's customers (scientists, engineers, and students from around the world) obtain access to such computing codes (source and/or executable versions) and processed nuclear data files to promote on-going research, to ensure nuclear and radiological safety, and to advance nuclear technology. The role of such information analysis centers is critical for supporting and sustaining nuclear education and training programs both domestically and internationally, as the majority of RSICC's customers are students attending U.S. universities. Additionally, RSICC operates a secure CLOUD computing system to provide access to sensitive export-controlled modeling and simulation (M&S) tools that support both domestic and international activities. This presentation will provide a general review of RSICC's activities, services, and systems that support knowledge management and education and training in the nuclear field.

  7. Industry Invests in Research Centers.

    ERIC Educational Resources Information Center

    Ploch, Margie

    1983-01-01

    Universities and industry are forging new relationships to support academic research and industrial research and development, including the establishment of university/cooperative research centers. Discusses various cooperative projects at these research centers. Includes a list of representative R&D centers in biotechnology, building…

  8. American Overseas Research Centers Program

    ERIC Educational Resources Information Center

    Office of Postsecondary Education, US Department of Education, 2012

    2012-01-01

    The American Overseas Research Centers Program provides grants to overseas research centers that are consortia of U.S. institutions of higher education to enable the centers to promote postgraduate research, exchanges, and area studies. Eligible applicants are those consortia of U.S. institutions of higher education centers that: (1) Receive more…

  9. Safety of Highway-Railroad Grade Crossings : Research Needs Workshop. Volume 2. Appendices.

    DOT National Transportation Integrated Search

    1996-01-01

    The John A. Volpe National Transportation Systems Center hosted and conducted the Highway-Railroad Grade Crossing Safety Research Needs Workshop on April 10 - 13, 1995. Seventy-five delegates participated in the workshop and identified ninety-two (92...

  10. From chemicals to cold plasma: Non-thermal food processing technologies research at the USDA's Eastern Regional Research Center

    USDA-ARS?s Scientific Manuscript database

    Foodborne pathogens cause millions of illnesses every year. At the US Department of Agriculture’s Eastern Regional Research Center, scientists and engineers have focused on developing new ways to improve food safety and shelf life while retaining quality and nutritional value. A variety of technolog...

  11. Dryden Flight Research Center: Center Overview

    NASA Technical Reports Server (NTRS)

    Ratnayake, Nalin

    2009-01-01

    This viewgraph presentation describes a general overview of Dryden Flight Research Center. Strategic partnerships, Dryden's mission activity, exploration systems and aeronautics research programs are also described.

  12. Patient Safety Center Organization

    DTIC Science & Technology

    2006-06-01

    Enterectomy Bariatric 7/20/05 4 hours/course (28 hours/year) Surgery R 7 Dr. Karen Horvath R5 Lap Enterectomy & Colectomy 11/30/05 4...areas in the UW Schools of Nursing and Dentistry, at the Harborview Research Center Microvascular Surgery lab, with the Seattle Children’s Hospital and...1 laboratory complex (2500 sq ft) has been designed within the University of Washington Medical Center, in the Surgery Pavilion complex

  13. Person-centered endoscopy safety checklist: Development, implementation, and evaluation

    PubMed Central

    Dubois, Hanna; Schmidt, Peter T; Creutzfeldt, Johan; Bergenmar, Mia

    2017-01-01

    AIM To describe the development and implementation of a person-centered endoscopy safety checklist and to evaluate the effects of a “checklist intervention”. METHODS The checklist, based on previously published safety checklists, was developed and locally adapted, taking patient safety aspects into consideration and using a person-centered approach. This novel checklist was introduced to the staff of an endoscopy unit at a Stockholm University Hospital during half-day seminars and team training sessions. Structured observations of the endoscopy team’s performance were conducted before and after the introduction of the checklist. In addition, questionnaires focusing on patient participation, collaboration climate, and patient safety issues were collected from patients and staff. RESULTS A person-centered safety checklist was developed and introduced by a multi-professional group in the endoscopy unit. A statistically significant increase in accurate patient identity verification by the physicians was noted (from 0% at baseline to 87% after 10 mo, P < 0.001), and remained high among nurses (93% at baseline vs 96% after 10 mo, P = nonsignificant). Observations indicated that the professional staff made frequent attempts to use the checklist, but compliance was suboptimal: All items in the observed nurse-led “summaries” were included in 56% of these interactions, and physicians participated by directly facing the patient in 50% of the interactions. On the questionnaires administered to the staff, items regarding collaboration and the importance of patient participation were rated more highly after the introduction of the checklist, but this did not result in statistical significance (P = 0.07/P = 0.08). The patients rated almost all items as very high both before and after the introduction of the checklist; hence, no statistical difference was noted. CONCLUSION The intervention led to increased patient identity verification by physicians - a patient safety

  14. Recruiting community health centers into pragmatic research: Findings from STOP CRC.

    PubMed

    Coronado, Gloria D; Retecki, Sally; Schneider, Jennifer; Taplin, Stephen H; Burdick, Tim; Green, Beverly B

    2016-04-01

    Challenges of recruiting participants into pragmatic trials, particularly at the level of the health system, remain largely unexplored. As part of Strategies and Opportunities to STOP Colon Cancer in Priority Populations (STOP CRC), we recruited eight separate community health centers (consisting of 26 individual safety net clinics) into a large comparative effectiveness pragmatic study to evaluate methods of raising the rates of colorectal cancer screening. In partnership with STOP CRC's advisory board, we defined criteria to identify eligible health centers and applied these criteria to a list of health centers in Washington, Oregon, and California affiliated with Oregon Community Health Information Network, a 16-state practice-based research network of federally sponsored health centers. Project staff contacted centers that met eligibility criteria and arranged in-person meetings of key study investigators with health center leadership teams. We used the Consolidated Framework for Implementation Research to thematically analyze the content of discussions during these meetings to identify major facilitators of and barriers to health center participation. From an initial list of 41 health centers, 11 met the initial inclusion criteria. Of these, leaders at three centers declined and at eight centers (26 clinic sites) agreed to participate (73%). Participating and nonparticipating health centers were similar with respect to clinic size, percent Hispanic patients, and percent uninsured patients. Participating health centers had higher proportions of Medicaid patients and higher baseline colorectal cancer screening rates. Common facilitators of participation were perception by center leadership that the project was an opportunity to increase colorectal cancer screening rates and to use electronic health record tools for population management. Barriers to participation were concerns of center leaders about ability to provide fecal testing to and assure follow-up of

  15. Recruiting community health centers into pragmatic research: Findings from STOP CRC

    PubMed Central

    Coronado, Gloria D; Retecki, Sally; Schneider, Jennifer; Taplin, Stephen H; Burdick, Tim; Green, Beverly B

    2015-01-01

    Background Challenges of recruiting participants into pragmatic trials, particularly at the level of the health system, remain largely unexplored. As part of Strategies and Opportunities to STOP Colon Cancer in Priority Populations (STOP CRC), we recruited eight separate community health centers (consisting of 26 individual safety net clinics) into a large comparative effectiveness pragmatic study to evaluate methods of raising the rates of colorectal cancer screening. Methods In partnership with STOP CRC’s advisory board, we defined criteria to identify eligible health centers and applied these criteria to a list of health centers in Washington, Oregon, and California affiliated with OCHIN (formerly Oregon Community Health Information Network), a 16-state practice-based research network of federally sponsored health centers. Project staff contacted centers that met eligibility criteria and arranged in-person meetings of key study investigators with health center leadership teams. We used the Consolidated Framework for Implementation Research to thematically analyze the content of discussions during these meetings to identify major facilitators of and barriers to health center participation. Results From an initial list of 41 health centers, 11 met the initial inclusion criteria. Of these, leaders at three centers declined and at eight centers (26 clinic sites) agreed to participate (73%). Participating and nonparticipating health centers were similar with respect to clinic size, percent Hispanic patients, and percent uninsured patients. Participating health centers had higher proportions of Medicaid patients and higher baseline colorectal cancer screening rates. Common facilitators of participation were perception by center leadership that the project was an opportunity to increase colorectal cancer screening rates and to use electronic health record tools for population management. Barriers to participation were concerns of center leaders about ability to

  16. Development of Flight Safety Prediction Methodology for U. S. Naval Safety Center. Revision 1

    DTIC Science & Technology

    1970-02-01

    Safety Center. The methodology develoned encompassed functional analysis of the F-4J aircraft, assessment of the importance of safety- sensitive ... Sensitivity ... ....... . 4-8 V 4.5 Model Implementation ........ ......... . 4-10 4.5.1 Functional Analysis ..... ........... . 4-11 4. 5. 2 Major...Function Sensitivity Assignment ........ ... 4-13 i 4.5.3 Link Dependency Assignment ... ......... . 4-14 4.5.4 Computer Program for Sensitivity

  17. Research and technology, 1991. Langley Research Center

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The mission of the NASA Langley Research Center is to increase the knowledge and capability of the United States in a full range of aeronautics disciplines and in selected space disciplines. This mission will be accomplished by performing innovative research relevant to national needs and Agency goals, transferring technology to users in a timely manner, and providing development support to other United States Government agencies, industry, and other NASA centers. Highlights are given of the major accomplishments and applications that have been made during the past year. The highlights illustrate both the broad range of the research and technology (R&T) activities at NASA Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research.

  18. Research and technology, 1989: Langley Research Center

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The mission of the NASA Langley Research Center is to increase the knowledge and capability of the United States in a full range of aeronautics disciplines and in selected space disciplines. This mission will be accomplished by performing innovative research relevant to national needs and Agency goals, transferring technology to users in a timely manner, and providing development support to other United States Government agencies, industry, and other NASA centers. Highlights of the major accomplishments and applications that were made during the past year are presented. The highlights illustrate both the broad range of the research and technology activities at NASA Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research.

  19. MARS Mission research center

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Mars Mission Research Center (M2RC) is one of nine University Space Engineering Research Centers established by NASA in June 1988. It is a cooperative effort between NCSU and A&T in Greensboro. The goal of the Center is to focus on research and educational technologies for planetary exploration with particular emphasis on Mars. The research combines Mission Analysis and Design, Hypersonic Aerodynamics and Propulsion, Structures and Controls, Composite Materials, and Fabrication Methods in a cross-disciplined program directed towards the development of space transportation systems for lunar and planetary travel. The activities of the students and faculty in the M2RC for the period 1 Jul. 1990 to 30 Jun. 1991 are described.

  20. Flights of Discovery: 50 Years at the NASA Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Wallace, Lance E.

    1996-01-01

    As part of the NASA History Series, this report (NASA SP-4309) describes fifty years of aeronautical research at the NASA Dryden Flight Research Center. Starting with early efforts to exceed the speed of sound with the X-1 aircraft, and continuing through to the X-31 research aircraft, the report covers the flight activities of all of the major research aircraft and lifting bodies studied by NASA. Chapter One, 'A Place for Discovery', describes the facility itself and the surrounding Mojave Desert. Chapter Two, 'The Right Stuff', is about the people involved in the flight research programs. Chapter Three, 'Higher, Faster' summarizes the early years of transonic flight testing and the development of several lifting bodies. Chapter Four, 'Improving Efficiency, Maneuverability & Systems', outlines the development of aeronautical developments such as the supercritical wing, the mission adaptive wing, and various techniques for improving maneuverability fo winged aircraft. Chapter 5, 'Supporting National Efforts', shows how the research activities carried out at Dryden fit into NASA's programs across the country in supporting the space program, in safety and in problem solving related to aircraft design and aviation safety in general. Chapter Six, ' Future Directions' looks to future research building on the fifty year history of aeronautical research at the Dryden Flight Research Center. A glossary of acronyms and an appendix covering concepts and innovations are included. The report also contains many photographs providing a graphical perspective to the historical record.

  1. Researchers' Roles in Patient Safety Improvement.

    PubMed

    Pietikäinen, Elina; Reiman, Teemu; Heikkilä, Jouko; Macchi, Luigi

    2016-03-01

    In this article, we explore how researchers can contribute to patient safety improvement. We aim to expand the instrumental role researchers have often occupied in relation to patient safety improvement. We reflect on our own improvement model and experiences as patient safety researchers in an ongoing Finnish multi-actor innovation project through self-reflective narration. Our own patient safety improvement model can be described as systemic. Based on the purpose of the innovation project, our improvement model, and the improvement models of the other actors in the project, we have carried out a wide range of activities. Our activities can be summarized in 8 overlapping patient safety improvement roles: modeler, influencer, supplier, producer, ideator, reflector, facilitator, and negotiator. When working side by side with "practice," researchers are offered and engage in several different activities. The way researchers contribute to patient safety improvement and balance between different roles depends on the purpose of the study, as well as on the underlying patient safety improvement models. Different patient safety research paradigms seem to emphasize different improvement roles, and thus, they also face different challenges. Open reflection on the underlying improvement models and roles can help researchers with different backgrounds-as well as other actors involved in patient safety improvement-in structuring their work and collaborating productively.

  2. Research and development program plan for the Center for Engineering Systems Advanced Research (CESAR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisbin, C.R.; Hamel, W.R.; Barhen, J.

    1986-02-01

    The Oak Ridge National Laboratory has established the Center for Engineering Systems Advanced Research (CESAR) for the purpose of addressing fundamental problems of intelligent machine technologies. The purpose of this document is to establish a framework and guidelines for research and development within ORNL's CESAR program in areas pertaining to intelligent machines. The specific objective is to present a CESAR Research and Development Plan for such work with a planning horizon of five to ten years, i.e., FY 1985 to FY 1990 and beyond. As much as possible, the plan is based on anticipated DOE needs in the area ofmore » productivity increase and safety to the end of this century.« less

  3. Water Resources Research Center

    Science.gov Websites

    Untitled Document  Search Welcome to the University of Hawai'i at Manoa Water Resources Research Center and contracts. Our Focus is to: Serve as the Water Research Center in Hawaii and in this capacity to coordinate and conduct research to identify, characterize, and quantify water-related problems in the state

  4. Aircraft Turbine Engine Control Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2013-01-01

    This paper provides an overview of the aircraft turbine engine control research at the NASA Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. With the increased emphasis on aircraft safety, enhanced performance, and affordability, as well as the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA Aeronautics Research Mission programs. The rest of the paper provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges, and the key progress to date are summarized.

  5. Production and Distribution Research Center

    DTIC Science & Technology

    1986-05-01

    Steel, Coca Cola , Standard Oil of Ohio, and Martin Marietta have been involved in joint research with members of the Center. The number of Faculty...permitted the establishment of the Center and supports its continuing development. The Center has also received research sponsorship from the Joint...published relating to results developed within the PDRC under Offce of Naval Research sponsorship . These reports are listed in Appendix A. Many of these

  6. Restructuring within an academic health center to support quality and safety: the development of the Center for Quality and Safety at the Massachusetts General Hospital.

    PubMed

    Bohmer, Richard M J; Bloom, Jonathan D; Mort, Elizabeth A; Demehin, Akinluwa A; Meyer, Gregg S

    2009-12-01

    Recent focus on the need to improve the quality and safety of health care has created new challenges for academic health centers (AHCs). Whereas previously quality was largely assumed, today it is increasingly quantifiable and requires organized systems for improvement. Traditional structures and cultures within AHCs, although well suited to the tripartite missions of teaching, research, and clinical care, are not easily adaptable to the tasks of measuring, reporting, and improving quality. Here, the authors use a case study of Massachusetts General Hospital's efforts to restructure quality and safety to illustrate the value of beginning with a focus on organizational culture, using a systematic process of engaging clinical leadership, developing an organizational framework dependent on proven business principles, leveraging focus events, and maintaining executive dedication to execution of the initiative. The case provides a generalizable example for AHCs of how applying explicit management design can foster robust organizational change with relatively modest incremental financial resources.

  7. Innovation in the safety net: integrating community health centers through accountable care.

    PubMed

    Lewis, Valerie A; Colla, Carrie H; Schoenherr, Karen E; Shortell, Stephen M; Fisher, Elliott S

    2014-11-01

    Safety net primary care providers, including as community health centers, have long been isolated from mainstream health care providers. Current delivery system reforms such as Accountable Care Organizations (ACOs) may either reinforce the isolation of these providers or may spur new integration of safety net providers. This study examines the extent of community health center involvement in ACOs, as well as how and why ACOs are partnering with these safety net primary care providers. Mixed methods study pairing the cross-sectional National Survey of ACOs (conducted 2012 to 2013), followed by in-depth, qualitative interviews with a subset of ACOs that include community health centers (conducted 2013). One hundred and seventy-three ACOs completed the National Survey of ACOs. Executives from 18 ACOs that include health centers participated in in-depth interviews, along with leadership at eight community health centers participating in ACOs. Key survey measures include ACO organizational characteristics, care management and quality improvement capabilities. Qualitative interviews used a semi-structured interview guide. Interviews were recorded and transcribed, then coded for thematic content using NVivo software. Overall, 28% of ACOs include a community health center (CHC). ACOs with CHCs are similar to those without CHCs in organizational structure, care management and quality improvement capabilities. Qualitative results showed two major themes. First, ACOs with CHCs typically represent new relationships or formal partnerships between CHCs and other local health care providers. Second, CHCs are considered valued partners brought into ACOs to expand primary care capacity and expertise. A substantial number of ACOs include CHCs. These results suggest that rather than reinforcing segmentation of safety net providers from the broader delivery system, the ACO model may lead to the integration of safety net primary care providers.

  8. ETIB tests safety and effectiveness of Baricitinib for chronic GVHD | Center for Cancer Research

    Cancer.gov

    The Center for Cancer Research has launched a new clinical trial focusing on improving the treatment of chronic graft-versus-host disease, a common adverse reaction that may develop after certain bone marrow transplants.  Learn more...

  9. NASA's Human Research Program at The Glenn Research Center: Progress and Opportunities

    NASA Technical Reports Server (NTRS)

    Nall, Marsha; Griffin, DeVon; Myers, Jerry; Perusek, Gail

    2008-01-01

    The NASA Human Research Program is aimed at correcting problems in critical areas that place NASA human spaceflight missions at risk due to shortfalls in astronaut health, safety and performance. The Glenn Research Center (GRC) and partners from Ohio are significant contributors to this effort. This presentation describes several areas of GRC emphasis, the first being NASA s path to creating exercise hardware requirements and protocols that mitigate the effects of long duration spaceflight. Computational simulations will be a second area that is discussed. This includes deterministic models that simulate the effects of spaceflight on the human body, as well as probabilistic models that bound and quantify the probability that adverse medical incidents will happen during an exploration mission. Medical technology development for exploration will be the final area to be discussed.

  10. Southwest Border Food Safety and Defense Center: Creative Ideas for Promoting Food Safety and Food Protection

    ERIC Educational Resources Information Center

    Koukel, Sonja

    2015-01-01

    Foodborne illness has a significant impact on public health and consumer confidence in the U.S. The Southwest Border Food Safety and Defense Center was established to provide educational programs, trainings, and workshops to address the health and well-being of consumers as it relates to food safety and food protection. A partnership between New…

  11. First-in-human clinical trial evaluates safety of combination therapy to treat B-cell lymphomas | Center for Cancer Research

    Cancer.gov

    A new phase I clinical trial to evaluate the safety and maximum tolerated dosage of a five-drug targeted combination therapy called ViPOR for patients with relapsed and treatment-resistant, or refractory, B-cell lymphomas is open at the National Institutes of Health (NIH) Clinical Center in Bethesda, Maryland. Read more…

  12. Waste Processing Research and Technology Development at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Fisher, John; Kliss, Mark

    2004-01-01

    The current "store and return" approach for handling waste products generated during low Earth orbit missions will not meet the requirements for future human missions identified in NASA s new Exploration vision. The objective is to develop appropriate reliable waste management systems that minimize maintenance and crew time, while maintaining crew health and safety, as well as providing protection of planetary surfaces. Solid waste management requirements for these missions include waste volume reduction, stabilization and storage, water recovery, and ultimately recovery of carbon dioxide, nutrients and other resources from a fully regenerative food production life support system. This paper identifies the key drivers for waste management technology development within NASA, and provides a roadmap for the developmental sequence and progression of technologies. Recent results of research and technology development activities at NASA Ames Research Center on candidate waste management technologies with emphasis on compaction, lyophilization, and incineration are discussed.

  13. Developing the Safety of Atrial Fibrillation Ablation Registry Initiative (SAFARI) as a collaborative pan-stakeholder critical path registry model: a Cardiac Safety Research Consortium "Incubator" Think Tank.

    PubMed

    Al-Khatib, Sana M; Calkins, Hugh; Eloff, Benjamin C; Kowey, Peter; Hammill, Stephen C; Ellenbogen, Kenneth A; Marinac-Dabic, Danica; Waldo, Albert L; Brindis, Ralph G; Wilbur, David J; Jackman, Warren M; Yaross, Marcia S; Russo, Andrea M; Prystowsky, Eric; Varosy, Paul D; Gross, Thomas; Pinnow, Ellen; Turakhia, Mintu P; Krucoff, Mitchell W

    2010-10-01

    Although several randomized clinical trials have demonstrated the safety and efficacy of catheter ablation of atrial fibrillation (AF) in experienced centers, the outcomes of this procedure in routine clinical practice and in patients with persistent and long-standing persistent AF remain uncertain. Brisk adoption of this therapy by physicians with diverse training and experience highlights potential concerns regarding the safety and effectiveness of this procedure. Some of these concerns could be addressed by a national registry of AF ablation procedures such as the Safety of Atrial Fibrillation Ablation Registry Initiative that was initially proposed at a Cardiac Safety Research Consortium Think Tank meeting in April 2009. In January 2010, the Cardiac Safety Research Consortium, in collaboration with the Duke Clinical Research Institute, the US Food and Drug Administration, the American College of Cardiology, and the Heart Rhythm Society, held a follow-up meeting of experts in the field to review the construct and progress to date. Other participants included the National Heart, Lung, and Blood Institute; the Centers for Medicare and Medicaid Services; the Agency for Healthcare Research and Quality; the AdvaMed AF working group; and additional industry representatives. This article summarizes the discussions that occurred at the meeting of the state of the Safety of Atrial Fibrillation Ablation Registry Initiative, the identification of a clear pathway for its implementation, and the exploration of solutions to potential issues in the execution of this registry. Copyright © 2010 Mosby, Inc. All rights reserved.

  14. New clinical trial explores precision treatment for advanced pancreatic cancer | Center for Cancer Research

    Cancer.gov

    A new phase II clinical trial to assess the safety and efficacy of a drug called selumetinib for treating patients with advanced pancreatic cancer whose tumors harbor a specific genetic marker has opened at the Center for Cancer Research and is currently recruiting participants. Read more...

  15. Dutch pedestrian safety research review

    DOT National Transportation Integrated Search

    1999-12-01

    This report is one in a series of pedestrian safety synthesis reports prepared for the Federal Highway Administration to document pedestrian safety in other countries. This report reviews recent pedestrian safety research in the Netherlands. It addre...

  16. Safety, Reliability, and Quality Assurance Provisions for the Office of Aeronautics, Exploration and Technology Centers

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This Handbook establishes general safety, reliability, and quality assurance (SR&QA) guidelines for use on flight and ground-based projects conducted at the Ames, Langley, and Lewis Research Centers, hereafter identified as the Office of Aeronautics, Exploration and Technology (OAET) Centers. This document is applicable to all projects and operations conducted at these Centers except for those projects covered by more restrictive provisions such as the Space Shuttle, Space Station, and unmanned spacecraft programs. This Handbook is divided into two parts. The first (Chapters 1 and 2) establishes the SR&QA guidelines applicable to the OAET Centers, and the second (Appendices A, B, C, and D) provides examples and definitions for the total SR&QA program. Each center should implement SR&QA programs using these guidelines with tailoring appropriate to the special projects conducted by each Center. This Handbook is issued in loose-leaf form and will be revised by page changes.

  17. Canadian research on pedestrian safety

    DOT National Transportation Integrated Search

    1999-12-01

    This report is one in a series of pedestrian safety synthesis reports prepared for the Federal Highway Administration to document pedestrian safety in other countries. This report reviews Canadian research in six areas of pedestrian safety: (1) Inter...

  18. [Research activities in Kobe-Indonesia Collaborative Research Centers].

    PubMed

    Utsumi, Takako; Hayashi, Yoshitake; Hotta, Hak

    2013-01-01

    Kobe-Indonesia Collaborative Research Center was established in Institute of Tropical Disease (ITD), Airlangga University, Surabaya, Indonesia in 2007 under the program of ''Founding Research Centers for Emerging and Reemerging Infectious Diseases'' supported by the Ministry of Education, Culture, Sports, Science and Technology, Japan, and then it has been under the Japan Initiative for Global Research Network on Infectious Diseases (J-GRID) since 2010. Japanese researchers have been stationed at ITD, conducting joint researches on influenza, viral hepatitis, dengue and infectious diarrhea. Also, another Japanese researcher has been stationed at Faculty of Medicine, University of Indonesia, Jakarta, carrying out joint researches on'' Identification of anti-hepatitis C virus (HCV) substances and development of HCV and dengue vaccines'' in collaboration with University of Indonesia and Airlangga University through the Science and Technology Research Partnership for Sustainable Development (SATREPS) supported by the Japan Science and Technology Agency (JST) and Japan International Cooperation Agency (JICA) since 2009. In this article, we briefly introduce the background history of Kobe University Research Center in Indonesia, and discuss the research themes and outcomes of J-GRID and SATREPS activities.

  19. Defining Safety in the Nursing Home Setting: Implications for Future Research.

    PubMed

    Simmons, Sandra F; Schnelle, John F; Sathe, Nila A; Slagle, Jason M; Stevenson, David G; Carlo, Maria E; McPheeters, Melissa L

    2016-06-01

    Currently, the Agency for Healthcare Research and Quality (AHRQ) Common Format for nursing homes (NHs) accommodates voluntary reporting for 4 adverse events: falls with injury, pressure ulcers, medication errors, and infections. In 2015, AHRQ funded a technical brief to describe the state of the science related to safety in the NH setting to inform a research agenda. Thirty-six recent systematic reviews evaluated NH safety-related interventions to address these 4 adverse events and reported mostly mixed evidence about effective approaches to ameliorate them. Furthermore, these 4 events are likely inadequate to capture safety issues that are unique to the NH setting and encompass other domains related to residents' quality of care and quality of life. Future research needs include expanding our definition of safety in the NH setting, which differs considerably from that of hospitals, to include contributing factors to adverse events as well as more resident-centered care measures. Second, future research should reflect more rigorous implementation science to include objective measures of care processes related to adverse events, intervention fidelity, and staffing resources for intervention implementation to inform broader uptake of efficacious interventions. Weaknesses in implementation contribute to the current inconclusive and mixed evidence base as well as remaining questions about what outcomes are even achievable in the NH setting, given the complexity of most resident populations. Also related to implementation, future research should determine the effects of specific staffing models on care processes related to safety outcomes. Last, future efforts should explore the potential for safety issues in other care settings for older adults, most notably dementia care within assisted living. Copyright © 2016 AMDA – The Society for Post-Acute and Long-Term Care Medicine. All rights reserved.

  20. 77 FR 44544 - Safety Zone; Gilmerton Bridge Center Span Float-In, Elizabeth River; Norfolk, Portsmouth, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-30

    ...-AA00 Safety Zone; Gilmerton Bridge Center Span Float-In, Elizabeth River; Norfolk, Portsmouth, and... withdrawing its proposed rule concerning the Gilmerton Bridge Center Span Float-in and bridge construction of... ``Safety Zone; Gilmerton Bridge Center Span Float-in, Elizabeth River; Norfolk, Portsmouth, and Chesapeake...

  1. Lewis Research Center: Commercialization Success Stories

    NASA Technical Reports Server (NTRS)

    Heyward, Ann O.

    1996-01-01

    The NASA Lewis Research Center, located in Cleveland, Ohio, has a portfolio of research and technology capabilities and facilities that afford opportunities for productive partnerships with industry in a broad range of industry sectors. In response to the President's agenda in the area of technology for economic growth (Clinton/Gore 1993), the National Performance Review (1993), NASA's Agenda for Change (1994), and the needs of its customers, NASA Lewis Research Center has sought and achieved significant successes in technology transfer and commercialization. This paper discusses a sampling of Lewis Research Center's successes in this area, and lessons learned that Lewis Research Center is applying in pursuit of continuous improvement and excellence in technology transfer and commercialization.

  2. 77 FR 75016 - Safety Zone: Gilmerton Bridge Center Span Float-in, Elizabeth River; Norfolk, Portsmouth, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-19

    ...-AA00 Safety Zone: Gilmerton Bridge Center Span Float-in, Elizabeth River; Norfolk, Portsmouth, and... final rule establishing a safety zone around the Gilmerton Bridge center span barge. Inadvertently, this... Gilmerton Bridge center span barge (77 FR 73541). Inadvertently, this rule included an error in the...

  3. MIT Space Engineering Research Center

    NASA Technical Reports Server (NTRS)

    Crawley, Edward F.; Miller, David W.

    1990-01-01

    The Space Engineering Research Center (SERC) at MIT, started in Jul. 1988, has completed two years of research. The Center is approaching the operational phase of its first testbed, is midway through the construction of a second testbed, and is in the design phase of a third. We presently have seven participating faculty, four participating staff members, ten graduate students, and numerous undergraduates. This report reviews the testbed programs, individual graduate research, other SERC activities not funded by the Center, interaction with non-MIT organizations, and SERC milestones. Published papers made possible by SERC funding are included at the end of the report.

  4. An assessment of traffic safety culture related to engagement efforts to improve traffic safety : research programs.

    DOT National Transportation Integrated Search

    2016-12-01

    The Center for Health and Safety Culture at Montana State University developed a survey to investigate the traffic safety culture related to engagement in traffic safety citizenship behaviors. The development of the survey was based on an augmented f...

  5. (NESC) NASA Engineering and Safety Center Orion Heat Shield Carr

    NASA Image and Video Library

    2014-04-29

    (NESC) NASA Engineering and Safety Center Orion Heat Shield Carrier Structure: Titanium Orthogrid heat shield sub-component dynamic test article : person in the photo Jim Jeans (Background: Mike Kirsch, James Ainsworth)

  6. Hurricane Safety and Information - Central Pacific Hurricane Center -

    Science.gov Websites

    NOAA NWS United States Department of Commerce Central Pacific Hurricane Center National Oceanic and Distance Calculator Blank Tracking Maps ▾ Educational Resources Be Prepared! NWS Hurricane Prep Week Search For Go NWS All NOAA ▾ Hurricane Safety Hurricane Awareness Week Information from CPHC Red Cross

  7. Armstrong Flight Research Center Research Technology and Engineering 2017

    NASA Technical Reports Server (NTRS)

    Voracek, David F. (Editor)

    2018-01-01

    I am delighted to present this report of accomplishments at NASA's Armstrong Flight Research Center. Our dedicated innovators possess a wealth of performance, safety, and technical capabilities spanning a wide variety of research areas involving aircraft, electronic sensors, instrumentation, environmental and earth science, celestial observations, and much more. They not only perform tasks necessary to safely and successfully accomplish Armstrong's flight research and test missions but also support NASA missions across the entire Agency. Armstrong's project teams have successfully accomplished many of the nation's most complex flight research projects by crafting creative solutions that advance emerging technologies from concept development and experimental formulation to final testing. We are developing and refining technologies for ultra-efficient aircraft, electric propulsion vehicles, a low boom flight demonstrator, air launch systems, and experimental x-planes, to name a few. Additionally, with our unique location and airborne research laboratories, we are testing and validating new research concepts. Summaries of each project highlighting key results and benefits of the effort are provided in the following pages. Technology areas for the projects include electric propulsion, vehicle efficiency, supersonics, space and hypersonics, autonomous systems, flight and ground experimental test technologies, and much more. Additional technical information is available in the appendix, as well as contact information for the Principal Investigator of each project. I am proud of the work we do here at Armstrong and am pleased to share these details with you. We welcome opportunities for partnership and collaboration, so please contact us to learn more about these cutting-edge innovations and how they might align with your needs.

  8. NASA Ames Research Center Overview

    NASA Technical Reports Server (NTRS)

    Boyd, Jack

    2006-01-01

    A general overview of the NASA Ames Research Center is presented. The topics include: 1) First Century of Flight, 1903-2003; 2) NACA Research Centers; 3) 65 Years of Innovation; 4) Ames Projects; 5) NASA Ames Research Center Today-founded; 6) Astrobiology; 7) SOFIA; 8) To Explore the Universe and Search for Life: Kepler: The Search for Habitable Planets; 9) Crew Exploration Vehicle/Crew Launch Vehicle; 10) Lunar Crater Observation and Sensing Satellite (LCROSS); 11) Thermal Protection Materials and Arc-Jet Facility; 12) Information Science & Technology; 13) Project Columbia Integration and Installation; 14) Air Traffic Management/Air Traffic Control; and 15) New Models-UARC.

  9. Safety climate and workplace violence prevention in state-run residential addiction treatment centers.

    PubMed

    Lipscomb, Jane A; London, M; Chen, Y M; Flannery, K; Watt, M; Geiger-Brown, J; Johnson, J V; McPhaul, K

    2012-01-01

    To examine the association between violence prevention safety climate measures and self reported violence toward staff in state-run residential addiction treatment centers. In mid-2006, 409 staff from an Eastern United States state agency that oversees a system of thirteen residential addiction treatment centers (ATCs) completed a self-administered survey as part of a comprehensive risk assessment. The survey was undertaken to identify and measure facility-level risk factors for violence, including staff perceptions of the quality of existing US Occupational Safety and Health Administration (OSHA) program elements, and ultimately to guide violence prevention programming. Key informant interviews and staff focus groups provided researchers with qualitative data with which to understand safety climate and violence prevention efforts within these work settings. The frequency with which staff reported experiencing violent behavior ranged from 37% for "clients raised their voices in a threatening way to you" to 1% for "clients pushed, hit, kicked, or struck you". Findings from the staff survey included the following significant predictors of violence: "client actively resisting program" (OR=2.34, 95% CI=1.35, 4.05), "working with clients for whom the history of violence is unknown" (OR=1.91, 95% CI=1.18, 3.09) and "management commitment to violence prevention" reported as "never/hardly ever" and "seldom or sometimes" (OR=4.30 and OR=2.31 respectively), while controlling for other covariates. We utilized a combination of qualitative and quantitative research methods to begin to describe the risk and potential for violence prevention in this setting. The prevalence of staff physical violence within the agency's treatment facilities was lower than would be predicted. Possible explanations include the voluntary nature of treatment programs; strong policies and consequences for resident behavior and ongoing quality improvement efforts. Quantitative data identified low

  10. Hospital-Based Comparative Effectiveness Centers: Translating Research into Practice to Improve the Quality, Safety and Value of Patient Care

    PubMed Central

    Williams, Kendal; Brennan, Patrick J.

    2010-01-01

    Hospital-based comparative effectiveness (CE) centers provide a model that clinical leaders can use to improve evidence-based practice locally. The model is used by integrated health systems outside the US, but is less recognized in the US. Such centers can identify and adapt national evidence-based policies for the local setting, create local evidence-based policies in the absence of national policies, and implement evidence into practice through health information technology (HIT) and quality initiatives. Given the increasing availability of CE evidence and incentives to meaningfully use HIT, the relevance of this model to US practitioners is increasing. This is especially true in the context of healthcare reform, which will likely reduce reimbursements for care deemed unnecessary by published evidence or guidelines. There are challenges to operating hospital-based CE centers, but many of these challenges can be overcome using solutions developed by those currently leading such centers. In conclusion, these centers have the potential to improve the quality, safety and value of care locally, ultimately translating into higher quality and more cost-effective care nationally. To better understand this potential, the current activity and impact of hospital-based CE centers in the US should be rigorously examined. PMID:20697961

  11. Center for Defect Physics - Energy Frontier Research Center (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema

    Stocks, G. Malcolm (Director, Center for Defect Physics in Structural Materials); CDP Staff

    2017-12-09

    'Center for Defect Physics - Energy Frontier Research Center' was submitted by the Center for Defect Physics (CDP) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CDP is directed by G. Malcolm Stocks at Oak Ridge National Laboratory, and is a partnership of scientists from nine institutions: Oak Ridge National Laboratory (lead); Ames Laboratory; Brown University; University of California, Berkeley; Carnegie Mellon University; University of Illinois, Urbana-Champaign; Lawrence Livermore National Laboratory; Ohio State University; and University of Tennessee. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  12. Center for Defect Physics - Energy Frontier Research Center (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stocks, G. Malcolm; Ice, Gene

    "Center for Defect Physics - Energy Frontier Research Center" was submitted by the Center for Defect Physics (CDP) to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CDP is directed by G. Malcolm Stocks at Oak Ridge National Laboratory, and is a partnership of scientists from eight institutions: Oak Ridge National Laboratory (lead); Ames Laboratory; University of California, Berkeley; Carnegie Mellon University; University of Illinois, Urbana-Champaign; Ohio State University;more » University of Georgia and University of Tennessee. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.« less

  13. Paul Carlson | Center for Cancer Research

    Cancer.gov

    Paul Carlson, Ph.D. March 28 Principal Investigator Laboratory of Mucosal Pathogens and Cellular Immunology Center for Biologics Evaluation and Research (CBER), FDA Topic:  "Research and Regulation of novel biologic products at the FDA's Center for Biologics Evaluation and Research"

  14. Glenn Research Center Human Research Program: Overview

    NASA Technical Reports Server (NTRS)

    Nall, Marsha M.; Myers, Jerry G.

    2013-01-01

    The NASA-Glenn Research Centers Human Research Program office supports a wide range of technology development efforts aimed at enabling extended human presence in space. This presentation provides a brief overview of the historical successes, current 2013 activities and future projects of NASA-GRCs Human Research Program.

  15. Private highway-rail grade crossing safety research and inquiry

    DOT National Transportation Integrated Search

    2010-02-01

    This report provides a summary of the private highway-rail grade crossing safety inquiry conducted by the United States Department of Transportation Federal Railroad Administration and the Volpe Center. The safety inquiry consisted of a series of pub...

  16. Herbal supplements: Research findings and safety.

    PubMed

    Pruitt, Rosanne; Lemanski, Ashley; Carroll, Adam

    2018-05-17

    Herbal supplements are used extensively worldwide without much awareness regarding their safety and efficacy. Extensive research to determine the safety, utility, and level of research support for commonly used herbs has culminated in an easily accessible summary chart for NP providers.

  17. NASA's engineering research centers and interdisciplinary education

    NASA Technical Reports Server (NTRS)

    Johnston, Gordon I.

    1990-01-01

    A new program of interactive education between NASA and the academic community aims to improve research and education, provide long-term, stable funding, and support cross-disciplinary and multi-disciplinary research. The mission of NASA's Office of Aeronautics, Exploration and Technology (OAET) is discussed and it is pointed out that the OAET conducts about 10 percent of its total R&D program at U.S. universities. Other NASA university-based programs are listed including the Office of Commercial Programs Centers for the Commercial Development of Space (CCDS) and the National Space Grant program. The importance of university space engineering centers and the selection of the nine current centers are discussed. A detailed composite description is provided of the University Space Engineering Research Centers. Other specialized centers are described such as the Center for Space Construction, the Mars Mission Research Center, and the Center for Intelligent Robotic Systems for Space Exploration. Approaches to educational outreach are discussed.

  18. Research and technology, Lewis Research Center

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The NASA Lewis Research Center's research and technology accomplishments for fiscal year 1985 are summarized. The report is organized into five major sections covering aeronautics, aerospace technology, spaceflight systems, space station systems, and computational technology support. This organization of the report roughly parallels the organization of the Center into directorates. Where appropriate, subheadings are used to identify special topics under the major headings. Results of all research and technology work performed during the fiscal year are contained in Lewis-published technical reports and presentations prepared either by Lewis scientists and engineers or by contractor personnel. In addition, significant results are presented by university faculty or graduate students in technical sessions and in journals of the technical societies. For the reader who desires more information about a particular subject, the Lewis contact will provide that information or references. In 1985, five Lewis products were selected by Research and Development Magazine for IR-100 awards. All are described and identified. In addition, the Lewis Distinguished Paper for 1984 to 1985, which was selected by the Chief Scientist and a research advisory board, is included and so identified.

  19. The Alexandria Research Center

    Treesearch

    John T. Cassady; William F. Mann

    1954-01-01

    This booklet describes the work of the Alexandria Research Center. The Center is a field unit of the Southern Forest Experiment Station, Forest Service, U. S. Department of Agriculture. Its special mission is to find practical solutions to the most urgent land-management problems of the cutover longleaf pine lands west of the Mississippi River. The...

  20. Center for Computing Research Summer Research Proceedings 2015.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, Andrew Michael; Parks, Michael L.

    2015-12-18

    The Center for Computing Research (CCR) at Sandia National Laboratories organizes a summer student program each summer, in coordination with the Computer Science Research Institute (CSRI) and Cyber Engineering Research Institute (CERI).

  1. Engaging Stakeholders in Patient-Centered Outcomes Research Regarding School-Based Sealant Programs.

    PubMed

    Chi, Donald L; Milgrom, Peter; Gillette, Jane

    2018-02-01

    Purpose: The purpose of this study was to use qualitative methods to describe the key lessons learned during the stakeholder engagement stage of planning a randomized clinical trial comparing outcomes of silver diamine fluoride (SDF) as an alternative to pit-and-fissure sealants in a school-based delivery system. Methods: Eighteen caregivers and community-based stakeholders with involvement in the school-based sealant program Sealants for Smiles from the state of Montana, were recruited for this qualitative study. United States (U.S.) Patient-Centered Outcomes Research Institute (PCORI) methodology standards were used to develop two semi-structured interview guides consisting of 6 questions. One interview guide was used for telephone interviews with caregivers and the second was used for a stakeholder focus group. Content analytic methods were used to analyze the data. Results: All participants believed that a study comparing SDF and sealants was clinically relevant. Non-caregiver stakeholders agreed with the proposed primary outcome of the study (caries prevention) whereas caregivers also emphasized the importance of child-centered outcomes such as minimizing dental anxiety associated with dental care. Stakeholders described potential concerns associated with SDF such as staining and perceptions of safety and discussed ways to address these concerns through community engagement, appropriate framing of the study, proper consent procedures, and ongoing safety monitoring during the trial. Finally, stakeholders suggested dissemination strategies such as direct communication of findings through professional organizations and encouraging insurance plans to incentivize SDF use by reimbursing dental providers. Conclusions: Involving key stakeholders in early planning is essential in developing patient-centered research questions, outcomes measures, study protocols, and dissemination plans for oral health research involving a school-based delivery system. Copyright © 2018

  2. Person-centered work environments, psychological safety, and positive affect in healthcare: a theoretical framework.

    PubMed

    Rathert, Cheryl; May, Douglas R

    2008-01-01

    We propose that in order to systematically improve healthcare quality, healthcare organizations (HCOs) need work environments that are person-centered: environments that support the careprovider as well as the patient. We further argue that HCOs have a moral imperative to provide a workplace where professional care standards can be achieved. We draw upon a large body of research from several disciplines to propose and articulate a theoretical framework that explains how the work environment should be related to the well-being of patients and careproviders, that is, the potential mediating mechanisms. Person-centered work environments include: 1. Climates for patient-centered care. 2. Climates for quality improvement. 3. Benevolent ethical climates. Such a work environment should support the provision of patient-centered care, and should lead to positive psychological states for careproviders, including psychological safety and positive affect. The model contributes to theory by specifying relationships between important organizational variables. The model can potentially contribute to practice by linking specific work environment attributes to outcomes for careproviders and patients.

  3. NASA Glenn Research Center Overview

    NASA Technical Reports Server (NTRS)

    Sehra, Arun K.

    2002-01-01

    This viewgraph presentation provides information on the NASA Glenn Research Center. The presentation is a broad overview, including the chain of command at the center, its aeronautics facilities, and the factors which shape aerospace product line integration at the center. Special attention is given to the future development of high fidelity probabilistic methods, and NPSS (Numerical Propulsion System Simulation).

  4. Protocol Coordinator | Center for Cancer Research

    Cancer.gov

    blood diseases and conditions; parasitic infections; rheumatic and inflammatory diseases; and rare and neglected diseases. CMRP’s collaborative approach to clinical research and the expertise and dedication of staff to the continuation and success of the program’s mission has contributed to improving the overall standards of public health on a global scale. The Clinical Monitoring Research Program (CMRP) provides comprehensive clinical and administrative support to the National Cancer Institute’s Center for Cancer Research’s (CCR) Protocol Support Office (PSO) for protocol development review, regulatory review, and the implementation process as well as oversees medical writing/editing, regulatory/ compliance, and protocol coordination/navigation and administration. KEY ROLES/RESPONSIBILITIES The Protocol Coordinator III: Provides programmatic and logistical support for the operations of clinical research for Phase I and Phase II clinical trials. Provides deployment of clinical support services for clinical research. Streamlines the protocol development timeline. Provides data and documents collection and compilation for regulatory filing with the U.S. Food and Drug Administration (FDA) and other regulatory authorities.. Provides technical review and report preparation. Provides administrative coordination and general logistical support for regulatory activities. Ensures the provision of training for investigators and associate staff to reinforce and enhance a Good Clinical Practices (GCP) culture. Oversees quality assurance and quality control, performs regulatory review of clinical protocols, informed consent and other clinical documents. Tracks and facilitates a portfolio of protocols through each process step (Institutional Review Board [IRB], Regulatory Affairs Compliance [RAC], Data Safety Monitoring Board [DSMB], Office of Protocol Services). Assists clinical investigators in preparing clinical research protocols, including writing and formatting consent

  5. Safety climate in dialysis centers in Saudi Arabia: a multicenter study.

    PubMed

    Taher, Saadi; Hejaili, Fayez; Karkar, Ayman; Shaheen, Faissal; Barahmien, Majdah; Al Saran, Khalid; Jondeby, Mohamed; Suleiman, Mohamed; Al Sayyari, Abdulla Ahmed

    2014-06-01

    The aim of this study was to assess the safety climate as perceived by nurses and physicians in the dialysis units in Saudi Arabia. This is a cross-sectional survey-based multicenter study using the Safety Climate Scale, which assesses the perception by staff of the prevailing climate of safety. We used 17 items in this survey. These could be further divided into 3 summative categories: (a) handling of errors and safety concerns (9 items), (b) leadership emphasis of safety (7 items), and (c) overall safety recommendation (1 item). The survey uses 5 Likert scale options (1, disagree strongly; 2, disagree slightly; 3, neutral; 4, agree slightly; and 5, agree strongly). There were 509 respondents--a response rate of 76.6% and 53.3% among nurses and physicians, respectively. The internal consistency using Cronbach α was 0.899. The overall mean (SD) of satisfaction with safety climate was higher among the nurses than the physicians (4.13 [1.1] and 4.05 [1.7], respectively; P = 0.029). The overall agreement rate was 73.8%, with more nurses than physicians agreeing that safety climate prevails the dialysis center (75.4% versus 72.1%, respectively; P = 0.047).The respondents perceived a stronger commitment to safety from their clinical area leaders than from senior leaders in the organization (76.2% and 72.4%, respectively). In addition, the physicians gave lower scores to more questions than the nurses particularly in 3 areas, namely, "leadership is driving us to be a safety-centered institution" (71.5% versus 76.5%; P = 0.037), "I am encouraged by my colleagues to report any patient safety concerns I may have" (67.4% versus 84.7%; P = 0.03), and "I know proper channels to ask questions about safety" (69.6% versus 87.2%; P = 0.002).The scores by the physicians in all the 3 summative categories were again less than the scores by the nurses, but this did not reach a statistical significance. The nurses had higher perceptions of a prevailing safety climate than the

  6. Proposal for continued research in intelligent machines at the Center for Engineering Systems Advanced Research (CESAR) for FY 1988 to FY 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisbin, C.R.

    1987-03-01

    This document reviews research accomplishments achieved by the staff of the Center for Engineering Systems Advanced Research (CESAR) during the fiscal years 1984 through 1987. The manuscript also describes future CESAR objectives for the 1988-1991 planning horizon, and beyond. As much as possible, the basic research goals are derived from perceived Department of Energy (DOE) needs for increased safety, productivity, and competitiveness in the United States energy producing and consuming facilities. Research areas covered include the HERMIES-II Robot, autonomous robot navigation, hypercube computers, machine vision, and manipulators.

  7. Aircraft fire safety research

    NASA Technical Reports Server (NTRS)

    Botteri, Benito P.

    1987-01-01

    During the past 15 years, very significant progress has been made toward enhancing aircraft fire safety in both normal and hostile (combat) operational environments. Most of the major aspects of the aircraft fire safety problem are touched upon here. The technology of aircraft fire protection, although not directly applicable in all cases to spacecraft fire scenarios, nevertheless does provide a solid foundation to build upon. This is particularly true of the extensive research and testing pertaining to aircraft interior fire safety and to onboard inert gas generation systems, both of which are still active areas of investigation.

  8. Chemical Safety for Sustainability: Research Action Plan

    EPA Pesticide Factsheets

    The Strategic Research Action Plan for EPA’s Chemical Safety for Sustainability research program presents the purpose, design and themes of the Agency’s research efforts to ensure safety in the design, manufacture and use of existing and future chemicals.

  9. Ames Research Center Publications: A Continuing Bibliography

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The Ames Research Center Publications: A Continuing Bibliography contains the research output of the Center indexed during 1981 in Scientific and Technical Aerospace Reports (STAR), Limited Scientific and Technical Aerospace Reports (LSTAR), International Aerospace Abstracts (IAA), and Computer Program Abstracts (CPA). This bibliography is published annually in an attempt to effect greater awareness and distribution of the Center's research output.

  10. NASA Propulsion Engineering Research Center, volume 1

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Over the past year, the Propulsion Engineering Research Center at The Pennsylvania State University continued its progress toward meeting the goals of NASA's University Space Engineering Research Centers (USERC) program. The USERC program was initiated in 1988 by the Office of Aeronautics and Space Technology to provide an invigorating force to drive technology advancements in the U.S. space industry. The Propulsion Center's role in this effort is to provide a fundamental basis from which the technology advances in propulsion can be derived. To fulfill this role, an integrated program was developed that focuses research efforts on key technical areas, provides students with a broad education in traditional propulsion-related science and engineering disciplines, and provides minority and other under-represented students with opportunities to take their first step toward professional careers in propulsion engineering. The program is made efficient by incorporating government propulsion laboratories and the U.S. propulsion industry into the program through extensive interactions and research involvement. The Center is comprised of faculty, professional staff, and graduate and undergraduate students working on a broad spectrum of research issues related to propulsion. The Center's research focus encompasses both current and advanced propulsion concepts for space transportation, with a research emphasis on liquid propellant rocket engines. The liquid rocket engine research includes programs in combustion and turbomachinery. Other space transportation modes that are being addressed include anti-matter, electric, nuclear, and solid propellant propulsion. Outside funding supports a significant fraction of Center research, with the major portion of the basic USERC grant being used for graduate student support and recruitment. The remainder of the USERC funds are used to support programs to increase minority student enrollment in engineering, to maintain Center

  11. Transfusion safety: is this the business of blood centers?

    PubMed

    Slapak, Colleen; Fredrich, Nanci; Wagner, Jeffrey

    2011-12-01

    ATSO is in a unique position to break down organizational silos between hospitals and blood centers through the development of a collaborative relationship between the two entities. Use of the TSO as blood center staff centralizes the role into a consultative position thereby retaining the independence of the hospitals. The TSO position then becomes a value-added service offered by the blood center designed to supplement processes within the hospital.Whether the TSO is based in the hospital or the blood center, improvements are gained through appropriate utilization of blood components, reductions in hospital costs, ongoing education of hospital staff involved in transfusion practice, and increased availability of blood products within the community. Implementation and standardization of best practice processes for ordering and administration of blood products developed by TSOs leads to improved patient outcomes. As a liaison between hospitals and blood centers, the TSO integrates the mutual goal of transfusion safety: the provision of the safest blood product to the right patient at the right time for the right reason.

  12. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into Aeronautics Research Mission Directorate Projects at NASA Glenn Research Center for 2015

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.; Morris, Jessica R.

    2015-01-01

    This document is intended to enable the more effective transition of NASA Glenn Research Center (GRC) SBIR technologies funded by the Small Business Innovation Research (SBIR) program as well as its companion, the Small Business Technology Transfer (STTR) program into NASA Aeronautics Research Mission Directorate (ARMD) projects. Primarily, it is intended to help NASA program and project managers find useful technologies that have undergone extensive research and development (RRD), through Phase II of the SBIR program; however, it can also assist non-NASA agencies and commercial companies in this process. aviation safety, unmanned aircraft, ground and flight test technique, low emissions, quiet performance, rotorcraft

  13. 77 FR 73541 - Safety Zone: Gilmerton Bridge Center Span Float-in, Elizabeth River; Norfolk, Portsmouth, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-11

    ...-AA00 Safety Zone: Gilmerton Bridge Center Span Float-in, Elizabeth River; Norfolk, Portsmouth, and... Gilmerton Bridge Center Span Float- in and bridge construction of span placement. This action is intended to... rulemaking (NPRM) proposing a safety zone in the Gilmerton Bridge Area (77 FR 43557) on September 5-9, 2012...

  14. People-Centered Language Recommendations for Sleep Research Communication.

    PubMed

    Fuoco, Rebecca E

    2017-04-01

    The growing embrace of patient-centered outcomes research (PCOR) in sleep medicine is a significant step forward for the field. In engaging and incorporating the unique perspectives of people with sleep disorders, PCOR enhances the relevance of findings and facilitates the uptake of research into practice. While centering research design around what matters most to people with sleep disorders is critical, research communication must be similarly people-centered. One approach is using "people-centered language" in both professional and public communications. People-centered language is rooted in sociolinguistic research demonstrating that language both reflects and shapes attitudes. People-centered language puts people first, is precise and neutral, and respects autonomy. By adhering to the language guidelines described in this article, sleep researchers will better serve the field's most important stakeholders. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  15. Protocol Coordinator | Center for Cancer Research

    Cancer.gov

    PROGRAM DESCRIPTION Within the Leidos Biomedical Research Inc.’s Clinical Research Directorate, the Clinical Monitoring Research Program (CMRP) provides high-quality comprehensive and strategic operational support to the high-profile domestic and international clinical research initiatives of the National Cancer Institute (NCI), National Institute of Allergy and Infectious Diseases (NIAID), Clinical Center (CC), National Heart, Lung and Blood Institute (NHLBI), National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Center for Advancing Translational Sciences (NCATS), National Institute of Neurological Disorders and Stroke (NINDS), and the National Institute of Mental Health (NIMH). Since its inception in 2001, CMRP’s ability to provide rapid responses, high-quality solutions, and to recruit and retain experts with a variety of backgrounds to meet the growing research portfolios of NCI, NIAID, CC, NHLBI, NIAMS, NCATS, NINDS, and NIMH has led to the considerable expansion of the program and its repertoire of support services. CMRP’s support services are strategically aligned with the program’s mission to provide comprehensive, dedicated support to assist National Institutes of Health researchers in providing the highest quality of clinical research in compliance with applicable regulations and guidelines, maintaining data integrity, and protecting human subjects. For the scientific advancement of clinical research, CMRP services include comprehensive clinical trials, regulatory, pharmacovigilance, protocol navigation and development, and programmatic and project management support for facilitating the conduct of 400+ Phase I, II, and III domestic and international trials on a yearly basis. These trials investigate the prevention, diagnosis, treatment of, and therapies for cancer, influenza, HIV, and other infectious diseases and viruses such as hepatitis C, tuberculosis, malaria, and Ebola virus; heart, lung, and blood

  16. Rocket Propulsion Research at Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Dawson, Virginia P.

    1992-01-01

    A small contingent of engineers at NASA Lewis Research Center pioneered in basic research on liquid propellants for rockets shortly after World War II. Carried on through the 1950s, this work influenced the important early decisions made by Abe Silverstein when he took charge of the Office of Space Flight Programs for NASA. He strongly supported the development of liquid hydrogen as a propulsion fuel in the face of resistance from Wernher von Braun. Members of the Lewis staff played an important role in bringing liquid hydrogen technology to the point of reliability through their management of the Centaur Program. This paper demonstrates how the personality and engineering intuition of Abe Silverstein shaped the Centaur program and left a lasting imprint on the laboratory research tradition. Many of the current leaders of Lewis Research Center received their first hands-on engineering experience when they worked on the Centaur program in the 1960s.

  17. Conflicts of interest in vaccine safety research.

    PubMed

    DeLong, Gayle

    2012-01-01

    Conflicts of interest (COIs) cloud vaccine safety research. Sponsors of research have competing interests that may impede the objective study of vaccine side effects. Vaccine manufacturers, health officials, and medical journals may have financial and bureaucratic reasons for not wanting to acknowledge the risks of vaccines. Conversely, some advocacy groups may have legislative and financial reasons to sponsor research that finds risks in vaccines. Using the vaccine-autism debate as an illustration, this article details the conflicts of interest each of these groups faces, outlines the current state of vaccine safety research, and suggests remedies to address COIs. Minimizing COIs in vaccine safety research could reduce research bias and restore greater trust in the vaccine program.

  18. Research and technology of the Langley Research Center

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Descriptions of the research and technology activities at the Langley Research Center are given. Topics include laser development, aircraft design, aircraft engines, aerodynamics, remote sensing, space transportation systems, and composite materials.

  19. Alternative Fuels Data Center: Hydrogen Research and Development

    Science.gov Websites

    Research and Development to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Research and Development on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Research and Development on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Research and Development on Google

  20. Keeping nurse researchers safe: workplace health and safety issues.

    PubMed

    Barr, Jennieffer; Welch, Anthony

    2012-07-01

    This article is a report of a qualitative study of workplace health and safety issues in nursing research. Researcher health and safety have become increasing concerns as there is an increased amount of research undertaken in the community and yet there is a lack of appropriate guidelines on how to keep researchers safe when undertaking fieldwork. This study employed a descriptive qualitative approach, using different sources of data to find any references to researcher health and safety issues. A simple descriptive approach to inquiry was used for this study. Three approaches to data collection were used: interviews with 15 researchers, audits of 18 ethics applications, and exploration of the literature between 1992 and 2010 for examples of researcher safety issues. Data analysis from the three approaches identified participant comments, narrative descriptions or statements focused on researcher health and safety. Nurse researchers' health and safety may be at risk when conducting research in the community. Particular concern involves conducting sensitive research where researchers are physically at risk of being harmed, or being exposed to the development of somatic symptoms. Nurse researchers may perceive the level of risk of harm as lower than the actual or potential harm present in research. Nurse researchers do not consistently implement risk assessment before and during research. Researcher health and safety should be carefully considered at all stages of the research process. Research focusing on sensitive data and vulnerable populations need to consider risk minimization through strategies such as appropriate researcher preparation, safety during data collection, and debriefing if required. © 2012 Blackwell Publishing Ltd.

  1. Shared Decision Making in the Emergency Department: Development of a Policy-Relevant Patient-Centered Research Agenda

    PubMed Central

    Grudzen, Corita R.; Anderson, Jana R.; Carpenter, Christopher R.; Hess, Erik P.

    2016-01-01

    SUMMARY SDM in emergency medicine has the potential to improve the quality, safety, and outcomes of ED patients. Given that the ED is the gateway to care for patients with a variety of illnesses and injuries, SDM in the ED is relevant to numerous healthcare disciplines. We conducted a patient-centered one-day conference to define and develop a high-priority, timely research agenda. Participants included researchers, patients, stakeholder organizations, and content experts across many areas of medicine, health policy agencies, and federal and foundation funding organizations. The results of this conference published in this issue of Academic Emergency Medicine will provide an essential summary of the future research priorities for SDM to increase quality of care and patient-centered outcomes. PMID:27396583

  2. Shaping NASA's Kennedy Space Center Safety for the Future

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, Paul; McDaniel, Laura; Smith, Maynette

    2011-01-01

    With the completion of the Space Shuttle Program, the Kennedy Space Center (KSC) safety function will be required to evolve beyond the single launch vehicle launch site focus that has held prominence for almost fifty years. This paper will discuss how that evolution is taking place. Specifically, we will discuss the future of safety as it relates to a site that will have multiple, very disparate, functions. These functions will include new business; KSC facilities not under the control of NASA; traditional payload and launch vehicle processing; and, operations conducted by NASA personnel, NASA contractors or a combination of both. A key element in this process is the adaptation of the current KSC set of safety requirements into a multi-faceted set that can address each of the functions above, while maintaining our world class safety environment. One of the biggest challenges that will be addressed is how to protect our personnel and property without dictating how other Non-NASA organizations protect their own employees and property. The past history of KSC Safety will be described and how the lessons learned from previous programs will be applied to the future. The lessons learned from this process will also be discussed as information for other locations that may undergo such a transformation.

  3. Improving Performance of the System Safety Function at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Kiessling, Ed; Tippett, Donald D.; Shivers, Herb

    2004-01-01

    The Columbia Accident Investigation Board (CAIB) determined that organizational and management issues were significant contributors to the loss of Space Shuttle Columbia. In addition, the CAIB observed similarities between the organizational and management climate that preceded the Challenger accident and the climate that preceded the Columbia accident. To prevent recurrence of adverse organizational and management climates, effective implementation of the system safety function is suggested. Attributes of an effective system safety program are presented. The Marshall Space Flight Center (MSFC) system safety program is analyzed using the attributes. Conclusions and recommendations for improving the MSFC system safety program are offered in this case study.

  4. Model for a patient-centered comparative effectiveness research center.

    PubMed

    Costlow, Monica R; Landsittel, Douglas P; James, A Everette; Kahn, Jeremy M; Morton, Sally C

    2015-04-01

    This special report describes the systematic approach the University of Pittsburgh and the University of Pittsburgh Medical Center (UPMC) undertook in creating an infrastructure for comparative effectiveness and patient-centered outcomes research resources. We specifically highlight the administrative structure, communication and training opportunities, stakeholder engagement resources, and support services offered. © 2015 Wiley Periodicals, Inc.

  5. Secretary | Center for Cancer Research

    Cancer.gov

    The Basic Science Program (BSP) pursues independent, multidisciplinary research programs in basic or applied molecular biology, immunology, retrovirology, cancer biology, or human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick national Laboratory for Cancer Research (FNLCR). The BSP Office provides

  6. Gear and Transmission Research at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Townsend, Dennis P.

    1997-01-01

    This paper is a review of some of the research work of the NASA Lewis Research Center Mechanical Components Branch. It includes a brief review of the NASA Lewis Research Center and the Mechanical Components Branch. The research topics discussed are crack propagation of gear teeth, gear noise of spiral bevel and other gears, design optimization methods, methods we have investigated for transmission diagnostics, the analytical and experimental study of gear thermal conditions, the analytical and experimental study of split torque systems, the evaluation of several new advanced gear steels and transmission lubricants and the evaluation of various aircraft transmissions. The area of research needs for gearing and transmissions is also discussed.

  7. NASA Langley Research Center's Simulation-To-Flight Concept Accomplished through the Integration Laboratories of the Transport Research Facility

    NASA Technical Reports Server (NTRS)

    Martinez, Debbie; Davidson, Paul C.; Kenney, P. Sean; Hutchinson, Brian K.

    2004-01-01

    The Flight Simulation and Software Branch (FSSB) at NASA Langley Research Center (LaRC) maintains the unique national asset identified as the Transport Research Facility (TRF). The TRF is a group of facilities and integration laboratories utilized to support the LaRC's simulation-to-flight concept. This concept incorporates common software, hardware, and processes for both groundbased flight simulators and LaRC s B-757-200 flying laboratory identified as the Airborne Research Integrated Experiments System (ARIES). These assets provide Government, industry, and academia with an efficient way to develop and test new technology concepts to enhance the capacity, safety, and operational needs of the ever-changing national airspace system. The integration of the TRF enables a smooth continuous flow of the research from simulation to actual flight test.

  8. Information Scanning and Processing at the Nuclear Safety Information Center.

    ERIC Educational Resources Information Center

    Parks, Celia; Julian, Carol

    This report is a detailed manual of the information specialist's duties at the Nuclear Safety Information Center. Information specialists scan the literature for documents to be reviewed, procure the documents (books, journal articles, reports, etc.), keep the document location records, and return the documents to the plant library or other…

  9. Science Writer | Center for Cancer Research

    Cancer.gov

    The Center for Cancer Research (CCR) is seeking a science writer to help us tell our stories of cancer research discoveries, clinical advances and our patients, who are participating in clinical trials.  CCR is the National Cancer Institute’s internal cancer center located on campuses in Bethesda and Frederick, Maryland.  The writing supports communications for our website,

  10. 34 CFR 413.1 - What is the National Center or Centers for Research in Vocational Education?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Vocational Education (National Center) in the areas of— (a) Applied research and development; and (b... 34 Education 3 2010-07-01 2010-07-01 false What is the National Center or Centers for Research in... RESEARCH IN VOCATIONAL EDUCATION General § 413.1 What is the National Center or Centers for Research in...

  11. Northern Prairie Wildlife Research Center

    USGS Publications Warehouse

    ,

    2009-01-01

    The Northern Prairie Wildlife Research Center (NPWRC) conducts integrated research to fulfill the Department of the Interior's responsibilities to the Nation's natural resources. Located on 600 acres along the James River Valley near Jamestown, North Dakota, the NPWRC develops and disseminates scientific information needed to understand, conserve, and wisely manage the Nation's biological resources. Research emphasis is primarily on midcontinental plant and animal species and ecosystems of the United States. During the center's 40-year history, its scientists have earned an international reputation for leadership and expertise on the biology of waterfowl and grassland birds, wetland ecology and classification, mammalian behavior and ecology, grassland ecosystems, and application of statistics and geographic information systems. To address current science challenges, NPWRC scientists collaborate with researchers from other U.S. Geological Survey centers and disciplines (Biology, Geography, Geology, and Water) and with biologists and managers in the Department of the Interior (DOI), other Federal agencies, State agencies, universities, and nongovernmental organizations. Expanding upon its scientific expertise and leadership, the NPWRC is moving in new directions, including invasive plant species, restoration of native habitats, carbon sequestration and marketing, and ungulate management on DOI lands.

  12. Center for Nuclear Medicine Research in Alzheimer`s Disease Health Sciences Center, West Virginia University. Environmental Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-04-01

    The Environmental Assessment (EA) of the Center for Nuclear Medicine Research in Alzheimer`s Disease (CNMR) at the Health Sciences Center, at West Virginia University in Morgantown, West Virginia for the construction and operation was prepared by DOE. The EA documents analysis of the environmental and socioeconomic impacts that might occur as a result of these actions, and characterizes potential impacts on the environment. In the EA, DOE presents its evaluation of potential impacts of construction and operation of the CNMR on health and safety of both workers and the public, as well as on the external environment. Construction impacts includemore » the effects of erosion, waste disposal, air emissions, noise, and construction traffic and parking. Operational impacts include the effects of waste generation (domestic, sanitary, hazardous, medical/biological, radioactive and mixed wastes), radiation exposures, air emissions (radioactive, criteria, and air toxics), noise, and new workers. No sensitive resources (wetlands, special sources of groundwater, protected species) exist in the area of project effect.« less

  13. Structural mechanics research at the Langley Research Center

    NASA Technical Reports Server (NTRS)

    Stephens, W. B.

    1976-01-01

    The contributions of NASA's Langley Research Center in areas of structural mechanics were traced from its NACA origins in 1917 to the present. The developments in structural mechanics technology since 1940 were emphasized. A brief review of some current research topics were discussed as well as anticipated near-term research projects.

  14. NASA Langley Research Center outreach in astronautical education

    NASA Technical Reports Server (NTRS)

    Duberg, J. E.

    1976-01-01

    The Langley Research Center has traditionally maintained an active relationship with the academic community, especially at the graduate level, to promote the Center's research program and to make graduate education available to its staff. Two new institutes at the Center - the Joint Institute for Acoustics and Flight Sciences, and the Institute for Computer Applications - are discussed. Both provide for research activity at the Center by university faculties. The American Society of Engineering Education Summer Faculty Fellowship Program and the NASA-NRC Postdoctoral Resident Research Associateship Program are also discussed.

  15. Research and technology at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    1989-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, Kennedy Space Center is placing increasing emphasis on the Center's research and technology program. In addition to strengthening those areas of engineering and operations technology that contribute to safer, more efficient, and more economical execution of current mission, the technical tools are developed needed to execute Center's mission relative to future programs. The Engineering Development Directorate encompasses most of the laboratories and other Center resources that are key elements of research and technology program implementation and is responsible for implementation of the majority of the projects in this Kennedy Space Center 1989 Annual Report.

  16. CCR Interns | Center for Cancer Research

    Cancer.gov

    The Cancer Research Interns (CRI) Summer Program was inaugurated in 2004 to provide an open door for students looking for an initial training opportunity. The goal is to enhance diversity within the CCR (Center for Cancer Research) training program and we have placed 338 students from 2004 to 2017, in labs and branches across the division.  The CCR and the Center for Cancer

  17. Anthropology in Agricultural Health and Safety Research and Intervention.

    PubMed

    Arcury, Thomas

    2017-01-01

    Agriculture remains a dangerous industry, even as agricultural science and technology continue to advance. Research that goes beyond technological changes to address safety culture and policy are needed to improve health and safety in agriculture. In this commentary, I consider the potential for anthropology to contribute to agricultural health and safety research by addressing three aims: (1) I briefly consider what the articles in this issue of the Journal of Agromedicine say about anthropologists in agricultural health and safety; (2) I discuss what anthropologists can add to agricultural health and safety research; and (3) I examine ways in which anthropologists can participate in agricultural health and safety research. In using their traditions of rigorous field research to understand how those working in agriculture perceive and interpret factors affecting occupational health and safety (their "emic" perspective), and translating this perspective to improve the understanding of occupational health professionals and policy makers (an "etic" perspective), anthropologists can expose myths that limit improvements in agricultural health and safety. Addressing significant questions, working with the most vulnerable agricultural communities, and being outside establishment agriculture provide anthropologists with the opportunity to improve health and safety policy and regulation in agriculture.

  18. Safety management of complex research operators

    NASA Technical Reports Server (NTRS)

    Brown, W. J.

    1981-01-01

    Complex research and technology operations present varied potential hazards which are addressed in a disciplined, independent safety review and approval process. Potential hazards vary from high energy fuels to hydrocarbon fuels, high pressure systems to high voltage systems, toxic chemicals to radioactive materials and high speed rotating machinery to high powered lasers. A Safety Permit System presently covers about 600 potentially hazardous operations. The Safety Management Program described is believed to be a major factor in maintaining an excellent safety record.

  19. Overview of safety research

    NASA Technical Reports Server (NTRS)

    Enders, J. H.

    1978-01-01

    Aircraft safety is reviewed by first establishing a perspective of air transportation accidents as a function of calendar year, geographic area, and phase of flight, and then by describing the threats to safety and NASA research underway in the three representative areas of engine operational problems, meteorological phenomena, and fire. Engine rotor burst protection, aircraft nacelle fire extinguishment, the aircraft-weather interface, severe weather wind shears and turbulence, clear air turbulence, and lightning are among the topics covered. Fire impact management through fire resistant materials technology development is emphasized.

  20. NASA's aviation safety research and technology program

    NASA Technical Reports Server (NTRS)

    Fichtl, G. H.

    1977-01-01

    Aviation safety is challenged by the practical necessity of compromising inherent factors of design, environment, and operation. If accidents are to be avoided these factors must be controlled to a degree not often required by other transport modes. The operational problems which challenge safety seem to occur most often in the interfaces within and between the design, the environment, and operations where mismatches occur due to ignorance or lack of sufficient understanding of these interactions. Under this report the following topics are summarized: (1) The nature of operating problems, (2) NASA aviation safety research, (3) clear air turbulence characterization and prediction, (4) CAT detection, (5) Measurement of Atmospheric Turbulence (MAT) Program, (6) Lightning, (7) Thunderstorm gust fronts, (8) Aircraft ground operating problems, (9) Aircraft fire technology, (10) Crashworthiness research, (11) Aircraft wake vortex hazard research, and (12) Aviation safety reporting system.

  1. 70 Years of Aeropropulsion Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Reddy, Dhanireddy R.

    2013-01-01

    This paper presents a brief overview of air-breathing propulsion research conducted at the NASA Glenn Research Center (GRC) over the past 70 years. It includes a historical perspective of the center and its various stages of propulsion research in response to the countrys different periods of crises and growth opportunities. GRCs research and technology development covered a broad spectrum, from a short-term focus on improving the energy efficiency of aircraft engines to advancing the frontier technologies of high-speed aviation in the supersonic and hypersonic speed regimes. This paper highlights major research programs, showing their impact on industry and aircraft propulsion, and briefly discusses current research programs and future aeropropulsion technology trends in related areas

  2. The Armstrong Institute: An Academic Institute for Patient Safety and Quality Improvement, Research, Training, and Practice.

    PubMed

    Pronovost, Peter J; Holzmueller, Christine G; Molello, Nancy E; Paine, Lori; Winner, Laura; Marsteller, Jill A; Berenholtz, Sean M; Aboumatar, Hanan J; Demski, Renee; Armstrong, C Michael

    2015-10-01

    Academic medical centers (AMCs) could advance the science of health care delivery, improve patient safety and quality improvement, and enhance value, but many centers have fragmented efforts with little accountability. Johns Hopkins Medicine, the AMC under which the Johns Hopkins University School of Medicine and the Johns Hopkins Health System are organized, experienced similar challenges, with operational patient safety and quality leadership separate from safety and quality-related research efforts. To unite efforts and establish accountability, the Armstrong Institute for Patient Safety and Quality was created in 2011.The authors describe the development, purpose, governance, function, and challenges of the institute to help other AMCs replicate it and accelerate safety and quality improvement. The purpose is to partner with patients, their loved ones, and all interested parties to end preventable harm, continuously improve patient outcomes and experience, and eliminate waste in health care. A governance structure was created, with care mapped into seven categories, to oversee the quality and safety of all patients treated at a Johns Hopkins Medicine entity. The governance has a Patient Safety and Quality Board Committee that sets strategic goals, and the institute communicates these goals throughout the health system and supports personnel in meeting these goals. The institute is organized into 13 functional councils reflecting their behaviors and purpose. The institute works daily to build the capacity of clinicians trained in safety and quality through established programs, advance improvement science, and implement and evaluate interventions to improve the quality of care and safety of patients.

  3. Research Lasers and Air Traffic Safety: Issues, Concerns and Responsibilities of the Research Community

    NASA Technical Reports Server (NTRS)

    Nessler, Phillip J., Jr.

    1998-01-01

    The subject of outdoor use of lasers relative to air traffic has become a diverse and dynamic topic. During the past several decades, the use of lasers in outdoor research activities have increased significantly. Increases in the outdoor use of lasers and increases in air traffic densities have changed the levels of risk involved. To date there have been no documented incidents of air traffic interference from research lasers; however, incidents involving display lasers have shown a marked increase. As a result of the national response to these incidents, new concerns over lasers have arisen. Through the efforts of the SAE G-10T Laser Safety Hazards Subcommittee and the ANSI Z136.6 development committee, potential detrimental effects to air traffic beyond the traditional eye damage concerns have been identified. An increased emphasis from the Federal Aviation Administration (FAA), the Center for Devices and Radiological Hazards (CDRH), and the National Transportation Safety Board (NTSB) along with increased concern by the public have resulted in focused scrutiny of potential hazards presented by lasers. The research community needs to rethink the traditional methods of risk evaluation and application of protective measures. The best current approach to assure adequate protection of air traffic is the application of viable hazard and risk analysis and the use of validated protective measures. Standards making efforts and regulatory development must be supported by the research community to assure that reasonable measures are developed. Without input, standards and regulations can be developed that are not compatible with the needs of the research community. Finally, support is needed for the continued development and validation of protective measures.

  4. Overview of Federal Motor Carrier Safety Administration safety training research for new entrant motor carriers : [research brief].

    DOT National Transportation Integrated Search

    2015-07-01

    In 2002, the Federal Motor Carrier Safety Administration (FMCSA) issued the New Entrant Program Interim Final Rule in response to the requirement in the Motor Carrier Safety Improvement Act of 1999. The requirement in the Act was based on research fi...

  5. National Center on Sleep Disorders Research

    MedlinePlus

    ... for Updates The National Center on Sleep Disorders Research (NCSDR) Located within the National Heart, Lung, and ... key functions: research, training, technology transfer, and coordination. Research Sleep disorders span many medical fields, requiring multidisciplinary ...

  6. Research and technology activities at Ames Research Center's Biomedical Research Division

    NASA Technical Reports Server (NTRS)

    Martello, N.

    1985-01-01

    Various research and technology activities at Ames Research Center's Biomedical Research Division are described. Contributions to the Space Administration's goals in the life sciences include descriptions of research in operational medicine, cardiovascular deconditioning, motion sickness, bone alterations, muscle atrophy, fluid and electrolyte changes, radiation effects and protection, behavior and performance, gravitational biology, and life sciences flight experiments.

  7. Cornell Center for Materials Research - An NSF MRSEC

    Science.gov Websites

    Cornell Center for Materials Research Cornell Center for Materials Research | An NSF MRSEC Search Research Atomic Membranes for 3D Systems Structured Materials for Strong Light-Matter Interactions Mechanisms, Materials, and Devices for Spin Manipulation Seed Projects - Exploratory Research Acknowledging

  8. Staff Clinicians | Center for Cancer Research

    Cancer.gov

    The Neuro-Oncology Branch (NOB), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH) is seeking staff clinicians to provide high-quality patient care for individuals with primary central nervous system (CNS) malignancies.  The NOB is comprised of a multidisciplinary team of physicians, healthcare providers, and scientists who are dedicated to developing new therapies and improving outcomes for patients with primary brain and spinal cord tumors. The NOB is one of the first trans-institutional initiatives at the National Institutes of Health. The Branch is focused on developing an integrated clinical, translational, and basic research program that engages the strengths and resources of the National Cancer Institutes (NCI) and the National Institutes of Neurological Disorders and Stroke (NINDS) for the purpose of developing novel experimental therapeutics for individuals with primary central nervous system (CNS) malignancies. About NCI's Center for Cancer Research The Center for Cancer Research (CCR) is the intramural research component of the National Cancer Institute (NCI).  CCR’s enabling infrastructure facilitates clinical studies at the NIH Clinical Center, the world’s largest dedicated clinical research complex; provides extensive opportunities for collaboration; and allows scientists and clinicians to undertake high-risk, high-impact laboratory- and clinic-based investigations.  Investigators are supported by a wide array of intellectual, technological, and research resources, including surgical and pathology facilities, animal facilities, and dedicated, high-quality technology cores in areas such as imaging/microscopy, chemistry/purification, mass spectrometry, flow cytometry, genomics/DNA sequencing, transgenics and knock-out mice, arrays/molecular profiling, and human genetics/bioinformatics.  For an overview of CCR, please visit http://ccr.cancer.gov/.

  9. [RABIN MEDICAL CENTER - A TERTIARY CENTER OF EXCELLENCE IN SERVICE, TEACHING AND RESEARCH].

    PubMed

    Niv, Yaron; Halpern, Eyran

    2017-04-01

    Rabin Medical Center (RMC) belongs to Clalit Health Services and is a tertiary, academic medical center with all the facilities of modern and advanced medicine. Annually in the RMC, 650,000 patients are treated in the outpatient clinics, and 100,000 patients are hospitalized in the hospital departments. All these patients are treated by 4500 devoted staff members, including 1000 physicians and 2000 nurses. RMC is one of the largest, centrally located medical centers for medical and nursing students' education in Israel, taking place in clinical departments, as well as in basic sciences courses. We also have a nursing school attached to the hospital. Our vision supports excellence in research. We have a special Research Department that supports RMC researchers, with research coordinators, and all the relevant facilities to assist in clinical and basic science studies. We also promote collaboration efforts with many academic centers in Israel and abroad. The scope of RMC research is broad, including 700 new studies every year and 1500 active studies currently. This issue of Harefuah is dedicated to the clinical and basic science research conducted at RMC with original papers presenting research performed by our departments and laboratories.

  10. Aviation Safety/Automation Program Conference

    NASA Technical Reports Server (NTRS)

    Morello, Samuel A. (Compiler)

    1990-01-01

    The Aviation Safety/Automation Program Conference - 1989 was sponsored by the NASA Langley Research Center on 11 to 12 October 1989. The conference, held at the Sheraton Beach Inn and Conference Center, Virginia Beach, Virginia, was chaired by Samuel A. Morello. The primary objective of the conference was to ensure effective communication and technology transfer by providing a forum for technical interchange of current operational problems and program results to date. The Aviation Safety/Automation Program has as its primary goal to improve the safety of the national airspace system through the development and integration of human-centered automation technologies for aircraft crews and air traffic controllers.

  11. Propulsion Research at the Propulsion Research Center of the NASA Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Blevins, John; Rodgers, Stephen

    2003-01-01

    The Propulsion Research Center of the NASA Marshall Space Flight Center is engaged in research activities aimed at providing the bases for fundamental advancement of a range of space propulsion technologies. There are four broad research themes. Advanced chemical propulsion studies focus on the detailed chemistry and transport processes for high-pressure combustion, and on the understanding and control of combustion stability. New high-energy propellant research ranges from theoretical prediction of new propellant properties through experimental characterization propellant performance, material interactions, aging properties, and ignition behavior. Another research area involves advanced nuclear electric propulsion with new robust and lightweight materials and with designs for advanced fuels. Nuclear electric propulsion systems are characterized using simulated nuclear systems, where the non-nuclear power source has the form and power input of a nuclear reactor. This permits detailed testing of nuclear propulsion systems in a non-nuclear environment. In-space propulsion research is focused primarily on high power plasma thruster work. New methods for achieving higher thrust in these devices are being studied theoretically and experimentally. Solar thermal propulsion research is also underway for in-space applications. The fourth of these research areas is advanced energetics. Specific research here includes the containment of ion clouds for extended periods. This is aimed at proving the concept of antimatter trapping and storage for use ultimately in propulsion applications. Another activity in this involves research into lightweight magnetic technology for space propulsion applications.

  12. Center Links Academic/Industry Research.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1980

    1980-01-01

    Discussed is the establishment of a Center University of MassachusettsIndustry Research on Polymers (CUMIRP) at the University's Amherst campus. CUMIRP involves the university, a group of 13 corporations, and the National Science Foundation working together to forge closer research ties between unversities and industry. (Author/DS)

  13. Research: Hyperactivity, Placement Centers

    ERIC Educational Resources Information Center

    Nation's Schools and Colleges, 1975

    1975-01-01

    A diet that emphasizes the elimination of food containing artificial coloring and flavoring from meals served to hyperactive children has met with success in preliminary studies; college placement centers are advised to shift their emphasis from job research and counseling. (Author/MLF)

  14. John M. Eisenberg Patient Safety Awards. System innovation: Veterans Health Administration National Center for Patient Safety.

    PubMed

    Heget, Jeffrey R; Bagian, James P; Lee, Caryl Z; Gosbee, John W

    2002-12-01

    In 1998 the Veterans Health Administration (VHA) created the National Center for Patient Safety (NCPS) to lead the effort to reduce adverse events and close calls systemwide. NCPS's aim is to foster a culture of safety in the Department of Veterans Affairs (VA) by developing and providing patient safety programs and delivering standardized tools, methods, and initiatives to the 163 VA facilities. To create a system-oriented approach to patient safety, NCPS looked for models in fields such as aviation, nuclear power, human factors, and safety engineering. Core concepts included a non-punitive approach to patient safety activities that emphasizes systems-based learning, the active seeking out of close calls, which are viewed as opportunities for learning and investigation, and the use of interdisciplinary teams to investigate close calls and adverse events through a root cause analysis (RCA) process. Participation by VA facilities and networks was voluntary. NCPS has always aimed to develop a program that would be applicable both within the VA and beyond. NCPS's full patient safety program was tested and implemented throughout the VA system from November 1999 to August 2000. Program components included an RCA system for use by caregivers at the front line, a system for the aggregate review of RCA results, information systems software, alerts and advisories, and cognitive acids. Following program implementation, NCPS saw a 900-fold increase in reporting of close calls of high-priority events, reflecting the level of commitment to the program by VHA leaders and staff.

  15. Establishing a Center to Support Faculty Research

    ERIC Educational Resources Information Center

    Goodwin, Laura; Kozleski, Elizabeth; Muth, Rodney; Rhodes, Lynn K.; White, Kim Kennedy

    2005-01-01

    This article describes the establishment in fall 2002 of a School of Education Research Center designed to support faculty in increasing productivity and quality in research. Details are provided about center goals, services, staffing, space, resources, and logistics during the first year of operation. In addition, data are shared about faculty…

  16. Rethinking the Research Paper in the Writing Center.

    ERIC Educational Resources Information Center

    McDonald, James C.

    1994-01-01

    Discusses the problems presented to writing center tutors by traditional research paper assignments. Recounts typical definitions of student research papers according to current-traditional rhetoric. Advocates writing centers helping students transform research papers into meaning-making activities in which students construct knowledge. (HB)

  17. Safety in the Chemical Laboratory

    ERIC Educational Resources Information Center

    Steere, Norman V.

    1969-01-01

    Presents the Safety Guide used in the Research Center at Monsanto Chemical Company (St. Louis). Topics include: general safety practices, safety glasses and shoes, respiratory protection, electrical wiring, solvent handling and waste disposal. Procedures are given for evacuating, "tagging out, and "locking out. Special mention is given to…

  18. Center Overview and UAV Highlights at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Feng, Deborah; Yan, Jerry Chi Yiu

    2017-01-01

    The PowerPoint presentation gives an overview of NASA Ames Research Center and its core competencies, as well as some of the highlights of Unmanned Aerial Vehicle (UAV) and Unmanned Aircraft Systems (UAS) accomplishments and innovations by researchers at Ames.

  19. 77 FR 35900 - Safety Zone; Gilmerton Bridge Center Span Float-in, Elizabeth River; Norfolk, Portsmouth, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-15

    ...-AA00 Safety Zone; Gilmerton Bridge Center Span Float-in, Elizabeth River; Norfolk, Portsmouth, and... navigable waters during the Gilmerton Bridge Center Span Float- in and bridge construction of span placement... the existing bascule spans from the Gilmerton Bridge, transport the new center span from the Eastern...

  20. Compendium of Traffic Safety Research Projects 1985-2013.

    DOT National Transportation Integrated Search

    2014-01-01

    Through many name changes, from the Office of Program Development and Evaluation, the Office of Research and Evaluation, to the current, Office of Behavioral Safety Research, our focus has remained on improving the safety of drivers, occupants, pedes...

  1. Secretary | Center for Cancer Research

    Cancer.gov

    The Basic Science Program (BSP) pursues independent, multidisciplinary research programs in basic or applied molecular biology, immunology, retrovirology, cancer biology, or human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick national Laboratory for Cancer Research (FNLCR). The BSP Office provides procurement and logistical assistance in support of the research activities of the Center for Cancer Research.KEY ROLES/RESPONSIBILITIES The Secretary III will: Provide heavy-volume procurement support to a large customer base of laboratory staff, both Leidos Biomed and CCR (gov’t), using blanket orders, purchase requisitions, credit card, and online warehouse system Data entry into appropriate financial system component (CostPoint, Cor360), status checks on orders, maintenance of orders log, reconciliation of credit card transactions, maintenance of electronic filing systems Providing logistical support for the facilitation of travel packages (both pre-travel and post travel) for Leidos Biomed employees, as well as the coordination of seminar speakers and subsequent reimbursements Composing and answering emails/correspondence Communicating with all levels of personnel, both verbally and in writing, to gather and clearly convey information

  2. USDOT Federal Railroad Administration's third research needs workshop on highway-rail grade crossing safety and trespass prevention : Volume 2 : appendices

    DOT National Transportation Integrated Search

    2010-01-01

    On July 14-16, 2009 the Volpe Center hosted the United States Department of Transportation (US DOT) Federal Railroad Administrations (FRA) Third Research Needs Workshop on Highway-Rail Grade Crossing Safety and Trespass Prevention (workshop). The ...

  3. Advancing Mental Health Research: Washington University's Center for Mental Health Services Research

    ERIC Educational Resources Information Center

    Proctor, Enola K.; McMillen, Curtis; Haywood, Sally; Dore, Peter

    2008-01-01

    Research centers have become a key component of the research infrastructure in schools of social work, including the George Warren Brown School of Social Work at Washington University. In 1993, that school's Center for Mental Health Services Research (CMHSR) received funding from the National Institute of Mental Health (NIMH) as a Social Work…

  4. Safety climate and attitude as evaluation measures of organizational safety.

    PubMed

    Isla Díaz, R; Díaz Cabrera, D

    1997-09-01

    The main aim of this research is to develop a set of evaluation measures for safety attitudes and safety climate. Specifically it is intended: (a) to test the instruments; (b) to identify the essential dimensions of the safety climate in the airport ground handling companies; (c) to assess the quality of the differences in the safety climate for each company and its relation to the accident rate; (d) to analyse the relationship between attitudes and safety climate; and (e) to evaluate the influences of situational and personal factors on both safety climate and attitude. The study sample consisted of 166 subjects from three airport companies. Specifically, this research was centered on ground handling departments. The factor analysis of the safety climate instrument resulted in six factors which explained 69.8% of the total variance. We found significant differences in safety attitudes and climate in relation to type of enterprise.

  5. 2012-13 annual report : Louisiana Transportation Research Center.

    DOT National Transportation Integrated Search

    2013-01-01

    The Louisiana Transportation Research Center (LTRC) is a research, technology transfer, and training center administered jointly by the Louisiana Department of Transportation and Development (DOTD) and Louisiana State University (LSU). LTRC provides ...

  6. Research Nurse | Center for Cancer Research

    Cancer.gov

    We are looking for a Research Nurse (Accrual Site Coordinator) to join our neuro-oncology clinical team to help us provide administrative and coordination support for the Brain Tumor Trials Collaborative (BTTC). Duties include, but are not limited to, monitoring and overseeing activities pertaining to clinical protocols and administrative operations supporting the BTTC, with limited interaction with study participants.  Be part of our mission to solve the most important, challenging and neglected problems in modern cancer research and patient care. The National Cancer Institute’s Center for Cancer Research is a world-leading cancer research organization working toward scientific breakthroughs at medicine’s cutting edge. Our scientists can’t do it alone. It takes an extraordinary team of researchers, clinical experts and administrators to improve the lives of cancer patients and answer the most important questions in cancer biology and treatment.

  7. Final priority; National Institute on Disability and Rehabilitation Research--Disability and Rehabilitation Research Projects and Centers Program--Rehabilitation Engineering Research Centers. Final priority.

    PubMed

    2013-06-14

    The Assistant Secretary for Special Education and Rehabilitative Services announces a priority for a Rehabilitation Engineering Research Center (RERC) on Universal Interfaces and Information Technology Access under the Disability and Rehabilitation Research Projects and Centers Program administered by the National Institute on Disability and Rehabilitation Research (NIDRR). The Assistant Secretary may use this priority for a competition in fiscal year (FY) 2013 and later years. We take this action to focus research attention on areas of national need. We intend to use this priority to improve outcomes for individuals with disabilities.

  8. The NASA Dryden Flight Research Center Unmanned Aircraft System Service Capabilities

    NASA Technical Reports Server (NTRS)

    Bauer, Jeff

    2007-01-01

    Over 60 years of Unmanned Aircraft System (UAS) expertise at the NASA Dryden Flight Research Center are being leveraged to provide capability and expertise to the international UAS community. The DFRC brings together technical experts, UAS, and an operational environment to provide government and industry a broad capability to conduct research, perform operations, and mature systems, sensors, and regulation. The cornerstone of this effort is the acquisition of both a Global Hawk (Northrop Grumman Corporation, Los Angeles, California) and Predator B (General Atomics Aeronautical Systems, Inc., San Diego, California) unmanned aircraft system (UAS). In addition, a test range for small UAS will allow developers to conduct research and development flights without the need to obtain approval from civil authorities. Finally, experts are available to government and industry to provide safety assessments in support of operations in civil airspace. These services will allow developers to utilize limited resources to their maximum capability in a highly competitive environment.

  9. The NASA Dryden Flight Research Center Unmanned Aircraft System Service Capabilities

    NASA Technical Reports Server (NTRS)

    Bauer, Jeff

    2007-01-01

    Over 60 years of Unmanned Aircraft System (UAS) expertise at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center are being leveraged to provide capability and expertise to the international UAS community. The DFRC brings together technical experts, UAS, and an operational environment to provide government and industry a broad capability to conduct research, perform operations, and mature systems, sensors, and regulation. The cornerstone of this effort is the acquisition of both a Global Hawk (Northrop Grumman Corporation, Los Angeles, California) and Predator B (General Atomics Aeronautical Systems, Inc., San Diego, California) unmanned aircraft system (UAS). In addition, a test range for small UAS will allow developers to conduct research and development flights without the need to obtain approval from civil authorities. Finally, experts are available to government and industry to provide safety assessments in support of operations in civil airspace. These services will allow developers to utilize limited resources to their maximum capability in a highly competitive environment.

  10. Unique life sciences research facilities at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Mulenburg, G. M.; Vasques, M.; Caldwell, W. F.; Tucker, J.

    1994-01-01

    The Life Science Division at NASA's Ames Research Center has a suite of specialized facilities that enable scientists to study the effects of gravity on living systems. This paper describes some of these facilities and their use in research. Seven centrifuges, each with its own unique abilities, allow testing of a variety of parameters on test subjects ranging from single cells through hardware to humans. The Vestibular Research Facility allows the study of both centrifugation and linear acceleration on animals and humans. The Biocomputation Center uses computers for 3D reconstruction of physiological systems, and interactive research tools for virtual reality modeling. Psycophysiological, cardiovascular, exercise physiology, and biomechanical studies are conducted in the 12 bed Human Research Facility and samples are analyzed in the certified Central Clinical Laboratory and other laboratories at Ames. Human bedrest, water immersion and lower body negative pressure equipment are also available to study physiological changes associated with weightlessness. These and other weightlessness models are used in specialized laboratories for the study of basic physiological mechanisms, metabolism and cell biology. Visual-motor performance, perception, and adaptation are studied using ground-based models as well as short term weightlessness experiments (parabolic flights). The unique combination of Life Science research facilities, laboratories, and equipment at Ames Research Center are described in detail in relation to their research contributions.

  11. Asian Network of Research Resource Centers.

    PubMed

    Lee, Sunhee; Nam, Seungjoo; Jung, Paul E; Kim, Ki-Jeong; Lee, Yeonhee

    2016-10-01

    With the enactment of the Nagoya Protocol, biological resources are now increasingly considered as assets of an individual country, instead of as the common property of mankind. As worldwide interest for securing biological resources intensifies, research resource centers (RRCs), which collect, preserve, and provide resources and their information to academia and industries, are gathering more attention. The Asian Network of Research Resource Centers (ANRRC) strives for conservation and effective use of bioresources and their data by connecting resource centers of Asia, a continent with the greatest diversity of life. Since its foundation in 2009, the Network has significantly expanded to encompass 103 RRCs of 14 countries. Through the Network, member countries discuss opportunities for resource exchange and research collaboration and share biobanking information and regulations of different countries for international harmonization of resource management. ANRRC also contributes to developing of International Standards of biobanks and biological resources as a liaison to the International Organization for Standardization technical committee 276 Biotechnology.

  12. The prevention research centers' managing epilepsy well network.

    PubMed

    DiIorio, Colleen K; Bamps, Yvan A; Edwards, Ariele L; Escoffery, Cam; Thompson, Nancy J; Begley, Charles E; Shegog, Ross; Clark, Noreen M; Selwa, Linda; Stoll, Shelley C; Fraser, Robert T; Ciechanowski, Paul; Johnson, Erica K; Kobau, Rosemarie; Price, Patricia H

    2010-11-01

    The Managing Epilepsy Well (MEW) Network was created in 2007 by the Centers for Disease Control and Prevention's (CDC) Prevention Research Centers and Epilepsy Program to promote epilepsy self-management research and to improve the quality of life for people with epilepsy. MEW Network membership comprises four collaborating centers (Emory University, University of Texas Health Science Center at Houston, University of Michigan, and University of Washington), representatives from CDC, affiliate members, and community stakeholders. This article describes the MEW Network's background, mission statement, research agenda, and structure. Exploratory and intervention studies conducted by individual collaborating centers are described, as are Network collaborative projects, including a multisite depression prevention intervention and the development of a standard measure of epilepsy self-management. Communication strategies and examples of research translation programs are discussed. The conclusion outlines the Network's role in the future development and dissemination of evidence-based epilepsy self-management programs. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Fifty years of driving safety research.

    PubMed

    Lee, John D

    2008-06-01

    This brief review covers the 50 years of driving-related research published in Human Factors, its contribution to driving safety, and emerging challenges. Many factors affect driving safety, making it difficult to assess the impact of specific factors such as driver age, cell phone distractions, or collision warnings. The author considers the research themes associated with the approximately 270 articles on driving published in Human Factors in the past 50 years. To a large extent, current and past research has explored similar themes and concepts. Many articles published in the first 25 years focused on issues such as driver impairment, individual differences, and perceptual limits. Articles published in the past 25 years address similar issues but also point toward vehicle technology that can exacerbate or mitigate the negative effect of these issues. Conceptual and computational models have played an important role in this research. Improved crash-worthiness has contributed to substantial improvements in driving safety over the past 50 years, but future improvements will depend on enhancing driver performance and perhaps, more important, improving driver behavior. Developing models to guide this research will become more challenging as new technology enters the vehicle and shifts the focus from driver performance to driver behavior. Over the past 50 years, Human Factors has accumulated a large base of driving-related research that remains relevant for many of today's design and policy concerns.

  14. Multi-Institution Research Centers: Planning and Management Challenges

    ERIC Educational Resources Information Center

    Spooner, Catherine; Lavey, Lisa; Mukuka, Chilandu; Eames-Brown, Rosslyn

    2016-01-01

    Funding multi-institution centers of research excellence (CREs) has become a common means of supporting collaborative partnerships to address specific research topics. However, there is little guidance for those planning or managing a multi-institution CRE, which faces specific challenges not faced by single-institution research centers. We…

  15. Fermilab | Illinois Accelerator Research Center | Illinois Accelerator

    Science.gov Websites

    Department of Commerce and Economic Opportunity and the U.S. Department of Energy. Construction Progress as Research Center IARC Illinois Accelerator Research Center Fermilab U.S. Department of Energy Stewardship Pilot Program Contact IARC Funded By Illinois Department of Commerce and Economic Opportunity U.S

  16. National Training Center Research Issues

    DTIC Science & Technology

    1987-01-01

    ART Research Note 87-06 aNATIONAL TRAINING CENTER RESEARCH ISSUES UThomas J. Rijenour The BDM Corporation I for AR! Field Unit at Presidio of...Monterey, California James H. Banks, Chief DTIC TRAINING RESEARCH LABORATORY-- ELECTE Jack H. Hiller, Director S APR 06 WD D U. S. Army Research Institute...for the Behavioral and Social Sciences January 1987 Anoo ,d 𔃺, a b1c ’ete s@ cGst’butc n jlh, T@d 87 % P= U. S. ARMY RESEARCH INSTITUTE Im FOR THE

  17. 2013-2014 annual report, Louisiana Transportation Research Center.

    DOT National Transportation Integrated Search

    2014-01-01

    This publication is a report of the : transportation research, : technology transfer, education, : and training activities of the Louisiana Transportation Research : Center for July 1, 2013June 30, : 2014. The center is sponsored : jointly by the ...

  18. NASA Ames Research Center: An Overview

    NASA Technical Reports Server (NTRS)

    Tu, Eugene; Yan, Jerry Chi Yiu

    2017-01-01

    This overview of NASA Ames Research Center is intended to give the target audience of university students a general understanding of the mission, core competencies, and research goals of NASA and Ames.

  19. Sleep and Performance Research Center

    DTIC Science & Technology

    2012-05-01

    upon the placement of the work period with respect to the circadian rhythm. Additional studies were published by SPRC care factually during the...Research Center (SPRC) conducts human and animal studies in laboratory and field settings in support of basic and applied sleep research at Washington...Program of Research Field Studies in Humans In a field study of serving police officers, Charles, et al. (2011) found that perceived shorter

  20. Louisiana Transportation Research Center 2011-12 annual report.

    DOT National Transportation Integrated Search

    2012-01-01

    This publication is a report of the : transportation research, technology transfer, : education, and training activities of the : Louisiana Transportation Research Center : for July 1, 2011June 30, 2012. The center is : sponsored jointly by the Lo...

  1. Spacecraft Fire Safety Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Meyer, Marit

    2016-01-01

    Appropriate design of fire detection systems requires knowledge of both the expected fire signature and the background aerosol levels. Terrestrial fire detection systems have been developed based on extensive study of terrestrial fires. Unfortunately there is no corresponding data set for spacecraft fires and consequently the fire detectors in current spacecraft were developed based upon terrestrial designs. In low gravity, buoyant flow is negligible which causes particles to concentrate at the smoke source, increasing their residence time, and increasing the transport time to smoke detectors. Microgravity fires have significantly different structure than those in 1-g which can change the formation history of the smoke particles. Finally the materials used in spacecraft are different from typical terrestrial environments where smoke properties have been evaluated. It is critically important to detect a fire in its early phase before a flame is established, given the fixed volume of air on any spacecraft. Consequently, the primary target for spacecraft fire detection is pyrolysis products rather than soot. Experimental investigations have been performed at three different NASA facilities which characterize smoke aerosols from overheating common spacecraft materials. The earliest effort consists of aerosol measurements in low gravity, called the Smoke Aerosol Measurement Experiment (SAME), and subsequent ground-based testing of SAME smoke in 55-gallon drums with an aerosol reference instrument. Another set of experiments were performed at NASAs Johnson Space Center White Sands Test Facility (WSTF), with additional fuels and an alternate smoke production method. Measurements of these smoke products include mass and number concentration, and a thermal precipitator was designed for this investigation to capture particles for microscopic analysis. The final experiments presented are from NASAs Gases and Aerosols from Smoldering Polymers (GASP) Laboratory, with selected

  2. Ames Research Center Publications-1976

    NASA Technical Reports Server (NTRS)

    Sherwood, B.

    1978-01-01

    Bibliography of the publications of Ames Research Center authors and contractors, which appeared in formal NASA publications, journal articles, books, chapters of books, patents, and contractor reports. Covers 1976.

  3. Research Laboratories and Centers Fact Sheet

    EPA Pesticide Factsheets

    The Office of Research and Development is the research arm of the U.S. Environmental Protection Agency. It has three national laboratories and four national centers located in 14 facilities across the country.

  4. The Kaiser Permanente implant registries: effect on patient safety, quality improvement, cost effectiveness, and research opportunities.

    PubMed

    Paxton, Elizabeth W; Inacio, Maria Cs; Kiley, Mary-Lou

    2012-01-01

    Considering the high cost, volume, and patient safety issues associated with medical devices, monitoring of medical device performance is critical to ensure patient safety and quality of care. The purpose of this article is to describe the Kaiser Permanente (KP) implant registries and to highlight the benefits of these implant registries on patient safety, quality, cost effectiveness, and research. Eight KP implant registries leverage the integrated health care system's administrative databases and electronic health records system. Registry data collected undergo quality control and validation as well as statistical analysis. Patient safety has been enhanced through identification of affected patients during major recalls, identification of risk factors associated with outcomes of interest, development of risk calculators, and surveillance programs for infections and adverse events. Effective quality improvement activities included medical center- and surgeon-specific profiles for use in benchmarking reports, and changes in practice related to registry information output. Among the cost-effectiveness strategies employed were collaborations with sourcing and contracting groups, and assistance in adherence to formulary device guidelines. Research studies using registry data included postoperative complications, resource utilization, infection risk factors, thromboembolic prophylaxis, effects of surgical delay on concurrent injuries, and sports injury patterns. The unique KP implant registries provide important information and affect several areas of our organization, including patient safety, quality improvement, cost-effectiveness, and research.

  5. Louisiana Transportation Research Center : Annual report, 2016-2017

    DOT National Transportation Integrated Search

    2017-10-11

    This publication is a report of the transportation research, technology transfer, education, and training activities of the Louisiana Transportation Research Center for July 1, 2016 - June 30, 2017. The center is sponsored jointly by the Louisiana De...

  6. Research notes : safety at high-speed intersections.

    DOT National Transportation Integrated Search

    2010-04-01

    A 2010 study for ODOT by researchers at the Oregon State University School of Civil and Construction Engineering titled, Evaluating Safety and Operations of High-Speed Signalized Intersections, examined effective means for improving safety at isolate...

  7. CCR Interns | Center for Cancer Research

    Cancer.gov

    The Cancer Research Interns (CRI) Summer Program was inaugurated in 2004 to provide an open door for students looking for an initial training opportunity. The goal is to enhance diversity within the CCR (Center for Cancer Research) training program and we have placed 338 students from 2004 to 2017, in labs and branches across the division.  The CCR and the Center for Cancer Training’s Office of Training and Education provide stipend support, some Service & Supply funds, and travel support for those students who meet the financial eligibility criteria (

  8. Secretary | Center for Cancer Research

    Cancer.gov

    We are looking for a pleasant, organized, dependable person to serve as a full-time secretary in the Basic Science Program (BSP) at the Frederick National Laboratory for Cancer Research (FNCLR).  The BSP provides procurement and logistical support to the laboratories of the Center for Cancer Research.  Tasks include high volume procurement (blanket orders, purchase requests,

  9. Research and technology highlights of the Lewis Research Center

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Highlights of research accomplishments of the Lewis Research Center for fiscal year 1984 are presented. The report is divided into four major sections covering aeronautics, space communications, space technology, and materials and structures. Six articles on energy are included in the space technology section.

  10. Research Plan for the National Center for Medical Rehabilitation Research.

    ERIC Educational Resources Information Center

    National Inst. of Child Health and Human Development (NIH), Bethesda, MD.

    This research plan describes a framework for defining and developing the field of rehabilitation sciences and research opportunities for the National Center for Medical Rehabilitation Research (NCMRR) and other agencies funding medical rehabilitation research. The plan addresses the needs of both persons who are involved in habilitation and in…

  11. Key Problems of Fire Safety Enforcement in Traffic and Communication Centers (TCC)

    NASA Astrophysics Data System (ADS)

    Medyanik, M.; Zosimova, O.

    2017-10-01

    A Traffic and Communication Center (TCC) means facilities designed and used to distribute and redirect flows of humans and motor vehicles while they get serviced and operate. This paper sets forth the basic problems of fire safety enforcement on the TCC, and the causes that slow down human and vehicle traffic speeds. It proposes ways to solve the problems of fire safety enforcement on the TCC, in the Russian Federation and elsewhere. Engineering solutions are proposed for TCC design, with key outlooks of TCC future development as an alternative way to organize access in transportation.

  12. Private highway-rail grade crossing safety research and inquiry. Volume 2 : appendices

    DOT National Transportation Integrated Search

    2010-02-01

    This report provides a summary of the private highway-rail grade crossing safety inquiry conducted by the United States Department of Transportation Federal Railroad Administration and the Volpe Center. The safety inquiry consisted of a series of pub...

  13. Six Decades of Flight Research: Dryden Flight Research Center, 1946 - 2006 [DVD

    NASA Technical Reports Server (NTRS)

    Fisher, David F.; Parcel, Steve

    2007-01-01

    This DVD contains an introduction by Center Director Kevin Peterson, two videos on the history of NASA Dryden Flight Research Center and a bibliography of NASA Dryden Flight Research Center publications from 1946 through 2006. The NASA Dryden 60th Anniversary Summary Documentary video is narrated by Michael Dorn and give a brief history of Dryden. The Six Decades of Flight Research at NASA Dryden lasts approximately 75 minutes and is broken up in six decades: 1. The Early X-Plane Era; 2. The X-15 Era; 3. The Lifting Body Era; 4. The Space Shuttle Era; 5. The High Alpha and Thrust Vectoring Era; and 6. The technology Demonstration Era. The bibliography provides citations for NASA Technical Reports and Conference Papers, Tech Briefs, Contractor Reports, UCLA Flight Systems Research Center publications and Dryden videos. Finally, a link is provided to the NASA Dryden Gallery that features video clips and photos of the many unique aircraft flown at NASA Dryden and its predecessor organizations.

  14. Engineers and technicians in the control room at the Dryden Flight Research Center must constantly monitor critical operations and checks during research projects like NASA's hypersonic X-43A

    NASA Image and Video Library

    2004-01-24

    Engineers and technicians in the control room at the Dryden Flight Research Center must constantly monitor critical operations and checks during research projects like NASA's hypersonic X-43A. Visible in the photo, taken two days before the X-43's captive carry flight in January 2004, are [foreground to background]; Tony Kawano (Range Safety Officer), Brad Neal (Mission Controller), and Griffin Corpening (Test Conductor).

  15. University Research Centers: Heuristic Categories, Issues, and Administrative Strategies

    ERIC Educational Resources Information Center

    Hall, Kelly

    2011-01-01

    University-based research centers can bring prestige and revenue to the institutions of higher education with which they are affiliated. Collaborating with corporations, units of government, and foundations, centers provide services to organizational leaders, policy makers, and communities. University research centers continue to increase in…

  16. Simulator sickness research program at NASA-Ames Research Center

    NASA Technical Reports Server (NTRS)

    Mccauley, Michael E.; Cook, Anthony M.

    1987-01-01

    The simulator sickness syndrome is receiving increased attention in the simulation community. NASA-Ames Research Center has initiated a program to facilitate the exchange of information on this topic among the tri-services and other interested government organizations. The program objectives are to identify priority research issues, promote efficient research strategies, serve as a repository of information, and disseminate information to simulator users.

  17. The Many Faces of Patient-Centered Simulation: Implications for Researchers.

    PubMed

    Arnold, Jennifer L; McKenzie, Frederic Rick D; Miller, Jane Lindsay; Mancini, Mary E

    2018-06-01

    Patient-centered simulation for nonhealthcare providers is an emerging and innovative application for healthcare simulation. Currently, no consensus exists on what patient-centered simulation encompasses and outcomes research in this area is limited. Conceptually, patient-centered simulation aligns with the principles of patient- and family-centered care bringing this educational tool directly to patients and caregivers with the potential to improve patient care and outcomes. This descriptive article is a summary of findings presented at the 2nd International Meeting for Simulation in Healthcare Research Summit. Experts in the field delineated a categorization for better describing patient-centered simulation and reviewed the literature to identify a research agenda. Three types of patient-centered simulation patient-directed, patient-driven, and patient-specific are presented with research priorities identified for each. Patient-centered simulation has been shown to be an effective educational tool and has the potential to directly improve patient care outcomes. Presenting a typology for patient-centered simulation provides direction for future research.

  18. Aerothermodynamics research at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Deiwert, George S.

    1987-01-01

    Research activity in the aerothermodynamics branch at the NASA Ames Research Center is reviewed. Advanced concepts and mission studies relating to the next generation aerospace transportation systems are summarized and directions for continued research identified. Theoretical and computational studies directed at determining flow fields and radiative and convective heating loads in real gases are described. Included are Navier-Stokes codes for equilibrium and thermochemical nonequilibrium air. Experimental studies in the 3.5-ft hypersonic wind tunnel, the ballistic ranges, and the electric arc driven shock tube are described. Tested configurations include generic hypersonic aerospace plane configurations, aeroassisted orbital transfer vehicle shapes and Galileo probe models.

  19. Illinois Accelerator Research Center

    DOE PAGES

    Kroc, Thomas K.; Cooper, Charlie A.

    2017-10-26

    The Illinois Accelerator Research Center (IARC) hosts a new accelerator development program at Fermi National Accelerator Laboratory. IARC provides access to Fermi's state-of-the-art facilities and technologies for research, development and industrialization of particle accelerator technology. In addition to facilitating access to available existing Fermi infrastructure, the IARC Campus has a dedicated 36,000 ft2 heavy assembly building (HAB) with all the infrastructure needed to develop, commission and operate new accelerators. Connected to the HAB is a 47,000 ft Office, Technology and Engineering (OTE) building, paid for by the state, that has office, meeting, and light technical space. The OTE building, whichmore » contains the Accelerator Physics Center, and nearby Accelerator and Technical divisions provide IARC collaborators with unique access to world class expertise in a wide array of accelerator technologies. Finally, at IARC scientists and engineers from Fermilab and academia work side by side with industrial partners to develop breakthroughs in accelerator science and translate them into applications for the nation's health, wealth and security.« less

  20. Illinois Accelerator Research Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroc, Thomas K.; Cooper, Charlie A.

    The Illinois Accelerator Research Center (IARC) hosts a new accelerator development program at Fermi National Accelerator Laboratory. IARC provides access to Fermi's state-of-the-art facilities and technologies for research, development and industrialization of particle accelerator technology. In addition to facilitating access to available existing Fermi infrastructure, the IARC Campus has a dedicated 36,000 ft2 heavy assembly building (HAB) with all the infrastructure needed to develop, commission and operate new accelerators. Connected to the HAB is a 47,000 ft Office, Technology and Engineering (OTE) building, paid for by the state, that has office, meeting, and light technical space. The OTE building, whichmore » contains the Accelerator Physics Center, and nearby Accelerator and Technical divisions provide IARC collaborators with unique access to world class expertise in a wide array of accelerator technologies. Finally, at IARC scientists and engineers from Fermilab and academia work side by side with industrial partners to develop breakthroughs in accelerator science and translate them into applications for the nation's health, wealth and security.« less

  1. Illinois Accelerator Research Center

    NASA Astrophysics Data System (ADS)

    Kroc, Thomas K.; Cooper, Charlie A.

    The Illinois Accelerator Research Center (IARC) hosts a new accelerator development program at Fermi National Accelerator Laboratory. IARC provides access to Fermi's state-of-the-art facilities and technologies for research, development and industrialization of particle accelerator technology. In addition to facilitating access to available existing Fermi infrastructure, the IARC Campus has a dedicated 36,000 ft2 Heavy Assembly Building (HAB) with all the infrastructure needed to develop, commission and operate new accelerators. Connected to the HAB is a 47,000 ft2 Office, Technology and Engineering (OTE) building, paid for by the state, that has office, meeting, and light technical space. The OTE building, which contains the Accelerator Physics Center, and nearby Accelerator and Technical divisions provide IARC collaborators with unique access to world class expertise in a wide array of accelerator technologies. At IARC scientists and engineers from Fermilab and academia work side by side with industrial partners to develop breakthroughs in accelerator science and translate them into applications for the nation's health, wealth and security.

  2. Four Decades of Ground-Breaking Research in the Reproductive and Developmental Sciences: The Infant Primate Research Laboratory at the University of Washington National Primate Research Center

    PubMed Central

    Burbacher, Thomas M.; Grant, Kimberly S.; Worlein, Julie; Ha, James; Curnow, Eliza; Juul, Sandra; Sackett, Gene P.

    2017-01-01

    The Infant Primate Research Laboratory (IPRL) was established in the 1970s at the University of Washington as a visionary project of Dr. Gene (Jim) P. Sackett. Supported by a collaboration between the Washington National Primate Research Center and the Center on Human Health and Disability, the IPRL operates under the principle that learning more about the causes of abnormal development in macaque monkeys will provide important insights into mechanisms underlying childhood neurodevelopmental disorders. Over the past forty years, a broad range of research projects have been conducted at the IPRL. Some have described the normal expression of species-typical behaviors in nursery-reared macaques while others have focused on specific issues in perinatal medicine and research. This article will review the unique history of the IPRL and the scientific contributions produced by research conducted in the laboratory. Past and present investigations at the IPRL have explored the consequences of adverse early rearing, low-birth-weight, prematurity, epilepsy, chemical/drug exposure, viral infection, diarrheal disease, vaccine safety, assisted reproductive technologies and perinatal hypoxia on growth and development. New directions of investigation include the production of a transgenic primate model using our embryonic stem cell-based technology to better understand and treat heritable forms of human mental retardation such as fragile X. PMID:23873400

  3. Research Centers: Ecstasies & Agonies [in HRD].

    ERIC Educational Resources Information Center

    1995

    These four papers are from a symposium facilitated by Gene Roth on research centers at the 1995 Academy of Human Resource Development (HRD) conference. "Research: The Thin Blue Line between Rigor and Reality" (Michael Leimbach) discusses the need for HRD research to increase its speed and rigor and help organizations focus on capability…

  4. Postdoctoral Fellow | Center for Cancer Research

    Cancer.gov

    The Khare lab in the Laboratory of Molecular Biology, NCI Center for Cancer Research, NIH, is looking to recruit highly motivated researchers interested in a postdoctoral fellowship to study the molecular and genetic basis of complex microbial behaviors. Our lab is focused on multiple research avenues including interspecies interactions, antibiotic persistence, and adaptation

  5. Postdoctoral Fellow | Center for Cancer Research

    Cancer.gov

    A postdoctoral research position is available in the laboratory of Dr. Natasha Caplen in the Genetics Branch, National Cancer Institute, Center for Cancer Research. Dr. Caplen’s Laboratory conducts multidisciplinary and interdisciplinary research that uses RNAi and other DNA or RNA-based functional genomic technologies to interrogate specific aspects of the genetic,

  6. Alternan Research at the National Center for Agricultural Utilization Research

    USDA-ARS?s Scientific Manuscript database

    The Northern Regional Research Laboratory (later the National Center for Agricultural Utilization Research, or NCAUR) began operations on December 16, 1940. By the late 1940’s, Dr. Allene Jeanes was leading a team in an extensive research program on dextrans. Dextrans are glucan polysaccharides th...

  7. Alternan research at the National Center for Agricultural Utilization Research

    USDA-ARS?s Scientific Manuscript database

    The Northern Regional Research Laboratory (later the National Center for Agricultural Utilization Research, or NCAUR) began operations on December 16, 1940. By the late 1940’s, Dr. Allene Jeanes was leading a team in an extensive research program on dextrans. Dextrans are glucan polysaccharides th...

  8. Delegations of authority and organization; Center for Biologics Evaluation and Research, Center for Devices and Radiological Health, and Center for Drug Evaluation and Research--FDA. Final rule.

    PubMed

    1991-11-21

    The Food and Drug Administration (FDA) is amending the regulations for delegations of authority relating to premarket approval of products that are or contain a biologic, a device, or a drug. The amendment grants directors, deputy directors, and certain other supervisory personnel in the Center for Biologics Evaluation and Research (CBER), the Center for Devices and Radiological Health (CDRH), and the Center for Drug Evaluation and Research (CDER) reciprocal premarket approval authority to approve such products.

  9. 34 CFR 403.207 - What are the State's responsibilities to the National Center or Centers for Research in...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for each new research, curriculum development, or personnel development project it supports, and the... Center or Centers for Research in Vocational Education? 403.207 Section 403.207 Education Regulations of... the State's responsibilities to the National Center or Centers for Research in Vocational Education? A...

  10. 76 FR 40733 - National Institute for Occupational Safety and Health, (NIOSH), World Trade Center Health Program...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-11

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention National Institute for Occupational Safety and Health, (NIOSH), World Trade Center Health Program Science/Technical Advisory Committee (WTCHP-STAC) Correction: This notice was published in the Federal Register on June 23...

  11. Driver inattention and highway safety

    DOT National Transportation Integrated Search

    1985-01-14

    The Transportation Systems Center, in support of research carried out by the : National Highway Traffic Safety Administration's Crash Avoidance Division, has : reviewed research into driver attentional processes to assess the potential for : the deve...

  12. Driver inattention and highway safety

    DOT National Transportation Integrated Search

    1985-01-01

    The Transportation Systems Center, in support of research carried out by the National Highway Traffic Safety Administration's Crash Avoidance Division, has reviewed research into driver attentional processes to assess the potential for the developmen...

  13. Aircraft Turbine Engine Control Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2014-01-01

    This lecture will provide an overview of the aircraft turbine engine control research at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the current state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. The traditional engine control problem has been to provide a means to safely transition the engine from one steady-state operating point to another based on the pilot throttle inputs. With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects in partnership with other organizations within GRC and across NASA, other government agencies, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research Mission. The second part of the lecture provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges and the key progress to date are summarized. The technologies to be discussed include system level engine control concepts, gas path diagnostics, active component control, and distributed engine control architecture. The lecture will end with a futuristic perspective of how the various current technology developments will lead to an Intelligent and Autonomous Propulsion System requiring none to very minimum pilot interface

  14. NASA Propulsion Engineering Research Center, volume 2

    NASA Technical Reports Server (NTRS)

    1993-01-01

    On 8-9 Sep. 1993, the Propulsion Engineering Research Center (PERC) at The Pennsylvania State University held its Fifth Annual Symposium. PERC was initiated in 1988 by a grant from the NASA Office of Aeronautics and Space Technology as a part of the University Space Engineering Research Center (USERC) program; the purpose of the USERC program is to replenish and enhance the capabilities of our Nation's engineering community to meet its future space technology needs. The Centers are designed to advance the state-of-the-art in key space-related engineering disciplines and to promote and support engineering education for the next generation of engineers for the national space program and related commercial space endeavors. Research on the following areas was initiated: liquid, solid, and hybrid chemical propulsion, nuclear propulsion, electrical propulsion, and advanced propulsion concepts.

  15. NASA Range Safety Annual Report 2007

    NASA Technical Reports Server (NTRS)

    Dumont, Alan G.

    2007-01-01

    As always, Range Safety has been involved in a number of exciting and challenging activities and events. Throughout the year, we have strived to meet our goal of protecting the public, the workforce, and property during range operations. During the past year, Range Safety was involved in the development, implementation, and support of range safety policy. Range Safety training curriculum development was completed this year and several courses were presented. Tailoring exercises concerning the Constellation Program were undertaken with representatives from the Constellation Program, the 45th Space Wing, and the Launch Constellation Range Safety Panel. Range Safety actively supported the Range Commanders Council and it subgroups and remained involved in updating policy related to flight safety systems and flight safety analysis. In addition, Range Safety supported the Space Shuttle Range Safety Panel and addressed policy concerning unmanned aircraft systems. Launch operations at Kennedy Space Center, the Eastern and Western ranges, Dryden Flight Research Center, and Wallops Flight Facility were addressed. Range Safety was also involved in the evaluation of a number of research and development efforts, including the space-based range (formerly STARS), the autonomous flight safety system, the enhanced flight termination system, and the joint advanced range safety system. Flight safety system challenges were evaluated. Range Safety's role in the Space Florida Customer Assistance Service Program for the Eastern Range was covered along with our support for the Space Florida Educational Balloon Release Program. We hope you have found the web-based format both accessible and easy to use. Anyone having questions or wishing to have an article included in the 2008 Range Safety Annual Report should contact Alan Dumont, the NASA Range Safety Program Manager located at the Kennedy Space Center, or Michael Dook at NASA Headquarters.

  16. Chemical Safety for Sustainability Research Action Plan 2012-2016

    EPA Pesticide Factsheets

    EPA’s Chemical Safety for Sustainability (CSS) research program presents the purpose, design and themes of the Agency’s CSS research efforts to ensure safety in the design, manufacture and use of existing and future chemicals

  17. Revitalization of the NASA Langley Research Center's Infrastructure

    NASA Technical Reports Server (NTRS)

    Weiser, Erik S.; Mastaler, Michael D.; Craft, Stephen J.; Kegelman, Jerome T.; Hope, Drew J.; Mangum, Cathy H.

    2012-01-01

    The NASA Langley Research Center (Langley) was founded in 1917 as the nation's first civilian aeronautical research facility and NASA's first field center. For nearly 100 years, Langley has made significant contributions to the Aeronautics, Space Exploration, and Earth Science missions through research, technology, and engineering core competencies in aerosciences, materials, structures, the characterization of earth and planetary atmospheres and, more recently, in technologies associated with entry, descent, and landing. An unfortunate but inevitable outcome of this rich history is an aging infrastructure where the longest serving building is close to 80 years old and the average building age is 44 years old. In the current environment, the continued operation and maintenance of this aging and often inefficient infrastructure presents a real challenge to Center leadership in the trade space of sustaining infrastructure versus not investing in future capabilities. To address this issue, the Center has developed a forward looking revitalization strategy that ties future core competencies and technical capabilities to the Center Master Facility Plan to maintain a viable Center well into the future. This paper documents Langley's revitalization strategy which integrates the Center's missions, the Langley 2050 vision, the Center Master Facility Plan, and the New Town repair-by-replacement program through the leadership of the Vibrant Transformation to Advance Langley (ViTAL) Team.

  18. Optimizing efficiency and operations at a California safety-net endoscopy center: a modeling and simulation approach.

    PubMed

    Day, Lukejohn W; Belson, David; Dessouky, Maged; Hawkins, Caitlin; Hogan, Michael

    2014-11-01

    Improvements in endoscopy center efficiency are needed, but scant data are available. To identify opportunities to improve patient throughput while balancing resource use and patient wait times in a safety-net endoscopy center. Safety-net endoscopy center. Outpatients undergoing endoscopy. A time and motion study was performed and a discrete event simulation model constructed to evaluate multiple scenarios aimed at improving endoscopy center efficiency. Procedure volume and patient wait time. Data were collected on 278 patients. Time and motion study revealed that 53.8 procedures were performed per week, with patients spending 2.3 hours at the endoscopy center. By using discrete event simulation modeling, a number of proposed changes to the endoscopy center were assessed. Decreasing scheduled endoscopy appointment times from 60 to 45 minutes led to a 26.4% increase in the number of procedures performed per week, but also increased patient wait time. Increasing the number of endoscopists by 1 each half day resulted in increased procedure volume, but there was a concomitant increase in patient wait time and nurse utilization exceeding capacity. By combining several proposed scenarios together in the simulation model, the greatest improvement in performance metrics was created by moving patient endoscopy appointments from the afternoon to the morning. In this simulation at 45- and 40-minute appointment times, procedure volume increased by 30.5% and 52.0% and patient time spent in the endoscopy center decreased by 17.4% and 13.0%, respectively. The predictions of the simulation model were found to be accurate when compared with actual changes implemented in the endoscopy center. Findings may not be generalizable to non-safety-net endoscopy centers. The combination of minor, cost-effective changes such as reducing appointment times, minimizing and standardizing recovery time, and making small increases in preprocedure ancillary staff maximized endoscopy center

  19. Anomaly Analysis: NASA's Engineering and Safety Center Checks Recurring Shuttle Glitches

    NASA Technical Reports Server (NTRS)

    Morring, Frank, Jr.

    2004-01-01

    The NASA Engineering and Safety Center (NESC), set up in the wake of the Columbia accident to backstop engineers in the space shuttle program, is reviewing hundreds of recurring anomalies that the program had determined don't affect flight safety to see if in fact they might. The NESC is expanding its support to other programs across the agency, as well. The effort, which will later extend to the International Space Station (ISS), is a principal part of the attempt to overcome the normalization of deviance--a situation in which organizations proceeded as if nothing was wrong in the face of evidence that something was wrong--cited by sociologist Diane Vaughn as contributing to both space shuttle disasters.

  20. From comparative effectiveness research to patient-centered outcomes research: integrating emergency care goals, methods, and priorities.

    PubMed

    Meisel, Zachary F; Carr, Brendan G; Conway, Patrick H

    2012-09-01

    Federal legislation placed comparative effectiveness research and patient-centered outcomes research at the center of current and future national investments in health care research. The role of this research in emergency care has not been well described. This article proposes an agenda for researchers and health care providers to consider comparative effectiveness research and patient-centered outcomes research methods and results to improve the care for patients who seek, use, and require emergency care. This objective will be accomplished by (1) exploring the definitions, frameworks, and nomenclature for comparative effectiveness research and patient-centered outcomes research; (2) describing a conceptual model for comparative effectiveness research in emergency care; (3) identifying specific opportunities and examples of emergency care-related comparative effectiveness research; and (4) categorizing current and planned funding for comparative effectiveness research and patient-centered outcomes research that can include emergency care delivery. Copyright © 2012. Published by Mosby, Inc.

  1. Barriers and facilitators to senior centers participating in translational research.

    PubMed

    Felix, Holly C; Adams, Becky; Cornell, Carol E; Fausett, Jennifer K; Krukowski, Rebecca A; Love, ShaRhonda J; Prewitt, T Elaine; West, Delia Smith

    2014-01-01

    Senior centers are ideal locations to deliver evidence-based health promotion programs to the rapidly growing population of older Americans to help them remain healthy and independent in the community. However, little reported research is conducted in partnership with senior centers; thus, not much is known about barriers and facilitators for senior centers serving as research sites. To fill this gap and potentially accelerate research within senior centers to enhance translation of evidence-based interventions into practice, the present study examined barriers and facilitators of senior centers invited to participate in a cluster-randomized controlled trial. Primary barriers to participation related to staffing and perceived inability to recruit older adult participants meeting research criteria. The primary facilitator was a desire to offer programs that were of interest and beneficial to seniors. Senior centers are interested in participating in research that provides benefit to older adults but may need assistance from researchers to overcome participation barriers. © The Author(s) 2012.

  2. Postdoctoral Fellow | Center for Cancer Research

    Cancer.gov

    We are seeking a postdoctoral researcher to study alterations in mitochondria metabolism during tumor formation. Our lab is within the Center for Cancer Research (CCR) of the National Cancer Institute (NCI), which is embedded in the vibrant research community of the NIH’s main campus in Bethesda, Maryland. Our major goal is to identify novel molecular mechanisms that control

  3. Ames research center publications, 1975

    NASA Technical Reports Server (NTRS)

    Sherwood, B. R. (Compiler)

    1977-01-01

    This bibliography cites 851 documents by Ames Research Center personnel and contractors which appeared in formal NASA publications, journals, books, patents, and contractor reports in 1975, or not included in previous annual bibliographies. An author index is provided.

  4. Purpose, Principles, and Challenges of the NASA Engineering and Safety Center

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.

    2016-01-01

    NASA formed the NASA Engineering and Safety Center in 2003 following the Space Shuttle Columbia accident. It is an Agency level, program-independent engineering resource supporting NASA's missions, programs, and projects. It functions to identify, resolve, and communicate engineering issues, risks, and, particularly, alternative technical opinions, to NASA senior management. The goal is to help ensure fully informed, risk-based programmatic and operational decision-making processes. To date, the NASA Engineering and Safety Center (NESC) has conducted or is actively working over 600 technical studies and projects, spread across all NASA Mission Directorates, and for various other U.S. Government and non-governmental agencies and organizations. Since inception, NESC human spaceflight related activities, in particular, have transitioned from Shuttle Return-to-Flight and completion of the International Space Station (ISS) to ISS operations and Orion Multi-purpose Crew Vehicle (MPCV), Space Launch System (SLS), and Commercial Crew Program (CCP) vehicle design, integration, test, and certification. This transition has changed the character of NESC studies. For these development programs, the NESC must operate in a broader, system-level design and certification context as compared to the reactive, time-critical, hardware specific nature of flight operations support.

  5. Protocol Coordinator | Center for Cancer Research

    Cancer.gov

    PROGRAM DESCRIPTION Within the Leidos Biomedical Research Inc.’s Clinical Research Directorate, the Clinical Monitoring Research Program (CMRP) provides high-quality comprehensive and strategic operational support to the high-profile domestic and international clinical research initiatives of the National Cancer Institute (NCI), National Institute of Allergy and Infectious Diseases (NIAID), Clinical Center (CC), National Institute of Heart, Lung and Blood Institute (NHLBI), National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Center for Advancing Translational Sciences (NCATS), National Institute of Neurological Disorders and Stroke (NINDS), and the National Institute of Mental Health (NIMH). Since its inception in 2001, CMRP’s ability to provide rapid responses, high-quality solutions, and to recruit and retain experts with a variety of backgrounds to meet the growing research portfolios of NCI, NIAID, CC, NHLBI, NIAMS, NCATS, NINDS, and NIMH has led to the considerable expansion of the program and its repertoire of support services. CMRP’s support services are strategically aligned with the program’s mission to provide comprehensive, dedicated support to assist National Institutes of Health researchers in providing the highest quality of clinical research in compliance with applicable regulations and guidelines, maintaining data integrity, and protecting human subjects. For the scientific advancement of clinical research, CMRP services include comprehensive clinical trials, regulatory, pharmacovigilance, protocol navigation and development, and programmatic and project management support for facilitating the conduct of 400+ Phase I, II, and III domestic and international trials on a yearly basis. These trials investigate the prevention, diagnosis, treatment of, and therapies for cancer, influenza, HIV, and other infectious diseases and viruses such as hepatitis C, tuberculosis, malaria, and Ebola virus; heart, lung, and

  6. Addiction research centres and the nurturing of creativity. RAND's Drug Policy Research Center.

    PubMed

    Reuter, Peter; Pacula, Rosalie Liccardo; Caulkins, Jonathan P

    2011-02-01

    In September 1989, amid an emotional and ideological debate regarding problematic drug use in the United States and the 'war on drugs', RAND's Drug Policy Research Center (DPRC) was created through private foundation funds. The purpose of this new research center was to provide objective empirical analysis on which to base sound drug policy. Twenty years later, RAND's DPRC continues its work, drawing on a broad range of analytical expertise to evaluate, compare and assess the effectiveness of a similarly broad range of drug policies. More than 60 affiliated researchers in the United States and Europe make up the Center, which attempts to provide objective empirical analyses to better inform drug policies within the United States and abroad. This paper provides a look back at the creation, evolution and growth of the Center. It then describes how the Center operates today and how it has maintained its clear identity and focus by drawing on the analytical capabilities of a talented group of researchers from a broad range of academic disciplines. © 2010 The Authors, Addiction © 2010 Society for the Study of Addiction.

  7. Flight researh at NASA Ames Research Center: A test pilot's perspective

    NASA Technical Reports Server (NTRS)

    Hall, G. Warren

    1987-01-01

    In 1976 NASA elected to assign responsibility for each of the various flight regimes to individual research centers. The NASA Ames Research Center at Moffett Field, California was designated lead center for vertical and short takeoff and landing, V/STOL research. The three most recent flight research airplanes being flown at the center are discussed from the test pilot's perspective: the Quiet Short Haul Research Aircraft; the XV-15 Tilt Rotor Research Aircraft; and the Rotor Systems Research Aircraft.

  8. USDOT Federal Railroad Administration's third research needs workshop on highway-rail grade crossing safety and trespass prevention : Volume I - summary of results

    DOT National Transportation Integrated Search

    2010-01-01

    On July 14-16, 2009 the John A. Volpe National Transportation Center hosted the United States Department of Transportation (USDOT) Federal Railroad Administration's (FRA) Third Research Needs Workshop on Highway-Rail Grade Crossing Safety and Trespas...

  9. Research and Technology 1990, Langley Research Center

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The mission of NASA-Langley is to increase the knowledge and capability of the U.S. in a full range of aeronautics disciplines and in selected space disciplines. This mission will be executed by performing innovative research relevant to national needs and agency goals, transferring technology to users in a timely manner, and providing development support to other U.S. government agencies, industry, and other NASA centers. Highlights are presented of the major accomplishments and applications that were made during the past year. The highlights illustrate both the broad range of the research and technology activitives at NASA-Langley and the contributions of this work toward maintaining U.S. leadership in aeronautics and space research.

  10. Current safety practices in nano-research laboratories in China.

    PubMed

    Zhang, Can; Zhang, Jing; Wang, Guoyu

    2014-06-01

    China has become a key player in the global nanotechnology field, however, no surveys have specifically examined safety practices in the Chinese nano-laboratories in depth. This study reports results of a survey of 300 professionals who work in research laboratories that handle nanomaterials in China. We recruited participants at three major nano-research laboratories (which carry out research in diverse fields such as chemistry, material science, and biology) and the nano-chemistry session of the national meeting of the Chinese Chemical Society. Results show that almost all nano-research laboratories surveyed had general safety regulations, whereas less than one third of respondents reported having nanospecific safety rules. General safety measures were in place in most surveyed nano-research laboratories, while nanospecific protective measures existed or were implemented less frequently. Several factors reported from the scientific literature including nanotoxicology knowledge gaps, technical limitations on estimating nano-exposure, and the lack of nano-occupational safety legislation may contribute to the current state of affairs. With these factors in mind and embracing the precautionary principle, we suggest strengthening or providing nanosafety training (including raising risk awareness) and establishing nanosafety guidelines in China, to better protect personnel in the nano-workplace.

  11. Overview of CMC Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.

    2011-01-01

    CMC technology development in the Ceramics Branch at NASA Glenn Research Center addresses Aeronautics propulsion goals across subsonic, supersonic and hypersonic flight regimes. Combustor, turbine and exhaust nozzle applications of CMC materials will enable NASA to demonstrate reduced fuel consumption, emissions, and noise in advanced gas turbine engines. Applications ranging from basic Fundamental Aeronautics research activities to technology demonstrations in the new Integrated Systems Research Program will be discussed.

  12. Translating Health Services Research into Practice in the Safety Net.

    PubMed

    Moore, Susan L; Fischer, Ilana; Havranek, Edward P

    2016-02-01

    To summarize research relating to health services research translation in the safety net through analysis of the literature and case study of a safety net system. Literature review and key informant interviews at an integrated safety net hospital. This paper describes the results of a comprehensive literature review of translational science literature as applied to health care paired with qualitative analysis of five key informant interviews conducted with senior-level management at Denver Health and Hospital Authority. Results from the literature suggest that implementing innovation may be more difficult in the safety net due to multiple factors, including financial and organizational constraints. Results from key informant interviews confirmed the reality of financial barriers to innovation implementation but also implied that factors, including institutional respect for data, organizational attitudes, and leadership support, could compensate for disadvantages. Translating research into practice is of critical importance to safety net providers, which are under increased pressure to improve patient care and satisfaction. Results suggest that translational research done in the safety net can better illuminate the special challenges of this setting; more such research is needed. © Health Research and Educational Trust.

  13. Lost Dollars Threaten Research in Public Academic Health Centers.

    PubMed

    Bourne, Henry R; Vermillion, Eric B

    2017-03-01

    The decrease of federal and state support threatens long-term sustainability of research in publicly supported academic health centers. In weathering these financial threats, research at the University of California, San Francisco (UCSF), has undergone 3 substantial changes: institutional salary support goes preferentially to senior faculty, whereas the young increasingly depend on grants; private and government support for research grows apace in clinical departments but declines in basic science departments; and research is judged more on its quantity (numbers of investigators and federal and private dollars) than on its goals, achievements, or scientific quality. We propose specific measures to alleviate these problems. Other large public academic health centers probably confront similar issues, but-except for UCSF-such centers have not been subjected to detailed public analysis.-Bourne, H. R., Vermillion, E. B. Lost dollars threaten research in public academic health centers. © FASEB.

  14. Financial Stability of Level I Trauma Centers Within Safety-Net Hospitals.

    PubMed

    Knowlton, Lisa M; Morris, Arden M; Tennakoon, Lakshika; Spain, David A; Staudenmayer, Kristan L

    2018-04-20

    Level I trauma centers often exist within safety-net hospitals (SNHs), facilities servicing high proportions of low-income and uninsured patients. Given the current health care funding environment, trauma centers within SNHs may be at particular risk. Using California as a model, we hypothesized that SNHs with trauma centers vary in terms of financial stability. We performed a retrospective cohort study using data from publicly available financial disclosure reports from California's Office of Statewide Health Planning and Development. Safety-net hospitals were identified from the California Association of Public Hospitals and Health Systems. The primary outcomes metric for financial performance was operating margin. California hospitals with Level I trauma centers were analyzed (11 SNH sites, 2 non SNH). The SNHs did not behave uniformly, and were clustered into county-owned SNHs (36%, n = 4) and nonprofit-owned SNHs (64%, n = 7). Mean operating margins for county SNHs, nonprofit SNHs, and non SNHs were -16.5%, 8.4%, and 9.5%, respectively (p < 0.001). From 2010 to 2015, operating margins improved for all hospitals, partly due to increases in the percent of insured patients and changes in payer mix. Nonprofit SNHs had a payer mix similar to that of non SNHs; county SNHs had the highest proportions of MediCal (California Medicaid) (45% vs 36% vs 12%, respectively, p < 0.001) and uninsured patients (17% vs 5% vs 0%, respectively, p < 0.001) compared with nonprofit SNHs and non SNHs, respectively. The majority (85%) of Level I trauma centers are within SNHs, whose financial stability is highly variable. A group of SNHs rely on infusions of government funds and are therefore susceptible to changes in policy. These findings suggest deliberate funding efforts are critical to protect the health of the US academic trauma system. Copyright © 2018 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  15. Annotated Bibliography of Rail Transit Safety, 1975-1980, with Emphasis on Safety Research and Development.

    DOT National Transportation Integrated Search

    1981-09-01

    The bibliography provides a comprehensive review of published literature concerning rail transit safety and includes 186 annotated entries. The report covers domestic and foreign material on rail transit safety and related safety research and develop...

  16. Publications on acoustics research at the Langley Research Center during 1980-1986

    NASA Technical Reports Server (NTRS)

    Sutherland, Linda W. (Compiler)

    1988-01-01

    This report is a compilation of publications from acoustics research at the Langley Research Center. The reports are listed in chronological order and summarize the written output of the Acoustics Division and its predecessor, The Acoustics and Noise Reduction Division, for the period 1980 through 1986. The information assembled has been extracted from the 1980 through 1986 issues for the Technical Memorandum entitled, Scientific and Technical Information Output of the Langley Research Center for the Calendar Year.

  17. An Overview of Aerospace Propulsion Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Reddy, D. R.

    2007-01-01

    NASA Glenn Research center is the recognized leader in aerospace propulsion research, advanced technology development and revolutionary system concepts committed to meeting the increasing demand for low noise, low emission, high performance, and light weight propulsion systems for affordable and safe aviation and space transportation needs. The technologies span a broad range of areas including air breathing, as well as rocket propulsion systems, for commercial and military aerospace applications and for space launch, as well as in-space propulsion applications. The scope of work includes fundamentals, components, processes, and system interactions. Technologies developed use both experimental and analytical approaches. The presentation provides an overview of the current research and technology development activities at NASA Glenn Research Center .

  18. Secretary | Center for Cancer Research

    Cancer.gov

    We are looking for a pleasant, organized, dependable person to serve as a full-time secretary in the Basic Science Program (BSP) at the Frederick National Laboratory for Cancer Research (FNCLR).  The BSP provides procurement and logistical support to the laboratories of the Center for Cancer Research.  Tasks include high volume procurement (blanket orders, purchase requests, credit card), sorting and distributing mail, travel coordination, and spending/budget monitoring. 

  19. Development of Risk Assessment Matrix for NASA Engineering and Safety Center

    NASA Technical Reports Server (NTRS)

    Malone, Roy W., Jr.; Moses, Kelly

    2004-01-01

    This paper describes a study, which had as its principal goal the development of a sufficiently detailed 5 x 5 Risk Matrix Scorecard. The purpose of this scorecard is to outline the criteria by which technical issues can be qualitatively and initially prioritized. The tool using this score card has been proposed to be one of the information resources the NASA Engineering and Safety Center (NESC) takes into consideration when making decisions with respect to incoming information on safety concerns across the entire NASA agency. The contents of this paper discuss in detail each element of the risk matrix scorecard, definitions for those elements and the rationale behind the development of those definitions. This scorecard development was performed in parallel with the tailoring of the existing Futron Corporation Integrated Risk Management Application (IRMA) software tool. IRMA was tailored to fit NESC needs for evaluating incoming safety concerns and was renamed NESC Assessment Risk Management Application (NAFMA) which is still in developmental phase.

  20. HAZARDOUS SUBSTANCE RESEARCH CENTER&NDASH;SOUTH AND SOUTHWEST

    EPA Science Inventory

    The specific activities within the Center-supported research program are detailed in separate reports that are included herein. An updated list of all Center publications is also attached. Specific projects conducted by the Center included

    • Contaminant Release D...

  1. 77 FR 43557 - Safety Zone; Gilmerton Bridge Center Span Float-in, Elizabeth River; Norfolk, Portsmouth, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-25

    ...-AA00 Safety Zone; Gilmerton Bridge Center Span Float-in, Elizabeth River; Norfolk, Portsmouth, and... during the Gilmerton Bridge Center Span Float- in and bridge construction of span placement. This action... Construction, INC will facilitate removal of the existing bascule spans from the Gilmerton Bridge, transport of...

  2. Time series modeling in traffic safety research.

    PubMed

    Lavrenz, Steven M; Vlahogianni, Eleni I; Gkritza, Konstantina; Ke, Yue

    2018-08-01

    The use of statistical models for analyzing traffic safety (crash) data has been well-established. However, time series techniques have traditionally been underrepresented in the corresponding literature, due to challenges in data collection, along with a limited knowledge of proper methodology. In recent years, new types of high-resolution traffic safety data, especially in measuring driver behavior, have made time series modeling techniques an increasingly salient topic of study. Yet there remains a dearth of information to guide analysts in their use. This paper provides an overview of the state of the art in using time series models in traffic safety research, and discusses some of the fundamental techniques and considerations in classic time series modeling. It also presents ongoing and future opportunities for expanding the use of time series models, and explores newer modeling techniques, including computational intelligence models, which hold promise in effectively handling ever-larger data sets. The information contained herein is meant to guide safety researchers in understanding this broad area of transportation data analysis, and provide a framework for understanding safety trends that can influence policy-making. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Research and technology report of the Langley Research Center

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Highlights of major accomplishments and applications made during the past year at the Langley Research Center are reported. The activities and the contributions of this work toward maintaining United States leadership in aeronautics and space research are also discussed. Accomplishments in the fields of aeronautics and space technology, space science and applications and space transportation systems are discussed.

  4. NASA Ames Research Center Air Traffic Management Research Overview

    NASA Technical Reports Server (NTRS)

    Lozito, Sandy

    2017-01-01

    This is a presentation to the Owl Feather Society, a group of people who are retired from NASA Ames Research Center. I am providing a summary of the ATM research here at NASA Ames to this group as part of a lunch time talk series. The presentation will be at Michael's Restaurant in Mountain View, CA on July 18.

  5. Immunology Timeline | Center for Cancer Research

    Cancer.gov

    CCR: A History of Advancing the Field of Immunology The Center for Cancer Research has been at the forefront in the field of immunology and immunotherapy for decades. Our scientists have made seminal findings that have opened doors to new research areas and treatment approaches for cancer patients. Explore our rich history at the cutting edge of research towards understanding

  6. Conversion Preliminary Safety Analysis Report for the NIST Research Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diamond, D. J.; Baek, J. S.; Hanson, A. L.

    The NIST Center for Neutron Research (NCNR) is a reactor-laboratory complex providing the National Institute of Standards and Technology (NIST) and the nation with a world-class facility for the performance of neutron-based research. The heart of this facility is the NIST research reactor (aka NBSR); a heavy water moderated and cooled reactor operating at 20 MW. It is fueled with high-enriched uranium (HEU) fuel elements. A Global Threat Reduction Initiative (GTRI) program is underway to convert the reactor to low-enriched uranium (LEU) fuel. This program includes the qualification of the proposed fuel, uranium and molybdenum alloy foil clad in anmore » aluminum alloy, and the development of the fabrication techniques. This report is a preliminary version of the Safety Analysis Report (SAR) that would be submitted to the U.S. Nuclear Regulatory Commission (NRC) for approval prior to conversion. The report follows the recommended format and content from the NRC codified in NUREG-1537, “Guidelines for Preparing and Reviewing Applications for the Licensing of Non-power Reactors,” Chapter 18, “Highly Enriched to Low-Enriched Uranium Conversions.” The emphasis in any conversion SAR is to explain the differences between the LEU and HEU cores and to show the acceptability of the new design; there is no need to repeat information regarding the current reactor that will not change upon conversion. Hence, as seen in the report, the bulk of the SAR is devoted to Chapter 4, Reactor Description, and Chapter 13, Safety Analysis.« less

  7. Center for Transportation Research | The University of Tennessee, Knoxville

    Science.gov Websites

    Group Tennessee Vans Research CTR Fellows Projects Publications Presentations Education Rail Courses Graders July 9-13, 2018 | 9 a.m. - Noon National Transportation Research Center (NTRC) | 2360 Cherahala -4621. Celebrating CTR's 45th Year (and counting!), 1972-2017 The Center for Transportation Research

  8. Management of nanomaterials safety in research environment.

    PubMed

    Groso, Amela; Petri-Fink, Alke; Magrez, Arnaud; Riediker, Michael; Meyer, Thierry

    2010-12-10

    Despite numerous discussions, workshops, reviews and reports about responsible development of nanotechnology, information describing health and environmental risk of engineered nanoparticles or nanomaterials is severely lacking and thus insufficient for completing rigorous risk assessment on their use. However, since preliminary scientific evaluations indicate that there are reasonable suspicions that activities involving nanomaterials might have damaging effects on human health; the precautionary principle must be applied. Public and private institutions as well as industries have the duty to adopt preventive and protective measures proportionate to the risk intensity and the desired level of protection. In this work, we present a practical, 'user-friendly' procedure for a university-wide safety and health management of nanomaterials, developed as a multi-stakeholder effort (government, accident insurance, researchers and experts for occupational safety and health). The process starts using a schematic decision tree that allows classifying the nano laboratory into three hazard classes similar to a control banding approach (from Nano 3--highest hazard to Nano1--lowest hazard). Classifying laboratories into risk classes would require considering actual or potential exposure to the nanomaterial as well as statistical data on health effects of exposure. Due to the fact that these data (as well as exposure limits for each individual material) are not available, risk classes could not be determined. For each hazard level we then provide a list of required risk mitigation measures (technical, organizational and personal). The target 'users' of this safety and health methodology are researchers and safety officers. They can rapidly access the precautionary hazard class of their activities and the corresponding adequate safety and health measures. We succeed in convincing scientist dealing with nano-activities that adequate safety measures and management are promoting

  9. Management of nanomaterials safety in research environment

    PubMed Central

    2010-01-01

    Despite numerous discussions, workshops, reviews and reports about responsible development of nanotechnology, information describing health and environmental risk of engineered nanoparticles or nanomaterials is severely lacking and thus insufficient for completing rigorous risk assessment on their use. However, since preliminary scientific evaluations indicate that there are reasonable suspicions that activities involving nanomaterials might have damaging effects on human health; the precautionary principle must be applied. Public and private institutions as well as industries have the duty to adopt preventive and protective measures proportionate to the risk intensity and the desired level of protection. In this work, we present a practical, 'user-friendly' procedure for a university-wide safety and health management of nanomaterials, developed as a multi-stakeholder effort (government, accident insurance, researchers and experts for occupational safety and health). The process starts using a schematic decision tree that allows classifying the nano laboratory into three hazard classes similar to a control banding approach (from Nano 3 - highest hazard to Nano1 - lowest hazard). Classifying laboratories into risk classes would require considering actual or potential exposure to the nanomaterial as well as statistical data on health effects of exposure. Due to the fact that these data (as well as exposure limits for each individual material) are not available, risk classes could not be determined. For each hazard level we then provide a list of required risk mitigation measures (technical, organizational and personal). The target 'users' of this safety and health methodology are researchers and safety officers. They can rapidly access the precautionary hazard class of their activities and the corresponding adequate safety and health measures. We succeed in convincing scientist dealing with nano-activities that adequate safety measures and management are promoting

  10. Guidelines for Reviewers and the Editor at the Nuclear Safety Information Center.

    ERIC Educational Resources Information Center

    Whetsel, H. B.

    The main purpose of this report is to help novice reviewers accelerate their apprenticeship at the Nuclear Safety Information Center, a computerized information service sponsored by the U.S. Atomic Energy Commission. Guidelines for reviewers are presented in Part 1; Part 2 contains guidelines for the novice editor. The goal of the reviewers and…

  11. Final priorities; National Institute on Disability and Rehabilitation Research--Disability and Rehabilitation Research Projects and Centers Program--Rehabilitation Engineering Research Centers. Final priorities.

    PubMed

    2013-06-11

    The Assistant Secretary for Special Education and Rehabilitative Services announces priorities under the Disability and Rehabilitation Research Projects and Centers Program administered by the National Institute on Disability and Rehabilitation Research (NIDRR). Specifically, we announce priorities for a Rehabilitation Engineering Research Center (RERC) on Rehabilitation Strategies, Techniques, and Interventions (Priority 1), Information and Communication Technologies Access (Priority 2), Individual Mobility and Manipulation (Priority 3), and Physical Access and Transportation (Priority 4). The Assistant Secretary may use one or more of these priorities for competitions in fiscal year (FY) 2013 and later years. We take this action to focus research attention on areas of national need. We intend these priorities to improve community living and participation, health and function, and employment outcomes of individuals with disabilities.

  12. DOE - BES Nanoscale Science Research Centers (NSRCs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beecher, Cathy Jo

    2016-11-14

    These are slides from a powerpoint shown to guests during tours of Center for Integrated Nanotechnologies (CINT) at Los Alamos National Laboratory. It shows the five DOE-BES nanoscale science research centers (NSRCs), which are located at different national laboratories throughout the country. Then it goes into detail specifically about the Center for Integrated Nanotechnologies at LANL, including statistics on its user community and CINT's New Mexico industrial users.

  13. Research and technology, 1984: Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Moorehead, T. W. (Editor)

    1984-01-01

    The Marshall Space Flight Center conducts research programs in space sciences, materials processing in space, and atmospheric sciences, as well as technology programs in such areas as propulsion, materials, processes, and space power. This Marshall Space Flight Center 1984 Annual Report on Research and Technology contains summaries of the more significant scientific and technical results obtained during FY-84.

  14. Pursuing Personal Passion: Learner-Centered Research Mentoring.

    PubMed

    Phillips, William R

    2018-01-01

    New researchers often face difficulty finding and focusing research questions. I describe a new tool for research mentoring, the Pursuing Personal Passion (P3) interview, and a systematic approach to help learners organize their curiosity and develop researchable questions aligned with their personal and professional priorities. The learner-centered P3 research interview parallels the patient-centered clinical interview. This paper reviews experience with 27 research mentees over the years 2009 to 2016, using the P3 approach to identify their initial research topics, classify their underlying passions and track the evolution into their final research questions. These researchers usually identified one of three personal passions that provided lenses to focus their research: problem, person, or process. Initial research topics focused on: problem (24%, 6), person (48%, 12) and process (28%, 7). Final research questions evolved into: problem (20%, 5), person (32%, 8) and process (48%, 12). Identification of the underlying passion can lead researchers who start with one general topic to develop it into very different research questions. Using this P3 approach, mentors can help new researchers focus their interests into researchable questions, successful studies, and organized programs of scholarship.

  15. Continued Viability of Universities as Centers for Basic Research.

    ERIC Educational Resources Information Center

    Carter, Lisle C., Jr.; And Others

    The findings and 13 recommendations of a NSF Advisory Council task force that evaluated universities as centers of basic research are presented. Listed are the major strengths of universities as centers for basic research (including continuity and tradition, freedom of research, interactions among disciplines) and such threats to their viability…

  16. Flight Research Center, Edwards, California. Environmental Impact Statement

    NASA Technical Reports Server (NTRS)

    1971-01-01

    This is an institutional environmental impact statement relating to the overall operation of the NASA, Flight Research Center. The Center is located in Kern County, California, approximately 100 miles northeast of Los Angeles. Flight activities relate primarily to areas in the vicinity of Los Angeles, Kern, Inyo and San Bernardino counties in Southern California; and to areas in Southern Nevada (principally Nye and Clark counties. Operations of the Flight Research Center have a very neglibible impact on the environment; and they are planned and controlled to eliminate or minimize effects on water, air and noise.

  17. Sociotechnical approaches to workplace safety: Research needs and opportunities.

    PubMed

    Robertson, Michelle M; Hettinger, Lawrence J; Waterson, Patrick E; Noy, Y Ian; Dainoff, Marvin J; Leveson, Nancy G; Carayon, Pascale; Courtney, Theodore K

    2015-01-01

    The sociotechnical systems perspective offers intriguing and potentially valuable insights into problems associated with workplace safety. While formal sociotechnical systems thinking originated in the 1950s, its application to the analysis and design of sustainable, safe working environments has not been fully developed. To that end, a Hopkinton Conference was organised to review and summarise the state of knowledge in the area and to identify research priorities. A group of 26 international experts produced collaborative articles for this special issue of Ergonomics, and each focused on examining a key conceptual, methodological and/or theoretical issue associated with sociotechnical systems and safety. In this concluding paper, we describe the major conference themes and recommendations. These are organised into six topic areas: (1) Concepts, definitions and frameworks, (2) defining research methodologies, (3) modelling and simulation, (4) communications and decision-making, (5) sociotechnical attributes of safe and unsafe systems and (6) potential future research directions for sociotechnical systems research. Sociotechnical complexity, a characteristic of many contemporary work environments, presents potential safety risks that traditional approaches to workplace safety may not adequately address. In this paper, we summarise the investigations of a group of international researchers into questions associated with the application of sociotechnical systems thinking to improve worker safety.

  18. Sociotechnical approaches to workplace safety: Research needs and opportunities

    PubMed Central

    Robertson, Michelle M.; Hettinger, Lawrence J.; Waterson, Patrick E.; Ian Noy, Y.; Dainoff, Marvin J.; Leveson, Nancy G.; Carayon, Pascale; Courtney, Theodore K.

    2015-01-01

    The sociotechnical systems perspective offers intriguing and potentially valuable insights into problems associated with workplace safety. While formal sociotechnical systems thinking originated in the 1950s, its application to the analysis and design of sustainable, safe working environments has not been fully developed. To that end, a Hopkinton Conference was organised to review and summarise the state of knowledge in the area and to identify research priorities. A group of 26 international experts produced collaborative articles for this special issue of Ergonomics, and each focused on examining a key conceptual, methodological and/or theoretical issue associated with sociotechnical systems and safety. In this concluding paper, we describe the major conference themes and recommendations. These are organised into six topic areas: (1) Concepts, definitions and frameworks, (2) defining research methodologies, (3) modelling and simulation, (4) communications and decision-making, (5) sociotechnical attributes of safe and unsafe systems and (6) potential future research directions for sociotechnical systems research. Practitioner Summary: Sociotechnical complexity, a characteristic of many contemporary work environments, presents potential safety risks that traditional approaches to workplace safety may not adequately address. In this paper, we summarise the investigations of a group of international researchers into questions associated with the application of sociotechnical systems thinking to improve worker safety. PMID:25728246

  19. Energy Frontier Research Center Materials Science of Actinides (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema

    Burns, Peter (Director, Materials Science of Actinides); MSA Staff

    2017-12-09

    'Energy Frontier Research Center Materials Science of Actinides' was submitted by the EFRC for Materials Science of Actinides (MSA) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. MSA is directed by Peter Burns at the University of Notre Dame, and is a partnership of scientists from ten institutions.The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  20. Dryden Flight Research Center Overview

    NASA Technical Reports Server (NTRS)

    Meyer, Robert R., Jr.

    2007-01-01

    This viewgraph document presents a overview of the Dryden Flight Research Center's facilities. Dryden's mission is to advancing technology and science through flight. The mission elements are: perform flight research and technology integration to revolutionize aviation and pioneer aerospace technology, validate space exploration concepts, conduct airborne remote sensing and science observations, and support operations of the Space Shuttle and the ISS for NASA and the Nation. It reviews some of the recent research projects that Dryden has been involved in, such as autonomous aerial refueling, the"Quiet Spike" demonstration on supersonic F-15, intelligent flight controls, high angle of attack research on blended wing body configuration, and Orion launch abort tests.

  1. Senior Computational Scientist | Center for Cancer Research

    Cancer.gov

    The Basic Science Program (BSP) pursues independent, multidisciplinary research in basic and applied molecular biology, immunology, retrovirology, cancer biology, and human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick National Laboratory for Cancer Research (FNLCR). The Cancer & Inflammation Program (CIP),

  2. Annual research briefs, 1993. [Center for Turbulence Research

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The 1993 annual progress reports of the Research Fellow and students of the Center for Turbulence Research are included. The first group of reports are directed towards the theory and application of active control in turbulent flows including the development of a systematic mathematical procedure based on the Navier Stokes equations for flow control. The second group of reports are concerned with the prediction of turbulent flows. The remaining articles are devoted to turbulent reacting flows, turbulence physics, experiments, and simulations.

  3. National space test centers - Lewis Research Center Facilities

    NASA Technical Reports Server (NTRS)

    Roskilly, Ronald R.

    1990-01-01

    The Lewis Research Center, NASA, presently has a number of test facilities that constitute a significant national space test resource. It is expected this capability will continue to find wide application in work involving this country's future in space. Testing from basic research to applied technology, to systems development, to ground support will be performed, supporting such activities as Space Station Freedom, the Space Exploration Initiative, Mission to Planet Earth, and many others. The major space test facilities at both Cleveland and Lewis' Plum Brook Station are described. Primary emphasis is on space propulsion facilities; other facilities of importance in space power and microgravity are also included.

  4. 21 CFR Appendix A to Part 101 - Monier-Williams Procedure (With Modifications) for Sulfites in Food, Center for Food Safety and...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Monier-Williams Procedure (With Modifications) for Sulfites in Food, Center for Food Safety and Applied Nutrition, Food and Drug Administration (November 1985...-Williams Procedure (With Modifications) for Sulfites in Food, Center for Food Safety and Applied Nutrition...

  5. 21 CFR Appendix A to Part 101 - Monier-Williams Procedure (With Modifications) for Sulfites in Food, Center for Food Safety and...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Monier-Williams Procedure (With Modifications) for Sulfites in Food, Center for Food Safety and Applied Nutrition, Food and Drug Administration (November 1985...-Williams Procedure (With Modifications) for Sulfites in Food, Center for Food Safety and Applied Nutrition...

  6. 21 CFR Appendix A to Part 101 - Monier-Williams Procedure (With Modifications) for Sulfites in Food, Center for Food Safety and...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Monier-Williams Procedure (With Modifications) for Sulfites in Food, Center for Food Safety and Applied Nutrition, Food and Drug Administration (November 1985...-Williams Procedure (With Modifications) for Sulfites in Food, Center for Food Safety and Applied Nutrition...

  7. 21 CFR Appendix A to Part 101 - Monier-Williams Procedure (With Modifications) for Sulfites in Food, Center for Food Safety and...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Monier-Williams Procedure (With Modifications) for Sulfites in Food, Center for Food Safety and Applied Nutrition, Food and Drug Administration (November 1985...-Williams Procedure (With Modifications) for Sulfites in Food, Center for Food Safety and Applied Nutrition...

  8. 21 CFR Appendix A to Part 101 - Monier-Williams Procedure (With Modifications) for Sulfites in Food, Center for Food Safety and...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Monier-Williams Procedure (With Modifications) for Sulfites in Food, Center for Food Safety and Applied Nutrition, Food and Drug Administration (November 1985...-Williams Procedure (With Modifications) for Sulfites in Food, Center for Food Safety and Applied Nutrition...

  9. The Role of Computers in Research and Development at Langley Research Center

    NASA Technical Reports Server (NTRS)

    Wieseman, Carol D. (Compiler)

    1994-01-01

    This document is a compilation of presentations given at a workshop on the role cf computers in research and development at the Langley Research Center. The objectives of the workshop were to inform the Langley Research Center community of the current software systems and software practices in use at Langley. The workshop was organized in 10 sessions: Software Engineering; Software Engineering Standards, methods, and CASE tools; Solutions of Equations; Automatic Differentiation; Mosaic and the World Wide Web; Graphics and Image Processing; System Design Integration; CAE Tools; Languages; and Advanced Topics.

  10. 48 CFR 235.017 - Federally Funded Research and Development Centers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... and Development Centers. 235.017 Section 235.017 Federal Acquisition Regulations System DEFENSE... DEVELOPMENT CONTRACTING 235.017 Federally Funded Research and Development Centers. (a) Policy. (2) No DoD... Funded Research and Development Center (FFRDC) if a member of its board of directors or trustees...

  11. 48 CFR 235.017 - Federally Funded Research and Development Centers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... and Development Centers. 235.017 Section 235.017 Federal Acquisition Regulations System DEFENSE... DEVELOPMENT CONTRACTING 235.017 Federally Funded Research and Development Centers. (a) Policy. (2) No DoD... Funded Research and Development Center (FFRDC) if a member of its board of directors or trustees...

  12. 48 CFR 235.017 - Federally Funded Research and Development Centers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... and Development Centers. 235.017 Section 235.017 Federal Acquisition Regulations System DEFENSE... DEVELOPMENT CONTRACTING 235.017 Federally Funded Research and Development Centers. (a) Policy. (2) No DoD... Funded Research and Development Center (FFRDC) if a member of its board of directors or trustees...

  13. 48 CFR 235.017 - Federally Funded Research and Development Centers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... and Development Centers. 235.017 Section 235.017 Federal Acquisition Regulations System DEFENSE... DEVELOPMENT CONTRACTING 235.017 Federally Funded Research and Development Centers. (a) Policy. (2) No DoD... Funded Research and Development Center (FFRDC) if a member of its board of directors or trustees...

  14. 48 CFR 235.017 - Federally Funded Research and Development Centers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... and Development Centers. 235.017 Section 235.017 Federal Acquisition Regulations System DEFENSE... DEVELOPMENT CONTRACTING 235.017 Federally Funded Research and Development Centers. (a) Policy. (2) No DoD... Funded Research and Development Center (FFRDC) if a member of its board of directors or trustees...

  15. Statistical Analysis of Research Data | Center for Cancer Research

    Cancer.gov

    Recent advances in cancer biology have resulted in the need for increased statistical analysis of research data. The Statistical Analysis of Research Data (SARD) course will be held on April 5-6, 2018 from 9 a.m.-5 p.m. at the National Institutes of Health's Natcher Conference Center, Balcony C on the Bethesda Campus. SARD is designed to provide an overview on the general

  16. NASA Lewis Research Center/university graduate research program on engine structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1985-01-01

    NASA Lewis Research Center established a graduate research program in support of the Engine Structures Research activities. This graduate research program focuses mainly on structural and dynamics analyses, computational mechanics, mechanics of composites and structural optimization. The broad objectives of the program, the specific program, the participating universities and the program status are briefly described.

  17. NASA Lewis Research Center/University Graduate Research Program on Engine Structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1985-01-01

    NASA Lewis Research Center established a graduate research program in support of the Engine Structures Research activities. This graduate research program focuses mainly on structural and dynamics analyses, computational mechanics, mechanics of composites and structural optimization. The broad objectives of the program, the specific program, the participating universities and the program status are briefly described.

  18. University-Based Research Centers: Characteristics, Organization, and Administrative Implications

    ERIC Educational Resources Information Center

    Sa, Creso M.

    2008-01-01

    This paper examines the characteristics and organizational issues associated with university-based research centers. The first section sketches general characteristics and functions of centers. The second section examines major issues concerning the organization of centers, including funding and sustainability, center autonomy, and relations with…

  19. Narrative review of the UK Patient Safety Research Portfolio.

    PubMed

    Waring, Justin; Rowley, Emma; Dingwall, Robert; Palmer, Cecily; Murcott, Toby

    2010-01-01

    The UK Patient Safety Research Portfolio (PSRP) commissioned 38 studies investigating the threats to patient safety in various clinical settings and evaluating safety-related service interventions. This paper reviews 27 of these studies, drawing out emergent and cross-cutting themes in terms of theory, research methods and thematic findings. Given the diversity of PSRP studies, the paper takes a narrative approach that allows for qualitative description, interpretation and synthesis of the studies and their findings. The theoretical review shows the majority of PSRP studies draw upon a patient safety 'orthodoxy', developed from the concepts and models associated with the human factors approach. The methodological review shows that a diverse range of research designs and techniques have been utilized. Although many follow in the 'scientific' tradition, interpretative, mixed and innovative methods have been integral to research. The thematic review of findings highlights significant contributions to knowledge in the areas of 'people', 'organizations', and 'technology'. As well as identifying the various sources of risk in the organization and delivery of patient care, the studies also evaluate and make recommendations about service change and improvement. The PSRP has provided the foundations for significant theoretical, methodological and empirical advances in the area of patient safety. The findings and recommendations make important contributions to policy formulation and implementation as well as professional and managerial practice. Through this body of research the PSRP has supported the formation and growth of a thriving research community across academic, policy and professional communities.

  20. FRA funded grade crossing safety & trespass prevention research (June 2007 - present).

    DOT National Transportation Integrated Search

    2015-05-01

    FRAs Office of R&D and Office of Railroad : Safety have been actively supporting highway-rail grade crossing safety and trespass : prevention research to improve safety. Below : is a list of technical reports and research results : from FRA-funded...

  1. The NASA Langley Research Center's Unmanned Aerial System Surrogate Research Aircraft

    NASA Technical Reports Server (NTRS)

    Howell, Charles T., III; Jessup, Artie; Jones, Frank; Joyce, Claude; Sugden, Paul; Verstynen, Harry; Mielnik, John

    2010-01-01

    Research is needed to determine what procedures, aircraft sensors and other systems will be required to allow Unmanned Aerial Systems (UAS) to safely operate with manned aircraft in the National Airspace System (NAS). The NASA Langley Research Center has transformed a Cirrus Design SR22 general aviation (GA) aircraft into a UAS Surrogate research aircraft to serve as a platform for UAS systems research, development, flight testing and evaluation. The aircraft is manned with a Safety Pilot and systems operator that allows for flight operations almost anywhere in the NAS without the need for a Federal Aviation Administration (FAA) Certificate of Authorization (COA). The UAS Surrogate can be controlled from a modular, transportable ground station like a true UAS. The UAS Surrogate is able to file and fly in the NAS with normal traffic and is a better platform for real world UAS research and development than existing vehicles flying in restricted ranges or other sterilized airspace. The Cirrus Design SR22 aircraft is a small, singleengine, four-place, composite-construction aircraft that NASA Langley acquired to support NASA flight-research programs like the Small Aircraft Transportation System (SATS) Project. Systems were installed to support flight test research and data gathering. These systems include: separate research power; multi-function flat-panel displays; research computers; research air data and inertial state sensors; video recording; data acquisition; data-link; S-band video and data telemetry; Common Airborne Instrumentation System (CAIS); Automatic Dependent Surveillance-Broadcast (ADS-B); instrumented surfaces and controls; and a systems operator work station. The transformation of the SR22 to a UAS Surrogate was accomplished in phases. The first phase was to modify the existing autopilot to accept external commands from a research computer that was connected by redundant data-link radios to a ground control station. An electro-mechanical auto

  2. Compendium of traffic safety research projects : 1987-1997

    DOT National Transportation Integrated Search

    1997-09-01

    The National Highway Traffic Safety Administration's (NHTSA) Research and Evaluation Division, Office of Research and Traffic Records, conducts research and evaluation projects dealing with human attitudes, behaviors, and failures (motor vehicle cras...

  3. Feedlot research at the U.S. Meat Animal Research Center

    USDA-ARS?s Scientific Manuscript database

    The U.S. Meat Animal Research Center (U.S. MARC) conducts research in several areas to support the feedlot industry and the U.S. consumer. Several studies have been conducted to determine the nutrient value of emerging coproduct feeds and their usage in cattle of diverse genetics. The amount of me...

  4. Key success factors of health research centers: A mixed method study.

    PubMed

    Tofighi, Shahram; Teymourzadeh, Ehsan; Heydari, Majid

    2017-08-01

    In order to achieve success in future goals and activities, health research centers are required to identify their key success factors. This study aimed to extract and rank the factors affecting the success of research centers at one of the medical universities in Iran. This study is a mixed method (qualitative-quantitative) study, which was conducted between May to October in 2016. The study setting was 22 health research centers. In qualitative phase, we extracted the factors affecting the success in research centers through purposeful interviews with 10 experts of centers, and classified them into themes and sub-themes. In the quantitative phase, we prepared a questionnaire and scored and ranked the factors recognized by 54 of the study samples by Friedman test. Nine themes and 42 sub-themes were identified. Themes included: strategic orientation, management, human capital, support, projects, infrastructure, communications and collaboration, paradigm and innovation and they were rated respectively as components of success in research centers. Among the 42 identified factors, 10 factors were ranked respectively as the key factors of success, and included: science and technology road map, strategic plan, evaluation indexes, committed human resources, scientific evaluation of members and centers, innovation in research and implementation, financial support, capable researchers, equipment infrastructure and teamwork. According to the results, the strategic orientation was the most important component in the success of research centers. Therefore, managers and authorities of research centers should pay more attention to strategic areas in future planning, including the science and technology road map and strategic plan.

  5. Key success factors of health research centers: A mixed method study

    PubMed Central

    Tofighi, Shahram; Teymourzadeh, Ehsan; Heydari, Majid

    2017-01-01

    Background In order to achieve success in future goals and activities, health research centers are required to identify their key success factors. Objective This study aimed to extract and rank the factors affecting the success of research centers at one of the medical universities in Iran. Methods This study is a mixed method (qualitative-quantitative) study, which was conducted between May to October in 2016. The study setting was 22 health research centers. In qualitative phase, we extracted the factors affecting the success in research centers through purposeful interviews with 10 experts of centers, and classified them into themes and sub-themes. In the quantitative phase, we prepared a questionnaire and scored and ranked the factors recognized by 54 of the study samples by Friedman test. Results Nine themes and 42 sub-themes were identified. Themes included: strategic orientation, management, human capital, support, projects, infrastructure, communications and collaboration, paradigm and innovation and they were rated respectively as components of success in research centers. Among the 42 identified factors, 10 factors were ranked respectively as the key factors of success, and included: science and technology road map, strategic plan, evaluation indexes, committed human resources, scientific evaluation of members and centers, innovation in research and implementation, financial support, capable researchers, equipment infrastructure and teamwork. Conclusion According to the results, the strategic orientation was the most important component in the success of research centers. Therefore, managers and authorities of research centers should pay more attention to strategic areas in future planning, including the science and technology road map and strategic plan. PMID:28979733

  6. Countermeasures That Work : A Highway Safety Countermeasure Guide For State Highway Safety Offices Sixth Edition, 2011

    DOT National Transportation Integrated Search

    2011-02-01

    This edition of Countermeasures that Work was prepared by the University of North Carolina Highway Safety Research Center (HSRC). Researchers who contributed to this edition include Arthur H. Goodwin, Libby J. Thomas, William L. Hall, and Mary Ellen ...

  7. The Center for Aerospace Research: A NASA Center of Excellence at North Carolina Agricultural and Technical State University

    NASA Technical Reports Server (NTRS)

    Lai, Steven H.-Y.

    1992-01-01

    This report documents the efforts and outcomes of our research and educational programs at NASA-CORE in NCA&TSU. The goal of the center was to establish a quality aerospace research base and to develop an educational program to increase the participation of minority faculty and students in the areas of aerospace engineering. The major accomplishments of this center in the first year are summarized in terms of three different areas, namely, the center's research programs area, the center's educational programs area, and the center's management area. In the center's research programs area, we focus on developing capabilities needed to support the development of the aerospace plane and high speed civil transportation system technologies. In the educational programs area, we developed an aerospace engineering option program ready for university approval.

  8. 13. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) AERIAL VIEW OF 8-FOOT HIGH SPEED WIND TUNNEL IN FOREGROUND. NOTE COOLING TOWER AT LEFT CENTER. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

  9. A research agenda on patient safety in primary care. Recommendations by the LINNEAUS collaboration on patient safety in primary care.

    PubMed

    Verstappen, Wim; Gaal, Sander; Bowie, Paul; Parker, Diane; Lainer, Miriam; Valderas, Jose M; Wensing, Michel; Esmail, Aneez

    2015-09-01

    Healthcare can cause avoidable serious harm to patients. Primary care is not an exception, and the relative lack of research in this area lends urgency to a better understanding of patient safety, the future research agenda and the development of primary care oriented safety programmes. To outline a research agenda for patient safety improvement in primary care in Europe and beyond. The LINNEAUS collaboration partners analysed existing research on epidemiology and classification of errors, diagnostic and medication errors, safety culture, and learning for and improving patient safety. We discussed ideas for future research in several meetings, workshops and congresses with LINNEAUS collaboration partners, practising GPs, researchers in this field, and policy makers. This paper summarizes and integrates the outcomes of the LINNEAUS collaboration on patient safety in primary care. It proposes a research agenda on improvement strategies for patient safety in primary care. In addition, it provides background information to help to connect research in this field with practicing GPs and other healthcare workers in primary care. Future research studies should target specific primary care domains, using prospective methods and innovative methods such as patient involvement.

  10. A research agenda on patient safety in primary care. Recommendations by the LINNEAUS collaboration on patient safety in primary care

    PubMed Central

    Verstappen, Wim; Gaal, Sander; Bowie, Paul; Parker, Diane; Lainer, Miriam; Valderas, Jose M.; Wensing, Michel; Esmail, Aneez

    2015-01-01

    ABSTRACT Background: Healthcare can cause avoidable serious harm to patients. Primary care is not an exception, and the relative lack of research in this area lends urgency to a better understanding of patient safety, the future research agenda and the development of primary care oriented safety programmes. Objective: To outline a research agenda for patient safety improvement in primary care in Europe and beyond. Methods: The LINNEAUS collaboration partners analysed existing research on epidemiology and classification of errors, diagnostic and medication errors, safety culture, and learning for and improving patient safety. We discussed ideas for future research in several meetings, workshops and congresses with LINNEAUS collaboration partners, practising GPs, researchers in this field, and policy makers. Results: This paper summarizes and integrates the outcomes of the LINNEAUS collaboration on patient safety in primary care. It proposes a research agenda on improvement strategies for patient safety in primary care. In addition, it provides background information to help to connect research in this field with practicing GPs and other healthcare workers in primary care. Conclusion: Future research studies should target specific primary care domains, using prospective methods and innovative methods such as patient involvement. PMID:26339841

  11. NASA Software Safety Standard

    NASA Technical Reports Server (NTRS)

    Rosenberg, Linda

    1997-01-01

    If software is a critical element in a safety critical system, it is imperative to implement a systematic approach to software safety as an integral part of the overall system safety programs. The NASA-STD-8719.13A, "NASA Software Safety Standard", describes the activities necessary to ensure that safety is designed into software that is acquired or developed by NASA, and that safety is maintained throughout the software life cycle. A PDF version, is available on the WWW from Lewis. A Guidebook that will assist in the implementation of the requirements in the Safety Standard is under development at the Lewis Research Center (LeRC). After completion, it will also be available on the WWW from Lewis.

  12. CCR Magazines | Center for Cancer Research

    Cancer.gov

    The Center for Cancer Research (CCR) has two magazines, MILESTONES and LANDMARKS, that highlight our annual advances and top contributions to the understanding, detection, treatment and prevention of cancer over the years.

  13. RIKEN BNL Research Center

    NASA Astrophysics Data System (ADS)

    Samios, Nicholas

    2014-09-01

    Since its inception in 1997, the RIKEN BNL Research Center (RBRC) has been a major force in the realms of Spin Physics, Relativistic Heavy Ion Physics, large scale Computing Physics and the training of a new generation of extremely talented physicists. This has been accomplished through the recruitment of an outstanding non-permanent staff of Fellows and Research associates in theory and experiment. RBRC is now a mature organization that has reached a steady level in the size of scientific and support staff while at the same time retaining its vibrant youth. A brief history of the scientific accomplishments and contributions of the RBRC physicists will be presented as well as a discussion of the unique RBRC management structure.

  14. Center for Research for Mothers and Children. 1988 Progress Report.

    ERIC Educational Resources Information Center

    National Inst. of Child Health and Human Development (NIH), Bethesda, MD. Center for Research for Mothers and Children.

    The 1988 Progress Report covers research activities of the five branches of the Center for Research for Mothers and Children of the National Institute of Child Health and Human Development. An introductory section briefly describes the Center, notes staff activities and Center sponsored conferences and workshops, and identifies highlights of…

  15. Trace Research and Development Center: Report of Progress, 1987-94.

    ERIC Educational Resources Information Center

    Wisconsin Univ., Madison. Trace Center.

    This report documents activities and projects from 1987 to 1994 of the Trace Research and Development Center (Wisconsin), which addresses the communication needs of nonvocal severely disabled children and adults. During this period the Center also served as a national Rehabilitation Engineering Research Center on the topic of Access to Computers…

  16. An overview of the Penn State Propulsion Engineering Research Center

    NASA Technical Reports Server (NTRS)

    Merkle, Charles L.

    1991-01-01

    An overview of the Penn State Propulsion Engineering Research Center is presented. The following subject areas are covered: research objectives and long term perspective of the Center; current status and operational philosophy; and brief description of Center projects (combustion, fluid mechanics and heat transfer, materials compatibility, turbomachinery, and advanced propulsion concepts).

  17. Energy Frontier Research Center Materials Science of Actinides (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burns, Peter; Lenzen, Meehan

    "Energy Frontier Research Center Materials Science of Actinides" was submitted by the EFRC for Materials Science of Actinides (MSA) to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. MSA is directed by Peter Burns at the University of Notre Dame, and is a partnership of scientists from ten institutions.The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Researchmore » Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.« less

  18. How Can We Improve School Safety Research?

    ERIC Educational Resources Information Center

    Astor, Ron Avi; Guerra, Nancy; Van Acker, Richard

    2010-01-01

    The authors of this article consider how education researchers can improve school violence and school safety research by (a) examining gaps in theoretical, conceptual, and basic research on the phenomena of school violence; (b) reviewing key issues in the design and evaluation of evidence-based practices to prevent school violence; and (c)…

  19. Lewis Research Center R and D Facilities

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The NASA Lewis Research Center (LeRC) defines and develops advanced technology for high priority national needs. The work of the Center is directed toward new propulsion, power, and communications technologies for application to aeronautics and space, so that U.S. leadership in these areas is ensured. The end product is knowledge, usually in a report, that is made fully available to potential users--the aircraft engine industry, the energy industry, the automotive industry, the space industry, and other NASA centers. In addition to offices and laboratories for almost every kind of physical research in such fields as fluid mechanics, physics, materials, fuels, combustion, thermodynamics, lubrication, heat transfer, and electronics, LeRC has a variety of engineering test cells for experiments with components such as compressors, pumps, conductors, turbines, nozzles, and controls. A number of large facilities can simulate the operating environment for a complete system: altitude chambers for aircraft engines; large supersonic wind tunnels for advanced airframes and propulsion systems; space simulation chambers for electric rockets or spacecraft; and a 420-foot-deep zero-gravity facility for microgravity experiments. Some problems are amenable to detection and solution only in the complete system and at essentially full scale. By combining basic research in pertinent disciplines and generic technologies with applied research on components and complete systems, LeRC has become one of the most productive centers in its field in the world. This brochure describes a number of the facilities that provide LeRC with its exceptional capabilities.

  20. Center for Inherited Disease Research (CIDR)

    Cancer.gov

    The Center for Inherited Disease Research (CIDR) Program at The Johns Hopkins University provides high-quality next generation sequencing and genotyping services to investigators working to discover genes that contribute to common diseases.

  1. United States Air Force Summer Research Program -- 1993. Volume 16. Arnold Engineering Development Center. Frank J. Seiler Research Laboratory. Wilford Hall Medical Center

    DTIC Science & Technology

    1993-12-01

    A I 7f t UNITED STATE AIR FORCE SUMMER RESEARCH PROGRAM -- 1993 SUMMER RESEARCH PROGRAM FINAL REPORTS VOLUME 16 ARNOLD ENGINEERING DEVELOPMENT CENTER...FRANK J. SELLER RESEARCH LABORATORY WILFORD HALL MEDICAL CENTER RESEARCH & DEVELOPMENT LABORATORIES 5800 Uplander Way Culver City, CA 90230-6608...National Rd. Vol-Page No: 15-44 Dist Tecumseh High School 8.4 New Carlisle, OH 45344-0000 Barber, Jason Laboratory: AL/CF 1000 10th St. Vol-Page No

  2. Decline of clinical research in academic medical centers.

    PubMed

    Meador, Kimford J

    2015-09-29

    Marked changes in US medical school funding began in the 1960s with progressively increasing revenues from clinical services. The growth of clinical revenues slowed in the mid-1990s, creating a funding crisis for US academic health care centers, who responded by having their faculty increase their clinical duties at the expense of research activities. Surveys document the resultant stresses on the academic clinician researcher. The NIH provides greater funding for basic and translational research than for clinical research, and the new Patient-Centered Outcomes Research Institute is inadequately funded to address the scope of needed clinical research. An increasing portion of clinical research is funded by industry, which leaves many important clinical issues unaddressed. There is an inadequate supply of skilled clinical researchers and a lack of external support for clinical research. The impact on the academic environment in university medical centers is especially severe on young faculty, who have a shrinking potential to achieve successful academic careers. National health care research funding policies should encourage the right balance of life-science investigations. Medical universities need to improve and highlight education on clinical research for students, residents, fellows, and young faculty. Medical universities also need to provide appropriate incentives for clinical research. Without training to ensure an adequate supply of skilled clinical researchers and a method to adequately fund clinical research, discoveries from basic and translational research cannot be clinically tested and affect patient care. Thus, many clinical problems will continue to be evaluated and treated with inadequate or even absent evidence-based knowledge. © 2015 American Academy of Neurology.

  3. Decline of clinical research in academic medical centers

    PubMed Central

    2015-01-01

    Marked changes in US medical school funding began in the 1960s with progressively increasing revenues from clinical services. The growth of clinical revenues slowed in the mid-1990s, creating a funding crisis for US academic health care centers, who responded by having their faculty increase their clinical duties at the expense of research activities. Surveys document the resultant stresses on the academic clinician researcher. The NIH provides greater funding for basic and translational research than for clinical research, and the new Patient-Centered Outcomes Research Institute is inadequately funded to address the scope of needed clinical research. An increasing portion of clinical research is funded by industry, which leaves many important clinical issues unaddressed. There is an inadequate supply of skilled clinical researchers and a lack of external support for clinical research. The impact on the academic environment in university medical centers is especially severe on young faculty, who have a shrinking potential to achieve successful academic careers. National health care research funding policies should encourage the right balance of life-science investigations. Medical universities need to improve and highlight education on clinical research for students, residents, fellows, and young faculty. Medical universities also need to provide appropriate incentives for clinical research. Without training to ensure an adequate supply of skilled clinical researchers and a method to adequately fund clinical research, discoveries from basic and translational research cannot be clinically tested and affect patient care. Thus, many clinical problems will continue to be evaluated and treated with inadequate or even absent evidence-based knowledge. PMID:26156509

  4. Ames Research Center cryogenics program

    NASA Technical Reports Server (NTRS)

    Kittel, Peter

    1987-01-01

    Viewgraphs describe the Ames Research Center's cryogenics program. Diagrams are given of a fluid management system, a centrifugal pump, a flow meter, a liquid helium test facility, an extra-vehicular activity coupler concept, a dewar support with passive orbital disconnect, a pulse tube refrigerator, a dilution refrigerator, and an adiabatic demagnetization cooler.

  5. Center for Cancer Research hosts 10th Annual GIST Clinic | Center for Cancer Research

    Cancer.gov

    Patients and specialists from around the world gathered for the 10th Annual Pediatric and Wildtype GIST Clinic, which took place Wednesday, July 5 through Friday, July 7, 2017 at the NIH Clinical Center in Bethesda, Maryland. Occurring once a year, the clinic convenes clinicians, research scientists and advocates from across the country to consult with patients who have GIST.

  6. A model for evaluating academic research centers: Case study of the Asian/Pacific Islander Youth Violence Prevention Center.

    PubMed

    Nishimura, Stephanie T; Hishinuma, Earl S; Goebert, Deborah A; Onoye, Jane M M; Sugimoto-Matsuda, Jeanelle J

    2018-02-01

    To provide one model for evaluating academic research centers, given their vital role in addressing public health issues. A theoretical framework is described for a comprehensive evaluation plan for research centers. This framework is applied to one specific center by describing the center's Logic Model and Evaluation Plan, including a sample of the center's activities. Formative and summative evaluation information is summarized. In addition, a summary of outcomes is provided: improved practice and policy; reduction of risk factors and increase in protective factors; reduction of interpersonal youth violence in the community; and national prototype for prevention of interpersonal youth violence. Research centers are important mechanisms to advance science and improve people's quality of life. Because of their more infrastructure-intensive and comprehensive approach, they also require substantial resources for success, and thus, also require careful accountability. It is therefore important to comprehensively evaluate these centers. As provided herein, a more systematic and structured approach utilizing logic models, an evaluation plan, and successful processes can provide research centers with a functionally useful method in their evaluation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. 76 FR 37085 - Applications for New Awards; Rehabilitation Engineering Research Centers (RERCs)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-24

    ... DEPARTMENT OF EDUCATION Applications for New Awards; Rehabilitation Engineering Research Centers...)--Disability and Rehabilitation Research Projects and Centers Program--Rehabilitation Engineering Research... (Rehabilitation Act). Rehabilitation Engineering Research Centers Program (RERCs) The purpose of the RERC program...

  8. Research Associate | Center for Cancer Research

    Cancer.gov

    PROGRAM DESCRIPTION The Basic Science Program (BSP) pursues independent, multidisciplinary research in basic and applied molecular biology, immunology, retrovirology, cancer biology, and human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick National Laboratory for Cancer Research (FNLCR). KEY ROLES/RESPONSIBILITIES - Research Associate III Dr. Zbigniew Dauter is the head investigator of the Synchrotron Radiation Research Section (SRRS) of CCR’s Macromolecular Crystallography Laboratory. The Synchrotron Radiation Research Section is located at Argonne National Laboratory, Argonne, Illinois; this is the site of the largest U.S. synchrotron facility. The SRRS uses X-ray diffraction technique to solve crystal structures of various proteins and nucleic acids of biological and medical relevance. The section is also specializing in analyzing crystal structures at extremely high resolution and accuracy and in developing methods of effective diffraction data collection and in using weak anomalous dispersion effects to solve structures of macromolecules. The areas of expertise are: Structural and molecular biology Macromolecular crystallography Diffraction data collection Dr. Dauter requires research support in these areas, and the individual will engage in the purification and preparation of samples, crystallize proteins using various techniques, and derivatize them with heavy atoms/anomalous scatterers, and establish conditions for cryogenic freezing. Individual will also participate in diffraction data collection at the Advanced Photon Source. In addition, the candidate will perform spectroscopic and chromatographic analyses of protein and nucleic acid samples in the context of their purity, oligomeric state and photophysical properties.

  9. Administrative Assistant | Center for Cancer Research

    Cancer.gov

    Be part of our mission to support research against cancer. We are looking for an organized, detail oriented, dependable person with strong interpersonal skills to serve as an administrative assistant at the National Cancer Institute (NCI) on the campus of NIH. Work supports the implementation of the NIH Genomic Data Sharing Policy (GDS) in the NCI’s Center for Cancer Research

  10. Contact Us | Center for Cancer Research

    Cancer.gov

    Program Contact Program Manager Anuradha Budhu, Ph.D. Program Manager, NCI CCR Liver Cancer Program Senior Associate Scientist, Liver Carcinogenesis Section Laboratory of Human Carcinogenesis NCI Center for Cancer Research Tel: 240-760-6837

  11. Establishing research priorities for patient safety in emergency medicine: a multidisciplinary consensus panel.

    PubMed

    Plint, Amy C; Stang, Antonia S; Calder, Lisa A

    2015-01-01

    Patient safety in the context of emergency medicine is a relatively new field of study. To date, no broad research agenda for patient safety in emergency medicine has been established. The objective of this study was to establish patient safety-related research priorities for emergency medicine. These priorities would provide a foundation for high-quality research, important direction to both researchers and health-care funders, and an essential step in improving health-care safety and patient outcomes in the high-risk emergency department (ED) setting. A four-phase consensus procedure with a multidisciplinary expert panel was organized to identify, assess, and agree on research priorities for patient safety in emergency medicine. The 19-member panel consisted of clinicians, administrators, and researchers from adult and pediatric emergency medicine, patient safety, pharmacy, and mental health; as well as representatives from patient safety organizations. In phase 1, we developed an initial list of potential research priorities by electronically surveying a purposeful and convenience sample of patient safety experts, ED clinicians, administrators, and researchers from across North America using contact lists from multiple organizations. We used simple content analysis to remove duplication and categorize the research priorities identified by survey respondents. Our expert panel reached consensus on a final list of research priorities through an in-person meeting (phase 3) and two rounds of a modified Delphi process (phases 2 and 4). After phases 1 and 2, 66 unique research priorities were identified for expert panel review. At the end of phase 4, consensus was reached for 15 research priorities. These priorities represent four themes: (1) methods to identify patient safety issues (five priorities), (2) understanding human and environmental factors related to patient safety (four priorities), (3) the patient perspective (one priority), and (4) interventions for

  12. Statistical Analysis of Research Data | Center for Cancer Research

    Cancer.gov

    Recent advances in cancer biology have resulted in the need for increased statistical analysis of research data. The Statistical Analysis of Research Data (SARD) course will be held on April 5-6, 2018 from 9 a.m.-5 p.m. at the National Institutes of Health's Natcher Conference Center, Balcony C on the Bethesda Campus. SARD is designed to provide an overview on the general principles of statistical analysis of research data.  The first day will feature univariate data analysis, including descriptive statistics, probability distributions, one- and two-sample inferential statistics.

  13. Final priority; National Institute on Disability and Rehabilitation Research--Disability and Rehabilitation Projects and Centers Program--Rehabilitation Engineering Research Centers. Final priority.

    PubMed

    2013-06-19

    The Assistant Secretary for Special Education and Rehabilitative Services announces a priority for a Rehabilitation Engineering Research Center (RERC) on Technologies to Support Successful Aging with Disability under the Disability and Rehabilitation Research Projects and Centers Program administered by the National Institute on Disability and Rehabilitation Research (NIDRR). The Assistant Secretary may use this priority for a competition in fiscal year (FY) 2013 and later years. We take this action to focus research attention on areas of national need. We intend to use this priority to improve outcomes for individuals with disabilities.

  14. Safety Issues in Agricultural Education Laboratories: A Synthesis of Research.

    ERIC Educational Resources Information Center

    Dyer, James E.; Andreasen, Randall J.

    1999-01-01

    Synthesis of research on safety in agricultural education laboratories found most research focused on agricultural mechanics. Labs appeared to be potentially hazardous places, and teachers have inadequate knowledge of safety laws and ways to provide a safe working environment. (SK)

  15. A Process-Centered Tool for Evaluating Patient Safety Performance and Guiding Strategic Improvement

    DTIC Science & Technology

    2005-01-01

    next patient safety steps in individual health care organizations. The low priority given to Category 3 (Focus on patients , other customers , and...presents a patient safety applicator tool for implementing and assessing patient safety systems in health care institutions. The applicator tool consists...the survey rounds. The study addressed three research questions: 1. What critical processes should be included in health care patient safety systems

  16. Ask Dr. Sue--Is Playground Safety Being Taken Seriously?

    ERIC Educational Resources Information Center

    Aronson, Susan S.

    1992-01-01

    Reviews Center for Disease Control research findings on playground hazards at child care centers in Atlanta, Georgia. Discusses safety requirements for surfacing under climbing equipment. Describes resources for more information. (AC)

  17. Upgrades at the NASA Langley Research Center National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Paryz, Roman W.

    2012-01-01

    Several projects have been completed or are nearing completion at the NASA Langley Research Center (LaRC) National Transonic Facility (NTF). The addition of a Model Flow-Control/Propulsion Simulation test capability to the NTF provides a unique, transonic, high-Reynolds number test capability that is well suited for research in propulsion airframe integration studies, circulation control high-lift concepts, powered lift, and cruise separation flow control. A 1992 vintage Facility Automation System (FAS) that performs the control functions for tunnel pressure, temperature, Mach number, model position, safety interlock and supervisory controls was replaced using current, commercially available components. This FAS upgrade also involved a design study for the replacement of the facility Mach measurement system and the development of a software-based simulation model of NTF processes and control systems. The FAS upgrades were validated by a post upgrade verification wind tunnel test. The data acquisition system (DAS) upgrade project involves the design, purchase, build, integration, installation and verification of a new DAS by replacing several early 1990's vintage computer systems with state of the art hardware/software. This paper provides an update on the progress made in these efforts. See reference 1.

  18. Methodological and Ethical Issues in Pediatric Medication Safety Research.

    PubMed

    Carpenter, Delesha; Gonzalez, Daniel; Retsch-Bogart, George; Sleath, Betsy; Wilfond, Benjamin

    2017-09-01

    In May 2016, the Eshelman School of Pharmacy at The University of North Carolina at Chapel Hill convened the PharmSci conference to address the topic of "methodological and ethical issues in pediatric medication safety research." A multidisciplinary group of experts representing a diverse array of perspectives, including those of the US Food and Drug Administration, children's hospitals, and academia, identified important considerations for pediatric medication safety research and opportunities to advance the field. This executive summary describes current challenges that clinicians and researchers encounter related to pediatric medication safety research and identifies innovative and ethically sound methodologies to address these challenges to improve children's health. This article addresses 5 areas: (1) pediatric drug development and drug trials; (2) conducting comparative effectiveness research in pediatric populations; (3) child and parent engagement on study teams; (4) improving communication with children and parents; and (5) assessing child-reported outcomes and adverse drug events. Copyright © 2017 by the American Academy of Pediatrics.

  19. Researching safety culture: deliberative dialogue with a restorative lens.

    PubMed

    Lorenzini, Elisiane; Oelke, Nelly D; Marck, Patricia Beryl; Dall'agnol, Clarice Maria

    2017-10-01

    Safety culture is a key component of patient safety. Many patient safety strategies in health care have been adapted from high-reliability organizations (HRO) such as aviation. However, to date, attempts to transform the cultures of health care settings through HRO approaches have had mixed results. We propose a methodological approach for safety culture research, which integrates the theory and practice of restoration science with the principles and methods of deliberative dialogue to support active engagement in critical reflection and collective debate. Our aim is to describe how these two innovative approaches in health services research can be used together to provide a comprehensive effective method to study and implement change in safety culture. Restorative research in health care integrates socio-ecological theory of complex adaptive systems concepts with collaborative, place-sensitive study of local practice contexts. Deliberative dialogue brings together all stakeholders to collectively develop solutions on an issue to facilitate change. Together these approaches can be used to actively engage people in the study of safety culture to gain a better understanding of its elements. More importantly, we argue that the synergistic use of these approaches offers enhanced potential to move health care professionals towards actionable strategies to improve patient safety within today's complex health care systems. © The Author 2017. Published by Oxford University Press in association with the International Society for Quality in Health Care. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Use of the Home Safety Self-Assessment Tool (HSSAT) within Community Health Education to Improve Home Safety.

    PubMed

    Horowitz, Beverly P; Almonte, Tiffany; Vasil, Andrea

    2016-10-01

    This exploratory research examined the benefits of a health education program utilizing the Home Safety Self-Assessment Tool (HSSAT) to increase perceived knowledge of home safety, recognition of unsafe activities, ability to safely perform activities, and develop home safety plans of 47 older adults. Focus groups in two senior centers explored social workers' perspectives on use of the HSSAT in community practice. Results for the health education program found significant differences between reported knowledge of home safety (p = .02), ability to recognize unsafe activities (p = .01), safely perform activities (p = .04), and develop a safety plan (p = .002). Social workers identified home safety as a major concern and the HSSAT a promising assessment tool. Research has implications for reducing environmental fall risks.

  1. The Social Work Research Center at Colorado State University

    ERIC Educational Resources Information Center

    Winokur, Marc A.; Valentine, Deborah P.; Drendel, James M.

    2009-01-01

    The Social Work Research Center is an innovative university-community partnership within the School of Social Work in the College of Applied Human Sciences at Colorado State University. The center is focused on working with county and state child welfare agencies to generate applied research that translates into evidence-based practice for serving…

  2. 77 FR 37022 - Disability and Rehabilitation Research Projects and Centers Program; Rehabilitation Engineering...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-20

    ...; Rehabilitation Engineering Research Centers AGENCY: Office of Special Education and Rehabilitative Services... Rehabilitation Research Projects and Centers Program--Rehabilitation Engineering Research Centers (RERC). SUMMARY... amended (Rehabilitation Act). Rehabilitation Engineering Research Centers Program (RERCs) The purpose of...

  3. Research centers and institutes in U.S. medical schools: a descriptive analysis.

    PubMed

    Mallon, William T; Bunton, Sarah A

    2005-11-01

    Research centers and institutes are a common mechanism to organize and facilitate biomedical research at medical schools and universities. The authors report the results of a study on the size, scope, and range of activities of 604 research centers and institutes at research-intensive U.S. medical schools and their parent universities. Centers and institutes with primary missions of patient care, education, or outreach were not included. The findings indicate that, in addition to research, centers and institutes are involved in a range of activities, including education, service, and technology transfer. The centers and institutes the authors studied were more interdisciplinary than those included in previous studies on this topic. Most research centers and institutes did not have authority comparable to academic departments. Only 22% of centers directly appointed faculty members, and most center directors reported to a medical school dean or a department chair. A small group of centers and institutes ("power centers"), however, reported to a university president or provost, and may have considerable power and influence in academic decision making and resource allocation. Two main types of centers and institutes emerge from this research. The first type, which includes the vast of majority of centers, is modest in its scope and marginal in its influence. The second type--with greater amounts of funding, larger staffs, and direct access to institutional decisionmakers--may have a more significant role in the organization and governance of the medical school and university and in the ways that researchers interact within and across academic divisions.

  4. Energy Frontier Research Centers: Impact Report, January 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Since its inception in 2009, the U. S. Department of Energy’s Energy Frontier Research Center (EFRC) program has become an important research modality in the Department’s portfolio, enabling high impact research that addresses key scientific challenges for energy technologies. Funded by the Office of Science’s Basic Energy Sciences program, the EFRCs are located across the United States and are led by universities, national laboratories, and private research institutions. These multi-investigator, multidisciplinary centers bring together world-class teams of researchers, often from multiple institutions, to tackle the toughest scientific challenges preventing advances in energy technologies. The EFRCs’ fundamental scientific advances are havingmore » a significant impact that is being translated to industry. In 2009 five-year awards were made to 46 EFRCs, including 16 that were fully funded by the American Recovery and Reinvestment Act (ARRA). An open recompetition of the program in 2014 resulted in fouryear awards to 32 centers, 22 of which are renewals of existing EFRCs and 10 of which are new EFRCs. In 2016, DOE added four new centers to accelerate the scientific breakthroughs needed to support the Department’s environmental management and nuclear cleanup mission, bringing the total number of active EFRCs to 36. The impact reports in this document describe some of the many scientific accomplishments and greater impacts of the class of 2009 – 2018 EFRCs and early outcomes from a few of the class of 2014 – 2018 EFRCs.« less

  5. Introduction | Center for Cancer Research

    Cancer.gov

    Introduction In order to meet increasing demands from both NIH intramural and extramural communities for access to a small angle X-ray scattering (SAXS) resource, the Center for Cancer Research (CCR) under the leadership of Jeffrey Strathern and Bob Wiltrout established a partnership user program (PUP) with the Argonne National Laboratory Photon Source in October 2008.

  6. Ensuring the safety of future PCIVs : paper 09-0316.

    DOT National Transportation Integrated Search

    2009-06-01

    NHTSA, in partnership with Federal agencies, industry, and academia, will support research on safety-centered design and performance modeling and validation to enable and foster superior, integrated safety performance of future light-weight Plastics ...

  7. A decade of aeroacoustic research at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Schmitz, Frederic H.; Mosher, M.; Kitaplioglu, Cahit; Cross, J.; Chang, I.

    1988-01-01

    The rotorcraft aeroacoustic research accomplishments of the past decade at Ames Research Center are reviewed. These include an extensive sequence of flight, ground, and wind tunnel tests that have utilized the facilities to guide and pioneer theoretical research. Many of these experiments were of benchmark quality. The experiments were used to isolate the inadequacies of linear theory in high-speed impulsive noise research, have led to the development of theoretical approaches, and have guided the emerging discipline of computational fluid dynamics to rotorcraft aeroacoustic problems.

  8. 20. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA AERIAL VIEW OF THE SEAPLANE TOWING CHANNEL STRUCTURE. - NASA Langley Research Center, Seaplane Towing Channel, 108 Andrews Street, Hampton, Hampton, VA

  9. Cancer Survivors Day | Center for Cancer Research

    Cancer.gov

    CCR Celebrates Cancer Survivors #NCSD2016 At the Center for Cancer Research, we are home to an extraordinary group of practicing physicians and scientists who passionately explore the boundaries of research to unlock the mysteries of cancer, a disease that touches nearly every American.

  10. Computers in aeronautics and space research at the Lewis Research Center

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This brochure presents a general discussion of the role of computers in aerospace research at NASA's Lewis Research Center (LeRC). Four particular areas of computer applications are addressed: computer modeling and simulation, computer assisted engineering, data acquisition and analysis, and computer controlled testing.

  11. Core Research Center

    USGS Publications Warehouse

    Hicks, Joshua; Adrian, Betty

    2009-01-01

    The Core Research Center (CRC) of the U.S. Geological Survey (USGS), located at the Denver Federal Center in Lakewood, Colo., currently houses rock core from more than 8,500 boreholes representing about 1.7 million feet of rock core from 35 States and cuttings from 54,000 boreholes representing 238 million feet of drilling in 28 States. Although most of the boreholes are located in the Rocky Mountain region, the geologic and geographic diversity of samples have helped the CRC become one of the largest and most heavily used public core repositories in the United States. Many of the boreholes represented in the collection were drilled for energy and mineral exploration, and many of the cores and cuttings were donated to the CRC by private companies in these industries. Some cores and cuttings were collected by the USGS along with other government agencies. Approximately one-half of the cores are slabbed and photographed. More than 18,000 thin sections and a large volume of analytical data from the cores and cuttings are also accessible. A growing collection of digital images of the cores are also becoming available on the CRC Web site Internet http://geology.cr.usgs.gov/crc/.

  12. Applied imaging at the NASA Lewis Research Center

    NASA Astrophysics Data System (ADS)

    Slater, Howard A.; Owens, Jay C.

    1993-01-01

    NASA Lewis Research Center in Cleveland, Ohio has just completed the celebration of its 50th anniversary. `During the past 50 years, Lewis helped win World War II, made jet aircraft safer and more efficient, helped Americans land on the Moon ... and engaged in the type of fundamental research that benefits all of us in our daily lives.' As part of the center's long history, the Photographic and Printing Branch has continued to develop and meet the center's research imaging requirements. As imaging systems continue to advance and researchers more clearly understand the power of imaging, investigators are relying more and more on imaging systems to meet program objectives. Today, the Photographic and Printing Branch supports a research community of over 5,000 including advocacy for NASA Headquarters and other government agencies. Complete classified and unclassified imaging services include high- speed image acquisition, technical film and video documentaries, still imaging, and conventional and unconventional photofinishing operations. These are the foundation of the branch's modern support function. This paper provides an overview of the varied applied imaging programs managed by the Photographic and Printing Branch. Emphasis is placed on recent imaging projects including icing research, space experiments, and an on-line image archive.

  13. UMBC CENTER FOR URBAN ENVIRONMENTAL RESEARCH AND EDUCATION

    EPA Science Inventory

    This was a multi-year project to establish the Center for Urban Environmental Research and Education (CUERE) at UMBC. The Center was founded to advance understanding of the environmental, social and economic consequences of changes to the urban and suburban landscape.

    ...

  14. Contributions of South American research centers to Carbohydrate Research.

    PubMed

    Stortz, Carlos A

    2014-03-24

    The present article shows the objective figures of the contributions of South American research centers to Carbohydrate Research during its 50years of history, measured in terms of members of the Editorial Board, number of articles and citations to them, together with a country-based comparison, and the progression of these contributions with time. In addition, it also shows the subjective feelings of the author toward the same journal. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Contributions of South American research centers to Carbohydrate Research.

    PubMed

    Stortz, Carlos A

    2015-02-11

    The present article shows the objective figures of the contributions of South American research centers to Carbohydrate Research during its 50 years of history, measured in terms of members of the Editorial Board, number of articles and citations to them, together with a country-based comparison, and the progression of these contributions with time. In addition, it also shows the subjective feelings of the author toward the same journal. Copyright © 2015. Published by Elsevier Ltd.

  16. Undergraduate Research at the Center for Energy Efficient Materials (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum

    ScienceCinema

    Bowers, John (Director, Center for Energy Efficient Materials ); CEEM Staff

    2017-12-09

    'Undergraduate Research at the Center for Energy Efficient Materials (CEEM)' was submitted by CEEM to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CEEM, an EFRC directed by John Bowers at the University of California, Santa Barbara is a partnership of scientists from four institutions: UC, Santa Barbara (lead), UC, Santa Cruz, Los Alamos National Laboratory, and National Renewable Energy Laboratory. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Energy Efficient Materials is 'to discover and develop materials that control the interactions between light, electricity, and heat at the nanoscale for improved solar energy conversion, solid-state lighting, and conversion of heat into electricity.' Research topics are: solar photovoltaic, photonic, solid state lighting, optics, thermoelectric, bio-inspired, electrical energy storage, batteries, battery electrodes, novel materials synthesis, and scalable processing.

  17. University of Kentucky Center for Applied Energy Research

    Science.gov Websites

    University of Kentucky Center for Applied Energy Research Search Help Research Our Expertise Remediation Power Generation CAER TechFacts CAER Factsheets CAER Affiliations Research Contacts Publications People Directory Research Staff Profiles Expertise at CAER Directors/Administration Engagement/Outreach

  18. New England Instructional Television Research Center (NETREC).

    ERIC Educational Resources Information Center

    Friedlander, Bernard Z.; Wetstone, Harriet S.

    Projects of the New England Instructional Television Research Center (NITREC) are summarized in a collection of papers. Objectives, rationale, and program of NETREC are defined, along with methods of formative evaluation during production. Seven videotest research projects cover methods of evaluating communicative effectiveness of primary-grade…

  19. Recent Advances in Durability and Damage Tolerance Methodology at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Ransom, J. B.; Glaessgen, E. H.; Raju, I. S.; Harris, C. E.

    2007-01-01

    Durability and damage tolerance (D&DT) issues are critical to the development of lighter, safer and more efficient aerospace vehicles. Durability is largely an economic life-cycle design consideration whereas damage tolerance directly addresses the structural airworthiness (safety) of the vehicle. Both D&DT methodologies must address the deleterious effects of changes in material properties and the initiation and growth of damage that may occur during the vehicle s service lifetime. The result of unanticipated D&DT response is often manifested in the form of catastrophic and potentially fatal accidents. As such, durability and damage tolerance requirements must be rigorously addressed for commercial transport aircraft and NASA spacecraft systems. This paper presents an overview of the recent and planned future research in durability and damage tolerance analytical and experimental methods for both metallic and composite aerospace structures at NASA Langley Research Center (LaRC).

  20. A Study of the System Safety Concept as it Relates to the New Walter Reed Army Medical Center, Washington, DC.

    DTIC Science & Technology

    1978-03-31

    established the safety level of the% * originally designed facility and the extent of current safety * modifications. The objectives evaluated the...Program could identify many safety hazards thus leading to design improvements. The study provided several recommendations to formalize the Systems Safety... design , construction, and proposed systems management of the new Walter Reed Army Medical Center (WRAMC), Washington, D.C., was conducted during the

  1. 2017 Solar Eclipse, Ames Research Center

    NASA Image and Video Library

    2017-08-21

    Taking a break from their duties at the Ames Vertical Gun Range to look up at the eclipse over Ames Research Center in Mountain View are from left to right are Alfredo "Freddie" Perez, Chuck Cornelison, Don Bowling, Adam Parish

  2. Robert S. Kerr Environmental Research Center

    EPA Science Inventory

    The Kerr Center, situated on 16 acres three miles south of Ada, Oklahoma, houses the Ground Water and Ecosystems Restoration Division (GWERD) of the National Risk Management Research Laboratory (NRMRL). The division develops strategies and technologies to protect and restore grou...

  3. A Multi-center Comparison of the Safety of Oral versus Intravenous Acetylcysteine for Treatment of Acetaminophen Overdose

    PubMed Central

    2010-01-01

    Oral and intravenous (IV) acetylcysteine are used for treatment of acetaminophen poisoning. The objective of this multi-center study was to compare the safety of these two routes of administration. METHODS We conducted a multi-center chart review of all patients treated with acetylcysteine for acetaminophen poisoning. The primary safety outcome was the percentage of patients with of acetylcysteine-related adverse events. RESULTS A total of 503 subjects were included in the safety analysis (306 IV only, 145 oral only and 52 both routes).There were no serious adverse events related to acetylcysteine for either route. Nausea and vomiting were the most common related adverse events and were more common with oral treatment (23% vs 9%). Anaphylactoid reactions were more common with IV administration (6% vs 2%). Conclusions Intravenous and oral acetylcysteine are both associated with minimal side effects and are safe for treatment of acetaminophen toxicity. PMID:20524832

  4. 18. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (LAL 5169) AERIAL VIEW OF THE SEAPLANE TOWING CHANNEL STRUCTURE. - NASA Langley Research Center, Seaplane Towing Channel, 108 Andrews Street, Hampton, Hampton, VA

  5. Healthcare Databases for Drug Safety Research: Data Validity Assessment Remains Crucial.

    PubMed

    Rawson, Nigel S B; D'Arcy, Carl

    2018-04-30

    Administrative healthcare utilization databases are frequently used either individually or as a component of aggregated data for evaluating drug safety issues without taking into account their known deficiencies. All too often insufficient evidence is provided about their validity for the purposes for which they are used. The assessment of data validity is a key constituent that should be included in drug safety research studies and should take a broad multifaceted approach that encompasses both diagnostic and drug exposure data. Drug safety researchers need to continue advancing their knowledge of the data resources they use and to ensure that they and the users of their research understand the limitations of the data that are the foundation on which their research is built. Fundamental issues regarding data validity should be addressed in each use of administrative data for drug safety research.

  6. [Researches on virology at the Tohoku University Research Center in the Philippines].

    PubMed

    Oshitani, Hitoshi; Saito, Mariko; Okamoto, Michiko; Tamaki, Raita; Kamigaki, Taro; Suzuki, Akira

    2013-01-01

    Tohoku University Graduate School of Medicine has established the Tohoku-RITM Collaborative Research Center on Emerging and Re-emerging Diseases at Research Institute for Tropical Medicine (RITM) in the Philippines in 2008. Our aim of the center is to conduct operational researches, which can contribute to control of infectious diseases in the Philippines. Therefore most of our researches in the Philippines are being conducted in the fields. Main research themes include severe acute respiratory infections in children, influenza disease burden study, molecular epidemiology of rabies, and viral etiology of acute diarrhea. The study on severe acute respiratory infections in children in Leyte Island has recruited hospitalized cases with severe pneumonia. We showed that enterovirus 68 was one of important causative agents in severe pneumonia cases. We also conducted other analyses including molecular epidemiology of respiratory syncytial virus (RSV) and pathogenesis of human rhinoviruses (HRV). Based on these studies, we initiated more comprehensive researches in the Philippines since 2010.

  7. 19. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L81-05967) AERIAL VIEW OF THE SEAPLANE TOWING CHANNEL STRUCTURE. - NASA Langley Research Center, Seaplane Towing Channel, 108 Andrews Street, Hampton, Hampton, VA

  8. 48 CFR 970.3501 - Federally funded research and development centers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Development Contracting 970.3501 Federally funded research and development centers. ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Federally funded research and development centers. 970.3501 Section 970.3501 Federal Acquisition Regulations System DEPARTMENT...

  9. U.S. Environmental Protection Agency national network of research centers: A case study in socio-political influences on research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morehouse, K.

    1995-12-01

    During the 15 years that the U.S. Environmental Protection Agency (EPA) has supported university-based research centers, there have been many changes in mission, operating style, funding level, eligibility, and selection process. Even the definition of the term {open_quotes}research center{close_quotes} is open to debate. Shifting national priorities, political realities, and funding uncertainties have powered the evolution of research centers in EPA, although the agency`s basic philosophy on the purpose and value of this approach to research remains essentially unchanged. Today, EPA manages 28 centers, through the Office of Exploratory Research. These centers are administered under three distinct programs. Each program hasmore » its own mission and goals which guide the way individual centers are selected and operated. This paper will describe: (1) EPA`s philosophy of reserach centers, (2) the complicated history of EPA research centers, (3) coordination and interaction among EPA centers and others, (4) opportunities for collaboration, and (5) plans for the future.« less

  10. Data Curation Education in Research Centers (DCERC)

    NASA Astrophysics Data System (ADS)

    Marlino, M. R.; Mayernik, M. S.; Kelly, K.; Allard, S.; Tenopir, C.; Palmer, C.; Varvel, V. E., Jr.

    2012-12-01

    Digital data both enable and constrain scientific research. Scientists are enabled by digital data to develop new research methods, utilize new data sources, and investigate new topics, but they also face new data collection, management, and preservation burdens. The current data workforce consists primarily of scientists who receive little formal training in data management and data managers who are typically educated through on-the-job training. The Data Curation Education in Research Centers (DCERC) program is investigating a new model for educating data professionals to contribute to scientific research. DCERC is a collaboration between the University of Illinois at Urbana-Champaign Graduate School of Library and Information Science, the University of Tennessee School of Information Sciences, and the National Center for Atmospheric Research. The program is organized around a foundations course in data curation and provides field experiences in research and data centers for both master's and doctoral students. This presentation will outline the aims and the structure of the DCERC program and discuss results and lessons learned from the first set of summer internships in 2012. Four masters students participated and worked with both data mentors and science mentors, gaining first hand experiences in the issues, methods, and challenges of scientific data curation. They engaged in a diverse set of topics, including climate model metadata, observational data management workflows, and data cleaning, documentation, and ingest processes within a data archive. The students learned current data management practices and challenges while developing expertise and conducting research. They also made important contributions to NCAR data and science teams by evaluating data management workflows and processes, preparing data sets to be archived, and developing recommendations for particular data management activities. The master's student interns will return in summer of 2013

  11. 15. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L4933) VIEW NORTHWEST OF THE FULL-SCALE WIND TUNNEL, c. 1932. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  12. 16. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (LAL-12470) ELEVATION OF 8-FOOT HIGH SPEED WIND TUNNEL. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

  13. 23. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L73-5028) MODEL OF SUPERSONIC TRANSPORT IN FULL-SCALE WIND TUNNEL. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  14. 26. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L64792) ALBACORE SUBMARINE DRAG TESTS IN THE FULL-SCALE WIND TUNNEL. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  15. 17. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L79-7343) AERIAL VIEW OF THE FULL-SCALE WIND TUNNEL, 1979. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  16. Virginia Water Resources Research Center - at Virginia Tech since 1965

    Science.gov Websites

    Virginia Water Resources Research Center at Virginia Tech since 1965 Search for: Search Skip to collaborative research, extension, and education programs to develop solutions to water resource challenges. We Monitoring Council Conference: March 21, 2018 The Virginia Water Resources Research Center at Virginia Tech

  17. Second Annual Research Center for Optical Physics (RCOP) Forum

    NASA Technical Reports Server (NTRS)

    Allario, Frank (Editor); Temple, Doyle (Editor)

    1995-01-01

    The Research Center for Optical Physics (RCOP) held its Second Annual Forum on September 23-24, 1994. The forum consisted of two days of technical sessions with invited talks, submitted talks, and a student poster session. Participants in the technical sessions included students and researchers from CCNY/CUNY, Fisk University, Georgia Institute of Technology, Hampton University, University of Maryland, the Univeristy of Michigan, NASA Langley Research Center, North Caroline A and T University, Steven's Institute of Technology, and NAWC-Warminster. Topics included chaotic lasers, pumped optical filters, nonlinear responses in polythiophene and thiophene based thin films, crystal growth and spectroscopy, laser-induced photochromic centers, raman scattering in phorphyrin, superradiance, doped fluoride crystals, luminescence of terbium in silicate glass, and radiative and nonradiative transitions in rare-earth ions.

  18. Managing a Modern University Research Center.

    ERIC Educational Resources Information Center

    Veres, John G., III

    1988-01-01

    The university research center of the future will function best to serve the rapidly changing public and private demand for services with a highly trained core staff, adequately funded and equipped, whose morale and quality of work performance is a prime consideration. (MSE)

  19. Vision and creation of the American Heart Association pharmaceutical roundtable outcomes research centers.

    PubMed

    Peterson, Eric D; Spertus, John A; Cohen, David J; Hlatky, Mark A; Go, Alan S; Vickrey, Barbara G; Saver, Jeffrey L; Hinton, Patricia C

    2009-11-01

    The field of outcomes research seeks to define optimal treatment in practice and to promote the rapid full adoption of efficacious therapies into routine clinical care. The American Heart Association (AHA) formed the AHA Pharmaceutical Roundtable (PRT) Outcomes Research Centers Network to accelerate attainment of these goals. Participating centers were intended to carry out state-of-the-art outcomes research in cardiovascular disease and stroke, to train the next generation of investigators, and to support the formation of a collaborative research network. After a competitive application process, 4 AHA PRT Outcomes Research Centers were selected: Duke Clinical Research Institute; Saint Luke's Mid America Heart Institute; Stanford University-Kaiser Permanente of Northern California; and University of California, Los Angeles. Each center proposed between 1 and 3 projects organized around a single theme in cardiovascular disease or stroke. Additionally, each center will select and train up to 6 postdoctoral fellows over the next 4 years, and will participate in cross-collaborative activities among the centers. The AHA PRT Outcomes Research Centers Network is designed to further strengthen the field of cardiovascular disease and stroke outcomes research by fostering innovative research, supporting high quality training, and encouraging center-to-center collaborations.

  20. Undergraduate Research at the Center for Energy Efficient Materials (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halabi, Linda

    "Undergraduate Research at the Center for Energy Efficient Materials (CEEM)" was submitted by CEEM to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CEEM, an EFRC directed by John Bowers at the University of California, Santa Barbara is a partnership of scientists from four institutions: UC, Santa Barbara (lead), UC, Santa Cruz, Los Alamos National Laboratory, and National Renewable Energy Laboratory. The Office of Basic Energy Sciences in themore » U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Energy Efficient Materials is 'to discover and develop materials that control the interactions between light, electricity, and heat at the nanoscale for improved solar energy conversion, solid-state lighting, and conversion of heat into electricity.' Research topics are: solar photovoltaic, photonic, solid state lighting, optics, thermoelectric, bio-inspired, electrical energy storage, batteries, battery electrodes, novel materials synthesis, and scalable processing.« less

  1. 75 FR 57972 - National Center for Research Resources; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-23

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Center for Research... unwarranted invasion of personal privacy. Name of Committee: National Center for Research Resources Special..., Scientific Review Officer, Office of Review, National Center for Research Resources, Bethesda, MD 20892, 301...

  2. 75 FR 32187 - National Center for Research Resources; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-07

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Center for Research... unwarranted invasion of personal privacy. Name of Committee: National Center for Research Resources Special..., National Center for Research Resources, or National Institutes of Health, 6701 Democracy Boulevard, 1...

  3. The NASA Lewis Research Center: An Economic Impact Study

    NASA Technical Reports Server (NTRS)

    Austrian, Ziona

    1996-01-01

    The NASA Lewis Research Center (LeRC), established in 1941, is one of ten NASA research centers in the country. It is situated on 350 acres of land in Cuyahoga County and occupies more than 140 buildings and over 500 specialized research and test facilities. Most of LeRC's facilities are located in the City of Cleveland; some are located within the boundaries of the cities of Fairview Park and Brookpark. LeRC is a lead center for NASA's research, technology, and development in the areas of aeropropulsion and selected space applications. It is a center of excellence for turbomachinery, microgravity fluid and combustion research, and commercial communication. The base research and technology disciplines which serve both aeronautics and space areas include materials and structures, instrumentation and controls, fluid physics, electronics, and computational fluid dynamics. This study investigates LeRC's economic impact on Northeast Ohio's economy. It was conducted by The Urban Center's Economic Development Program in Cleveland State University's Levin College of Urban Affairs. The study measures LeRC's direct impact on the local economy in terms of jobs, output, payroll, and taxes, as well as the indirect impact of these economic activities when they 'ripple' throughout the economy. To fully explain LeRC's overall impact on the region, its contributions in the areas of technology transfer and education are also examined. The study uses a highly credible and widely accepted research methodology. First, regional economic multipliers based on input-output models were used to estimate the effect of LERC spending on the Northeast Ohio economy. Second, the economic models were complemented by interviews with industrial, civic, and university leaders to qualitatively assess LeRC's impact in the areas of technology transfer and education.

  4. Mapping a Research Agenda for Home Care Safety: Perspectives from Researchers, Providers, and Decision Makers

    ERIC Educational Resources Information Center

    Macdonald, Marilyn; Lang, Ariella; MacDonald, Jo-Anne

    2011-01-01

    The purpose of this qualitative interpretive design was to explore the perspectives of researchers, health care providers, policy makers, and decision makers on key risks, concerns, and emerging issues related to home care safety that would inform a line of research inquiry. Defining safety specifically in this home care context has yet to be…

  5. Construction safety research in the United States: targeting the Hispanic workforce

    PubMed Central

    Brunette, M

    2004-01-01

    While it is known that Hispanics have a continuous growing participation in the construction workforce and that their fatal and non-fatal occupational injuries are higher than any other ethnic group, very little construction safety and health research has been conducted in the United States. Research that focuses on safety and health of Hispanic workers employed in the construction industry might prove beneficial in reducing injuries and promoting safe and decent workplaces for all. The purpose of this article was twofold. First, to propose a research agenda where topics such as surveillance, intervention research on high risk occupations, intervention effectiveness evaluation, design and development of effective and appropriate safety training and educational materials, and the socioeconomic impact of injuries and illnesses, are investigated among the Hispanic construction workforce. Second, to present relevant aspects inherent to this particular population that need to be incorporated into the design and development stages of any safety and health research initiative. They include the occupational, social, economic, and cultural background of Hispanic workers; use of a participatory approach, proper selection and use of translation methods; and conducting collaborative research. Certain limitations and challenges related to the availability of resources for conducting safety and health research on Hispanic workers are further discussed. PMID:15314054

  6. Construction safety research in the United States: targeting the Hispanic workforce.

    PubMed

    Brunette, M J

    2004-08-01

    While it is known that Hispanics have a continuous growing participation in the construction workforce and that their fatal and non-fatal occupational injuries are higher than any other ethnic group, very little construction safety and health research has been conducted in the United States. Research that focuses on safety and health of Hispanic workers employed in the construction industry might prove beneficial in reducing injuries and promoting safe and decent workplaces for all. The purpose of this article was twofold. First, to propose a research agenda where topics such as surveillance, intervention research on high risk occupations, intervention effectiveness evaluation, design and development of effective and appropriate safety training and educational materials, and the socioeconomic impact of injuries and illnesses, are investigated among the Hispanic construction workforce. Second, to present relevant aspects inherent to this particular population that need to be incorporated into the design and development stages of any safety and health research initiative. They include the occupational, social, economic, and cultural background of Hispanic workers; use of a participatory approach, proper selection and use of translation methods; and conducting collaborative research. Certain limitations and challenges related to the availability of resources for conducting safety and health research on Hispanic workers are further discussed.

  7. ORNL Fuels, Engines, and Emissions Research Center (FEERC)

    ScienceCinema

    None

    2018-02-13

    This video highlights the Vehicle Research Laboratory's capabilities at the Fuels, Engines, and Emissions Research Center (FEERC). FEERC is a Department of Energy user facility located at the Oak Ridge National Laboratory.

  8. Integration of data systems and technology improves research and collaboration for a superfund research center.

    PubMed

    Hobbie, Kevin A; Peterson, Elena S; Barton, Michael L; Waters, Katrina M; Anderson, Kim A

    2012-08-01

    Large collaborative centers are a common model for accomplishing integrated environmental health research. These centers often include various types of scientific domains (e.g., chemistry, biology, bioinformatics) that are integrated to solve some of the nation's key economic or public health concerns. The Superfund Research Center (SRP) at Oregon State University (OSU) is one such center established in 2008 to study the emerging health risks of polycyclic aromatic hydrocarbons while using new technologies both in the field and laboratory. With outside collaboration at remote institutions, success for the center as a whole depends on the ability to effectively integrate data across all research projects and support cores. Therefore, the OSU SRP center developed a system that integrates environmental monitoring data with analytical chemistry data and downstream bioinformatics and statistics to enable complete "source-to-outcome" data modeling and information management. This article describes the development of this integrated information management system that includes commercial software for operational laboratory management and sample management in addition to open-source custom-built software for bioinformatics and experimental data management.

  9. Integration of Data Systems and Technology Improves Research and Collaboration for a Superfund Research Center

    PubMed Central

    Hobbie, Kevin A.; Peterson, Elena S.; Barton, Michael L.; Waters, Katrina M.; Anderson, Kim A.

    2012-01-01

    Large collaborative centers are a common model for accomplishing integrated environmental health research. These centers often include various types of scientific domains (e.g. chemistry, biology, bioinformatics) that are integrated to solve some of the nation’s key economic or public health concerns. The Superfund Research Center (SRP) at Oregon State University (OSU) is one such center established in 2008 to study the emerging health risks of polycyclic aromatic hydrocarbons while utilizing new technologies both in the field and laboratory. With outside collaboration at remote institutions, success for the center as a whole depends on the ability to effectively integrate data across all research projects and support cores. Therefore, the OSU SRP center developed a system that integrates environmental monitoring data with analytical chemistry data and downstream bioinformatics and statistics to enable complete ‘source to outcome’ data modeling and information management. This article describes the development of this integrated information management system that includes commercial software for operational laboratory management and sample management in addition to open source custom built software for bioinformatics and experimental data management. PMID:22651935

  10. Center for Research and Development in Teaching.

    ERIC Educational Resources Information Center

    Bush, Robert N.; Gage, N.L.

    1968-01-01

    The major portion of this report summarizes prior research at the Stanford Center for Research and Development in Teaching within the framework of three domains of variables: the behavioral or directly observable variables; the personological or those inferred from tests; and those institutional variables which affect the social, technological,…

  11. Engineering Research Centers: A Partnership for Competitiveness.

    ERIC Educational Resources Information Center

    National Science Foundation, Arlington, VA.

    This publication consists of colorful data sheets on the National Science Foundation's Engineering Research Centers (ERC) Program, a program designed to strengthen the competitiveness of U.S. industries by bringing new approaches and goals to academic engineering research and education. The main elements of the ERC mission are cross-disciplinary…

  12. 23. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L43584) VIEW OF CHANNEL WITH SEAPLANE MODEL HULL IN POSITION FOR TESTING UNDER CARRIAGE. - NASA Langley Research Center, Seaplane Towing Channel, 108 Andrews Street, Hampton, Hampton, VA

  13. 21. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L84-154) INTERIOR VIEW OF THE SEAPLANE TOWING CHANNEL WITH TANK FULLY DRAINED. - NASA Langley Research Center, Seaplane Towing Channel, 108 Andrews Street, Hampton, Hampton, VA

  14. 25. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L88-10198) CONTEMPORARY VIEW OF THE "720" EXPRESS OR TEST CARRIAGE IN 1988. - NASA Langley Research Center, Seaplane Towing Channel, 108 Andrews Street, Hampton, Hampton, VA

  15. 18. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L83-8341) VIEW OF FANS IN FULL-SCALE WIND TUNNEL, c. 1960s. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  16. 13. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (NACA 4655) VIEW LOOKING NORTH AT THE FULL-SCALE WIND TUNNEL UNDER CONSTRUCTION. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  17. 16. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L89-07075) AERIAL VIEW LOOKING NORTHWEST AT THE FULL-SCALE WIND TUNNEL, 1989. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  18. 19. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L5925) LOENING SCL-1 SEAPLANE IN THE FULL-SCALE WIND TUNNEL, OCTOBER 1931. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  19. Renewable energy and occupational health and safety research directions: a white paper from the Energy Summit, Denver Colorado, April 11-13, 2011.

    PubMed

    Mulloy, Karen B; Sumner, Steven A; Rose, Cecile; Conway, George A; Reynolds, Stephen J; Davidson, Margaret E; Heidel, Donna S; Layde, Peter M

    2013-11-01

    Renewable energy production may offer advantages to human health by way of less pollution and fewer climate-change associated ill-health effects. Limited data suggests that renewable energy will also offer benefits to workers in the form of reduced occupational injury, illness and deaths. However, studies of worker safety and health in the industry are limited. The Mountain and Plains Education and Research Center (MAP ERC) Energy Summit held in April 2011 explored issues concerning worker health and safety in the renewable energy industry. The limited information on hazards of working in the renewable energy industry emphasizes the need for further research. Two basic approaches to guiding both prevention and future research should include: (1) applying lessons learned from other fields of occupational safety and health, particularly the extractive energy industry; and (2) utilizing knowledge of occupational hazards of specific materials and processes used in the renewable energy industry. © 2013 Wiley Periodicals, Inc.

  20. Expert panel reviews of research centers: the site visit process.

    PubMed

    Lawrenz, Frances; Thao, Mao; Johnson, Kelli

    2012-08-01

    Site visits are used extensively in a variety of settings within the evaluation community. They are especially common in making summative value decisions about the quality and worth of research programs/centers. However, there has been little empirical research and guidance about how to appropriately conduct evaluative site visits of research centers. We review the processes of two site visit examples using an expert panel review: (1) a process to evaluate four university research centers and (2) a process to review a federally sponsored research center. A set of 14 categories describing the expert panel review process was obtained through content analysis and participant observation. Most categories were addressed differently through the two processes highlighting the need for more research about the most effective processes to use within different contexts. Decisions about how to structure site visits appear to depend on the research context, practical considerations, the level at which the review is being conducted and the intended impact of the report. Future research pertaining to the selection of site visitors, the autonomy of the visitors in data collection and report writing, and the amount and type of information provided would be particularly valuable. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. A Program of Research and Education in Astronautics at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Tolson, Robert H.

    2000-01-01

    The objectives of the Program were to conduct research at the NASA Langley Research Center in the area of astronautics and to provide a comprehensive education program at the Center leading to advanced degrees in Astronautics. We believe that the program has successfully met the objectives and has been of significant benefit to NASA LaRC, the GWU and the nation.

  2. 22. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L6415) STUFFED SEAGULL ON CARRIAGE OF TOWING TANK - 1932; EXPERIMENT TO DETERMINE AERODYNAMIC QUALITIES OF BIRDS. - NASA Langley Research Center, Seaplane Towing Channel, 108 Andrews Street, Hampton, Hampton, VA

  3. 20. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L15337) DRAG-CLEANUP STUDIES OF THE BREWSTER BUFFALO IN THE FULL SCALE WIND TUNNEL, 1938. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  4. 24. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L75-734) MODEL OF SUPERSONIC TRANSPORT IN FULL-SCALE WIND TUNNEL FROM ENTRANCE CONE. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  5. 15. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L12000.1) ELEVATION OF 8-FOOT HIGH SPEED WIND TUNNEL, c. 1935. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

  6. 25. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L81-7333) RUTAN'S VARI-EZE ADVANCED CONCEPTS AIRCRAFT IN THE FULL-SCALE WIND TUNNEL. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  7. Human Factors Research in Anesthesia Patient Safety

    PubMed Central

    Weinger, Matthew B.; Slagle, Jason

    2002-01-01

    Patient safety has become a major public concern. Human factors research in other high-risk fields has demonstrated how rigorous study of factors that affect job performance can lead to improved outcome and reduced errors after evidence-based redesign of tasks or systems. These techniques have increasingly been applied to the anesthesia work environment. This paper describes data obtained recently using task analysis and workload assessment during actual patient care and the use of cognitive task analysis to study clinical decision making. A novel concept of “non-routine events” is introduced and pilot data are presented. The results support the assertion that human factors research can make important contributions to patient safety. Information technologies play a key role in these efforts.

  8. Human factors research in anesthesia patient safety.

    PubMed Central

    Weinger, M. B.; Slagle, J.

    2001-01-01

    Patient safety has become a major public concern. Human factors research in other high-risk fields has demonstrated how rigorous study of factors that affect job performance can lead to improved outcome and reduced errors after evidence-based redesign of tasks or systems. These techniques have increasingly been applied to the anesthesia work environment. This paper describes data obtained recently using task analysis and workload assessment during actual patient care and the use of cognitive task analysis to study clinical decision making. A novel concept of "non-routine events" is introduced and pilot data are presented. The results support the assertion that human factors research can make important contributions to patient safety. Information technologies play a key role in these efforts. PMID:11825287

  9. Research and technology, Lyndon B. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Johnson Space Center accomplishments in new and advanced concepts during 1984 are highlighted. Included are research funded by the Office of Aeronautics and Space Technology; Advanced Programs tasks funded by the Office of Space Flight; and Solar System Exploration and Life Sciences research funded by the Office of Space Sciences and Applications. Summary sections describing the role of the Johnson Space Center in each program are followed by one page descriptions of significant projects. Descriptions are suitable for external consumption, free of technical jargon, and illustrated to increase ease of comprehension.

  10. Research and technology at the Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Cryogenic engineering, hypergolic engineering, hazardous warning, structures and mechanics, computer sciences, communications, meteorology, technology applications, safety engineering, materials analysis, biomedicine, and engineering management and training aids research are reviewed.

  11. RCOP: Research Center for Optical Physics

    NASA Technical Reports Server (NTRS)

    Tabibi, Bagher M. (Principal Investigator)

    1996-01-01

    During the five years since its inception, Research Center for Optical Physics (RCOP) has excelled in the goals stated in the original proposal: 1) training of the scientists and engineers needed for the twenty-first century with special emphasis on underrepresented citizens and 2) research and technological development in areas of relevance to NASA. In the category of research training, there have been 16 Bachelors degrees and 9 Masters degrees awarded to African American students working in RCOP during the last five years. RCOP has also provided research experience to undergraduate and high school students through a number of outreach programs held during the summer and the academic year. RCOP has also been instrumental in the development of the Ph.D. program in physics which is in its fourth year at Hampton. There are currently over 40 graduate students in the program and 9 African American graduate students, working in RCOP, that have satisfied all of the requirements for Ph.D. candidancy and are working on their dissertation research. At least three of these students will be awarded their doctoral degrees during 1997. RCOP has also excelled in research and technological development. During the first five years of existence, RCOP researchers have generated well over $3 M in research funding that directly supports the Center. Close ties with NASA Langley and NASA Lewis have been established, and collaborations with NASA scientists, URC's and other universities as well as with industry have been developed. This success is evidenced by the rate of publishing research results in refereed journals, which now exceeds that of the goals in the original proposal (approx. 2 publications per faculty per year). Also, two patents have been awarded to RCOP scientists.

  12. Publications on acoustics research at the Langley Research Center, January 1987 - September 1992

    NASA Technical Reports Server (NTRS)

    Sutherland, Linda W. (Compiler)

    1992-01-01

    This report is a compilation of publications from acoustics research at the Langley Research Center. The reports listed are in chronological order and summarize the research output of the Acoustics Division for the period January 1987 - September 1992.

  13. NHTSA's behavioral safety research: updated, annotated bibliography, 1985-2013 : traffic tech.

    DOT National Transportation Integrated Search

    2014-01-01

    Through many name changes, from the Office of Program : Development and Evaluation, the Office of Research and : Evaluation, to the current Office of Behavioral Safety Research, : our focus has remained on improving the safety of drivers, : occupants...

  14. TU-EF-BRD-04: Summing It Up: The Future of Quality and Safety Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, E.

    Research related to quality and safety has been a staple of medical physics academic activities for a long time. From very early on, medical physicists have developed new radiation measurement equipment and analysis techniques, created ever increasingly accurate dose calculation models, and have vastly improved imaging, planning, and delivery techniques. These and other areas of interest have improved the quality and safety of radiotherapy for our patients. With the advent of TG-100, quality and safety is an area that will garner even more research interest in the future. As medical physicists pursue quality and safety research in greater numbers, itmore » is worthwhile to consider what actually constitutes research on quality and safety. For example, should the development of algorithms for real-time EPID-based in-vivo dosimetry be defined as “quality and safety” research? How about the clinical implementation of such as system? Surely the application of failure modes and effects analysis to a clinical process would be considered quality and safety research, but is this type of research that should be included in the medical physics peer-reviewed literature? The answers to such questions are of critical importance to set researchers in a direction that will provide the greatest benefit to our field and the patients we serve. The purpose of this symposium is to consider what constitutes research in the arena of quality and safety and differentiate it from other research directions. The key distinction here is developing the tool itself (e.g. algorithms for EPID dosimetry) vs. studying the impact of the tool with some quantitative metric. Only the latter would I call quality and safety research. Issues of ‘basic’ versus ‘applied’ quality and safety research will be covered as well as how the research results should be structured to provide increasing levels of support that a quality and safety intervention is effective and sustainable. Examples from

  15. TU-EF-BRD-01: Topics in Quality and Safety Research and Level of Evidence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pawlicki, T.

    Research related to quality and safety has been a staple of medical physics academic activities for a long time. From very early on, medical physicists have developed new radiation measurement equipment and analysis techniques, created ever increasingly accurate dose calculation models, and have vastly improved imaging, planning, and delivery techniques. These and other areas of interest have improved the quality and safety of radiotherapy for our patients. With the advent of TG-100, quality and safety is an area that will garner even more research interest in the future. As medical physicists pursue quality and safety research in greater numbers, itmore » is worthwhile to consider what actually constitutes research on quality and safety. For example, should the development of algorithms for real-time EPID-based in-vivo dosimetry be defined as “quality and safety” research? How about the clinical implementation of such as system? Surely the application of failure modes and effects analysis to a clinical process would be considered quality and safety research, but is this type of research that should be included in the medical physics peer-reviewed literature? The answers to such questions are of critical importance to set researchers in a direction that will provide the greatest benefit to our field and the patients we serve. The purpose of this symposium is to consider what constitutes research in the arena of quality and safety and differentiate it from other research directions. The key distinction here is developing the tool itself (e.g. algorithms for EPID dosimetry) vs. studying the impact of the tool with some quantitative metric. Only the latter would I call quality and safety research. Issues of ‘basic’ versus ‘applied’ quality and safety research will be covered as well as how the research results should be structured to provide increasing levels of support that a quality and safety intervention is effective and sustainable. Examples from

  16. NASA LANGLEY RESEARCH CENTER AND THE TIDEWATER INTERAGENCY POLLUTION PREVENTION PROGRAM

    EPA Science Inventory

    National Aeronautics and Space Administration (NASA)'s Langley Research Center (LaRC) is an 807-acre research center devoted to aeronautics and space research. aRC has initiated a broad-based pollution prevention program guided by a Pollution Prevention Program Plan and implement...

  17. 14. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L4776) VIEW SOUTH THROUGH ENTRANCE CONE OF FULL-SCALE WIND TUNNEL UNDER CONSTRUCTION, SEPTEMBER 12, 1930. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  18. 18. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L86-10235) INTERIOR VIEW SHOWING TURNING VANES IN 8-FOOT HIGH SPEED WIND TUNNEL. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

  19. 20. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) INTERIOR VIEW SHOWING TURNING VANES AND PERSONNEL IN THE 8-FOOT HIGH SPEED WIND TUNNEL. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

  20. Sandia National Laboratories: Cooperative Monitoring Center

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  1. 34 CFR 350.34 - Which Rehabilitation Engineering Research Centers must have an advisory committee?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 2 2013-07-01 2013-07-01 false Which Rehabilitation Engineering Research Centers must... Engineering Research Centers Does the Secretary Assist? § 350.34 Which Rehabilitation Engineering Research Centers must have an advisory committee? A Rehabilitation Engineering Research Center conducting research...

  2. 34 CFR 350.34 - Which Rehabilitation Engineering Research Centers must have an advisory committee?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 2 2010-07-01 2010-07-01 false Which Rehabilitation Engineering Research Centers must... Engineering Research Centers Does the Secretary Assist? § 350.34 Which Rehabilitation Engineering Research Centers must have an advisory committee? A Rehabilitation Engineering Research Center conducting research...

  3. 34 CFR 350.34 - Which Rehabilitation Engineering Research Centers must have an advisory committee?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 2 2014-07-01 2013-07-01 true Which Rehabilitation Engineering Research Centers must... Engineering Research Centers Does the Secretary Assist? § 350.34 Which Rehabilitation Engineering Research Centers must have an advisory committee? A Rehabilitation Engineering Research Center conducting research...

  4. 34 CFR 350.34 - Which Rehabilitation Engineering Research Centers must have an advisory committee?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 2 2011-07-01 2010-07-01 true Which Rehabilitation Engineering Research Centers must... Engineering Research Centers Does the Secretary Assist? § 350.34 Which Rehabilitation Engineering Research Centers must have an advisory committee? A Rehabilitation Engineering Research Center conducting research...

  5. 34 CFR 350.34 - Which Rehabilitation Engineering Research Centers must have an advisory committee?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 2 2012-07-01 2012-07-01 false Which Rehabilitation Engineering Research Centers must... Engineering Research Centers Does the Secretary Assist? § 350.34 Which Rehabilitation Engineering Research Centers must have an advisory committee? A Rehabilitation Engineering Research Center conducting research...

  6. GSDC: A Unique Data Center in Korea for HEP research

    NASA Astrophysics Data System (ADS)

    Ahn, Sang-Un

    2017-04-01

    Global Science experimental Data hub Center (GSDC) at Korea Institute of Science and Technology Information (KISTI) is a unique data center in South Korea established for promoting the fundamental research fields by supporting them with the expertise on Information and Communication Technology (ICT) and the infrastructure for High Performance Computing (HPC), High Throughput Computing (HTC) and Networking. GSDC has supported various research fields in South Korea dealing with the large scale of data, e.g. RENO experiment for neutrino research, LIGO experiment for gravitational wave detection, Genome sequencing project for bio-medical, and HEP experiments such as CDF at FNAL, Belle at KEK, and STAR at BNL. In particular, GSDC has run a Tier-1 center for ALICE experiment using the LHC at CERN since 2013. In this talk, we present the overview on computing infrastructure that GSDC runs for the research fields and we discuss on the data center infrastructure management system deployed at GSDC.

  7. The Prevention Research Centers Healthy Aging Research Network.

    PubMed

    Lang, Jason E; Anderson, Lynda; LoGerfo, James; Sharkey, Joseph; Belansky, Elaine; Bryant, Lucinda; Prohaska, Tom; Altpeter, Mary; Marshall, Victor; Satariano, William; Ivey, Susan; Bayles, Constance; Pluto, Delores; Wilcox, Sara; Goins, R Turner; Byrd, Robert C

    2006-01-01

    The Prevention Research Centers Healthy Aging Research Network (PRC-HAN), funded by the Centers for Disease Control and Prevention's (CDC's) Healthy Aging program, was created in 2001 to help develop partnerships and create a research agenda that promotes healthy aging. The nine universities that participate in the network use their expertise in aging research to collaborate with their communities and other partners to develop and implement health promotion interventions for older adults at the individual, organizational, environmental, and policy levels. The population of older adults in the United States is growing rapidly; approximately 20% of Americans will be aged 65 years or older by 2030. The health and economic impact of an aging society compel the CDC and the public health community to place increased emphasis on preventing unnecessary disease, disability, and injury among older Americans. The PRC-HAN has a broad research agenda that addresses health-promoting skills and behaviors, disease and syndrome topics, and knowledge domains. The network chose physical activity for older adults as its initial focus for research and has initiated two networkwide projects: a comprehensive, multisite survey that collected information on the capacity, content, and accessibility of physical activity programs for older adults and a peer-reviewed publication that describes the role of public health in promoting physical activity among older adults. In addition to participating in the core research area, each network member works independently with its community committee on PRC-HAN activities. As a result, the network is 1) expanding prevention research for older adults and their communities; 2) promoting the translation and dissemination of findings to key stakeholders; 3) strengthening PRC-HAN capacity through partnerships and expanded funding; and 4) stimulating the adoption of policies and programs by engaging policymakers, planners, and practitioners. In 2003, the PRC

  8. Human Systems Integration at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    McCandless, Jeffrey

    2017-01-01

    The Human Systems Integration Division focuses on the design and operations of complex aerospace systems through analysis, experimentation and modeling. With over a dozen labs and over 120 people, the division conducts research to improve safety, efficiency and mission success. Areas of investigation include applied vision research which will be discussed during this seminar.

  9. Parallel software tools at Langley Research Center

    NASA Technical Reports Server (NTRS)

    Moitra, Stuti; Tennille, Geoffrey M.; Lakeotes, Christopher D.; Randall, Donald P.; Arthur, Jarvis J.; Hammond, Dana P.; Mall, Gerald H.

    1993-01-01

    This document gives a brief overview of parallel software tools available on the Intel iPSC/860 parallel computer at Langley Research Center. It is intended to provide a source of information that is somewhat more concise than vendor-supplied material on the purpose and use of various tools. Each of the chapters on tools is organized in a similar manner covering an overview of the functionality, access information, how to effectively use the tool, observations about the tool and how it compares to similar software, known problems or shortfalls with the software, and reference documentation. It is primarily intended for users of the iPSC/860 at Langley Research Center and is appropriate for both the experienced and novice user.

  10. Restoration of the Hypersonic Tunnel Facility at NASA Glenn Research Center, Plum Brook Station

    NASA Technical Reports Server (NTRS)

    Woodling, Mark A.

    2000-01-01

    The NASA Glenn Research Center's Hypersonic Tunnel Facility (HTF), located at the Plum Brook Station in Sandusky, Ohio, is a non-vitiated, free-jet facility, capable of testing large-scale propulsion systems at Mach Numbers from 5 to 7. As a result of a component failure in September of 1996, a restoration project was initiated in mid- 1997 to repair the damage to the facility. Following the 2-1/2 year effort, the HTF has been returned to an operational condition. Significant repairs and operational improvements have been implemented in order to ensure facility reliability and personnel safety. As of January 2000, this unique, state-of-the-art facility was ready for integrated systems testing.

  11. Planning the Safety of Atrial Fibrillation Ablation Registry Initiative (SAFARI) as a Collaborative Pan-Stakeholder Critical Path Registry Model: a Cardiac Safety Research Consortium "Incubator" Think Tank.

    PubMed

    Al-Khatib, Sana M; Calkins, Hugh; Eloff, Benjamin C; Packer, Douglas L; Ellenbogen, Kenneth A; Hammill, Stephen C; Natale, Andrea; Page, Richard L; Prystowsky, Eric; Jackman, Warren M; Stevenson, William G; Waldo, Albert L; Wilber, David; Kowey, Peter; Yaross, Marcia S; Mark, Daniel B; Reiffel, James; Finkle, John K; Marinac-Dabic, Danica; Pinnow, Ellen; Sager, Phillip; Sedrakyan, Art; Canos, Daniel; Gross, Thomas; Berliner, Elise; Krucoff, Mitchell W

    2010-01-01

    Atrial fibrillation (AF) is a major public health problem in the United States that is associated with increased mortality and morbidity. Of the therapeutic modalities available to treat AF, the use of percutaneous catheter ablation of AF is expanding rapidly. Randomized clinical trials examining the efficacy and safety of AF ablation are currently underway; however, such trials can only partially determine the safety and durability of the effect of the procedure in routine clinical practice, in more complex patients, and over a broader range of techniques and operator experience. These limitations of randomized trials of AF ablation, particularly with regard to safety issues, could be addressed using a synergistically structured national registry, which is the intention of the SAFARI. To facilitate discussions about objectives, challenges, and steps for such a registry, the Cardiac Safety Research Consortium and the Duke Clinical Research Institute, Durham, NC, in collaboration with the US Food and Drug Administration, the American College of Cardiology, and the Heart Rhythm Society, organized a Think Tank meeting of experts in the field. Other participants included the National Heart, Lung and Blood Institute, the Centers for Medicare and Medicaid Services, the Agency for Healthcare Research and Quality, the Society of Thoracic Surgeons, the AdvaMed AF working group, and additional industry representatives. The meeting took place on April 27 to 28, 2009, at the US Food and Drug Administration headquarters in Silver Spring, MD. This article summarizes the issues and directions presented and discussed at the meeting. Copyright 2010 Mosby, Inc. All rights reserved.

  12. NASA Dryden Flight Research Center C-17 Research Overview

    NASA Technical Reports Server (NTRS)

    Miller, Chris

    2007-01-01

    A general overview of NASA Dryden Flight Research Center's C-17 Aircraft is presented. The topics include: 1) 2006 Activities PHM Instrumentation Refurbishment; 2) Acoustic and Vibration Sensors; 3) Gas Path Sensors; 4) NASA Instrumentation System Racks; 5) NASA C-17 Simulator; 6) Current Activities; 7) Future Work; 8) Lawn Dart ; 9) Weight Tub; and 10) Parachute Test Vehicle.

  13. SWOT analysis in Sina Trauma and Surgery Research Center.

    PubMed

    Salamati, Payman; ashraf Eghbali, Ali; Zarghampour, Manijeh

    2014-01-01

    The present study was conducted with the aim of identifying and evaluating the internal and external factors, affecting the Sina Trauma and Surgery Research Center, affiliated to Tehran University of Medical Sciences and propose some of related strategies to senior managers. We used a combined quantitative and qualitative methodology. Our study population consisted of personnel (18 individuals) at Sina Trauma and Surgery Research Center. Data-collection tools were the group discussions and the questionnaires. Data were analyzed with descriptive statistics and SWOT (Strength, Weakness, Opportunities and Threats) analysis. 18 individuals participated in sessions, consisting of 8 women (44.4%) and 10 men (55.6%). The final scores were 2.45 for internal factors (strength-weakness) and 2.17 for external factors (opportunities-threats). In this study, we proposed 36 strategies (10 weakness-threat strategies, 10 weakness-opportunity strategies, 7 strength-threat strategies, and 9 strength-opportunity strategies). The current status of Sina Trauma and Surgery Research Center is threatened weak. We recommend the center to implement the proposed strategies.

  14. 21. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (NACA 16900) DETAIL VIEW OF CONTROL/MONITORING STATION IN 8-FOOT HIGH SPEED WIND TUNNEL, c. 1930s. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

  15. 17. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L86-10,257) DETAIL VIEW OF EXTERIOR OF COOLING TOWER FOR 8- FOOT HIGH SPEED WIND TUNNEL. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

  16. 12. Photocopy of photograph (original in Langley Research Center Archives, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Photocopy of photograph (original in Langley Research Center Archives, Hampton, VA LaRC) (L4496) AERIAL VIEW OF FULL-SCALE WIND TUNNEL UNDER CONSTRUCTION; c. 1930. NOTE SEAPLANE TOWING CHANNEL STRUCTURE IN BACKGROUND. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  17. 19. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L79758) INTERIOR VIEW SHOWING TURNING VANES AND PERSONNEL IN THE 8-FOOT HIGH SPEED WIND TUNNEL. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

  18. 21. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L-9850) ANNUAL AIRCRAFT ENGINEERING CONFERENCE IN FULL-SCALE WIND TUNNEL; GROUP PHOTOGRAPH OF PARTICIPANTS, mAY 23, 1934. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  19. Implementation of the Enhanced Flight Termination System at National Aeronautics and Space Administration Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Tow, David

    2010-01-01

    This paper discusses the methodology, requirements, tests, and results of the implementation of the current operating capability for the Enhanced Flight Termination System (EFTS) at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center (DFRC). The implementation involves the development of the EFTS at NASA DFRC starting from the requirements to system safety review to full end to end system testing, and concluding with the acceptance of the system as an operational system. The paper discusses the first operational usage and subsequent flight utilizing EFTS successfully.

  20. Building research infrastructure in community health centers: a Community Health Applied Research Network (CHARN) report.

    PubMed

    Likumahuwa, Sonja; Song, Hui; Singal, Robbie; Weir, Rosy Chang; Crane, Heidi; Muench, John; Sim, Shao-Chee; DeVoe, Jennifer E

    2013-01-01

    This article introduces the Community Health Applied Research Network (CHARN), a practice-based research network of community health centers (CHCs). Established by the Health Resources and Services Administration in 2010, CHARN is a network of 4 community research nodes, each with multiple affiliated CHCs and an academic center. The four nodes (18 individual CHCs and 4 academic partners in 9 states) are supported by a data coordinating center. Here we provide case studies detailing how CHARN is building research infrastructure and capacity in CHCs, with a particular focus on how community practice-academic partnerships were facilitated by the CHARN structure. The examples provided by the CHARN nodes include many of the building blocks of research capacity: communication capacity and "matchmaking" between providers and researchers; technology transfer; research methods tailored to community practice settings; and community institutional review board infrastructure to enable community oversight. We draw lessons learned from these case studies that we hope will serve as examples for other networks, with special relevance for community-based networks seeking to build research infrastructure in primary care settings.

  1. Building Research Infrastructure in Community Health Centers: A Community Health Applied Research Network (CHARN) Report

    PubMed Central

    Likumahuwa, Sonja; Song, Hui; Singal, Robbie; Weir, Rosy Chang; Crane, Heidi; Muench, John; Sim, Shao-Chee; DeVoe, Jennifer E.

    2015-01-01

    This article introduces the Community Health Applied Research Network (CHARN), a practice-based research network of community health centers (CHCs). Established by the Health Resources and Services Administration in 2010, CHARN is a network of 4 community research nodes, each with multiple affiliated CHCs and an academic center. The four nodes (18 individual CHCs and 4 academic partners in 9 states) are supported by a data coordinating center. Here we provide case studies detailing how CHARN is building research infrastructure and capacity in CHCs, with a particular focus on how community practice-academic partnerships were facilitated by the CHARN structure. The examples provided by the CHARN nodes include many of the building blocks of research capacity: communication capacity and “matchmaking” between providers and researchers; technology transfer; research methods tailored to community practice settings; and community institutional review board infrastructure to enable community oversight. We draw lessons learned from these case studies that we hope will serve as examples for other networks, with special relevance for community-based networks seeking to build research infrastructure in primary care settings. PMID:24004710

  2. Bus operator safety : critical issues examination and model practices.

    DOT National Transportation Integrated Search

    2014-01-01

    In this study, researchers at the National Center for Transit Research performed a multi-topic comprehensive : examination of bus operator-related critical safety and personal security issues. The goals of this research : effort were to: : 1. Identif...

  3. The DOE Bioenergy Research Centers: History, Operations, and Scientific Output

    DOE PAGES

    Slater, Steven C.; Simmons, Blake A.; Rogers, Tamara S.; ...

    2015-08-20

    Over the past 7 years, the US Department of Energy's Office of Biological and Environmental Research has funded three Bioenergy Research Centers (BRCs). These centers have developed complementary and collaborative research portfolios that address the key technical and economic challenges in biofuel production from lignocellulosic biomass. All three centers have established a close, productive relationship with DOE's Joint Genome Institute (JGI). This special issue of Bioenergy Research samples the breadth of basic science and engineering work required to underpin a diverse, sustainable, and robust biofuel industry. In this report, which was collaboratively produced by all three BRCs, we discuss themore » BRC contributions over their first 7 years to the development of renewable transportation fuels. In additon, we also highlight the BRC research published in the current issue and discuss technical challenges in light of recent progress.« less

  4. 24. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA CARRIAGE IN SEAPLANE TOWING CHANNEL SHOWING OGIVE SHAPE READY FOR TEST. TANK HAS BEEN DRAINED AND THE OGIVE WOULD BE SUBMERGED UNDER NORMAL TEST CONDITIONS. - NASA Langley Research Center, Seaplane Towing Channel, 108 Andrews Street, Hampton, Hampton, VA

  5. NASA. Lewis Research Center materials research and technology: An overview

    NASA Technical Reports Server (NTRS)

    Grisaffe, Salvatore J.

    1990-01-01

    The Materials Division at the Lewis Research Center has a long record of contributions to both materials and process technology as well as to the understanding of key high-temperature phenomena. This paper overviews the division staff, facilities, past history, recent progress, and future interests.

  6. Cancer Research Center Indiana University School of Medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-08-01

    The Department of Energy (DOE) proposes to authorize the Indiana School of Medicine to proceed with the detailed design, construction and equipping of the proposed Cancer Research Center (CRC). A grant was executed with the University on April 21, 1992. A four-story building with basement would be constructed on the proposed site over a 24-month period. The proposed project would bring together, in one building, three existing hematology/oncology basic research programs, with improved cost-effectiveness through the sharing of common resources. The proposed site is currently covered with asphaltic pavement and is used as a campus parking lot. The surrounding areamore » is developed campus, characterized by buildings, walkways, with minimal lawns and plantings. The proposed site has no history of prior structures and no evidence of potential sources of prior contamination of the soil. Environmental impacts of construction would be limited to minor increases in traffic, and the typical noises associated with standard building construction. The proposed CRC project operation would involve the use radionuclides and various hazardous materials in conducting clinical studies. Storage, removal and disposal of hazardous wastes would be managed under existing University programs that comply with federal and state requirements. Radiological safety programs would be governed by Nuclear Regulatory Commission (NRC) license and applicable Environmental Protection Agency (EPA) regulations. There are no other NEPA reviews currently active which are in relationship to this proposed site. The proposed project is part of a Medical Campus master plan and is consistent with applicable local zoning and land use requirements.« less

  7. Clinical Investigator Development Program | Center for Cancer Research

    Cancer.gov

    Clinical Investigator Development Program Application Deadline:  September 30, 2018 Program Starts: July 1, 2019 The NCI Center for Cancer Research (CCR) is pleased to announce our annual call for applications for an exciting training opportunity intended for physicians interested in dedicating their careers to clinical research. Come join a vibrant, multidisciplinary research

  8. Final environmental impact statement for Ames Research Center

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The NASA-Ames Research Center is described. together with the nature of its activities, from which it can be seen that the center is basically not a major pollution source. Geographical, and climatic characteristics of the site are described. inasmuch as they influence both the choice of disposal methods and the environmental effects of the pollutants. The known or probable pollution sources at the center are described. Where the intensities of these sources might exceed the recommended guidelines, the corrective actions that have been taken are described.

  9. Strategic plan for the Turner-Fairbank Highway Research Center.

    DOT National Transportation Integrated Search

    2014-01-01

    Located in McLean, VA, the Turner-Fairbank Highway Research Center (TFHRC), is the Federal Highway Administrations (FHWA) core facility for research, development, and technology within the broader transportation research community. This document d...

  10. U-2 Aircraft at the Lewis Research Center

    NASA Image and Video Library

    1973-09-21

    A National Aeronautics and Space Administration (NASA) Lockheed U-2 aircraft on display at the 1973 Inspection of the Lewis Research Center in Cleveland, Ohio. Lockheed developed the U-2 as a high-altitude reconnaissance aircraft in the early 1950s before satellites were available. The U-2 could cruise over enemy territory at 70,000 feet and remain impervious to ground fire, interceptor aircraft, and even radar. An advanced camera system was designed specifically for the aircraft. The pilot is required to use a pressure suit similar to those worn by astronauts. NASA’s Ames Research Center received two U-2 aircraft in April 1971 to conduct high-altitude research. They were used to study and monitor various Earth resources, celestial bodies, atmospheric chemistry, and oceanic processes. NASA replaced its U-2s with ER-2 aircraft in 1981 and 1989. The ER-2s were designed to carry up to 2600 pounds of scientific equipment. The ER-2 program was transferred to Dryden Flight Research Center in 1997. Since the inaugural flight for this program on August 31, 1971, NASA’s U-2 and ER-2 aircraft have flown more than 4500 data missions and test flights for NASA, other federal agencies, states, universities, and the private sector.

  11. "Centering the Margins": Moving Equity to the Center of Men's Health Research.

    PubMed

    Griffith, Derek M

    2018-05-01

    How might the science of men's health progress if research on marginalized or subordinated men is moved from the margins of the literature to the center? This commentary seeks to answer this question, suggesting that if more attention is paid to men of color and other marginalized men, the field will be greatly enriched in its ability to understand determinants of men's health. Reimagining men's health by moving men's health disparities to a primary focus of the field may yield critical new insights that would be essential to moving men's health to the center of health equity research. Focusing on the dual goals of improving the health of marginalized men and examining the determinants of disparities among men and between men and women will yield insights into mechanisms, pathways, and strategies to improve men's health and address health disparities. Current definitions of health disparities limit the nation's ability to dedicate resources to populations that need attention-men of color and other marginalized men-that do not fit these definitions. Moving marginalized men to the center of research in men's health will foster new ways of understanding determinants of men's health that cannot be identified without focusing on populations of men whose health is as influenced by race, ethnicity, and other structures of marginalization as it is by gender and masculinities. Using Black men as a case example, the article illustrates how studying marginalized men can refine the study of men's health and health equity.

  12. 2017 Solar Eclipse, Ames Research Center

    NASA Image and Video Library

    2017-08-21

    Taking a break from his duties at the Ames Vertical Gun Range to look up at the eclipse over Ames Research Center in Mountain View Adam Parrish not only views but wears, on his forehead, the image of the 2017 Solar eclipse at 09:20:56 on August 21, 2017.

  13. Postdoctoral Fellow | Center for Cancer Research

    Cancer.gov

    The Neuro-Oncology Branch (NOB), Center for Cancer Research (CCR), National Cancer Institute (NCI) of the National Institutes of Health (NIH) is seeking outstanding postdoctoral candidates interested in studying metabolic and cell signaling pathways in the context of brain cancers through construction of computational models amenable to formal computational analysis and

  14. Macroergonomics in Healthcare Quality and Patient Safety

    PubMed Central

    Carayon, Pascale; Karsh, Ben-Tzion; Gurses, Ayse P.; Holden, Richard; Hoonakker, Peter; Hundt, Ann Schoofs; Montague, Enid; Rodriguez, Joy; Wetterneck, Tosha B.

    2014-01-01

    The US Institute of Medicine and healthcare experts have called for new approaches to manage healthcare quality problems. In this chapter, we focus on macroergonomics, a branch of human factors and ergonomics that is based on the systems approach and considers the organizational and sociotechnical context of work activities and processes. Selected macroergonomic approaches to healthcare quality and patient safety are described such as the SEIPS model of work system and patient safety and the model of healthcare professional performance. Focused reviews on job stress and burnout, workload, interruptions, patient-centered care, health IT and medical devices, violations, and care coordination provide examples of macroergonomics contributions to healthcare quality and patient safety. Healthcare systems and processes clearly need to be systematically redesigned; examples of macroergonomic approaches, principles and methods for healthcare system redesign are described. Further research linking macroergonomics and care processes/patient outcomes is needed. Other needs for macroergonomics research are highlighted, including understanding the link between worker outcomes (e.g., safety and well-being) and patient outcomes (e.g., patient safety), and macroergonomics of patient-centered care and care coordination. PMID:24729777

  15. Training Postbac JHU | Center for Cancer Research

    Cancer.gov

    The Johns Hopkins University and the Center for Cancer Research (CCR) at the National Cancer Institute (NCI) have partnered to create a new concentration in the Master of Science in Biotechnology program, called

  16. 14. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L-90-2684) AERIAL VIEW OF THE 8-FOOT HIGH SPEED TUNNEL (FOREGROUND) AND THE 8-FOOT TRANSONIC PRESSURE TUNNEL (REAR). - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

  17. 22. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L27056) LOCKHEED YP-38 IN THE FULL-SCALE WIND TUNNEL; THIS WAS THE PROTOTYPE OF THE P-38 (LOCKHEED LIGHTNING); c. 1941. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  18. A Holistic Emphasis: The UCLA American Indian Studies Research Center.

    ERIC Educational Resources Information Center

    Champagne, Duane

    2001-01-01

    At UCLA, the American Indian Studies Center's structure as an organized research unit allows a platform for many activities not normally within the purview of departments. The Center implements a holistic, Native view of research, policy, community engagement, and education; has a library and publications; and is a gathering place for American…

  19. Research overview at USDA-ARS Coastal Plains, Soil, Water and Plant Research Center, and potential collaborative research projects with RDA - NIAS

    USDA-ARS?s Scientific Manuscript database

    The Center at Florence is one of the ninety research units of the United States Department of Agriculture - Agricultural Research Service (USDA-ARS). The mission of the Center is to conduct research and transfer solutions that improve agricultural production, protect the environment, and enhance the...

  20. EU Funded Research Activities on NPPS Operational Safety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manolatos, P.; Van Goethem, G.

    2002-07-01

    The 5. framework programme (FP-5), the pluri-annual research programme of the European Union (EU), covers the period 1998-2002. Research on nuclear energy, fusion and fission, is covered by the EURATOM part of the FP-5. An overview of the Euratom's research on Nuclear Reactor Safety, managed by the DG-RTD of the European Commission (EC), is presented. This concerns 70 multi-partner projects of approximately euro 82.5 million total contract value that have been selected and co-financed during the period 1999-2001. They form the three clusters of projects dealing with the 'Operational Safety of Existing Installations'. 'Plant Life Extension and Management' (PLEM), 'Severemore » Accident Management' (SAM) and 'Evolutionary concepts' (EVOL). Emphasis is given here to the projects of the PLEM cluster. (authors)« less

  1. Activities in Aeroelasticity at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Perry, Boyd, III; Noll, Thomas E.

    1997-01-01

    This paper presents the results of recently-completed research and presents status reports of current research being performed within the Aeroelasticity Branch of the NASA Langley Research Center. Within the paper this research is classified as experimental, analytical, and theoretical aeroelastic research. The paper also describes the Langley Transonic Dynamics Tunnel, its features, capabilities, a new open-architecture data acquisition system, ongoing facility modifications, and the subsequent calibration of the facility.

  2. The Syracuse University Center for Training and Research in Hypersonics

    NASA Technical Reports Server (NTRS)

    LaGraff, John; Blankson, Isaiah (Technical Monitor); Robinson, Stephen K. (Technical Monitor); Walsh, Michael J. (Technical Monitor); Anderson, Griffin Y. (Technical Monitor)

    2000-01-01

    In Fall 1993, NASA Headquarters established Centers for Hypersonics at the University of Maryland, the University of Texas-Arlington, and Syracuse University. These centers are dedicated to research and education in hypersonic technologies and have the objective of educating the next generation of engineers in this critical field. At the Syracuse University Center for Hypersonics this goal is being realized by focusing resources to: Provide an environment in which promising undergraduate students can learn the fundamental engineering principles of hypersonics so that they may make a seamless transition to graduate study and research in this field; Provide graduate students with advanced training in hypersonics and an opportunity to interact with leading authorities in the field in both research and instructional capacities; and Perform fundamental research in areas that will impact hypersonic vehicle design and development.

  3. National Center for Mathematics and Science - research support

    Science.gov Websites

    Mathematics and Science (NCISLA) HOME | WHAT WE DO | K-12 EDUCATION RESEARCH | PUBLICATIONS | TEACHER agreement with the U.S. Department of Education, Office of Educational Research and Improvement (R305A60007 supporting agency. WCER logo Additional support is provided by the Wisconsin Center for Education Research in

  4. 76 FR 62814 - National Center For Research Resources; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-11

    ..., Comparative Medicine; 93.333, Clinical Research; 93.371, Biomedical Technology; 93.389, Research... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Center For Research... unwarranted invasion of personal privacy. Name of Committee: National Center for Research Resources Special...

  5. 75 FR 32187 - National Center for Research Resources: Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-07

    ..., Comparative Medicine; 93.333, Clinical Research; 93.371, Biomedical Technology; 93.389, Research... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Center for Research... unwarranted invasion of personal privacy. Name of Committee: National Center for Research Resources Special...

  6. Postdoctoral Fellow | Center for Cancer Research

    Cancer.gov

    The Neuro-Oncology Branch (NOB), Center for Cancer Research (CCR), National Cancer Institute (NCI) of the National Institutes of Health (NIH) is seeking outstanding postdoctoral candidates interested in studying the metabolic changes in brain tumors such as glioblastoma multiforme (GBMs).  NOB’s Metabolomics program is interested in revealing the metabolic alterations of

  7. Role Strain in University Research Centers

    ERIC Educational Resources Information Center

    Boardman, Craig; Bozeman, Barry

    2007-01-01

    One way in which university faculty members' professional lives have become more complex with the advent of contemporary university research centers is that many faculty have taken on additional roles. The authors' concern in this article is to determine the extent to which role strain is experienced by university faculty members who are…

  8. Research and technology 1987 annual report of the Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    1987-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, Kennedy Space Center is placing increasing emphasis on the Center's research and technology program. In addition to strengthening those areas of engineering and operations technology that contribute to safer, more efficient, and more economical execution of our current mission, we are developing the technological tools needed to execute the Center's mission relative to future programs. The Engineering Development Directorate encompasses most of the laboratories and other Center resources that are key elements of research and technology program implementation, and is responsible for implementation of the majority of the projects of this Kennedy Space Center 1987 Annual Report.

  9. Michigan/Air Force Research Laboratory (AFRL) Collaborative Center in Control Science (MACCCS)

    DTIC Science & Technology

    2016-09-01

    AFRL-RQ-WP-TR-2016-0139 MICHIGAN/AIR FORCE RESEARCH LABORATORY (AFRL) COLLABORATIVE CENTER IN CONTROL SCIENCE (MACCCS) Anouck Girard...Final 18 April 2007 – 30 September 2016 4. TITLE AND SUBTITLE MICHIGAN/AIR FORCE RESEARCH LABORATORY (AFRL) COLLABORATIVE CENTER IN CONTROL SCIENCE...and amplify an internationally recognized center of excellence in control science research and education, through interaction between the faculty and

  10. Synthesis centers as critical research infrastructure

    USGS Publications Warehouse

    Baron, Jill S.; Specht, Alison; Garnier, Eric; Bishop, Pamela; Campbell, C. Andrew; Davis, Frank W.; Fady, Bruno; Field, Dawn; Gross, Louis J.; Guru, Siddeswara M.; Halpern, Benjamin S; Hampton, Stephanie E.; Leavitt, Peter R.; Meagher, Thomas R.; Ometto, Jean; Parker, John N.; Price, Richard; Rawson, Casey H.; Rodrigo, Allen; Sheble, Laura A.; Winter, Marten

    2017-01-01

    investment to maximize benefits to science and society is justified. In particular, we argue that synthesis centers represent community infrastructure more akin to research vessels than to term-funded centers of science and technology (e.g., NSF Science and Technology Centers). Through our experience running synthesis centers and, in some cases, developing postfederal funding models, we offer our perspective on the purpose and value of synthesis centers. We present case studies of different outcomes of transition plans and argue for a fundamental shift in the conception of synthesis science and the strategic funding of these centers by government funding agencies.

  11. Improving driver safety with behavioral countermeasures.

    DOT National Transportation Integrated Search

    2011-09-30

    "The purpose of this project was to provide MDOT with insight regarding the effectiveness of potential implementations of behavioral countermeasures for increasing driver safety in Michigan. The Center for Driver Evaluation, Education, and Research a...

  12. The 1991 Marshall Space Flight Center research and technology

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A compilation of 194 articles addressing research and technology activities at the Marshall Space Flight Center (MSFC) is given. Activities are divided into three major areas: advanced studies addressing transportation systems, space systems, and space science activities conducted primarily in the Program Development Directorate; research tasks carried out in the Space Science Laboratory; and technology programs hosted by a wide array of organizations at the Center. The theme for this year's report is 'Building for the Future'.

  13. Child contact centers and domestic abuse: victim safety and the challenge to neutrality.

    PubMed

    Morrison, Fiona; Wasoff, Fran

    2012-06-01

    Child contact with a nonresident father who has perpetrated domestic abuse has gained policy and research attention. Both feminist social policy and family law research identify the role child contact centers can play in facilitating contact in these circumstances. Drawing from a literature review carried out by the authors, this article examines the priorities that underpin feminist social policy and family law disciplines and how these manifest in research on contact centers and domestic abuse.

  14. Alternative Fuels Data Center: Research and Development of Electricity as a

    Science.gov Websites

    Vehicle Fuel Research and Development of Electricity as a Vehicle Fuel to someone by E-mail Share Alternative Fuels Data Center: Research and Development of Electricity as a Vehicle Fuel on Facebook Tweet about Alternative Fuels Data Center: Research and Development of Electricity as a Vehicle

  15. 75 FR 28262 - National Center for Research Resources; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-20

    ....306, Comparative Medicine; 93.333, Clinical Research; 93.371, Biomedical Technology; 93.389, Research... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Center for Research... unwarranted invasion of personal privacy. Name of Committee: National Center for Research Resources Special...

  16. 75 FR 61768 - National Center for Research Resources; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-06

    ....306, Comparative Medicine; 93.333, Clinical Research; 93.371, Biomedical Technology; 93.389, Research... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Center for Research... unwarranted invasion of personal privacy. Name of Committee: National Center for Research Resources Special...

  17. Translational Partnership Development Lead | Center for Cancer Research

    Cancer.gov

    PROGRAM DESCRIPTION The Frederick National Laboratory for Cancer Research (FNLCR) is a Federally Funded Research and Development Center operated by Leidos Biomedical Research, Inc on behalf of the National Cancer Institute (NCI). The staff of FNLCR support the NCI’s mission in the fight against cancer and HIV/AIDS. Currently we are seeking a Translational Partnership

  18. Reorganizing the General Clinical Research Center to improve the clinical and translational research enterprise.

    PubMed

    Allen, David; Ripley, Elizabeth; Coe, Antoinette; Clore, John

    2013-12-01

    In 2010, Virginia Commonwealth University (VCU) was granted a Clinical and Translational Science Award which prompted reorganization and expansion of their clinical research infrastructure. A case study approach is used to describe the implementation of a business and cost recovery model for clinical and translational research and the transformation of VCU's General Clinical Research Center and Clinical Trials Office to a combined Clinical Research Services entity. We outline the use of a Plan, Do, Study, Act cycle that facilitated a thoughtful transition process, which included the identification of required changes and cost recovery processes for implementation. Through this process, the VCU Center for Clinical and Translational Research improved efficiency, increased revenue recovered, reduced costs, and brought a high level of fiscal responsibility through financial reporting.

  19. Deployment of sustainable fueling/charging systems at California highway safety roadside rest areas : a research report from the National Center for Sustainable Transportation.

    DOT National Transportation Integrated Search

    2016-12-01

    The objectives of this research were to study the feasibility of the deployment of renewable hydrogen fueling/DC fast charging stations at California Safety Roadside Rest Areas (SRRAs), not at service areas with commercial activity, and the integrati...

  20. 2003 NASA Faculty Fellowship Program at Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Prahl, Joseph M.; Heyward, An O.; Kankam, Mark D.

    2003-01-01

    The Office of Education at NASA Headquarters provides overall policy and direction for the NASA Faculty Fellowship Program (NFFP). The American Society for Engineering Education (ASEE) and the Universities Space Research Association (USRA) have joined in partnership to recruit participants, accept applications from a broad range of participants, and provide overall evaluation of the NFFP. The NASA Centers, through their University Affairs Officers, develop and operate the experiential part of the program. In concert with co-directing universities and the Centers, Fellows are selected and provided the actual research experiences. This report summarizes the 2003 session conducted at the Glenn Research Center (GRC).Research topics covered a variety of areas including, but not limited to, biological sensors, modeling of biological fluid systems, electronic circuits, ceramics and coatings, unsteady probablistic analysis and aerodynamics, gas turbines, environmental monitoring systems for water quality, air quality, gaseous and particulate emissions, bearings for flywheel energy storage, shape memory alloys,photonic interrogation and nanoprocesses,carbon nanotubes, polymer synthesis for fuel cells, aviation communications, algorithm development and RESPlan Database.

  1. Fighting liver cancer with combination immunotherapies | Center for Cancer Research

    Cancer.gov

    A new clinical trial testing the effectiveness of immunotherapy treatment combinations against liver cancer is enrolling patients at the NIH Clinical Center in Bethesda, Maryland. Individually, immunotherapy drugs harness the power of the human immune system to better identify and kill cancer cells. Now, researchers at the NIH’s Center for Cancer Research have begun to find

  2. Moving from Damage-Centered Research through Unsettling Reflexivity

    ERIC Educational Resources Information Center

    Calderon, Dolores

    2016-01-01

    The author revisits autoethnographic work in order to examine how she unwittingly incorporated damage-centered (Tuck 2009) research approaches that reproduce settler colonial understandings of marginalized communities. The paper examines the reproduction of settler colonial knowledge in ethnographic research by unearthing the inherent surveillance…

  3. About BTTC | Center for Cancer Research

    Cancer.gov

    About Combined Forces Drive BTTC The Brain Tumor Trials Collaborative (BTTC) was created in 2003 - a combined effort of many professionals, entities and organizations to help those suffering from brain tumors. The National Cancer Institute's (NCI) Center for Cancer Research serves as the lead institution and provides the administrative infrastructure, clinical database and

  4. Postdoctoral Fellow | Center for Cancer Research

    Cancer.gov

    The Lipkowitz lab in the Women's Malignancies Branch (WMB), Center for Cancer Research (CCR), National Cancer Institute (NCI) of the National Institutes of Health (NIH) is seeking outstanding postdoctoral candidates interested in studying the structure and function of Cbl proteins as negative regulators of signaling. Our broad goal is to explore the molecular and cellular

  5. Staff Clinician | Center for Cancer Research

    Cancer.gov

    The Neuro-Oncology Branch (NOB), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH) is seeking staff clinicians to provide high-quality patient care for individuals with primary central nervous system (CNS) malignancies.  The NOB is comprised of a multidisciplinary team of physicians, healthcare providers, and scientists who

  6. Conceptual and practical foundations of patient engagement in research at the patient-centered outcomes research institute.

    PubMed

    Frank, Lori; Forsythe, Laura; Ellis, Lauren; Schrandt, Suzanne; Sheridan, Sue; Gerson, Jason; Konopka, Kristen; Daugherty, Sarah

    2015-05-01

    To provide an overview of PCORI's approach to engagement in research. The Patient-Centered Outcomes Research Institute (PCORI) was established in 2010 to fund patient-centered comparative effectiveness research. Requirements for research funding from PCORI include meaningful engagement of patients and other stakeholders in the research. PCORI's approach to engagement in research is guided by a conceptual model of patient-centered outcomes research (PCOR), that provides a structure for understanding engagement in research. To understand and improve engagement in research PCORI is learning from awardees and other stakeholders. Those efforts are described along with PCORI's capacity building and guidance to awardees via the Engagement Rubric. PCORI's unique model of engaging patients and other stakeholders in merit review of funding applications is also described. Additional support for learning about engagement in research is provided through specific research funding and through PCORI's major infrastructure initiative, PCORnet. PCORI requires engagement of stakeholders in the research it funds. In addition PCORI engages stakeholders in activities including review of funding applications and establishment of CER research infrastructure through PCORnet. The comprehensive approach to engagement is being evaluated to help guide the field toward promising practices in research engagement.

  7. An interfaith workers' center approach to workplace rights: implications for workplace safety and health.

    PubMed

    Cho, Chi C; Oliva, Jose; Sweitzer, Erica; Nevarez, Juan; Zanoni, Joseph; Sokas, Rosemary K

    2007-03-01

    Over the past decade, fatal occupational injury rates for immigrant workers have increased disproportionately, as have informal and precarious working arrangements. Workers' rights centers have emerged as a response. This descriptive report characterizes an innovative approach to encourage immigrant workers to access federal and state occupational safety and health programs through an interfaith workers' center. : Existing data obtained by volunteers at time of intake were redacted and imported into a SAS database for secondary analysis. Statistical methods used to evaluate associations between outcome of interest and various characteristics included the chi2 test of association, Fisher exact test of association, and multivariate logistic regression. A total of 934 individual records were reviewed, although for any given item, missing data was a limitation. Among 780 persons reporting their primary language, 75% spoke Spanish, 19% Polish, 4% English, and 1% Other. The following total numbers of formal complaints were filed with each of the following agencies: 110 referred to the state Department of Labor (DOL), 123 to the federal Equal Employment Opportunity Commission (EEOC), 65 concerning federal violations of wages and hours, and 47 complaints with the Occupational Safety and Health Administration (OSHA). Approximately 37% of the OSHA complaints resulted in a measurable outcome, exceeding the average for all complaints. Workers' most frequent concerns focus on pay and discrimination. Recasting occupational safety and health hazards as threats to income and as forms of discrimination may help identify hazards.

  8. A Family-Centered Rounds Checklist, Family Engagement, and Patient Safety: A Randomized Trial

    PubMed Central

    Jacobsohn, Gwen C.; Rajamanickam, Victoria P.; Carayon, Pascale; Kelly, Michelle M.; Wetterneck, Tosha B.; Rathouz, Paul J.; Brown, Roger L.

    2017-01-01

    BACKGROUND AND OBJECTIVES: Family-centered rounds (FCRs) have become standard of care, despite the limited evaluation of FCRs’ benefits or interventions to support high-quality FCR delivery. This work examines the impact of the FCR checklist intervention, a checklist and associated provider training, on performance of FCR elements, family engagement, and patient safety. METHODS: This cluster randomized trial involved 298 families. Two hospital services were randomized to use the checklist; 2 others delivered usual care. We evaluated the performance of 8 FCR checklist elements and family engagement from 673 pre- and postintervention FCR videos and assessed the safety climate with the Children’s Hospital Safety Climate Questionnaire. Random effects regression models were used to assess intervention impact. RESULTS: The intervention significantly increased the number of FCR checklist elements performed (β = 1.2, P < .001). Intervention rounds were significantly more likely to include asking the family (odds ratio [OR] = 2.43, P < .05) or health care team (OR = 4.28, P = .002) for questions and reading back orders (OR = 12.43, P < .001). Intervention families’ engagement and reports of safety climate were no different from usual care. However, performance of specific checklist elements was associated with changes in these outcomes. For example, order read-back was associated with significantly more family engagement. Asking families for questions was associated with significantly better ratings of staff’s communication openness and safety of handoffs and transitions. CONCLUSIONS: The performance of FCR checklist elements was enhanced by checklist implementation and associated with changes in family engagement and more positive perceptions of safety climate. Implementing the checklist improves delivery of FCRs, impacting quality and safety of care. PMID:28557720

  9. Does Employee Safety Matter for Patients Too? Employee Safety Climate and Patient Safety Culture in Health Care.

    PubMed

    Mohr, David C; Eaton, Jennifer Lipkowitz; McPhaul, Kathleen M; Hodgson, Michael J

    2015-04-22

    We examined relationships between employee safety climate and patient safety culture. Because employee safety may be a precondition for the development of patient safety, we hypothesized that employee safety culture would be strongly and positively related to patient safety culture. An employee safety climate survey was administered in 2010 and assessed employees' views and experiences of safety for employees. The patient safety survey administered in 2011 assessed the safety culture for patients. We performed Pearson correlations and multiple regression analysis to examine the relationships between a composite measure of employee safety with subdimensions of patient safety culture. The regression models controlled for size, geographic characteristics, and teaching affiliation. Analyses were conducted at the group level using data from 132 medical centers. Higher employee safety climate composite scores were positively associated with all 9 patient safety culture measures examined. Standardized multivariate regression coefficients ranged from 0.44 to 0.64. Medical facilities where staff have more positive perceptions of health care workplace safety climate tended to have more positive assessments of patient safety culture. This suggests that patient safety culture and employee safety climate could be mutually reinforcing, such that investments and improvements in one domain positively impacts the other. Further research is needed to better understand the nexus between health care employee and patient safety to generalize and act upon findings.

  10. The National Center for Atmospheric Research (NCAR) Research Data Archive: a Data Education Center

    NASA Astrophysics Data System (ADS)

    Peng, G. S.; Schuster, D.

    2015-12-01

    The National Center for Atmospheric Research (NCAR) Research Data Archive (RDA), rda.ucar.edu, is not just another data center or data archive. It is a data education center. We not only serve data, we TEACH data. Weather and climate data is the original "Big Data" dataset and lessons learned while playing with weather data are applicable to a wide range of data investigations. Erroneous data assumptions are the Achilles heel of Big Data. It doesn't matter how much data you crunch if the data is not what you think it is. Each dataset archived at the RDA is assigned to a data specialist (DS) who curates the data. If a user has a question not answered in the dataset information web pages, they can call or email a skilled DS for further clarification. The RDA's diverse staff—with academic training in meteorology, oceanography, engineering (electrical, civil, ocean and database), mathematics, physics, chemistry and information science—means we likely have someone who "speaks your language." Data discovery is another difficult Big Data problem; one can only solve problems with data if one can find the right data. Metadata, both machine and human-generated, underpin the RDA data search tools. Users can quickly find datasets by name or dataset ID number. They can also perform a faceted search that successively narrows the options by user requirements or simply kick off an indexed search with a few words. Weather data formats can be difficult to read for non-expert users; it's usually packed in binary formats requiring specialized software and parameter names use specialized vocabularies. DSs create detailed information pages for each dataset and maintain lists of helpful software, documentation and links of information around the web. We further grow the level of sophistication of the users with tips, tutorials and data stories on the RDA Blog, http://ncarrda.blogspot.com/. How-to video tutorials are also posted on the NCAR Computational and Information Systems

  11. Urban construction and safety project

    NASA Technical Reports Server (NTRS)

    Hogarth, P. T.

    1976-01-01

    Technology utilization projects in the area of urban construction and safety included the following: development of undercarpet and baseboard flat conductor cables, flood insurance studies, tornado safety engineering, the Project TECH house at the Langley Research Center, assistance to the City of Atlanta in their environmental habitability and resource allocation program, and market assessment of a solid state diesel engine controller. The flat conductor cable and the flood insurance studies are given particular attention.

  12. Tenure Track/Tenure Eligible Positions | Center for Cancer Research

    Cancer.gov

    The newly established RNA Biology Laboratory at the Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH) in Frederick, Maryland is recruiting Tenure-eligible or Tenure Track Investigators to join the Intramural Research Program’s mission of high impact, high reward science. These positions, which are supported with stable financial resources, are the equivalent of Assistant Professor/Associate Professor/Professor in an academic department. The RNA Biology Laboratory is looking for candidate(s) who will complement our current group of seven dynamic and collaborative principal investigators (https://ccr.cancer.gov/RNA-Biology-Laboratory). We encourage outstanding scientists investigating any area of RNA Biology to apply. Areas of interest include, but are not limited to, the roles of RNA-binding proteins, noncoding RNAs and nucleotide modifications in cell and organismal function; the ways in which alterations in RNA homeostasis resul  t in diseases such as cancer, and the development of RNA therapeutics. About NCI's Center for Cancer Research The Center for Cancer Research (CCR) is an intramural research component of the National Cancer Institute (NCI). CCR’s enabling infrastructure facilitates clinical studies at the NIH Clinical Center, the world’s largest dedicated clinical research complex; provides extensive opportunities for collaboration; and allows scientists and clinicians to undertake high-impact laboratory- and clinic-based investigations.  Investigators are supported by a wide array of intellectual and technological and research resources, including animal facilities and dedicated, high quality technology cores in areas such as imaging/microscopy, including cryo-electron microscopy; chemistry/purification, mass spectrometry, flow cytometry, SAXS, genomics/DNA sequencing, transgenics and knock out mice, arrays/molecular profiling, and human genetics/bioinformatics.  For an overview of CCR, please

  13. Research and technology in the Federal Motor Carrier Safety Administration

    DOT National Transportation Integrated Search

    2002-01-01

    As the Federal Government's chief commercial vehicle safety agency, the Federal Motor Carrier Safety Administration's (FMCSA), Office of Research and Technology (R&T) focuses on saving lives and reducing injuries by helping to prevent crashes involvi...

  14. Proceedings of RIKEN BNL Research Center Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samios, Nicholas P.

    The twelfth evaluation of the RIKEN BNL Research Center (RBRC) took place on November 6 – 8, 2012 at Brookhaven National Laboratory. The members of the Scientific Review Committee (SRC), present at the meeting, were: Prof. Wit Busza, Prof. Miklos Gyulassy, Prof. Kenichi Imai, Prof. Richard Milner (Chair), Prof. Alfred Mueller, Prof. Charles Young Prescott, and Prof. Akira Ukawa. We are pleased that Dr. Hideto En’yo, the Director of the Nishina Institute of RIKEN, Japan, participated in this meeting both in informing the committee of the activities of the RIKEN Nishina Center for Accelerator- Based Science and the role ofmore » RBRC and as an observer of this review. In order to illustrate the breadth and scope of the RBRC program, each member of the Center made a presentation on his/her research efforts. This encompassed three major areas of investigation: theoretical, experimental and computational physics. In addition, the committee met privately with the fellows and postdocs to ascertain their opinions and concerns. Although the main purpose of this review is a report to RIKEN management on the health, scientific value, management and future prospects of the Center, the RBRC management felt that a compendium of the scientific presentations are of sufficient quality and interest that they warrant a wider distribution. Therefore we have made this compilation and present it to the community for its information and enlightenment.« less

  15. KENNEDY SPACE CENTER, FLA. - Astronaut Barry E. Wilmore (left) and Center Director Jim Kennedy pose for a photo after Wilmore presented Kennedy with a special award for Spaceport Super Safety and Health Day.

    NASA Image and Video Library

    2003-10-15

    KENNEDY SPACE CENTER, FLA. - Astronaut Barry E. Wilmore (left) and Center Director Jim Kennedy pose for a photo after Wilmore presented Kennedy with a special award for Spaceport Super Safety and Health Day.

  16. 78 FR 6819 - Patient Safety Organizations: Voluntary Relinquishment From the BREF PSO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-31

    ..., Center for Quality Improvement and Patient Safety, AHRQ, 540 Gaither Road, Rockville, MD 20850; Telephone... DEPARTMENT OF HEALTH AND HUMAN SERVICES Agency for Healthcare Research and Quality Patient Safety... (AHRQ), HHS. ACTION: Notice of delisting. SUMMARY: The Patient Safety and Quality Improvement Act of...

  17. Patient-centered outcomes research in radiology: trends in funding and methodology.

    PubMed

    Lee, Christoph I; Jarvik, Jeffrey G

    2014-09-01

    The creation of the Patient-Centered Outcomes Research Trust Fund and the Patient-Centered Outcomes Research Institute (PCORI) through the Patient Protection and Affordable Care Act of 2010 presents new opportunities for funding patient-centered comparative effectiveness research (CER) in radiology. We provide an overview of the evolution of federal funding and priorities for CER with a focus on radiology-related priority topics over the last two decades, and discuss the funding processes and methodological standards outlined by PCORI. We introduce key paradigm shifts in research methodology that will be required on the part of radiology health services researchers to obtain competitive federal grant funding in patient-centered outcomes research. These paradigm shifts include direct engagement of patients and other stakeholders at every stage of the research process, from initial conception to dissemination of results. We will also discuss the increasing use of mixed methods and novel trial designs. One of these trial designs, the pragmatic trial, has the potential to be readily applied to evaluating the effectiveness of diagnostic imaging procedures and imaging-based interventions among diverse patient populations in real-world settings. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.

  18. Identifying research priorities for patient safety in mental health: an international expert Delphi study

    PubMed Central

    Murray, Kevin; Thibaut, Bethan; Ramtale, Sonny Christian; Adam, Sheila; Darzi, Ara; Archer, Stephanie

    2018-01-01

    Objective Physical healthcare has dominated the patient safety field; research in mental healthcare is not as extensive but findings from physical healthcare cannot be applied to mental healthcare because it delivers specialised care that faces unique challenges. Therefore, a clearer focus and recognition of patient safety in mental health as a distinct research area is still needed. The study aim is to identify future research priorities in the field of patient safety in mental health. Design Semistructured interviews were conducted with the experts to ascertain their views on research priorities in patient safety in mental health. A three-round online Delphi study was used to ascertain consensus on 117 research priority statements. Setting and participants Academic and service user experts from the USA, UK, Switzerland, Netherlands, Ireland, Denmark, Finland, Germany, Sweden, Australia, New Zealand and Singapore were included. Main outcome measures Agreement in research priorities on a five-point scale. Results Seventy-nine statements achieved consensus (>70%). Three out of the top six research priorities were patient driven; experts agreed that understanding the patient perspective on safety planning, on self-harm and on medication was important. Conclusions This is the first international Delphi study to identify research priorities in safety in the mental field as determined by expert academic and service user perspectives. A reasonable consensus was obtained from international perspectives on future research priorities in patient safety in mental health; however, the patient perspective on their mental healthcare is a priority. The research agenda for patient safety in mental health identified here should be informed by patient safety science more broadly and used to further establish this area as a priority in its own right. The safety of mental health patients must have parity with that of physical health patients to achieve this. PMID:29502096

  19. Center of Excellence for Hypersonics Research

    DTIC Science & Technology

    2012-01-25

    detailed simulations of actual combustor configurations, and ultimately for the optimization of hypersonic air - breathing propulsion system flow paths... vehicle development programs. The Center engaged leading experts in experimental and computational analysis of hypersonic flows to provide research...advanced hypersonic vehicles and space access systems will require significant advances in the design methods and ground testing techniques to ensure

  20. About BTTC | Center for Cancer Research

    Cancer.gov

    About Combined Forces Drive BTTC The Brain Tumor Trials Collaborative (BTTC) was created in 2003 - a combined effort of many professionals, entities and organizations to help those suffering from brain tumors. The National Cancer Institute's (NCI) Center for Cancer Research serves as the lead institution and provides the administrative infrastructure, clinical database and oversight for the collaborative.

  1. Postdoctoral Fellow | Center for Cancer Research

    Cancer.gov

    The Women's Malignancies Branch (WMB), Center for Cancer Research (CCR), National Cancer Institute (NCI) of the National Institutes of Health (NIH) is seeking outstanding postdoctoral candidates interested in studying DNA repair and cell cycle pathways in the context of ovarian cancer and drug resistance. Our broad goal is to explore the molecular and cellular mechanisms of

  2. Some innovations and accomplishments of Ames Research Center since its inception

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The innovations and accomplishments of Ames Research Center from 1940 through 1966 are summarized and illustrated. It should be noted that a number of accomplishments were begun at the NASA Dryden Flight Research Facility before that facility became part of the Ames Research Center. Such accomplishments include the first supersonic flight, the first hypersonic flight, the lunar landing research vehicle, and the first digital fly-by-wire aircraft.

  3. 22. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L64110) DIVING SUIT REQUIRED FOR WORKING IN 8- FOOT HIGH SPEED WIND TUNNEL; ROY H. WRIGHT, DESIGNER OF THE INNOVATIVE SLOTTED SECTION OF TUNNEL IS IN THE SUIT. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

  4. NASA Space Engineering Research Center for VLSI systems design

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This annual review reports the center's activities and findings on very large scale integration (VLSI) systems design for 1990, including project status, financial support, publications, the NASA Space Engineering Research Center (SERC) Symposium on VLSI Design, research results, and outreach programs. Processor chips completed or under development are listed. Research results summarized include a design technique to harden complementary metal oxide semiconductors (CMOS) memory circuits against single event upset (SEU); improved circuit design procedures; and advances in computer aided design (CAD), communications, computer architectures, and reliability design. Also described is a high school teacher program that exposes teachers to the fundamentals of digital logic design.

  5. Sandia National Laboratories: Microsystems Science & Technology Center

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  6. Scientist, Single Cell Analysis Facility | Center for Cancer Research

    Cancer.gov

    The Cancer Research Technology Program (CRTP) develops and implements emerging technology, cancer biology expertise and research capabilities to accomplish NCI research objectives.  The CRTP is an outward-facing, multi-disciplinary hub purposed to enable the external cancer research community and provides dedicated support to NCI’s intramural Center for Cancer Research (CCR). 

  7. 78 FR 6819 - Patient Safety Organizations: Voluntary Relinquishment From The Connecticut Hospital Association...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-31

    ..., Center for Quality Improvement and Patient Safety, AHRQ, 540 Gaither Road, Rockville, MD 20850; Telephone... DEPARTMENT OF HEALTH AND HUMAN SERVICES Agency for Healthcare Research and Quality Patient Safety Organizations: Voluntary Relinquishment From The Connecticut Hospital Association Federal Patient Safety...

  8. Patient-centered prioritization of bladder cancer research.

    PubMed

    Smith, Angela B; Chisolm, Stephanie; Deal, Allison; Spangler, Alejandra; Quale, Diane Z; Bangs, Rick; Jones, J Michael; Gore, John L

    2018-05-04

    Patient-centered research requires the meaningful involvement of patients and caregivers throughout the research process. The objective of this study was to create a process for sustainable engagement for research prioritization within oncology. From December 2014 to 2016, a network of engaged patients for research prioritization was created in partnership with the Bladder Cancer Advocacy Network (BCAN): the BCAN Patient Survey Network (PSN). The PSN leveraged an online bladder cancer community with additional recruitment through print advertisements and social media campaigns. Prioritized research questions were developed through a modified Delphi process and were iterated through multidisciplinary working groups and a repeat survey. In year 1 of the PSN, 354 patients and caregivers responded to the research prioritization survey; the number of responses increased to 1034 in year 2. The majority of respondents had non-muscle-invasive bladder cancer (NMIBC), and the mean time since diagnosis was 5 years. Stakeholder-identified questions for noninvasive, invasive, and metastatic disease were prioritized by the PSN. Free-text questions were sorted with thematic mapping. Several questions submitted by respondents were among the prioritized research questions. A final prioritized list of research questions was disseminated to various funding agencies, and a highly ranked NMIBC research question was included as a priority area in the 2017 Patient-Centered Outcomes Research Institute announcement of pragmatic trial funding. Patient engagement is needed to identify high-priority research questions in oncology. The BCAN PSN provides a successful example of an engagement infrastructure for annual research prioritization in bladder cancer. The creation of an engagement network sets the groundwork for additional phases of engagement, including design, conduct, and dissemination. Cancer 2018. © 2018 American Cancer Society. © 2018 American Cancer Society.

  9. Automated enforcement and highway safety : [tech summary].

    DOT National Transportation Integrated Search

    2013-11-01

    The Louisiana Transportation Research Center (LTRC) funded the Automated Enforcement and Highway Safety project to evaluate : the advantages and disadvantages of automated enforcement at intersections, identify strategies to enhance public opinion re...

  10. Center for Cancer Research hosts 10th Annual GIST Clinic | Center for Cancer Research

    Cancer.gov

    Patients and specialists from around the world gathered for the 10th Annual Pediatric and Wildtype GIST Clinic, which took place Wednesday, July 5 through Friday, July 7, 2017 at the NIH Clinical Center in Bethesda, Maryland. Occurring once a year, the clinic convenes clinicians, research scientists and advocates from across the country to consult with patients who have GIST. Christine Gonzales, a GIST clinic patient from New Mexico, says, “It’s been super amazing because I’ve never talked to a specialist about this cancer."

  11. Research Center Renaming Will Honor Senator Domenici

    NASA Astrophysics Data System (ADS)

    2008-05-01

    New Mexico Tech and the National Radio Astronomy Observatory (NRAO) will rename the observatory's research center on the New Mexico Tech campus to honor retiring U.S. Senator Pete V. Domenici in a ceremony on May 30. The building that serves as the scientific, technical, and administrative center for the Very Large Array (VLA) and Very Long Baseline Array (VLBA) radio telescopes will be named the "Pete V. Domenici Science Operations Center." The building previously was known simply as the "Array Operations Center." Sen. Pete V. Domenici Sen. Pete V. Domenici "The new name recognizes the strong and effective support for science that has been a hallmark of Senator Domenici's long career in public service," said Dr. Fred Lo, NRAO Director. New Mexico Tech President Daniel H. Lopez said Sen. Domenici has always been a supporter of science and research in Socorro and throughout the state. "He's been a statesman for New Mexico, the nation -- and without exaggeration -- for the world," Lopez said. "Anyone with that track record deserves this recognition." Van Romero, Tech vice president of research and economic development, has served as the university's main lobbyist in Washington, D.C., for more than a decade. He said Sen. Domenici has always been receptive to new ideas and willing to take risks. "Over the years, Sen. Domenici has always had time to listen to our needs and goals," Romero said. "He has served as a champion of New Mexico Tech's causes and we owe him a debt of gratitude for all his efforts over the decades." Originally dedicated in 1988, the center houses offices and laboratories that support VLA and VLBA operations. The center also supports work on the VLA modernization project and on the international Atacama Large Millimeter/submillimeter Array (ALMA) project. Work on ALMA at the Socorro center and at the ALMA Test Facility at the VLA site west of Socorro has focused on developing and testing equipment to be deployed at the ALMA site in Chile's Atacama

  12. Breakthroughs in Vision and Visibility for Highway Safety: Workshop Summary Report, August 13-14, 2014

    DOT National Transportation Integrated Search

    2015-09-01

    On August 1314, 2014, at the TurnerFairbank Highway Research Center in McLean, Virginia, the Federal Highway Administrations (FHWAs) Office of Safety Research and Development and the Office of Safety, with support from the Exploratory Adv...

  13. Center for Fuel Cell Research and Applications development phase. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-12-01

    The deployment and operation of clean power generation is becoming critical as the energy and transportation sectors seek ways to comply with clean air standards and the national deregulation of the utility industry. However, for strategic business decisions, considerable analysis is required over the next few years to evaluate the appropriate application and value added from this emerging technology. To this end the Houston Advanced Research Center (HARC) is proposing a three-year industry-driven project that centers on the creation of ``The Center for Fuel Cell Research and Applications.`` A collaborative laboratory housed at and managed by HARC, the Center willmore » enable a core group of six diverse participating companies--industry participants--to investigate the economic and operational feasibility of proton-exchange-membrane (PEM) fuel cells in a variety of applications (the core project). This document describes the unique benefits of a collaborative approach to PEM applied research, among them a shared laboratory concept leading to cost savings and shared risks as well as access to outstanding research talent and lab facilities. It also describes the benefits provided by implementing the project at HARC, with particular emphasis on HARC`s history of managing successful long-term research projects as well as its experience in dealing with industry consortia projects. The Center is also unique in that it will not duplicate the traditional university role of basic research or that of the fuel cell industry in developing commercial products. Instead, the Center will focus on applications, testing, and demonstration of fuel cell technology.« less

  14. Center for Applied Radiation Research (CARR)

    NASA Technical Reports Server (NTRS)

    Fogarty, Thomas N.

    1997-01-01

    Prairie View A&M University (PVAMU) Center for Applied Radiation Research (CARR) was established in 1995 to address the tasks, missions and technological needs of NASA. CARR is built on a tradition of radiation research at Prairie View A&M started in 1984 with NASA funding. This continuing program has lead to: (1) A more fundamental and practical understanding of radiation effects on electronics and materials; (2) A dialog between space, military and commercial electronics manufacturers; (3) Innovative electronic circuit designs; (4) Development of state-of-the-art research facilities at PVAMU; (5) Expanded faculty and staff to mentor student research; and (6) Most importantly, increased flow in the pipeline leading to expanded participation of African-Americans and other minorities in science and technological fields of interest to NASA.

  15. Naval Health Research Center 1985 Annual Report

    DTIC Science & Technology

    1985-01-01

    research. While much of our earlier work addressed organizational issues within the shote -based health care delivery sytem, more recent efforts have focused...Laboratory, Groton, Connecticut, cn the Neurometric Program. Dr. Naitoh met with Dr. Charles Winget of NASA Amen Rasearch Center for a research consultation...lag in commercial aircrews. Collaborators on the project include LT COL R. Curtis Graeber from NASA -Ames, Dr. Hans-Martin Wegmann from the West German

  16. Architectural Considerations for an Educational Research Center for Child Development (ERCCD).

    ERIC Educational Resources Information Center

    Linder, Ronald

    Architectural considerations and recommendations to facilitate the work of an Educational Research Center for Child Development are presented. The purposes of the center are to demonstrate model programs for children, train student and child development professionals, and facilitate and disseminate research on young children. Program…

  17. 76 FR 29254 - National Center for Research Resources; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-20

    ... Federal Domestic Assistance Program Nos. 93.306, Comparative Medicine; 93.333, Clinical Research; 93.371... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Center for Research... unwarranted invasion of personal privacy. Name of Committee: National Center for Research Resources Special...

  18. 75 FR 32187 - National Center for Research Resources; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-07

    ... Program Nos. 93.306, Comparative Medicine; 93.333, Clinical Research; 93.371, Biomedical Technology; 93... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Center for Research... unwarranted invasion of personal privacy. Name of Committee: National Center for Research Resources Special...

  19. 75 FR 52538 - National Center for Research Resources; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-26

    .... 93.306, Comparative Medicine; 93.333, Clinical Research; 93.371, Biomedical Technology; 93.389... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Center for Research... unwarranted invasion of personal privacy. Name of Committee: National Center for Research Resources Special...

  20. 76 FR 28055 - National Center for Research Resources; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-13

    ... Program Nos. 93.306, Comparative Medicine; 93.333, Clinical Research; 93.371, Biomedical Technology; 93... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Center for Research... clearly unwarranted invasion of personal privacy. Name of Committee: National Center for Research...