Sample records for safety structures systems

  1. Keeping patients safe in healthcare organizations: a structuration theory of safety culture.

    PubMed

    Groves, Patricia S; Meisenbach, Rebecca J; Scott-Cawiezell, Jill

    2011-08-01

    This paper presents a discussion of the use of structuration theory to facilitate understanding and improvement of safety culture in healthcare organizations. Patient safety in healthcare organizations is an important problem worldwide. Safety culture has been proposed as a means to keep patients safe. However, lack of appropriate theory limits understanding and improvement of safety culture. The proposed structuration theory of safety culture was based on a critique of available English-language literature, resulting in literature published from 1983 to mid-2009. CINAHL, Communication and Mass Media Complete, ABI/Inform and Google Scholar databases were searched using the following terms: nursing, safety, organizational culture and safety culture. When viewed through the lens of structuration theory, safety culture is a system involving both individual actions and organizational structures. Healthcare organization members, particularly nurses, share these values through communication and enact them in practice, (re)producing an organizational safety culture system that reciprocally constrains and enables the actions of the members in terms of patient safety. This structurational viewpoint illuminates multiple opportunities for safety culture improvement. Nurse leaders should be cognizant of competing value-based culture systems in the organization and attend to nursing agency and all forms of communication when attempting to create or strengthen a safety culture. Applying structuration theory to the concept of safety culture reveals a dynamic system of individual action and organizational structure constraining and enabling safety practice. Nurses are central to the (re)production of this safety culture system. © 2011 Blackwell Publishing Ltd.

  2. Research on public participant urban infrastructure safety monitoring system using smartphone

    NASA Astrophysics Data System (ADS)

    Zhao, Xuefeng; Wang, Niannian; Ou, Jinping; Yu, Yan; Li, Mingchu

    2017-04-01

    Currently more and more people concerned about the safety of major public security. Public participant urban infrastructure safety monitoring and investigation has become a trend in the era of big data. In this paper, public participant urban infrastructure safety protection system based on smart phones is proposed. The system makes it possible to public participant disaster data collection, monitoring and emergency evaluation in the field of disaster prevention and mitigation. Function of the system is to monitor the structural acceleration, angle and other vibration information, and extract structural deformation and implement disaster emergency communications based on smartphone without network. The monitoring data is uploaded to the website to create urban safety information database. Then the system supports big data analysis processing, the structure safety assessment and city safety early warning.

  3. Introduction of structural health and safety monitoring warning systems for Shenzhen-Hong Kong Western Corridor Shenzhen Bay Bridge

    NASA Astrophysics Data System (ADS)

    Li, N.; Zhang, X. Y.; Zhou, X. T.; Leng, J.; Liang, Z.; Zheng, C.; Sun, X. F.

    2008-03-01

    Though the brief introduction of the completed structural health and safety monitoring warning systems for Shenzhen-Hongkong western corridor Shenzhen bay highway bridge (SZBHMS), the self-developed system frame, hardware and software scheme of this practical research project are systematically discussed in this paper. The data acquisition and transmission hardware and the basic software based on the NI (National Instruments) Company virtual instruments technology were selected in this system, which adopted GPS time service receiver technology and so on. The objectives are to establish the structural safety monitoring and status evaluation system to monitor the structural responses and working conditions in real time and to analyze the structural working statue using information obtained from the measured data. It will be also provided the scientific decision-making bases for the bridge management and maintenance. Potential technical approaches to the structural safety warning systems, status identification and evaluation method are presented. The result indicated that the performance of the system has achieved the desired objectives, ensure the longterm high reliability, real time concurrence and advanced technology of SZBHMS. The innovate achievement which is the first time to implement in domestic, provide the reference for long-span bridge structural health and safety monitoring warning systems design.

  4. 10 CFR 72.122 - Overall requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... § 72.122 Overall requirements. (a) Quality Standards. Structures, systems, and components important to... natural phenomena. (1) Structures, systems, and components important to safety must be designed to... accidents. (2)(i) Structures, systems, and components important to safety must be designed to withstand the...

  5. Formal Foundations for Hierarchical Safety Cases

    NASA Technical Reports Server (NTRS)

    Denney, Ewen; Pai, Ganesh; Whiteside, Iain

    2015-01-01

    Safety cases are increasingly being required in many safety-critical domains to assure, using structured argumentation and evidence, that a system is acceptably safe. However, comprehensive system-wide safety arguments present appreciable challenges to develop, understand, evaluate, and manage, partly due to the volume of information that they aggregate, such as the results of hazard analysis, requirements analysis, testing, formal verification, and other engineering activities. Previously, we have proposed hierarchical safety cases, hicases, to aid the comprehension of safety case argument structures. In this paper, we build on a formal notion of safety case to formalise the use of hierarchy as a structuring technique, and show that hicases satisfy several desirable properties. Our aim is to provide a formal, theoretical foundation for safety cases. In particular, we believe that tools for high assurance systems should be granted similar assurance to the systems to which they are applied. To this end, we formally specify and prove the correctness of key operations for constructing and managing hicases, which gives the specification for implementing hicases in AdvoCATE, our toolset for safety case automation. We motivate and explain the theory with the help of a simple running example, extracted from a real safety case and developed using AdvoCATE.

  6. 75 FR 62008 - Safety Management System for Certificated Airports

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-07

    .... The majority of pilot study airports indicated an existing organizational structure to manage safety... organizational structure; Identifies the lines of safety responsibility and accountability; Establishes and... understands that airport operations and organizational structures vary widely. Accordingly, the FAA would not...

  7. 10 CFR 63.112 - Requirements for preclosure safety analysis of the geologic repository operations area.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... emergency power to instruments, utility service systems, and operating systems important to safety if there... include: (a) A general description of the structures, systems, components, equipment, and process... of the performance of the structures, systems, and components to identify those that are important to...

  8. 10 CFR 63.112 - Requirements for preclosure safety analysis of the geologic repository operations area.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... emergency power to instruments, utility service systems, and operating systems important to safety if there... include: (a) A general description of the structures, systems, components, equipment, and process... of the performance of the structures, systems, and components to identify those that are important to...

  9. 10 CFR 63.112 - Requirements for preclosure safety analysis of the geologic repository operations area.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... emergency power to instruments, utility service systems, and operating systems important to safety if there... include: (a) A general description of the structures, systems, components, equipment, and process... of the performance of the structures, systems, and components to identify those that are important to...

  10. 10 CFR 63.112 - Requirements for preclosure safety analysis of the geologic repository operations area.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... emergency power to instruments, utility service systems, and operating systems important to safety if there... include: (a) A general description of the structures, systems, components, equipment, and process... of the performance of the structures, systems, and components to identify those that are important to...

  11. Safety of High Speed Guided Ground Transportation Systems: Work Breakdown Structure

    DOT National Transportation Integrated Search

    1994-11-30

    This report provides a systems approach to the assessment, evaluation and application of high-speed guided ground transportation (HSGGT) safety criteria and : presents one potential methodology by combining a work breakdown structure (WBS) : approach...

  12. [Road map for health and safety management systems in healthcare facilities, according to the OHSAS 18001:2007 standard].

    PubMed

    Pugliese, F; Albini, E; Serio, O; Apostoli, P

    2011-01-01

    The 81/2008 Act has defined a model of a health and safety management system that can contribute to prevent the occupational health and safety risks. We have developed the structure of a health and safety management system model and the necessary tools for its implementation in health care facilities. The realization of a model is structured in various phases: initial review, safety policy, planning, implementation, monitoring, management review and continuous improvement. Such a model, in continuous evolution, is based on the responsibilities of the different corporate characters and on an accurate analysis of risks and involved norms.

  13. 10 CFR 52.79 - Contents of applications; technical information in final safety analysis report.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... assurance program will be implemented; (26) The applicant's organizational structure, allocations or... presents a safety analysis of the structures, systems, and components of the facility as a whole. The final... contain an analysis and evaluation of the major structures, systems, and components of the facility that...

  14. 78 FR 41436 - Proposed Revision to Treatment of Non-Safety Systems for Passive Advanced Light Water Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-10

    ... Safety Analysis Reports for Nuclear Power Plants: LWR Edition,'' on a proposed new section to its... revised position on the treatment of the high winds external hazard for certain RTNSS structures, systems... winds external hazard for certain RTNSS structures, systems and components (SSCs). This position differs...

  15. Querying Safety Cases

    NASA Technical Reports Server (NTRS)

    Denney, Ewen W.; Naylor, Dwight; Pai, Ganesh

    2014-01-01

    Querying a safety case to show how the various stakeholders' concerns about system safety are addressed has been put forth as one of the benefits of argument-based assurance (in a recent study by the Health Foundation, UK, which reviewed the use of safety cases in safety-critical industries). However, neither the literature nor current practice offer much guidance on querying mechanisms appropriate for, or available within, a safety case paradigm. This paper presents a preliminary approach that uses a formal basis for querying safety cases, specifically Goal Structuring Notation (GSN) argument structures. Our approach semantically enriches GSN arguments with domain-specific metadata that the query language leverages, along with its inherent structure, to produce views. We have implemented the approach in our toolset AdvoCATE, and illustrate it by application to a fragment of the safety argument for an Unmanned Aircraft System (UAS) being developed at NASA Ames. We also discuss the potential practical utility of our query mechanism within the context of the existing framework for UAS safety assurance.

  16. Investigations of plastic composite materials for highway safety structures

    DOT National Transportation Integrated Search

    1998-08-01

    This report presents a basic overview and assessment of different concepts and technologies of using polymer composites in structures generally used for highway safety. The structural systems included a highway barrier guardrail with its posts and bl...

  17. 10 CFR 52.157 - Contents of applications; technical information in final safety analysis report.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... analysis of the structures, systems, and components of the reactor to be manufactured, with emphasis upon... assumed for this evaluation should be based upon a major accident, hypothesized for purposes of site... structures, systems, and components with the objective of assessing the risk to public health and safety...

  18. From Board to Bedside: How the Application of Financial Structures to Safety and Quality Can Drive Accountability in a Large Health Care System.

    PubMed

    Austin, J Matthew; Demski, Renee; Callender, Tiffany; Lee, K H Ken; Hoffman, Ann; Allen, Lisa; Radke, Deborah A; Kim, Yungjin; Werthman, Ronald J; Peterson, Ronald R; Pronovost, Peter J

    2017-04-01

    As the health care system in the United States places greater emphasis on the public reporting of quality and safety data and its use to determine payment, provider organizations must implement structures that ensure discipline and rigor regarding these data. An academic health system, as part of a performance management system, applied four key components of a financial reporting structure to support the goal of top-to-bottom accountability for improving quality and safety. The four components implemented by Johns Hopkins Medicine were governance, accountability, reporting of consolidated quality performance statements, and auditing. Governance is provided by the health system's Patient Safety and Quality Board Committee, which reviews goals and strategy for patient safety and quality, reviews quarterly performance for each entity, and holds organizational leaders accountable for performance. An accountability plan includes escalating levels of review corresponding to the number of months an entity misses the defined performance target for a measure. A consolidated quality statement helps inform the Patient Safety and Quality Board Committee and leadership on key quality and safety issues. An audit evaluates the efficiency and effectiveness of processes for data collection, validation, and storage, as to ensure the accuracy and completeness of quality measure reporting. If hospitals and health systems truly want to prioritize improvements in safety and quality, they will need to create a performance management system that ensures data validity and supports performance accountability. Without valid data, it is difficult to know whether a performance gap is due to data quality or clinical quality. Copyright © 2017 The Joint Commission. Published by Elsevier Inc. All rights reserved.

  19. Nanotechnology and MEMS-based systems for civil infrastructure safety and security: Opportunities and challenges

    NASA Astrophysics Data System (ADS)

    Robinson, Nidia; Saafi, Mohamed

    2006-03-01

    Critical civil infrastructure systems such as bridges, high rises, dams, nuclear power plants and pipelines present a major investment and the health of the United States' economy and the lifestyle of its citizens both depend on their safety and security. The challenge for engineers is to maintain the safety and security of these large structures in the face of terrorism threats, natural disasters and long-term deterioration, as well as to meet the demands of emergency response times. With the significant negative impact that these threats can have on the structural environment, health monitoring of civil infrastructure holds promise as a way to provide information for near real-time condition assessment of the structure's safety and security. This information can be used to assess the integrity of the structure for post-earthquake and terrorist attacks rescue and recovery, and to safely and rapidly remove the debris and to temporary shore specific structural elements. This information can also be used for identification of incipient damage in structures experiencing long-term deterioration. However, one of the major obstacles preventing sensor-based monitoring is the lack of reliable, easy-to-install, cost-effective and harsh environment resistant sensors that can be densely embedded into large-scale civil infrastructure systems. Nanotechnology and MEMS-based systems which have matured in recent years represent an innovative solution to current damage detection systems, leading to wireless, inexpensive, durable, compact, and high-density information collection. In this paper, ongoing research activities at Alabama A&M University (AAMU) Center for Transportation Infrastructure Safety and Security on the application of nanotechnology and MEMS to Civil Infrastructure for health monitoring will presented. To date, research showed that nanotechnology and MEMS-based systems can be used to wirelessly detect and monitor different damage mechanisms in concrete structures as well as monitor critical structures' stability during floods and barge impact. However, some technical issues that needs to be addressed before full implementation of these new systems and will also be discussed in this paper.

  20. Structural analysis of a rehabilitative training system based on a ceiling rail for safety of hemiplegia patients.

    PubMed

    Kim, Kyong; Song, Won Kyung; Chong, Woo Suk; Yu, Chang Ho

    2018-04-17

    The body-weight support (BWS) function, which helps to decrease load stresses on a user, is an effective tool for gait and balance rehabilitation training for elderly people with weakened lower-extremity muscular strength, hemiplegic patients, etc. This study conducts structural analysis to secure user safety in order to develop a rail-type gait and balance rehabilitation training system (RRTS). The RRTS comprises a rail, trolley, and brain-machine interface. The rail (platform) is connected to the ceiling structure, bearing the loads of the RRTS and of the user and allowing locomobility. The trolley consists of a smart drive unit (SDU) that assists the user with forward and backward mobility and a body-weight support (BWS) unit that helps the user to control his/her body-weight load, depending on the severity of his/her hemiplegia. The brain-machine interface estimates and measures on a real-time basis the body-weight (load) of the user and the intended direction of his/her movement. Considering the weight of the system and the user, the mechanical safety performance of the system frame under an applied 250-kg static load is verified through structural analysis using ABAQUS (6.14-3) software. The maximum stresses applied on the rail and trolley under the given gravity load of 250 kg, respectively, are 18.52 MPa and 48.44 MPa. The respective safety factors are computed to be 7.83 and 5.26, confirming the RRTS's mechanical safety. An RRTS with verified structural safety could be utilized for gait movement and balance rehabilitation and training for patients with hemiplegia.

  1. Loosely Coupled GPS-Aided Inertial Navigation System for Range Safety

    NASA Technical Reports Server (NTRS)

    Heatwole, Scott; Lanzi, Raymond J.

    2010-01-01

    The Autonomous Flight Safety System (AFSS) aims to replace the human element of range safety operations, as well as reduce reliance on expensive, downrange assets for launches of expendable launch vehicles (ELVs). The system consists of multiple navigation sensors and flight computers that provide a highly reliable platform. It is designed to ensure that single-event failures in a flight computer or sensor will not bring down the whole system. The flight computer uses a rules-based structure derived from range safety requirements to make decisions whether or not to destroy the rocket.

  2. Automating the Generation of Heterogeneous Aviation Safety Cases

    NASA Technical Reports Server (NTRS)

    Denney, Ewen W.; Pai, Ganesh J.; Pohl, Josef M.

    2012-01-01

    A safety case is a structured argument, supported by a body of evidence, which provides a convincing and valid justification that a system is acceptably safe for a given application in a given operating environment. This report describes the development of a fragment of a preliminary safety case for the Swift Unmanned Aircraft System. The construction of the safety case fragment consists of two parts: a manually constructed system-level case, and an automatically constructed lower-level case, generated from formal proof of safety-relevant correctness properties. We provide a detailed discussion of the safety considerations for the target system, emphasizing the heterogeneity of sources of safety-relevant information, and use a hazard analysis to derive safety requirements, including formal requirements. We evaluate the safety case using three classes of metrics for measuring degrees of coverage, automation, and understandability. We then present our preliminary conclusions and make suggestions for future work.

  3. Quasi-Static Probabilistic Structural Analyses Process and Criteria

    NASA Technical Reports Server (NTRS)

    Goldberg, B.; Verderaime, V.

    1999-01-01

    Current deterministic structural methods are easily applied to substructures and components, and analysts have built great design insights and confidence in them over the years. However, deterministic methods cannot support systems risk analyses, and it was recently reported that deterministic treatment of statistical data is inconsistent with error propagation laws that can result in unevenly conservative structural predictions. Assuming non-nal distributions and using statistical data formats throughout prevailing stress deterministic processes lead to a safety factor in statistical format, which integrated into the safety index, provides a safety factor and first order reliability relationship. The embedded safety factor in the safety index expression allows a historically based risk to be determined and verified over a variety of quasi-static metallic substructures consistent with the traditional safety factor methods and NASA Std. 5001 criteria.

  4. 10 CFR 52.137 - Contents of applications; technical information.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... limits on its operation, and presents a safety analysis of the structures, systems, and components and of... products. The description shall be sufficient to permit understanding of the system designs and their relationship to the safety evaluations. Items such as the reactor core, reactor coolant system, instrumentation...

  5. The Evolution of System Safety at NASA

    NASA Technical Reports Server (NTRS)

    Dezfuli, Homayoon; Everett, Chris; Groen, Frank

    2014-01-01

    The NASA system safety framework is in the process of change, motivated by the desire to promote an objectives-driven approach to system safety that explicitly focuses system safety efforts on system-level safety performance, and serves to unify, in a purposeful manner, safety-related activities that otherwise might be done in a way that results in gaps, redundancies, or unnecessary work. An objectives-driven approach to system safety affords more flexibility to determine, on a system-specific basis, the means by which adequate safety is achieved and verified. Such flexibility and efficiency is becoming increasingly important in the face of evolving engineering modalities and acquisition models, where, for example, NASA will increasingly rely on commercial providers for transportation services to low-earth orbit. A key element of this objectives-driven approach is the use of the risk-informed safety case (RISC): a structured argument, supported by a body of evidence, that provides a compelling, comprehensible and valid case that a system is or will be adequately safe for a given application in a given environment. The RISC addresses each of the objectives defined for the system, providing a rational basis for making informed risk acceptance decisions at relevant decision points in the system life cycle.

  6. A safety-based decision making architecture for autonomous systems

    NASA Technical Reports Server (NTRS)

    Musto, Joseph C.; Lauderbaugh, L. K.

    1991-01-01

    Engineering systems designed specifically for space applications often exhibit a high level of autonomy in the control and decision-making architecture. As the level of autonomy increases, more emphasis must be placed on assimilating the safety functions normally executed at the hardware level or by human supervisors into the control architecture of the system. The development of a decision-making structure which utilizes information on system safety is detailed. A quantitative measure of system safety, called the safety self-information, is defined. This measure is analogous to the reliability self-information defined by McInroy and Saridis, but includes weighting of task constraints to provide a measure of both reliability and cost. An example is presented in which the safety self-information is used as a decision criterion in a mobile robot controller. The safety self-information is shown to be consistent with the entropy-based Theory of Intelligent Machines defined by Saridis.

  7. Abstracts of NASA-ASRDI publications relevant to aerospace safety research

    NASA Technical Reports Server (NTRS)

    Mandel, G.; Mckenna, P. J.

    1973-01-01

    Abstracts covering the following areas are presented: (1) oxygen technology; (2) fire safety; (3) accidents/incidents; (4) toxic spills; (5) aircraft safety; (6) structural failures; (7) nuclear systems; (8) fluid flow; and (9) zero gravity combustion.

  8. Options for enhancing the effectiveness of Virginia's safety management system : final report.

    DOT National Transportation Integrated Search

    1996-02-01

    In 1993, Virginia began to formalize the relationships and organizational structure for its Safety Management System (SMS). Although the SMS is no longer a federal requirement, Virginia decided to continue its implementation. The Focal Point for the ...

  9. Safety and integrity of pipeline systems - philosophy and experience in Germany

    DOT National Transportation Integrated Search

    1997-01-01

    The design, construction and operation of gas pipeline systems in Germany are subject to the Energy Act and associated regulations. This legal structure is based on a deterministic rather than a probabilistic safety philosophy, consisting of technica...

  10. Safety of clinical and non-clinical decision makers in telephone triage: a narrative review.

    PubMed

    Wheeler, Sheila Q; Greenberg, Mary E; Mahlmeister, Laura; Wolfe, Nicole

    2015-09-01

    Patient safety is a persistent problem in telephone triage research; however, studies have not differentiated between clinicians' and non-clinicians' respective safety. Currently, four groups of decision makers perform aspects of telephone triage: clinicians (physicians, nurses), and non-clinicians (emergency medical dispatchers (EMD) and clerical staff). Using studies published between 2002-2012, we applied Donabedian's structure-process-outcome model to examine groups' systems for evidence of system completeness (a minimum measure of structure and quality). We defined system completeness as the presence of a decision maker and four additional components: guidelines, documentation, training, and standards. Defining safety as appropriate referrals (AR) - (right time, right place with the right person), we measured each groups' corresponding AR rate percentages (outcomes). We analyzed each group's respective decision-making process as a safe match to the telephone triage task, based on each group's system structure completeness, process and AR rates (outcome). Studies uniformly noted system component presence: nurses (2-4), physicians (1), EMDs (2), clerical staff (1). Nurses had the highest average appropriate referral (AR) rates (91%), physicians' AR (82% average). Clerical staff had no system and did not perform telephone triage by standard definitions; EMDs may represent the use of the wrong system. Telephone triage appears least safe after hours when decision makers with the least complete systems (physicians, clerical staff) typically manage calls. At minimum, telephone triage decision makers should be clinicians; however, clinicians' safety calls for improvement. With improved training, standards and CDSS quality, the 24/7 clinical call center has potential to represent the national standard. © The Author(s) 2015.

  11. Effects of organizational safety on employees' proactivity safety behaviors and occupational health and safety management systems in Chinese high-risk small-scale enterprises.

    PubMed

    Mei, Qiang; Wang, Qiwei; Liu, Suxia; Zhou, Qiaomei; Zhang, Jingjing

    2018-06-07

    Based on the characteristics of small-scale enterprises, the improvement of occupational health and safety management systems (OHS MS) needs an effective intervention. This study proposed a structural equation model and examined the relationships of perceived organization support for safety (POSS), person-organization safety fit (POSF) and proactivity safety behaviors with safety management, safety procedures and safety hazards identification. Data were collected from 503 employees of 105 Chinese high-risk small-scale enterprises over 6 months. The results showed that both POSS and POSF were positively related to improvement in safety management, safety procedures and safety hazards identification through proactivity safety behaviors. Our findings provide a new perspective on organizational safety for improving OHS MS for small-scale enterprises and extend the application of proactivity safety behaviors.

  12. Impact of Passive Safety on FHR Instrumentation Systems Design and Classification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holcomb, David Eugene

    2015-01-01

    Fluoride salt-cooled high-temperature reactors (FHRs) will rely more extensively on passive safety than earlier reactor classes. 10CFR50 Appendix A, General Design Criteria for Nuclear Power Plants, establishes minimum design requirements to provide reasonable assurance of adequate safety. 10CFR50.69, Risk-Informed Categorization and Treatment of Structures, Systems and Components for Nuclear Power Reactors, provides guidance on how the safety significance of systems, structures, and components (SSCs) should be reflected in their regulatory treatment. The Nuclear Energy Institute (NEI) has provided 10 CFR 50.69 SSC Categorization Guideline (NEI-00-04) that factors in probabilistic risk assessment (PRA) model insights, as well as deterministic insights, throughmore » an integrated decision-making panel. Employing the PRA to inform deterministic requirements enables an appropriately balanced, technically sound categorization to be established. No FHR currently has an adequate PRA or set of design basis accidents to enable establishing the safety classification of its SSCs. While all SSCs used to comply with the general design criteria (GDCs) will be safety related, the intent is to limit the instrumentation risk significance through effective design and reliance on inherent passive safety characteristics. For example, FHRs have no safety-significant temperature threshold phenomena, thus enabling the primary and reserve reactivity control systems required by GDC 26 to be passively, thermally triggered at temperatures well below those for which core or primary coolant boundary damage would occur. Moreover, the passive thermal triggering of the primary and reserve shutdown systems may relegate the control rod drive motors to the control system, substantially decreasing the amount of safety-significant wiring needed. Similarly, FHR decay heat removal systems are intended to be running continuously to minimize the amount of safety-significant instrumentation needed to initiate operation of systems and components important to safety as required in GDC 20. This paper provides an overview of the design process employed to develop a pre-conceptual FHR instrumentation architecture intended to lower plant capital and operational costs by minimizing reliance on expensive, safety related, safety-significant instrumentation through the use of inherent passive features of FHRs.« less

  13. An Assessment of Software Safety as Applied to the Department of Defense Software Development Process

    DTIC Science & Technology

    1992-12-01

    provide program 5 managers some level of confidence that their software will operate at an acceptable level of risk. A number of structured safety...safety within the constraints of operational effectiveness, schedule, and cost through timely application of system safety management and engineering...Master of Science in Software Systems Management Peter W. Colan, B.S.E. Robert W. Prouhet, B.S. Captain, USAF Captain, USAF December 1992 Approved for

  14. Who is in control of road safety? A STAMP control structure analysis of the road transport system in Queensland, Australia.

    PubMed

    Salmon, Paul M; Read, Gemma J M; Stevens, Nicholas J

    2016-11-01

    Despite significant progress, road trauma continues to represent a global safety issue. In Queensland (Qld), Australia, there is currently a focus on preventing the 'fatal five' behaviours underpinning road trauma (drug and drink driving, distraction, seat belt wearing, speeding, and fatigue), along with an emphasis on a shared responsibility for road safety that spans road users, vehicle manufacturers, designers, policy makers etc. The aim of this article is to clarify who shares the responsibility for road safety in Qld and to determine what control measures are enacted to prevent the fatal five behaviours. This is achieved through the presentation of a control structure model that depicts the actors and organisations within the Qld road transport system along with the control and feedback relationships that exist between them. Validated through a Delphi study, the model shows a diverse set of actors and organisations who share the responsibility for road safety that goes beyond those discussed in road safety policies and strategies. The analysis also shows that, compared to other safety critical domains, there are less formal control structures in road transport and that opportunities exist to add new controls and strengthen existing ones. Relationships that influence rather than control are also prominent. Finally, when compared to other safety critical domains, the strength of road safety controls is brought into question. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Critical Characteristics of Radiation Detection System Components to be Dedicated for use in Safety Class and Safety Significant System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DAVIS, S.J.

    2000-05-25

    This document identifies critical characteristics of components to be dedicated for use in Safety Class (SC) or Safety Significant (SS) Systems, Structures, or Components (SSCs). This document identifies the requirements for the components of the common radiation area monitor alarm in the WESF pool cell. These are procured as Commercial Grade Items (CGI), with the qualification testing and formal dedication to be performed at the Waste Encapsulation Storage Facility (WESF), in safety class, safety significant systems. System modifications are to be performed in accordance with the instructions provided on ECN 658230. Components for this change are commercially available and interchangeablemore » with the existing alarm configuration This document focuses on the operational requirements for alarm, declaration of the safety classification, identification of critical characteristics, and interpretation of requirements for procurement. Critical characteristics are identified herein and must be verified, followed by formal dedication, prior to the components being used in safety related applications.« less

  16. Identifying behaviour patterns of construction safety using system archetypes.

    PubMed

    Guo, Brian H W; Yiu, Tak Wing; González, Vicente A

    2015-07-01

    Construction safety management involves complex issues (e.g., different trades, multi-organizational project structure, constantly changing work environment, and transient workforce). Systems thinking is widely considered as an effective approach to understanding and managing the complexity. This paper aims to better understand dynamic complexity of construction safety management by exploring archetypes of construction safety. To achieve this, this paper adopted the ground theory method (GTM) and 22 interviews were conducted with participants in various positions (government safety inspector, client, health and safety manager, safety consultant, safety auditor, and safety researcher). Eight archetypes were emerged from the collected data: (1) safety regulations, (2) incentive programs, (3) procurement and safety, (4) safety management in small businesses (5) production and safety, (6) workers' conflicting goals, (7) blame on workers, and (8) reactive and proactive learning. These archetypes capture the interactions between a wide range of factors within various hierarchical levels and subsystems. As a free-standing tool, they advance the understanding of dynamic complexity of construction safety management and provide systemic insights into dealing with the complexity. They also can facilitate system dynamics modelling of construction safety process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Monitoring system of arch bridge for safety network management

    NASA Astrophysics Data System (ADS)

    Joo, Bong Chul; Yoo, Young Jun; Lee, Chin Hyung; Park, Ki Tae; Hwang, Yoon Koog

    2010-03-01

    Korea has constructed the safety management network monitoring test systems for the civil infrastructure since 2006 which includes airport structure, irrigation structure, railroad structure, road structure, and underground structure. Bridges among the road structure include the various superstructure types which are Steel box girder bridge, suspension bridge, PSC-box-girder bridge, and arch bridge. This paper shows the process of constructing the real-time monitoring system for the arch bridge and the measured result by the system. The arch type among various superstructure types has not only the structural efficiency but the visual beauty, because the arch type superstructure makes full use of the feature of curve. The main measuring points of arch bridges composited by curved members make a difference to compare with the system of girder bridges composited by straight members. This paper also shows the method to construct the monitoring system that considers the characteristic of the arch bridge. The system now includes strain gauges and thermometers, and it will include various sensor types such as CCTV, accelerometers and so on additionally. For the long term and accuracy monitoring, the latest optical sensors and equipments are applied to the system.

  18. Safety Control and Safety Education at Technical Institutes

    NASA Astrophysics Data System (ADS)

    Iino, Hiroshi

    The importance of safety education for students at technical institutes is emphasized on three grounds including safety of all working members and students in their education, research and other activities. The Kanazawa Institute of Technology re-organized the safety organization into a line structure and improved safety minds of all their members and now has a chemical materials control system and a set of compulsory safety education programs for their students, although many problems still remain.

  19. The Johns Hopkins Hospital: identifying and addressing risks and safety issues.

    PubMed

    Paine, Lori A; Baker, David R; Rosenstein, Beryl; Pronovost, Peter J

    2004-10-01

    At The Johns Hopkins Hospital (JHH), a culture of safety refers to the presence of characteristics such as the belief that harm is untenable and the use of a systems approach to analyzing safety issues. The leadership of JHH provides strategic planning guidance for safety and improvement initiatives, involves the patient safety committee in capital investment allocation decisions and in designing and planning new hospital facilities, and ensures that safety and quality head the agenda of board-of-trustees meetings. Although JHH takes a systems approach, structures such as monitoring staff behavior trends are used to hold people accountable for job performance. JHH encountered three major hurdles in implementing and sustaining a culture of safety. First, JHH's decentralized organizational structure contributes to a silo effect that limits the spread of ideas, practices, and culture. JHH intends to create an internal collaborative of departmental safety initiatives to foster opportunities for units to share ideas and results. Second, in response to the challenge of encouraging teams to think and act in an interdisciplinary fashion, communication and teamwork training are being used to enhance the effectiveness of interdisciplinary teams. Further development of valid and meaningful safety-related measurement and data collection methodologies is JHH's largest remaining challenge.

  20. Normal people working in normal organizations with normal equipment: system safety and cognition in a mid-air collision.

    PubMed

    de Carvalho, Paulo Victor Rodrigues; Gomes, José Orlando; Huber, Gilbert Jacob; Vidal, Mario Cesar

    2009-05-01

    A fundamental challenge in improving the safety of complex systems is to understand how accidents emerge in normal working situations, with equipment functioning normally in normally structured organizations. We present a field study of the en route mid-air collision between a commercial carrier and an executive jet, in the clear afternoon Amazon sky in which 154 people lost their lives, that illustrates one response to this challenge. Our focus was on how and why the several safety barriers of a well structured air traffic system melted down enabling the occurrence of this tragedy, without any catastrophic component failure, and in a situation where everything was functioning normally. We identify strong consistencies and feedbacks regarding factors of system day-to-day functioning that made monitoring and awareness difficult, and the cognitive strategies that operators have developed to deal with overall system behavior. These findings emphasize the active problem-solving behavior needed in air traffic control work, and highlight how the day-to-day functioning of the system can jeopardize such behavior. An immediate consequence is that safety managers and engineers should review their traditional safety approach and accident models based on equipment failure probability, linear combinations of failures, rules and procedures, and human errors, to deal with complex patterns of coincidence possibilities, unexpected links, resonance among system functions and activities, and system cognition.

  1. Airline Safety and Economy

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This video documents efforts at NASA Langley Research Center to improve safety and economy in aircraft. Featured are the cockpit weather information needs computer system, which relays real time weather information to the pilot, and efforts to improve techniques to detect structural flaws and corrosion, such as the thermal bond inspection system.

  2. Structural verification for GAS experiments

    NASA Technical Reports Server (NTRS)

    Peden, Mark Daniel

    1992-01-01

    The purpose of this paper is to assist the Get Away Special (GAS) experimenter in conducting a thorough structural verification of its experiment structural configuration, thus expediting the structural review/approval process and the safety process in general. Material selection for structural subsystems will be covered with an emphasis on fasteners (GSFC fastener integrity requirements) and primary support structures (Stress Corrosion Cracking requirements and National Space Transportation System (NSTS) requirements). Different approaches to structural verifications (tests and analyses) will be outlined especially those stemming from lessons learned on load and fundamental frequency verification. In addition, fracture control will be covered for those payloads that utilize a door assembly or modify the containment provided by the standard GAS Experiment Mounting Plate (EMP). Structural hazard assessment and the preparation of structural hazard reports will be reviewed to form a summation of structural safety issues for inclusion in the safety data package.

  3. System theory and safety models in Swedish, UK, Dutch and Australian road safety strategies.

    PubMed

    Hughes, B P; Anund, A; Falkmer, T

    2015-01-01

    Road safety strategies represent interventions on a complex social technical system level. An understanding of a theoretical basis and description is required for strategies to be structured and developed. Road safety strategies are described as systems, but have not been related to the theory, principles and basis by which systems have been developed and analysed. Recently, road safety strategies, which have been employed for many years in different countries, have moved to a 'vision zero', or 'safe system' style. The aim of this study was to analyse the successful Swedish, United Kingdom and Dutch road safety strategies against the older, and newer, Australian road safety strategies, with respect to their foundations in system theory and safety models. Analysis of the strategies against these foundations could indicate potential improvements. The content of four modern cases of road safety strategy was compared against each other, reviewed against scientific systems theory and reviewed against types of safety model. The strategies contained substantial similarities, but were different in terms of fundamental constructs and principles, with limited theoretical basis. The results indicate that the modern strategies do not include essential aspects of systems theory that describe relationships and interdependencies between key components. The description of these strategies as systems is therefore not well founded and deserves further development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Development of the FHR advanced natural circulation analysis code and application to FHR safety analysis

    DOE PAGES

    Guo, Z.; Zweibaum, N.; Shao, M.; ...

    2016-04-19

    The University of California, Berkeley (UCB) is performing thermal hydraulics safety analysis to develop the technical basis for design and licensing of fluoride-salt-cooled, high-temperature reactors (FHRs). FHR designs investigated by UCB use natural circulation for emergency, passive decay heat removal when normal decay heat removal systems fail. The FHR advanced natural circulation analysis (FANCY) code has been developed for assessment of passive decay heat removal capability and safety analysis of these innovative system designs. The FANCY code uses a one-dimensional, semi-implicit scheme to solve for pressure-linked mass, momentum and energy conservation equations. Graph theory is used to automatically generate amore » staggered mesh for complicated pipe network systems. Heat structure models have been implemented for three types of boundary conditions (Dirichlet, Neumann and Robin boundary conditions). Heat structures can be composed of several layers of different materials, and are used for simulation of heat structure temperature distribution and heat transfer rate. Control models are used to simulate sequences of events or trips of safety systems. A proportional-integral controller is also used to automatically make thermal hydraulic systems reach desired steady state conditions. A point kinetics model is used to model reactor kinetics behavior with temperature reactivity feedback. The underlying large sparse linear systems in these models are efficiently solved by using direct and iterative solvers provided by the SuperLU code on high performance machines. Input interfaces are designed to increase the flexibility of simulation for complicated thermal hydraulic systems. In conclusion, this paper mainly focuses on the methodology used to develop the FANCY code, and safety analysis of the Mark 1 pebble-bed FHR under development at UCB is performed.« less

  5. Bleacher Safety: What Do We Look for? What Can We Do?

    ERIC Educational Resources Information Center

    IEA Environmental Consultant, 1999

    1999-01-01

    Discusses safety issues surrounding aging bleacher systems, highlighting the following three primary safety considerations: space between seats and footboards; guardrails; and the structural provisions of the 1997 Uniform Building Code. Tips for bleacher accident-prevention assessment and excerpts from federal and Minnesota legislation on bleacher…

  6. Development and experimental validation of computational methods to simulate abnormal thermal and structural environments

    NASA Astrophysics Data System (ADS)

    Moya, J. L.; Skocypec, R. D.; Thomas, R. K.

    1993-09-01

    Over the past 40 years, Sandia National Laboratories (SNL) has been actively engaged in research to improve the ability to accurately predict the response of engineered systems to abnormal thermal and structural environments. These engineered systems contain very hazardous materials. Assessing the degree of safety/risk afforded the public and environment by these engineered systems, therefore, is of upmost importance. The ability to accurately predict the response of these systems to accidents (to abnormal environments) is required to assess the degree of safety. Before the effect of the abnormal environment on these systems can be determined, it is necessary to ascertain the nature of the environment. Ascertaining the nature of the environment, in turn, requires the ability to physically characterize and numerically simulate the abnormal environment. Historically, SNL has demonstrated the level of safety provided by these engineered systems by either of two approaches: a purely regulatory approach, or by a probabilistic risk assessment (PRA). This paper will address the latter of the two approaches.

  7. Striving for safety: communicating and deciding in sociotechnical systems

    PubMed Central

    Flach, John M.; Carroll, John S.; Dainoff, Marvin J.; Hamilton, W. Ian

    2015-01-01

    How do communications and decisions impact the safety of sociotechnical systems? This paper frames this question in the context of a dynamic system of nested sub-systems. Communications are related to the construct of observability (i.e. how components integrate information to assess the state with respect to local and global constraints). Decisions are related to the construct of controllability (i.e. how component sub-systems act to meet local and global safety goals). The safety dynamics of sociotechnical systems are evaluated as a function of the coupling between observability and controllability across multiple closed-loop components. Two very different domains (nuclear power and the limited service food industry) provide examples to illustrate how this framework might be applied. While the dynamical systems framework does not offer simple prescriptions for achieving safety, it does provide guides for exploring specific systems to consider the potential fit between organisational structures and work demands, and for generalising across different systems regarding how safety can be managed. Practitioner Summary: While offering no simple prescriptions about how to achieve safety in sociotechnical systems, this paper develops a theoretical framework based on dynamical systems theory as a practical guide for generalising from basic research to work domains and for generalising across alternative work domains to better understand how patterns of communication and decision-making impact system safety. PMID:25761155

  8. Scale development of safety management system evaluation for the airline industry.

    PubMed

    Chen, Ching-Fu; Chen, Shu-Chuan

    2012-07-01

    The airline industry relies on the implementation of Safety Management System (SMS) to integrate safety policies and augment safety performance at both organizational and individual levels. Although there are various degrees of SMS implementation in practice, a comprehensive scale measuring the essential dimensions of SMS is still lacking. This paper thus aims to develop an SMS measurement scale from the perspective of aviation experts and airline managers to evaluate the performance of company's safety management system, by adopting Schwab's (1980) three-stage scale development procedure. The results reveal a five-factor structure consisting of 23 items. The five factors include documentation and commands, safety promotion and training, executive management commitment, emergency preparedness and response plan and safety management policy. The implications of this SMS evaluation scale for practitioners and future research are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. A 1064 nm dispersive Raman spectral imaging system for food safety and quality evaluation

    USDA-ARS?s Scientific Manuscript database

    Raman spectral imaging is an effective method to analyze and evaluate chemical composition and structure of a sample, and has many applications for food safety and quality research. This study developed a 1064 nm Raman spectral imaging system for surface and subsurface analysis of food samples. A 10...

  10. Acoustic Techniques for Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Frankenstein, B.; Augustin, J.; Hentschel, D.; Schubert, F.; Köhler, B.; Meyendorf, N.

    2008-02-01

    Future safety and maintenance strategies for industrial components and vehicles are based on combinations of monitoring systems that are permanently attached to or embedded in the structure, and periodic inspections. The latter belongs to conventional nondestructive evaluation (NDE) and can be enhanced or partially replaced by structural health monitoring systems. However, the main benefit of this technology for the future will consist of systems that can be differently designed based on improved safety philosophies, including continuous monitoring. This approach will increase the efficiency of inspection procedures at reduced inspection times. The Fraunhofer IZFP Dresden Branch has developed network nodes, miniaturized transmitter and receiver systems for active and passive acoustical techniques and sensor systems that can be attached to or embedded into components or structures. These systems have been used to demonstrate intelligent sensor networks for the monitoring of aerospace structures, railway systems, wind energy generators, piping system and other components. Material discontinuities and flaws have been detected and monitored during full scale fatigue testing. This paper will discuss opportunities and future trends in nondestructive evaluation and health monitoring based on new sensor principles and advanced microelectronics. It will outline various application examples of monitoring systems based on acoustic techniques and will indicate further needs for research and development.

  11. 340 Facility secondary containment and leak detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bendixsen, R.B.

    1995-01-31

    This document presents a preliminary safety evaluation for the 340 Facility Secondary Containment and Leak Containment system, Project W-302. Project W-302 will construct Building 340-C which has been designed to replace the current 340 Building and vault tank system for collection of liquid wastes from the Pacific Northwest Laboratory buildings in the 300 Area. This new nuclear facility is Hazard Category 3. The vault tank and related monitoring and control equipment are Safety Class 2 with the remainder of the structure, systems and components as Safety Class 3 or 4.

  12. Critical Characteristics of Radiation Detection System Components to be Dedicated for use in Safety Class and Safety Significant System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DAVIS, S.J.

    2000-12-28

    This document identifies critical characteristics of components to be dedicated for use in Safety Significant (SS) Systems, Structures, or Components (SSCs). This document identifies the requirements for the components of the common, radiation area, monitor alarm in the WESF pool cell. These are procured as Commercial Grade Items (CGI), with the qualification testing and formal dedication to be performed at the Waste Encapsulation Storage Facility (WESF) for use in safety significant systems. System modifications are to be performed in accordance with the approved design. Components for this change are commercially available and interchangeable with the existing alarm configuration This documentmore » focuses on the operational requirements for alarm, declaration of the safety classification, identification of critical characteristics, and interpretation of requirements for procurement. Critical characteristics are identified herein and must be verified, followed by formal dedication, prior to the components being used in safety related applications.« less

  13. Design an optimum safety policy for personnel safety management - A system dynamic approach

    NASA Astrophysics Data System (ADS)

    Balaji, P.

    2014-10-01

    Personnel safety management (PSM) ensures that employee's work conditions are healthy and safe by various proactive and reactive approaches. Nowadays it is a complex phenomenon because of increasing dynamic nature of organisations which results in an increase of accidents. An important part of accident prevention is to understand the existing system properly and make safety strategies for that system. System dynamics modelling appears to be an appropriate methodology to explore and make strategy for PSM. Many system dynamics models of industrial systems have been built entirely for specific host firms. This thesis illustrates an alternative approach. The generic system dynamics model of Personnel safety management was developed and tested in a host firm. The model was undergone various structural, behavioural and policy tests. The utility and effectiveness of model was further explored through modelling a safety scenario. In order to create effective safety policy under resource constraint, DOE (Design of experiment) was used. DOE uses classic designs, namely, fractional factorials and central composite designs. It used to make second order regression equation which serve as an objective function. That function was optimized under budget constraint and optimum value used for safety policy which shown greatest improvement in overall PSM. The outcome of this research indicates that personnel safety management model has the capability for acting as instruction tool to improve understanding of safety management and also as an aid to policy making.

  14. A patient safety objective structured clinical examination.

    PubMed

    Singh, Ranjit; Singh, Ashok; Fish, Reva; McLean, Don; Anderson, Diana R; Singh, Gurdev

    2009-06-01

    There are international calls for improving education for health care workers around certain core competencies, of which patient safety and quality are integral and transcendent parts. Although relevant teaching programs have been developed, little is known about how best to assess their effectiveness. The objective of this work was to develop and implement an objective structured clinical examination (OSCE) to evaluate the impact of a patient safety curriculum. The curriculum was implemented in a family medicine residency program with 47 trainees. Two years after commencing the curriculum, a patient safety OSCE was developed and administered at this program and, for comparison purposes, to incoming residents at the same program and to residents at a neighboring residency program. All 47 residents exposed to the training, all 16 incoming residents, and 10 of 12 residents at the neighboring program participated in the OSCE. In a standardized patient case, error detection and error disclosure skills were better among trained residents. In a chart-based case, trained residents showed better performance in identifying deficiencies in care and described more appropriate means of addressing them. Third year residents exposed to a "Systems Approach" course performed better at system analysis and identifying system-based solutions after the course than before. Results suggest increased systems thinking and inculcation of a culture of safety among residents exposed to a patient safety curriculum. The main weaknesses of the study are its small size and suboptimal design. Much further investigation is needed into the effectiveness of patient safety curricula.

  15. Problem of unity of measurements in ensuring safety of hydraulic structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kheifits, V.Z.; Markov, A.I.; Braitsev, V.V.

    1994-07-01

    Ensuring the safety of hydraulic structures (HSs) is not only an industry but also a national and global concern, since failure of large water impounding structures can entail large losses of lives and enormous material losses related to destruction downstream. The main information on the degree of safety of a structure is obtained by comparing information about the actual state of the structure obtained on the basis of measurements in key zones of the structure with the predicted state on basis of the design model used when designing the structure for given conditions of external actions. Numerous, from hundreds tomore » thousands, string type transducers are placed in large HSs. This system of transducers monitor the stress-strain rate, seepage, and thermal regimes. These measurements are supported by the State Standards Committee which certifies the accuracy of the checking methods. To improve the instrumental monitoring of HSs, the author recommends: Calibration of methods and means of reliable diagnosis for each measuring channel in the HS, improvements to reduce measurement error, support for the system software programs, and development of appropriate standards for the design and examination of HSs.« less

  16. Thesis - keeping the management system {open_quotes}live{close_quotes} and reaching the workforce

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Primrose, M.J.; Bentley, P.D.; Graaf, G.C. van der

    1996-12-31

    Previous papers given to SPE conferences have described the Shell Group approach to Safety Management Systems and to Safety Cases. Their extension to HSE MS and to HSE Cases has also been addressed. Since 1984 the Enhanced Safety Management (ESM) programme within Shell companies has led to a significant improvement in the management of safety but it was only when structured management systems (based upon an understanding of the business processes) were introduced that true integration of HSE as a line responsibility became a reality. This paper describes the THESIS software package and the way that management systems have beenmore » made {open_quote}live{close_quote} and how workforce involvement can be demonstrated.« less

  17. Overcoming dysfunctional momentum: Organizational safety as a social achievement

    Treesearch

    Michelle A. Barton; Kathleen M. Sutcliffe

    2009-01-01

    Research on organizational safety and reliability largely has emphasized system-level structures and processes neglecting the more micro-level, social processes necessary to enact organizational safety. In this qualitative study we remedy this gap by exploring these processes in the context of wildland fire management. In particular, using interview data gathered from...

  18. Obtaining Valid Safety Data for Software Safety Measurement and Process Improvement

    NASA Technical Reports Server (NTRS)

    Basili, Victor r.; Zelkowitz, Marvin V.; Layman, Lucas; Dangle, Kathleen; Diep, Madeline

    2010-01-01

    We report on a preliminary case study to examine software safety risk in the early design phase of the NASA Constellation spaceflight program. Our goal is to provide NASA quality assurance managers with information regarding the ongoing state of software safety across the program. We examined 154 hazard reports created during the preliminary design phase of three major flight hardware systems within the Constellation program. Our purpose was two-fold: 1) to quantify the relative importance of software with respect to system safety; and 2) to identify potential risks due to incorrect application of the safety process, deficiencies in the safety process, or the lack of a defined process. One early outcome of this work was to show that there are structural deficiencies in collecting valid safety data that make software safety different from hardware safety. In our conclusions we present some of these deficiencies.

  19. Ballistic Puncture Self-Healing Polymeric Materials

    NASA Technical Reports Server (NTRS)

    Gordon, Keith L.; Siochi, Emilie J.; Yost, William T.; Bogert, Phil B.; Howell, Patricia A.; Cramer, K. Elliott; Burke, Eric R.

    2017-01-01

    Space exploration launch costs on the order of $10,000 per pound provide an incentive to seek ways to reduce structural mass while maintaining structural function to assure safety and reliability. Damage-tolerant structural systems provide a route to avoiding weight penalty while enhancing vehicle safety and reliability. Self-healing polymers capable of spontaneous puncture repair show promise to mitigate potentially catastrophic damage from events such as micrometeoroid penetration. Effective self-repair requires these materials to quickly heal following projectile penetration while retaining some structural function during the healing processes. Although there are materials known to possess this capability, they are typically not considered for structural applications. Current efforts use inexpensive experimental methods to inflict damage, after which analytical procedures are identified to verify that function is restored. Two candidate self-healing polymer materials for structural engineering systems are used to test these experimental methods.

  20. A bio-inspired memory model for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Zhu, Yong

    2009-04-01

    Long-term structural health monitoring (SHM) systems need intelligent management of the monitoring data. By analogy with the way the human brain processes memories, we present a bio-inspired memory model (BIMM) that does not require prior knowledge of the structure parameters. The model contains three time-domain areas: a sensory memory area, a short-term memory area and a long-term memory area. First, the initial parameters of the structural state are specified to establish safety criteria. Then the large amount of monitoring data that falls within the safety limits is filtered while the data outside the safety limits are captured instantly in the sensory memory area. Second, disturbance signals are distinguished from danger signals in the short-term memory area. Finally, the stable data of the structural balance state are preserved in the long-term memory area. A strategy for priority scheduling via fuzzy c-means for the proposed model is then introduced. An experiment on bridge tower deformation demonstrates that the proposed model can be applied for real-time acquisition, limited-space storage and intelligent mining of the monitoring data in a long-term SHM system.

  1. [Establishment and application of "multi-dimensional structure and process dynamic quality control technology system" in preparation products of traditional Chinese medicine (I)].

    PubMed

    Gu, Jun-Fei; Feng, Liang; Zhang, Ming-Hua; Wu, Chan; Jia, Xiao-Bin

    2013-11-01

    Safety is an important component of the quality control of traditional Chinese medicine (TCM) preparation products, as well as an important guarantee for clinical application. Currently, the quality control of TCMs in Chinese Pharmacopoeia mostly focuses on indicative compounds for TCM efficacy. TCM preparations are associated with multiple links, from raw materials to products, and each procedure may have impacts on the safety of preparation. We make a summary and analysis on the factors impacting safety during the preparation of TCM products, and then expound the important role of the "multi-dimensional structure and process dynamic quality control technology system" in the quality safety of TCM preparations. Because the product quality of TCM preparation is closely related to the safety, the control over safety-related material basis is an important component of the product quality control of TCM preparations. The implementation of the quality control over the dynamic process of TCM preparations from raw materials to products, and the improvement of the TCM quality safety control at the microcosmic level help lay a firm foundation for the development of the modernization process of TCM preparations.

  2. Formal Verification of Complex Systems based on SysML Functional Requirements

    DTIC Science & Technology

    2014-12-23

    Formal Verification of Complex Systems based on SysML Functional Requirements Hoda Mehrpouyan1, Irem Y. Tumer2, Chris Hoyle2, Dimitra Giannakopoulou3...requirements for design of complex engineered systems. The proposed ap- proach combines a SysML modeling approach to document and structure safety requirements...methods and tools to support the integration of safety into the design solution. 2.1. SysML for Complex Engineered Systems Traditional methods and tools

  3. Safety equipment list for the 241-SY-101 RAPID mitigation project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MORRIS, K.L.

    1999-06-29

    This document provides the safety classification for the safety (safety class and safety RAPID Mitigation Project. This document is being issued as the project SEL until the supporting authorization basis documentation, this document will be superseded by the TWRS SEL (LMHC 1999), documentation istlralized. Upon implementation of the authorization basis significant) structures, systems, and components (SSCS) associated with the 241-SY-1O1 which will be updated to include the information contained herein.

  4. A new leadership role for pharmacists: a prescription for change.

    PubMed

    Burgess, L Hayley; Cohen, Michael R; Denham, Charles R

    2010-03-01

    Pharmacists can play an important role as leaders to reduce patient safety risks, optimize the safe function of medication management systems, and align pharmacy services with national initiatives that measure and reward quality performance. The objective of this article is to determine the actions that pharmacists can take to create a visible and sustainable safe medication management structure and system in the health care environment. An evidence-based literature search was performed to determine what actions successful pharmacist leaders have taken to improve patient safety. There is a growing number of quality and patient safety standards, as well as measures that focus specifically on medication use and education. Health care organizations must be made aware of the valuable resources that pharmacists provide and of the complexity of medication management. There are steps that pharmacist leaders can take to achieve these goals. The 10 steps that pharmacist leaders can take to create a visible and sustainable safe medication management structure and system are the following: 1. Identify and mitigate medication management risks and hazards to reduce preventable patient harm. 2. Establish pharmacy leadership structures and systems to ensure organizational awareness of medication safety gaps. 3. Support an organizational culture of safe medication use. 4. Ensure evidence-based medication regimens for all patients. 5. Have daily check-in calls/meetings, with the primary focus on significant safety or quality issues. 6. Establish a medication safety committee. 7. Perform medication safety walk-rounds to evaluate medication processes, and request front-line staff ’s input about medication safe practices. 8. Ensure that pharmacy staff engage in teamwork, skill building, and communication training. 9. Engage in readiness planning for implementation of health information technology (HIT). 10. Include medication history-taking and reviews upon entry into the organization; medication counseling and training during the discharge process; and follow-up after the transition to home.

  5. An Investigation for Ground State Features of Some Structural Fusion Materials

    NASA Astrophysics Data System (ADS)

    Aytekin, H.; Tel, E.; Baldik, R.; Aydin, A.

    2011-02-01

    Environmental concerns associated with fossil fuels are creating increased interest in alternative non-fossil energy sources. Nuclear fusion can be one of the most attractive sources of energy from the viewpoint of safety and minimal environmental impact. When considered in all energy systems, the requirements for performance of structural materials in a fusion reactor first wall, blanket or diverter, are arguably more demanding or difficult than for other energy system. The development of fusion materials for the safety of fusion power systems and understanding nuclear properties is important. In this paper, ground state properties for some structural fusion materials as 27Al, 51V, 52Cr, 55Mn, and 56Fe are investigated using Skyrme-Hartree-Fock method. The obtained results have been discussed and compared with the available experimental data.

  6. Design an optimum safety policy for personnel safety management - A system dynamic approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balaji, P.

    2014-10-06

    Personnel safety management (PSM) ensures that employee's work conditions are healthy and safe by various proactive and reactive approaches. Nowadays it is a complex phenomenon because of increasing dynamic nature of organisations which results in an increase of accidents. An important part of accident prevention is to understand the existing system properly and make safety strategies for that system. System dynamics modelling appears to be an appropriate methodology to explore and make strategy for PSM. Many system dynamics models of industrial systems have been built entirely for specific host firms. This thesis illustrates an alternative approach. The generic system dynamicsmore » model of Personnel safety management was developed and tested in a host firm. The model was undergone various structural, behavioural and policy tests. The utility and effectiveness of model was further explored through modelling a safety scenario. In order to create effective safety policy under resource constraint, DOE (Design of experiment) was used. DOE uses classic designs, namely, fractional factorials and central composite designs. It used to make second order regression equation which serve as an objective function. That function was optimized under budget constraint and optimum value used for safety policy which shown greatest improvement in overall PSM. The outcome of this research indicates that personnel safety management model has the capability for acting as instruction tool to improve understanding of safety management and also as an aid to policy making.« less

  7. Design of a Conceptual Bumper Energy Absorber Coupling Pedestrian Safety and Low-Speed Impact Requirements

    PubMed Central

    Mo, Fuhao; Zhao, Siqi; Yu, Chuanhui; Duan, Shuyong

    2018-01-01

    The car front bumper system needs to meet the requirements of both pedestrian safety and low-speed impact which are somewhat contradicting. This study aims to design a new kind of modular self-adaptive energy absorber of the front bumper system which can balance the two performances. The X-shaped energy-absorbing structure was proposed which can enhance the energy absorption capacity during impact by changing its deformation mode based on the amount of external collision energy. Then, finite element simulations with a realistic vehicle bumper system are performed to demonstrate its crashworthiness in comparison with the traditional foam energy absorber, which presents a significant improvement of the two performances. Furthermore, the structural parameters of the X-shaped energy-absorbing structure including thickness (t u), side arc radius (R), and clamping boost beam thickness (t b) are analyzed using a full factorial method, and a multiobjective optimization is implemented regarding evaluation indexes of both pedestrian safety and low-speed impact. The optimal parameters are then verified, and the feasibility of the optimal results is confirmed. In conclusion, the new X-shaped energy absorber can meet both pedestrian safety and low-speed impact requirements well by altering the main deformation modes according to different impact energy levels. PMID:29581728

  8. Design of a Conceptual Bumper Energy Absorber Coupling Pedestrian Safety and Low-Speed Impact Requirements.

    PubMed

    Mo, Fuhao; Zhao, Siqi; Yu, Chuanhui; Xiao, Zhi; Duan, Shuyong

    2018-01-01

    The car front bumper system needs to meet the requirements of both pedestrian safety and low-speed impact which are somewhat contradicting. This study aims to design a new kind of modular self-adaptive energy absorber of the front bumper system which can balance the two performances. The X-shaped energy-absorbing structure was proposed which can enhance the energy absorption capacity during impact by changing its deformation mode based on the amount of external collision energy. Then, finite element simulations with a realistic vehicle bumper system are performed to demonstrate its crashworthiness in comparison with the traditional foam energy absorber, which presents a significant improvement of the two performances. Furthermore, the structural parameters of the X-shaped energy-absorbing structure including thickness ( t u ), side arc radius ( R ), and clamping boost beam thickness ( t b ) are analyzed using a full factorial method, and a multiobjective optimization is implemented regarding evaluation indexes of both pedestrian safety and low-speed impact. The optimal parameters are then verified, and the feasibility of the optimal results is confirmed. In conclusion, the new X-shaped energy absorber can meet both pedestrian safety and low-speed impact requirements well by altering the main deformation modes according to different impact energy levels.

  9. Light-frame wall and floor systems : analysis and performance

    Treesearch

    G. Sherwood; R. C. Moody

    1989-01-01

    This report describes methods of predicting the performance of light-frame wood structures with emphasis on floor and wall systems. Methods of predicting structural performance, fire safety, and environmental concerns including thermal, moisture, and acoustic performance are addressed in the three major sections.

  10. Increasing Safety of a Robotic System for Inner Ear Surgery Using Probabilistic Error Modeling Near Vital Anatomy

    PubMed Central

    Dillon, Neal P.; Siebold, Michael A.; Mitchell, Jason E.; Blachon, Gregoire S.; Balachandran, Ramya; Fitzpatrick, J. Michael; Webster, Robert J.

    2017-01-01

    Safe and effective planning for robotic surgery that involves cutting or ablation of tissue must consider all potential sources of error when determining how close the tool may come to vital anatomy. A pre-operative plan that does not adequately consider potential deviations from ideal system behavior may lead to patient injury. Conversely, a plan that is overly conservative may result in ineffective or incomplete performance of the task. Thus, enforcing simple, uniform-thickness safety margins around vital anatomy is insufficient in the presence of spatially varying, anisotropic error. Prior work has used registration error to determine a variable-thickness safety margin around vital structures that must be approached during mastoidectomy but ultimately preserved. In this paper, these methods are extended to incorporate image distortion and physical robot errors, including kinematic errors and deflections of the robot. These additional sources of error are discussed and stochastic models for a bone-attached robot for otologic surgery are developed. An algorithm for generating appropriate safety margins based on a desired probability of preserving the underlying anatomical structure is presented. Simulations are performed on a CT scan of a cadaver head and safety margins are calculated around several critical structures for planning of a robotic mastoidectomy. PMID:29200595

  11. Increasing safety of a robotic system for inner ear surgery using probabilistic error modeling near vital anatomy

    NASA Astrophysics Data System (ADS)

    Dillon, Neal P.; Siebold, Michael A.; Mitchell, Jason E.; Blachon, Gregoire S.; Balachandran, Ramya; Fitzpatrick, J. Michael; Webster, Robert J.

    2016-03-01

    Safe and effective planning for robotic surgery that involves cutting or ablation of tissue must consider all potential sources of error when determining how close the tool may come to vital anatomy. A pre-operative plan that does not adequately consider potential deviations from ideal system behavior may lead to patient injury. Conversely, a plan that is overly conservative may result in ineffective or incomplete performance of the task. Thus, enforcing simple, uniform-thickness safety margins around vital anatomy is insufficient in the presence of spatially varying, anisotropic error. Prior work has used registration error to determine a variable-thickness safety margin around vital structures that must be approached during mastoidectomy but ultimately preserved. In this paper, these methods are extended to incorporate image distortion and physical robot errors, including kinematic errors and deflections of the robot. These additional sources of error are discussed and stochastic models for a bone-attached robot for otologic surgery are developed. An algorithm for generating appropriate safety margins based on a desired probability of preserving the underlying anatomical structure is presented. Simulations are performed on a CT scan of a cadaver head and safety margins are calculated around several critical structures for planning of a robotic mastoidectomy.

  12. The NATO Unmanned Aircraft System Human Systems Integration Guidebook

    DTIC Science & Technology

    2012-11-01

    Stakeholders HSI Management Activity Goals Project SMEs HCR Acceptance Methods & Criteria Figure 2. Overarching HSI Goal Structure ...88ABW Clear 10/21/2013; 88ABW-2013-4442 55 N NATO North Atlantic Treaty Organisation NTSB National Transportation Safety Board S SME Subject...support the organisation Personnel trained to support safety Operational Concepts HSI Technical Activity Goals Allocation of Functions

  13. Renovated Korean nuclear safety and security system: A review and suggestions to successful settlement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, W. S.; Yun, S. W.; Lee, D. S.

    2012-07-01

    Questions of whether past nuclear regulatory body of Korea is not a proper system to monitor and check the country's nuclear energy policy and utilization have been raised. Moreover, a feeling of insecurity regarding nuclear safety after the nuclear accident in Japan has spread across the public. This has stimulated a renovation of the nuclear safety regime in Korea. The Nuclear Safety and Security Commission (NSSC) was launched on October 26, 2011 as a regulatory body directly under the President in charge of strengthening independence and nuclear safety. This was a meaningful event as the NSSC it is a muchmore » more independent regulatory system for Korea. However, the NSSC itself does not guarantee an enhanced public acceptance of the nuclear policy and stable use nuclear energy. This study introduces the new NSSC system and its details in terms of organization structure, appropriateness of specialty, budget stability, and management system. (authors)« less

  14. [Patient safety and a culture of responsibility in ambulatory care: strategies for improving practice].

    PubMed

    Lichte, Thomas; Klement, Andreas; Herrmann, Markus

    2009-01-01

    The development of a medical safety culture is spreading beyond the hospital into the ambulatory setting. Patient safety defined as "absence of unwanted events" (primum non nocere) can serve as a starting point for the advancement of our ambulatory medical care system. Error analyses conducted in GP and specialist practices will identify gaps and traps in the system and provide ideas for the development and implementation of new safety strategies in ambulatory patient care. In the light of the structures and processes of GP medical care aspects of patient safety will be correlated to the outcome quality and examples will be discussed. Possible strategies for the improvement of patient safety in GP practice will be presented from the perspective of both patient- and practice individuality.

  15. Brief history of patient safety culture and science.

    PubMed

    Ilan, Roy; Fowler, Robert

    2005-03-01

    The science of safety is well established in such disciplines as the automotive and aviation industry. In this brief history of safety science as it pertains to patient care, we review remote and recent publications that have guided the maturation of this field that has particular relevance to the complex structure of systems, personnel, and therapies involved in caring for the critically ill.

  16. Reliability enhancement of APR + diverse protection system regarding common cause failures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Y. G.; Kim, Y. M.; Yim, H. S.

    2012-07-01

    The Advanced Power Reactor Plus (APR +) nuclear power plant design has been developed on the basis of the APR1400 (Advanced Power Reactor 1400 MWe) to further enhance safety and economics. For the mitigation of Anticipated Transients Without Scram (ATWS) as well as Common Cause Failures (CCF) within the Plant Protection System (PPS) and the Emergency Safety Feature - Component Control System (ESF-CCS), several design improvement features have been implemented for the Diverse Protection System (DPS) of the APR + plant. As compared to the APR1400 DPS design, the APR + DPS has been designed to provide the Safety Injectionmore » Actuation Signal (SIAS) considering a large break LOCA accident concurrent with the CCF. Additionally several design improvement features, such as channel structure with redundant processing modules, and changes of system communication methods and auto-system test methods, are introduced to enhance the functional reliability of the DPS. Therefore, it is expected that the APR + DPS can provide an enhanced safety and reliability regarding possible CCF in the safety-grade I and C systems as well as the DPS itself. (authors)« less

  17. In-vehicle low-cost signing system

    NASA Astrophysics Data System (ADS)

    Greneker, Eugene F.

    1997-02-01

    There are approximately 20 million police radar detectors used on the highways of the United States daily. A highway hazard safety warning system has been developed by the Georgia Tech Research Institute, working under the sponsorship of the radar detector industry, to communicate highway safety alerts to the driver of any vehicle equipped with a police radar detector. In addition, the system causes the new generation of detectors that are already available to display a safety warning message on an alpha-numeric display. The Safety Warning SystemTM consists of a transmitter and a radar detector receiver or stand-alone safety warning receiver/display system. The transmitter can be mounted on police cars, emergency vehicles, utility vehicles, highly repair vehicles, and on stationary structures at fixed locations along the highway. The reception range of the transmitted signal is between 0.5 and 1.0 miles, depending on terrain. The system to be described may be one of the first applications of in-vehicle signing in the Intelligent Transportation System to be implemented, because the required infrastructure of receivers already exists.

  18. System analysis of vehicle active safety problem

    NASA Astrophysics Data System (ADS)

    Buznikov, S. E.

    2018-02-01

    The problem of the road transport safety affects the vital interests of the most of the population and is characterized by a global level of significance. The system analysis of problem of creation of competitive active vehicle safety systems is presented as an interrelated complex of tasks of multi-criterion optimization and dynamic stabilization of the state variables of a controlled object. Solving them requires generation of all possible variants of technical solutions within the software and hardware domains and synthesis of the control, which is close to optimum. For implementing the task of the system analysis the Zwicky “morphological box” method is used. Creation of comprehensive active safety systems involves solution of the problem of preventing typical collisions. For solving it, a structured set of collisions is introduced with its elements being generated also using the Zwicky “morphological box” method. The obstacle speed, the longitudinal acceleration of the controlled object and the unpredictable changes in its movement direction due to certain faults, the road surface condition and the control errors are taken as structure variables that characterize the conditions of collisions. The conditions for preventing typical collisions are presented as inequalities for physical variables that define the state vector of the object and its dynamic limits.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Z.; Zweibaum, N.; Shao, M.

    The University of California, Berkeley (UCB) is performing thermal hydraulics safety analysis to develop the technical basis for design and licensing of fluoride-salt-cooled, high-temperature reactors (FHRs). FHR designs investigated by UCB use natural circulation for emergency, passive decay heat removal when normal decay heat removal systems fail. The FHR advanced natural circulation analysis (FANCY) code has been developed for assessment of passive decay heat removal capability and safety analysis of these innovative system designs. The FANCY code uses a one-dimensional, semi-implicit scheme to solve for pressure-linked mass, momentum and energy conservation equations. Graph theory is used to automatically generate amore » staggered mesh for complicated pipe network systems. Heat structure models have been implemented for three types of boundary conditions (Dirichlet, Neumann and Robin boundary conditions). Heat structures can be composed of several layers of different materials, and are used for simulation of heat structure temperature distribution and heat transfer rate. Control models are used to simulate sequences of events or trips of safety systems. A proportional-integral controller is also used to automatically make thermal hydraulic systems reach desired steady state conditions. A point kinetics model is used to model reactor kinetics behavior with temperature reactivity feedback. The underlying large sparse linear systems in these models are efficiently solved by using direct and iterative solvers provided by the SuperLU code on high performance machines. Input interfaces are designed to increase the flexibility of simulation for complicated thermal hydraulic systems. In conclusion, this paper mainly focuses on the methodology used to develop the FANCY code, and safety analysis of the Mark 1 pebble-bed FHR under development at UCB is performed.« less

  20. [Safety culture in the context of work intensification--development in Germany over the last 10 years].

    PubMed

    Lauterberg, Jörg

    2009-01-01

    This article tries to review the development of patient safety culture in the German healthcare system over the last decade. Since the use of standardized questionnaires and other instruments to measure safety culture in Germany has only just begun there are no representative and longitudinal data. Therefore a set of indicators and clues is chosen to characterise the safety culture development on the micro-, meso- and macro-level of the healthcare system in four areas. Is patient safety an issue of the healthcare debates and especially of research? Have dedicated structures and processes been implemented to support clinical risk management? What are the objective outcomes of healthcare and treatment in regard to patient safety? In summary, there are a lot of signs that patient safety issues in Germany are gaining more and more importance on all levels of the healthcare system. To date there have been single evidence-based studies only indicating a causal or close temporal relationship between patient safety outcomes and the increasing efforts of hospitals, outpatient and long-term care facilities.

  1. Probabilistic safety analysis of earth retaining structures during earthquakes

    NASA Astrophysics Data System (ADS)

    Grivas, D. A.; Souflis, C.

    1982-07-01

    A procedure is presented for determining the probability of failure of Earth retaining structures under static or seismic conditions. Four possible modes of failure (overturning, base sliding, bearing capacity, and overall sliding) are examined and their combined effect is evaluated with the aid of combinatorial analysis. The probability of failure is shown to be a more adequate measure of safety than the customary factor of safety. As Earth retaining structures may fail in four distinct modes, a system analysis can provide a single estimate for the possibility of failure. A Bayesian formulation of the safety retaining walls is found to provide an improved measure for the predicted probability of failure under seismic loading. The presented Bayesian analysis can account for the damage incurred to a retaining wall during an earthquake to provide an improved estimate for its probability of failure during future seismic events.

  2. Information Processing Research

    DTIC Science & Technology

    1992-01-03

    structure of instances. Opal provides special graphical objects called "Ag- greGadgets" which are used to hold a collection of other objects (either...available in classes of expert systems tasks, re- late this to the structure of parallel production systems, and incorporate parallel-decomposition...Anantharaman et al. 88]. We designed a new pawn structure algorithm and upgraded the king-safety pattern recog- nizers, which contributed significantly

  3. Development of CO2 laser Doppler instrumentation for detection of clear air turbulence, volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    Harris, C. E.; Jelalian, A. V.

    1979-01-01

    Analyses of the mounting and mount support systems of the clear air turbulence transmitters verify that satisfactory shock and vibration isolation are attained. The mount support structure conforms to flight crash safety requirements with high margins of safety. Restraint cables reinforce the mounts in the critical loaded forward direction limiting maximum forward system deflection to 1 1/4 inches.

  4. Safety culture: analysis of the causal relationships between its key dimensions.

    PubMed

    Fernández-Muñiz, Beatriz; Montes-Peón, José Manuel; Vázquez-Ordás, Camilo José

    2007-01-01

    Several fields are showing increasing interest in safety culture as a means of reducing accidents in the workplace. The literature shows that safety culture is a multidimensional concept. However, considerable confusion surrounds this concept, about which little consensus has been reached. This study proposes a model for a positive safety culture and tests this on a sample of 455 Spanish companies, using the structural equation modeling statistical technique. Results show the important role of managers in the promotion of employees' safe behavior, both directly, through their attitudes and behaviors, and indirectly, by developing a safety management system. This paper identifies the key dimensions of safety culture. In addition, a measurement scale for the safety management system is validated. This will assist organizations in defining areas where they need to progress if they wish to improve their safety. Also, we stress that managers need to be wholly committed to and personally involved in safety activities, thereby conveying the importance the firm attaches to these issues.

  5. A safety management system for an offshore Azerbaijan Caspian Sea Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brasic, M.F.; Barber, S.W.; Hill, A.S.

    1996-11-01

    This presentation will describe the Safety Management System that Azerbaijan International Operating Company (AIOC) has structured to assure that Company activities are performed in a manner that protects the public, the environment, contractors and AIOC employees. The Azerbaijan International Oil Company is a consortium of oil companies that includes Socar, the state oil company of Azerbaijan, a number of major westem oil companies, and companies from Russia, Turkey and Saudi Arabia. The Consortium was formed to develop and produce a group of large oil fields in the Caspian Sea. The Management of AIOC, in starting a new operation in Azerbaijan,more » recognized the need for a formal HSE management system to ensure that their HSE objectives for AIOC activities were met. As a consortium of different partners working together in a unique operation, no individual partner company HSE Management system was appropriate. Accordingly AIOC has utilized the E & P Forum {open_quotes}Guidelines for the Development and Application of Health Safety and Environmental Management Systems{close_quotes} as the framework document for the development of the new AIOC system. Consistent with this guideline, AIOC has developed 19 specific HSE Management System Expectations for implementing its HSE policy and objectives. The objective is to establish and continue to maintain operational integrity in all AIOC activities and site operations. An important feature is the use of structured Safety Cases for the design engineering activity. The basis for the Safety Cases is API RP 75 and 14 J for offshore facilities and API RP 750 for onshore facilities both complimented by {open_quotes}Best International Oilfield Practice{close_quotes}. When viewed overall, this approach provides a fully integrated system of HSE management from design into operation.« less

  6. Demonstration of a Safety Analysis on a Complex System

    NASA Technical Reports Server (NTRS)

    Leveson, Nancy; Alfaro, Liliana; Alvarado, Christine; Brown, Molly; Hunt, Earl B.; Jaffe, Matt; Joslyn, Susan; Pinnell, Denise; Reese, Jon; Samarziya, Jeffrey; hide

    1997-01-01

    For the past 17 years, Professor Leveson and her graduate students have been developing a theoretical foundation for safety in complex systems and building a methodology upon that foundation. The methodology includes special management structures and procedures, system hazard analyses, software hazard analysis, requirements modeling and analysis for completeness and safety, special software design techniques including the design of human-machine interaction, verification, operational feedback, and change analysis. The Safeware methodology is based on system safety techniques that are extended to deal with software and human error. Automation is used to enhance our ability to cope with complex systems. Identification, classification, and evaluation of hazards is done using modeling and analysis. To be effective, the models and analysis tools must consider the hardware, software, and human components in these systems. They also need to include a variety of analysis techniques and orthogonal approaches: There exists no single safety analysis or evaluation technique that can handle all aspects of complex systems. Applying only one or two may make us feel satisfied, but will produce limited results. We report here on a demonstration, performed as part of a contract with NASA Langley Research Center, of the Safeware methodology on the Center-TRACON Automation System (CTAS) portion of the air traffic control (ATC) system and procedures currently employed at the Dallas/Fort Worth (DFW) TRACON (Terminal Radar Approach CONtrol). CTAS is an automated system to assist controllers in handling arrival traffic in the DFW area. Safety is a system property, not a component property, so our safety analysis considers the entire system and not simply the automated components. Because safety analysis of a complex system is an interdisciplinary effort, our team included system engineers, software engineers, human factors experts, and cognitive psychologists.

  7. Shock spectra applications to a class of multiple degree-of-freedom structures system

    NASA Technical Reports Server (NTRS)

    Hwang, Shoi Y.

    1988-01-01

    The demand on safety performance of launching structure and equipment system from impulsive excitations necessitates a study which predicts the maximum response of the system as well as the maximum stresses in the system. A method to extract higher modes and frequencies for a class of multiple degree-of-freedom (MDOF) Structure system is proposed. And, along with the shock spectra derived from a linear oscillator model, a procedure to obtain upper bound solutions for maximum displacement and maximum stresses in the MDOF system is presented.

  8. Cold Vacuum Drying facility civil structural system design description (SYS 06)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PITKOFF, C.C.

    This document describes the Cold Vacuum Drying (CVD) Facility civil - structural system. This system consists of the facility structure, including the administrative and process areas. The system's primary purpose is to provide for a facility to house the CVD process and personnel and to provide a tertiary level of containment. The document provides a description of the facility and demonstrates how the design meets the various requirements imposed by the safety analysis report and the design requirements document.

  9. The President’s Budget: Overview of Structure and Timing of Submission to Congress

    DTIC Science & Technology

    2013-07-25

    Nuclear Facilities Safety Board, Securities and Exchange Commission, and National Transportation Safety Board) are required by statute to submit...Research Service 4 Governors of the Federal Reserve System, and Federal National Mortgage Association).22 Additionally, certain agencies (e.g., Defense

  10. 75 FR 27428 - Safety Standards for Steel Erection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-17

    ... in National Highway System construction projects to comply with a number of standards, policies, and...://www.fhwa.dot.gov/bridge/lrfd/index.htm .) For projects involving bridge construction (e.g., temporary... of these requirements will enhance the safety of employees operating on or near structural steel...

  11. Long-Term Structural Health Monitoring System for a High-Speed Railway Bridge Structure.

    PubMed

    Ding, You-Liang; Wang, Gao-Xin; Sun, Peng; Wu, Lai-Yi; Yue, Qing

    2015-01-01

    Nanjing Dashengguan Bridge, which serves as the shared corridor crossing Yangtze River for both Beijing-Shanghai high-speed railway and Shanghai-Wuhan-Chengdu railway, is the first 6-track high-speed railway bridge with the longest span throughout the world. In order to ensure safety and detect the performance deterioration during the long-time service of the bridge, a Structural Health Monitoring (SHM) system has been implemented on this bridge by the application of modern techniques in sensing, testing, computing, and network communication. The SHM system includes various sensors as well as corresponding data acquisition and transmission equipment for automatic data collection. Furthermore, an evaluation system of structural safety has been developed for the real-time condition assessment of this bridge. The mathematical correlation models describing the overall structural behavior of the bridge can be obtained with the support of the health monitoring system, which includes cross-correlation models for accelerations, correlation models between temperature and static strains of steel truss arch, and correlation models between temperature and longitudinal displacements of piers. Some evaluation results using the mean value control chart based on mathematical correlation models are presented in this paper to show the effectiveness of this SHM system in detecting the bridge's abnormal behaviors under the varying environmental conditions such as high-speed trains and environmental temperature.

  12. Developing a Web-Based Advisory Expert System for Implementing Traffic Calming Strategies

    PubMed Central

    Falamarzi, Amir; Borhan, Muhamad Nazri; Rahmat, Riza Atiq O. K.

    2014-01-01

    Lack of traffic safety has become a serious issue in residential areas. In this paper, a web-based advisory expert system for the purpose of applying traffic calming strategies on residential streets is described because there currently lacks a structured framework for the implementation of such strategies. Developing an expert system can assist and advise engineers for dealing with traffic safety problems. This expert system is developed to fill the gap between the traffic safety experts and people who seek to employ traffic calming strategies including decision makers, engineers, and students. In order to build the expert system, examining sources related to traffic calming studies as well as interviewing with domain experts have been carried out. The system includes above 150 rules and 200 images for different types of measures. The system has three main functions including classifying traffic calming measures, prioritizing traffic calming strategies, and presenting solutions for different traffic safety problems. Verifying, validating processes, and comparing the system with similar works have shown that the system is consistent and acceptable for practical uses. Finally, some recommendations for improving the system are presented. PMID:25276861

  13. Developing a web-based advisory expert system for implementing traffic calming strategies.

    PubMed

    Falamarzi, Amir; Borhan, Muhamad Nazri; Rahmat, Riza Atiq O K

    2014-01-01

    Lack of traffic safety has become a serious issue in residential areas. In this paper, a web-based advisory expert system for the purpose of applying traffic calming strategies on residential streets is described because there currently lacks a structured framework for the implementation of such strategies. Developing an expert system can assist and advise engineers for dealing with traffic safety problems. This expert system is developed to fill the gap between the traffic safety experts and people who seek to employ traffic calming strategies including decision makers, engineers, and students. In order to build the expert system, examining sources related to traffic calming studies as well as interviewing with domain experts have been carried out. The system includes above 150 rules and 200 images for different types of measures. The system has three main functions including classifying traffic calming measures, prioritizing traffic calming strategies, and presenting solutions for different traffic safety problems. Verifying, validating processes, and comparing the system with similar works have shown that the system is consistent and acceptable for practical uses. Finally, some recommendations for improving the system are presented.

  14. Engineering a safe landing: engaging medical practitioners in a systems approach to patient safety.

    PubMed

    Brand, C; Ibrahim, J; Bain, C; Jones, C; King, B

    2007-05-01

    Several event studies, including the Australian Safety and Quality in Healthcare Study, emphasize gaps in safety for hospitalized patients. It is now recognized that system-based factors contribute significantly to risk of adverse events and this has led to a shift in focus of patient safety from the autonomous responsibility of medical clinicians to a systems-based approach. The aim of this study was to determine medical practitioner awareness of, level of engagement in and barriers to engagement in a systems approach to patient safety and quality. Information from acute and subacute care medical practitioners at a metropolitan public hospital was collected within an anonymous structured electronic survey, a discussion group and key informant interviews. There were 73 survey respondents (response rate 7.6%). Fifty-one (69.9%) were unaware of the Institute of Medicine report 'To Err is human'. Thirty-six (49.3%) were unaware of the Australian Quality in Healthcare Study and 12 (16.4%) had read the article. There was a positive relation identified between awareness and seniority. There was a low level of participation in systems-focused quality and safety activities and limited understanding of the role of systems in medical error causation. There was uncertainty about the changing role of medical practitioners in patient safety and perceived lack of skills to effectively engage with hospital management about safety and quality issues. Several factors are limiting engagement of medical practitioners in a systems approach to patient safety. Increased educational support is needed and may be best focused within clinical effectiveness activities pertinent to practitioner interest and expertise.

  15. A Review of Safety and Design Requirements of the Artificial Pancreas.

    PubMed

    Blauw, Helga; Keith-Hynes, Patrick; Koops, Robin; DeVries, J Hans

    2016-11-01

    As clinical studies with artificial pancreas systems for automated blood glucose control in patients with type 1 diabetes move to unsupervised real-life settings, product development will be a focus of companies over the coming years. Directions or requirements regarding safety in the design of an artificial pancreas are, however, lacking. This review aims to provide an overview and discussion of safety and design requirements of the artificial pancreas. We performed a structured literature search based on three search components-type 1 diabetes, artificial pancreas, and safety or design-and extended the discussion with our own experiences in developing artificial pancreas systems. The main hazards of the artificial pancreas are over- and under-dosing of insulin and, in case of a bi-hormonal system, of glucagon or other hormones. For each component of an artificial pancreas and for the complete system we identified safety issues related to these hazards and proposed control measures. Prerequisites that enable the control algorithms to provide safe closed-loop control are accurate and reliable input of glucose values, assured hormone delivery and an efficient user interface. In addition, the system configuration has important implications for safety, as close cooperation and data exchange between the different components is essential.

  16. 76 FR 5651 - Practice and Procedure; Amendment of CORES Registration System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-01

    ..., including the Antenna Structure Registration System (``ASR'') (managed by the Commission's Wireless... Wireless Telecommunications Bureau and the Public Safety and Homeland Security Bureau). Among other things...

  17. NASA Requirements for Ground-Based Pressure Vessels and Pressurized Systems (PVS). Revision C

    NASA Technical Reports Server (NTRS)

    Greulich, Owen Rudolf

    2017-01-01

    The purpose of this document is to ensure the structural integrity of PVS through implementation of a minimum set of requirements for ground-based PVS in accordance with this document, NASA Policy Directive (NPD) 8710.5, NASA Safety Policy for Pressure Vessels and Pressurized Systems, NASA Procedural Requirements (NPR) 8715.3, NASA General Safety Program Requirements, applicable Federal Regulations, and national consensus codes and standards (NCS).

  18. The design of the intelligent monitoring system for dam safety

    NASA Astrophysics Data System (ADS)

    Yuan, Chun-qiao; Jiang, Chen-guang; Wang, Guo-hui

    2008-12-01

    Being a vital manmade water-control structure, a dam plays a very important role in the living and production of human being. To make a dam run safely, the best design and the superior construction quality are paramount; moreover, with working periods increasing, various dynamic, alternative and bad loads generate little by little various distortions on the dam structure inevitably, which shall lead to potential safety problems or further a disaster (dam burst). There are many signs before the occurrence of a dam accident, so the timely and effective surveying on the distortion of a dam is important. On the basis of the cause supra, two intelligent (automatic) monitoring systems about the dam's safety based on the RTK-GPS technology and the measuring robot has been developed. The basic principle, monitoring method and monitoring process of these two intelligent (automatic) monitoring systems are introduced. It presents examples of monitor and puts forward the basic rule of dam warning based on data of actual monitor.

  19. Implementation of safety management systems in Hong Kong construction industry - A safety practitioner's perspective.

    PubMed

    Yiu, Nicole S N; Sze, N N; Chan, Daniel W M

    2018-02-01

    In the 1980s, the safety management system (SMS) was introduced in the construction industry to mitigate against workplaces hazards, reduce the risk of injuries, and minimize property damage. Also, the Factories and Industrial Undertakings (Safety Management) Regulation was introduced on 24 November 1999 in Hong Kong to empower the mandatory implementation of a SMS in certain industries including building construction. Therefore, it is essential to evaluate the effectiveness of the SMS in improving construction safety and identify the factors that influence its implementation in Hong Kong. A review of the current state-of-the-practice helped to establish the critical success factors (CSFs), benefits, and difficulties of implementing the SMS in the construction industry, while structured interviews were used to establish the key factors of the SMS implementation. Results of the state-of-the-practice review and structured interviews indicated that visible senior commitment, in terms of manpower and cost allocation, and competency of safety manager as key drivers for the SMS implementation. More so, reduced accident rates and accident costs, improved organization framework, and increased safety audit ratings were identified as core benefits of implementing the SMS. Meanwhile, factors such as insufficient resources, tight working schedule, and high labor turnover rate were the key challenges to the effective SMS implementation in Hong Kong. The findings of the study were consistent and indicative of the future development of safety management practice and the sustainable safety improvement of Hong Kong construction industry in the long run. Copyright © 2018 National Safety Council and Elsevier Ltd. All rights reserved.

  20. Parametric study of track response

    DOT National Transportation Integrated Search

    1977-12-01

    This report was prepared as part of the Improved Track Structures Research Program : managed by the Transportation Systems Center. This program is sponsored by the : Office of Rail Safety Research, Improved Track Structures Research Division, of : th...

  1. 76 FR 8316 - Special Conditions: Gulfstream Model GVI Airplane; Interaction of Systems and Structures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-14

    ... considered in isolation but should be included in the overall safety evaluation of the airplane. These... forced structural vibrations (oscillatory failures) must not produce loads that could result in...

  2. An autonomous structural health monitoring system for Waiau interchange.

    DOT National Transportation Integrated Search

    2013-03-01

    Bridge infrastructure is a critical element of the transportation system which makes maintaining its safety and : performance vital to a healthy society. However, the civil infrastructure systems in the United States are decaying : at an accelerated ...

  3. Integrated deterministic and probabilistic safety analysis for safety assessment of nuclear power plants

    DOE PAGES

    Di Maio, Francesco; Zio, Enrico; Smith, Curtis; ...

    2015-07-06

    The present special issue contains an overview of the research in the field of Integrated Deterministic and Probabilistic Safety Assessment (IDPSA) of Nuclear Power Plants (NPPs). Traditionally, safety regulation for NPPs design and operation has been based on Deterministic Safety Assessment (DSA) methods to verify criteria that assure plant safety in a number of postulated Design Basis Accident (DBA) scenarios. Referring to such criteria, it is also possible to identify those plant Structures, Systems, and Components (SSCs) and activities that are most important for safety within those postulated scenarios. Then, the design, operation, and maintenance of these “safety-related” SSCs andmore » activities are controlled through regulatory requirements and supported by Probabilistic Safety Assessment (PSA).« less

  4. [Principle directions for the creation and organization of the system of sanitary-epidemiological safety during the preparations for the XXII Olympic Winter Games and XI Paralympic Winter Games 2014 in Sochi].

    PubMed

    Onishchenko, G G; Bragina, I V; Ezhlova, E B; Demina, V P; Gorskiĭ, A A; Gus'kov, A S; Aksenova, O I; Ivanov, G E; Klindukhov, V P; Nikolaevich, P N; Grechanaia, T B; Kulichenko, A N; Maletskaia, O V; Manin, E A; Parkhomenko, V V; Kulichenko, O A

    2015-01-01

    The paper generalizes the experience of formation of protection system against biological threats and ensuring sanitary and epidemiological welfare during preparation for the XXII Olympic Winter Games and XI Paralympic Winter Games of 2014 in Sochi. The basic steps for creating this system, since 2007, participation and role of Rospotrebnadzor in this process are shown. The paper deals with such questions as the governmental and administrative structures with federal agencies interaction, development of a regulatory framework governing the safety system of the Olympic Games, development of algorithms of information exchange and management decisions, biological safety in developing infrastructure in Sochi.

  5. Quality management and perceptions of teamwork and safety climate in European hospitals.

    PubMed

    Kristensen, Solvejg; Hammer, Antje; Bartels, Paul; Suñol, Rosa; Groene, Oliver; Thompson, Caroline A; Arah, Onyebuchi A; Kutaj-Wasikowska, Halina; Michel, Philippe; Wagner, Cordula

    2015-12-01

    This study aimed to investigate the associations of quality management systems with teamwork and safety climate, and to describe and compare differences in perceptions of teamwork climate and safety climate among clinical leaders and frontline clinicians. We used a multi-method, cross-sectional approach to collect survey data of quality management systems and perceived teamwork and safety climate. Our data analyses included descriptive and multilevel regression methods. Data on implementation of quality management system from seven European countries were evaluated including patient safety culture surveys from 3622 clinical leaders and 4903 frontline clinicians. Perceived teamwork and safety climate. Teamwork climate was reported as positive by 67% of clinical leaders and 43% of frontline clinicians. Safety climate was perceived as positive by 54% of clinical leaders and 32% of frontline clinicians. We found positive associations between implementation of quality management systems and teamwork and safety climate. Our findings, which should be placed in a broader clinical quality improvement context, point to the importance of quality management systems as a supportive structural feature for promoting teamwork and safety climate. To gain a deeper understanding of this association, further qualitative and quantitative studies using longitudinally collected data are recommended. The study also confirms that more clinical leaders than frontline clinicians have a positive perception of teamwork and safety climate. Such differences should be accounted for in daily clinical practice and when tailoring initiatives to improve teamwork and safety climate. © The Author 2015. Published by Oxford University Press in association with the International Society for Quality in Health Care; all rights reserved.

  6. Certification of highly complex safety-related systems.

    PubMed

    Reinert, D; Schaefer, M

    1999-01-01

    The BIA has now 15 years of experience with the certification of complex electronic systems for safety-related applications in the machinery sector. Using the example of machining centres this presentation will show the systematic procedure for verifying and validating control systems using Application Specific Integrated Circuits (ASICs) and microcomputers for safety functions. One section will describe the control structure of machining centres with control systems using "integrated safety." A diverse redundant architecture combined with crossmonitoring and forced dynamization is explained. In the main section the steps of the systematic certification procedure are explained showing some results of the certification of drilling machines. Specification reviews, design reviews with test case specification, statistical analysis, and walk-throughs are the analytical measures in the testing process. Systematic tests based on the test case specification, Electro Magnetic Interference (EMI), and environmental testing, and site acceptance tests on the machines are the testing measures for validation. A complex software driven system is always undergoing modification. Most of the changes are not safety-relevant but this has to be proven. A systematic procedure for certifying software modifications is presented in the last section of the paper.

  7. Comparison of AIHA ISO 9001-based occupational health and safety management system guidance document with a manufacturer's occupational health and safety assessment instrument.

    PubMed

    Dyjack, D T; Levine, S P; Holtshouser, J L; Schork, M A

    1998-06-01

    Numerous manufacturing and service organizations have integrated or are considering integration of their respective occupational health and safety management and audit systems into the International Organization for Standardization-based (ISO) audit-driven Quality Management Systems (ISO 9000) or Environmental Management Systems (ISO 14000) models. Companies considering one of these options will likely need to identify and evaluate several key factors before embarking on such efforts. The purpose of this article is to identify and address the key factors through a case study approach. Qualitative and quantitative comparisons of the key features of the American Industrial Hygiene Association ISO-9001 harmonized Occupational Health and Safety Management System with The Goodyear Tire & Rubber Co. management and audit system were conducted. The comparisons showed that the two management systems and their respective audit protocols, although structured differently, were not substantially statistically dissimilar in content. The authors recommend that future studies continue to evaluate the advantages and disadvantages of various audit protocols. Ideally, these studies would identify those audit outcome measures that can be reliably correlated with health and safety performance.

  8. 47 CFR 90.241 - Radio call box operations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Safety Pool for operation of radio call boxes to be used by the public to request fire, police, ambulance... Public Safety Pool for highway call box systems subject to the following requirements: (1) Call box...) above the ground, the natural formation, or the existing man-made structure (other than an antenna...

  9. 47 CFR 90.241 - Radio call box operations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Safety Pool for operation of radio call boxes to be used by the public to request fire, police, ambulance... Public Safety Pool for highway call box systems subject to the following requirements: (1) Call box...) above the ground, the natural formation, or the existing man-made structure (other than an antenna...

  10. Impact of Performance Obstacles on Intensive Care Nurses‘ Workload, Perceived Quality and Safety of Care, and Quality of Working Life

    PubMed Central

    Gurses, Ayse P; Carayon, Pascale; Wall, Melanie

    2009-01-01

    Objectives To study the impact of performance obstacles on intensive care nurses‘ workload, quality and safety of care, and quality of working life (QWL). Performance obstacles are factors that hinder nurses‘ capacity to perform their job and that are closely associated with their immediate work system. Data Sources/Study Setting Data were collected from 265 nurses in 17 intensive care units (ICUs) between February and August 2004 via a structured questionnaire, yielding a response rate of 80 percent. Study Design A cross-sectional study design was used. Data were analyzed by correlation analyses and structural equation modeling. Principal Findings Performance obstacles were found to affect perceived quality and safety of care and QWL of ICU nurses. Workload mediated the impact of performance obstacles with the exception of equipment-related issues on perceived quality and safety of care as well as QWL. Conclusions Performance obstacles in ICUs are a major determinant of nursing workload, perceived quality and safety of care, and QWL. In general, performance obstacles increase nursing workload, which in turn negatively affect perceived quality and safety of care and QWL. Redesigning the ICU work system to reduce performance obstacles may improve nurses‘ work. PMID:19207589

  11. [Managment system in safety and health at work organization. An Italian example in public sector: Inps].

    PubMed

    Di Loreto, G; Felicioli, G

    2010-01-01

    The Istituto Nazionale della Previdenza Sociale (Inps) is one of the biggest Public Sector organizations in Italy; about 30.000 people work in his structures. Fifteen years ago, Inps launched a long term project with the objective to create a complex and efficient safety and health at work organization. Italian law contemplates a specific kind of physician working on safety and health at work, called "Medico competente", and 85 Inps's physicians work also as "Medico competente". This work describes how IT improved coordination and efficiency in this occupational health's management system.

  12. A guide to structural factors for advanced composites used on spacecraft

    NASA Technical Reports Server (NTRS)

    Vanwagenen, Robert

    1989-01-01

    The use of composite materials in spacecraft systems is constantly increasing. Although the areas of composite design and fabrication are maturing, they remain distinct from the same activities performed using conventional materials and processes. This has led to some confusion regarding the precise meaning of the term 'factor of safety' as it applies to these structures. In addition, composite engineering introduces terms such as 'knock-down factors' to further modify material properties for design purposes. This guide is intended to clarify these terms as well as their use in the design of composite structures for spacecraft. It is particularly intended to be used by the engineering community not involved in the day-to-day composites design process. An attempt is also made to explain the wide range of factors of safety encountered in composite designs as well as their relationship to the 1.4 factor of safety conventionally applied to metallic structures.

  13. Safety management in a relationship-oriented culture.

    PubMed

    Hsu, Shang Hwa; Lee, Chun-Chia

    2012-01-01

    A relationship-oriented culture predominates in the Greater China region, where it is more important than in Western countries. Some characteristics of this culture influence strongly the organizational structure and interactions among members in an organization. This study aimed to explore the possible influence of relationships on safety management in relationship-oriented cultures. We hypothesized that organizational factors (management involvement and harmonious relationships) within a relationship-oriented culture would influence supervisory work (ongoing monitoring and task instructions), the reporting system (selective reporting), and teamwork (team communication and co-ordination) in safety management at a group level, which would in turn influence individual reliance complacency, risk awareness, and practices. We distributed a safety climate questionnaire to the employees of Taiwanese high-risk industries. The results of structural equation modeling supported the hypothesis. This article also discusses the findings and implications for safety improvement in countries with a relationship-oriented culture.

  14. Structures and Materials Technologies for Extreme Environments Applied to Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Scotti, Stephen J.; Clay, Christopher; Rezin, Marc

    2003-01-01

    This paper provides an overview of the evolution of structures and materials technology approaches to survive the challenging extreme environments encountered by earth-to-orbit space transportation systems, with emphasis on more recent developments in the USA. The evolution of technology requirements and experience in the various approaches to meeting these requirements has significantly influenced the technology approaches. While previous goals were primarily performance driven, more recently dramatic improvements in costs/operations and in safety have been paramount goals. Technologies that focus on the cost/operations and safety goals in the area of hot structures and thermal protection systems for reusable launch vehicles are presented. Assessments of the potential ability of the various technologies to satisfy the technology requirements, and their current technology readiness status are also presented.

  15. Evaluation of the AHRQ Patient Safety Initiative: Synthesis of Findings

    PubMed Central

    Farley, Donna O; Damberg, Cheryl L

    2009-01-01

    Objective To present overall findings from the 4-year evaluation of the national patient safety initiative operated by the Agency for Healthcare Research and Quality (AHRQ). Data Sources Interviews with AHRQ staff, grantees, and other patient safety stakeholders; published materials; and internal AHRQ documents. Study Design The evaluation was structured to address a system framework of five components involved in improving safety. The initiative's contributions to improving each system component were assessed qualitatively, comparing results from three separate analyses—AHRQ's achievement of its patient safety goals, our own assessment of the initiative's activities, and independent stakeholder ratings of AHRQ's contributions. Findings and Conclusions AHRQ has faced a daunting challenge for improving patient safety, given the complex problems of the U.S. health care system and the limited resources AHRQ has had to address them. The patient safety initiative achieved strongest progress for its contributions to knowledge of patient safety epidemiology and effective practices, where AHRQ has considerable experience, and to strengthening infrastructure to support adoption of safe practices. Progress was slower in establishing a national monitoring capability and dissemination of safe practices for adoption. AHRQ needs to expand efforts to apply new knowledge for stimulating use of safe practices in the field. PMID:21456115

  16. Safety management as a foundation for evidence-based aeromedical standards and reporting of medical events.

    PubMed

    Evans, Anthony D; Watson, Dougal B; Evans, Sally A; Hastings, John; Singh, Jarnail; Thibeault, Claude

    2009-06-01

    The different interpretations by States (countries) of the aeromedical standards established by the International Civil Aviation Organization has resulted in a variety of approaches to the development of national aeromedical policy, and consequently a relative lack of harmonization. However, in many areas of aviation, safety management systems have been recently introduced and may represent a way forward. A safety management system can be defined as "A systematic approach to managing safety, including the necessary organizational structures, accountabilities, policies, and procedures" (1). There are four main areas where, by applying safety management principles, it may be possible to better use aeromedical data to enhance flight safety. These are: 1) adjustment of the periodicity and content of routine medical examinations to more accurately reflect aeromedical risk; 2) improvement in reporting and analysis of routine medical examination data; 3) improvement in reporting and analysis of in-flight medical events; and 4) support for improved reporting of relevant aeromedical events through the promotion of an appropriate culture by companies and regulatory authorities. This paper explores how the principles of safety management may be applied to aeromedical systems to improve their contribution to safety.

  17. ESA Human rating Requirements:Status

    NASA Astrophysics Data System (ADS)

    Trujillo, M.; Sgobba, T.

    2012-01-01

    The European Space Agency (ESA) human rating safety requirements are based on heritage requirements of the International Space Station as well as the knowledge and experience derived from European participation on international partnerships. This expertise in conjunction with recommendations derived from past accidents (i.e.: Columbia) and lessons learned have led to the identification of m inimum core safety tech nical requirements for hum an rated space syst ems. These requirements apply to th e crewed space vehicle, integrated space system (i.e.: cre wed vehicle on its launcher) and its interfaces with control centres, la unch pad, etc. In 2009, a first draft was issued. Then, in the summer of 2010, ESA established a working group comprised of more than twenty experts (from disciplines including propulsion, pyrotechnics, structures, avionics, human factors and life support among others) across the Agency to review this draft. This paper provides an overview of ESA "Safety technical re quirements for human rated s pace systems" document, its scope a nd structure, as well as the planned steps for verification of these requirements in term s of achieving the identified safety objectives for crew safety in t erms of a quantitative risk evaluation.

  18. [Study on "multi-dimensional structure and process dynamics quality control system" of Danshen infusion solution based on component structure theory].

    PubMed

    Feng, Liang; Zhang, Ming-Hua; Gu, Jun-Fei; Wang, Gui-You; Zhao, Zi-Yu; Jia, Xiao-Bin

    2013-11-01

    As traditional Chinese medicine (TCM) preparation products feature complex compounds and multiple preparation processes, the implementation of quality control in line with the characteristics of TCM preparation products provides a firm guarantee for the clinical efficacy and safety of TCM preparation products. Danshen infusion solution is a preparation commonly used in clinic, but its quality control is restricted to indexes of finished products, which can not guarantee its inherent quality. Our study group has proposed "multi-dimensional structure and process dynamics quality control system" on the basis of "component structure theory", for the purpose of controlling the quality of Danshen infusion solution at multiple levels and in multiple links from the efficacy-related material basis, the safety-related material basis, the characteristics of dosage form to the preparation process. This article, we bring forth new ideas and models to the quality control of TCM preparation products.

  19. 14 CFR Section 03 - Definitions for Purposes of This System of Accounts and Reports

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... equipment, land, structures, and other tangible property; extensions of fuel, water, and oil distribution equipment; additions to buildings and other structures; and additional safety devices applied to equipment.... Equipment. Tangible property other than land, structures, and improvements. Equity security. Any instrument...

  20. System safety management lessons learned from the US Army acquisition process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piatt, J.A.

    1989-05-01

    The Assistant Secretary of the Army for Research, Development and Acquisition directed the Army Safety Center to provide an audit of the causes of accidents and safety of use restrictions on recently fielded systems by tracking residual hazards back through the acquisition process. The objective was to develop lessons learned'' that could be applied to the acquisition process to minimize mishaps in fielded systems. System safety management lessons learned are defined as Army practices or policies, derived from past successes and failures, that are expected to be effective in eliminating or reducing specific systemic causes of residual hazards. They aremore » broadly applicable and supportive of the Army structure and acquisition objectives. Pacific Northwest Laboratory (PNL) was given the task of conducting an independent, objective appraisal of the Army's system safety program in the context of the Army materiel acquisition process by focusing on four fielded systems which are products of that process. These systems included the Apache helicopter, the Bradley Fighting Vehicle (BFV), the Tube Launched, Optically Tracked, Wire Guided (TOW) Missile and the High Mobility Multipurpose Wheeled Vehicle (HMMWV). The objective of this study was to develop system safety management lessons learned associated with the acquisition process. The first step was to identify residual hazards associated with the selected systems. Since it was impossible to track all residual hazards through the acquisition process, certain well-known, high visibility hazards were selected for detailed tracking. These residual hazards illustrate a variety of systemic problems. Systemic or process causes were identified for each residual hazard and analyzed to determine why they exist. System safety management lessons learned were developed to address related systemic causal factors. 29 refs., 5 figs.« less

  1. Towards Measurement of Confidence in Safety Cases

    NASA Technical Reports Server (NTRS)

    Denney, Ewen; Paim Ganesh J.; Habli, Ibrahim

    2011-01-01

    Arguments in safety cases are predominantly qualitative. This is partly attributed to the lack of sufficient design and operational data necessary to measure the achievement of high-dependability targets, particularly for safety-critical functions implemented in software. The subjective nature of many forms of evidence, such as expert judgment and process maturity, also contributes to the overwhelming dependence on qualitative arguments. However, where data for quantitative measurements is systematically collected, quantitative arguments provide far more benefits over qualitative arguments, in assessing confidence in the safety case. In this paper, we propose a basis for developing and evaluating integrated qualitative and quantitative safety arguments based on the Goal Structuring Notation (GSN) and Bayesian Networks (BN). The approach we propose identifies structures within GSN-based arguments where uncertainties can be quantified. BN are then used to provide a means to reason about confidence in a probabilistic way. We illustrate our approach using a fragment of a safety case for an unmanned aerial system and conclude with some preliminary observations

  2. Cabin fuselage structural design with engine installation and control system

    NASA Technical Reports Server (NTRS)

    Balakrishnan, Tanapaal; Bishop, Mike; Gumus, Ilker; Gussy, Joel; Triggs, Mike

    1994-01-01

    Design requirements for the cabin, cabin system, flight controls, engine installation, and wing-fuselage interface that provide adequate interior volume for occupant seating, cabin ingress and egress, and safety are presented. The fuselage structure must be sufficient to meet the loadings specified in the appropriate sections of Federal Aviation Regulation Part 23. The critical structure must provide a safe life of 10(exp 6) load cycles and 10,000 operational mission cycles. The cabin seating and controls must provide adjustment to account for various pilot physiques and to aid in maintenance and operation of the aircraft. Seats and doors shall not bind or lockup under normal operation. Cabin systems such as heating and ventilation, electrical, lighting, intercom, and avionics must be included in the design. The control system will consist of ailerons, elevator, and rudders. The system must provide required deflections with a combination of push rods, bell cranks, pulleys, and linkages. The system will be free from slack and provide smooth operation without binding. Environmental considerations include variations in temperature and atmospheric pressure, protection against sand, dust, rain, humidity, ice, snow, salt/fog atmosphere, wind and gusts, and shock and vibration. The following design goals were set to meet the requirements of the statement of work: safety, performance, manufacturing and cost. To prevent the engine from penetrating the passenger area in the event of a crash was the primary safety concern. Weight and the fuselage aerodynamics were the primary performance concerns. Commonality and ease of manufacturing were major considerations to reduce cost.

  3. Structural Health Monitoring Using High-Density Fiber Optic Strain Sensor and Inverse Finite Element Methods

    NASA Technical Reports Server (NTRS)

    Vazquez, Sixto L.; Tessler, Alexander; Quach, Cuong C.; Cooper, Eric G.; Parks, Jeffrey; Spangler, Jan L.

    2005-01-01

    In an effort to mitigate accidents due to system and component failure, NASA s Aviation Safety has partnered with industry, academia, and other governmental organizations to develop real-time, on-board monitoring capabilities and system performance models for early detection of airframe structure degradation. NASA Langley is investigating a structural health monitoring capability that uses a distributed fiber optic strain system and an inverse finite element method for measuring and modeling structural deformations. This report describes the constituent systems that enable this structural monitoring function and discusses results from laboratory tests using the fiber strain sensor system and the inverse finite element method to demonstrate structural deformation estimation on an instrumented test article

  4. Study on high reliability safety valve for railway vehicle

    NASA Astrophysics Data System (ADS)

    Zhang, Xuan; Chen, Ruikun; Zhang, Shixi; Xu, BuDu

    2017-09-01

    Now, the realization of most of the functions of the railway vehicles rely on compressed air, so the demand for compressed air is growing higher and higher. This safety valve is a protection device for pressure limitation and pressure relief in an air supply system of railway vehicles. I am going to introduce the structure, operating principle, research and development process of the safety valve designed by our company in this document.

  5. 18 CFR 1304.410 - Navigation restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., structures, land based or water use, shall not be located within the limits of safety harbors and landings established for commercial navigation. (b) Structures shall not be located in such a way as to block the... OF CONSTRUCTION IN THE TENNESSEE RIVER SYSTEM AND REGULATION OF STRUCTURES AND OTHER ALTERATIONS...

  6. 18 CFR 1304.410 - Navigation restrictions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., structures, land based or water use, shall not be located within the limits of safety harbors and landings established for commercial navigation. (b) Structures shall not be located in such a way as to block the... OF CONSTRUCTION IN THE TENNESSEE RIVER SYSTEM AND REGULATION OF STRUCTURES AND OTHER ALTERATIONS...

  7. Distributed Space System Technology Demonstrations with the Emerald Nanosatellite

    NASA Technical Reports Server (NTRS)

    Twiggs, Robert

    2002-01-01

    A viewgraph presentation of Distributed Space System Technologies utilizing the Emerald Nanosatellite is shown. The topics include: 1) Structure Assembly; 2) Emerald Mission; 3) Payload and Mission Operations; 4) System and Subsystem Description; and 5) Safety Integration and Testing.

  8. Medford viaduct ice detection system : final report.

    DOT National Transportation Integrated Search

    1984-12-01

    The Medford Viaduct is a 3230 foot long structure which carries Interstate 5 across Bear Creek and several city streets. Two ice related accidents which occurred on the structure in December of 1984 prompted concern about its safety during subfreezin...

  9. Puncture Self-Healing Polymers for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Gordon, Keith L.; Penner, Ronald K.; Bogert, Phil B.; Yost, W. T.; Siochi, Emilie J.

    2011-01-01

    Space exploration launch costs on the order of $10K per pound provide ample incentive to seek innovative, cost-effective ways to reduce structural mass without sacrificing safety and reliability. Damage-tolerant structural systems can provide a route to avoiding weight penalty while enhancing vehicle safety and reliability. Self-healing polymers capable of spontaneous puncture repair show great promise to mitigate potentially catastrophic damage from events such as micrometeoroid penetration. Effective self-repair requires these materials to heal instantaneously following projectile penetration while retaining structural integrity. Poly(ethylene-co-methacrylic acid) (EMMA), also known as Surlyn is an ionomer-based copolymer that undergoes puncture reversal (self-healing) following high impact puncture at high velocities. However EMMA is not a structural engineering polymer, and will not meet the demands of aerospace applications requiring self-healing engineering materials. Current efforts to identify candidate self-healing polymer materials for structural engineering systems are reported. Rheology, high speed thermography, and high speed video for self-healing semi-crystalline and amorphous polymers will be reported.

  10. Structural Health Monitoring with Fiber Bragg Grating and Piezo Arrays

    NASA Technical Reports Server (NTRS)

    Black, Richard J.; Faridian, Ferey; Moslehi, Behzad; Sotoudeh, Vahid

    2012-01-01

    Structural health monitoring (SHM) is one of the most important tools available for the maintenance, safety, and integrity of aerospace structural systems. Lightweight, electromagnetic-interference- immune, fiber-optic sensor-based SHM will play an increasing role in more secure air transportation systems. Manufacturers and maintenance personnel have pressing needs for significantly improving safety and reliability while providing for lower inspection and maintenance costs. Undetected or untreated damage may grow and lead to catastrophic structural failure. Damage can originate from the strain/stress history of the material, imperfections of domain boundaries in metals, delamination in multi-layer materials, or the impact of machine tools in the manufacturing process. Damage can likewise develop during service life from wear and tear, or under extraordinary circumstances such as with unusual forces, temperature cycling, or impact of flying objects. Monitoring and early detection are key to preventing a catastrophic failure of structures, especially when these are expected to perform near their limit conditions.

  11. Evaluating the Performance of the NASA LaRC CMF Motion Base Safety Devices

    NASA Technical Reports Server (NTRS)

    Gupton, Lawrence E.; Bryant, Richard B., Jr.; Carrelli, David J.

    2006-01-01

    This paper describes the initial measured performance results of the previously documented NASA Langley Research Center (LaRC) Cockpit Motion Facility (CMF) motion base hardware safety devices. These safety systems are required to prevent excessive accelerations that could injure personnel and damage simulator cockpits or the motion base structure. Excessive accelerations may be caused by erroneous commands or hardware failures driving an actuator to the end of its travel at high velocity, stepping a servo valve, or instantly reversing servo direction. Such commands may result from single order failures of electrical or hydraulic components within the control system itself, or from aggressive or improper cueing commands from the host simulation computer. The safety systems must mitigate these high acceleration events while minimizing the negative performance impacts. The system accomplishes this by controlling the rate of change of valve signals to limit excessive commanded accelerations. It also aids hydraulic cushion performance by limiting valve command authority as the actuator approaches its end of travel. The design takes advantage of inherent motion base hydraulic characteristics to implement all safety features using hardware only solutions.

  12. Best practices for quality management of stormwater pipe construction : [summary].

    DOT National Transportation Integrated Search

    2014-02-01

    Although largely unseen, stormwater pipe : systems are integral and important features : of the transportation network. Stormwater : systems support the safety and integrity of : roadways by directing stormwater away from : roadway structures to disc...

  13. Long-Term Structural Health Monitoring System for a High-Speed Railway Bridge Structure

    PubMed Central

    Wu, Lai-Yi

    2015-01-01

    Nanjing Dashengguan Bridge, which serves as the shared corridor crossing Yangtze River for both Beijing-Shanghai high-speed railway and Shanghai-Wuhan-Chengdu railway, is the first 6-track high-speed railway bridge with the longest span throughout the world. In order to ensure safety and detect the performance deterioration during the long-time service of the bridge, a Structural Health Monitoring (SHM) system has been implemented on this bridge by the application of modern techniques in sensing, testing, computing, and network communication. The SHM system includes various sensors as well as corresponding data acquisition and transmission equipment for automatic data collection. Furthermore, an evaluation system of structural safety has been developed for the real-time condition assessment of this bridge. The mathematical correlation models describing the overall structural behavior of the bridge can be obtained with the support of the health monitoring system, which includes cross-correlation models for accelerations, correlation models between temperature and static strains of steel truss arch, and correlation models between temperature and longitudinal displacements of piers. Some evaluation results using the mean value control chart based on mathematical correlation models are presented in this paper to show the effectiveness of this SHM system in detecting the bridge's abnormal behaviors under the varying environmental conditions such as high-speed trains and environmental temperature. PMID:26451387

  14. Westinghouse Small Modular Reactor balance of plant and supporting systems design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Memmott, M. J.; Stansbury, C.; Taylor, C.

    2012-07-01

    The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor (iPWR), in which all of the components typically associated with the nuclear steam supply system (NSSS) of a nuclear power plant are incorporated within a single reactor pressure vessel. This paper is the second in a series of four papers which describe the design and functionality of the Westinghouse SMR. It focuses, in particular, upon the supporting systems and the balance of plant (BOP) designs of the Westinghouse SMR. Several Westinghouse SMR systems are classified as safety, and are critical to the safe operationmore » of the Westinghouse SMR. These include the protection and monitoring system (PMS), the passive core cooling system (PXS), and the spent fuel cooling system (SFS) including pools, valves, and piping. The Westinghouse SMR safety related systems include the instrumentation and controls (I and C) as well as redundant and physically separated safety trains with batteries, electrical systems, and switch gears. Several other incorporated systems are non-safety related, but provide functions for plant operations including defense-in-depth functions. These include the chemical volume control system (CVS), heating, ventilation and cooling (HVAC) systems, component cooling water system (CCS), normal residual heat removal system (RNS) and service water system (SWS). The integrated performance of the safety-related and non-safety related systems ensures the safe and efficient operation of the Westinghouse SMR through various conditions and transients. The turbine island consists of the turbine, electric generator, feedwater and steam systems, moisture separation systems, and the condensers. The BOP is designed to minimize assembly time, shipping challenges, and on-site testing requirements for all structures, systems, and components. (authors)« less

  15. The new structure and contents of employers' juridical responsibility for workers' health and safety in the post-industrial system.

    PubMed

    Ichino, P

    2006-01-01

    1. The enlargement of the labour law application area in the post-industrial system. 2. The enormous growth of differences in productivity between workers and its consequences on the employer's safety obligation. 3. Depressive disorders as a typical professional risk in the post-industrial system and the employer's prevention responsibility. 4. Harassment in the work-place as a typical pathologic consequence of the de-standardization of jobs. The specific employer's prevention responsibility in this field. 5. A conclusive remark.

  16. Autonomous Assembly of Modular Structures in Space and on Extraterrestrial Locations

    NASA Astrophysics Data System (ADS)

    Alhorn, Dean C.

    2005-02-01

    The new U.S. National Vision for Space Exploration requires many new enabling technologies to accomplish the goals of space commercialization and returning humans to the moon and extraterrestrial environments. Traditionally, flight elements are complete sub-systems requiring humans to complete the integration and assembly. These bulky structures also require the use of heavy launch vehicles to send the units to a desired location. This philosophy necessitates a high degree of safety, numerous space walks at a significant cost. Future space mission costs must be reduced and safety increased to reasonably achieve exploration goals. One proposed concept is the autonomous assembly of space structures. This concept is an affordable, reliable solution to in-space and extraterrestrial assembly. Assembly is autonomously performed when two components join after determining that specifications are correct. Local sensors continue monitor joint integrity post assembly, which is critical for safety and structural reliability. Achieving this concept requires a change in space structure design philosophy and the development of innovative technologies to perform autonomous assembly. Assembly of large space structures will require significant numbers of integrity sensors. Thus simple, low-cost sensors are integral to the success of this concept. This paper addresses these issues and proposes a novel concept for assembling space structures autonomously. Core technologies required to achieve in space assembly are presented. These core technologies are critical to the goal of utilizing space in a cost efficient and safe manner. Additionally, these novel technologies can be applied to other systems both on earth and extraterrestrial environments.

  17. Aeroelastic Control of a Segmented Trailing Edge Using Fiber Optic Strain Sensing Technology

    NASA Technical Reports Server (NTRS)

    Graham, Corbin Jay; Martins, Benjamin; Suppanade, Nathan

    2014-01-01

    Currently, design of aircraft structures incorporate a safety factor which is essentially an over design to mitigate the risk of structure failure during operation. Typically this safety factor is to design the structure to withstand loads much greater than what is expected to be experienced during flight. NASA Dryden Flight Research Centers has developed a Fiber Optic Strain Sensing (FOSS) system which can measure strain values in real-time. The Aeroelastics Lab at the AERO Institute is developing a segmented trailing edged wing with multiple control surfaces that can utilize the data from the FOSS system, in conjunction with an adaptive controller to redistribute the lift across a wing. This redistribution can decrease the amount of strain experienced by the wing as well as be used to dampen vibration and reduce flutter.

  18. The research of distributed interactive simulation based on HLA in coal mine industry inherent safety

    NASA Astrophysics Data System (ADS)

    Dou, Zhi-Wu

    2010-08-01

    To solve the inherent safety problem puzzling the coal mining industry, analyzing the characteristic and the application of distributed interactive simulation based on high level architecture (DIS/HLA), a new method is proposed for developing coal mining industry inherent safety distributed interactive simulation adopting HLA technology. Researching the function and structure of the system, a simple coal mining industry inherent safety is modeled with HLA, the FOM and SOM are developed, and the math models are suggested. The results of the instance research show that HLA plays an important role in developing distributed interactive simulation of complicated distributed system and the method is valid to solve the problem puzzling coal mining industry. To the coal mining industry, the conclusions show that the simulation system with HLA plays an important role to identify the source of hazard, to make the measure for accident, and to improve the level of management.

  19. A Conceptual Aerospace Vehicle Structural System Modeling, Analysis and Design Process

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    2007-01-01

    A process for aerospace structural concept analysis and design is presented, with examples of a blended-wing-body fuselage, a multi-bubble fuselage concept, a notional crew exploration vehicle, and a high altitude long endurance aircraft. Aerospace vehicle structures must withstand all anticipated mission loads, yet must be designed to have optimal structural weight with the required safety margins. For a viable systems study of advanced concepts, these conflicting requirements must be imposed and analyzed early in the conceptual design cycle, preferably with a high degree of fidelity. In this design process, integrated multidisciplinary analysis tools are used in a collaborative engineering environment. First, parametric solid and surface models including the internal structural layout are developed for detailed finite element analyses. Multiple design scenarios are generated for analyzing several structural configurations and material alternatives. The structural stress, deflection, strain, and margins of safety distributions are visualized and the design is improved. Over several design cycles, the refined vehicle parts and assembly models are generated. The accumulated design data is used for the structural mass comparison and concept ranking. The present application focus on the blended-wing-body vehicle structure and advanced composite material are also discussed.

  20. [Topical issues of biological safety under current conditions. Part 2. Conceptual, terminological, and definitive framework of biological safety].

    PubMed

    Onishchenko, G G; Smolenskiĭ, V Iu; Ezhlova, E B; Demina, Iu V; Toporkov, V P; Toporkov, A V; Liapin, M N; Kutyrev, V V

    2013-01-01

    In accordance with the established conceptual base for the up-to-date broad interpretation of biological safety, and IHR (2005), developed is the notional, terminological, and definitive framework, comprising 33 elements. Key item of the nomenclature is the biological safety that is identified as population safety (individual, social, national) from direct and (or) human environment mediated (occupational, socio-economic, geopolitical infrastructures, ecological system) exposures to hazardous biological factors. Ultimate objective of the biological safety provision is to prevent and liquidate aftermaths of emergency situations of biological character either of natural or human origin (anthropogenic) arising from direct and indirect impact of the biological threats to the public health compatible with national and international security hazard. Elaborated terminological framework allows for the construction of self-sufficient semantic content for biological safety provision, subject to formalization in legislative, normative and methodological respects and indicative of improvement as regards organizational and structural-functional groundwork of the Russian Federation National chemical and biological safety system, which is to become topical issue of Part 3.

  1. Patient safety goals for the proposed Federal Health Information Technology Safety Center.

    PubMed

    Sittig, Dean F; Classen, David C; Singh, Hardeep

    2015-03-01

    The Office of the National Coordinator for Health Information Technology is expected to oversee creation of a Health Information Technology (HIT) Safety Center. While its functions are still being defined, the center is envisioned as a public-private entity focusing on promotion of HIT related patient safety. We propose that the HIT Safety Center leverages its unique position to work with key administrative and policy stakeholders, healthcare organizations (HCOs), and HIT vendors to achieve four goals: (1) facilitate creation of a nationwide 'post-marketing' surveillance system to monitor HIT related safety events; (2) develop methods and governance structures to support investigation of major HIT related safety events; (3) create the infrastructure and methods needed to carry out random assessments of HIT related safety in complex HCOs; and (4) advocate for HIT safety with government and private entities. The convening ability of a federally supported HIT Safety Center could be critically important to our transformation to a safe and effective HIT enabled healthcare system. © The Author 2014. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Facilitated Nurse Medication-Related Event Reporting to Improve Medication Management Quality and Safety in Intensive Care Units.

    PubMed

    Xu, Jie; Reale, Carrie; Slagle, Jason M; Anders, Shilo; Shotwell, Matthew S; Dresselhaus, Timothy; Weinger, Matthew B

    Medication safety presents an ongoing challenge for nurses working in complex, fast-paced, intensive care unit (ICU) environments. Studying ICU nurse's medication management-especially medication-related events (MREs)-provides an approach to analyze and improve medication safety and quality. The goal of this study was to explore the utility of facilitated MRE reporting in identifying system deficiencies and the relationship between MREs and nurses' work in the ICUs. We conducted 124 structured 4-hour observations of nurses in three different ICUs. Each observation included measurement of nurse's moment-to-moment activity and self-reports of workload and negative mood. The observer then obtained MRE reports from the nurse using a structured tool. The MREs were analyzed by three experts. MREs were reported in 35% of observations. The 60 total MREs included four medication errors and seven adverse drug events. Of the 49 remaining MREs, 65% were associated with negative patient impact. Task/process deficiencies were the most common contributory factor for MREs. MRE occurrence was correlated with increased total task volume. MREs also correlated with increased workload, especially during night shifts. Most of these MREs would not be captured by traditional event reporting systems. Facilitated MRE reporting provides a robust information source about potential breakdowns in medication management safety and opportunities for system improvement.

  3. An artificial intelligence-based structural health monitoring system for aging aircraft

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Tang, Stanley S.; Chen, K. L.

    1993-01-01

    To reduce operating expenses, airlines are now using the existing fleets of commercial aircraft well beyond their originally anticipated service lives. The repair and maintenance of these 'aging aircraft' has therefore become a critical safety issue, both to the airlines and the Federal Aviation Administration. This paper presents the results of an innovative research program to develop a structural monitoring system that will be used to evaluate the integrity of in-service aerospace structural components. Currently in the final phase of its development, this monitoring system will indicate when repair or maintenance of a damaged structural component is necessary.

  4. Optimal Design of Integrated Systems Health Management (ISHM) Systems for improving safety in NASA's Exploration Vehicles: A Two-Level Multidisciplinary Design Approach

    NASA Technical Reports Server (NTRS)

    Tumer, Irem; Mehr, Ali Farhang

    2005-01-01

    In this paper, a two-level multidisciplinary design approach is described to optimize the effectiveness of ISHM s. At the top level, the overall safety of the mission consists of system-level variables, parameters, objectives, and constraints that are shared throughout the system and by all subsystems. Each subsystem level will then comprise of these shared values in addition to subsystem-specific variables, parameters, objectives and constraints. A hierarchical structure will be established to pass up or down shared values between the two levels with system-level and subsystem-level optimization routines.

  5. Using argument notation to engineer biological simulations with increased confidence

    PubMed Central

    Alden, Kieran; Andrews, Paul S.; Polack, Fiona A. C.; Veiga-Fernandes, Henrique; Coles, Mark C.; Timmis, Jon

    2015-01-01

    The application of computational and mathematical modelling to explore the mechanics of biological systems is becoming prevalent. To significantly impact biological research, notably in developing novel therapeutics, it is critical that the model adequately represents the captured system. Confidence in adopting in silico approaches can be improved by applying a structured argumentation approach, alongside model development and results analysis. We propose an approach based on argumentation from safety-critical systems engineering, where a system is subjected to a stringent analysis of compliance against identified criteria. We show its use in examining the biological information upon which a model is based, identifying model strengths, highlighting areas requiring additional biological experimentation and providing documentation to support model publication. We demonstrate our use of structured argumentation in the development of a model of lymphoid tissue formation, specifically Peyer's Patches. The argumentation structure is captured using Artoo (www.york.ac.uk/ycil/software/artoo), our Web-based tool for constructing fitness-for-purpose arguments, using a notation based on the safety-critical goal structuring notation. We show how argumentation helps in making the design and structured analysis of a model transparent, capturing the reasoning behind the inclusion or exclusion of each biological feature and recording assumptions, as well as pointing to evidence supporting model-derived conclusions. PMID:25589574

  6. Using argument notation to engineer biological simulations with increased confidence.

    PubMed

    Alden, Kieran; Andrews, Paul S; Polack, Fiona A C; Veiga-Fernandes, Henrique; Coles, Mark C; Timmis, Jon

    2015-03-06

    The application of computational and mathematical modelling to explore the mechanics of biological systems is becoming prevalent. To significantly impact biological research, notably in developing novel therapeutics, it is critical that the model adequately represents the captured system. Confidence in adopting in silico approaches can be improved by applying a structured argumentation approach, alongside model development and results analysis. We propose an approach based on argumentation from safety-critical systems engineering, where a system is subjected to a stringent analysis of compliance against identified criteria. We show its use in examining the biological information upon which a model is based, identifying model strengths, highlighting areas requiring additional biological experimentation and providing documentation to support model publication. We demonstrate our use of structured argumentation in the development of a model of lymphoid tissue formation, specifically Peyer's Patches. The argumentation structure is captured using Artoo (www.york.ac.uk/ycil/software/artoo), our Web-based tool for constructing fitness-for-purpose arguments, using a notation based on the safety-critical goal structuring notation. We show how argumentation helps in making the design and structured analysis of a model transparent, capturing the reasoning behind the inclusion or exclusion of each biological feature and recording assumptions, as well as pointing to evidence supporting model-derived conclusions.

  7. 75 FR 62436 - Notice of Issuance of Regulatory Guide

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-08

    ... Power Plants,'' includes in its scope safety- related structures, systems, and components (SSCs) that... monitor the effectiveness of maintenance for protective coatings within its scope (as discrete systems or... and Management System (ADAMS) under Accession No. ML102230359. Electronic copies of Regulatory Guide 1...

  8. Development of Structural Health Management Technology for Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Prosser, W. H.

    2003-01-01

    As part of the overall goal of developing Integrated Vehicle Health Management (IVHM) systems for aerospace vehicles, NASA has focused considerable resources on the development of technologies for Structural Health Management (SHM). The motivations for these efforts are to increase the safety and reliability of aerospace structural systems, while at the same time decreasing operating and maintenance costs. Research and development of SHM technologies has been supported under a variety of programs for both aircraft and spacecraft including the Space Launch Initiative, X-33, Next Generation Launch Technology, and Aviation Safety Program. The major focus of much of the research to date has been on the development and testing of sensor technologies. A wide range of sensor technologies are under consideration including fiber-optic sensors, active and passive acoustic sensors, electromagnetic sensors, wireless sensing systems, MEMS, and nanosensors. Because of their numerous advantages for aerospace applications, most notably being extremely light weight, fiber-optic sensors are one of the leading candidates and have received considerable attention.

  9. Do European hospitals have quality and safety governance systems and structures in place?

    PubMed

    Shaw, C; Kutryba, B; Crisp, H; Vallejo, P; Suñol, R

    2009-02-01

    Internal systems for quality and safety were assessed in 89 hospitals in six European states, by external teams using standardised criteria and procedures, as part of the Methods of Assessing Response to Quality Improvement Strategies (MARQuIS) project. The assessments were made primarily to identify the current use of quality management systems in the sample hospitals, and also to demonstrate a potential tool for comparable assessment of hospitals in general. The large majority of the hospitals had a formal, documented infrastructure to manage quality and safety, but a significant minority had no designated mission, programme or coordination. In two-thirds of hospitals, the governing body was active in defining policy and programmes for improvement, and received reports on quality, safety and patient satisfaction at least once a year. The brief on-site assessments identified systematic variations, within and between countries, in structures and processes of governance and to document the uptake of best practice. Unacceptable variations in practice could be reduced, to the benefit of consumers and providers, by developing and publishing basic organisational standards relevant to all European states. The simple assessment criteria designed for this project could be developed into a practical tool for self-assessment, peer review or benchmarking of hospitals across national borders. This assessment, combined with explicit, relevant and achievable standards, could provide a vehicle to promote the voluntary uptake of best practice and consistency in quality and safety among hospitals in Europe.

  10. Helping safeguard Veterans Affairs' hospital buildings by advanced earthquake monitoring

    USGS Publications Warehouse

    Kalkan, Erol; Banga, Krishna; Ulusoy, Hasan S.; Fletcher, Jon Peter B.; Leith, William S.; Blair, James L.

    2012-01-01

    In collaboration with the U.S. Department of Veterans Affairs (VA), the National Strong Motion Project of the U.S. Geological Survey has recently installed sophisticated seismic systems that will monitor the structural integrity of hospital buildings during earthquake shaking. The new systems have been installed at more than 20 VA medical campuses across the country. These monitoring systems, which combine sensitive accelerometers and real-time computer calculations, are capable of determining the structural health of each structure rapidly after an event, helping to ensure the safety of patients and staff.

  11. Justification of system of assessment of ecological safety degree of housing construction objects

    NASA Astrophysics Data System (ADS)

    Kankhva, Vadim

    2017-10-01

    In article characteristics and properties of competitiveness of housing construction objects are investigated, criteria and points of national systems of ecological building’s standardization are structured, the compliance assessment form on stages of life cycle of a capital construction project is developed. The main indicators of level of ecological safety considering requirements of the international ISO standards 9000 and ISO 14000 and which are based on the basic principles of general quality management (TQM) are presented.

  12. Discussion on runoff purification technology of highway bridge deck based on water quality safety

    NASA Astrophysics Data System (ADS)

    Tan, Sheng-guang; Liu, Xue-xin; Zou, Guo-ping; Xiong, Xin-zhu; Tao, Shuang-cheng

    2018-06-01

    Aiming at the actual problems existing, including a poor purification effect of highway bridge runoff collection and treatment system across sensitive water and necessary manual emergency operation, three kinds of technology, three pools system of bridge runoff purification, the integral pool of bridge runoff purification and ecological planting tank, are put forward by optimizing the structure of purification unit and system setting. At the same time, we come up with an emergency strategy for hazardous material leakage basing on automatic identification and remote control of traffic accidents. On the basis of combining these with the optimized pool structure, sensitive water safety can be guaranteed and water pollution, from directly discharging of bridge runoff, can be decreased. For making up for the shortages of green highway construction technology, the technique has important reference value.

  13. [Organizational and management companies models].

    PubMed

    Tomei, G; Tomei, F; Fiaschetti, M; De Sio, S; Tria, M; Schifano, M P; Monti, C; Tasciotti, Z; Panfili, T; Caciari, A; Sancini, A

    2010-01-01

    With the legislative decree 81/08 and s.m.i. it's explicitly defined a model of management and corporate organization that can contribute to prevent security risks in work environments. The realization of the model is not obligatory, but desirable because the result of its implementation is a decrease of company's risks and costs for safety. Our study group has developed the structure of an organizational and management model for corporate safety and the tools necessary for its realization. The realization of a model is structured in various phases: initial exam, safety policy, planification, implementation, monitoring, system retest and improvement. Such a model, in continuous evolution, is based on the responsibilities of the different corporate figures through an accurate analysis of the measured risks and the measures adopted.

  14. A new SMART sensing system for aerospace structures

    NASA Astrophysics Data System (ADS)

    Zhang, David C.; Yu, Pin; Beard, Shawn; Qing, Peter; Kumar, Amrita; Chang, Fu-Kuo

    2007-04-01

    It is essential to ensure the safety and reliability of in-service structures such as unmanned vehicles by detecting structural cracking, corrosion, delamination, material degradation and other types of damage in time. Utilization of an integrated sensor network system can enable automatic inspection of such damages ultimately. Using a built-in network of actuators and sensors, Acellent is providing tools for advanced structural diagnostics. Acellent's integrated structural health monitoring system consists of an actuator/sensor network, supporting signal generation and data acquisition hardware, and data processing, visualization and analysis software. This paper describes the various features of Acellent's latest SMART sensing system. The new system is USB-based and is ultra-portable using the state-of-the-art technology, while delivering many functions such as system self-diagnosis, sensor diagnosis, through-transmission mode and pulse-echo mode of operation and temperature measurement. Performance of the new system was evaluated for assessment of damage in composite structures.

  15. The Role of Probabilistic Design Analysis Methods in Safety and Affordability

    NASA Technical Reports Server (NTRS)

    Safie, Fayssal M.

    2016-01-01

    For the last several years, NASA and its contractors have been working together to build space launch systems to commercialize space. Developing commercial affordable and safe launch systems becomes very important and requires a paradigm shift. This paradigm shift enforces the need for an integrated systems engineering environment where cost, safety, reliability, and performance need to be considered to optimize the launch system design. In such an environment, rule based and deterministic engineering design practices alone may not be sufficient to optimize margins and fault tolerance to reduce cost. As a result, introduction of Probabilistic Design Analysis (PDA) methods to support the current deterministic engineering design practices becomes a necessity to reduce cost without compromising reliability and safety. This paper discusses the importance of PDA methods in NASA's new commercial environment, their applications, and the key role they can play in designing reliable, safe, and affordable launch systems. More specifically, this paper discusses: 1) The involvement of NASA in PDA 2) Why PDA is needed 3) A PDA model structure 4) A PDA example application 5) PDA link to safety and affordability.

  16. 75 FR 45173 - Notice of Issuance of Regulatory Guide

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-02

    ... coolant system for measuring process variables (e.g., pressure, level, and flow). The term ``safety- related'' refers to those structures, systems, and components necessary to ensure (1) the integrity of the... are located in the NRC's Agencywide Documents Access and Management System (ADAMS) under Accession No...

  17. Patient Safety Learning Systems: A Systematic Review and Qualitative Synthesis.

    PubMed

    2017-01-01

    A patient safety learning system (sometimes called a critical incident reporting system) refers to structured reporting, collation, and analysis of critical incidents. To inform a provincial working group's recommendations for an Ontario Patient Safety Event Learning System, a systematic review was undertaken to determine design features that would optimize its adoption into the health care system and would inform implementation strategies. The objective of this review was to address two research questions: (a) what are the barriers to and facilitators of successful adoption of a patient safety learning system reported by health professionals and (b) what design components maximize successful adoption and implementation? To answer the first question, we used a published systematic review. To answer the second question, we used scoping study methodology. Common barriers reported in the literature by health care professionals included fear of blame, legal penalties, the perception that incident reporting does not improve patient safety, lack of organizational support, inadequate feedback, lack of knowledge about incident reporting systems, and lack of understanding about what constitutes an error. Common facilitators included a non-accusatory environment, the perception that incident reporting improves safety, clarification of the route of reporting and of how the system uses reports, enhanced feedback, role models (such as managers) using and promoting reporting, legislated protection of those who report, ability to report anonymously, education and training opportunities, and clear guidelines on what to report. Components of a patient safety learning system that increased successful adoption and implementation were emphasis on a blame-free culture that encourages reporting and learning, clear guidelines on how and what to report, making sure the system is user-friendly, organizational development support for data analysis to generate meaningful learning outcomes, and multiple mechanisms to provide feedback through routes to reporters and the wider community (local meetings, email alerts, bulletins, paper contributions, etc.). The design of a patient safety learning system can be optimized by an awareness of the barriers to and facilitators of successful adoption and implementation identified by health care professionals. Evaluation of the effectiveness of a patient safety learning system is needed to refine its design.

  18. Pedestrian headform testing: inferring performance at impact speeds and for headform masses not tested, and estimating average performance in a range of real-world conditions.

    PubMed

    Hutchinson, T Paul; Anderson, Robert W G; Searson, Daniel J

    2012-01-01

    Tests are routinely conducted where instrumented headforms are projected at the fronts of cars to assess pedestrian safety. Better information would be obtained by accounting for performance over the range of expected impact conditions in the field. Moreover, methods will be required to integrate the assessment of secondary safety performance with primary safety systems that reduce the speeds of impacts. Thus, we discuss how to estimate performance over a range of impact conditions from performance in one test and how this information can be combined with information on the probability of different impact speeds to provide a balanced assessment of pedestrian safety. Theoretical consideration is given to 2 distinct aspects to impact safety performance: the test impact severity (measured by the head injury criterion, HIC) at a speed at which a structure does not bottom out and the speed at which bottoming out occurs. Further considerations are given to an injury risk function, the distribution of impact speeds likely in the field, and the effect of primary safety systems on impact speeds. These are used to calculate curves that estimate injuriousness for combinations of test HIC, bottoming out speed, and alternative distributions of impact speeds. The injuriousness of a structure that may be struck by the head of a pedestrian depends not only on the result of the impact test but also the bottoming out speed and the distribution of impact speeds. Example calculations indicate that the relationship between the test HIC and injuriousness extends over a larger range than is presently used by the European New Car Assessment Programme (Euro NCAP), that bottoming out at speeds only slightly higher than the test speed can significantly increase the injuriousness of an impact location and that effective primary safety systems that reduce impact speeds significantly modify the relationship between the test HIC and injuriousness. Present testing regimes do not take fully into account the relationship between impact severity and variations in impact conditions. Instead, they assess injury risk at a single impact speed. Hence, they may fail to differentiate risks due to the effects of bottoming out under different impact conditions. Because the level of injuriousness changes across a wide range of HIC values, even slight improvements to very stiff structures need to be encouraged through testing. Indications are that the potential of autonomous braking systems is substantial and needs to be weighted highly in vehicle safety assessments.

  19. Does perceived neighborhood walkability and safety mediate the association between education and meeting physical activity guidelines?

    PubMed

    Pratt, Michael; Yin, Shaoman; Soler, Robin; Njai, Rashid; Siegel, Paul Z; Liao, Youlian

    2015-04-09

    The role of neighborhood walkability and safety in mediating the association between education and physical activity has not been quantified. We used data from the 2010 and 2012 Communities Putting Prevention to Work Behavioral Risk Factor Surveillance System and structural equation modeling to estimate how much of the effect of education level on physical activity was mediated by perceived neighborhood walkability and safety. Neighborhood walkability accounts for 11.3% and neighborhood safety accounts for 6.8% of the effect. A modest proportion of the important association between education and physical activity is mediated by perceived neighborhood walkability and safety, suggesting that interventions focused on enhancing walkability and safety could reduce the disparity in physical activity associated with education level.

  20. The growth of partnerships to support patient safety practice adoption.

    PubMed

    Mendel, Peter; Damberg, Cheryl L; Sorbero, Melony E S; Varda, Danielle M; Farley, Donna O

    2009-04-01

    To document the numbers and types of interorganizational partnerships within the national patient safety domain, changes over time in these networks, and their potential for disseminating patient safety knowledge and practices. Self-reported information gathered from representatives of national-level organizations active in promoting patient safety. Social network analysis was used to examine the structure and composition of partnership networks and changes between 2004 and 2006. Two rounds of structured telephone interviews (n=35 organizations in 2004 and 55 in 2006). Patient safety partnerships expanded between 2004 and 2006. The average number of partnerships per interviewed organization increased 40 percent and activities per reported partnership increased over 50 percent. Partnerships increased in all activity domains, particularly dissemination and tools development. Fragmentation of the overall partnership network decreased and potential for information flow increased. Yet network centralization increased, suggesting vulnerability to partnership failure if key participants disengage. Growth in partnerships signifies growing strength in the capacity to disseminate and implement patient safety advancements in the U.S. health care system. The centrality of AHRQ in these networks of partnerships bodes well for its leadership role in disseminating information, tools, and practices generated by patient safety research projects.

  1. Design and application of a tool for structuring, capitalizing and making more accessible information and lessons learned from accidents involving machinery.

    PubMed

    Sadeghi, Samira; Sadeghi, Leyla; Tricot, Nicolas; Mathieu, Luc

    2017-12-01

    Accident reports are published in order to communicate the information and lessons learned from accidents. An efficient accident recording and analysis system is a necessary step towards improvement of safety. However, currently there is a shortage of efficient tools to support such recording and analysis. In this study we introduce a flexible and customizable tool that allows structuring and analysis of this information. This tool has been implemented under TEEXMA®. We named our prototype TEEXMA®SAFETY. This tool provides an information management system to facilitate data collection, organization, query, analysis and reporting of accidents. A predefined information retrieval module provides ready access to data which allows the user to quickly identify the possible hazards for specific machines and provides information on the source of hazards. The main target audience for this tool includes safety personnel, accident reporters and designers. The proposed data model has been developed by analyzing different accident reports.

  2. Pressure Safety Program Implementation at ORNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lower, Mark; Etheridge, Tom; Oland, C. Barry

    2013-01-01

    The Oak Ridge National Laboratory (ORNL) is a US Department of Energy (DOE) facility that is managed by UT-Battelle, LLC. In February 2006, DOE promulgated worker safety and health regulations to govern contractor activities at DOE sites. These regulations, which are provided in 10 CFR 851, Worker Safety and Health Program, establish requirements for worker safety and health program that reduce or prevent occupational injuries, illnesses, and accidental losses by providing DOE contractors and their workers with safe and healthful workplaces at DOE sites. The regulations state that contractors must achieve compliance no later than May 25, 2007. According tomore » 10 CFR 851, Subpart C, Specific Program Requirements, contractors must have a structured approach to their worker safety and health programs that at a minimum includes provisions for pressure safety. In implementing the structured approach for pressure safety, contractors must establish safety policies and procedures to ensure that pressure systems are designed, fabricated, tested, inspected, maintained, repaired, and operated by trained, qualified personnel in accordance with applicable sound engineering principles. In addition, contractors must ensure that all pressure vessels, boilers, air receivers, and supporting piping systems conform to (1) applicable American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (2004) Sections I through XII, including applicable code cases; (2) applicable ASME B31 piping codes; and (3) the strictest applicable state and local codes. When national consensus codes are not applicable because of pressure range, vessel geometry, use of special materials, etc., contractors must implement measures to provide equivalent protection and ensure a level of safety greater than or equal to the level of protection afforded by the ASME or applicable state or local codes. This report documents the work performed to address legacy pressure vessel deficiencies and comply with pressure safety requirements in 10 CFR 851. It also describes actions taken to develop and implement ORNL’s Pressure Safety Program.« less

  3. Determining the causal relationships among balanced scorecard perspectives on school safety performance: case of Saudi Arabia.

    PubMed

    Alolah, Turki; Stewart, Rodney A; Panuwatwanich, Kriengsak; Mohamed, Sherif

    2014-07-01

    In the public schools of many developing countries, numerous accidents and incidents occur because of poor safety regulations and management systems. To improve the educational environment in Saudi Arabia, the Ministry of Education seeks novel approaches to measure school safety performance in order to decrease incidents and accidents. The main objective of this research was to develop a systematic approach for measuring Saudi school safety performance using the balanced scorecard framework philosophy. The evolved third generation balanced scorecard framework is considered to be a suitable and robust framework that captures the system-wide leading and lagging indicators of business performance. The balanced scorecard architecture is ideal for adaptation to complex areas such as safety management where a holistic system evaluation is more effective than traditional compartmentalised approaches. In developing the safety performance balanced scorecard for Saudi schools, the conceptual framework was first developed and peer-reviewed by eighteen Saudi education experts. Next, 200 participants, including teachers, school executives, and Ministry of Education officers, were recruited to rate both the importance and the performance of 79 measurement items used in the framework. Exploratory factor analysis, followed by the confirmatory partial least squares method, was then conducted in order to operationalise the safety performance balanced scorecard, which encapsulates the following five salient perspectives: safety management and leadership; safety learning and training; safety policy, procedures and processes; workforce safety culture; and safety performance. Partial least squares based structural equation modelling was then conducted to reveal five significant relationships between perspectives, namely, safety management and leadership had a significant effect on safety learning and training and safety policy, procedures and processes, both safety learning and training and safety policy, procedures and processes had significant effects on workforce safety culture, and workforce safety culture had a significant effect on safety performance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. A hierarchical factor analysis of a safety culture survey.

    PubMed

    Frazier, Christopher B; Ludwig, Timothy D; Whitaker, Brian; Roberts, D Steve

    2013-06-01

    Recent reviews of safety culture measures have revealed a host of potential factors that could make up a safety culture (Flin, Mearns, O'Connor, & Bryden, 2000; Guldenmund, 2000). However, there is still little consensus regarding what the core factors of safety culture are. The purpose of the current research was to determine the core factors, as well as the structure of those factors that make up a safety culture, and establish which factors add meaningful value by factor analyzing a widely used safety culture survey. A 92-item survey was constructed by subject matter experts and was administered to 25,574 workers across five multi-national organizations in five different industries. Exploratory and hierarchical confirmatory factor analyses were conducted revealing four second-order factors of a Safety Culture consisting of Management Concern, Personal Responsibility for Safety, Peer Support for Safety, and Safety Management Systems. Additionally, a total of 12 first-order factors were found: three on Management Concern, three on Personal Responsibility, two on Peer Support, and four on Safety Management Systems. The resulting safety culture model addresses gaps in the literature by indentifying the core constructs which make up a safety culture. This clarification of the major factors emerging in the measurement of safety cultures should impact the industry through a more accurate description, measurement, and tracking of safety cultures to reduce loss due to injury. Copyright © 2013 National Safety Council and Elsevier Ltd. All rights reserved.

  5. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1984-01-01

    An assessment of NASA's safety performance for 1983 affirms that NASA Headquarters and Center management teams continue to hold the safety of manned flight to be their prime concern, and that essential effort and resources are allocated for maintaining safety in all of the development and operational programs. Those conclusions most worthy of NASA management concentration are given along with recommendations for action concerning; product quality and utility; space shuttle main engine; landing gear; logistics and management; orbiter structural loads, landing speed, and pitch control; the shuttle processing contractor; and the safety of flight operations. It appears that much needs to be done before the Space Transportation System can achieve the reliability necessary for safe, high rate, low cost operations.

  6. Reducing non-collision injuries in special transportation services by enhanced safety culture.

    PubMed

    Wretstrand, Anders; Petzäll, Jan; Bylund, Per-Olof; Falkmer, Torbjörn

    2010-04-01

    Previous research has pointed out that non-collision injuries occur among wheelchair users in Special Transportation Services (STS - a demand-responsive transport mode). The organization of such modes is also quite complex, involving both stakeholders and key personnel at different levels. Our objective was therefore to qualitatively explore the state of safety, as perceived and discussed within a workplace context. Focus groups were held with drivers of both taxi companies and bus companies. The results indicated that passengers run the risk of being injured without being involved in a vehicle collision. The pertinent organizational and corporate culture did not prioritize safety. The drivers identified some relatively clear-cut safety threats, primarily before and after a ride, at vehicle standstill. The driver's work place seemed to be surrounded with a reactive instead of proactive structure. We conclude that not only vehicle and wheelchair technical safety must be considered in STS, but also system safety. Instead of viewing drivers' error as a cause, it should be seen as a symptom of systems failure. Human error is connected to aspects of tools, tasks, and operating environment. Enhanced understanding and influence of these connections within STS and accessible public transport systems will promote safety for wheelchair users. Copyright 2009 IPEM. Published by Elsevier Ltd. All rights reserved.

  7. 78 FR 41434 - Proposed Revisions to Design of Structures, Components, Equipment and Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-10

    ..., Components, Equipment and Systems AGENCY: Nuclear Regulatory Commission. ACTION: Standard review plan-draft... Systems, Piping Components and their Associated Supports,'' of NUREG-0800, ``Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants: LWR Edition.'' DATES: Submit comments by...

  8. A low-cost wireless system for autonomous generation of road safety alerts

    NASA Astrophysics Data System (ADS)

    Banks, B.; Harms, T.; Sedigh Sarvestani, S.; Bastianini, F.

    2009-03-01

    This paper describes an autonomous wireless system that generates road safety alerts, in the form of SMS and email messages, and sends them to motorists subscribed to the service. Drivers who regularly traverse a particular route are the main beneficiaries of the proposed system, which is intended for sparsely populated rural areas, where information available to drivers about road safety, especially bridge conditions, is very limited. At the heart of this system is the SmartBrick, a wireless system for remote structural health monitoring that has been presented in our previous work. Sensors on the SmartBrick network regularly collect data on water level, temperature, strain, and other parameters important to safety of a bridge. This information is stored on the device, and reported to a remote server over the GSM cellular infrastructure. The system generates alerts indicating hazardous road conditions when the data exceeds thresholds that can be remotely changed. The remote server and any number of designated authorities can be notified by email, FTP, and SMS. Drivers can view road conditions and subscribe to SMS and/or email alerts through a web page. The subscription-only form of alert generation has been deliberately selected to mitigate privacy concerns. The proposed system can significantly increase the safety of travel through rural areas. Real-time availability of information to transportation authorities and law enforcement officials facilitates early or proactive reaction to road hazards. Direct notification of drivers further increases the utility of the system in increasing the safety of the traveling public.

  9. Structural equation model to investigate the dimensions influencing safety culture improvement in construction sector: A case in Indonesia

    NASA Astrophysics Data System (ADS)

    Machfudiyanto, Rossy Armyn; Latief, Yusuf; Yogiswara, Yoko; Setiawan, R. Mahendra Fitra

    2017-06-01

    In facing the ASEAN Economic Community, the level of prevailing working accidents becomes one of the competitiveness factors among the companies. A construction industry is one of the industries prone to high level of accidents. Improving the safety record will not be completely effective unless the occupational safety and healthy culture is enhanced. The aim of this research was to develop a model and to conduct empirical investigation on the relationships among the dimensions of construction occupational safety culture. This research used the structural equation model as a means to examine the hypothesis of positive relationships between dimensions and objectives. The method used in this research was questionnaire survey which was distributed to the respondents from construction companies in a state-owned enterprise in Indonesia. Moreover, there were dimensions of occupational safety culture that was established, such as leadership, behavior, value, strategy, policy, process, employee, safety cost, and contract system. The results of this study indicated that all dimensions were significant and inter-related in forming the safety culture. The result of R2 yielded the safety performance was 54%, which means it was in low category and evaluation of policies on construction companies was required in addressing the issue of working accidents.

  10. Application of the SEIPS Model to Analyze Medication Safety in a Crisis Residential Center.

    PubMed

    Steele, Maria L; Talley, Brenda; Frith, Karen H

    2018-02-01

    Medication safety and error reduction has been studied in acute and long-term care settings, but little research is found in the literature regarding mental health settings. Because mental health settings are complex, medication administration is vulnerable to a variety of errors from transcription to administration. The purpose of this study was to analyze critical factors related to a mental health work system structure and processes that threaten safe medication administration practices. The Systems Engineering Initiative for Patient Safety (SEIPS) model provides a framework to analyze factors affecting medication safety. The model approach analyzes the work system concepts of technology, tasks, persons, environment, and organization to guide the collection of data. In the study, the Lean methodology tools were used to identify vulnerabilities in the system that could be targeted later for improvement activities. The project director completed face-to-face interviews, asked nurses to record disruptions in a log, and administered a questionnaire to nursing staff. The project director also conducted medication chart reviews and recorded medication errors using a standardized taxonomy for errors that allowed categorization of the prevalent types of medication errors. Results of the study revealed disruptions during the medication process, pharmacology training needs, and documentation processes as the primary opportunities for improvement. The project engaged nurses to identify sustainable quality improvement strategies to improve patient safety. The mental health setting carries challenges for safe medication administration practices. Through analysis of the structure, process, and outcomes of medication administration, opportunities for quality improvement and sustainable interventions were identified, including minimizing the number of distractions during medication administration, training nurses on psychotropic medications, and improving the documentation system. A task force was created to analyze the descriptive data and to establish objectives aimed at improving efficiency of the work system and care process involved in medication administration at the end of the project. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Model-based safety analysis of human-robot interactions: the MIRAS walking assistance robot.

    PubMed

    Guiochet, Jérémie; Hoang, Quynh Anh Do; Kaaniche, Mohamed; Powell, David

    2013-06-01

    Robotic systems have to cope with various execution environments while guaranteeing safety, and in particular when they interact with humans during rehabilitation tasks. These systems are often critical since their failure can lead to human injury or even death. However, such systems are difficult to validate due to their high complexity and the fact that they operate within complex, variable and uncertain environments (including users), in which it is difficult to foresee all possible system behaviors. Because of the complexity of human-robot interactions, rigorous and systematic approaches are needed to assist the developers in the identification of significant threats and the implementation of efficient protection mechanisms, and in the elaboration of a sound argumentation to justify the level of safety that can be achieved by the system. For threat identification, we propose a method called HAZOP-UML based on a risk analysis technique adapted to system description models, focusing on human-robot interaction models. The output of this step is then injected in a structured safety argumentation using the GSN graphical notation. Those approaches have been successfully applied to the development of a walking assistant robot which is now in clinical validation.

  12. 76 FR 41041 - Special Conditions: Gulfstream Aerospace LP (GALP) Model G250 Airplane, Interaction of Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ... performance. They cannot be considered in isolation but should be included in the overall safety evaluation of.... 25.629(b)(2) are maintained. (4) Failures of the system that result in forced structural vibrations...

  13. 46 CFR 175.540 - Equivalents.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... safety management system is in place on board a vessel. The Commandant will consider the size and corporate structure of a vessel's company when determining the acceptability of an equivalent system... require engineering evaluations and tests to demonstrate the equivalence of the substitute. (b) The...

  14. Structural health monitoring using wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Sreevallabhan, K.; Nikhil Chand, B.; Ramasamy, Sudha

    2017-11-01

    Monitoring and analysing health of large structures like bridges, dams, buildings and heavy machinery is important for safety, economical, operational, making prior protective measures, and repair and maintenance point of view. In recent years there is growing demand for such larger structures which in turn make people focus more on safety. By using Microelectromechanical Systems (MEMS) Accelerometer we can perform Structural Health Monitoring by studying the dynamic response through measure of ambient vibrations and strong motion of such structures. By using Wireless Sensor Networks (WSN) we can embed these sensors in wireless networks which helps us to transmit data wirelessly thus we can measure the data wirelessly at any remote location. This in turn reduces heavy wiring which is a cost effective as well as time consuming process to lay those wires. In this paper we developed WSN based MEMS-accelerometer for Structural to test the results in the railway bridge near VIT University, Vellore campus.

  15. A cross-cultural study of organizational factors on safety: Japanese vs. Taiwanese oil refinery plants.

    PubMed

    Hsu, Shang Hwa; Lee, Chun-Chia; Wu, Muh-Cherng; Takano, Kenichi

    2008-01-01

    This study attempts to identify idiosyncrasies of organizational factors on safety and their influence mechanisms in Taiwan and Japan. Data were collected from employees of Taiwanese and Japanese oil refinery plants. Results show that organizational factors on safety differ in the two countries. Organizational characteristics in Taiwanese plants are highlighted as: higher level of management commitment to safety, harmonious interpersonal relationship, more emphasis on safety activities, higher devotion to supervision, and higher safety self-efficacy, as well as high quality of safety performance. Organizational characteristics in Japanese plants are highlighted as: higher level of employee empowerment and attitude towards continuous improvement, more emphasis on systematic safety management approach, efficient reporting system and teamwork, and high quality of safety performance. The casual relationships between organizational factors and workers' safety performance were investigated using structural equation modeling (SEM). Results indicate that the influence mechanisms of organizational factors in Taiwan and Japan are different. These findings provide insights into areas of safety improvement in emerging countries and developed countries respectively.

  16. Statechart Analysis with Symbolic PathFinder

    NASA Technical Reports Server (NTRS)

    Pasareanu, Corina S.

    2012-01-01

    We report here on our on-going work that addresses the automated analysis and test case generation for software systems modeled using multiple Statechart formalisms. The work is motivated by large programs such as NASA Exploration, that involve multiple systems that interact via safety-critical protocols and are designed with different Statechart variants. To verify these safety-critical systems, we have developed Polyglot, a framework for modeling and analysis of model-based software written using different Statechart formalisms. Polyglot uses a common intermediate representation with customizable Statechart semantics and leverages the analysis and test generation capabilities of the Symbolic PathFinder tool. Polyglot is used as follows: First, the structure of the Statechart model (expressed in Matlab Stateflow or Rational Rhapsody) is translated into a common intermediate representation (IR). The IR is then translated into Java code that represents the structure of the model. The semantics are provided as "pluggable" modules.

  17. Factors Influencing Implementation of OHSAS 18001 in Indian Construction Organizations: Interpretive Structural Modeling Approach

    PubMed Central

    Rajaprasad, Sunku Venkata Siva; Chalapathi, Pasupulati Venkata

    2015-01-01

    Background Construction activity has made considerable breakthroughs in the past two decades on the back of increases in development activities, government policies, and public demand. At the same time, occupational health and safety issues have become a major concern to construction organizations. The unsatisfactory safety performance of the construction industry has always been highlighted since the safety management system is neglected area and not implemented systematically in Indian construction organizations. Due to a lack of enforcement of the applicable legislation, most of the construction organizations are forced to opt for the implementation of Occupational Health Safety Assessment Series (OHSAS) 18001 to improve safety performance. Methods In order to better understand factors influencing the implementation of OHSAS 18001, an interpretive structural modeling approach has been applied and the factors have been classified using matrice d'impacts croises-multiplication appliqué a un classement (MICMAC) analysis. The study proposes the underlying theoretical framework to identify factors and to help management of Indian construction organizations to understand the interaction among factors influencing in implementation of OHSAS 18001. Results Safety culture, continual improvement, morale of employees, and safety training have been identified as dependent variables. Safety performance, sustainable construction, and conducive working environment have been identified as linkage variables. Management commitment and safety policy have been identified as the driver variables. Conclusion Management commitment has the maximum driving power and the most influential factor is safety policy, which states clearly the commitment of top management towards occupational safety and health. PMID:26929828

  18. Meteorological Satellites (METSAT) and Earth Observing System (EOS) Advanced Microwave Sounding Unit-A (AMSU-A) Stress Analysis Report

    NASA Technical Reports Server (NTRS)

    Heffner, Robert

    1996-01-01

    Stress analysis of the primary structure of the Meteorological Satellites Project (METSAT) Advanced Microwave Sounding Units-A, A1 Module using static loads is presented. The structural margins of safety and natural frequency predictions for the METSAT design are reported.

  19. Earth Observing System (EOS)/Advanced Microwave Sounding Unit-A (AMSU-A) Stress Analysis Report, A1 Module. Addendum 1

    NASA Technical Reports Server (NTRS)

    Ely, W.

    1996-01-01

    This addendum reports the structural margins of safety and natural frequency predictions for the design following the EOS AMSU-A1 Mechanical/Structural Subsystem Critical Design Review (CDR), based on a new and more refined finite element model.

  20. From striving to thriving: systems thinking, strategy, and the performance of safety net hospitals.

    PubMed

    Clark, Jonathan; Singer, Sara; Kane, Nancy; Valentine, Melissa

    2013-01-01

    Safety net hospitals (SNH) have, on average, experienced declining financial margins and faced an elevated risk of closure over the past decade. Despite these challenges, not all SNHs are weakening and some are prospering. These higher-performing SNHs provide substantial care to safety net populations and produce sustainable financial returns. Drawing on the alternative structural positioning and resource-based views, we explore strategic management as a source of performance differences across SNHs. We employ a mixed-method design, blending quantitative and qualitative data and analysis. We measure financial performance using hospital operating margin and quantitatively evaluate its relationship with a limited set of well-defined structural positions. We further evaluate these structures and also explore the internal resources of SNHs based on nine in-depth case studies developed from site visits and extensive interviews. Quantitative results suggest that structural positions alone are not related to performance. Comparative case studies suggest that higher-performing SNH differ in four respects: (1) coordinating patient flow across the care continuum, (2) engaging in partnerships with other providers, (3) managing scope of services, and (4) investing in human capital. On the basis of these findings, we propose a model of strategic action related to systems thinking--the ability to see wholes and interrelationships rather than individual parts alone. Our exploratory findings suggest the need to move beyond generic strategies alone and acknowledge the importance of underlying managerial capabilities. Specifically, our findings suggest that effective strategy is a function of both the internal resources (e.g., managers' systems-thinking capability) and structural positions (e.g., partnerships) of organizations. From this perspective, framing resources and positioning as distinct alternatives misses the nuances of how strategic advantage is actually achieved.

  1. Applications of Advanced Nondestructive Measurement Techniques to Address Safety of Flight Issues on NASA Spacecraft

    NASA Technical Reports Server (NTRS)

    Prosser, Bill

    2016-01-01

    Advanced nondestructive measurement techniques are critical for ensuring the reliability and safety of NASA spacecraft. Techniques such as infrared thermography, THz imaging, X-ray computed tomography and backscatter X-ray are used to detect indications of damage in spacecraft components and structures. Additionally, sensor and measurement systems are integrated into spacecraft to provide structural health monitoring to detect damaging events that occur during flight such as debris impacts during launch and assent or from micrometeoroid and orbital debris, or excessive loading due to anomalous flight conditions. A number of examples will be provided of how these nondestructive measurement techniques have been applied to resolve safety critical inspection concerns for the Space Shuttle, International Space Station (ISS), and a variety of launch vehicles and unmanned spacecraft.

  2. Does Perceived Neighborhood Walkability and Safety Mediate the Association Between Education and Meeting Physical Activity Guidelines?

    PubMed Central

    Yin, Shaoman; Soler, Robin; Njai, Rashid; Siegel, Paul Z.; Liao, Youlian

    2015-01-01

    The role of neighborhood walkability and safety in mediating the association between education and physical activity has not been quantified. We used data from the 2010 and 2012 Communities Putting Prevention to Work Behavioral Risk Factor Surveillance System and structural equation modeling to estimate how much of the effect of education level on physical activity was mediated by perceived neighborhood walkability and safety. Neighborhood walkability accounts for 11.3% and neighborhood safety accounts for 6.8% of the effect. A modest proportion of the important association between education and physical activity is mediated by perceived neighborhood walkability and safety, suggesting that interventions focused on enhancing walkability and safety could reduce the disparity in physical activity associated with education level. PMID:25855989

  3. Quality and Safety in Health Care, Part XII: The Work System, Testing, and Clinical Reasoning.

    PubMed

    Harolds, Jay A

    2016-07-01

    Donabedian felt the 3 major components affecting quality were process, structure, and outcome. Later investigators often substitute the word "structure" for a broader concept called the "work system." One component of the latter is the people involved, and for diagnosis, this often is best done with a diagnostic team. The work system in diagnosis has many obstacles to achieve optimum performance. There are also important problems with how tests are ordered and interpreted and clinical reasoning and biases.

  4. A system methodology for optimization design of the structural crashworthiness of a vehicle subjected to a high-speed frontal crash

    NASA Astrophysics Data System (ADS)

    Xia, Liang; Liu, Weiguo; Lv, Xiaojiang; Gu, Xianguang

    2018-04-01

    The structural crashworthiness design of vehicles has become an important research direction to ensure the safety of the occupants. To effectively improve the structural safety of a vehicle in a frontal crash, a system methodology is presented in this study. The surrogate model of Online support vector regression (Online-SVR) is adopted to approximate crashworthiness criteria and different kernel functions are selected to enhance the accuracy of the model. The Online-SVR model is demonstrated to have the advantages of solving highly nonlinear problems and saving training costs, and can effectively be applied for vehicle structural crashworthiness design. By combining the non-dominated sorting genetic algorithm II and Monte Carlo simulation, both deterministic optimization and reliability-based design optimization (RBDO) are conducted. The optimization solutions are further validated by finite element analysis, which shows the effectiveness of the RBDO solution in the structural crashworthiness design process. The results demonstrate the advantages of using RBDO, resulting in not only increased energy absorption and decreased structural weight from a baseline design, but also a significant improvement in the reliability of the design.

  5. Structural empowerment and patient safety culture among registered nurses working in adult critical care units.

    PubMed

    Armellino, Donna; Quinn Griffin, Mary T; Fitzpatrick, Joyce J

    2010-10-01

    The aim of the present study was to examine the relationship between structural empowerment and patient safety culture among staff level Registered Nurses (RNs) within adult critical care units (ACCU). There is literature to support the value of RNs' structurally empowered work environments and emerging literature towards patient safety culture; the link between empowerment and patient safety culture is being discovered. A sample of 257 RNs, working within adult critical care of a tertiary hospital in the United States, was surveyed. Instruments included a background data sheet, the Conditions of Workplace Effectiveness and the Hospital Survey on Patient Safety Culture. Structural empowerment and patient safety culture were significantly correlated. As structural empowerment increased so did the RNs' perception of patient safety culture. To foster patient safety culture, nurse leaders should consider providing structurally empowering work environments for RNs. This study contributes to the body of knowledge linking structural empowerment and patient safety culture. Results link structurally empowered RNs and increased patient safety culture, essential elements in delivering efficient, competent, quality care. They inform nursing management of key factors in the nurses' environment that promote safe patient care environments. © 2010 The Authors. Journal compilation © 2010 Blackwell Publishing Ltd.

  6. Maintenance and Safety Practices of Escalator in Commercial Buildings

    NASA Astrophysics Data System (ADS)

    Afida Isnaini Janipha, Nurul; Nur Aina Syed Alwee, Sharifah; Ariff, Raihan Mohd; Ismail, Faridah

    2018-02-01

    The escalator is very crucial to transport a person from one place to another. Nevertheless, there are many cases recorded the accidents in relation to escalator. These may occur due to lack of maintenance which leads to systems breakdown, poor safety practices, wear and tear, users’ negligence and others. Thus, proper maintenance systems need to be improvised to prevent and reduce escalator accident in future. This research was aimed to determine the escalator maintenance activities and safety practices in a commercial building. Three case studies were selected within Selangor area. Semi-structured interviews were conducted for collecting data from these three case studies. To achieve the aim of this research, the study was carried out on the maintenance activities, safety practices and cost related to escalator maintenance. As one of the important means of access in building, it is very crucial to increase effectiveness of escalator particularly in commercial building. It is expected that readers will get clear information on the maintenance activities and safety practices of escalator in commercial building.

  7. Highway Safety Information System guidebook for the Minnesota state data files. Volume 1 : SAS file formats

    DOT National Transportation Integrated Search

    2001-02-01

    The Minnesota data system includes the following basic files: Accident data (Accident File, Vehicle File, Occupant File); Roadlog File; Reference Post File; Traffic File; Intersection File; Bridge (Structures) File; and RR Grade Crossing File. For ea...

  8. 33 CFR 183.554 - Fittings, joints, and connections.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Manufacturer Requirements § 183.554 Fittings, joints, and connections. Each fuel system fitting, joint, and connection must be arranged so that it can be reached for inspection, removal, or maintenance without removal of permanent boat structure. ...

  9. 10 CFR 963.13 - Preclosure suitability evaluation method.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of the structures, systems, components, equipment, and operator actions intended to mitigate or... and the criteria in § 963.14. DOE will consider the performance of the system in terms of the criteria... protection standard. (b) The preclosure safety evaluation method, using preliminary engineering...

  10. Republished: Building a culture of safety through team training and engagement.

    PubMed

    Thomas, Lily; Galla, Catherine

    2013-07-01

    Medical errors continue to occur despite multiple strategies devised for their prevention. Although many safety initiatives lead to improvement, they are often short lived and unsustainable. Our goal was to build a culture of patient safety within a structure that optimised teamwork and ongoing engagement of the healthcare team. Teamwork impacts the effectiveness of care, patient safety and clinical outcomes, and team training has been identified as a strategy for enhancing teamwork, reducing medical errors and building a culture of safety in healthcare. Therefore, we implemented Team Strategies and Tools to Enhance Performance and Patient Safety (TeamSTEPPS), an evidence-based framework which was used for team training to create transformational and/or incremental changes; facilitating transformation of organisational culture, or solving specific problems. To date, TeamSTEPPS (TS) has been implemented in 14 hospitals, two Long Term Care Facilities, and outpatient areas across the North Shore LIJ Health System. 32 150 members of the healthcare team have been trained. TeamSTEPPS was piloted at a community hospital within the framework of the health system's organisational care delivery model, the Collaborative Care Model to facilitate sustainment. AHRQ's Hospital Survey on Patient Safety Culture, (HSOPSC), was administered before and after implementation of TeamSTEPPS, comparing the perception of patient safety by the heathcare team. Pilot hospital results of HSOPSC show significant improvement from 2007 (pre-TeamSTEPPS) to 2010. System-wide results of HSOPSC show similar trends to those seen in the pilot hospital. Valuable lessons for organisational success from the pilot hospital enabled rapid spread of TeamSTEPPS across the rest of the health system.

  11. Building a culture of safety through team training and engagement.

    PubMed

    Thomas, Lily; Galla, Catherine

    2013-05-01

    Medical errors continue to occur despite multiple strategies devised for their prevention. Although many safety initiatives lead to improvement, they are often short lived and unsustainable. Our goal was to build a culture of patient safety within a structure that optimised teamwork and ongoing engagement of the healthcare team. Teamwork impacts the effectiveness of care, patient safety and clinical outcomes, and team training has been identified as a strategy for enhancing teamwork, reducing medical errors and building a culture of safety in healthcare. Therefore, we implemented Team Strategies and Tools to Enhance Performance and Patient Safety (TeamSTEPPS), an evidence-based framework which was used for team training to create transformational and/or incremental changes; facilitating transformation of organisational culture, or solving specific problems. To date, TeamSTEPPS (TS) has been implemented in 14 hospitals, two Long Term Care Facilities, and outpatient areas across the North Shore LIJ Health System. 32 150 members of the healthcare team have been trained. TeamSTEPPS was piloted at a community hospital within the framework of the health system's organisational care delivery model, the Collaborative Care Model to facilitate sustainment. AHRQ's Hospital Survey on Patient Safety Culture, (HSOPSC), was administered before and after implementation of TeamSTEPPS, comparing the perception of patient safety by the heathcare team. Pilot hospital results of HSOPSC show significant improvement from 2007 (pre-TeamSTEPPS) to 2010. System-wide results of HSOPSC show similar trends to those seen in the pilot hospital. Valuable lessons for organisational success from the pilot hospital enabled rapid spread of TeamSTEPPS across the rest of the health system.

  12. 25 CFR 900.70 - What elements are included in the compensation for a lease entered into between the Secretary and...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Fire safety system; (vii) Security system; and (viii) Roof, foundation, walls, floors. (12) Unscheduled...) Monitoring and preventive maintenance of building structures and systems, including but not limited to: (i..., repainting); (14) Security services; (15) Management fees; and (16) Other reasonable and necessary operation...

  13. Towards a global system of vigilance and surveillance in unrelated donors of haematopoietic progenitor cells for transplantation.

    PubMed

    Shaw, B E; Chapman, J; Fechter, M; Foeken, L; Greinix, H; Hwang, W; Phillips-Johnson, L; Korhonen, M; Lindberg, B; Navarro, W H; Szer, J

    2013-11-01

    Safety of living donors is critical to the success of blood, tissue and organ transplantation. Structured and robust vigilance and surveillance systems exist as part of some national entities, but historically no global systems are in place to ensure conformity, harmonisation and the recognition of rare adverse events (AEs). The World Health Assembly has recently resolved to require AE/reaction (AE/R) reporting both nationally and globally. The World Marrow Donor Association (WMDA) is an international organisation promoting the safety of unrelated donors and progenitor cell products for use in haematopoietic progenitor cell (HPC) transplantation. To address this issue, we established a system for collecting, collating, analysing, distributing and reacting to serious adverse events and reactions (SAE/R) in unrelated HPC donors. The WMDA successfully instituted this reporting system with 203 SAE/R reported in 2011. The committee generated two rapid reports, reacting to specific SAE/R, resulting in practice changing policies. The system has a robust governance structure, formal feedback to the WMDA membership and transparent information flows to other agencies, specialist physicians and transplant programs and the general public.

  14. Visit from JAXA to NASA MSFC: The Engines Element & Ideas for Collaboration

    NASA Technical Reports Server (NTRS)

    Greene, William D.

    2013-01-01

    System Design, Development, and Fabrication: Design, develop, and fabricate or procure MB-60 component hardware compliant with the imposed technical requirements and in sufficient quantities to fulfill the overall MB-60 development effort. System Development, Assembly, and Test: Manage the scope of the development, assembly, and test-related activities for MB-60 development. This scope includes engine-level development planning, engine assembly and disassembly, test planning, engine testing, inspection, anomaly resolution, and development of necessary ground support equipment and special test equipment. System Integration: Provide coordinated integration in the realms of engineering, safety, quality, and manufacturing disciplines across the scope of the MB-60 design and associated products development Safety and Mission Assurance, structural design, fracture control, materials and processes, thermal analysis. Systems Engineering and Analysis: Manage and perform Systems Engineering and Analysis to provide rigor and structure to the overall design and development effort for the MB-60. Milestone reviews, requirements management, system analysis, program management support Program Management: Manage, plan, and coordinate the activities across all portions of the MB-60 work scope by providing direction for program administration, business management, and supplier management.

  15. Risk management in the North sea offshore industry: History, status and challenges

    NASA Astrophysics Data System (ADS)

    Smith, E. J.

    1995-10-01

    There have been major changes in the UK and Norwegian offshore safety regimes in the last decade. On the basis of accumulated experience (including some major accidents), there has been a move away from a rigid, prescriptive approach to setting safety standards; it is now recognised that a more flexible, "goal-setting" approach is more suited to achieving cost-effective solutions to offshore safety. In order to adapt to this approach, offshore operators are increasingly using Quantitative Risk Assessment (QRA) techniques as part of their risk management programmes. Structured risk assessment can be used at all stages of a project life-cycle. In the design stages (concept and detailed design), these techniques are valuable tools in ensuring that money is wisely spent on safety-related systems. In the operational stage, QRA can aid the development of procedures. High quality Safety Management Systems (SMSs), covering issues such as training, inspection, and emergency planning, are crucial to maintain "asdesigned" levels of safety and reliability. Audits of SMSs should be carried out all through the operational phase to ensure that risky conditions do not accumulate.

  16. Technology and Tool Development to Support Safety and Mission Assurance

    NASA Technical Reports Server (NTRS)

    Denney, Ewen; Pai, Ganesh

    2017-01-01

    The Assurance Case approach is being adopted in a number of safety-mission-critical application domains in the U.S., e.g., medical devices, defense aviation, automotive systems, and, lately, civil aviation. This paradigm refocuses traditional, process-based approaches to assurance on demonstrating explicitly stated assurance goals, emphasizing the use of structured rationale, and concrete product-based evidence as the means for providing justified confidence that systems and software are fit for purpose in safely achieving mission objectives. NASA has also been embracing assurance cases through the concepts of Risk Informed Safety Cases (RISCs), as documented in the NASA System Safety Handbook, and Objective Hierarchies (OHs) as put forth by the Agency's Office of Safety and Mission Assurance (OSMA). This talk will give an overview of the work being performed by the SGT team located at NASA Ames Research Center, in developing technologies and tools to engineer and apply assurance cases in customer projects pertaining to aviation safety. We elaborate how our Assurance Case Automation Toolset (AdvoCATE) has not only extended the state-of-the-art in assurance case research, but also demonstrated its practical utility. We have successfully developed safety assurance cases for a number of Unmanned Aircraft Systems (UAS) operations, which underwent, and passed, scrutiny both by the aviation regulator, i.e., the FAA, as well as the applicable NASA boards for airworthiness and flight safety, flight readiness, and mission readiness. We discuss our efforts in expanding AdvoCATE capabilities to support RISCs and OHs under a project recently funded by OSMA under its Software Assurance Research Program. Finally, we speculate on the applicability of our innovations beyond aviation safety to such endeavors as robotic, and human spaceflight.

  17. Space-planning and structural solutions of low-rise buildings: Optimal selection methods

    NASA Astrophysics Data System (ADS)

    Gusakova, Natalya; Minaev, Nikolay; Filushina, Kristina; Dobrynina, Olga; Gusakov, Alexander

    2017-11-01

    The present study is devoted to elaboration of methodology used to select appropriately the space-planning and structural solutions in low-rise buildings. Objective of the study is working out the system of criteria influencing the selection of space-planning and structural solutions which are most suitable for low-rise buildings and structures. Application of the defined criteria in practice aim to enhance the efficiency of capital investments, energy and resource saving, create comfortable conditions for the population considering climatic zoning of the construction site. Developments of the project can be applied while implementing investment-construction projects of low-rise housing at different kinds of territories based on the local building materials. The system of criteria influencing the optimal selection of space-planning and structural solutions of low-rise buildings has been developed. Methodological basis has been also elaborated to assess optimal selection of space-planning and structural solutions of low-rise buildings satisfying the requirements of energy-efficiency, comfort and safety, and economical efficiency. Elaborated methodology enables to intensify the processes of low-rise construction development for different types of territories taking into account climatic zoning of the construction site. Stimulation of low-rise construction processes should be based on the system of approaches which are scientifically justified; thus it allows enhancing energy efficiency, comfort, safety and economical effectiveness of low-rise buildings.

  18. Quality assessment of occupational health and safety management at the level of business units making up the organizational structure of a coal mine: a case study.

    PubMed

    Korban, Zygmunt

    2015-01-01

    The audit of the health and safety management system is understood as a form and tool of controlling. The objective of the audit is to define whether the undertaken measures and the obtained results are in conformity with the predicted assumptions or plans, whether the agreed decisions have been implemented and whether they are suitable in view of the accepted health and safety policy. This paper presents the results of an audit examination carried out on the system of health and safety management between 2002 and 2012 on a group of respondents, the employees of two mining departments (G-1 and G-2) of Jan, a coal mine. The audit was carried out using the questionnaire developed by the author based on the MERIT-APBK survey.

  19. Hybrid optical security system using photonic crystals and MEMS devices

    NASA Astrophysics Data System (ADS)

    Ciosek, Jerzy; Ostrowski, Roman

    2017-10-01

    An important issue in security systems is that of selection of the appropriate detectors or sensors, whose sensitivity guarantees functional reliability whilst avoiding false alarms. Modern technology enables the optimization of sensor systems, tailored to specific risk factors. In optical security systems, one of the safety parameters considered is the spectral range in which the excitation signal is associated with a risk factor. Advanced safety systems should be designed taking into consideration the possible occurrence of, often multiple, complex risk factors, which can be identified individually. The hazards of concern in this work are chemical warfare agents and toxic industrial compounds present in the forms of gases and aerosols. The proposed sensor solution is a hybrid optical system consisting of a multi-spectral structure of photonic crystals associated with a MEMS (Micro Electro-Mechanical System) resonator. The crystallographic structures of carbon present in graphene rings and graphenecarbon nanotube nanocomposites have properties which make them desirable for use in detectors. The advantage of this system is a multi-spectral sensitivity at the same time as narrow-band selectivity for the identification of risk factors. It is possible to design a system optimized for detecting specified types of risk factor from very complex signals.

  20. Does lean management improve patient safety culture? An extensive evaluation of safety culture in a radiotherapy institute.

    PubMed

    Simons, Pascale A M; Houben, Ruud; Vlayen, Annemie; Hellings, Johan; Pijls-Johannesma, Madelon; Marneffe, Wim; Vandijck, Dominique

    2015-02-01

    The importance of a safety culture to maximize safety is no longer questioned. However, achieving sustainable culture improvements are less evident. Evidence is growing for a multifaceted approach, where multiple safety interventions are combined. Lean management is such an integral approach to improve safety, quality and efficiency and therefore, could be expected to improve the safety culture. This paper presents the effects of lean management activities on the patient safety culture in a radiotherapy institute. Patient safety culture was evaluated over a three year period using triangulation of methodologies. Two surveys were distributed three times, workshops were performed twice, data from an incident reporting system (IRS) was monitored and results were explored using structured interviews with professionals. Averages, chi-square, logistical and multi-level regression were used for analysis. The workshops showed no changes in safety culture, whereas the surveys showed improvements on six out of twelve dimensions of safety climate. The intention to report incidents not reaching patient-level decreased in accordance with the decreasing number of reports in the IRS. However, the intention to take action in order to prevent future incidents improved (factorial survey presented β: 1.19 with p: 0.01). Due to increased problem solving and improvements in equipment, the number of incidents decreased. Although the intention to report incidents not reaching patient-level decreased, employees experienced sustained safety awareness and an increased intention to structurally improve. The patient safety culture improved due to the lean activities combined with an organizational restructure, and actual patient safety outcomes might have improved as well. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. A safety monitoring system for taxi based on CMOS imager

    NASA Astrophysics Data System (ADS)

    Liu, Zhi

    2005-01-01

    CMOS image sensors now become increasingly competitive with respect to their CCD counterparts, while adding advantages such as no blooming, simpler driving requirements and the potential of on-chip integration of sensor, analogue circuitry, and digital processing functions. A safety monitoring system for taxi based on cmos imager that can record field situation when unusual circumstance happened is described in this paper. The monitoring system is based on a CMOS imager (OV7120), which can output digital image data through parallel pixel data port. The system consists of a CMOS image sensor, a large capacity NAND FLASH ROM, a USB interface chip and a micro controller (AT90S8515). The structure of whole system and the test data is discussed and analyzed in detail.

  2. Forward Skirt Structural Testing on the Space Launch System (SLS) Program

    NASA Technical Reports Server (NTRS)

    Lohrer, J. D.; Wright, R. D.

    2016-01-01

    Structural testing was performed to evaluate heritage forward skirts from the Space Shuttle program for use on the NASA Space Launch System (SLS) program. Testing was needed because SLS ascent loads are 35% higher than Space Shuttle loads. Objectives of testing were to determine margins of safety, demonstrate reliability, and validate analytical models. Testing combined with analysis was able to show heritage forward skirts were acceptable to use on the SLS program.

  3. Control Oriented Modeling and Validation of Aeroservoelastic Systems

    NASA Technical Reports Server (NTRS)

    Crowder, Marianne; deCallafon, Raymond (Principal Investigator)

    2002-01-01

    Lightweight aircraft design emphasizes the reduction of structural weight to maximize aircraft efficiency and agility at the cost of increasing the likelihood of structural dynamic instabilities. To ensure flight safety, extensive flight testing and active structural servo control strategies are required to explore and expand the boundary of the flight envelope. Aeroservoelastic (ASE) models can provide online flight monitoring of dynamic instabilities to reduce flight time testing and increase flight safety. The success of ASE models is determined by the ability to take into account varying flight conditions and the possibility to perform flight monitoring under the presence of active structural servo control strategies. In this continued study, these aspects are addressed by developing specific methodologies and algorithms for control relevant robust identification and model validation of aeroservoelastic structures. The closed-loop model robust identification and model validation are based on a fractional model approach where the model uncertainties are characterized in a closed-loop relevant way.

  4. A web-based incident reporting system and multidisciplinary collaborative projects for patient safety in a Japanese hospital

    PubMed Central

    Nakajima, K; Kurata, Y; Takeda, H

    2005-01-01

    

Problem: When patient safety programs were mandated for Japanese health care institutions, a safety culture, a tool for collecting incident reports, an organizational arrangement for multidisciplinary collaboration, and interventional methods for improvement had to be established. Design: Observational study of effects of new patient safety programs. Setting: Osaka University Hospital, a large government-run teaching hospital. Strategy for change: A voluntary and anonymous web-based incident reporting system was introduced. For the new organizational structure a clinical risk management committee, a department of clinical quality management, and area clinical risk managers were established with their respective roles clearly defined to advance the plan-do-study-act cycle and to integrate efforts. For preventive action, alert procedures, staff education, ward rounds by peers, a system oriented approach for reducing errors, and various feedback channels were introduced. Effects of change: Continuous incident reporting by all hospital staff has been observed since the introduction of the new system. Several error inducing situations have been improved: wrong choice of drug in computer prescribing, maladministration of drugs due to a look-alike appearance or confusion about the manipulation of a medical device, and poor after hours service of the blood transfusion unit. Staff participation in educational seminars has been dramatically improved. Ward rounds have detected problematic procedures which needed to be dealt with. Lessons learnt: Patient safety programs based on a web-based incident reporting system, responsible persons, staff education, and a variety of feedback procedures can help promote a safety culture, multidisciplinary collaboration, and strong managerial leadership resulting in system oriented improvement. PMID:15805458

  5. 29 CFR 1926.758 - Systems-engineered metal buildings.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.758... systems-engineered metal buildings except §§ 1926.755 (column anchorage) and 1926.757 (open web steel... hoisting equipment is released. (d) Construction loads shall not be placed on any structural steel...

  6. 29 CFR 1926.758 - Systems-engineered metal buildings.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.758... systems-engineered metal buildings except §§ 1926.755 (column anchorage) and 1926.757 (open web steel... hoisting equipment is released. (d) Construction loads shall not be placed on any structural steel...

  7. 29 CFR 1926.758 - Systems-engineered metal buildings.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.758... systems-engineered metal buildings except §§ 1926.755 (column anchorage) and 1926.757 (open web steel... hoisting equipment is released. (d) Construction loads shall not be placed on any structural steel...

  8. Structural interaction with transportation and handling systems

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Problems involved in the handling and transportation of finished space vehicles from the factory to the launch site are presented, in addition to recommendations for properly accounting for in space vehicle structural design, adverse interactions during transportation. Emphasis is given to the protection of vehicle structures against those environments and loads encountered during transportation (including temporary storage) which would exceed the levels that the vehicle can safely withstand. Current practices for verifying vehicle safety are appraised, and some of the capabilities and limitations of transportation and handling systems are summarized.

  9. 47 CFR 27.56 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Antenna structures; air navigation safety. 27... SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.56 Antenna structures; air navigation safety. A licensee that owns its antenna structure(s) must not allow such antenna structure(s) to...

  10. 47 CFR 27.56 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Antenna structures; air navigation safety. 27... SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.56 Antenna structures; air navigation safety. A licensee that owns its antenna structure(s) must not allow such antenna structure(s) to...

  11. 47 CFR 27.56 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Antenna structures; air navigation safety. 27... SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.56 Antenna structures; air navigation safety. A licensee that owns its antenna structure(s) must not allow such antenna structure(s) to...

  12. 47 CFR 27.56 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Antenna structures; air navigation safety. 27... SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.56 Antenna structures; air navigation safety. A licensee that owns its antenna structure(s) must not allow such antenna structure(s) to...

  13. Probabilistic assessment of dynamic system performance. Part 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belhadj, Mohamed

    1993-01-01

    Accurate prediction of dynamic system failure behavior can be important for the reliability and risk analyses of nuclear power plants, as well as for their backfitting to satisfy given constraints on overall system reliability, or optimization of system performance. Global analysis of dynamic systems through investigating the variations in the structure of the attractors of the system and the domains of attraction of these attractors as a function of the system parameters is also important for nuclear technology in order to understand the fault-tolerance as well as the safety margins of the system under consideration and to insure a safemore » operation of nuclear reactors. Such a global analysis would be particularly relevant to future reactors with inherent or passive safety features that are expected to rely on natural phenomena rather than active components to achieve and maintain safe shutdown. Conventionally, failure and global analysis of dynamic systems necessitate the utilization of different methodologies which have computational limitations on the system size that can be handled. Using a Chapman-Kolmogorov interpretation of system dynamics, a theoretical basis is developed that unifies these methodologies as special cases and which can be used for a comprehensive safety and reliability analysis of dynamic systems.« less

  14. Light Water Reactor Sustainability Program: Risk-Informed Safety Margins Characterization (RISMC) Pathway Technical Program Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Curtis; Rabiti, Cristian; Martineau, Richard

    Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). As the current Light Water Reactor (LWR) NPPs age beyond 60 years, there are possibilities for increased frequency of Systems, Structures, and Components (SSCs) degradations or failures that initiate safety-significant events, reduce existing accident mitigation capabilities, or create new failure modes. Plant designers commonly “over-design” portions of NPPs and provide robustness in the form of redundant and diverse engineered safety features to ensure that, even in the case of well-beyond design basis scenarios, public health and safety will be protected with a very high degreemore » of assurance. This form of defense-in-depth is a reasoned response to uncertainties and is often referred to generically as “safety margin.” Historically, specific safety margin provisions have been formulated, primarily based on “engineering judgment.”« less

  15. 24 CFR 3280.903 - General requirements for designing the structure to withstand transportation shock and vibration.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HOME CONSTRUCTION AND SAFETY STANDARDS Transportation § 3280.903 General requirements for designing the... manufactured home shall be designed, in terms of its structural, plumbing, mechanical and electrical systems... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false General requirements for designing...

  16. Pediatric hospitalist comanagement of surgical patients: structural, quality, and financial considerations.

    PubMed

    Rappaport, David I; Rosenberg, Rebecca E; Shaughnessy, Erin E; Schaffzin, Joshua K; O'Connor, Katherine M; Melwani, Anjna; McLeod, Lisa M

    2014-11-01

    Comanagement of surgical patients is occurring more commonly among adult and pediatric patients. These systems of care can vary according to institution type, comanagement structure, and type of patient. Comanagement can impact quality, safety, and costs of care. We review these implications for pediatric surgical patients. © 2014 Society of Hospital Medicine.

  17. 30 CFR 56.14130 - Roll-over protective structures (ROPS) and seat belts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Mining Machines,”, 1986; or (2) SAE J1194, “Roll-Over Protective Structures (ROPS) for Wheeled... when operating graders from a standing position, the grader operator shall wear safety lines and a... meet the requirement of SAE J386, “Operator Restraint System for Off-Road Work Machines” (1985, 1993...

  18. 30 CFR 56.14130 - Roll-over protective structures (ROPS) and seat belts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Mining Machines,”, 1986; or (2) SAE J1194, “Roll-Over Protective Structures (ROPS) for Wheeled... when operating graders from a standing position, the grader operator shall wear safety lines and a... meet the requirement of SAE J386, “Operator Restraint System for Off-Road Work Machines” (1985, 1993...

  19. 30 CFR 56.14130 - Roll-over protective structures (ROPS) and seat belts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Mining Machines,”, 1986; or (2) SAE J1194, “Roll-Over Protective Structures (ROPS) for Wheeled... when operating graders from a standing position, the grader operator shall wear safety lines and a... meet the requirement of SAE J386, “Operator Restraint System for Off-Road Work Machines” (1985, 1993...

  20. 30 CFR 56.14130 - Roll-over protective structures (ROPS) and seat belts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Mining Machines,”, 1986; or (2) SAE J1194, “Roll-Over Protective Structures (ROPS) for Wheeled... when operating graders from a standing position, the grader operator shall wear safety lines and a... meet the requirement of SAE J386, “Operator Restraint System for Off-Road Work Machines” (1985, 1993...

  1. 30 CFR 56.14130 - Roll-over protective structures (ROPS) and seat belts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Mining Machines,”, 1986; or (2) SAE J1194, “Roll-Over Protective Structures (ROPS) for Wheeled... when operating graders from a standing position, the grader operator shall wear safety lines and a... meet the requirement of SAE J386, “Operator Restraint System for Off-Road Work Machines” (1985, 1993...

  2. Intelligent MONitoring System for antiviral pharmacotherapy in patients with chronic hepatitis C (SiMON-VC).

    PubMed

    Margusino-Framiñán, Luis; Cid-Silva, Purificación; Mena-de-Cea, Álvaro; Sanclaudio-Luhía, Ana Isabel; Castro-Castro, José Antonio; Vázquez-González, Guillermo; Martín-Herranz, Isabel

    2017-01-01

    Two out of six strategic axes of pharmaceutical care in our hospital are quality and safety of care, and the incorporation of information technologies. Based on this, an information system was developed in the outpatient setting for pharmaceutical care of patients with chronic hepatitis C, SiMON-VC, which would improve the quality and safety of their pharmacotherapy. The objective of this paper is to describe requirements, structure and features of Si- MON-VC. Requirements demanded were that the information system would enter automatically all critical data from electronic clinical records at each of the visits to the Outpatient Pharmacy Unit, allowing the generation of events and alerts, documenting the pharmaceutical care provided, and allowing the use of data for research purposes. In order to meet these requirements, 5 sections were structured for each patient in SiMON-VC: Main Record, Events, Notes, Monitoring Graphs and Tables, and Follow-up. Each section presents a number of tabs with those coded data needed to monitor patients in the outpatient unit. The system automatically generates alerts for assisted prescription validation, efficacy and safety of using antivirals for the treatment of this disease. It features a completely versatile Indicator Control Panel, where temporary monitoring standards and alerts can be set. It allows the generation of reports, and their export to the electronic clinical record. It also allows data to be exported to the usual operating systems, through Big Data and Business Intelligence. Summing up, we can state that SiMON-VC improves the quality of pharmaceutical care provided in the outpatient pharmacy unit to patients with chronic hepatitis C, increasing the safety of antiviral therapy. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  3. WTEC monograph on instrumentation, control and safety systems of Canadian nuclear facilities

    NASA Technical Reports Server (NTRS)

    Uhrig, Robert E.; Carter, Richard J.

    1993-01-01

    This report updates a 1989-90 survey of advanced instrumentation and controls (I&C) technologies and associated human factors issues in the U.S. and Canadian nuclear industries carried out by a team from Oak Ridge National Laboratory (Carter and Uhrig 1990). The authors found that the most advanced I&C systems are in the Canadian CANDU plants, where the newest plant (Darlington) has digital systems in almost 100 percent of its control systems and in over 70 percent of its plant protection system. Increased emphasis on human factors and cognitive science in modern control rooms has resulted in a reduced workload for the operators and the elimination of many human errors. Automation implemented through digital instrumentation and control is effectively changing the role of the operator to that of a systems manager. The hypothesis that properly introducing digital systems increases safety is supported by the Canadian experience. The performance of these digital systems has been achieved using appropriate quality assurance programs for both hardware and software development. Recent regulatory authority review of the development of safety-critical software has resulted in the creation of isolated software modules with well defined interfaces and more formal structure in the software generation. The ability of digital systems to detect impending failures and initiate a fail-safe action is a significant safety issue that should be of special interest to nuclear utilities and regulatory authorities around the world.

  4. A cross-sectional study to identify organisational processes associated with nurse-reported quality and patient safety

    PubMed Central

    Tvedt, Christine; Sjetne, Ingeborg Strømseng; Helgeland, Jon; Bukholm, Geir

    2012-01-01

    Objectives The purpose of this study was to identify organisational processes and structures that are associated with nurse-reported patient safety and quality of nursing. Design This is an observational cross-sectional study using survey methods. Setting Respondents from 31 Norwegian hospitals with more than 85 beds were included in the survey. Participants All registered nurses working in direct patient care in a position of 20% or more were invited to answer the survey. In this study, 3618 nurses from surgical and medical wards responded (response rate 58.9). Nurses' practice environment was defined as organisational processes and measured by the Nursing Work Index Revised and items from Hospital Survey on Patient Safety Culture. Outcome measures Nurses' assessments of patient safety, quality of nursing, confidence in how their patients manage after discharge and frequency of adverse events were used as outcome measures. Results Quality system, nurse–physician relation, patient safety management and staff adequacy were process measures associated with nurse-reported work-related and patient-related outcomes, but we found no associations with nurse participation, education and career and ward leadership. Most organisational structures were non-significant in the multilevel model except for nurses’ affiliations to medical department and hospital type. Conclusions Organisational structures may have minor impact on how nurses perceive work-related and patient-related outcomes, but the findings in this study indicate that there is a considerable potential to address organisational design in improvement of patient safety and quality of care. PMID:23263021

  5. 47 CFR 22.365 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Antenna structures; air navigation safety. 22... Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a hazard to air navigation. In general, antenna structure owners are...

  6. 47 CFR 22.365 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Antenna structures; air navigation safety. 22... Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a hazard to air navigation. In general, antenna structure owners are...

  7. 47 CFR 22.365 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Antenna structures; air navigation safety. 22... Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a hazard to air navigation. In general, antenna structure owners are...

  8. 47 CFR 22.365 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Antenna structures; air navigation safety. 22... Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a hazard to air navigation. In general, antenna structure owners are...

  9. 47 CFR 22.365 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Antenna structures; air navigation safety. 22... Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a hazard to air navigation. In general, antenna structure owners are...

  10. Structural Design Methodology Based on Concepts of Uncertainty

    NASA Technical Reports Server (NTRS)

    Lin, K. Y.; Du, Jiaji; Rusk, David

    2000-01-01

    In this report, an approach to damage-tolerant aircraft structural design is proposed based on the concept of an equivalent "Level of Safety" that incorporates past service experience in the design of new structures. The discrete "Level of Safety" for a single inspection event is defined as the compliment of the probability that a single flaw size larger than the critical flaw size for residual strength of the structure exists, and that the flaw will not be detected. The cumulative "Level of Safety" for the entire structure is the product of the discrete "Level of Safety" values for each flaw of each damage type present at each location in the structure. Based on the definition of "Level of Safety", a design procedure was identified and demonstrated on a composite sandwich panel for various damage types, with results showing the sensitivity of the structural sizing parameters to the relative safety of the design. The "Level of Safety" approach has broad potential application to damage-tolerant aircraft structural design with uncertainty.

  11. 10 CFR 50.69 - Risk-informed categorization and treatment of structures, systems and components for nuclear...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., systems and components for nuclear power reactors. 50.69 Section 50.69 Energy NUCLEAR REGULATORY..., systems and components for nuclear power reactors. (a) Definitions. Risk-Informed Safety Class (RISC)-1... holder of a license to operate a light water reactor (LWR) nuclear power plant under this part; a holder...

  12. 10 CFR 50.69 - Risk-informed categorization and treatment of structures, systems and components for nuclear...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., systems and components for nuclear power reactors. 50.69 Section 50.69 Energy NUCLEAR REGULATORY..., systems and components for nuclear power reactors. (a) Definitions. Risk-Informed Safety Class (RISC)-1... holder of a license to operate a light water reactor (LWR) nuclear power plant under this part; a holder...

  13. 10 CFR 50.69 - Risk-informed categorization and treatment of structures, systems and components for nuclear...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., systems and components for nuclear power reactors. 50.69 Section 50.69 Energy NUCLEAR REGULATORY..., systems and components for nuclear power reactors. (a) Definitions. Risk-Informed Safety Class (RISC)-1... holder of a license to operate a light water reactor (LWR) nuclear power plant under this part; a holder...

  14. Surface Transportation Weather Decision Support Requirements - Executive Summary, Version 1.0

    DOT National Transportation Integrated Search

    1999-12-16

    WEATHER: IT AFFECTS THE VISIBILITY, TRACTABILITY, MANEUVERABILITY, VEHICLE STABILITY, EXHAUST EMISSIONS AND STRUCTURAL INTEGRITY OF THE SURFACE TRANSPORTATION SYSTEM. THEREBY WEATHER AFFECTS THE SAFETY, MOBILITY, PRODUCTIVITY AND ENVIRONMENTAL IMPACT...

  15. A hybrid design methodology for structuring an Integrated Environmental Management System (IEMS) for shipping business.

    PubMed

    Celik, Metin

    2009-03-01

    The International Safety Management (ISM) Code defines a broad framework for the safe management and operation of merchant ships, maintaining high standards of safety and environmental protection. On the other hand, ISO 14001:2004 provides a generic, worldwide environmental management standard that has been utilized by several industries. Both the ISM Code and ISO 14001:2004 have the practical goal of establishing a sustainable Integrated Environmental Management System (IEMS) for shipping businesses. This paper presents a hybrid design methodology that shows how requirements from both standards can be combined into a single execution scheme. Specifically, the Analytic Hierarchy Process (AHP) and Fuzzy Axiomatic Design (FAD) are used to structure an IEMS for ship management companies. This research provides decision aid to maritime executives in order to enhance the environmental performance in the shipping industry.

  16. Embedding 'speaking up' into systems for safe healthcare product development and marketing surveillance.

    PubMed

    Edwards, Brian; Hugman, Bruce; Tobin, Mary; Whalen, Matthew

    2012-04-01

    Robust, active cooperation, and effective, open communication between all stakeholders is essential for ensuring regulatory compliance and healthcare product safety; avoiding the necessity for whistle-blowing; and, most essentially, meeting the transparency requirements of public trust.The focus here is on what can be done within a healthcare product organization (HPO) to achieve actionable, sustainable policies and practices such as leadership, management, and supervision role-modelling of best practice; ongoing process review and improvements in every department; protection of those who report concerns through robust policies endorsed at Board level throughout an organization to eliminate the fear of retaliation; training in open, non-defensive team-working principles; and mediation structure and process for resolution of differences of opinion or interpretation of contradictory and volatile data.Based on analyses of other safety systems, workplace silence and interpersonal breakdowns are warning signs of defective systems underlying poor compliance and compromising safety. Remedying the situation requires attention to the root causes underlying such symptoms of dysfunction, especially the human factor, i.e. those factors that influence human performance. It is essential that leadership and management listen to employees' concerns about systems and processes, assess them impartially and reward contributions that improve safety.Fundamentally, the safety, transparency, and trustworthiness of HPOs, both commercial and regulatory, can be judged by the extent of the freedom of their staff to 'speak up' when the time is right. This, in turn, consolidates the trust of external stakeholders in the safety of a system and its products. The promotion of 'speaking up' in an organization provides an important safeguard against the risk of poor compliance and the undermining of societal confidence in the safety of healthcare products.

  17. Air Vehicle Integration and Technology Research (AVIATR). Task Order 0003: Condition-Based Maintenance Plus Structural Integrity (CBM+SI) Demonstration (April 2011 to August 2011)

    DTIC Science & Technology

    2011-08-01

    investigated. Implementation of this technology into the maintenance framework depends on several factors, including safety of the structural system, cost... Maintenance Parameters The F-15 Program has indicated that, in practice , maintenance actions are generally performed on flight hour multiples of 200...Risk Analysis or the Perform Cost Benefit Analysis sections of the flowchart. 4.6. Determine System Configurations The current maintenance practice

  18. Regulations as Prevention Strategies for Shiftwork Problems.

    PubMed

    Jeppesen; Bøggild; Larsen

    1997-07-01

    The study examines how the Danish system of regulations stemming from collective agreements and legislation and its associated participatory structures operate at the local level in relation to shiftwork and health and safety issues in a regional hospital system consisting of seven hospitals. The study analyzed ward reports of each employee's employment and working hours, local agreements about working time for deviations from legislation, and accounts from meetings in Co-operation Committees and Health and Safety Committees with respect to shiftwork issues from 1980 to 1994. The results showed that part-time employment, especially for those working on fixed evening and night shifts, was a dominant feature in the shiftwork arrangements. A majority of wards were found to have mixtures of employees working rotating or fixed shifts. Each hospital had local agreements that extended the number of work days between periods with days off and reduced the daily resting period to its minimum. None of the meetings of the Health and Safety Committees dealt with shiftwork, and when shiftwork and working time were on the agendas of the Co-operation Committees, health and safety aspects did not feature in the conclusions. The absence of consideration of health and safety aspects is discussed in relation to the uncertainty of the general regulatory principles for work organization and scheduling. The paper concludes that in order to utilize the potential af the participatory structures in developing prevention strategies for shiftwork problems, it is important to clarify responsibilities and cooperation between the two participatory committees.

  19. Technical highlights in general aviation

    NASA Technical Reports Server (NTRS)

    Stickle, J. W.

    1977-01-01

    Improvements in performance, safety, efficiency, and emissions control in general aviation craft are reviewed. While change is slow, the U.S. industries still account for the bulk (90%) of the world's general aviation fleet. Advances in general aviation aerodynamics, structures and materials, acoustics, avionics, and propulsion are described. Supercritical airfoils, drag reduction design, stall/spin studies, crashworthiness and passenger safety, fiberglass materials, flight noise abatement, interior noise and vibration reduction, navigation systems, quieter and cleaner (reciprocating, turboprop, turbofan) engines, and possible benefits of the Global Position Satellite System to general aviation navigation are covered in the discussion. Some of the developments are illustrated.

  20. Safety considerations in the design and operation of large wind turbines

    NASA Technical Reports Server (NTRS)

    Reilly, D. H.

    1979-01-01

    The engineering and safety techniques used to assure the reliable and safe operation of large wind turbine generators utilizing the Mod 2 Wind Turbine System Program as an example is described. The techniques involve a careful definition of the wind turbine's natural and operating environments, use of proven structural design criteria and analysis techniques, an evaluation of potential failure modes and hazards, and use of a fail safe and redundant component engineering philosophy. The role of an effective quality assurance program, tailored to specific hardware criticality, and the checkout and validation program developed to assure system integrity are described.

  1. International SAMPE Symposium and Exhibition, 35th, Anaheim, CA, Apr. 2-5, 1990, Proceedings. Books 1 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janicki, G.; Bailey, V.; Schjelderup, H.

    The present conference discusses topics in the fields of ultralightweight structures, producibility of thermoplastic composites, innovation in sandwich structures, composite failure processes, toughened materials, metal-matrix composites, advanced materials for future naval systems, thermoplastic polymers, automated composites manufacturers, advanced adhesives, emerging processes for aerospace component fabrication, and modified resin systems. Also discussed are matrix behavior for damage tolerance, composite materials repair, testing for damage tolerance, composite strength analyses, materials workplace health and safety, cost-conscious composites, bismaleimide systems, and issues facing advanced composite materials suppliers.

  2. Full-scale Transport Controlled Impact Demonstration Program

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Federal Aviation Administration (FAA) and NASA conducted a full-scale air-to-surface impact-survivable impact demonstration with a remotely piloted transport aircraft on 1 December 1984, at Edwards Air Force Base, California. The test article consisted of experiments, special equipment, and supporting systems, such as antimisting kerosene (AMK), crashworthiness structural/restraint, analytical modeling, cabin fire safety, flight data recorders, post-impact investigation, instrumentation/data acquisition systems, remotely piloted vehicle/flight control systems, range and flight safety provisions, etc. This report describes the aircraft, experiments, systems, activities, and events which lead up to the Controlled Impact Demonstration (CID). An overview of the final unmanned remote control flight and sequence of impact events are delineated. Preliminary post CID observations are presented.

  3. Minutes of the 23rd Eplosives Safety Seminar, volume 2

    NASA Astrophysics Data System (ADS)

    1988-08-01

    Some areas of discussion at this seminar were: Hazards and risks of the disposal of chemical munitions using a cryogenic process; Special equipment for demilitarization of lethal chemical agent filled munitions; explosive containment room (ECR) repair Johnston Atoll chemical agent disposal system; Sympathetic detonation testing; Blast loads, external and internal; Structural reponse testing of walls, doors, and valves; Underground explosion effects, external airblast; Explosives shipping, transportation safety and port licensing; Explosive safety management; Underground explosion effects, model test and soil rock effects; Chemical risk and protection of workers; and Full scale explosives storage test.

  4. Probabilistic modeling of condition-based maintenance strategies and quantification of its benefits for airliners

    NASA Astrophysics Data System (ADS)

    Pattabhiraman, Sriram

    Airplane fuselage structures are designed with the concept of damage tolerance, wherein small damage are allowed to remain on the airplane, and damage that otherwise affect the safety of the structure are repaired. The damage critical to the safety of the fuselage are repaired by scheduling maintenance at pre-determined intervals. Scheduling maintenance is an interesting trade-off between damage tolerance and cost. Tolerance of larger damage would require less frequent maintenance and hence, a lower cost, to maintain a certain level of reliability. Alternatively, condition-based maintenance techniques have been developed using on-board sensors, which track damage continuously and request maintenance only when the damage size crosses a particular threshold. This effects a tolerance of larger damage than scheduled maintenance, leading to savings in cost. This work quantifies the savings of condition-based maintenance over scheduled maintenance. The work also quantifies converting the cost savings into weight savings. Structural health monitoring will need time to be able to establish itself as a stand-alone system for maintenance, due to concerns on its diagnosis accuracy and reliability. This work also investigates the effect of synchronizing structural health monitoring system with scheduled maintenance. This work uses on-board SHM equipment skip structural airframe maintenance (a subsect of scheduled maintenance), whenever deemed unnecessary while maintain a desired level of safety of structure. The work will also predict the necessary maintenance for a fleet of airplanes, based on the current damage status of the airplanes. The work also analyses the possibility of false alarm, wherein maintenance is being requested with no critical damage on the airplane. The work use SHM as a tool to identify lemons in a fleet of airplanes. Lemons are those airplanes that would warrant more maintenance trips than the average behavior of the fleet.

  5. Investigation of structural factors of safety for the space shuttle

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A study was made of the factors governing the structural design of the fully reusable space shuttle booster to establish a rational approach to select optimum structural factors of safety. The study included trade studies of structural factors of safety versus booster service life, weight, cost, and reliability. Similar trade studies can be made on other vehicles using the procedures developed. The major structural components of a selected baseline booster were studied in depth, each being examined to determine the fatigue life, safe-life, and fail-safe capabilities of the baseline design. Each component was further examined to determine its reliability and safety requirements, and the change of structural weight with factors of safety. The apparent factors of safety resulting from fatigue, safe-life, proof test, and fail-safe requirements were identified. The feasibility of reduced factors of safety for design loads such as engine thrust, which are well defined, was examined.

  6. Structural health monitoring methodology for aircraft condition-based maintenance

    NASA Astrophysics Data System (ADS)

    Saniger, Jordi; Reithler, Livier; Guedra-Degeorges, Didier; Takeda, Nobuo; Dupuis, Jean Pierre

    2001-06-01

    Reducing maintenance costs while keeping a constant level of safety is a major issue for Air Forces and airlines. The long term perspective is to implement condition based maintenance to guarantee a constant safety level while decreasing maintenance costs. On this purpose, the development of a generalized Structural Health Monitoring System (SHMS) is needed. The objective of such a system is to localize the damages and to assess their severity, with enough accuracy to allow low cost corrective actions. The present paper describes a SHMS based on acoustic emission technology. This choice was driven by its reliability and wide use in the aerospace industry. The described SHMS uses a new learning methodology which relies on the generation of artificial acoustic emission events on the structure and an acoustic emission sensor network. The calibrated acoustic emission events picked up by the sensors constitute the knowledge set that the system relies on. With this methodology, the anisotropy of composite structures is taken into account, thus avoiding the major cause of errors of classical localization methods. Moreover, it is adaptive to different structures as it does not rely on any particular model but on measured data. The acquired data is processed and the event's location and corrected amplitude are computed. The methodology has been demonstrated and experimental tests on elementary samples presented a degree of accuracy of 1cm.

  7. What Happened, and Why: Toward an Understanding of Human Error Based on Automated Analyses of Incident Reports. Volume 1

    NASA Technical Reports Server (NTRS)

    Maille, Nicolas P.; Statler, Irving C.; Ferryman, Thomas A.; Rosenthal, Loren; Shafto, Michael G.; Statler, Irving C.

    2006-01-01

    The objective of the Aviation System Monitoring and Modeling (ASMM) project of NASA s Aviation Safety and Security Program was to develop technologies that will enable proactive management of safety risk, which entails identifying the precursor events and conditions that foreshadow most accidents. This presents a particular challenge in the aviation system where people are key components and human error is frequently cited as a major contributing factor or cause of incidents and accidents. In the aviation "world", information about what happened can be extracted from quantitative data sources, but the experiential account of the incident reporter is the best available source of information about why an incident happened. This report describes a conceptual model and an approach to automated analyses of textual data sources for the subjective perspective of the reporter of the incident to aid in understanding why an incident occurred. It explores a first-generation process for routinely searching large databases of textual reports of aviation incident or accidents, and reliably analyzing them for causal factors of human behavior (the why of an incident). We have defined a generic structure of information that is postulated to be a sound basis for defining similarities between aviation incidents. Based on this structure, we have introduced the simplifying structure, which we call the Scenario as a pragmatic guide for identifying similarities of what happened based on the objective parameters that define the Context and the Outcome of a Scenario. We believe that it will be possible to design an automated analysis process guided by the structure of the Scenario that will aid aviation-safety experts to understand the systemic issues that are conducive to human error.

  8. 47 CFR 24.55 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Antenna structures; air navigation safety. 24... SERVICES PERSONAL COMMUNICATIONS SERVICES Technical Standards § 24.55 Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a...

  9. 47 CFR 24.55 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Antenna structures; air navigation safety. 24... SERVICES PERSONAL COMMUNICATIONS SERVICES Technical Standards § 24.55 Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a...

  10. 47 CFR 24.55 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Antenna structures; air navigation safety. 24... SERVICES PERSONAL COMMUNICATIONS SERVICES Technical Standards § 24.55 Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a...

  11. 47 CFR 24.55 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Antenna structures; air navigation safety. 24... SERVICES PERSONAL COMMUNICATIONS SERVICES Technical Standards § 24.55 Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a...

  12. 47 CFR 24.55 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Antenna structures; air navigation safety. 24... SERVICES PERSONAL COMMUNICATIONS SERVICES Technical Standards § 24.55 Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a...

  13. Recent advances in computational structural reliability analysis methods

    NASA Astrophysics Data System (ADS)

    Thacker, Ben H.; Wu, Y.-T.; Millwater, Harry R.; Torng, Tony Y.; Riha, David S.

    1993-10-01

    The goal of structural reliability analysis is to determine the probability that the structure will adequately perform its intended function when operating under the given environmental conditions. Thus, the notion of reliability admits the possibility of failure. Given the fact that many different modes of failure are usually possible, achievement of this goal is a formidable task, especially for large, complex structural systems. The traditional (deterministic) design methodology attempts to assure reliability by the application of safety factors and conservative assumptions. However, the safety factor approach lacks a quantitative basis in that the level of reliability is never known and usually results in overly conservative designs because of compounding conservatisms. Furthermore, problem parameters that control the reliability are not identified, nor their importance evaluated. A summary of recent advances in computational structural reliability assessment is presented. A significant level of activity in the research and development community was seen recently, much of which was directed towards the prediction of failure probabilities for single mode failures. The focus is to present some early results and demonstrations of advanced reliability methods applied to structural system problems. This includes structures that can fail as a result of multiple component failures (e.g., a redundant truss), or structural components that may fail due to multiple interacting failure modes (e.g., excessive deflection, resonate vibration, or creep rupture). From these results, some observations and recommendations are made with regard to future research needs.

  14. Recent advances in computational structural reliability analysis methods

    NASA Technical Reports Server (NTRS)

    Thacker, Ben H.; Wu, Y.-T.; Millwater, Harry R.; Torng, Tony Y.; Riha, David S.

    1993-01-01

    The goal of structural reliability analysis is to determine the probability that the structure will adequately perform its intended function when operating under the given environmental conditions. Thus, the notion of reliability admits the possibility of failure. Given the fact that many different modes of failure are usually possible, achievement of this goal is a formidable task, especially for large, complex structural systems. The traditional (deterministic) design methodology attempts to assure reliability by the application of safety factors and conservative assumptions. However, the safety factor approach lacks a quantitative basis in that the level of reliability is never known and usually results in overly conservative designs because of compounding conservatisms. Furthermore, problem parameters that control the reliability are not identified, nor their importance evaluated. A summary of recent advances in computational structural reliability assessment is presented. A significant level of activity in the research and development community was seen recently, much of which was directed towards the prediction of failure probabilities for single mode failures. The focus is to present some early results and demonstrations of advanced reliability methods applied to structural system problems. This includes structures that can fail as a result of multiple component failures (e.g., a redundant truss), or structural components that may fail due to multiple interacting failure modes (e.g., excessive deflection, resonate vibration, or creep rupture). From these results, some observations and recommendations are made with regard to future research needs.

  15. 30 CFR 57.14130 - Roll-over protective structures (ROPS) and seat belts for surface equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protective Structures (ROPS) for Construction, Earthmoving, Forestry, and Mining Machines,”, 1986; or (2) SAE... operating graders from a standing position, the grader operator shall wear safety lines and a harness in... requirement of SAE J386, “Operator Restraint System for Off-Road Work Machines” (1985, 1993, or 1997), or SAE...

  16. 30 CFR 57.14130 - Roll-over protective structures (ROPS) and seat belts for surface equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Protective Structures (ROPS) for Construction, Earthmoving, Forestry, and Mining Machines,”, 1986; or (2) SAE... operating graders from a standing position, the grader operator shall wear safety lines and a harness in... requirement of SAE J386, “Operator Restraint System for Off-Road Work Machines” (1985, 1993, or 1997), or SAE...

  17. 30 CFR 57.14130 - Roll-over protective structures (ROPS) and seat belts for surface equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Protective Structures (ROPS) for Construction, Earthmoving, Forestry, and Mining Machines,”, 1986; or (2) SAE... operating graders from a standing position, the grader operator shall wear safety lines and a harness in... requirement of SAE J386, “Operator Restraint System for Off-Road Work Machines” (1985, 1993, or 1997), or SAE...

  18. 30 CFR 57.14130 - Roll-over protective structures (ROPS) and seat belts for surface equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Protective Structures (ROPS) for Construction, Earthmoving, Forestry, and Mining Machines,”, 1986; or (2) SAE... operating graders from a standing position, the grader operator shall wear safety lines and a harness in... requirement of SAE J386, “Operator Restraint System for Off-Road Work Machines” (1985, 1993, or 1997), or SAE...

  19. 30 CFR 57.14130 - Roll-over protective structures (ROPS) and seat belts for surface equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Protective Structures (ROPS) for Construction, Earthmoving, Forestry, and Mining Machines,”, 1986; or (2) SAE... operating graders from a standing position, the grader operator shall wear safety lines and a harness in... requirement of SAE J386, “Operator Restraint System for Off-Road Work Machines” (1985, 1993, or 1997), or SAE...

  20. [Blood transfusion and supply chain management safety].

    PubMed

    Quaranta, Jean-François; Caldani, Cyril; Cabaud, Jean-Jacques; Chavarin, Patricia; Rochette-Eribon, Sandrine

    2015-02-01

    The level of safety attained in blood transfusion now makes this a discipline better managed care activities. This was achieved both by scientific advances and policy decisions regulating and supervising the activity, as well as by the quality system, which we recall that affects the entire organizational structure, responsibilities, procedures, processes and resources in place to achieve quality management. So, an effective quality system provides a framework within which activities are established, performed in a quality-focused way and continuously monitored to improve outcomes. This system quality has to irrigate all the actors of the transfusion, just as much the establishments of blood transfusion than the health establishments. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  1. Design of 3D simulation engine for oilfield safety training

    NASA Astrophysics Data System (ADS)

    Li, Hua-Ming; Kang, Bao-Sheng

    2015-03-01

    Aiming at the demand for rapid custom development of 3D simulation system for oilfield safety training, this paper designs and implements a 3D simulation engine based on script-driven method, multi-layer structure, pre-defined entity objects and high-level tools such as scene editor, script editor, program loader. A scripting language been defined to control the system's progress, events and operating results. Training teacher can use this engine to edit 3D virtual scenes, set the properties of entity objects, define the logic script of task, and produce a 3D simulation training system without any skills of programming. Through expanding entity class, this engine can be quickly applied to other virtual training areas.

  2. ADVANCED SEISMIC BASE ISOLATION METHODS FOR MODULAR REACTORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E. Blanford; E. Keldrauk; M. Laufer

    2010-09-20

    Advanced technologies for structural design and construction have the potential for major impact not only on nuclear power plant construction time and cost, but also on the design process and on the safety, security and reliability of next generation of nuclear power plants. In future Generation IV (Gen IV) reactors, structural and seismic design should be much more closely integrated with the design of nuclear and industrial safety systems, physical security systems, and international safeguards systems. Overall reliability will be increased, through the use of replaceable and modular equipment, and through design to facilitate on-line monitoring, in-service inspection, maintenance, replacement,more » and decommissioning. Economics will also receive high design priority, through integrated engineering efforts to optimize building arrangements to minimize building heights and footprints. Finally, the licensing approach will be transformed by becoming increasingly performance based and technology neutral, using best-estimate simulation methods with uncertainty and margin quantification. In this context, two structural engineering technologies, seismic base isolation and modular steel-plate/concrete composite structural walls, are investigated. These technologies have major potential to (1) enable standardized reactor designs to be deployed across a wider range of sites, (2) reduce the impact of uncertainties related to site-specific seismic conditions, and (3) alleviate reactor equipment qualification requirements. For Gen IV reactors the potential for deliberate crashes of large aircraft must also be considered in design. This report concludes that base-isolated structures should be decoupled from the reactor external event exclusion system. As an example, a scoping analysis is performed for a rectangular, decoupled external event shell designed as a grillage. This report also reviews modular construction technology, particularly steel-plate/concrete construction using factory prefabricated structural modules, for application to external event shell and base isolated structures.« less

  3. A strategic approach to quality improvement and patient safety education and resident integration in a general surgery residency.

    PubMed

    O'Heron, Colette T; Jarman, Benjamin T

    2014-01-01

    To outline a structured approach for general surgery resident integration into institutional quality improvement and patient safety education and development. A strategic plan to address Accreditation Council for Graduate Medical Education (ACGME) Clinical Learning Environment Review assessments for resident integration into Quality Improvement and Patient Safety initiatives is described. Gundersen Lutheran Medical Foundation is an independent academic medical center graduating three categorical residents per year within an integrated multi-specialty health system serving 19 counties over 3 states. The quality improvement and patient safety education program includes a formal lecture series, online didactic sessions, mandatory quality improvement or patient safety projects, institutional committee membership, an opportunity to serve as a designated American College of Surgeons National Surgical Quality Improvement Project and Quality in Training representative, mandatory morbidity and mortality conference attendance and clinical electives in rural surgery and international settings. Structured education regarding and participation in quality improvement and patient safety programs are able to be accomplished during general surgery residency. The long-term outcomes and benefits of these strategies are unknown at this time and will be difficult to measure with objective data. © 2013 Published by Association of Program Directors in Surgery on behalf of Association of Program Directors in Surgery.

  4. AP1000{sup R} design robustness against extreme external events - Seismic, flooding, and aircraft crash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfister, A.; Goossen, C.; Coogler, K.

    2012-07-01

    Both the International Atomic Energy Agency (IAEA) and the U.S. Nuclear Regulatory Commission (NRC) require existing and new nuclear power plants to conduct plant assessments to demonstrate the unit's ability to withstand external hazards. The events that occurred at the Fukushima-Dai-ichi nuclear power station demonstrated the importance of designing a nuclear power plant with the ability to protect the plant against extreme external hazards. The innovative design of the AP1000{sup R} nuclear power plant provides unparalleled protection against catastrophic external events which can lead to extensive infrastructure damage and place the plant in an extended abnormal situation. The AP1000 plantmore » is an 1100-MWe pressurized water reactor with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance and safety. The plant's compact safety related footprint and protection provided by its robust nuclear island structures prevent significant damage to systems, structures, and components required to safely shutdown the plant and maintain core and spent fuel pool cooling and containment integrity following extreme external events. The AP1000 nuclear power plant has been extensively analyzed and reviewed to demonstrate that it's nuclear island design and plant layout provide protection against both design basis and extreme beyond design basis external hazards such as extreme seismic events, external flooding that exceeds the maximum probable flood limit, and malicious aircraft impact. The AP1000 nuclear power plant uses fail safe passive features to mitigate design basis accidents. The passive safety systems are designed to function without safety-grade support systems (such as AC power, component cooling water, service water, compressed air or HVAC). The plant has been designed to protect systems, structures, and components critical to placing the reactor in a safe shutdown condition within the steel containment vessel which is further surrounded by a substantial 'steel concrete' composite shield building. The containment vessel is not affected by external flooding, and the shield building design provides hazard protection beyond that provided by a comparable reinforced concrete structure. The intent of this paper is to demonstrate the robustness of the AP1000 design against extreme events. The paper will focus on the plants ability to withstand extreme external events such as beyond design basis flooding, seismic events, and malicious aircraft impact. The paper will highlight the robustness of the AP1000 nuclear island design including the protection provided by the unique AP1000 composite shield building. (authors)« less

  5. A Model for the Departmental Quality Management Infrastructure Within an Academic Health System.

    PubMed

    Mathews, Simon C; Demski, Renee; Hooper, Jody E; Biddison, Lee Daugherty; Berry, Stephen A; Petty, Brent G; Chen, Allen R; Hill, Peter M; Miller, Marlene R; Witter, Frank R; Allen, Lisa; Wick, Elizabeth C; Stierer, Tracey S; Paine, Lori; Puttgen, Hans A; Tamargo, Rafael J; Pronovost, Peter J

    2017-05-01

    As quality improvement and patient safety come to play a larger role in health care, academic medical centers and health systems are poised to take a leadership role in addressing these issues. Academic medical centers can leverage their large integrated footprint and have the ability to innovate in this field. However, a robust quality management infrastructure is needed to support these efforts. In this context, quality and safety are often described at the executive level and at the unit level. Yet, the role of individual departments, which are often the dominant functional unit within a hospital, in realizing health system quality and safety goals has not been addressed. Developing a departmental quality management infrastructure is challenging because departments are diverse in composition, size, resources, and needs.In this article, the authors describe the model of departmental quality management infrastructure that has been implemented at the Johns Hopkins Hospital. This model leverages the fractal approach, linking departments horizontally to support peer and organizational learning and connecting departments vertically to support accountability to the hospital, health system, and board of trustees. This model also provides both structure and flexibility to meet individual departmental needs, recognizing that independence and interdependence are needed for large academic medical centers. The authors describe the structure, function, and support system for this model as well as the practical and essential steps for its implementation. They also provide examples of its early success.

  6. Structural safety assessment for FLNG-LNGC system during offloading operation scenario

    NASA Astrophysics Data System (ADS)

    Hu, Zhi-qiang; Zhang, Dong-wei; Zhao, Dong-ya; Chen, Gang

    2017-04-01

    The crashworthiness of the cargo containment systems (CCSs) of a floating liquid natural gas (FLNG) and the side structures in side-by-side offloading operations scenario are studied in this paper. An FLNG vessel is exposed to potential threats from collisions with a liquid natural gas carrier (LNGC) during the offloading operations, which has been confirmed by a model test of FLNG-LNGC side-by-side offloading operations. A nonlinear finite element code LS-DYNA is used to simulate the collision scenarios during the offloading operations. Finite element models of an FLNG vessel and an LNGC are established for the purpose of this study, including a detailed LNG cargo containment system in the FLNG side model. Based on the parameters obtained from the model test and potential dangerous accidents, typical collision scenarios are defined to conduct a comprehensive study. To evaluate the safety of the FLNG vessel, a limit state is proposed based on the structural responses of the LNG CCS. The different characteristics of the structural responses for the primary structural components, energy dissipation and collision forces are obtained for various scenarios. Deformation of the inner hull is found to have a great effect on the responses of the LNG CCS, with approximately 160 mm deformation corresponding to the limit state. Densely arranged web frames can absorb over 35% of the collision energy and be proved to greatly enhance the crashworthiness of the FLNG side structures.

  7. The development and application of electronic information system for safety administration of newborns in the rooming-in care.

    PubMed

    Wang, Fang; Dong, Jian-Cheng; Chen, Jian-Rong; Wu, Hui-Qun; Liu, Man-Hua; Xue, Li-Ly; Zhu, Xiang-Hua; Wang, Jian

    2015-01-01

    To independently research and develop an electronic information system for safety administration of newborns in the rooming-in care, and to investigate the effects of its clinical application. By VS 2010 SQL SERVER 2005 database and adopting Microsoft visual programming tool, an interactive mobile information system was established, with integrating data, information and knowledge with using information structures, information processes and information technology. From July 2011 to July 2012, totally 210 newborns from the rooming-in care of the Obstetrics Department of the Second Affiliated Hospital of Nantong University were chosen and randomly divided into two groups: the information system monitoring group (110 cases) and the regular monitoring group (100 cases). Incidence of abnormal events and degree of satisfaction were recorded and calculated. ① The wireless electronic information system has four main functions including risk scaling display, identity recognition display, nursing round notes board and health education board; ② statistically significant differences were found between the two groups both on the active or passive discovery rate of abnormal events occurred in the newborns (P<0.05) and the satisfaction degree of the mothers and their families (P<0.05); ③ the system was sensitive and reliable, and the wireless transmission of information was correct and safety. The system is with high practicability in the clinic and can ensure the safety for the newborns with improved satisfactions.

  8. Argument-Based Airworthiness Assurance of Small UAS

    NASA Technical Reports Server (NTRS)

    Denney, Ewen; Pai, Ganesh

    2015-01-01

    Presently, there are three avenues by which Unmanned Aircraft System (UAS) operations are authorized in the U.S. National Airspace System (NAS): obtaining either (i) a certificate of authorization (COA), or (ii) a special airworthiness certificate (SAC) in either the experimental, or the restricted category, or (iii) an exemption from an airworthiness certificate together with a civil COA. The first is meant primarily for public entities, such as NASA; the remaining two are the only available means for civil UAS operations. Recently, the Federal Aviation Administration (FAA) has also proposed a regulatory framework targeted for certain small UAS, specifically those weighing 55 pounds or less, although final rulemaking remains pending. We have previously shown how an assurance case can aggregate heterogeneous reasoning and safety evidence, with application to UAS safety. In this paper, we describe how assurance cases can serve as a common framework to justify overall system safety, unifying both operational aspects and airworthiness, in particular system design assurance. We also show how this approach can coexist with, and augment, existing safety analysis processes and best-practices, by transforming the artifacts they produce into structured assurance arguments. To illustrate the applicability and utility of our approach, we have been applying it for the design assurance of an unmanned rotorcraft system, intended for precision agriculture operations, as part of the NASA Unmanned Aircraft System (UAS) Integration in the National Airspace System (NAS) project.

  9. Occupational health and safety: Designing and building with MACBETH a value risk-matrix for evaluating health and safety risks

    NASA Astrophysics Data System (ADS)

    Lopes, D. F.; Oliveira, M. D.; Costa, C. A. Bana e.

    2015-05-01

    Risk matrices (RMs) are commonly used to evaluate health and safety risks. Nonetheless, they violate some theoretical principles that compromise their feasibility and use. This study describes how multiple criteria decision analysis methods have been used to improve the design and the deployment of RMs to evaluate health and safety risks at the Occupational Health and Safety Unit (OHSU) of the Regional Health Administration of Lisbon and Tagus Valley. ‘Value risk-matrices’ (VRMs) are built with the MACBETH approach in four modelling steps: a) structuring risk impacts, involving the construction of descriptors of impact that link risk events with health impacts and are informed by scientific evidence; b) generating a value measurement scale of risk impacts, by applying the MACBETH-Choquet procedure; c) building a system for eliciting subjective probabilities that makes use of a numerical probability scale that was constructed with MACBETH qualitative judgments on likelihood; d) and defining a classification colouring scheme for the VRM. A VRM built with OHSU members was implemented in a decision support system which will be used by OHSU members to evaluate health and safety risks and to identify risk mitigation actions.

  10. The relationships between OHS prevention costs, safety performance, employee satisfaction and accident costs.

    PubMed

    Bayram, Metin; Ünğan, Mustafa C; Ardıç, Kadir

    2017-06-01

    Little is known about the costs of safety. A literature review conducted for this study indicates there is a lack of survey-based research dealing with the effects of occupational health and safety (OHS) prevention costs. To close this gap in the literature, this study investigates the interwoven relationships between OHS prevention costs, employee satisfaction, OHS performance and accident costs. Data were collected from 159 OHS management system 18001-certified firms operating in Turkey and analyzed through structural equation modeling. The findings indicate that OHS prevention costs have a significant positive effect on safety performance, employee satisfaction and accident costs savings; employee satisfaction has a significant positive effect on accident costs savings; and occupational safety performance has a significant positive effect on employee satisfaction and accident costs savings. Also, the results indicate that safety performance and employee satisfaction leverage the relationship between prevention costs and accident costs.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    MITCHELL,GERRY W.; LONGLEY,SUSAN W.; PHILBIN,JEFFREY S.

    This Safety Analysis Report (SAR) is prepared in compliance with the requirements of DOE Order 5480.23, Nuclear Safety Analysis Reports, and has been written to the format and content guide of DOE-STD-3009-94 Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports. The Hot Cell Facility is a Hazard Category 2 nonreactor nuclear facility, and is operated by Sandia National Laboratories for the Department of Energy. This SAR provides a description of the HCF and its operations, an assessment of the hazards and potential accidents which may occur in the facility. The potential consequences and likelihood ofmore » these accidents are analyzed and described. Using the process and criteria described in DOE-STD-3009-94, safety-related structures, systems and components are identified, and the important safety functions of each SSC are described. Additionally, information which describes the safety management programs at SNL are described in ancillary chapters of the SAR.« less

  12. The SISIFO project: Seismic Safety at High Schools

    NASA Astrophysics Data System (ADS)

    Peruzza, Laura; Barnaba, Carla; Bragato, Pier Luigi; Dusi, Alberto; Grimaz, Stefano; Malisan, Petra; Saraò, Angela; Mucciarelli, Marco

    2014-05-01

    For many years, the Italian scientific community has faced the problem of the reduction of earthquake risk using innovative educational techniques. Recent earthquakes in Italy and around the world have clearly demonstrated that seismic codes alone are not able to guarantee an effective mitigation of risk. After the tragic events of San Giuliano di Puglia (2002), where an earthquake killed 26 school children, special attention was paid in Italy to the seismic safety of schools, but mainly with respect to structural aspects. Little attention has been devoted to the possible and even significant damage to non-structural elements (collapse of ceilings, tipping of cabinets and shelving, obstruction of escape routes, etc..). Students and teachers trained on these aspects may lead to a very effective preventive vigilance. Since 2002, the project EDURISK (www.edurisk.it) proposed educational tools and training programs for schools, at primary and middle levels. More recently, a nationwide campaign aimed to adults (www.iononrischio.it) was launched with the extensive support of civil protection volounteers. There was a gap for high schools, and Project SISIFO was designed to fill this void and in particular for those schools with technical/scientific curricula. SISIFO (https://sites.google.com/site/ogssisifo/) is a multidisciplinary initiative, aimed at the diffusion of scientific culture for achieving seismic safety in schools, replicable and can be structured in training the next several years. The students, helped by their teachers and by experts from scientific institutions, followed a course on specialized training on earthquake safety. The trial began in North-East Italy, with a combination of hands-on activities for the measurement of earthquakes with low-cost instruments and lectures with experts in various disciplines, accompanied by specifically designed teaching materials, both on paper and digital format. We intend to raise teachers and students knowledge of the problems of seismic hazard, seismic response of foundation soils, and building dynamics to stimulate awareness of seismic safety, including seismic hazard, seismic site response, seismic behaviour of structural and non-structural elements and functional issues (escape ways, emergency systems, etc.). The awareness of seismic safety in places of study, work and life aims at improving the capacity to recognize safety issues and possible solutions

  13. Structural Design Requirements and Factors of Safety for Spaceflight Hardware: For Human Spaceflight. Revision A

    NASA Technical Reports Server (NTRS)

    Bernstein, Karen S.; Kujala, Rod; Fogt, Vince; Romine, Paul

    2011-01-01

    This document establishes the structural requirements for human-rated spaceflight hardware including launch vehicles, spacecraft and payloads. These requirements are applicable to Government Furnished Equipment activities as well as all related contractor, subcontractor and commercial efforts. These requirements are not imposed on systems other than human-rated spacecraft, such as ground test articles, but may be tailored for use in specific cases where it is prudent to do so such as for personnel safety or when assets are at risk. The requirements in this document are focused on design rather than verification. Implementation of the requirements is expected to be described in a Structural Verification Plan (SVP), which should describe the verification of each structural item for the applicable requirements. The SVP may also document unique verifications that meet or exceed these requirements with NASA Technical Authority approval.

  14. The structure and emerging trends of construction safety management research: a bibliometric review.

    PubMed

    Liang, Huakang; Zhang, Shoujian; Su, Yikun

    2018-03-29

    Recently, construction safety management (CSM) practices and systems have become important topics for stakeholders to take care of human resources. However, few studies have attempted to map the global research on CSM. A comprehensive bibliometric review was conducted in this study based on multiple methods. In total, 1172 CSM-related papers from the Web of Science Core Collection database were examined. The analyses focused on publication year, country-institute, publication source, author and research topics. The results indicated that the USA, China, Australia and the UK took leading positions in CSM research. Two branches of journals were identified, namely the branch of engineering science and that of safety science and social science. Additionally, seven themes together with 28 specific topics were detected to allow researchers to track the main structure and temporal evolution of CSM research. Finally, the main research trends and potential research directions were discussed to guide the future research.

  15. [Strategic patient safety action plan for the anesthesiology and intensive care service of Ukraine: basic modules and their components].

    PubMed

    Федосюк, Роман Н

    In recent years, the problem of patient safety has become top-priority in further improvement of national healthcare systems in all developed countries. To develop a modular structure and a component composition of the strategic patient safety action plan for the anesthesiology and intensive care service of Ukraine as a part of the National Action Plan. Major domestic priorities, substantiated and made public by the author in previous works, are taken as the basis for the modular structuring of the action plan. Existing foreign prototypes, evaluated for the patient safety effectiveness and the potential for the adaptation to domestic conditions, as well as author's own innovations are offered for a component filling-up of each module. Eight modules - infectious safety, surgical safety, pharmaceutical safety, infrastructural safety, incident monitoring and reporting, education and training, research and awards - have been proposed. Individual components for each of the modules are selected from a variety of foreign prototypes and author's own developments. Inter-modular stratification of the components into short-term perspective tools and long-term perspective tools, depending on the amount of resources needed for their implementation, is carried out. The strategic patient safety action plan for the anesthesiology and intensive care service of Ukraine is the embodiment, within a particular specialty, of the wider National Action Plan developed by the First National Congress on Patient Safety (Kiev, 2012) on the initiative of the Council of Europe and aimed at the fulfillment of international obligations of Ukraine in the healthcare sector. Its implementation will contribute to enhancing the safety of anesthesia and intensive care services in Ukraine and further development of the specialty.

  16. Development and Application of a Structural Health Monitoring System Based on Wireless Smart Aggregates

    PubMed Central

    Ma, Haoyan; Li, Peng; Song, Gangbing; Wu, Jianxin

    2017-01-01

    Structural health monitoring (SHM) systems can improve the safety and reliability of structures, reduce maintenance costs, and extend service life. Research on concrete SHMs using piezoelectric-based smart aggregates have reached great achievements. However, the newly developed techniques have not been widely applied in practical engineering, largely due to the wiring problems associated with large-scale structural health monitoring. The cumbersome wiring requires much material and labor work, and more importantly, the associated maintenance work is also very heavy. Targeting a practical large scale concrete crack detection (CCD) application, a smart aggregates-based wireless sensor network system is proposed for the CCD application. The developed CCD system uses Zigbee 802.15.4 protocols, and is able to perform dynamic stress monitoring, structural impact capturing, and internal crack detection. The system has been experimentally validated, and the experimental results demonstrated the effectiveness of the proposed system. This work provides important support for practical CCD applications using wireless smart aggregates. PMID:28714927

  17. Development and Application of a Structural Health Monitoring System Based on Wireless Smart Aggregates.

    PubMed

    Yan, Shi; Ma, Haoyan; Li, Peng; Song, Gangbing; Wu, Jianxin

    2017-07-17

    Structural health monitoring (SHM) systems can improve the safety and reliability of structures, reduce maintenance costs, and extend service life. Research on concrete SHMs using piezoelectric-based smart aggregates have reached great achievements. However, the newly developed techniques have not been widely applied in practical engineering, largely due to the wiring problems associated with large-scale structural health monitoring. The cumbersome wiring requires much material and labor work, and more importantly, the associated maintenance work is also very heavy. Targeting a practical large scale concrete crack detection (CCD) application, a smart aggregates-based wireless sensor network system is proposed for the CCD application. The developed CCD system uses Zigbee 802.15.4 protocols, and is able to perform dynamic stress monitoring, structural impact capturing, and internal crack detection. The system has been experimentally validated, and the experimental results demonstrated the effectiveness of the proposed system. This work provides important support for practical CCD applications using wireless smart aggregates.

  18. Structures and processes in spontaneous ADR reporting systems: a comparative study of Australia and Denmark.

    PubMed

    Aagaard, Lise; Stenver, Doris Irene; Hansen, Ebba Holme

    2008-10-01

    To explore the organisational structure and processes of the Danish and Australian spontaneous ADR reporting systems with a view to how information is generated about new ADRs. The Danish and Australian spontaneous ADR reporting systems. Qualitative analyses of documentary material, descriptive interviews with key informants, and observations were made. We analysed the organisational structure of the Danish and Australian ADR reporting systems with respect to structures and processes, including information flow and exchange of ADR data. The analysis was made based on Scott's adapted version of Leavitt's diamond model, with the components: goals/tasks, social structure, technology and participants, within a surrounding environment. The main differences between the systems were: (1) PARTICIPANTS: Outsourcing of ADR assessments to the pharmaceutical companies complicates maintenance of scientific skills within the Danish Medicines Agency (DKMA), as it leaves the handling of spontaneous ADR reports purely administrative within the DKMA, and the knowledge creation process remains with the pharmaceutical companies, while in Australia senior scientific staff work with evaluation of the ADR report; (2) Goals/tasks: In Denmark, resources are targeted at evaluating Periodic Safety Update Reports (PSUR) submitted by the companies, while the resources in Australia are focused on single case assessment resulting in faster and more proactive medicine surveillance; (3) Social structure: Discussions between scientific staff about ADRs take place in Australia, while the Danish system primarily focuses on entering and forwarding ADR data to the relevant pharmaceutical companies; (4) Technology: The Danish system exchanges ADR data electronically with pharmaceutical companies and the other EU countries, while Australia does not have a system for electronic exchange of ADR data; and (5) ENVIRONMENT: The Danish ADR system is embedded in the routines of cooperation within European pharmacovigilance network while the Australian system is acting alone, although they communicate with other systems. The two systems differ with regard to reporting requirements, report handling, resources being spent and information exchange with the environment. In Denmark, learning about ADRs primarily takes place in the safety divisions of the pharmaceutical companies and the authorities have no control over the knowledge creation process. In Australia, more learning and control of the knowledge is present than in Denmark.

  19. 78 FR 45781 - Accreditation of Third-Party Auditors/Certification Bodies to Conduct Food Safety Audits and to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-29

    ... following major elements: (1) Legal responsibility, structure, and impartiality; (2) management systems... contains similar requirements for bodies auditing management systems: (1) Legal matters and contractual... 72,611,521 74,396,099 Table of Contents I. Introduction II. Background A. Legal Authority B. FDA...

  20. The NASA Aviation Safety Program: Overview

    NASA Technical Reports Server (NTRS)

    Shin, Jaiwon

    2000-01-01

    In 1997, the United States set a national goal to reduce the fatal accident rate for aviation by 80% within ten years based on the recommendations by the Presidential Commission on Aviation Safety and Security. Achieving this goal will require the combined efforts of government, industry, and academia in the areas of technology research and development, implementation, and operations. To respond to the national goal, the National Aeronautics and Space Administration (NASA) has developed a program that will focus resources over a five year period on performing research and developing technologies that will enable improvements in many areas of aviation safety. The NASA Aviation Safety Program (AvSP) is organized into six research areas: Aviation System Modeling and Monitoring, System Wide Accident Prevention, Single Aircraft Accident Prevention, Weather Accident Prevention, Accident Mitigation, and Synthetic Vision. Specific project areas include Turbulence Detection and Mitigation, Aviation Weather Information, Weather Information Communications, Propulsion Systems Health Management, Control Upset Management, Human Error Modeling, Maintenance Human Factors, Fire Prevention, and Synthetic Vision Systems for Commercial, Business, and General Aviation aircraft. Research will be performed at all four NASA aeronautics centers and will be closely coordinated with Federal Aviation Administration (FAA) and other government agencies, industry, academia, as well as the aviation user community. This paper provides an overview of the NASA Aviation Safety Program goals, structure, and integration with the rest of the aviation community.

  1. Innovation in the safety net: integrating community health centers through accountable care.

    PubMed

    Lewis, Valerie A; Colla, Carrie H; Schoenherr, Karen E; Shortell, Stephen M; Fisher, Elliott S

    2014-11-01

    Safety net primary care providers, including as community health centers, have long been isolated from mainstream health care providers. Current delivery system reforms such as Accountable Care Organizations (ACOs) may either reinforce the isolation of these providers or may spur new integration of safety net providers. This study examines the extent of community health center involvement in ACOs, as well as how and why ACOs are partnering with these safety net primary care providers. Mixed methods study pairing the cross-sectional National Survey of ACOs (conducted 2012 to 2013), followed by in-depth, qualitative interviews with a subset of ACOs that include community health centers (conducted 2013). One hundred and seventy-three ACOs completed the National Survey of ACOs. Executives from 18 ACOs that include health centers participated in in-depth interviews, along with leadership at eight community health centers participating in ACOs. Key survey measures include ACO organizational characteristics, care management and quality improvement capabilities. Qualitative interviews used a semi-structured interview guide. Interviews were recorded and transcribed, then coded for thematic content using NVivo software. Overall, 28% of ACOs include a community health center (CHC). ACOs with CHCs are similar to those without CHCs in organizational structure, care management and quality improvement capabilities. Qualitative results showed two major themes. First, ACOs with CHCs typically represent new relationships or formal partnerships between CHCs and other local health care providers. Second, CHCs are considered valued partners brought into ACOs to expand primary care capacity and expertise. A substantial number of ACOs include CHCs. These results suggest that rather than reinforcing segmentation of safety net providers from the broader delivery system, the ACO model may lead to the integration of safety net primary care providers.

  2. Development of Performance Requirements for a Rail Passenger Workstation Table Safety Standard

    DOT National Transportation Integrated Search

    2010-10-12

    The American Public Transportation Associations (APTA) Construction and Structural committee, a railroad industry group, with the support of the Federal Railroad Administration (FRA) and the John A. Volpe National Transportation Systems Center (Vo...

  3. Vision-based stress estimation model for steel frame structures with rigid links

    NASA Astrophysics Data System (ADS)

    Park, Hyo Seon; Park, Jun Su; Oh, Byung Kwan

    2017-07-01

    This paper presents a stress estimation model for the safety evaluation of steel frame structures with rigid links using a vision-based monitoring system. In this model, the deformed shape of a structure under external loads is estimated via displacements measured by a motion capture system (MCS), which is a non-contact displacement measurement device. During the estimation of the deformed shape, the effective lengths of the rigid link ranges in the frame structure are identified. The radius of the curvature of the structural member to be monitored is calculated using the estimated deformed shape and is employed to estimate stress. Using MCS in the presented model, the safety of a structure can be assessed gauge-freely. In addition, because the stress is directly extracted from the radius of the curvature obtained from the measured deformed shape, information on the loadings and boundary conditions of the structure are not required. Furthermore, the model, which includes the identification of the effective lengths of the rigid links, can consider the influences of the stiffness of the connection and support on the deformation in the stress estimation. To verify the applicability of the presented model, static loading tests for a steel frame specimen were conducted. By comparing the stress estimated by the model with the measured stress, the validity of the model was confirmed.

  4. Corrosion sensor

    DOEpatents

    Glass, Robert S.; Clarke, Jr., Willis L.; Ciarlo, Dino R.

    1994-01-01

    A corrosion sensor array incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis.

  5. Corrosion sensor

    DOEpatents

    Glass, R.S.; Clarke, W.L. Jr.; Ciarlo, D.R.

    1994-04-26

    A corrosion sensor array is described incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis. 7 figures.

  6. Method for monitoring environmental and corrosion

    DOEpatents

    Glass, Robert S.; Clarke, Jr., Willis L.; Ciarlo, Dino R.

    1995-01-01

    A corrosion sensor array incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis.

  7. Potentials of Optical Damage Assessment Techniques in Automotive Crash-Concepts composed of FRP-Steel Hybrid Material Systems

    NASA Astrophysics Data System (ADS)

    Dlugosch, M.; Spiegelhalter, B.; Soot, T.; Lukaszewicz, D.; Fritsch, J.; Hiermaier, S.

    2017-05-01

    With car manufacturers simultaneously facing increasing passive safety and efficiency requirements, FRP-metal hybrid material systems are one way to design lightweight and crashworthy vehicle structures. Generic automotive hybrid structural concepts have been tested under crash loading conditions. In order to assess the state of overall damage and structural integrity, and primarily to validate simulation data, several NDT techniques have been assessed regarding their potential to detect common damage mechanisms in such hybrid systems. Significant potentials were found particularly in combining 3D-topography laser scanning and X-Ray imaging results. Ultrasonic testing proved to be limited by the signal coupling quality on damaged or curved surfaces.

  8. [Design and Analysis of CT High-speed Data Transmission Rotating Connector Ring System Retaining Ring].

    PubMed

    Pan, Li; Cao, Jujiang; Liu, Min; Fu, Weiwei

    2017-11-30

    High speed data transmission rotating connector system for signal high-speed transmission used in the fixed end and rotating end, it is one of the core component in the CT system. This paper involves structure design and analysis of the retaining ring in the CT high speed data transmission rotating connector system based on the principle of off-axis free space optical transmission. According to the problem of the actual engineering application of space limitations, optical fiber fixed and collimator installation location, we designed the structure of the retaining ring. Using the static analysis function of ANSYS Workbench, it verifies rationality and safety of the strength of retaining ring structure. And based on modal analysis function of ANSYS Workbench, it evaluates the effect of the retaining ring on the stability of the system date transmission, and provides theoretical basis for the feasibility of the structure in practical application.

  9. Modeling safety requirements of an FMS using Petri-nets

    NASA Astrophysics Data System (ADS)

    Hanna, Moheb M.; Buck, A. A.; Smith, R.

    1993-08-01

    This paper is concerned with the modelling of safety requirements using Petri nets as a tool to model and simulate a Flexible Manufacturing System (FMS). The FMS cell described comprises a pick and place robot, a multi-head drilling machine together with a vision system and illustrates how the hierarchical structure of Petri nets can be used to ensure that all fail- safe requirements are satisfied; block diagrams together with fully detailed example Petri nets are given. The work demonstrates the use of cell and robot control Petro nets together with robot subnets for the x, y and z axes and associated output nets; the control and output nets are linked together with a safety net. Individual machines are linked with the control and safety nets of an FMS at cell level. The paper also illustrates how a Petri net can act as a decision maker during image inspection and identifies the unsafe conditions that can arise within an FMS.

  10. Implications of case managers' perceptions and attitude on safety of home-delivered care.

    PubMed

    Jones, Sarahjane

    2015-12-01

    Perceptions on safety in community care have been relatively unexplored. A project that sought to understand the multiple perspectives on safety in the NHS case-management programme was carried out in relation to the structure, process, and outcome of care. This article presents a component of the nursing perspective that highlights an important element in the structure of nursing care that could potentially impede the nurses' ability to be fully effective and safe. A single case study of the case-management programme was undertaken. Three primary care organisations from three strategic health authorities participated, and three focus groups were conducted (one within each organisation). In total, 17 case management nurses participated. Data were audiotaped and transcribed verbatim and subjected to framework analysis. Nursing staff attitudes were identified as a structure of care that influence safety outcomes, particularly their perceptions of the care setting and the implications it has on their role and patient behaviour. Greater understanding of the expected role of the community nurse is necessary, and relevant training is required for nurses to be successful in empowering patients to perform more safely. In addition, efforts need to be made to improve patients' trust in the health-care system to prevent harm and promote more effective utilisation of resources.

  11. Food Safety Crisis Management-A Comparison between Germany and the Netherlands.

    PubMed

    van Asselt, E D; van der Fels-Klerx, H J; Breuer, O; Helsloot, I

    2017-02-01

    In order to prevent food safety incidents from becoming a crisis, a good crisis management structure is essential. The aim of the current study was to compare and evaluate the national food incident response plans of 2 neighboring EU Member States: Germany and the Netherlands. This revealed that the structure of these plans is comparable, starting with initial alerting, assessment of the problem, upscaling, an execution phase and finally an evaluation of the crisis management. However, the German communication structure is more complex than the Dutch one and cross-border communication between both countries is currently limited. In general, the presence of national response plans does not guarantee a good and swift response to a food safety incident as this is often hampered by difficulties in tracing the source of the problem as well as difficulties in communication between organizations involved in crisis management. A timely detection can be improved through the development of fast screening and detecting systems and through combining various data sources using computer software systems. Mutual cooperation and communication can be improved through joint exercises or projects. This will help to streamline communication toward consumers and trade partners. Such communication should be transparent relaying not only the facts but also the uncertainties in a crisis in order to gain consumer trust and safeguard international trade. © 2017 Institute of Food Technologists®.

  12. Large Space Structures Fielding Plan

    DTIC Science & Technology

    1991-01-01

    15830 STS PAYLOARE SYSTESETY 3C (A %AA IASB STS DAYLCODSICARGO SRORM 1PVFR! PR 111L 5 SOL? CIE. JR-012 SAFETY 19LENEVIASO PLA PSOR 1, ,I -1 AR S’EATIOR...support/safety measures in space will interface. Although these features can be developed to some degree as stated objectives, many must be designed from...continuity 7. Check system for mechanical continuity 8. Verify LSS assembly continuity B. Productivity Measurements 1. Note duration of assembly activities

  13. Evolution of International Space Station Program Safety Review Processes and Tools

    NASA Technical Reports Server (NTRS)

    Ratterman, Christian D.; Green, Collin; Guibert, Matt R.; McCracken, Kristle I.; Sang, Anthony C.; Sharpe, Matthew D.; Tollinger, Irene V.

    2013-01-01

    The International Space Station Program at NASA is constantly seeking to improve the processes and systems that support safe space operations. To that end, the ISS Program decided to upgrade their Safety and Hazard data systems with 3 goals: make safety and hazard data more accessible; better support the interconnection of different types of safety data; and increase the efficiency (and compliance) of safety-related processes. These goals are accomplished by moving data into a web-based structured data system that includes strong process support and supports integration with other information systems. Along with the data systems, ISS is evolving its submission requirements and safety process requirements to support the improved model. In contrast to existing operations (where paper processes and electronic file repositories are used for safety data management) the web-based solution provides the program with dramatically faster access to records, the ability to search for and reference specific data within records, reduced workload for hazard updates and approval, and process support including digital signatures and controlled record workflow. In addition, integration with other key data systems provides assistance with assessments of flight readiness, more efficient review and approval of operational controls and better tracking of international safety certifications. This approach will also provide new opportunities to streamline the sharing of data with ISS international partners while maintaining compliance with applicable laws and respecting restrictions on proprietary data. One goal of this paper is to outline the approach taken by the ISS Progrm to determine requirements for the new system and to devise a practical and efficient implementation strategy. From conception through implementation, ISS and NASA partners utilized a user-centered software development approach focused on user research and iterative design methods. The user-centered approach used on the new ISS hazard system utilized focused user research and iterative design methods employed by the Human Computer Interaction Group at NASA Ames Research Center. Particularly, the approach emphasized the reduction of workload associated with document and data management activities so more resources can be allocated to the operational use of data in problem solving, safety analysis, and recurrence control. The methods and techniques used to understand existing processes and systems, to recognize opportunities for improvement, and to design and review improvements are described with the intent that similar techniques can be employed elsewhere in safety operations. A second goal of this paper is to provide and overview of the web-based data system implemented by ISS. The software selected for the ISS hazard systemMission Assurance System (MAS)is a NASA-customized vairant of the open source software project Bugzilla. The origin and history of MAS as a NASA software project and the rationale for (and advantages of) using open-source software are documented elsewhere (Green, et al., 2009).

  14. The occupational health and safety of flight attendants.

    PubMed

    Griffiths, Robin F; Powell, David M C

    2012-05-01

    In order to perform safety-critical roles in emergency situations, flight attendants should meet minimum health standards and not be impaired by factors such as fatigue. In addition, the unique occupational and environmental characteristics of flight attendant employment may have consequential occupational health and safety implications, including radiation exposure, cancer, mental ill-health, musculoskeletal injury, reproductive disorders, and symptoms from cabin air contamination. The respective roles of governments and employers in managing these are controversial. A structured literature review was undertaken to identify key themes for promoting a future agenda for flight attendant health and safety. Recommendations include breast cancer health promotion, implementation of Fatigue Risk Management Systems, standardization of data collection on radiation exposure and health outcomes, and more coordinated approaches to occupational health and safety risk management. Research is ongoing into cabin air contamination incidents, cancer, and fatigue as health and safety concerns. Concerns are raised that statutory medical certification for flight attendants will not benefit either flight safety or occupational health.

  15. The Evaluation of the Safety Benefits of Combined Passive and On-Board Active Safety Applications

    PubMed Central

    Page, Yves; Cuny, Sophie; Zangmeister, Tobias; Kreiss, Jens-Peter; Hermitte, Thierry

    2009-01-01

    One of the objectives of the European TRACE project (TRaffic Accident Causation in Europe, 2006–2008) was to estimate the proportion of injury accidents that could be avoided and/or the proportion of injury accidents where the severity could be mitigated for on-the-market safety applications, if 100 % of the car fleet would be equipped with them. We have selected for evaluation the Electronic Stability Control (ESC) and the Emergency Brake Assist (EBA) applications. As for passive safety systems, recent cars are designed to offer overall safety protection. Car structure, load limiters, front airbags, side airbags, knee airbags, pretensioners, padding and non aggressive structures in the door panel, the dashboard, the windshield, the seats, and the head rest also contribute to applying more protection. The whole safety package is very difficult to evaluate separately, one element independently segmented from the others. We decided to consider evaluating the effectivenessof the whole passive safety package, This package,, for the sake of simplicity, was the number of stars awarded at the Euro NCAP testing. The challenges were to compare the effectiveness of some safety configuration SC I, with the effectiveness of a different safety configuration SC II. A safety configuration is understood as a package of safety functions. Ten comparisons have been carried out such as the evaluation of the safety benefit of a fifth star given that the car has four stars and an EBA. The main outcome of this analysis is that any addition of a passive or active safety function selected in this analysis is producing increased safety benefits. For example, if all cars were five stars fitted with EBA and ESC, instead of four stars without ESC and EBA, injury accidents would be reduced by 47.2% for severe injuries and 69.5% for fatal injuries. PMID:20184838

  16. The effects of organizational commitment and structural empowerment on patient safety culture.

    PubMed

    Horwitz, Sujin K; Horwitz, Irwin B

    2017-03-20

    Purpose The purpose of this paper is to investigate the relationship between patient safety culture and two attitudinal constructs: affective organizational commitment and structural empowerment. In doing so, the main and interaction effects of the two constructs on the perception of patient safety culture were assessed using a cohort of physicians. Design/methodology/approach Affective commitment was measured with the Organizational Commitment Questionnaire, whereas structural empowerment was assessed with the Conditions of Work Effectiveness Questionnaire-II. The abbreviated versions of these surveys were administered to a cohort of 71 post-doctoral medical residents. For the data analysis, hierarchical regression analyses were performed for the main and interaction effects of affective commitment and structural empowerment on the perception of patient safety culture. Findings A total of 63 surveys were analyzed. The results revealed that both affective commitment and structural empowerment were positively related to patient safety culture. A potential interaction effect of the two attitudinal constructs on patient safety culture was tested but no such effect was detected. Research limitations/implications This study suggests that there are potential benefits of promoting affective commitment and structural empowerment for patient safety culture in health care organizations. By identifying the positive associations between the two constructs and patient safety culture, this study provides additional empirical support for Kanter's theoretical tenet that structural and organizational support together helps to shape the perceptions of patient safety culture. Originality/value Despite the wide recognition of employee empowerment and commitment in organizational research, there has still been a paucity of empirical studies specifically assessing their effects on patient safety culture in health care organizations. To the authors' knowledge, this study is the first empirical study to examine the relationship between structural empowerment as proposed by Kanter and the culture of patient safety using physicians.

  17. Integrated therapy safety management system

    PubMed Central

    Podtschaske, Beatrice; Fuchs, Daniela; Friesdorf, Wolfgang

    2013-01-01

    Aims The aim is to demonstrate the benefit of the medico-ergonomic approach for the redesign of clinical work systems. Based on the six layer model, a concept for an ‘integrated therapy safety management’ is drafted. This concept could serve as a basis to improve resilience. Methods The concept is developed through a concept-based approach. The state of the art of safety and complexity research in human factors and ergonomics forms the basis. The findings are synthesized to a concept for ‘integrated therapy safety management’. The concept is applied by way of example for the ‘medication process’ to demonstrate its practical implementation. Results The ‘integrated therapy safety management’ is drafted in accordance with the six layer model. This model supports a detailed description of specific work tasks, the corresponding responsibilities and related workflows at different layers by using the concept of ‘bridge managers’. ‘Bridge managers’ anticipate potential errors and monitor the controlled system continuously. If disruptions or disturbances occur, they respond with corrective actions which ensure that no harm results and they initiate preventive measures for future procedures. The concept demonstrates that in a complex work system, the human factor is the key element and final authority to cope with the residual complexity. The expertise of the ‘bridge managers’ and the recursive hierarchical structure results in highly adaptive clinical work systems and increases their resilience. Conclusions The medico-ergonomic approach is a highly promising way of coping with two complexities. It offers a systematic framework for comprehensive analyses of clinical work systems and promotes interdisciplinary collaboration. PMID:24007448

  18. Developing a disaster education program for community safety and resilience: The preliminary phase

    NASA Astrophysics Data System (ADS)

    Nifa, Faizatul Akmar Abdul; Abbas, Sharima Ruwaida; Lin, Chong Khai; Othman, Siti Norezam

    2017-10-01

    Resilience encompasses both the principles of preparedness and reaction within the dynamic systems and focuses responses on bridging the gap between pre-disaster activities and post-disaster intervention and among structural/non-structural mitigation. Central to this concept is the ability of the affected communities to recover their livelihood and inculcating necessary safety practices during the disaster and after the disaster strikes. While these ability and practices are important to improve the community safety and resilience, such factors will not be effective unless the awareness is present among the community. There have been studies conducted highlighting the role of education in providing awareness for disaster safety and resilience from a very young age. However for Malaysia, these area of research has not been fully explored and developed based on the specific situational and geographical factors of high-risk flood disaster locations. This paper explores the importance of disaster education program in Malaysia and develops into preliminary research project which primary aim is to design a flood disaster education pilot program in Kampung Karangan Primary School, Kelantan, Malaysia.

  19. Quantitative evolutionary design

    PubMed Central

    Diamond, Jared

    2002-01-01

    The field of quantitative evolutionary design uses evolutionary reasoning (in terms of natural selection and ultimate causation) to understand the magnitudes of biological reserve capacities, i.e. excesses of capacities over natural loads. Ratios of capacities to loads, defined as safety factors, fall in the range 1.2-10 for most engineered and biological components, even though engineered safety factors are specified intentionally by humans while biological safety factors arise through natural selection. Familiar examples of engineered safety factors include those of buildings, bridges and elevators (lifts), while biological examples include factors of bones and other structural elements, of enzymes and transporters, and of organ metabolic performances. Safety factors serve to minimize the overlap zone (resulting in performance failure) between the low tail of capacity distributions and the high tail of load distributions. Safety factors increase with coefficients of variation of load and capacity, with capacity deterioration with time, and with cost of failure, and decrease with costs of initial construction, maintenance, operation, and opportunity. Adaptive regulation of many biological systems involves capacity increases with increasing load; several quantitative examples suggest sublinear increases, such that safety factors decrease towards 1.0. Unsolved questions include safety factors of series systems, parallel or branched pathways, elements with multiple functions, enzyme reaction chains, and equilibrium enzymes. The modest sizes of safety factors imply the existence of costs that penalize excess capacities. Those costs are likely to involve wasted energy or space for large or expensive components, but opportunity costs of wasted space at the molecular level for minor components. PMID:12122135

  20. Pad Safety Personnel Launch Support For STS-200

    NASA Technical Reports Server (NTRS)

    Guarino, Jennifer

    2007-01-01

    The launch of a space shuttle is a complex and lengthy procedure. There are many places and components to look at and prepare. The components are the orbiter, solid rocket boosters, external tank, and ground equipment. Some of the places are the launch pad, fuel locations, and surrounding structures. Preparations for a launch include equipment checks, system checks, sniff checks for hazardous commodities, and countless walkdowns. Throughout these preparations, pad safety personnel must always be on call. This requires three shifts of multiple people to be ready when needed. Also, the pad safety personnel must be available for the non-launch tasks that are always present for both launch pads

  1. Understanding the implementation and adoption of an information technology intervention to support medicine optimisation in primary care: qualitative study using strong structuration theory.

    PubMed

    Jeffries, Mark; Phipps, Denham; Howard, Rachel L; Avery, Anthony; Rodgers, Sarah; Ashcroft, Darren

    2017-05-10

    Using strong structuration theory, we aimed to understand the adoption and implementation of an electronic clinical audit and feedback tool to support medicine optimisation for patients in primary care. This is a qualitative study informed by strong structuration theory. The analysis was thematic, using a template approach. An a priori set of thematic codes, based on strong structuration theory, was developed from the literature and applied to the transcripts. The coding template was then modified through successive readings of the data. Clinical commissioning group in the south of England. Four focus groups and five semi-structured interviews were conducted with 18 participants purposively sampled from a range of stakeholder groups (general practitioners, pharmacists, patients and commissioners). Using the system could lead to improved medication safety, but use was determined by broad institutional contexts; by the perceptions, dispositions and skills of users; and by the structures embedded within the technology. These included perceptions of the system as new and requiring technical competence and skill; the adoption of the system for information gathering; and interactions and relationships that involved individual, shared or collective use. The dynamics between these external, internal and technological structures affected the adoption and implementation of the system. Successful implementation of information technology interventions for medicine optimisation will depend on a combination of the infrastructure within primary care, social structures embedded in the technology and the conventions, norms and dispositions of those utilising it. Future interventions, using electronic audit and feedback tools to improve medication safety, should consider the complexity of the social and organisational contexts and how internal and external structures can affect the use of the technology in order to support effective implementation. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  2. Structures and mechanisms - Streamlining for fuel economy

    NASA Technical Reports Server (NTRS)

    Card, M. F.

    1983-01-01

    The design of prospective NASA space station components which inherently possess the means for structural growth without compromising initial system characteristics is considered. In structural design terms, space station growth can be achieved by increasing design safety factors, introducing dynamic isolators to prevent loads from reaching the initial components, or preplanning the refurbishment of the original structure with stronger elements. Design tradeoffs will be based on the definition of on-orbit loads, including docking and maneuvering, whose derived load spectra will allow the estimation of fatigue life. Improvements must be made in structural materials selection in order to reduce contamination, slow degradation, and extend the life of coatings. To minimize on-orbit maintenance, long service life lubrication systems with advanced sealing devices must be developed.

  3. Waves at Navigation Structures

    DTIC Science & Technology

    2015-10-30

    upgrades the Coastal Modeling System (CMS) wave models CMS-Wave, a phase- averaged spectral wave model, and BOUSS-2D, a Boussinesq type nonlinear wave...developing WaveNet and TideNet, two Web-based tool systems for wind and wave data access and processing, which provide critical data for USACE project...practical applications, resulting in optimization of navigation system to improve safety, reliability and operations with innovative infrastructures

  4. Innovative neuro-fuzzy system of smart transport infrastructure for road traffic safety

    NASA Astrophysics Data System (ADS)

    Beinarovica, Anna; Gorobetz, Mikhail; Levchenkov, Anatoly

    2017-09-01

    The proposed study describes applying of neural network and fuzzy logic in transport control for safety improvement by evaluation of accidents’ risk by intelligent infrastructure devices. Risk evaluation is made by following multiple-criteria: danger, changeability and influence of changes for risk increasing. Neuro-fuzzy algorithms are described and proposed for task solution. The novelty of the proposed system is proved by deep analysis of known studies in the field. The structure of neuro-fuzzy system for risk evaluation and mathematical model is described in the paper. The simulation model of the intelligent devices for transport infrastructure is proposed to simulate different situations, assess the risks and propose the possible actions for infrastructure or vehicles to minimize the risk of possible accidents.

  5. Modeling the factors affecting unsafe behavior in the construction industry from safety supervisors' perspective.

    PubMed

    Khosravi, Yahya; Asilian-Mahabadi, Hassan; Hajizadeh, Ebrahim; Hassanzadeh-Rangi, Narmin; Bastani, Hamid; Khavanin, Ali; Mortazavi, Seyed Bagher

    2014-01-01

    There can be little doubt that the construction is the most hazardous industry in the worldwide. This study was designed to modeling the factors affecting unsafe behavior from the perspective of safety supervisors. The qualitative research was conducted to extract a conceptual model. A structural model was then developed based on a questionnaire survey (n=266) by two stage Structural Equation Model (SEM) approach. An excellent confirmed 12-factors structure explained about 62% of variances unsafe behavior in the construction industry. A good fit structural model indicated that safety climate factors were positively correlated with safety individual factors (P<0.001) and workplace safety condition (P<0.001). The workplace safety condition was found to play a strong mediating role in linking the safety climate and construction workers' engagement in safe or unsafe behavior. In order to improve construction safety performance, more focus on the workplace condition is required.

  6. Morbidity and Mortality Conferences: A Narrative Review of Strategies to Prioritize Quality Improvement.

    PubMed

    Giesbrecht, Vanessa; Au, Selena

    2016-11-01

    The morbidity and mortality conference (MMC) provides a valuable opportunity to review patient care processes and safety concerns, aligning with a growing quality improvement (QI) mandate. Yet the structure, processes, and aims of many MMCs are often ill-defined. This review summarizes strategies employed by medical, surgical, and critical care departments in the development of patient safety-centered MMCs. A structured narrative review of literature was conducted using combinations of the search terms "morbidity and mortality conference(s)," "morbidity and mortality meetings," or "morbidity and mortality round(s)." The titles and abstracts of 250 returned articles were screened; 76 articles were reviewed in full, with 32 meeting the full inclusion criteria. The literature review elicited a number of methods used by medical, surgical, and critical care MMCs to emphasize QI and patient safety outcomes. A list of actionable changes made in each article was compiled. Five themes common to QI-centered MMCs were identified: (1) defining the role of the MMC, (2) involving stakeholders, (3) detecting and selecting appropriate cases for presentation, (4) structuring goal-directed discussion, and (5) forming recommendations and assigning follow-up. Innovative methods to pair adverse event screening with MMCs were superior to nonstructured voluntary reporting and case selection for overall morbidity detection. Structured case review, discussion, and follow-up were more likely to lead to implementing systems-based change, and interdisciplinary MMCs were associated with a greater likelihood of forming an action item. The modern patient safety-centered MMC shares common themes of practices that can be adopted by institutions looking to create a venue for analysis of care processes, a platform to launch QI initiatives, and a culture of safety. Copyright 2016 The Joint Commission.

  7. MSTV Mini-Symposium Preview

    DTIC Science & Technology

    2009-08-12

    Man-In- The-Loop Simulation Integration & Demonstrators FTTS JLTV Future Force MRAP Thermal / CFD Crew Safety Structures/Durability Blast Dynamics ...Scott Stilson – General Dynamics Land Systems Chief Engineer, Stryker Modernization (S-Mod) Program The Application of Modeling and Simulation to the S...Military Ground Vehicles Nammalwar Purushothaman, Paramsothy Jayakumar & James Critchley – BAE Systems Sandip Datta & Venkat Pisipati – TAC World Wide

  8. Perceptions of medical graduates and their workplace supervisors towards a medical school clinical audit program.

    PubMed

    Davis, Stephanie; O'Ferrall, Ilse; Hoare, Samuel; Caroline, Bulsara; Mak, Donna B

    2017-07-07

    This study explores how medical graduates and their workplace supervisors perceive the value of a structured clinical audit program (CAP) undertaken during medical school. Medical students at the University of Notre Dame Fremantle complete a structured clinical audit program in their final year of medical school.  Semi-structured interviews were conducted with 12 Notre Dame graduates (who had all completed the CAP), and seven workplace supervisors (quality and safety staff and clinical supervisors).  Purposeful sampling was used to recruit participants and data were analysed using thematic analysis. Both graduates and workplace supervisors perceived the CAP to be valuable. A major theme was that the CAP made a contribution to individual graduate's medical practice, including improved knowledge in some areas of patient care as well as awareness of healthcare systems issues and preparedness to undertake scientifically rigorous quality improvement activities. Graduates perceived that as a result of the CAP, they were confident in undertaking a clinical audit after graduation.  Workplace supervisors perceived the value of the CAP beyond an educational experience and felt that the audits undertaken by students improved quality and safety of patient care. It is vital that health professionals, including medical graduates, be able to carry out quality and safety activities in the workplace. This study provides evidence that completing a structured clinical audit during medical school prepares graduates to undertake quality and safety activities upon workplace entry. Other health professional faculties may be interested in incorporating a similar program in their curricula.

  9. Autonomous Assembly of Modular Structures in Space and on Extraterrestrial Locations

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C.

    2005-01-01

    The new U.S. National Vision for Space Exploration requires many new enabling technologies to accomplish the goals of space commercialization and returning humans to the moon and extraterrestrial environments. Traditionally, flight elements are complete subsystems requiring humans to complete the integration and assembly. These bulky structures also require the use of heavy launch vehicles to send the units to a desired location. This philosophy necessitates a high degree of safety, numerous space walks at a significant cost. Future space mission costs must be reduced and safety increased to reasonably achieve exploration goals. One proposed concept is the autonomous assembly of space structures. This concept is an affordable, reliable solution to in-space and extraterrestrial assembly. Assembly is autonomously performed when two components join after determining that specifications are correct. Local sensors continue monitor joint integrity post assembly, which is critical for safety and structural reliability. Achieving this concept requires a change in space structure design philosophy and the development of innovative technologies to perform autonomous assembly. Assembly of large space structures will require significant numbers of integrity sensors. Thus simple, low-cost sensors are integral to the success of this concept. This paper addresses these issues and proposes a novel concept for assembling space structures autonomously. Core technologies required to achieve in space assembly are presented. These core technologies are critical to the goal of utilizing space in a cost efficient and safe manner. Additionally, these novel technologies can be applied to other systems both on earth and extraterrestrial environments.

  10. Frequency Tuning of Vibration Absorber Using Topology Optimization

    NASA Astrophysics Data System (ADS)

    Harel, Swapnil Subhash

    A tuned mass absorber is a system for reducing the amplitude in one oscillator by coupling it to a second oscillator. If tuned correctly, the maximum amplitude of the first oscillator in response to a periodic driver will be lowered, and much of the vibration will be 'transferred' to the second oscillator. The tuned vibration absorber (TVA) has been utilized for vibration control purposes in many sectors of Civil/Automotive/Aerospace Engineering for many decades since its inception. Time and again we come across a situation in which a vibratory system is required to run near resonance. In the past, approaches have been made to design such auxiliary spring mass tuned absorbers for the safety of the structures. This research focuses on the development and optimization of continuously tuned mass absorbers as a substitute to the discretely tuned mass absorbers (spring- mass system). After conducting the study of structural behavior, the boundary condition and frequency to which the absorber is to be tuned are determined. The Modal analysis approach is used to determine mode shapes and frequencies. The absorber is designed and optimized using the topology optimization tool, which simultaneously designs, optimizes and tunes the absorber to the desired frequency. The tuned, optimized absorber, after post processing, is attached to the target structure. The number of the absorbers are increased to amplify bandwidth and thereby upgrade the safety of structure for a wide range of frequency. The frequency response analysis is carried out using various combinations of structure and number of absorber cell.

  11. Verification and Validation in a Rapid Software Development Process

    NASA Technical Reports Server (NTRS)

    Callahan, John R.; Easterbrook, Steve M.

    1997-01-01

    The high cost of software production is driving development organizations to adopt more automated design and analysis methods such as rapid prototyping, computer-aided software engineering (CASE) tools, and high-level code generators. Even developers of safety-critical software system have adopted many of these new methods while striving to achieve high levels Of quality and reliability. While these new methods may enhance productivity and quality in many cases, we examine some of the risks involved in the use of new methods in safety-critical contexts. We examine a case study involving the use of a CASE tool that automatically generates code from high-level system designs. We show that while high-level testing on the system structure is highly desirable, significant risks exist in the automatically generated code and in re-validating releases of the generated code after subsequent design changes. We identify these risks and suggest process improvements that retain the advantages of rapid, automated development methods within the quality and reliability contexts of safety-critical projects.

  12. Taking up national safety alerts to improve patient safety in hospitals: The perspective of healthcare quality and risk managers.

    PubMed

    Pfeiffer, Yvonne; Schwappach, David

    2016-01-01

    National safety alert systems publish relevant information to improve patient safety in hospitals. However, the information has to be transformed into local action to have an effect on patient safety. We studied three research questions: How do Swiss healthcare quality and risk managers (qm/rm(1)) see their own role in learning from safety alerts issued by the Swiss national voluntary reporting and analysis system? What are their attitudes towards and evaluations of the alerts, and which types of improvement actions were fostered by the safety alerts? A survey was developed and applied to Swiss healthcare risk and quality managers, with a response rate of 39 % (n=116). Descriptive statistics are presented. The qm/rm disseminate and communicate with a broad variety of professional groups about the alerts. While most respondents felt that they should know the alerts and their contents, only a part of them felt responsible for driving organizational change based on the recommendations. However, most respondents used safety alerts to back up their own patient safety goals. The alerts were evaluated positively on various dimensions such as usefulness and were considered as standards of good practice by the majority of the respondents. A range of organizational responses was applied, with disseminating information being the most common. An active role is related to using safety alerts for backing up own patient safety goals. To support an active role of qm/rm in their hospital's learning from safety alerts, appropriate organizational structures should be developed. Furthermore, they could be given special information or training to act as an information hub on the issues discussed in the alerts. Copyright © 2016. Published by Elsevier GmbH.

  13. The system of technical diagnostics of the industrial safety information network

    NASA Astrophysics Data System (ADS)

    Repp, P. V.

    2017-01-01

    This research is devoted to problems of safety of the industrial information network. Basic sub-networks, ensuring reliable operation of the elements of the industrial Automatic Process Control System, were identified. The core tasks of technical diagnostics of industrial information safety were presented. The structure of the technical diagnostics system of the information safety was proposed. It includes two parts: a generator of cyber-attacks and the virtual model of the enterprise information network. The virtual model was obtained by scanning a real enterprise network. A new classification of cyber-attacks was proposed. This classification enables one to design an efficient generator of cyber-attacks sets for testing the virtual modes of the industrial information network. The numerical method of the Monte Carlo (with LPτ - sequences of Sobol), and Markov chain was considered as the design method for the cyber-attacks generation algorithm. The proposed system also includes a diagnostic analyzer, performing expert functions. As an integrative quantitative indicator of the network reliability the stability factor (Kstab) was selected. This factor is determined by the weight of sets of cyber-attacks, identifying the vulnerability of the network. The weight depends on the frequency and complexity of cyber-attacks, the degree of damage, complexity of remediation. The proposed Kstab is an effective integral quantitative measure of the information network reliability.

  14. The Armstrong Institute: An Academic Institute for Patient Safety and Quality Improvement, Research, Training, and Practice.

    PubMed

    Pronovost, Peter J; Holzmueller, Christine G; Molello, Nancy E; Paine, Lori; Winner, Laura; Marsteller, Jill A; Berenholtz, Sean M; Aboumatar, Hanan J; Demski, Renee; Armstrong, C Michael

    2015-10-01

    Academic medical centers (AMCs) could advance the science of health care delivery, improve patient safety and quality improvement, and enhance value, but many centers have fragmented efforts with little accountability. Johns Hopkins Medicine, the AMC under which the Johns Hopkins University School of Medicine and the Johns Hopkins Health System are organized, experienced similar challenges, with operational patient safety and quality leadership separate from safety and quality-related research efforts. To unite efforts and establish accountability, the Armstrong Institute for Patient Safety and Quality was created in 2011.The authors describe the development, purpose, governance, function, and challenges of the institute to help other AMCs replicate it and accelerate safety and quality improvement. The purpose is to partner with patients, their loved ones, and all interested parties to end preventable harm, continuously improve patient outcomes and experience, and eliminate waste in health care. A governance structure was created, with care mapped into seven categories, to oversee the quality and safety of all patients treated at a Johns Hopkins Medicine entity. The governance has a Patient Safety and Quality Board Committee that sets strategic goals, and the institute communicates these goals throughout the health system and supports personnel in meeting these goals. The institute is organized into 13 functional councils reflecting their behaviors and purpose. The institute works daily to build the capacity of clinicians trained in safety and quality through established programs, advance improvement science, and implement and evaluate interventions to improve the quality of care and safety of patients.

  15. A Case Study of Dynamic Response Analysis and Safety Assessment for a Suspended Monorail System.

    PubMed

    Bao, Yulong; Li, Yongle; Ding, Jiajie

    2016-11-10

    A suspended monorail transit system is a category of urban rail transit, which is effective in alleviating traffic pressure and injury prevention. Meanwhile, with the advantages of low cost and short construction time, suspended monorail transit systems show vast potential for future development. However, the suspended monorail has not been systematically studied in China, and there is a lack of relevant knowledge and analytical methods. To ensure the health and reliability of a suspended monorail transit system, the driving safety of vehicles and structure dynamic behaviors when vehicles are running on the bridge should be analyzed and evaluated. Based on the method of vehicle-bridge coupling vibration theory, the finite element method (FEM) software ANSYS and multi-body dynamics software SIMPACK are adopted respectively to establish the finite element model for bridge and the multi-body vehicle. A co-simulation method is employed to investigate the vehicle-bridge coupling vibration for the transit system. The traffic operation factors, including train formation, track irregularity and tire stiffness, are incorporated into the models separately to analyze the bridge and vehicle responses. The results show that the coupling of dynamic effects of the suspended monorail system between vehicle and bridge are significant in the case studied, and it is strongly suggested to take necessary measures for vibration suppression. The simulation of track irregularity is a critical factor for its vibration safety, and the track irregularity of A-level road roughness negatively influences the system vibration safety.

  16. A Case Study of Dynamic Response Analysis and Safety Assessment for a Suspended Monorail System

    PubMed Central

    Bao, Yulong; Li, Yongle; Ding, Jiajie

    2016-01-01

    A suspended monorail transit system is a category of urban rail transit, which is effective in alleviating traffic pressure and injury prevention. Meanwhile, with the advantages of low cost and short construction time, suspended monorail transit systems show vast potential for future development. However, the suspended monorail has not been systematically studied in China, and there is a lack of relevant knowledge and analytical methods. To ensure the health and reliability of a suspended monorail transit system, the driving safety of vehicles and structure dynamic behaviors when vehicles are running on the bridge should be analyzed and evaluated. Based on the method of vehicle-bridge coupling vibration theory, the finite element method (FEM) software ANSYS and multi-body dynamics software SIMPACK are adopted respectively to establish the finite element model for bridge and the multi-body vehicle. A co-simulation method is employed to investigate the vehicle-bridge coupling vibration for the transit system. The traffic operation factors, including train formation, track irregularity and tire stiffness, are incorporated into the models separately to analyze the bridge and vehicle responses. The results show that the coupling of dynamic effects of the suspended monorail system between vehicle and bridge are significant in the case studied, and it is strongly suggested to take necessary measures for vibration suppression. The simulation of track irregularity is a critical factor for its vibration safety, and the track irregularity of A-level road roughness negatively influences the system vibration safety. PMID:27834923

  17. 10 CFR 72.122 - Overall requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... natural phenomena. (1) Structures, systems, and components important to safety must be designed to... effects of natural phenomena such as earthquakes, tornadoes, lightning, hurricanes, floods, tsunami, and... severe of the natural phenomena reported for the site and surrounding area, with appropriate margins to...

  18. The Need to Apply Medical Device Informatics in Developing Standards for Safe Interoperable Medical Systems.

    PubMed

    Weininger, Sandy; Jaffe, Michael B; Goldman, Julian M

    2017-01-01

    Medical device and health information technology systems are increasingly interdependent with users demanding increased interoperability. Related safety standards must be developed taking into account these systems' perspective. In this article, we describe the current development of medical device standards and the need for these standards to address medical device informatics. Medical device information should be gathered from a broad range of clinical scenarios to lay the foundation for safe medical device interoperability. Five clinical examples show how medical device informatics principles, if applied in the development of medical device standards, could help facilitate the development of safe interoperable medical device systems. These examples illustrate the clinical implications of the failure to capture important signals and device attributes. We provide recommendations relating to the coordination between historically separate standards development groups, some of which focus on safety and effectiveness and others focus on health informatics. We identify the need for a shared understanding among stakeholders and describe organizational structures to promote cooperation such that device-to-device interactions and related safety information are considered during standards development.

  19. The Need to Apply Medical Device Informatics in Developing Standards for Safe Interoperable Medical Systems

    PubMed Central

    Weininger, Sandy; Jaffe, Michael B.; Goldman, Julian M

    2016-01-01

    Medical device and health information technology systems are increasingly interdependent with users demanding increased interoperability. Related safety standards must be developed taking into account this systems perspective. In this article we describe the current development of medical device standards and the need for these standards to address medical device informatics. Medical device information should be gathered from a broad range of clinical scenarios to lay the foundation for safe medical device interoperability. Five clinical examples show how medical device informatics principles, if applied in the development of medical device standards, could help facilitate the development of safe interoperable medical device systems. These examples illustrate the clinical implications of the failure to capture important signals and device attributes. We provide recommendations relating to the coordination between historically separate standards development groups; some which focus on safety and effectiveness, and others that focus on health informatics. We identify the need for a shared understanding among stakeholders and describe organizational structures to promote cooperation such that device-to-device interactions and related safety information are considered during standards development. PMID:27584685

  20. A rapid method for identifying and characterizing structural impacts using distributed sensors: An application for automotive pedestrian protection

    NASA Astrophysics Data System (ADS)

    Kim, Andrew C.

    This research is motivated by recent activity to improve automotive safety, especially for pedestrians. In many parts of the world today, injuries and fatalities from road accidents are a significant problem. Safety features such as seat restraints and air bags provide considerable levels of protection for car occupants; however, no such protective measures currently exist for pedestrians. Drawing upon the success and effectiveness of occupant air bag systems, current research aims to develop similar devices for pedestrians. These active pedestrian protection systems deploy a safety feature such as an external air bag when a pedestrian is hit by a vehicle. Contact with the front bumper induces a body rotation that may result in a violent head collision. The deployable safety device provides a cushioning surface for the vulnerable pedestrian during impact. The challenge of such a system is an effective sensory unit that can rapidly and correctly discriminate pedestrian impacts from non-pedestrian ones. The fast kinematics of the automobile-pedestrian impact leaves a minimal amount of time for signal processing and computation. This research study focuses on a discrimination scheme that satisfies both the time and accuracy requirements for a proposed sensory system for pedestrian protection. A unique methodology was developed to identify structural impacts using dominant frequency features extracted from sensory data. Contact sensors mounted on the front bumper of an automobile measure the strain response from an impact event. The dominant frequencies obtained from these sensor signals are greatly influenced by the impact object's properties and can be used to discriminate between different objects. Extensive tests were conducted to gather sensor data and validate the proposed methodology and impact discrimination algorithm. Results of the impact tests indicate that the approach is sound, and the sensory system effectively identifies "pedestrian" impacts within a short period of time.

  1. Fiber grating systems used to measure strain in cylindrical structures

    NASA Astrophysics Data System (ADS)

    Udd, Eric; Corona-Bittick, Kelli; Slattery, Kerry T.; Dorr, Donald J.; Crowe, C. Robert; Vandiver, Terry L.; Evans, Robert N.

    1997-07-01

    Fiber optic grating systems are described that have been used to measure strain in cylindrical structures. The applications of these systems to a composite utility pole and to a composite missile body are described. Composite utility poles have significant advantages with respect to wooden utility poles that include superior strength and uniformity; light weight for ease of deployment; the ability to be recycled, reducing hazardous waste associated with chemically treated wooden poles; and compatibility with embedded fiber optic sensors, allowing structural loads to be monitored. Tests conducted of fiber optic grating sensors in combination with an overcoupled coupler demodulation system to support structural testing of a 22-ft composite pole are reported. Monitoring strain in composite missile bodies has the potential to improve the quality of manufactured parts, support performance testing, and enhance safety during long periods of storage. Strain measurements made with fiber optic grating and electrical strain gauges are described.

  2. In-Space Structural Assembly: Applications and Technology

    NASA Technical Reports Server (NTRS)

    Belvin, W. Keith; Doggett, Bill R.; Watson, Judith J.; Dorsey, John T.; Warren, Jay; Jones, Thomas C.; Komendera, Erik E.; Mann, Troy O.; Bowman, Lynn

    2016-01-01

    As NASA exploration moves beyond earth's orbit, the need exists for long duration space systems that are resilient to events that compromise safety and performance. Fortunately, technology advances in autonomy, robotic manipulators, and modular plug-and-play architectures over the past two decades have made in-space vehicle assembly and servicing possible at acceptable cost and risk. This study evaluates future space systems needed to support scientific observatories and human/robotic Mars exploration to assess key structural design considerations. The impact of in-space assembly is discussed to identify gaps in structural technology and opportunities for new vehicle designs to support NASA's future long duration missions.

  3. Remote Manipulator System (RMS)-based Controls-Structures Interaction (CSI) flight experiment feasibility study

    NASA Technical Reports Server (NTRS)

    Demeo, Martha E.

    1990-01-01

    The feasibility of an experiment which will provide an on-orbit validation of Controls-Structures Interaction (CSI) technology, was investigated. The experiment will demonstrate the on-orbit characterization and flexible-body control of large flexible structure dynamics using the shuttle Remote Manipulator System (RMS) with an attached payload as a test article. By utilizing existing hardware as well as establishing integration, operation and safety algorithms, techniques and procedures, the experiment will minimize the costs and risks of implementing a flight experiment. The experiment will also offer spin-off enhancement to both the Shuttle RMS (SRMS) and the Space Station RMS (SSRMS).

  4. Defining and classifying medical error: lessons for patient safety reporting systems.

    PubMed

    Tamuz, M; Thomas, E J; Franchois, K E

    2004-02-01

    It is important for healthcare providers to report safety related events, but little attention has been paid to how the definition and classification of events affects a hospital's ability to learn from its experience. To examine how the definition and classification of safety related events influences key organizational routines for gathering information, allocating incentives, and analyzing event reporting data. In semi-structured interviews, professional staff and administrators in a tertiary care teaching hospital and its pharmacy were asked to describe the existing programs designed to monitor medication safety, including the reporting systems. With a focus primarily on the pharmacy staff, interviews were audio recorded, transcribed, and analyzed using qualitative research methods. Eighty six interviews were conducted, including 36 in the hospital pharmacy. Examples are presented which show that: (1) the definition of an event could lead to under-reporting; (2) the classification of a medication error into alternative categories can influence the perceived incentives and disincentives for incident reporting; (3) event classification can enhance or impede organizational routines for data analysis and learning; and (4) routines that promote organizational learning within the pharmacy can reduce the flow of medication error data to the hospital. These findings from one hospital raise important practical and research questions about how reporting systems are influenced by the definition and classification of safety related events. By understanding more clearly how hospitals define and classify their experience, we may improve our capacity to learn and ultimately improve patient safety.

  5. Fuzzy-logic-based network for complex systems risk assessment: application to ship performance analysis.

    PubMed

    Abou, Seraphin C

    2012-03-01

    In this paper, a new interpretation of intuitionistic fuzzy sets in the advanced framework of the Dempster-Shafer theory of evidence is extended to monitor safety-critical systems' performance. Not only is the proposed approach more effective, but it also takes into account the fuzzy rules that deal with imperfect knowledge/information and, therefore, is different from the classical Takagi-Sugeno fuzzy system, which assumes that the rule (the knowledge) is perfect. We provide an analytical solution to the practical and important problem of the conceptual probabilistic approach for formal ship safety assessment using the fuzzy set theory that involves uncertainties associated with the reliability input data. Thus, the overall safety of the ship engine is investigated as an object of risk analysis using the fuzzy mapping structure, which considers uncertainty and partial truth in the input-output mapping. The proposed method integrates direct evidence of the frame of discernment and is demonstrated through references to examples where fuzzy set models are informative. These simple applications illustrate how to assess the conflict of sensor information fusion for a sufficient cooling power system of vessels under extreme operation conditions. It was found that propulsion engine safety systems are not only a function of many environmental and operation profiles but are also dynamic and complex. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Seismic Retrofit of Soft-Story Woodframe Buildings Using Cross Laminated Timbers

    Treesearch

    Van De John W. Lindt; Pouria Bahmani; Mikhail Gershfeld; Giraj Kumar Kandukuri; Doug Rammer; Shiling Pei

    2013-01-01

    As early as 1970, the structural engineering and building safety community recognized that a large number of two-, three- and four-story woodframe buildings designed with the first floor used either for parking or commercial space were built with readily identifiable structural system deficiencies, referred to as a “soft story”. Thus, many multi-story woodframe...

  7. Ethics and safety in home care: perspectives on home support workers.

    PubMed

    Storch, Janet; Curry, Cherie Geering; Stevenson, Lynn; Macdonald, Marilyn; Lang, Ariella

    2014-03-01

    Home support workers (HSWs) encounter unique safety issues in their provision of home care. These issues raise ethical concerns, affecting the care workers provide to seniors and other recipients. This paper is derived from a subproject of a larger Canada-wide study, Safety at Home: A Pan-Canadian Home Care Safety Study, released in June 2013 by the Canadian Patient Safety Institute. Semi-structured, face-to-face, audiotaped interviews were conducted with providers, clients and informal caregivers in British Columbia, Manitoba and New Brunswick to better understand their perceptions of patient safety in home care. Using the BC data only, we then compared our findings to findings of other BC studies focusing on safety in home care that were conducted over the past decade. Through our interviews and comparative analyses it became clear that HSWs experienced significant inequities in providing home care. Utilizing a model depicting concerns of and for HSWs developed by Craven and colleagues (2012), we were able to illustrate the physical, spatial, interpersonal and temporal concerns set in the context of system design that emphasized the ethical dilemmas of HSWs in home care. Our data suggested the necessity of adding a fifth domain, organizational (system design). In this paper, we issue a call for stronger advocacy for home care and improved collaboration and resource equity between institutional care and community care.

  8. [Evidence-based effectiveness of road safety interventions: a literature review].

    PubMed

    Novoa, Ana M; Pérez, Katherine; Borrell, Carme

    2009-01-01

    Only road safety interventions with scientific evidence supporting their effectiveness should be implemented. The objective of this study was to identify and summarize the available evidence on the effectiveness of road safety interventions in reducing road traffic collisions, injuries and deaths. All literature reviews published in scientific journals that assessed the effectiveness of one or more road safety interventions and whose outcome measure was road traffic crashes, injuries or fatalities were included. An exhaustive search was performed in scientific literature databases. The interventions were classified according to the evidence of their effectiveness in reducing road traffic injuries (effective interventions, insufficient evidence of effectiveness, ineffective interventions) following the structure of the Haddon matrix. Fifty-four reviews were included. Effective interventions were found before, during and after the collision, and across all factors: a) the individual: the graduated licensing system (31% road traffic injury reduction); b) the vehicle: electronic stability control system (2 to 41% reduction); c) the infrastructure: area-wide traffic calming (0 to 20%), and d) the social environment: speed cameras (7 to 30%). Certain road safety interventions are ineffective, mostly road safety education, and others require further investigation. The most successful interventions are those that reduce or eliminate the hazard and do not depend on changes in road users' behavior or on their knowledge of road safety issues. Interventions based exclusively on education are ineffective in reducing road traffic injuries.

  9. Research of a real-time overload monitoring and response system of bridges and roads

    NASA Astrophysics Data System (ADS)

    Yu, Yan; Shi, Yan; Zhao, Xuefeng; Ou, Jinping

    2012-04-01

    Due to the general overloading of vehicles, premature failure of bridges and roads are more and more obvious. Structural behaviors of engineering structures need real-time monitoring and diagnosis, timely detection of structural damage, evaluation of their safety, and necessary precautions, in order to prevent major accident such as the collapse of bridges and roads. But the existing monitoring system, which is very expensive, does not apply to the low budget structures. Therefore, a potable, low-cost, low-power structural monitoring system, which consists of electric resistance strain gauge, collection and execution unit, graph collection system and analysis software, is designed in this paper. The system can collect the critical data about the force of pavement to take the certain judge algorithm. The alarm will be given and the overburden data will be transmitted to IDC to make the further analysis when the pavement is overburden. At the same time, the plates of overweight vehicles can be collected and sent to the relevant departments. The system has the features of simple structure, easy realization, and low cost, which fills the application gaps in structural health monitoring of low-budget project.

  10. Method for monitoring environmental and corrosion

    DOEpatents

    Glass, R.S.; Clarke, W.L. Jr.; Ciarlo, D.R.

    1995-08-01

    A corrosion sensor array is described incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis. 7 figs.

  11. Significance of Waterway Navigation Positioning Systems On Ship's Manoeuvring Safety

    NASA Astrophysics Data System (ADS)

    Galor, W.

    The main goal of navigation is to lead the ship to the point of destination safety and efficiently. Various factors may affect ship realisating this process. The ship movement on waterway are mainly limited by water area dimensions (surface and depth). These limitations cause the requirement to realise the proper of ship movement trajectory. In case when this re requirement cant't fulfil then marine accident may happend. This fact is unwanted event caused losses of human health and life, damage or loss of cargo and ship, pollution of natural environment, damage of port structures or blocking the port of its ports and lost of salvage operation. These losses in same cases can be catas- trophical especially while e.i. crude oil spilling could be place. To realise of safety navigation process is needed to embrace the ship's movement trajectory by waterways area. The ship's trajectory is described by manoeuvring lane as a surface of water area which is require to realise of safety ship movement. Many conditions affect to ship manoeuvring line. The main are following: positioning accuracy, ship's manoeuvring features and phenomena's of shore and ship's bulk common affecting. The accuracy of positioning system is most important. This system depends on coast navigation mark- ing which can range many kinds of technical realisation. Mainly used systems based on lights (line), radionavigation (local system or GPS, DGPS), or radars. If accuracy of positiong is higer, then safety of navigation is growing. This article presents these problems exemplifying with approaching channel to ports situated on West Pomera- nian water region.

  12. Safety Assessment of Acyl Glucuronides-A Simplified Paradigm.

    PubMed

    Smith, Dennis A; Hammond, Timothy; Baillie, Thomas A

    2018-06-01

    While simple O - (ether-linked) and N -glucuronide drug conjugates generally are unreactive and considered benign from a safety perspective, the acyl glucuronides that derive from metabolism of carboxylic acid-containing xenobiotics can exhibit a degree of chemical reactivity that is dependent upon their molecular structure. As a result, concerns have arisen over the safety of acyl glucuronides as a class, several members of which have been implicated in the toxicity of their respective parent drugs. However, direct evidence in support of these claims remains sparse, and due to frequently encountered species differences in the systemic exposure to acyl glucuronides (both of the parent drug and oxidized derivatives thereof), coupled with their instability in aqueous media and potential to undergo chemical rearrangement (acyl migration), qualification of these conjugates by traditional safety assessment methods can be very challenging. In this Commentary, we discuss alternative (non-acyl glucuronide) mechanisms by which carboxylic acids may cause serious adverse reactions, and propose a novel, practical approach to compare systemic exposure to acyl glucuronide metabolites in humans to that in animal species used in preclinical safety assessment based on relative estimates of the total body burden of these circulating conjugates. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  13. Automated Analysis of Stateflow Models

    NASA Technical Reports Server (NTRS)

    Bourbouh, Hamza; Garoche, Pierre-Loic; Garion, Christophe; Gurfinkel, Arie; Kahsaia, Temesghen; Thirioux, Xavier

    2017-01-01

    Stateflow is a widely used modeling framework for embedded and cyber physical systems where control software interacts with physical processes. In this work, we present a framework a fully automated safety verification technique for Stateflow models. Our approach is two-folded: (i) we faithfully compile Stateflow models into hierarchical state machines, and (ii) we use automated logic-based verification engine to decide the validity of safety properties. The starting point of our approach is a denotational semantics of State flow. We propose a compilation process using continuation-passing style (CPS) denotational semantics. Our compilation technique preserves the structural and modal behavior of the system. The overall approach is implemented as an open source toolbox that can be integrated into the existing Mathworks Simulink Stateflow modeling framework. We present preliminary experimental evaluations that illustrate the effectiveness of our approach in code generation and safety verification of industrial scale Stateflow models.

  14. Quantifying the relationship between vehicle interior geometry and child restraint systems.

    PubMed

    Sherwood, C P; Abdelilah, Y; Crandall, J R

    2006-01-01

    The prevention of interactions of children or child restraints with other vehicle structures is critical to child passenger safety. Fifteen current vehicles and seven rear and forward facing child restraint systems were measured in an attempt to quantify the available distance between child restraints and these vehicle structures. Rear facing child restraints exhibited such small amounts of clearance that contact would be expected in the majority of frontal crashes. Upper tethers are critical in the prevention of head contact, while head contact is likely when the upper tether is not used.

  15. Sounding the warning bells: the need for a systems approach to understanding behaviour at rail level crossings.

    PubMed

    Read, Gemma J M; Salmon, Paul M; Lenné, Michael G

    2013-09-01

    Collisions at rail level crossings are an international safety concern and have been the subject of considerable research effort. Modern human factors practice advocates a systems approach to investigating safety issues in complex systems. This paper describes the results of a structured review of the level crossing literature to determine the extent to which a systems approach has been applied. The measures used to determine if previous research was underpinned by a systems approach were: the type of analysis method utilised, the number of component relationships considered, the number of user groups considered, the number of system levels considered and the type of model described in the research. None of research reviewed was found to be consistent with a systems approach. It is recommended that further research utilise a systems approach to the study of the level crossing system to enable the identification of effective design improvements. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  16. Integrated material state awareness system with self-learning symbiotic diagnostic algorithms and models

    NASA Astrophysics Data System (ADS)

    Banerjee, Sourav; Liu, Lie; Liu, S. T.; Yuan, Fuh-Gwo; Beard, Shawn

    2011-04-01

    Materials State Awareness (MSA) goes beyond traditional NDE and SHM in its challenge to characterize the current state of material damage before the onset of macro-damage such as cracks. A highly reliable, minimally invasive system for MSA of Aerospace Structures, Naval structures as well as next generation space systems is critically needed. Development of such a system will require a reliable SHM system that can detect the onset of damage well before the flaw grows to a critical size. Therefore, it is important to develop an integrated SHM system that not only detects macroscale damages in the structures but also provides an early indication of flaw precursors and microdamages. The early warning for flaw precursors and their evolution provided by an SHM system can then be used to define remedial strategies before the structural damage leads to failure, and significantly improve the safety and reliability of the structures. Thus, in this article a preliminary concept of developing the Hybrid Distributed Sensor Network Integrated with Self-learning Symbiotic Diagnostic Algorithms and Models to accurately and reliably detect the precursors to damages that occur to the structure are discussed. Experiments conducted in a laboratory environment shows potential of the proposed technique.

  17. Software-safety and software quality assurance in real-time applications Part 2: Real-time structures and languages

    NASA Astrophysics Data System (ADS)

    Schoitsch, Erwin

    1988-07-01

    Our society is depending more and more on the reliability of embedded (real-time) computer systems even in every-day life. Considering the complexity of the real world, this might become a severe threat. Real-time programming is a discipline important not only in process control and data acquisition systems, but also in fields like communication, office automation, interactive databases, interactive graphics and operating systems development. General concepts of concurrent programming and constructs for process-synchronization are discussed in detail. Tasking and synchronization concepts, methods of process communication, interrupt- and timeout handling in systems based on semaphores, signals, conditional critical regions or on real-time languages like Concurrent PASCAL, MODULA, CHILL and ADA are explained and compared with each other and with respect to their potential to quality and safety.

  18. The adaptive safety analysis and monitoring system

    NASA Astrophysics Data System (ADS)

    Tu, Haiying; Allanach, Jeffrey; Singh, Satnam; Pattipati, Krishna R.; Willett, Peter

    2004-09-01

    The Adaptive Safety Analysis and Monitoring (ASAM) system is a hybrid model-based software tool for assisting intelligence analysts to identify terrorist threats, to predict possible evolution of the terrorist activities, and to suggest strategies for countering terrorism. The ASAM system provides a distributed processing structure for gathering, sharing, understanding, and using information to assess and predict terrorist network states. In combination with counter-terrorist network models, it can also suggest feasible actions to inhibit potential terrorist threats. In this paper, we will introduce the architecture of the ASAM system, and discuss the hybrid modeling approach embedded in it, viz., Hidden Markov Models (HMMs) to detect and provide soft evidence on the states of terrorist network nodes based on partial and imperfect observations, and Bayesian networks (BNs) to integrate soft evidence from multiple HMMs. The functionality of the ASAM system is illustrated by way of application to the Indian Airlines Hijacking, as modeled from open sources.

  19. An Integrative Structural Health Monitoring System for the Local/Global Responses of a Large-Scale Irregular Building under Construction

    PubMed Central

    Park, Hyo Seon; Shin, Yunah; Choi, Se Woon; Kim, Yousok

    2013-01-01

    In this study, a practical and integrative SHM system was developed and applied to a large-scale irregular building under construction, where many challenging issues exist. In the proposed sensor network, customized energy-efficient wireless sensing units (sensor nodes, repeater nodes, and master nodes) were employed and comprehensive communications from the sensor node to the remote monitoring server were conducted through wireless communications. The long-term (13-month) monitoring results recorded from a large number of sensors (75 vibrating wire strain gauges, 10 inclinometers, and three laser displacement sensors) indicated that the construction event exhibiting the largest influence on structural behavior was the removal of bents that were temporarily installed to support the free end of the cantilevered members during their construction. The safety of each member could be confirmed based on the quantitative evaluation of each response. Furthermore, it was also confirmed that the relation between these responses (i.e., deflection, strain, and inclination) can provide information about the global behavior of structures induced from specific events. Analysis of the measurement results demonstrates the proposed sensor network system is capable of automatic and real-time monitoring and can be applied and utilized for both the safety evaluation and precise implementation of buildings under construction. PMID:23860317

  20. REDARS 2 demonstration project for seismic risk analysis of highway systems.

    DOT National Transportation Integrated Search

    2006-06-01

    Effects of earthquake damage to highway components such as bridges and roadways can go well beyond life-safety risks and costs to repair damaged structures. Such damage can also severely disrupt traffic flows that can : impact the regions economy ...

  1. Structural Pain Compensating Flight Control

    NASA Technical Reports Server (NTRS)

    Miller, Chris J.

    2014-01-01

    The problem of control command and maneuver induced structural loads is an important aspect of any control system design. Designers must design the aircraft structure and the control architecture to achieve desired piloted control responses while limiting the imparted structural loads. The classical approach is to build the structure with high margins, restrict control surface commands to known good combinations, and train pilots to follow procedural maneuvering limitations. With recent advances in structural sensing and the continued desire to improve safety and vehicle fuel efficiency, it is both possible and desirable to develop control architectures that enable lighter vehicle weights while maintaining and improving protection against structural damage.

  2. Integrated System of Structural Health Monitoring and Intelligent Management for a Cable-Stayed Bridge

    PubMed Central

    Chen, Bin; Wang, Xu; Sun, Dezhang; Xie, Xu

    2014-01-01

    It is essential to construct structural health monitoring systems for large important bridges. Zhijiang Bridge is a cable-stayed bridge that was built recently over the Hangzhou Qiantang River (the largest river in Zhejiang Province). The length of Zhijiang Bridge is 478 m, which comprises an arched twin-tower space and a twin-cable plane structure. As an example, the present study describes the integrated system of structural health monitoring and intelligent management for Zhijiang Bridge, which comprises an information acquisition system, data management system, evaluation and decision-making system, and application service system. The monitoring components include the working environment of the bridge and various factors that affect bridge safety, such as the stress and strain of the main bridge structure, vibration, cable force, temperature, and wind speed. In addition, the integrated system includes a forecasting and decision-making module for real-time online evaluation, which provides warnings and makes decisions based on the monitoring information. From this, the monitoring information, evaluation results, maintenance decisions, and warning information can be input simultaneously into the bridge monitoring center and traffic emergency center to share the monitoring data, thereby facilitating evaluations and decision making using the system. PMID:25140342

  3. Integrated system of structural health monitoring and intelligent management for a cable-stayed bridge.

    PubMed

    Chen, Bin; Wang, Xu; Sun, Dezhang; Xie, Xu

    2014-01-01

    It is essential to construct structural health monitoring systems for large important bridges. Zhijiang Bridge is a cable-stayed bridge that was built recently over the Hangzhou Qiantang River (the largest river in Zhejiang Province). The length of Zhijiang Bridge is 478 m, which comprises an arched twin-tower space and a twin-cable plane structure. As an example, the present study describes the integrated system of structural health monitoring and intelligent management for Zhijiang Bridge, which comprises an information acquisition system, data management system, evaluation and decision-making system, and application service system. The monitoring components include the working environment of the bridge and various factors that affect bridge safety, such as the stress and strain of the main bridge structure, vibration, cable force, temperature, and wind speed. In addition, the integrated system includes a forecasting and decision-making module for real-time online evaluation, which provides warnings and makes decisions based on the monitoring information. From this, the monitoring information, evaluation results, maintenance decisions, and warning information can be input simultaneously into the bridge monitoring center and traffic emergency center to share the monitoring data, thereby facilitating evaluations and decision making using the system.

  4. Exploring the possibility of a common structural model measuring associations between safety climate factors and safety behaviour in health care and the petroleum sectors.

    PubMed

    Olsen, Espen

    2010-09-01

    The aim of the present study was to explore the possibility of identifying general safety climate concepts in health care and petroleum sectors, as well as develop and test the possibility of a common cross-industrial structural model. Self-completion questionnaire surveys were administered in two organisations and sectors: (1) a large regional hospital in Norway that offers a wide range of hospital services, and (2) a large petroleum company that produces oil and gas worldwide. In total, 1919 and 1806 questionnaires were returned from the hospital and petroleum organisation, with response rates of 55 percent and 52 percent, respectively. Using a split sample procedure principal factor analysis and confirmatory factor analysis revealed six identical cross-industrial measurement concepts in independent samples-five measures of safety climate and one of safety behaviour. The factors' psychometric properties were explored with satisfactory internal consistency and concept validity. Thus, a common cross-industrial structural model was developed and tested using structural equation modelling (SEM). SEM revealed that a cross-industrial structural model could be identified among health care workers and offshore workers in the North Sea. The most significant contributing variables in the model testing stemmed from organisational management support for safety and supervisor/manager expectations and actions promoting safety. These variables indirectly enhanced safety behaviour (stop working in dangerous situations) through transitions and teamwork across units, and teamwork within units as well as learning, feedback, and improvement. Two new safety climate instruments were validated as part of the study: (1) Short Safety Climate Survey (SSCS) and (2) Hospital Survey on Patient Safety Culture-short (HSOPSC-short). Based on development of measurements and structural model assessment, this study supports the possibility of a common safety climate structural model across health care and the offshore petroleum industry. 2010 Elsevier Ltd. All rights reserved.

  5. Medication safety infrastructure in critical-access hospitals in Florida.

    PubMed

    Winterstein, Almut G; Hartzema, Abraham G; Johns, Thomas E; De Leon, Jessica M; McDonald, Kathie; Henshaw, Zak; Pannell, Robert

    2006-03-01

    The medication safety infrastructure of critical-access hospitals (CAHs) in Florida was evaluated. Qualitative assessments, including a self-administered survey and site visits, were conducted in seven of nine CAHs between January and June 2003. The survey consisted of the Institute for Safe Medication Practices Medication Safety Self-assessment, the 2003 Joint Commission on Accreditation of Healthcare Organizations patient safety goals, health information technology (HIT) questions, and medication-use-process flow charts. On-site visits included interviews of CAH personnel who had safety responsibility and inspections of pharmacy facilities. The findings were compiled into a matrix reflecting structural and procedural components of the CAH medication safety infrastructure. The nine characteristics that emerged as targets for quality improvement (QI) were medication accessibility and storage, sterile product compounding, access to drug information, access to and utilization of patient information in medication order review, advanced safety technology, drug formularies and standardized medication protocols, safety culture, and medication reconciliation. Based on weighted importance and feasibility, QI efforts in CAHs should focus on enhancing medication order review systems, standardizing procedures for handling high-risk medications, promoting an appropriate safety culture, involvement in seamless care, and investment in HIT.

  6. Authorization basis supporting documentation for plutonium finishing plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, J.P., Fluor Daniel Hanford

    1997-03-05

    The identification and definition of the authorization basis for the Plutonium Finishing Plant (PFP) facility and operations are essential for compliance to DOE Order 5480.21, Unreviewed Safety Questions. The authorization basis, as defined in the Order, consists of those aspects of the facility design basis, i.e., the structures, systems and components (SSCS) and the operational requirements that are considered to be important to the safety of operations and are relied upon by DOE to authorize operation of the facility. These facility design features and their function in various accident scenarios are described in WHC-SD-CP-SAR-021, Plutonium Finishing Plant Final Safety Analysismore » Report (FSAR), Chapter 9, `Accident Analysis.` Figure 1 depicts the relationship of the Authorization Basis to its components and other information contained in safety documentation supporting the Authorization Basis. The PFP SSCs that are important to safety, collectively referred to as the `Safety Envelope` are discussed in various chapters of the FSAR and in WHC-SD-CP-OSR-010, Plutonium Finishing Plant Operational Safety Requirements. Other documents such as Criticality Safety Evaluation Reports (CSERS) address and support some portions of the Authorization Basis and Safety Envelope.« less

  7. Food safety management systems performance in African food processing companies: a review of deficiencies and possible improvement strategies.

    PubMed

    Kussaga, Jamal B; Jacxsens, Liesbeth; Tiisekwa, Bendantunguka Pm; Luning, Pieternel A

    2014-08-01

    This study seeks to provide insight into current deficiencies in food safety management systems (FSMS) in African food-processing companies and to identify possible strategies for improvement so as to contribute to African countries' efforts to provide safe food to both local and international markets. This study found that most African food products had high microbiological and chemical contamination levels exceeding the set (legal) limits. Relative to industrialized countries, the study identified various deficiencies at government, sector/branch, retail and company levels which affect performance of FSMS in Africa. For instance, very few companies (except exporting and large companies) have implemented HACCP and ISO 22000:2005. Various measures were proposed to be taken at government (e.g. construction of risk-based legislative frameworks, strengthening of food safety authorities, recommend use of ISO 22000:2005, and consumers' food safety training), branch/sector (e.g. sector-specific guidelines and third-party certification), retail (develop stringent certification standards and impose product specifications) and company levels (improving hygiene, strict raw material control, production process efficacy, and enhancing monitoring systems, assurance activities and supportive administrative structures). By working on those four levels, FSMS of African food-processing companies could be better designed and tailored towards their production processes and specific needs to ensure food safety. © 2014 Society of Chemical Industry.

  8. The development of an information system and installation of an Internet web database for the purposes of the occupational health and safety management system.

    PubMed

    Mavrikakis, I; Mantas, J; Diomidous, M

    2007-01-01

    This paper is based on the research on the possible structure of an information system for the purposes of occupational health and safety management. We initiated a questionnaire in order to find the possible interest on the part of potential users in the subject of occupational health and safety. The depiction of the potential interest is vital both for the software analysis cycle and development according to previous models. The evaluation of the results tends to create pilot applications among different enterprises. Documentation and process improvements ascertained quality of services, operational support, occupational health and safety advice are the basics of the above applications. Communication and codified information among intersted parts is the other target of the survey regarding health issues. Computer networks can offer such services. The network will consist of certain nodes responsible to inform executives on Occupational Health and Safety. A web database has been installed for inserting and searching documents. The submission of files to a server and the answers to questionnaires through the web help the experts to perform their activities. Based on the requirements of enterprises we have constructed a web file server. We submit files so that users can retrieve the files which they need. The access is limited to authorized users. Digital watermarks authenticate and protect digital objects.

  9. Structural mechanics simulations

    NASA Technical Reports Server (NTRS)

    Biffle, Johnny H.

    1992-01-01

    Sandia National Laboratory has a very broad structural capability. Work has been performed in support of reentry vehicles, nuclear reactor safety, weapons systems and components, nuclear waste transport, strategic petroleum reserve, nuclear waste storage, wind and solar energy, drilling technology, and submarine programs. The analysis environment contains both commercial and internally developed software. Included are mesh generation capabilities, structural simulation codes, and visual codes for examining simulation results. To effectively simulate a wide variety of physical phenomena, a large number of constitutive models have been developed.

  10. Deriving a Framework for a Systems Approach to Agitated Patient Care in the Emergency Department.

    PubMed

    Wong, Ambrose H; Ruppel, Halley; Crispino, Lauren J; Rosenberg, Alana; Iennaco, Joanne D; Vaca, Federico E

    2018-05-01

    The rising agitated patient population presenting to the emergency department (ED) has caused increasing safety threats for health care workers and patients. Development of evidence-based strategies has been limited by the lack of a structured framework to examine agitated patient care in the ED. In this study, a systems approach from the patient safety literature was used to derive a comprehensive theoretical framework for addressing ED patient agitation. A mixed-methods approach was used with ED staff members at an academic site and a community site of a regional health care network. Participants consisted of resident and attending physicians, physician assistants/nurse practitioners, nurses, technicians, and security officers. After a simulated agitated patient encounter to prime participants, uniprofessional and interprofessional focus groups were conducted, followed by a structured thematic analysis using a grounded theory approach. Quantitative data consisted of surveys of violence exposure and attitudes toward patient aggression and management. Data saturation was reached with 57 participants. Violence exposure was higher for technicians, nurses, and officers. Conflicting priorities and management challenges occurred due to four main interconnected elements: perceived complex patient motivations; a patient care paradox between professional duty and personal safety; discordant interprofessional dynamics mitigated by respect and trust; and logistical challenges impeding care delivery and long-term outcomes. Using a systems approach, five interconnected levels of ED agitated patient care delivery were identified: patient, staff, team, ED microsystem, and health care macrosystem. These care dimensions were synthesized to form a novel patient safety-based framework that can help guide future research, practice, and policy. Copyright © 2018 The Joint Commission. Published by Elsevier Inc. All rights reserved.

  11. Utilizing data consortia to monitor safety and effectiveness of biosimilars and their innovator products.

    PubMed

    Baldziki, Mike; Brown, Jeff; Chan, Hungching; Cheetham, T Craig; Conn, Thomas; Daniel, Gregory W; Hendrickson, Mark; Hilbrich, Lutz; Johnson, Ayanna; Miller, Steven B; Moore, Tom; Motheral, Brenda; Priddy, Sarah A; Raebel, Marsha A; Randhawa, Gurvaneet; Surratt, Penny; Walraven, Cheryl; White, T Jeff; Bruns, Kevin; Carden, Mary Jo; Dragovich, Charlie; Eichelberger, Bernadette; Rosato, Edith; Sega, Todd

    2015-01-01

    The Biologics Price Competition and Innovation Act, introduced as part of the Affordable Care Act, directed the FDA to create an approval pathway for biologic products shown to be biosimilar or interchangeable with an FDA-approved innovator drug. These biosimilars will not be chemically identical to the reference agent. Investigational studies conducted with biosimilar agents will likely provide limited real-world evidence of their effectiveness and safety. How do we best monitor effectiveness and safety of biosimilar products once approved by the FDA and used more extensively by patients? To determine the feasibility of developing a distributed research network that will use health insurance plan and health delivery system data to detect biosimilar safety and effectiveness signals early and be able to answer important managed care pharmacy questions from both the government and managed care organizations. Twenty-one members of the AMCP Task Force on Biosimilar Collective Intelligence Systems met November 12, 2013, to discuss issues involved in designing this consortium and to explore next steps. The task force concluded that a managed care biosimilars research consortium would be of significant value. Task force members agreed that it is best to use a distributed research network structurally similar to existing DARTNet, HMO Research Network, and Mini-Sentinel consortia. However, for some surveillance projects that it undertakes, the task force recognizes it may need supplemental data from managed care and other sources (i.e., a "hybrid" structure model). The task force believes that AMCP is well positioned to lead the biosimilar-monitoring effort and that the next step to developing a biosimilar-innovator collective intelligence system is to convene an advisory council to address organizational governance.

  12. Dynamic analysis methods for detecting anomalies in asynchronously interacting systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Akshat; Solis, John Hector; Matschke, Benjamin

    2014-01-01

    Detecting modifications to digital system designs, whether malicious or benign, is problematic due to the complexity of the systems being analyzed. Moreover, static analysis techniques and tools can only be used during the initial design and implementation phases to verify safety and liveness properties. It is computationally intractable to guarantee that any previously verified properties still hold after a system, or even a single component, has been produced by a third-party manufacturer. In this paper we explore new approaches for creating a robust system design by investigating highly-structured computational models that simplify verification and analysis. Our approach avoids the needmore » to fully reconstruct the implemented system by incorporating a small verification component that dynamically detects for deviations from the design specification at run-time. The first approach encodes information extracted from the original system design algebraically into a verification component. During run-time this component randomly queries the implementation for trace information and verifies that no design-level properties have been violated. If any deviation is detected then a pre-specified fail-safe or notification behavior is triggered. Our second approach utilizes a partitioning methodology to view liveness and safety properties as a distributed decision task and the implementation as a proposed protocol that solves this task. Thus the problem of verifying safety and liveness properties is translated to that of verifying that the implementation solves the associated decision task. We develop upon results from distributed systems and algebraic topology to construct a learning mechanism for verifying safety and liveness properties from samples of run-time executions.« less

  13. The AP1000{sup R} nuclear power plant innovative features for extended station blackout mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vereb, F.; Winters, J.; Schulz, T.

    2012-07-01

    Station Blackout (SBO) is defined as 'a condition wherein a nuclear power plant sustains a loss of all offsite electric power system concurrent with turbine trip and unavailability of all onsite emergency alternating current (AC) power system. Station blackout does not include the loss of available AC power to buses fed by station batteries through inverters or by alternate AC sources as defined in this section, nor does it assume a concurrent single failure or design basis accident...' in accordance with Reference 1. In this paper, the innovative features of the AP1000 plant design are described with their operation inmore » the scenario of an extended station blackout event. General operation of the passive safety systems are described as well as the unique features which allow the AP1000 plant to cope for at least 7 days during station blackout. Points of emphasis will include: - Passive safety system operation during SBO - 'Fail-safe' nature of key passive safety system valves; automatically places the valve in a conservatively safe alignment even in case of multiple failures in all power supply systems, including normal AC and battery backup - Passive Spent Fuel Pool cooling and makeup water supply during SBO - Robustness of AP1000 plant due to the location of key systems, structures and components required for Safe Shutdown - Diverse means of supplying makeup water to the Passive Containment Cooling System (PCS) and the Spent Fuel Pool (SFP) through use of an engineered, safety-related piping interface and portable equipment, as well as with permanently installed onsite ancillary equipment. (authors)« less

  14. Structural Health Monitoring for a Z-Type Special Vehicle

    PubMed Central

    Yuan, Chaolin; Ren, Liang; Li, Hongnan

    2017-01-01

    Nowadays there exist various kinds of special vehicles designed for some purposes, which are different from regular vehicles in overall dimension and design. In that case, accidents such as overturning will lead to large economical loss and casualties. There are still no technical specifications to follow to ensure the safe operation and driving of these special vehicles. Owing to the poor efficiency of regular maintenance, it is more feasible and effective to apply real-time monitoring during the operation and driving process. In this paper, the fiber Bragg grating (FBG) sensors are used to monitor the safety of a z-type special vehicle. Based on the structural features and force distribution, a reasonable structural health monitoring (SHM) scheme is presented. Comparing the monitoring results with the finite element simulation results guarantees the accuracy and reliability of the monitoring results. Large amounts of data are collected during the operation and driving progress to evaluate the structural safety condition and provide reference for SHM systems developed for other special vehicles. PMID:28587161

  15. Medical-Information-Management System

    NASA Technical Reports Server (NTRS)

    Alterescu, Sidney; Friedman, Carl A.; Frankowski, James W.

    1989-01-01

    Medical Information Management System (MIMS) computer program interactive, general-purpose software system for storage and retrieval of information. Offers immediate assistance where manipulation of large data bases required. User quickly and efficiently extracts, displays, and analyzes data. Used in management of medical data and handling all aspects of data related to care of patients. Other applications include management of data on occupational safety in public and private sectors, handling judicial information, systemizing purchasing and procurement systems, and analyses of cost structures of organizations. Written in Microsoft FORTRAN 77.

  16. A novel safety device with metal counter meshing gears discriminator directly driven by axial flux permanent magnet micromotors based on MEMS technology

    NASA Astrophysics Data System (ADS)

    Zhang, Weiping; Chen, Wenyuan; Zhao, Xiaolin; Li, Shengyong; Jiang, Yong

    2005-08-01

    In a novel safety device based on MEMS technology for high consequence systems, the discriminator consists of two groups of metal counter meshing gears and two pawl/ratchet wheel mechanisms. Each group of counter meshing gears is onepiece and driven directly by an axial flux permanent magnet micromotor respectively. The energy-coupling element is an optical shutter with two collimators and a coupler wheel. The safety device's probability is less than 1/106. It is fabricated by combination of an LiGA-like process and precision mechanical engineering. The device has simple structure, few dynamic problems, high strength and strong reliability.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaftan, V. I.; Ustinov, A. V.

    The feasibility of using global radio-navigation satellite systems (GNSS) to improve functional safety of high-liability water-development works - dams at hydroelectric power plants, and, consequently, the safety of the population in the surrounding areas is examined on the basis of analysis of modern publications. Characteristics for determination of displacements and deformations with use of GNSS, and also in a complex with other types of measurements, are compared. It is demonstrated that combined monitoring of deformations of the ground surface of the region, and engineering and technical structures is required to ensure the functional safety of HPP, and reliable metrologic assurancemore » of measurements is also required to obtain actual characteristics of the accuracy and effectiveness of GNSS observations.« less

  18. Improvement of a Chemical Storage Room Ventilation System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yousif, Emad; Al-Dahhan, Wedad; Abed, Rashed Nema

    Scientists at universities across Iraq are actively working to report actual incidents and accidents occurring in their laboratories, as well as structural improvements made to improve safety and security, to raise awareness and encourage openness, leading to widespread adoption of robust Chemical Safety and Security (CSS) practices. This manuscript is the third in a series of five case studies describing laboratory incidents, accidents, and laboratory improvements. We summarize an improvement to the chemical storage room ventilation system at Al-Nahrain University to create and maintain a safe working atmosphere in an area where chemicals are stored and handled, using US andmore » European design practices, standards, and regulations.« less

  19. Reporter Concerns in 300 Mode-Related Incident Reports from NASA's Aviation Safety Reporting System

    NASA Technical Reports Server (NTRS)

    McGreevy, Michael W.

    1996-01-01

    A model has been developed which represents prominent reporter concerns expressed in the narratives of 300 mode-related incident reports from NASA's Aviation Safety Reporting System (ASRS). The model objectively quantifies the structure of concerns which persist across situations and reporters. These concerns are described and illustrated using verbatim sentences from the original narratives. Report accession numbers are included with each sentence so that concerns can be traced back to the original reports. The results also include an inventory of mode names mentioned in the narratives, and a comparison of individual and joint concerns. The method is based on a proximity-weighted co-occurrence metric and object-oriented complexity reduction.

  20. Conceptual design of ACB-CP for ITER cryogenic system

    NASA Astrophysics Data System (ADS)

    Jiang, Yongcheng; Xiong, Lianyou; Peng, Nan; Tang, Jiancheng; Liu, Liqiang; Zhang, Liang

    2012-06-01

    ACB-CP (Auxiliary Cold Box for Cryopumps) is used to supply the cryopumps system with necessary cryogen in ITER (International Thermonuclear Experimental Reactor) cryogenic distribution system. The conceptual design of ACB-CP contains thermo-hydraulic analysis, 3D structure design and strength checking. Through the thermohydraulic analysis, the main specifications of process valves, pressure safety valves, pipes, heat exchangers can be decided. During the 3D structure design process, vacuum requirement, adiabatic requirement, assembly constraints and maintenance requirement have been considered to arrange the pipes, valves and other components. The strength checking has been performed to crosscheck if the 3D design meets the strength requirements for the ACB-CP.

  1. The practice of pre-marketing safety assessment in drug development.

    PubMed

    Chuang-Stein, Christy; Xia, H Amy

    2013-01-01

    The last 15 years have seen a substantial increase in efforts devoted to safety assessment by statisticians in the pharmaceutical industry. While some of these efforts were driven by regulations and public demand for safer products, much of the motivation came from the realization that there is a strong need for a systematic approach to safety planning, evaluation, and reporting at the program level throughout the drug development life cycle. An efficient process can help us identify safety signals early and afford us the opportunity to develop effective risk minimization plan early in the development cycle. This awareness has led many pharmaceutical sponsors to set up internal systems and structures to effectively conduct safety assessment at all levels (patient, study, and program). In addition to process, tools have emerged that are designed to enhance data review and pattern recognition. In this paper, we describe advancements in the practice of safety assessment during the premarketing phase of drug development. In particular, we share examples of safety assessment practice at our respective companies, some of which are based on recommendations from industry-initiated working groups on best practice in recent years.

  2. How Effective Are Incident-Reporting Systems for Improving Patient Safety? A Systematic Literature Review

    PubMed Central

    Stavropoulou, Charitini; Doherty, Carole; Tosey, Paul

    2015-01-01

    Context Incident-reporting systems (IRSs) are used to gather information about patient safety incidents. Despite the financial burden they imply, however, little is known about their effectiveness. This article systematically reviews the effectiveness of IRSs as a method of improving patient safety through organizational learning. Methods Our systematic literature review identified 2 groups of studies: (1) those comparing the effectiveness of IRSs with other methods of error reporting and (2) those examining the effectiveness of IRSs on settings, structures, and outcomes in regard to improving patient safety. We used thematic analysis to compare the effectiveness of IRSs with other methods and to synthesize what was effective, where, and why. Then, to assess the evidence concerning the ability of IRSs to facilitate organizational learning, we analyzed studies using the concepts of single-loop and double-loop learning. Findings In total, we identified 43 studies, 8 that compared IRSs with other methods and 35 that explored the effectiveness of IRSs on settings, structures, and outcomes. We did not find strong evidence that IRSs performed better than other methods. We did find some evidence of single-loop learning, that is, changes to clinical settings or processes as a consequence of learning from IRSs, but little evidence of either improvements in outcomes or changes in the latent managerial factors involved in error production. In addition, there was insubstantial evidence of IRSs enabling double-loop learning, that is, a cultural change or a change in mind-set. Conclusions The results indicate that IRSs could be more effective if the criteria for what counts as an incident were explicit, they were owned and led by clinical teams rather than centralized hospital departments, and they were embedded within organizations as part of wider safety programs. PMID:26626987

  3. Setting culture apart: distinguishing culture from behavior and social structure in safety and injury research.

    PubMed

    Myers, Douglas J; Nyce, James M; Dekker, Sidney W A

    2014-07-01

    The concept of culture is now widely used by those who conduct research on safety and work-related injury outcomes. We argue that as the term has been applied by an increasingly diverse set of disciplines, its scope has broadened beyond how it was defined and intended for use by sociologists and anthropologists. As a result, this more inclusive concept has lost some of its precision and analytic power. We suggest that the utility of this "new" understanding of culture could be improved if researchers more clearly delineated the ideological - the socially constructed abstract systems of meaning, norms, beliefs and values (which we refer to as culture) - from concrete behaviors, social relations and other properties of workplaces (e.g., organizational structures) and of society itself. This may help researchers investigate how culture and social structures can affect safety and injury outcomes with increased analytic rigor. In addition, maintaining an analytical distinction between culture and other social factors can help intervention efforts better understand the target of the intervention and therefore may improve chances of both scientific and instrumental success. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Rapid prototyping of flexible intrafascicular electrode arrays by picosecond laser structuring.

    PubMed

    Mueller, Matthias; de la Oliva, Natalia; Del Valle, Jaume; Delgado-Martínez, Ignacio; Navarro, Xavier; Stieglitz, Thomas

    2017-12-01

    Interfacing the peripheral nervous system can be performed with a large variety of electrode arrays. However, stimulating and recording a nerve while having a reasonable amount of channels limits the number of available systems. Translational research towards human clinical trial requires device safety and biocompatibility but would benefit from design flexibility in the development process to individualize probes. We selected established medical grade implant materials like precious metals and Parylene C to develop a rapid prototyping process for novel intrafascicular electrode arrays using a picosecond laser structuring. A design for a rodent animal model was developed in conjunction with an intrafascicular implantation strategy. Electrode characterization and optimization was performed first in saline solution in vitro before performance and biocompatibility were validated in sciatic nerves of rats in chronic implantation. The novel fabrication process proved to be suitable for prototyping and building intrafascicular electrode arrays. Electrochemical properties of the electrode sites were enhanced and tested for long-term stability. Chronic implantation in the sciatic nerve of rats showed good biocompatibility, selectivity and stable stimulation thresholds. Established medical grade materials can be used for intrafascicular nerve electrode arrays when laser structuring defines structure size in the micro-scale. Design flexibility reduces re-design cycle time and material certificates are beneficial support for safety studies on the way to clinical trials.

  5. Collaborating with nurse leaders to develop patient safety practices.

    PubMed

    Kanerva, Anne; Kivinen, Tuula; Lammintakanen, Johanna

    2017-07-03

    Purpose The organisational level and leadership development are crucial elements in advancing patient safety, because patient safety weaknesses are often caused by system failures. However, little is known about how frontline leader and director teams can be supported to develop patient safety practices. The purpose of this study is to describe the patient safety development process carried out by nursing leaders and directors. The research questions were: how the chosen development areas progressed in six months' time and how nursing leaders view the participatory development process. Design/methodology/approach Participatory action research was used to engage frontline nursing leaders and directors into developing patient safety practices. Semi-structured group interviews ( N = 10) were used in data collection at the end of a six-month action cycle, and data were analysed using content analysis. Findings The participatory development process enhanced collaboration and gave leaders insights into patient safety as a part of the hospital system and their role in advancing it. The chosen development areas advanced to different extents, with the greatest improvements in those areas with simple guidelines to follow and in which the leaders were most participative. The features of high-reliability organisation were moderately identified in the nursing leaders' actions and views. For example, acting as a change agent to implement patient safety practices was challenging. Participatory methods can be used to support leaders into advancing patient safety. However, it is important that the participants are familiar with the method, and there are enough facilitators to steer development processes. Originality/value Research brings more knowledge of how leaders can increase their effectiveness in advancing patient safety and promoting high-reliability organisation features in the healthcare organisation.

  6. Columbia Switches to Automatic Fire Detection

    ERIC Educational Resources Information Center

    Gardner, John C.

    1978-01-01

    Columbia University has started a project that, in the first two phases, will provide an internal fire alarm system to residence halls and academic buildings. The third phase will be major structural changes to bring older academic buildings up to meet new life safety codes. (Author/MLF)

  7. 10 CFR 54.4 - Scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... COMMISSION (CONTINUED) REQUIREMENTS FOR RENEWAL OF OPERATING LICENSES FOR NUCLEAR POWER PLANTS General Provisions § 54.4 Scope. (a) Plant systems, structures, and components within the scope of this part are— (1..., and components relied on in safety analyses or plant evaluations to perform a function that...

  8. 10 CFR 54.4 - Scope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... COMMISSION (CONTINUED) REQUIREMENTS FOR RENEWAL OF OPERATING LICENSES FOR NUCLEAR POWER PLANTS General Provisions § 54.4 Scope. (a) Plant systems, structures, and components within the scope of this part are— (1..., and components relied on in safety analyses or plant evaluations to perform a function that...

  9. 10 CFR 54.4 - Scope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... COMMISSION (CONTINUED) REQUIREMENTS FOR RENEWAL OF OPERATING LICENSES FOR NUCLEAR POWER PLANTS General Provisions § 54.4 Scope. (a) Plant systems, structures, and components within the scope of this part are— (1..., and components relied on in safety analyses or plant evaluations to perform a function that...

  10. 10 CFR 54.4 - Scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... COMMISSION (CONTINUED) REQUIREMENTS FOR RENEWAL OF OPERATING LICENSES FOR NUCLEAR POWER PLANTS General Provisions § 54.4 Scope. (a) Plant systems, structures, and components within the scope of this part are— (1..., and components relied on in safety analyses or plant evaluations to perform a function that...

  11. 10 CFR 54.4 - Scope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... COMMISSION (CONTINUED) REQUIREMENTS FOR RENEWAL OF OPERATING LICENSES FOR NUCLEAR POWER PLANTS General Provisions § 54.4 Scope. (a) Plant systems, structures, and components within the scope of this part are— (1..., and components relied on in safety analyses or plant evaluations to perform a function that...

  12. Achievements in the development of the Water Cooled Solid Breeder Test Blanket Module of Japan to the milestones for installation in ITER

    NASA Astrophysics Data System (ADS)

    Tsuru, Daigo; Tanigawa, Hisashi; Hirose, Takanori; Mohri, Kensuke; Seki, Yohji; Enoeda, Mikio; Ezato, Koichiro; Suzuki, Satoshi; Nishi, Hiroshi; Akiba, Masato

    2009-06-01

    As the primary candidate of ITER Test Blanket Module (TBM) to be tested under the leadership of Japan, a water cooled solid breeder (WCSB) TBM is being developed. This paper shows the recent achievements towards the milestones of ITER TBMs prior to the installation, which consist of design integration in ITER, module qualification and safety assessment. With respect to the design integration, targeting the detailed design final report in 2012, structure designs of the WCSB TBM and the interfacing components (common frame and backside shielding) that are placed in a test port of ITER and the layout of the cooling system are presented. As for the module qualification, a real-scale first wall mock-up fabricated by using the hot isostatic pressing method by structural material of reduced activation martensitic ferritic steel, F82H, and flow and irradiation test of the mock-up are presented. As for safety milestones, the contents of the preliminary safety report in 2008 consisting of source term identification, failure mode and effect analysis (FMEA) and identification of postulated initiating events (PIEs) and safety analyses are presented.

  13. Structural precaution: the application of premarket approval schemes in EU food legislation.

    PubMed

    van der Meulen, Bernd M J; Bremmers, Harry J; Wijnands, Jo H M; Poppe, Krijn J

    2012-01-01

    Structural precaution refers to legal requirements by which food products (whether as ingredients, additives, genetically modified or innovative in some other form) are only admitted to the market after authorization by public authorities and till then are presumed unsafe. In the EU such authorization is granted after provision of conclusive scientific evidence of the product's safety by the applicant. The objective of this article is to critically evaluate structural precaution in the EU against the general principles of European and international law. Moreover, it addresses the positive and negative side-effects of structural precaution for food businesses. The methods which are applied are legal-systematic and empirical. Legal-systematic research shows that the European system of structural precaution may come into conflict with the principles of free trade. Empirical research on the effects of structural precaution shows that the barriers to market access impede food innovations, negatively impact competitiveness, and induce opportunistic strategic responses by food businesses. Among the opportunistic strategic responses that were identified are window-dressing, trespassing and circumventing. These may have adverse effects on food safety. This is remarkable since food safety is the key driving force behind the application of structural precaution. The article advocates an overhaul of the present European risk prevention framework. It argues that the newly proposed European legal framework for innovative foods only partly addresses the identified problems with which the food industry is confronted. Supplementary to legal-systematic overhaul, authorities should invest in accessibility and transparency of the legal framework and provide compliance assistance to reduce regulatory burdens.

  14. Reliability Analysis of Sealing Structure of Electromechanical System Based on Kriging Model

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Wang, Y. M.; Chen, R. W.; Deng, W. W.; Gao, Y.

    2018-05-01

    The sealing performance of aircraft electromechanical system has a great influence on flight safety, and the reliability of its typical seal structure is analyzed by researcher. In this paper, we regard reciprocating seal structure as a research object to study structural reliability. Having been based on the finite element numerical simulation method, the contact stress between the rubber sealing ring and the cylinder wall is calculated, and the relationship between the contact stress and the pressure of the hydraulic medium is built, and the friction force on different working conditions are compared. Through the co-simulation, the adaptive Kriging model obtained by EFF learning mechanism is used to describe the failure probability of the seal ring, so as to evaluate the reliability of the sealing structure. This article proposes a new idea of numerical evaluation for the reliability analysis of sealing structure, and also provides a theoretical basis for the optimal design of sealing structure.

  15. Perceptions of medical graduates and their workplace supervisors towards a medical school clinical audit program

    PubMed Central

    O'Ferrall, Ilse; Hoare, Samuel; Caroline, Bulsara; Mak, Donna B.

    2017-01-01

    Objectives This study explores how medical graduates and their workplace supervisors perceive the value of a structured clinical audit program (CAP) undertaken during medical school. Methods Medical students at the University of Notre Dame Fremantle complete a structured clinical audit program in their final year of medical school.  Semi-structured interviews were conducted with 12 Notre Dame graduates (who had all completed the CAP), and seven workplace supervisors (quality and safety staff and clinical supervisors).  Purposeful sampling was used to recruit participants and data were analysed using thematic analysis. Results Both graduates and workplace supervisors perceived the CAP to be valuable. A major theme was that the CAP made a contribution to individual graduate’s medical practice, including improved knowledge in some areas of patient care as well as awareness of healthcare systems issues and preparedness to undertake scientifically rigorous quality improvement activities. Graduates perceived that as a result of the CAP, they were confident in undertaking a clinical audit after graduation.  Workplace supervisors perceived the value of the CAP beyond an educational experience and felt that the audits undertaken by students improved quality and safety of patient care. Conclusions It is vital that health professionals, including medical graduates, be able to carry out quality and safety activities in the workplace. This study provides evidence that completing a structured clinical audit during medical school prepares graduates to undertake quality and safety activities upon workplace entry. Other health professional faculties may be interested in incorporating a similar program in their curricula.  PMID:28692425

  16. RELEASE OF DRIED RADIOACTIVE WASTE MATERIALS TECHNICAL BASIS DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KOZLOWSKI, S.D.

    2007-05-30

    This technical basis document was developed to support RPP-23429, Preliminary Documented Safety Analysis for the Demonstration Bulk Vitrification System (PDSA) and RPP-23479, Preliminary Documented Safety Analysis for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Facility. The main document describes the risk binning process and the technical basis for assigning risk bins to the representative accidents involving the release of dried radioactive waste materials from the Demonstration Bulk Vitrification System (DBVS) and to the associated represented hazardous conditions. Appendices D through F provide the technical basis for assigning risk bins to the representative dried waste release accident and associated represented hazardous conditionsmore » for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Packaging Unit (WPU). The risk binning process uses an evaluation of the frequency and consequence of a given representative accident or represented hazardous condition to determine the need for safety structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls. A representative accident or a represented hazardous condition is assigned to a risk bin based on the potential radiological and toxicological consequences to the public and the collocated worker. Note that the risk binning process is not applied to facility workers because credible hazardous conditions with the potential for significant facility worker consequences are considered for safety-significant SSCs and/or TSR-level controls regardless of their estimated frequency. The controls for protection of the facility workers are described in RPP-23429 and RPP-23479. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, as described below.« less

  17. FLAMMABLE GAS TECHNICAL BASIS DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KRIPPS, L.J.

    2005-02-18

    This document describes the qualitative evaluation of frequency and consequences for double shell tank (DST) and single shell tank (SST) representative flammable gas accidents and associated hazardous conditions without controls. The evaluation indicated that safety-significant SSCs and/or TSRS were required to prevent or mitigate flammable gas accidents. Discussion on the resulting control decisions is included. This technical basis document was developed to support of the Tank Farms Documented Safety Analysis (DSA) and describes the risk binning process for the flammable gas representative accidents and associated represented hazardous conditions. The purpose of the risk binning process is to determine the needmore » for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous condition based on an evaluation of the event frequency and consequence.« less

  18. Investigation of Optimal Control Allocation for Gust Load Alleviation in Flight Control

    NASA Technical Reports Server (NTRS)

    Frost, Susan A.; Taylor, Brian R.; Bodson, Marc

    2012-01-01

    Advances in sensors and avionics computation power suggest real-time structural load measurements could be used in flight control systems for improved safety and performance. A conventional transport flight control system determines the moments necessary to meet the pilot's command, while rejecting disturbances and maintaining stability of the aircraft. Control allocation is the problem of converting these desired moments into control effector commands. In this paper, a framework is proposed to incorporate real-time structural load feedback and structural load constraints in the control allocator. Constrained optimal control allocation can be used to achieve desired moments without exceeding specified limits on monitored load points. Minimization of structural loads by the control allocator is used to alleviate gust loads. The framework to incorporate structural loads in the flight control system and an optimal control allocation algorithm will be described and then demonstrated on a nonlinear simulation of a generic transport aircraft with flight dynamics and static structural loads.

  19. Safety Priorities and Underestimations in Recreational Scuba Diving Operations: A European Study Supporting the Implementation of New Risk Management Programmes

    PubMed Central

    Lucrezi, Serena; Egi, Salih Murat; Pieri, Massimo; Burman, Francois; Ozyigit, Tamer; Cialoni, Danilo; Thomas, Guy; Marroni, Alessandro; Saayman, Melville

    2018-01-01

    Introduction: Scuba diving is an important marine tourism sector, but requires proper safety standards to reduce the risks and increase accessibility to its market. To achieve safety goals, safety awareness and positive safety attitudes in recreational scuba diving operations are essential. However, there is no published research exclusively focusing on scuba divers’ and dive centres’ perceptions toward safety. This study assessed safety perceptions in recreational scuba diving operations, with the aim to inform and enhance safety and risk management programmes within the scuba diving tourism industry. Materials and Methods: Two structured questionnaire surveys were prepared by the organisation Divers Alert Network and administered online to scuba diving operators in Italy and scuba divers in Europe, using a mixture of convenience and snowball sampling. Questions in the survey included experience and safety offered at the dive centre; the buddy system; equipment and accessories for safe diving activities; safety issues in the certification of new scuba divers; incidents/accidents; and attitudes toward safety. Results: 91 scuba diving centres and 3,766 scuba divers participated in the study. Scuba divers gave importance to safety and the responsiveness of service providers, here represented by the dive centres. However, they underestimated the importance of a personal emergency action/assistance plan and, partly, of the buddy system alongside other safety procedures. Scuba divers agreed that some risks, such as those associated with running out of gas, deserve attention. Dive centres gave importance to aspects such as training and emergency action/assistance plans. However, they were limitedly involved in safety campaigning. Dive centres’ perceptions of safety in part aligned with those of scuba divers, with some exceptions. Conclusion: Greater responsibility is required in raising awareness and educating scuba divers, through participation in prevention campaigns and training. The study supports the introduction of programmes aiming to create a culture of safety among dive centres and scuba divers. Two examples, which are described in this paper, include the Hazard Identification and Risk Assessment protocol for dive centres and scuba divers, and the Diving Safety Officer programme to create awareness, improve risk management, and mitigate health and safety risks. PMID:29628904

  20. Safety Priorities and Underestimations in Recreational Scuba Diving Operations: A European Study Supporting the Implementation of New Risk Management Programmes.

    PubMed

    Lucrezi, Serena; Egi, Salih Murat; Pieri, Massimo; Burman, Francois; Ozyigit, Tamer; Cialoni, Danilo; Thomas, Guy; Marroni, Alessandro; Saayman, Melville

    2018-01-01

    Introduction: Scuba diving is an important marine tourism sector, but requires proper safety standards to reduce the risks and increase accessibility to its market. To achieve safety goals, safety awareness and positive safety attitudes in recreational scuba diving operations are essential. However, there is no published research exclusively focusing on scuba divers' and dive centres' perceptions toward safety. This study assessed safety perceptions in recreational scuba diving operations, with the aim to inform and enhance safety and risk management programmes within the scuba diving tourism industry. Materials and Methods: Two structured questionnaire surveys were prepared by the organisation Divers Alert Network and administered online to scuba diving operators in Italy and scuba divers in Europe, using a mixture of convenience and snowball sampling. Questions in the survey included experience and safety offered at the dive centre; the buddy system; equipment and accessories for safe diving activities; safety issues in the certification of new scuba divers; incidents/accidents; and attitudes toward safety. Results: 91 scuba diving centres and 3,766 scuba divers participated in the study. Scuba divers gave importance to safety and the responsiveness of service providers, here represented by the dive centres. However, they underestimated the importance of a personal emergency action/assistance plan and, partly, of the buddy system alongside other safety procedures. Scuba divers agreed that some risks, such as those associated with running out of gas, deserve attention. Dive centres gave importance to aspects such as training and emergency action/assistance plans. However, they were limitedly involved in safety campaigning. Dive centres' perceptions of safety in part aligned with those of scuba divers, with some exceptions. Conclusion: Greater responsibility is required in raising awareness and educating scuba divers, through participation in prevention campaigns and training. The study supports the introduction of programmes aiming to create a culture of safety among dive centres and scuba divers. Two examples, which are described in this paper, include the Hazard Identification and Risk Assessment protocol for dive centres and scuba divers, and the Diving Safety Officer programme to create awareness, improve risk management, and mitigate health and safety risks.

  1. Safety concerns related to modular/prefabricated building construction.

    PubMed

    Fard, Maryam Mirhadi; Terouhid, Seyyed Amin; Kibert, Charles J; Hakim, Hamed

    2017-03-01

    The US construction industry annually experiences a relatively high rate of fatalities and injuries; therefore, improving safety practices should be considered a top priority for this industry. Modular/prefabricated building construction is a construction strategy that involves manufacturing of the whole building or some of its components off-site. This research focuses on the safety performance of the modular/prefabricated building construction sector during both manufacturing and on-site processes. This safety evaluation can serve as the starting point for improving the safety performance of this sector. Research was conducted based on Occupational Safety and Health Administration investigated accidents. The study found 125 accidents related to modular/prefabricated building construction. The details of each accident were closely examined to identify the types of injury and underlying causes. Out of 125 accidents, there were 48 fatalities (38.4%), 63 hospitalized injuries (50.4%), and 14 non-hospitalized injuries (11.2%). It was found that, the most common type of injury in modular/prefabricated construction was 'fracture', and the most common cause of accidents was 'fall'. The most frequent cause of cause (underlying and root cause) was 'unstable structure'. In this research, the accidents were also examined in terms of corresponding location, occupation, equipment as well as activities during which the accidents occurred. For improving safety records of the modular/prefabricated construction sector, this study recommends that future research be conducted on stabilizing structures during their lifting, storing, and permanent installation, securing fall protection systems during on-site assembly of components while working from heights, and developing training programmes and standards focused on modular/prefabricated construction.

  2. Next level of board accountability in health care quality.

    PubMed

    Pronovost, Peter J; Armstrong, C Michael; Demski, Renee; Peterson, Ronald R; Rothman, Paul B

    2018-03-19

    Purpose The purpose of this paper is to offer six principles that health system leaders can apply to establish a governance and management system for the quality of care and patient safety. Design/methodology/approach Leaders of a large academic health system set a goal of high reliability and formed a quality board committee in 2011 to oversee quality and patient safety everywhere care was delivered. Leaders of the health system and every entity, including inpatient hospitals, home care companies, and ambulatory services staff the committee. The committee works with the management for each entity to set and achieve quality goals. Through this work, the six principles emerged to address management structures and processes. Findings The principles are: ensure there is oversight for quality everywhere care is delivered under the health system; create a framework to organize and report the work; identify care areas where quality is ambiguous or underdeveloped (i.e. islands of quality) and work to ensure there is reporting and accountability for quality measures; create a consolidated quality statement similar to a financial statement; ensure the integrity of the data used to measure and report quality and safety performance; and transparently report performance and create an explicit accountability model. Originality/value This governance and management system for quality and safety functions similar to a finance system, with quality performance documented and reported, data integrity monitored, and accountability for performance from board to bedside. To the authors' knowledge, this is the first description of how a board has taken this type of systematic approach to oversee the quality of care.

  3. Researchers' Roles in Patient Safety Improvement.

    PubMed

    Pietikäinen, Elina; Reiman, Teemu; Heikkilä, Jouko; Macchi, Luigi

    2016-03-01

    In this article, we explore how researchers can contribute to patient safety improvement. We aim to expand the instrumental role researchers have often occupied in relation to patient safety improvement. We reflect on our own improvement model and experiences as patient safety researchers in an ongoing Finnish multi-actor innovation project through self-reflective narration. Our own patient safety improvement model can be described as systemic. Based on the purpose of the innovation project, our improvement model, and the improvement models of the other actors in the project, we have carried out a wide range of activities. Our activities can be summarized in 8 overlapping patient safety improvement roles: modeler, influencer, supplier, producer, ideator, reflector, facilitator, and negotiator. When working side by side with "practice," researchers are offered and engage in several different activities. The way researchers contribute to patient safety improvement and balance between different roles depends on the purpose of the study, as well as on the underlying patient safety improvement models. Different patient safety research paradigms seem to emphasize different improvement roles, and thus, they also face different challenges. Open reflection on the underlying improvement models and roles can help researchers with different backgrounds-as well as other actors involved in patient safety improvement-in structuring their work and collaborating productively.

  4. Performance Evaluation of Engineered Structured Sorbents for Atmosphere Revitalization Systems On Board Crewed Space Vehicles and Habitats

    NASA Technical Reports Server (NTRS)

    Howard, David F.; Perry, Jay L.; Knox, James C.; Junaedi, Christian; Roychoudhury, Subir

    2011-01-01

    Engineered structured (ES) sorbents are being developed to meet the technical challenges of future crewed space exploration missions. ES sorbents offer the inherent performance and safety attributes of zeolite and other physical adsorbents but with greater structural integrity and process control to improve durability and efficiency over packed beds. ES sorbent techniques that are explored include thermally linked and pressure-swing adsorption beds for water-save dehumidification and sorbent-coated metal meshes for residual drying, trace contaminant control, and carbon dioxide control. Results from sub-scale performance evaluations of a thermally linked pressure-swing adsorbent bed and an integrated sub-scale ES sorbent system are discussed.

  5. Results of Fall 1994 sampling of gunite and associated tanks at the Oak Ridge National Laboratory, Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-06-01

    This Technical Memorandum, was developed under Work Breakdown Structure 1.4.12.6.1.01.41.12.02. 11 (Activity Data Sheet 3301, ``WAG 1``). This document provides the Environmental Restoration Program with analytical results from liquid and sludge samples from the Gunite and Associated Tanks (GAAT). Information provided in this report forms part of the technical basis for criticality safety, systems safety, engineering design, and waste management as they apply to the GAAT treatability study and remediation.

  6. Screening Electronic Health Record-Related Patient Safety Reports Using Machine Learning.

    PubMed

    Marella, William M; Sparnon, Erin; Finley, Edward

    2017-03-01

    The objective of this study was to develop a semiautomated approach to screening cases that describe hazards associated with the electronic health record (EHR) from a mandatory, population-based patient safety reporting system. Potentially relevant cases were identified through a query of the Pennsylvania Patient Safety Reporting System. A random sample of cases were manually screened for relevance and divided into training, testing, and validation data sets to develop a machine learning model. This model was used to automate screening of remaining potentially relevant cases. Of the 4 algorithms tested, a naive Bayes kernel performed best, with an area under the receiver operating characteristic curve of 0.927 ± 0.023, accuracy of 0.855 ± 0.033, and F score of 0.877 ± 0.027. The machine learning model and text mining approach described here are useful tools for identifying and analyzing adverse event and near-miss reports. Although reporting systems are beginning to incorporate structured fields on health information technology and the EHR, these methods can identify related events that reporters classify in other ways. These methods can facilitate analysis of legacy safety reports by retrieving health information technology-related and EHR-related events from databases without fields and controlled values focused on this subject and distinguishing them from reports in which the EHR is mentioned only in passing. Machine learning and text mining are useful additions to the patient safety toolkit and can be used to semiautomate screening and analysis of unstructured text in safety reports from frontline staff.

  7. Management of local economic and ecological system of coal processing company

    NASA Astrophysics Data System (ADS)

    Kiseleva, T. V.; Mikhailov, V. G.; Karasev, V. A.

    2016-10-01

    The management issues of local ecological and economic system of coal processing company - coal processing plant - are considered in the article. The objectives of the research are the identification and the analysis of local ecological and economic system (coal processing company) performance and the proposals for improving the mechanism to support the management decision aimed at improving its environmental safety. The data on the structure of run-of-mine coal processing products are shown. The analysis of main ecological and economic indicators of coal processing enterprises, characterizing the state of its environmental safety, is done. The main result of the study is the development of proposals to improve the efficiency of local enterprise ecological and economic system management, including technical, technological and business measures. The results of the study can be recommended to industrial enterprises to improve their ecological and economic efficiency.

  8. The development of an Infrared Environmental System for TOPEX Solar Panel Testing

    NASA Technical Reports Server (NTRS)

    Noller, E.

    1994-01-01

    Environmental testing and flight qualification of the TOPEX/POSEIDON spacecraft solar panels were performed with infrared (IR) lamps and a control system that were newly designed and integrated. The basic goal was more rigorous testing of the costly panels' new composite-structure design without jeopardizing their safety. The technique greatly reduces the costs and high risks of testing flight solar panels.

  9. Technology Innovations from NASA's Next Generation Launch Technology Program

    NASA Technical Reports Server (NTRS)

    Cook, Stephen A.; Morris, Charles E. K., Jr.; Tyson, Richard W.

    2004-01-01

    NASA's Next Generation Launch Technology Program has been on the cutting edge of technology, improving the safety, affordability, and reliability of future space-launch-transportation systems. The array of projects focused on propulsion, airframe, and other vehicle systems. Achievements range from building miniature fuel/oxygen sensors to hot-firings of major rocket-engine systems as well as extreme thermo-mechanical testing of large-scale structures. Results to date have significantly advanced technology readiness for future space-launch systems using either airbreathing or rocket propulsion.

  10. Utilization of the Seniors Falls Investigation Methodology to identify system-wide causes of falls in community-dwelling seniors.

    PubMed

    Zecevic, Aleksandra A; Salmoni, Alan W; Lewko, John H; Vandervoort, Anthoney A; Speechley, Mark

    2009-10-01

    As a highly heterogeneous group, seniors live in complex environments influenced by multiple physical and social structures that affect their safety. Until now, the major approach to falls research has been person centered. However, in industrial settings, the individuals involved in an accident are seen as the inheritors of system defects. The objective of the present study was to investigate safety deficiencies that contributed to falls in community-dwelling seniors using a systems approach. The investigations were conducted using the Seniors Falls Investigation Methodology (SFIM), an adapted version of a method used to examine transportation accidents, such as airplane crashes. Fifteen seniors, who experienced a fall or near fall, participated in multiple case studies. A cross-case synthesis was used to summarize findings and identify common patterns of causes and safety deficiencies. Falls and near falls are a result of latent unsafe conditions, and unsafe acts and decisions combined in a diverse set of circumstances. If not identified and removed, these unsafe conditions can cause falls for other seniors. This study provided compelling evidence that causes of falling are systemic and develop over time. It demonstrated that the systems approach is needed to expand the focus from the individual to multilayered organizational and supervisory causes. The SFIM demonstrated capability to identify causes of falls that will allow better prevention and management programs, hence advancing seniors' safety. SFIM shows great potential for implementation in organized settings, such as hospitals and long-term care homes.

  11. Advanced structures technology and aircraft safety

    NASA Technical Reports Server (NTRS)

    Mccomb, H. G., Jr.

    1983-01-01

    NASA research and development on advanced aeronautical structures technology related to flight safety is reviewed. The effort is categorized as research in the technology base and projects sponsored by the Aircraft Energy Efficiency (ACEE) Project Office. Base technology research includes mechanics of composite structures, crash dynamics, and landing dynamics. The ACEE projects involve development and fabrication of selected composite structural components for existing commercial transport aircraft. Technology emanating from this research is intended to result in airframe structures with improved efficiency and safety.

  12. The Triangle Model for evaluating the effect of health information technology on healthcare quality and safety

    PubMed Central

    Kern, Lisa M; Abramson, Erika; Kaushal, Rainu

    2011-01-01

    With the proliferation of relatively mature health information technology (IT) systems with large numbers of users, it becomes increasingly important to evaluate the effect of these systems on the quality and safety of healthcare. Previous research on the effectiveness of health IT has had mixed results, which may be in part attributable to the evaluation frameworks used. The authors propose a model for evaluation, the Triangle Model, developed for designing studies of quality and safety outcomes of health IT. This model identifies structure-level predictors, including characteristics of: (1) the technology itself; (2) the provider using the technology; (3) the organizational setting; and (4) the patient population. In addition, the model outlines process predictors, including (1) usage of the technology, (2) organizational support for and customization of the technology, and (3) organizational policies and procedures about quality and safety. The Triangle Model specifies the variables to be measured, but is flexible enough to accommodate both qualitative and quantitative approaches to capturing them. The authors illustrate this model, which integrates perspectives from both health services research and biomedical informatics, with examples from evaluations of electronic prescribing, but it is also applicable to a variety of types of health IT systems. PMID:21857023

  13. An in vitro approach for comparative interspecies metabolism of agrochemicals.

    PubMed

    Whalley, Paul M; Bartels, Michael; Bentley, Karin S; Corvaro, Marco; Funk, Dorothee; Himmelstein, Matthew W; Neumann, Birgit; Strupp, Christian; Zhang, Fagen; Mehta, Jyotigna

    2017-08-01

    The metabolism and elimination of a xenobiotic has a direct bearing on its potential to cause toxicity in an organism. The confidence with which data from safety studies can be extrapolated to humans depends, among other factors, upon knowing whether humans are systemically exposed to the same chemical entities (i.e. a parent compound and its metabolites) as the laboratory animals used to study toxicity. Ideally, to understand a metabolite in terms of safety, both the chemical structure and the systemic exposure would need to be determined. However, as systemic exposure data (i.e. blood concentration/time data of test material or metabolites) in humans will not be available for agrochemicals, an in vitro approach must be taken. This paper outlines an in vitro experimental approach for evaluating interspecies metabolic comparisons between humans and animal species used in safety studies. The aim is to ensure, where possible, that all potential human metabolites are also present in the species used in the safety studies. If a metabolite is only observed in human in vitro samples and is not present in a metabolic pathway defined in the toxicological species already, the toxicological relevance of this metabolite must be evaluated. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. The Range Safety Debris Catalog Analysis in Preparation for the Pad Abort One Flight Test

    NASA Technical Reports Server (NTRS)

    Kutty, Prasad M.; Pratt, William D.

    2010-01-01

    The Pad Abort One flight test of the Orion Abort Flight Test Program is currently under development with the goal of demonstrating the capability of the Launch Abort System. In the event of a launch failure, this system will propel the Crew Exploration Vehicle to safety. An essential component of this flight test is range safety, which ensures the security of range assets and personnel. A debris catalog analysis was done as part of a range safety data package delivered to the White Sands Missile Range in New Mexico where the test will be conducted. The analysis discusses the consequences of an overpressurization of the Abort Motor. The resulting structural failure was assumed to create a debris field of vehicle fragments that could potentially pose a hazard to the range. A statistical model was used to assemble the debris catalog of potential propellant fragments. Then, a thermodynamic, energy balance model was applied to the system in order to determine the imparted velocity to these propellant fragments. This analysis was conducted at four points along the flight trajectory to better understand the failure consequences over the entire flight. The methods used to perform this analysis are outlined in detail and the corresponding results are presented and discussed.

  15. DOT-105/111/112/114 Tank Cars Shell Cracking and Structural Integrity Assessment: Task Force Report

    DOT National Transportation Integrated Search

    1986-02-01

    In August 1985, the FRA Associate Administrator for Safety asked the DOT Transportation Systems Center to make a preliminary technical assessment of the adequacy of the manufacturer's inspection and repair procedures. The Center formed a task force f...

  16. John M. Eisenberg Patient Safety Awards. System innovation: Concord Hospital.

    PubMed

    Uhlig, Paul N; Brown, Jeffrey; Nason, Anne K; Camelio, Addie; Kendall, Elise

    2002-12-01

    The Cardiac Surgery Program at Concord Hospital (Concord, NH) restructured clinical teamwork for improved safety and effectiveness on the basis of theory and practice from human factors science, aviation safety, and high-reliability organization theory. A team-based, collaborative rounds process--the Concord Collaborative Care Model--that involved use of a structured communications protocol was conducted daily at each patient's bedside. The entire care team agreed to meet at the same time each day (8:45 AM to 9:30 AM) to share information and develop a plan of care for each patient, with patient and family members as active participants. The cardiac surgery team developed a structured communications protocol adapted from human factors science. To provide a forum for discussion of team goals and progress and to address system-level concerns, a biweekly system rounds process was established. Following implementation of collaborative rounds, mortality of Concord Hospital's cardiac surgery patients declined significantly from expected rates. Satisfaction rates of open heart patients scores were consistently in the 97th-99th percentile nationally. A quality of work life survey indicated that in every category, providers expressed greater satisfaction with the collaborative care process than with the traditional rounds process. Practice patterns in the Cardiac Surgery Program at Concord Hospital have changed to a much more collaborative and participatory process, with improved outcomes, happier patients, and more satisfied practitioners. A culture of continuous program improvement has been implemented that continues to evolve and produce benefits.

  17. Protection of Workers and Third Parties during the Construction of Linear Structures

    NASA Astrophysics Data System (ADS)

    Vlčková, Jitka; Venkrbec, Václav; Henková, Svatava; Chromý, Adam

    2017-12-01

    The minimization of risk in the workplace through a focus on occupational health and safety (OHS) is one of the primary objectives for every construction project. The most serious accidents in the construction industry occur during work on earthworks and linear structures. The character of such structures places them among those posing the greatest threat to the public (referred to as “third parties”). They can be characterized as large structures whose construction may involve the building site extending in a narrow lane alongside previously constructed objects currently in use by the public. Linear structures are often directly connected to existing objects or buildings, making it impossible to guard the whole construction site. However, many OHS problems related to linear structures can be prevented during the design stage. The aim of this article is to introduce a new methodology which has been implemented into a computer program that deals with safety measures at construction sites where work is performed on linear structures. Based on existing experience with the design of such structures and their execution and supervision by safety coordinators, the basic types of linear structures, their location in the terrain, the conditions present during their execution and other marginal conditions and influences were modelled. Basic safety information has been assigned to this elementary information, which is strictly necessary for the construction process. The safety provisions can be grouped according to type, e.g. technical, organizational and other necessary documentation, or into sets of provisions concerning areas such as construction site safety, transport safety, earthworks safety, etc. The selection of the given provisions takes place using multiple criteria. The aim of creating this program is to provide a practical tool for designers, contractors and construction companies. The model can contribute to the sufficient awareness of these participants about technical and organizational provisions that can help them to meet workplace safety requirements. The software for the selection of safety provisions also contains module that can calculate necessary cost estimates using a calculation formula chosen by the user. All software data conform to European standards harmonized for the Czech Republic.

  18. [Safety in intensive care medicine. Can we learn from aviation?].

    PubMed

    Graf, J; Pump, S; Maas, W; Stüben, U

    2012-05-01

    Safety is of extraordinary value in commercial aviation. Therefore, sophisticated and complex systems have been developed to ensure safe operation. Within this system, the pilots are of specific concern: they form the human-machine interface and have a special responsibility in controlling and monitoring all aircraft systems. In order to prepare pilots for their challenging task, specific selection of suitable candidates is crucial. In addition, for every commercial pilot regulatory requirements demand a certain number of simulator training sessions and check flights to be completed at prespecified intervals. In contrast, career choice for intensive care medicine most likely depends on personal reasons rather than eligibility or aptitude. In intensive care medicine, auditing, licensing, or mandatory training are largely nonexistent. Although knowledge of risk management and safety culture in aviation can be transferred to the intensive care unit, the diversity of corporate culture and tradition of leadership and training will represent a barrier for the direct transfer of standards or procedures. To accomplish this challenging task, the analysis of appropriate fields of action with regard to structural requirements and the process of change are essential.

  19. Light weight, high-speed, and self-powered wireless fiber optic sensor (WiFOS) structural health monitor system for avionics and aerospace environments

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar A.; Kempen, Cornelia; Sun, Sunjian; Esterkin, Yan

    2014-09-01

    This paper describes recent progress towards the development of an innovative light weight, high-speed, and selfpowered wireless fiber optic sensor (WiFOS™) structural health monitor system suitable for the onboard and in-flight unattended detection, localization, and classification of load, fatigue, and structural damage in advanced composite materials commonly used in avionics and aerospace systems. The WiFOS™ system is based on ROI's advancements on monolithic photonic integrated circuit microchip technology, integrated with smart power management, on-board data processing, wireless data transmission optoelectronics, and self-power using energy harvesting tools such as solar, vibration, thermoelectric, and magneto-electric. The self-powered, wireless WiFOS™ system offers a versatile and powerful SHM tool to enhance the reliability and safety of avionics platforms, jet fighters, helicopters, commercial aircraft that use lightweight composite material structures, by providing comprehensive information about the structural integrity of the structure from a large number of locations. Immediate SHM applications are found in rotorcraft and aircraft, ships, submarines, and in next generation weapon systems, and in commercial oil and petrochemical, aerospace industries, civil structures, power utilities, portable medical devices, and biotechnology, homeland security and a wide spectrum of other applications.

  20. Titan 3E/Centaur D-1T Systems Summary

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A systems and operational summary of the Titan 3E/Centaur D-1T program is presented which describes vehicle assembly facilities, launch facilities, and management responsibilities, and also provides detailed information on the following separate systems: (1) mechanical systems, including structural components, insulation, propulsion units, reaction control, thrust vector control, hydraulic systems, and pneumatic equipment; (2) astrionics systems, such as instrumentation and telemetry, navigation and guidance, C-Band tracking system, and range safety command system; (3) digital computer unit software; (4) flight control systems; (5) electrical/electronic systems; and (6) ground support equipment, including checkout equipment.

  1. Pharmacovigilance systems in developing countries: an evaluative case study in Burkina Faso.

    PubMed

    Kabore, Lassane; Millet, Pascal; Fofana, Souleymane; Berdai, Driss; Adam, Caroline; Haramburu, Françoise

    2013-05-01

    Burkina Faso, like other Sub-Saharan African countries, has recently experienced a large-scale deployment of new medicines for the prevention and treatment of notable diseases of public health interest, including malaria, HIV/AIDS and meningitis. This new context rendered the implementation of pharmacovigilance necessary in order to monitor and establish the safety and effectiveness of these medicines. In 2008, the Ministry of Health of Burkina Faso, West Africa, launched a formal pharmacovigilance system to respond to this need. The aim of this study was to evaluate the early-stage pharmacovigilance system of Burkina Faso through a comprehensive and system-based approach with the prospect of identifying areas for improvements. We conducted a descriptive cross-sectional study in Burkina Faso. Sixteen key informants from the National Drug Authority (NDA), public health programmes (PHPs) and hospitals were interviewed. Study participants were selected based on a convenience sampling in the NDA, three teaching hospitals, two regional hospitals and six PHPs. Data were collected using the Indicator-based Pharmacovigilance Assessment Tool (IPAT), a metric instrument recently designed and validated by 'Management Sciences for Health', a US non-profit organization. The evaluation also involved the collection and review of relevant pharmacovigilance-related documentation in the institutions assessed. A scoring system was used for the quantification of assessment results. The NDA of Burkina Faso, the institution statutorily in charge of pharmacovigilance, achieved a performance score of 70 %. The basic structures for pharmacovigilance activities were in place; however, the lack of specific laws dedicated to pharmacovigilance, the lack of national guidelines and standard operating procedures on pharmacovigilance, and the insufficient coordination of pharmacovigilance stakeholders in the country were identified as the main weaknesses. Safety data collected thus far have not led to the identification of local drug-related risks; yet, relevant external safety alerts are monitored and acted upon. In 2010, 31 marketing authorizations were modified to include new safety information; seven others were suspended and the corresponding medicines were withdrawn from the national market. In PHPs, pharmacovigilance activities were not formalized, and in hospitals, pharmacovigilance structures were still under development. Relevant interventions aimed at strengthening the legal framework and structures for pharmacovigilance activities, and improving the coordination of stakeholders countrywide, should be undertaken as soon as possible. Such an investment is necessary before the national pharmacovigilance system is able to collect its own data, generate signals, evaluate and manage local medicine-related risks and then become a genuine tool for public health.

  2. Maturation of Structural Health Management Systems for Solid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Quing, Xinlin; Beard, Shawn; Zhang, Chang

    2011-01-01

    Concepts of an autonomous and automated space-compliant diagnostic system were developed for conditioned-based maintenance (CBM) of rocket motors for space exploration vehicles. The diagnostic system will provide real-time information on the integrity of critical structures on launch vehicles, improve their performance, and greatly increase crew safety while decreasing inspection costs. Using the SMART Layer technology as a basis, detailed procedures and calibration techniques for implementation of the diagnostic system were developed. The diagnostic system is a distributed system, which consists of a sensor network, local data loggers, and a host central processor. The system detects external impact to the structure. The major functions of the system include an estimate of impact location, estimate of impact force at impacted location, and estimate of the structure damage at impacted location. This system consists of a large-area sensor network, dedicated multiple local data loggers with signal processing and data analysis software to allow for real-time, in situ monitoring, and longterm tracking of structural integrity of solid rocket motors. Specifically, the system could provide easy installation of large sensor networks, onboard operation under harsh environments and loading, inspection of inaccessible areas without disassembly, detection of impact events and impact damage in real-time, and monitoring of a large area with local data processing to reduce wiring.

  3. Structured Analysis for the Logistic Support Analysis (LSA) Task and the Integrated Logistic Support (ILS) Element. Structured Analysis - ILS Assessment Element E11. Design Influence

    DTIC Science & Technology

    1989-01-01

    format size of this report, the full identifying entry may well be forcibly shortened, thereby introducing the possibility of misunderstanding. Therefore...OF MATERIEL" 3d . "AR 570-9, "MANPOWER AND EQUIPMENT CONTROL - HOST NATION SUPPORT" 2. AR 700-9, "POLICIES OF THE ARMY LOGISTIC SYSTEM" 3. AR 700-82...PERSONNEL 4. TRAINING 5. SYSTEM SAFETY 6. HEALTH HAZARDS. TEE ASSESSMENT Or MANPRINT INFLUENCE ON DESIGNS IS ADDRESSED IN SIX (6) SPECIFIC AREAS IN

  4. A macro-ergonomic work system analysis of the diagnostic testing process in an outpatient health care facility for process improvement and patient safety.

    PubMed

    Hallock, M L; Alper, S J; Karsh, B

    The diagnosis of illness is important for quality patient care and patient safety and is greatly aided by diagnostic testing. For diagnostic tests, such as pathology and radiology, to positively impact patient care, the tests must be processed and the physician and patient must be notified of the results in a timely fashion. There are many steps in the diagnostic testing process, from ordering to result dissemination, where the process can break down and therefore delay patient care and reduce patient safety. This study was carried out to examine the diagnostic testing process (i.e. from ordering to result notification) and used a macro-ergonomic work system analysis to uncover system design flaws that contributed to delayed physician and patient notification of results. The study was carried out in a large urban outpatient health-care facility made up of 30 outpatient clinics. Results indicated a number of variances that contributed to delays, the majority of which occurred across the boundaries of different systems and were related to poor or absent feedback structures. Recommendations for improvements are discussed.

  5. Thermal safety characterization on PETN, PBX-9407, LX-10-2, LX-17-1 and detonator in the LLNL's P-ODTX system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, P. C.; Strout, S.; Reynolds, J. G.

    Incidents caused by fire and other thermal events can heat energetic materials that may lead to thermal explosion and result in structural damage and casualty. Thus, it is important to understand the response of energetic materials to thermal insults. The One-Dimensional-Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory (LLNL) has been used for decades to characterize thermal safety of energetic materials. In this study, an integration of a pressure monitoring element has been added into the ODTX system (P-ODTX) to perform thermal explosion (cook-off) experiments (thermal runaway) on PETN powder, PBX-9407, LX-10-2, LX-17-1, and detonator samples (cupmore » tests). The P-ODTX testing generates useful data (thermal explosion temperature, thermal explosion time, and gas pressures) to assist with the thermal safety assessment of relevant energetic materials and components. This report summarizes the results of P-ODTX experiments that were performed from May 2015 to July 2017. Recent upgrades to the data acquisition system allows for rapid pressure monitoring in microsecond intervals during thermal explosion. These pressure data are also included in the report.« less

  6. A Mathematical Basis for the Safety Analysis of Conflict Prevention Algorithms

    NASA Technical Reports Server (NTRS)

    Maddalon, Jeffrey M.; Butler, Ricky W.; Munoz, Cesar A.; Dowek, Gilles

    2009-01-01

    In air traffic management systems, a conflict prevention system examines the traffic and provides ranges of guidance maneuvers that avoid conflicts. This guidance takes the form of ranges of track angles, vertical speeds, or ground speeds. These ranges may be assembled into prevention bands: maneuvers that should not be taken. Unlike conflict resolution systems, which presume that the aircraft already has a conflict, conflict prevention systems show conflicts for all maneuvers. Without conflict prevention information, a pilot might perform a maneuver that causes a near-term conflict. Because near-term conflicts can lead to safety concerns, strong verification of correct operation is required. This paper presents a mathematical framework to analyze the correctness of algorithms that produce conflict prevention information. This paper examines multiple mathematical approaches: iterative, vector algebraic, and trigonometric. The correctness theories are structured first to analyze conflict prevention information for all aircraft. Next, these theories are augmented to consider aircraft which will create a conflict within a given lookahead time. Certain key functions for a candidate algorithm, which satisfy this mathematical basis are presented; however, the proof that a full algorithm using these functions completely satisfies the definition of safety is not provided.

  7. Working together to ensure safety at hydro projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartel, J.W.

    Providing for public safety around a hydroelectric facility can be critically important to the welfare of a hydro-power producer. With this in mind, Wisconsin Electric Power Company and Wisconsin Public Service Corporation have worked together to develop consistent safety signage and several for their hydro projects. Although the two utilities sometimes compete for electric customers, they cooperate to ensure the safety to those customers. Both WE and WPS took steps in 1986 to make their operations safer through involvement in the Wisconsin/Michigan Hydro User Group. The organization has 25 members-primarily of electric utilities and paper companies-who operate hydro facilities inmore » the two states. The two areas that the HUG studied in public safety were signs and warning systems. HUG established a sign committee to study how to increase safety of people around hydro plants through signs, explained Ted Handrick, hydro plant superintendent at WPS. The committee's recommendations led to development of a statewide uniform sign system adopted by all HUG members. The committee used Wisconsin Department of Natural Resources' guidelines for warning signs and portages in developing the signage standards. HUG members are converting to these new sign standards as they replace old signs and/or install new signs. Notices describing the new signage system have been placed near each hydro plant, at boat landings, and in campgrounds. The signs are mounted well above ground level so they can be seen and easily read by recreationalists. Warning systems, in accordance with HUG warning standards, were installed at WE and WPS hydro facilities. These systems alert nearby recreational users of rapid increases in water flow when generating units are turned on or when spillway gates are opened. Soon after the authors installed equipment to remotely operate its hydro facilities, the utility experienced a dramatic increase increase in intrusion on dams and other structures at the projects.« less

  8. Statistical Methods for Turbine Blade Dynamics

    DTIC Science & Technology

    2008-09-30

    disks Journal of Sound and Vibration 317 , pp. 625-645. Calanni, G., Volovoi, V., Ruzzene, M, Vining, C., Cento, P., (2007). Application of Bayesian...are investigated for two vibration problems regarding a one-dimensional beam and a three-dimensional plate structure. It is to be noted that the...gaps," Reliability Engi- neering and System Safety, no. 85, pp. 249-266, 2004. [8] BENFIELD, W. A. andHRUDA, R. F., " Vibration analysis of structures

  9. Toward a Formal Evaluation of Refactorings

    NASA Technical Reports Server (NTRS)

    Paul, John; Kuzmina, Nadya; Gamboa, Ruben; Caldwell, James

    2008-01-01

    Refactoring is a software development strategy that characteristically alters the syntactic structure of a program without changing its external behavior [2]. In this talk we present a methodology for extracting formal models from programs in order to evaluate how incremental refactorings affect the verifiability of their structural specifications. We envision that this same technique may be applicable to other types of properties such as those that concern the design and maintenance of safety-critical systems.

  10. The impact of nursing leadership on patient safety in a developing country.

    PubMed

    Stewart, Lee; Usher, Kim

    2010-11-01

    This article is a report of a study to identify the ways nursing leaders and managers in a developing country have an impact on patient safety. The attempt to address the problem of patient safety in health care is a global issue. Literature addressing the significant impact that nursing leadership has on patient safety is extensive and focuses almost exclusively on the developed world. A critical ethnography was conducted with senior registered nursing leaders and managers throughout the Fiji Islands, specifically those in the Head Office of the Fiji Ministry of Health and the most senior nurse in a hospital or community health service. Semi-structured interviews were conducted with senior nursing leaders and managers in Fiji. Thematic analysis of the interviews was undertaken from a critical theory perspective, with reference to the macro socio-political system of the Fiji Ministry of Health. Four interrelated issues regarding the nursing leaders and managers' impact on patient safety emerged from the study. Empowerment of nursing leaders and managers, an increased focus on the patient, the necessity to explore conditions for front-line nurses and the direct relationship between improved nursing conditions and increased patient safety mirrored literature from developed countries. The findings have significant implications for developing countries and it is crucial that support for patient safety in developing countries become a focus for the international nursing community. Nursing leaders and managers' increased focus on their own place in the hierarchy of the health care system and on nursing conditions as these affect patient safety could decrease adverse patient outcomes. The findings could assist the global nursing community to better support developing countries in pursuing a patient safety agenda. © 2010 Blackwell Publishing Ltd.

  11. Overcoming the organization-practice barrier in sports injury prevention: A nonhierarchical organizational model.

    PubMed

    Dahlström, Ö; Jacobsson, J; Timpka, T

    2015-08-01

    The organization of sports at the national level has seldom been included in scientific discussions of sports injury prevention. The aim of this study was to develop a model for organization of sports that supports prevention of overuse injuries. The quality function deployment technique was applied in seminars over a two-season period to develop a national organizational structure for athletics in Sweden that facilitates prevention of overuse injuries. Three central features of the resulting model for organization of sports at the national level are (a) diminishment of the organizational hierarchy: participatory safety policy design is introduced through annual meetings where actors from different sectors of the sporting community discuss training, injury prevention, and sports safety policy; (b) introduction of a safety surveillance system: a ubiquitous system for routine collection of injury and illness data; and (c) an open forum for discussion of safety issues: maintenance of a safety forum for participants from different sectors of the sport. A nonhierarchical model for organization of sports at the national level - facilitated by modern information technology - adapted for the prevention of overuse injuries has been developed. Further research is warranted to evaluate the new organizational model in prospective effectiveness studies. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Sociotechnical Resilience: A Preliminary Concept.

    PubMed

    Amir, Sulfikar; Kant, Vivek

    2018-01-01

    This article presents the concept of sociotechnical resilience by employing an interdisciplinary perspective derived from the fields of science and technology studies, human factors, safety science, organizational studies, and systems engineering. Highlighting the hybrid nature of sociotechnical systems, we identify three main constituents that characterize sociotechnical resilience: informational relations, sociomaterial structures, and anticipatory practices. Further, we frame sociotechnical resilience as undergirded by the notion of transformability with an emphasis on intentional activities, focusing on the ability of sociotechnical systems to shift from one form to another in the aftermath of shock and disturbance. We propose that the triad of relations, structures, and practices are fundamental aspects required to comprehend the resilience of sociotechnical systems during times of crisis. © 2017 Society for Risk Analysis.

  13. Underground pipeline laying using the pipe-in-pipe system

    NASA Astrophysics Data System (ADS)

    Antropova, N.; Krets, V.; Pavlov, M.

    2016-09-01

    The problems of resource saving and environmental safety during the installation and operation of the underwater crossings are always relevant. The paper describes the existing methods of trenchless pipeline technology, the structure of multi-channel pipelines, the types of supporting and guiding systems. The rational design is suggested for the pipe-in-pipe system. The finite element model is presented for the most dangerous sections of the inner pipes, the optimum distance is detected between the roller supports.

  14. CDS Re Mix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    CDS (Change Detection Systems) is a mechanism for rapid visual analysis using complex image alignment algorithms. CDS is controlled with a simple interface that has been designed for use for anyone that can operate a digital camera. A challenge of complex industrial systems like nuclear power plants is to accurately identify changes in systems, structures and components that may critically impact the operation of the facility. CDS can provide a means of early intervention before the issues evolve into safety and production challenges.

  15. Advanced earthquake monitoring system for U.S. Department of Veterans Affairs medical buildings--instrumentation

    USGS Publications Warehouse

    Kalkan, Erol; Banga, Krishna; Ulusoy, Hasan S.; Fletcher, Jon Peter B.; Leith, William S.; Reza, Shahneam; Cheng, Timothy

    2012-01-01

    In collaboration with the U.S. Department of Veterans Affairs (VA), the National Strong Motion Project (NSMP; http://nsmp.wr.usgs.gov/) of the U.S. Geological Survey has been installing sophisticated seismic systems that will monitor the structural integrity of 28 VA hospital buildings located in seismically active regions of the conterminous United States, Alaska, and Puerto Rico during earthquake shaking. These advanced monitoring systems, which combine the use of sensitive accelerometers and real-time computer calculations, are designed to determine the structural health of each hospital building rapidly after an event, helping the VA to ensure the safety of patients and staff. This report presents the instrumentation component of this project by providing details of each hospital building, including a summary of its structural, geotechnical, and seismic hazard information, as well as instrumentation objectives and design. The structural-health monitoring component of the project, including data retrieval and processing, damage detection and localization, automated alerting system, and finally data dissemination, will be presented in a separate report.

  16. Implementing technology to improve medication safety in healthcare facilities: a literature review.

    PubMed

    Hidle, Unn

    Medication errors remain one of the most common causes of patient injuries in the United States, with detrimental outcomes including adverse reactions and even death. By developing a better understanding of why and how medication errors occur, preventative measures may be implemented including technological advances. In this literature review, potential methods of reducing medication errors were explored. Furthermore, technology tools available for medication orders and administration are described, including advantages and disadvantages of each system. It was found that technology can be an excellent aid in improving safety of medication administration. However, computer technology cannot replace human intellect and intuition. Nurses should be involved when implementing any new computerized system in order to obtain the most appropriate and user-friendly structure.

  17. Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-62) - Rocky Reach - Maple Valley

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Mark A.

    2002-04-16

    Vegetation Management along the Rocky Reach – Maple Valley No. 1 Transmission Line ROW from structure 98/2 to structure 110/1. The transmission line is a 500 kV line. BPA proposes to clear targeted vegetation along access roads and around tower structures that may impede the operation and maintenance of the subject transmission line. BPA plans to conduct vegetation management along existing access road and around structure landings for the purpose of maintaining access to structures site. All work will be in accordance with the National Electrical Safety Code and BPA standards.

  18. Patient Safety Leadership WalkRounds.

    PubMed

    Frankel, Allan; Graydon-Baker, Erin; Neppl, Camilla; Simmonds, Terri; Gustafson, Michael; Gandhi, Tejal K

    2003-01-01

    In the WalkRounds concept, a core group, which includes the senior executives and/or vice presidents, conducts weekly visits to different areas of the hospital. The group, joined by one or two nurses in the area and other available staff, asks specific questions about adverse events or near misses and about the factors or systems issues that led to these events. ANALYSIS OF EVENTS: Events in the Walkrounds are entered into a database and classified according to the contributing factors. The data are aggregated by contributing factors and priority scores to highlight the root issues. The priority scores are used to determine QI pilots and make best use of limited resources. Executives are surveyed quarterly about actions they have taken as a direct result of WalkRounds and are asked what they have learned from the rounds. As of September 2002, 47 Patient Safety Leadership WalkRounds visited a total of 48 different areas of the hospital, with 432 individual comments. The WalkRounds require not only knowledgeable and invested senior leadership but also a well-organized support structure. Quality and safety personnel are needed to collect data and maintain a database of confidential information, evaluate the data from a systems approach, and delineate systems-based actions to improve care delivery. Comments of frontline clinicians and executives suggested that WalkRounds helps educate leadership and frontline staff in patient safety concepts and will lead to cultural changes, as manifested in more open discussion of adverse events and an improved rate of safety-based changes.

  19. Measuring safety climate in elderly homes.

    PubMed

    Yeung, Koon-Chuen; Chan, Charles C

    2012-02-01

    Provision of a valid and reliable safety climate dimension brings enormous benefits to the elderly home sector. The aim of the present study was to make use of the safety climate instrument developed by OSHC to measure the safety perceptions of employees in elderly homes such that the factor structure of the safety climate dimensions of elderly homes could be explored. In 2010, surveys by mustering on site method were administered in 27 elderly homes that had participated in the "Hong Kong Safe and Healthy Residential Care Home Accreditation Scheme" organized by the Occupational Safety and Health Council. Six hundred and fifty-one surveys were returned with a response rate of 54.3%. To examine the factor structure of safety climate dimensions in our study, an exploratory factor analysis (EFA) using principal components analysis method was conducted to identify the underlying factors. The results of the modified seven-factor's safety climate structure extracted from 35 items better reflected the safety climate dimensions of elderly homes. The Cronbach alpha range for this study (0.655 to 0.851) indicated good internal consistency among the seven-factor structure. Responses from managerial level, supervisory and professional level, and front-line staff were analyzed to come up with the suggestion on effective ways of improving the safety culture of elderly homes. The overall results showed that managers generally gave positive responses in the factors evaluated, such as "management commitment and concern to safety," "perception of work risks and some contributory influences," "safety communication and awareness," and "safe working attitude and participation." Supervisors / professionals, and frontline level staff on the other hand, have less positive responses. The result of the lowest score in the factors - "perception of safety rules and procedures" underlined the importance of the relevance and practicability of safety rules and procedures. The modified OSHC safety climate tool provided better evidence of structural validity and reliability for use by elderly homes' decision makers as an indicator of employee perception of safety in their institution. The findings and suggestions in the study provide useful information for the management, supervisors/professionals and frontline level staff to cultivate the safety culture in the elderly home sector. Most important, elderly homes can use the modified safety climate scale to identify problem areas in their safety culture and safety management practices and then target these for intervention. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Software Safety Risk in Legacy Safety-Critical Computer Systems

    NASA Technical Reports Server (NTRS)

    Hill, Janice L.; Baggs, Rhoda

    2007-01-01

    Safety Standards contain technical and process-oriented safety requirements. Technical requirements are those such as "must work" and "must not work" functions in the system. Process-Oriented requirements are software engineering and safety management process requirements. Address the system perspective and some cover just software in the system > NASA-STD-8719.13B Software Safety Standard is the current standard of interest. NASA programs/projects will have their own set of safety requirements derived from the standard. Safety Cases: a) Documented demonstration that a system complies with the specified safety requirements. b) Evidence is gathered on the integrity of the system and put forward as an argued case. [Gardener (ed.)] c) Problems occur when trying to meet safety standards, and thus make retrospective safety cases, in legacy safety-critical computer systems.

  1. 75 FR 17590 - Federal Motor Vehicle Safety Standards; Roof Crush Resistance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-07

    ... FURTHER INFORMATION CONTACT: For non-legal issues, you may call Christopher J. Wiacek, NHTSA Office of Crashworthiness Standards, telephone 202-366-4801. For legal issues, you may call J. Edward Glancy, NHTSA Office... assemblage consisting, at a minimum, of chassis (including the frame) structure, power train, steering system...

  2. 33 CFR 183.562 - Metallic fuel lines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Metallic fuel lines. 183.562...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Manufacturer Requirements § 183.562 Metallic fuel lines. (a) Each metallic fuel line that is mounted to the boat structure must be connected to the...

  3. 10 CFR 72.122 - Overall requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... accidents. (2)(i) Structures, systems, and components important to safety must be designed to withstand the..., and (B) Appropriate combinations of the effects of normal and accident conditions and the effects of... ability to return to a safe condition in the event of an accident. (e) Proximity of sites. An ISFSI or MRS...

  4. 10 CFR 72.122 - Overall requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... accidents. (2)(i) Structures, systems, and components important to safety must be designed to withstand the..., and (B) Appropriate combinations of the effects of normal and accident conditions and the effects of... ability to return to a safe condition in the event of an accident. (e) Proximity of sites. An ISFSI or MRS...

  5. 10 CFR 72.122 - Overall requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... accidents. (2)(i) Structures, systems, and components important to safety must be designed to withstand the..., and (B) Appropriate combinations of the effects of normal and accident conditions and the effects of... ability to return to a safe condition in the event of an accident. (e) Proximity of sites. An ISFSI or MRS...

  6. Experimental Design for the Evaluation of Detection Techniques of Hidden Corrosion Beneath the Thermal Protective System of the Space Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Kammerer, Catherine C.; Jacoby, Joseph A.; Lomness, Janice K.; Hintze, Paul E.; Russell, Richard W.

    2007-01-01

    The United States Space Operational Space Shuttle Fleet Consists of three shuttles with an average age of 19.7 years. Shuttles are exposed to corrosive conditions while undergoing final closeout for missions at the launch pad and extreme conditions during ascent, orbit, and descent that may accelerate the corrosion process. Structural corrosion under TPS could progress undetected (without tile removal) and eventually result in reduction in structural capability sufficient to create negative margins of . safety and ultimate loss of local structural capability.

  7. Antitumorigenic targets of cannabinoids - current status and implications.

    PubMed

    Ramer, Robert; Hinz, Burkhard

    2016-10-01

    Molecular structures of the endocannabinoid system have gained interest as potential pharmacotherapeutical targets for systemic cancer treatment. The present review covers the contribution of the endocannabinoid system to cancer progression. Particular focus will be set on the accumulating preclinical data concerning antimetastatic, anti-invasive and anti-angiogenic mechanisms induced by cannabinoids. The main goal of targeting endocannabinoid structures for systemic anticancer treatment is the comparatively good safety profile of cannabinoid compounds. In addition, antitumorigenic mechanisms of cannabinoids are not restricted to a single molecular cascade but involve multiple effects on various levels of cancer progression such as angiogenesis and metastasis. Particularly the latter effect has gained interest for pharmacological interventions. Thus, drugs aiming at the endocannabinoid system may represent potential 'antimetastatics' for an upgrade of a future armamentarium against cancer diseases.

  8. 23 CFR 924.7 - Program structure.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 23 Highways 1 2012-04-01 2012-04-01 false Program structure. 924.7 Section 924.7 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HIGHWAY SAFETY HIGHWAY SAFETY IMPROVEMENT PROGRAM... implementation through highway safety improvement projects. The HSIP includes construction and operational...

  9. 23 CFR 924.7 - Program structure.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 23 Highways 1 2014-04-01 2014-04-01 false Program structure. 924.7 Section 924.7 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HIGHWAY SAFETY HIGHWAY SAFETY IMPROVEMENT PROGRAM... implementation through highway safety improvement projects. The HSIP includes construction and operational...

  10. Systemic safety project selection tool.

    DOT National Transportation Integrated Search

    2013-07-01

    "The Systemic Safety Project Selection Tool presents a process for incorporating systemic safety planning into traditional safety management processes. The Systemic Tool provides a step-by-step process for conducting systemic safety analysis; conside...

  11. Stretch-tuning optical fiber Bragg gratings using macro-fiber composite (MFC) piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Allison, Sidney G.; Shams, Qamar A.; Geddis, Demetris L.

    2005-11-01

    The demand for high safety and reliability standards for aerospace vehicles has resulted in time-consuming periodic on-ground inspections. These inspections usually call for the disassembling and reassembling of the vehicle, which can lead to damage or degradation of structures or auxiliary systems. In order to increase aerospace vehicle safety and reliability while reducing the cost of inspection, an on-board real-time structural health monitoring sensing system is required. There are a number of systems that can be used to monitor the structures of aerospace vehicles. Fiber optic sensors have been at the forefront of the health monitoring sensing system research. Most of the research has been focused on the development of Bragg grating-based fiber optic sensors. Along with the development of fiber Bragg grating sensors has been the development of a grating measurement technique based on the principle of optical frequency domain reflectometry (OFDR), which enables the interrogation of hundreds of low reflectivity Bragg gratings. One drawback of these measurement systems is the 1 - 3 Hz measurement speed, which is limited by commercially available tunable lasers. The development of high-speed fiber stretching mechanisms to provide high rate tunable Erbium-doped optical fiber lasers can alleviate this drawback. One successful approach used a thin-layer composite unimorph ferroelectric driver and sensor (THUNDER) piezoelectric actuator, and obtained 5.3-nm wavelength shift. To eliminate the mechanical complexity of the THUNDER actuator, the research reported herein uses the NASA Langley Research Center (LaRC) Macro-Fiber Composite (MFC) actuator to tune Bragg grating based optical fibers.

  12. Derivation of an occupational exposure limit (OEL) for methylene chloride based on acute CNS effects and relative potency analysis.

    PubMed

    Storm, J E; Rozman, K K

    1998-06-01

    The Occupational Safety and Health Administration (OSHA) methylene chloride Permissible Exposure Level (PEL) or 25 ppm is quantitatively derived from mouse tumor results observed in a high-exposure National Toxicology Program bioassay. Because this approach depends on controversial interspecies and low-dose extrapolations, the PEL itself has stimulated heated debate. Here, an alternative safety assessment for methylene chloride is presented. It is based on an acute human lowest-observed-adverse-effect level (LOAEL) of 200 ppm for subtle central nervous system (CNS) depression. Steep, parallel exposure-response curves for anesthetic and subanesthetic CNS effects associated with compounds mechanistically and structurally related to methylene chloride are shown to support a safety factor of two to account for inter-individual variability in response. LOAEL/no-observed-adverse-effect ratios for subtle CNS effects associated with structurally related solvents are shown to support a safety factor range of two to four to account for uncertainty in identifying a subthreshold exposure level. Anesthetic relative potencies and anesthetic/subanesthetic effect level ratios are shown to be constant for the compounds evaluated, demonstrating that subanesthetic relative potencies are also constant. Relative potencies among similarly derived occupational exposure limits (OELs) for solvents structurally related to methylene chloride are therefore used to validate the derived methylene chloride OEL range of 25-50 ppm. Because this safety assessment is based on human (rather than rodent) data and empirical (rather than theoretical) exposure-response relationships and is supported by relative potency analysis, it is a defensible alternative to to the OSHA risk assessment and should positively contribute to the debate regarding the appropriate basis and value for a methylene chloride PEL.

  13. National Environmental Policy Act Hazards Assessment for the TREAT Alternative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd D. Christensen; Annette L. Schafer

    2013-11-01

    This document provides an assessment of hazards as required by the National Environmental Policy Act for the alternative of restarting the reactor at the Transient Reactor Test (TREAT) facility by the Resumption of Transient Testing Program. Potential hazards have been identified and screening level calculations have been conducted to provide estimates of unmitigated dose consequences that could be incurred through this alternative. Consequences considered include those related to use of the TREAT Reactor, experiment assembly handling, and combined events involving both the reactor and experiments. In addition, potential safety structures, systems, and components for processes associated with operating TREAT andmore » onsite handling of nuclear fuels and experiments are listed. If this alternative is selected, a safety basis will be prepared in accordance with 10 CFR 830, “Nuclear Safety Management,” Subpart B, “Safety Basis Requirements.”« less

  14. National Environmental Policy Act Hazards Assessment for the TREAT Alternative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christensen, Boyd D.; Schafer, Annette L.

    2014-02-01

    This document provides an assessment of hazards as required by the National Environmental Policy Act for the alternative of restarting the reactor at the Transient Reactor Test (TREAT) facility by the Resumption of Transient Testing Program. Potential hazards have been identified and screening level calculations have been conducted to provide estimates of unmitigated dose consequences that could be incurred through this alternative. Consequences considered include those related to use of the TREAT Reactor, experiment assembly handling, and combined events involving both the reactor and experiments. In addition, potential safety structures, systems, and components for processes associated with operating TREAT andmore » onsite handling of nuclear fuels and experiments are listed. If this alternative is selected, a safety basis will be prepared in accordance with 10 CFR 830, “Nuclear Safety Management,” Subpart B, “Safety Basis Requirements.”« less

  15. A structural equation modelling approach examining the pathways between safety climate, behaviour performance and workplace slipping

    PubMed Central

    Swedler, David I; Verma, Santosh K; Huang, Yueng-Hsiang; Lombardi, David A; Chang, Wen-Ruey; Brennan, Melayne; Courtney, Theodore K

    2015-01-01

    Objective Safety climate has previously been associated with increasing safe workplace behaviours and decreasing occupational injuries. This study seeks to understand the structural relationship between employees’ perceptions of safety climate, performing a safety behaviour (ie, wearing slip-resistant shoes) and risk of slipping in the setting of limited-service restaurants. Methods At baseline, we surveyed 349 employees at 30 restaurants for their perceptions of their safety training and management commitment to safety as well as demographic data. Safety performance was identified as wearing slip-resistant shoes, as measured by direct observation by the study team. We then prospectively collected participants’ hours worked and number of slips weekly for the next 12 weeks. Using a confirmatory factor analysis, we modelled safety climate as a higher order factor composed of previously identified training and management commitment factors. Results The 349 study participants experienced 1075 slips during the 12-week follow-up. Confirmatory factor analysis supported modelling safety climate as a higher order factor composed of safety training and management commitment. In a structural equation model, safety climate indirectly affected prospective risk of slipping through safety performance, but no direct relationship between safety climate and slips was evident. Conclusions Results suggest that safety climate can reduce workplace slips through performance of a safety behaviour as well as suggesting a potential causal mechanism through which safety climate can reduce workplace injuries. Safety climate can be modelled as a higher order factor composed of safety training and management commitment. PMID:25710968

  16. Causal Factors and Adverse Events of Aviation Accidents and Incidents Related to Integrated Vehicle Health Management

    NASA Technical Reports Server (NTRS)

    Reveley, Mary S.; Briggs, Jeffrey L.; Evans, Joni K.; Jones, Sharon M.; Kurtoglu, Tolga; Leone, Karen M.; Sandifer, Carl E.

    2011-01-01

    Causal factors in aviation accidents and incidents related to system/component failure/malfunction (SCFM) were examined for Federal Aviation Regulation Parts 121 and 135 operations to establish future requirements for the NASA Aviation Safety Program s Integrated Vehicle Health Management (IVHM) Project. Data analyzed includes National Transportation Safety Board (NSTB) accident data (1988 to 2003), Federal Aviation Administration (FAA) incident data (1988 to 2003), and Aviation Safety Reporting System (ASRS) incident data (1993 to 2008). Failure modes and effects analyses were examined to identify possible modes of SCFM. A table of potential adverse conditions was developed to help evaluate IVHM research technologies. Tables present details of specific SCFM for the incidents and accidents. Of the 370 NTSB accidents affected by SCFM, 48 percent involved the engine or fuel system, and 31 percent involved landing gear or hydraulic failure and malfunctions. A total of 35 percent of all SCFM accidents were caused by improper maintenance. Of the 7732 FAA database incidents affected by SCFM, 33 percent involved landing gear or hydraulics, and 33 percent involved the engine and fuel system. The most frequent SCFM found in ASRS were turbine engine, pressurization system, hydraulic main system, flight management system/flight management computer, and engine. Because the IVHM Project does not address maintenance issues, and landing gear and hydraulic systems accidents are usually not fatal, the focus of research should be those SCFMs that occur in the engine/fuel and flight control/structures systems as well as power systems.

  17. Robotic Waterblasting

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Waterblast Research Cell supports development of automated systems that remove thermal protection materials and coatings from space flight hardware. These systems remove expended coatings without harsh chemicals or damaging underlying material. Potential applications of this technology include the removal of coatings from industrial machinery, aircraft, and other large structures. Use of the robot improves worker safety by reducing the exposure of persornel to high-pressure water. This technology is a proactive alternative to hazardous chemical strippers.

  18. Multilevel model of safety climate for furniture industries.

    PubMed

    Rodrigues, Matilde A; Arezes, Pedro M; Leão, Celina P

    2015-01-01

    Furniture companies can analyze their safety status using quantitative measures. However, the data needed are not always available and the number of accidents is under-reported. Safety climate scales may be an alternative. However, there are no validated Portuguese scales that account for the specific attributes of the furniture sector. The current study aims to develop and validate an instrument that uses a multilevel structure to measure the safety climate of the Portuguese furniture industry. The Safety Climate in Wood Industries (SCWI) model was developed and applied to the safety climate analysis using three different scales: organizational, group and individual. A multilevel exploratory factor analysis was performed to analyze the factorial structure. The studied companies' safety conditions were also analyzed. Different factorial structures were found between and within levels. In general, the results show the presence of a group-level safety climate. The scores of safety climates are directly and positively related to companies' safety conditions; the organizational scale is the one that best reflects the actual safety conditions. The SCWI instrument allows for the identification of different safety climates in groups that comprise the same furniture company and it seems to reflect those groups' safety conditions. The study also demonstrates the need for a multilevel analysis of the studied instrument.

  19. Wireless Laser Range Finder System for Vertical Displacement Monitoring of Mega-Trusses during Construction

    PubMed Central

    Park, Hyo Seon; Son, Sewook; Choi, Se Woon; Kim, Yousok

    2013-01-01

    As buildings become increasingly complex, construction monitoring using various sensors is urgently needed for both more systematic and accurate safety management and high-quality productivity in construction. In this study, a monitoring system that is composed of a laser displacement sensor (LDS) and a wireless sensor node was proposed and applied to an irregular building under construction. The subject building consists of large cross-sectional members, such as mega-columns, mega-trusses, and edge truss, which secured the large spaces. The mega-trusses and edge truss that support this large space are of the cantilever type. The vertical displacement occurring at the free end of these members was directly measured using an LDS. To validate the accuracy and reliability of the deflection data measured from the LDS, a total station was also employed as a sensor for comparison with the LDS. In addition, the numerical simulation result was compared with the deflection obtained from the LDS and total station. Based on these investigations, the proposed wireless displacement monitoring system was able to improve the construction quality by monitoring the real-time behavior of the structure, and the applicability of the proposed system to buildings under construction for the evaluation of structural safety was confirmed. PMID:23648650

  20. 33 CFR 96.220 - What makes up a safety management system?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SECURITY VESSEL OPERATING REGULATIONS RULES FOR THE SAFE OPERATION OF VESSELS AND SAFETY MANAGEMENT SYSTEMS Company and Vessel Safety Management Systems § 96.220 What makes up a safety management system? (a) The safety management system must document the responsible person's— (1) Safety and pollution prevention...

  1. Quality and safety in medical care: what does the future hold?

    PubMed

    Liang, Bryan A; Mackey, Tim

    2011-11-01

    The rapid changes in health care policy, embracing quality and safety mandates, have culminated in programs and initiatives under the Patient Protection and Affordable Care Act. To review the context of, and anticipated quality and patient safety mandates for, delivery systems, incentives under health care reform, and models for future accountability for outcomes of care. Assessment of the provisions of Patient Protection and Affordable Care Act, other reform efforts, and reform initiatives focusing on future quality and safety provisions for health care providers. Health care reform and other efforts focus on consumerism in the context of price. Quality and safety efforts will be structured using financial incentives, best-practices research, and new delivery models that focus on reaching benchmarks while reducing costs. In addition, patient experience will be a key component of reimbursement, and a move toward "retail" approaches directed at the individual patient may supplant traditional "wholesale" efforts at attracting employers. Quality and safety have always been of prime importance in medicine. However, in the future, under health care reform and associated initiatives, a shift in the paradigm of medicine will integrate quality and safety measurement with financial incentives and a new emphasis on consumerism.

  2. Software Safety Risk in Legacy Safety-Critical Computer Systems

    NASA Technical Reports Server (NTRS)

    Hill, Janice; Baggs, Rhoda

    2007-01-01

    Safety-critical computer systems must be engineered to meet system and software safety requirements. For legacy safety-critical computer systems, software safety requirements may not have been formally specified during development. When process-oriented software safety requirements are levied on a legacy system after the fact, where software development artifacts don't exist or are incomplete, the question becomes 'how can this be done?' The risks associated with only meeting certain software safety requirements in a legacy safety-critical computer system must be addressed should such systems be selected as candidates for reuse. This paper proposes a method for ascertaining formally, a software safety risk assessment, that provides measurements for software safety for legacy systems which may or may not have a suite of software engineering documentation that is now normally required. It relies upon the NASA Software Safety Standard, risk assessment methods based upon the Taxonomy-Based Questionnaire, and the application of reverse engineering CASE tools to produce original design documents for legacy systems.

  3. A recursive Bayesian approach for fatigue damage prognosis: An experimental validation at the reliability component level

    NASA Astrophysics Data System (ADS)

    Gobbato, Maurizio; Kosmatka, John B.; Conte, Joel P.

    2014-04-01

    Fatigue-induced damage is one of the most uncertain and highly unpredictable failure mechanisms for a large variety of mechanical and structural systems subjected to cyclic and random loads during their service life. A health monitoring system capable of (i) monitoring the critical components of these systems through non-destructive evaluation (NDE) techniques, (ii) assessing their structural integrity, (iii) recursively predicting their remaining fatigue life (RFL), and (iv) providing a cost-efficient reliability-based inspection and maintenance plan (RBIM) is therefore ultimately needed. In contribution to these objectives, the first part of the paper provides an overview and extension of a comprehensive reliability-based fatigue damage prognosis methodology — previously developed by the authors — for recursively predicting and updating the RFL of critical structural components and/or sub-components in aerospace structures. In the second part of the paper, a set of experimental fatigue test data, available in the literature, is used to provide a numerical verification and an experimental validation of the proposed framework at the reliability component level (i.e., single damage mechanism evolving at a single damage location). The results obtained from this study demonstrate (i) the importance and the benefits of a nearly continuous NDE monitoring system, (ii) the efficiency of the recursive Bayesian updating scheme, and (iii) the robustness of the proposed framework in recursively updating and improving the RFL estimations. This study also demonstrates that the proposed methodology can lead to either an extent of the RFL (with a consequent economical gain without compromising the minimum safety requirements) or an increase of safety by detecting a premature fault and therefore avoiding a very costly catastrophic failure.

  4. Cyclic structural analyses of anisotropic turbine blades for reusable space propulsion systems. [ssme fuel turbopump

    NASA Technical Reports Server (NTRS)

    Manderscheid, J. M.; Kaufman, A.

    1985-01-01

    Turbine blades for reusable space propulsion systems are subject to severe thermomechanical loading cycles that result in large inelastic strains and very short lives. These components require the use of anisotropic high-temperature alloys to meet the safety and durability requirements of such systems. To assess the effects on blade life of material anisotropy, cyclic structural analyses are being performed for the first stage high-pressure fuel turbopump blade of the space shuttle main engine. The blade alloy is directionally solidified MAR-M 246 alloy. The analyses are based on a typical test stand engine cycle. Stress-strain histories at the airfoil critical location are computed using the MARC nonlinear finite-element computer code. The MARC solutions are compared to cyclic response predictions from a simplified structural analysis procedure developed at the NASA Lewis Research Center.

  5. [Design, implementation and evaluation of a management model of patient safety in hospitals in Catalonia, Spain].

    PubMed

    Saura, Rosa Maria; Moreno, Pilar; Vallejo, Paula; Oliva, Glòria; Alava, Fernando; Esquerra, Miquel; Davins, Josep; Vallès, Roser; Bañeres, Joaquim

    2014-07-01

    Since its inception in 2006, the Alliance for Patient Safety in Catalonia has played a major role in promoting and shaping a series of projects related to the strategy of the Ministry of Health, Social Services and Equality, for improving patient safety. One such project was the creation of functional units or committees of safety in hospitals in order to facilitate the management of patient safety. The strategy has been implemented in hospitals in Catalonia which were selected based on criteria of representativeness. The intervention was based on two lines of action, one to develop the model framework and the other for its development. Firstly the strategy for safety management based on EFQM (European Foundation for Quality Management) was defined with the development of standards, targets and indicators to implement security while the second part involved the introduction of tools, methodologies and knowledge to the management support of patient safety and risk prevention. The project was developed in four hospital areas considered higher risk, each assuming six goals for safety management. Some of these targets such as the security control panel or system of adverse event reporting were shared. 23 hospitals joined the project in Catalonia. Despite the different situations in each centre, high compliance was achieved in the development of the objectives. In each of the participating areas the security control panel was developed. Stable structures for safety management were established or strengthened. Training in patient safety played and important role, 1415 professionals participated. Through these kind of projects not only have been introduced programs of proven effectiveness in reducing risks, but they also provide to the facilities a work system that allows autonomy in diagnosis and analysis of the different risk situations or centre specific safety issues. Copyright © 2014. Published by Elsevier Espana.

  6. [Associations of occupational safety atmosphere and behaviors with unintentional injuries].

    PubMed

    Xiao, Ya-ni; Huang, Zhi-xiong; Huang, Shao-bin; Cao, Xiao-ou; Chen, Xia-ming; Liu, Xu-hua; Chen, Wei-qing

    2012-07-01

    To evaluate the associations of perception of safety atmosphere at workplace, occupational safety attitude and behaviors with occupational unintentional injury among manufacturing workers. A cross-sectional study was performed and a self-administered questionnaire was used to inquire socio-demographic characteristics, perceived safety atmosphere, occupational safety attitudes, occupational safety behaviors and occupational unintentional injuries among 10585 manufacturing workers selected from 46 enterprises in Guangdong. Structural equation modeling was applied to assess the relationship of the perception of safety atmosphere at workplace, occupational safety attitude, and occupational safety behaviors with occupational unintentional injury. Among 24 pathways supposed in structural equation model, 20 pathways (except for the attitude toward occupational safety, the attitude toward managers' support, the work posture and individual protection) were significantly related to the occupational unintentional injuries. The further analysis indicated that the perceived safety atmosphere might impact the occupational unintentional injuries by the attitude toward occupational safety and occupational safety behaviors. Workers' perception of safety atmosphere indirectly influenced on occupational unintentional injuries through occupational safety attitudes and occupational safety behaviors.

  7. Clinical Relation Extraction Toward Drug Safety Surveillance Using Electronic Health Record Narratives: Classical Learning Versus Deep Learning.

    PubMed

    Munkhdalai, Tsendsuren; Liu, Feifan; Yu, Hong

    2018-04-25

    Medication and adverse drug event (ADE) information extracted from electronic health record (EHR) notes can be a rich resource for drug safety surveillance. Existing observational studies have mainly relied on structured EHR data to obtain ADE information; however, ADEs are often buried in the EHR narratives and not recorded in structured data. To unlock ADE-related information from EHR narratives, there is a need to extract relevant entities and identify relations among them. In this study, we focus on relation identification. This study aimed to evaluate natural language processing and machine learning approaches using the expert-annotated medical entities and relations in the context of drug safety surveillance, and investigate how different learning approaches perform under different configurations. We have manually annotated 791 EHR notes with 9 named entities (eg, medication, indication, severity, and ADEs) and 7 different types of relations (eg, medication-dosage, medication-ADE, and severity-ADE). Then, we explored 3 supervised machine learning systems for relation identification: (1) a support vector machines (SVM) system, (2) an end-to-end deep neural network system, and (3) a supervised descriptive rule induction baseline system. For the neural network system, we exploited the state-of-the-art recurrent neural network (RNN) and attention models. We report the performance by macro-averaged precision, recall, and F1-score across the relation types. Our results show that the SVM model achieved the best average F1-score of 89.1% on test data, outperforming the long short-term memory (LSTM) model with attention (F1-score of 65.72%) as well as the rule induction baseline system (F1-score of 7.47%) by a large margin. The bidirectional LSTM model with attention achieved the best performance among different RNN models. With the inclusion of additional features in the LSTM model, its performance can be boosted to an average F1-score of 77.35%. It shows that classical learning models (SVM) remains advantageous over deep learning models (RNN variants) for clinical relation identification, especially for long-distance intersentential relations. However, RNNs demonstrate a great potential of significant improvement if more training data become available. Our work is an important step toward mining EHRs to improve the efficacy of drug safety surveillance. Most importantly, the annotated data used in this study will be made publicly available, which will further promote drug safety research in the community. ©Tsendsuren Munkhdalai, Feifan Liu, Hong Yu. Originally published in JMIR Public Health and Surveillance (http://publichealth.jmir.org), 25.04.2018.

  8. Clinical Relation Extraction Toward Drug Safety Surveillance Using Electronic Health Record Narratives: Classical Learning Versus Deep Learning

    PubMed Central

    Munkhdalai, Tsendsuren; Liu, Feifan

    2018-01-01

    Background Medication and adverse drug event (ADE) information extracted from electronic health record (EHR) notes can be a rich resource for drug safety surveillance. Existing observational studies have mainly relied on structured EHR data to obtain ADE information; however, ADEs are often buried in the EHR narratives and not recorded in structured data. Objective To unlock ADE-related information from EHR narratives, there is a need to extract relevant entities and identify relations among them. In this study, we focus on relation identification. This study aimed to evaluate natural language processing and machine learning approaches using the expert-annotated medical entities and relations in the context of drug safety surveillance, and investigate how different learning approaches perform under different configurations. Methods We have manually annotated 791 EHR notes with 9 named entities (eg, medication, indication, severity, and ADEs) and 7 different types of relations (eg, medication-dosage, medication-ADE, and severity-ADE). Then, we explored 3 supervised machine learning systems for relation identification: (1) a support vector machines (SVM) system, (2) an end-to-end deep neural network system, and (3) a supervised descriptive rule induction baseline system. For the neural network system, we exploited the state-of-the-art recurrent neural network (RNN) and attention models. We report the performance by macro-averaged precision, recall, and F1-score across the relation types. Results Our results show that the SVM model achieved the best average F1-score of 89.1% on test data, outperforming the long short-term memory (LSTM) model with attention (F1-score of 65.72%) as well as the rule induction baseline system (F1-score of 7.47%) by a large margin. The bidirectional LSTM model with attention achieved the best performance among different RNN models. With the inclusion of additional features in the LSTM model, its performance can be boosted to an average F1-score of 77.35%. Conclusions It shows that classical learning models (SVM) remains advantageous over deep learning models (RNN variants) for clinical relation identification, especially for long-distance intersentential relations. However, RNNs demonstrate a great potential of significant improvement if more training data become available. Our work is an important step toward mining EHRs to improve the efficacy of drug safety surveillance. Most importantly, the annotated data used in this study will be made publicly available, which will further promote drug safety research in the community. PMID:29695376

  9. Safer Systems: A NextGen Aviation Safety Strategic Goal

    NASA Technical Reports Server (NTRS)

    Darr, Stephen T.; Ricks, Wendell R.; Lemos, Katherine A.

    2008-01-01

    The Joint Planning and Development Office (JPDO), is charged by Congress with developing the concepts and plans for the Next Generation Air Transportation System (NextGen). The National Aviation Safety Strategic Plan (NASSP), developed by the Safety Working Group of the JPDO, focuses on establishing the goals, objectives, and strategies needed to realize the safety objectives of the NextGen Integrated Plan. The three goal areas of the NASSP are Safer Practices, Safer Systems, and Safer Worldwide. Safer Practices emphasizes an integrated, systematic approach to safety risk management through implementation of formalized Safety Management Systems (SMS) that incorporate safety data analysis processes, and the enhancement of methods for ensuring safety is an inherent characteristic of NextGen. Safer Systems emphasizes implementation of safety-enhancing technologies, which will improve safety for human-centered interfaces and enhance the safety of airborne and ground-based systems. Safer Worldwide encourages coordinating the adoption of the safer practices and safer systems technologies, policies and procedures worldwide, such that the maximum level of safety is achieved across air transportation system boundaries. This paper introduces the NASSP and its development, and focuses on the Safer Systems elements of the NASSP, which incorporates three objectives for NextGen systems: 1) provide risk reducing system interfaces, 2) provide safety enhancements for airborne systems, and 3) provide safety enhancements for ground-based systems. The goal of this paper is to expose avionics and air traffic management system developers to NASSP objectives and Safer Systems strategies.

  10. New sensors and techniques for the structural health monitoring of propulsion systems.

    PubMed

    Woike, Mark; Abdul-Aziz, Ali; Oza, Nikunj; Matthews, Bryan

    2013-01-01

    The ability to monitor the structural health of the rotating components, especially in the hot sections of turbine engines, is of major interest to aero community in improving engine safety and reliability. The use of instrumentation for these applications remains very challenging. It requires sensors and techniques that are highly accurate, are able to operate in a high temperature environment, and can detect minute changes and hidden flaws before catastrophic events occur. The National Aeronautics and Space Administration (NASA), through the Aviation Safety Program (AVSP), has taken a lead role in the development of new sensor technologies and techniques for the in situ structural health monitoring of gas turbine engines. This paper presents a summary of key results and findings obtained from three different structural health monitoring approaches that have been investigated. This includes evaluating the performance of a novel microwave blade tip clearance sensor; a vibration based crack detection technique using an externally mounted capacitive blade tip clearance sensor; and lastly the results of using data driven anomaly detection algorithms for detecting cracks in a rotating disk.

  11. New Sensors and Techniques for the Structural Health Monitoring of Propulsion Systems

    PubMed Central

    2013-01-01

    The ability to monitor the structural health of the rotating components, especially in the hot sections of turbine engines, is of major interest to aero community in improving engine safety and reliability. The use of instrumentation for these applications remains very challenging. It requires sensors and techniques that are highly accurate, are able to operate in a high temperature environment, and can detect minute changes and hidden flaws before catastrophic events occur. The National Aeronautics and Space Administration (NASA), through the Aviation Safety Program (AVSP), has taken a lead role in the development of new sensor technologies and techniques for the in situ structural health monitoring of gas turbine engines. This paper presents a summary of key results and findings obtained from three different structural health monitoring approaches that have been investigated. This includes evaluating the performance of a novel microwave blade tip clearance sensor; a vibration based crack detection technique using an externally mounted capacitive blade tip clearance sensor; and lastly the results of using data driven anomaly detection algorithms for detecting cracks in a rotating disk. PMID:23935425

  12. Modelling of energy consumption at construction of high-rise buildings

    NASA Astrophysics Data System (ADS)

    Korol, Elena; Korol, Oleg

    2018-03-01

    High-rise building structures in the course of its erection suppose primary use of methods provided for erection, concrete and external finishing works. Erection works do not differ significantly from usual ones: traditional equipment, accessories and techniques are used which are based on erection of structures in project position using a crane. Structures to be assembled in building frame include steel columns and beams, wall panels, form elements of columns, walls and floor structures. We can note heightened attention to operational control for quality of erection, but it is attributable to all works in the course of high-rise construction. During high-rise erection by means of cast in-situ reinforced concrete all formworks to be used do not have any special differences except systems specially designed for high-rise erection using sliding formwork or vertical traveling forms. In these systems special attention is paid to safety of elevated works. Working methods of placement and curing of concrete and structures as a whole remain traditional - the requirements for controlling such operations become toughened. The most evident differences in high-rise erection with regard to equipment, machinery and accessories used are in means provided for load transportation and safety of works at heights. Particularity of internal finishing works which are also obligatory during construction of skyscrapers allows not considering them in as technological differences from usual construction as far as the «height» of its execution is limited by height of particular floor and determined by price and building class.

  13. Structural Design of Glass and Ceramic Components for Space System Safety

    NASA Technical Reports Server (NTRS)

    Bernstein, Karen S.

    2007-01-01

    Manned space flight programs will always have windows as part of the structural shell of the crew compartment. Astronauts and cosmonauts need to and enjoy looking out of the spacecraft windows at Earth, at approaching vehicles, at scientific objectives and at the stars. With few exceptions spacecraft windows have been made of glass, and the lessons learned over forty years of manned space flight have resulted in a well-defined approach for using this brittle, unforgiving material in NASA's vehicles, in windows and other structural applications. This chapter will outline the best practices that have developed at NASA for designing, verifying and accepting glass (and ceramic) windows and other components for safe and reliable use in any space system.

  14. Nonlinear Ultrasonic Diagnosis and Prognosis of ASR Damage in Dry Cask Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, Jianmin; Bazant, Zdenek; Jacobs, Laurence

    Alkali-silica reaction (ASR) is a deleterious chemical process that may occur in cement-based materials such as mortars and concretes, where the hydroxyl ions in the highly alkaline pore solution attack the siloxane groups in the siliceous minerals in the aggregates. The reaction produces a cross-linked alkali-silica gel. The ASR gel swells in the presence of water. Expansion of the gel results in cracking when the swelling-induced stress exceeds the fracture toughness of the concrete. As the ASR continues, cracks may grow and eventually coalesce, which results in reduced service life and a decrease safety of concrete structures. Since concrete ismore » widely used as a critical structural component in dry cask storage of used nuclear fuels, ASR damage poses a significant threat to the sustainability of long term dry cask storage systems. Therefore, techniques for effectively detecting, managing and mitigating ASR damage are needed. Currently, there are no nondestructive methods to accurately detect ASR damage in existing concrete structures. The only current way of accurately assessing ASR damage is to drill a core from an existing structure, and conduct microscopy on this drilled cylindrical core. Clearly, such a practice is not applicable to dry cask storage systems. To meet these needs, this research is aimed at developing (1) a suite of nonlinear ultrasonic quantitative nondestructive evaluation (QNDE) techniques to characterize ASR damage, and (2) a physics-based model for ASR damage evolution using the QNDE data. Outcomes of this research will provide a nondestructive diagnostic tool to evaluate the extent of the ASR damage, and a prognostic tool to estimate the future reliability and safety of the concrete structures in dry cask storage systems« less

  15. Structural Deterministic Safety Factors Selection Criteria and Verification

    NASA Technical Reports Server (NTRS)

    Verderaime, V.

    1992-01-01

    Though current deterministic safety factors are arbitrarily and unaccountably specified, its ratio is rooted in resistive and applied stress probability distributions. This study approached the deterministic method from a probabilistic concept leading to a more systematic and coherent philosophy and criterion for designing more uniform and reliable high-performance structures. The deterministic method was noted to consist of three safety factors: a standard deviation multiplier of the applied stress distribution; a K-factor for the A- or B-basis material ultimate stress; and the conventional safety factor to ensure that the applied stress does not operate in the inelastic zone of metallic materials. The conventional safety factor is specifically defined as the ratio of ultimate-to-yield stresses. A deterministic safety index of the combined safety factors was derived from which the corresponding reliability proved the deterministic method is not reliability sensitive. The bases for selecting safety factors are presented and verification requirements are discussed. The suggested deterministic approach is applicable to all NASA, DOD, and commercial high-performance structures under static stresses.

  16. Rapid prototyping of flexible intrafascicular electrode arrays by picosecond laser structuring

    NASA Astrophysics Data System (ADS)

    Mueller, Matthias; de la Oliva, Natalia; del Valle, Jaume; Delgado-Martínez, Ignacio; Navarro, Xavier; Stieglitz, Thomas

    2017-12-01

    Objective. Interfacing the peripheral nervous system can be performed with a large variety of electrode arrays. However, stimulating and recording a nerve while having a reasonable amount of channels limits the number of available systems. Translational research towards human clinical trial requires device safety and biocompatibility but would benefit from design flexibility in the development process to individualize probes. Approach. We selected established medical grade implant materials like precious metals and Parylene C to develop a rapid prototyping process for novel intrafascicular electrode arrays using a picosecond laser structuring. A design for a rodent animal model was developed in conjunction with an intrafascicular implantation strategy. Electrode characterization and optimization was performed first in saline solution in vitro before performance and biocompatibility were validated in sciatic nerves of rats in chronic implantation. Main results. The novel fabrication process proved to be suitable for prototyping and building intrafascicular electrode arrays. Electrochemical properties of the electrode sites were enhanced and tested for long-term stability. Chronic implantation in the sciatic nerve of rats showed good biocompatibility, selectivity and stable stimulation thresholds. Significance. Established medical grade materials can be used for intrafascicular nerve electrode arrays when laser structuring defines structure size in the micro-scale. Design flexibility reduces re-design cycle time and material certificates are beneficial support for safety studies on the way to clinical trials.

  17. Responding to Vaccine Safety Signals during Pandemic Influenza: A Modeling Study

    PubMed Central

    Maro, Judith C.; Fryback, Dennis G.; Lieu, Tracy A.; Lee, Grace M.; Martin, David B.

    2014-01-01

    Background Managing emerging vaccine safety signals during an influenza pandemic is challenging. Federal regulators must balance vaccine risks against benefits while maintaining public confidence in the public health system. Methods We developed a multi-criteria decision analysis model to explore regulatory decision-making in the context of emerging vaccine safety signals during a pandemic. We simulated vaccine safety surveillance system capabilities and used an age-structured compartmental model to develop potential pandemic scenarios. We used an expert-derived multi-attribute utility function to evaluate potential regulatory responses by combining four outcome measures into a single measure of interest: 1) expected vaccination benefit from averted influenza; 2) expected vaccination risk from vaccine-associated febrile seizures; 3) expected vaccination risk from vaccine-associated Guillain-Barre Syndrome; and 4) expected change in vaccine-seeking behavior in future influenza seasons. Results Over multiple scenarios, risk communication, with or without suspension of vaccination of high-risk persons, were the consistently preferred regulatory responses over no action or general suspension when safety signals were detected during a pandemic influenza. On average, the expert panel valued near-term vaccine-related outcomes relative to long-term projected outcomes by 3∶1. However, when decision-makers had minimal ability to influence near-term outcomes, the response was selected primarily by projected impacts on future vaccine-seeking behavior. Conclusions The selected regulatory response depends on how quickly a vaccine safety signal is identified relative to the peak of the pandemic and the initiation of vaccination. Our analysis suggested two areas for future investment: efforts to improve the size and timeliness of the surveillance system and behavioral research to understand changes in vaccine-seeking behavior. PMID:25536228

  18. Effect of two glycyrrhizinic acid nanoparticle carriers on MARC-145 cells actin filaments

    NASA Astrophysics Data System (ADS)

    Jardon, Samantha; García, Carlos G.; Quintanar, David; Nieto, José L.; Juárez, María de Lourdes; Mendoza, Susana E.

    2018-04-01

    The development of technologies that combine the advantages of nanomedicine with natural medicine represents a versatile approach to improve the safety and efficacy of drugs. Glycyrrhizinic acid (GA) is a natural compound that has a wide range of biological activities for the treatment of diseases. To establish a safe nanotransport system for this drug, two different nanoparticles with glycyrrhizinic acid, solid lipid nanoparticles (SLN-GA) and polymeric nanoparticles (PNPS-GA) were elaborated to obtain nanostructure sizes between 200 and 300 nm. The nanoparticles were evaluated at concentrations of 1.25-100 μl/ml using the MARC-145 cell line to determine the effects on cell morphology, cellular structure (actin filaments) and cell viability (mitochondrial and lysosomal) at 24 and 72 h post-exposure. The safety range of the nanoparticles was 50 µl/ml, to determine that PNPs-GA had an optimal safety profile and no cytotoxic effects, as there was no evidence of changes in morphology, internal cellular structures (stress fibers and the cell cortex formed by actin filaments) or viability under the experimental concentrations and conditions employed.

  19. Risk management for the Space Exploration Initiative

    NASA Technical Reports Server (NTRS)

    Buchbinder, Ben

    1993-01-01

    Probabilistic Risk Assessment (PRA) is a quantitative engineering process that provides the analytic structure and decision-making framework for total programmatic risk management. Ideally, it is initiated in the conceptual design phase and used throughout the program life cycle. Although PRA was developed for assessment of safety, reliability, and availability risk, it has far greater application. Throughout the design phase, PRA can guide trade-off studies among system performance, safety, reliability, cost, and schedule. These studies are based on the assessment of the risk of meeting each parameter goal, with full consideration of the uncertainties. Quantitative trade-off studies are essential, but without full identification, propagation, and display of uncertainties, poor decisions may result. PRA also can focus attention on risk drivers in situations where risk is too high. For example, if safety risk is unacceptable, the PRA prioritizes the risk contributors to guide the use of resources for risk mitigation. PRA is used in the Space Exploration Initiative (SEI) Program. To meet the stringent requirements of the SEI mission, within strict budgetary constraints, the PRA structure supports informed and traceable decision-making. This paper briefly describes the SEI PRA process.

  20. Modelling safety of multistate systems with ageing components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kołowrocki, Krzysztof; Soszyńska-Budny, Joanna

    An innovative approach to safety analysis of multistate ageing systems is presented. Basic notions of the ageing multistate systems safety analysis are introduced. The system components and the system multistate safety functions are defined. The mean values and variances of the multistate systems lifetimes in the safety state subsets and the mean values of their lifetimes in the particular safety states are defined. The multi-state system risk function and the moment of exceeding by the system the critical safety state are introduced. Applications of the proposed multistate system safety models to the evaluation and prediction of the safty characteristics ofmore » the consecutive “m out of n: F” is presented as well.« less

  1. Probabilistic Risk Assessment Procedures Guide for NASA Managers and Practitioners (Second Edition)

    NASA Technical Reports Server (NTRS)

    Stamatelatos,Michael; Dezfuli, Homayoon; Apostolakis, George; Everline, Chester; Guarro, Sergio; Mathias, Donovan; Mosleh, Ali; Paulos, Todd; Riha, David; Smith, Curtis; hide

    2011-01-01

    Probabilistic Risk Assessment (PRA) is a comprehensive, structured, and logical analysis method aimed at identifying and assessing risks in complex technological systems for the purpose of cost-effectively improving their safety and performance. NASA's objective is to better understand and effectively manage risk, and thus more effectively ensure mission and programmatic success, and to achieve and maintain high safety standards at NASA. NASA intends to use risk assessment in its programs and projects to support optimal management decision making for the improvement of safety and program performance. In addition to using quantitative/probabilistic risk assessment to improve safety and enhance the safety decision process, NASA has incorporated quantitative risk assessment into its system safety assessment process, which until now has relied primarily on a qualitative representation of risk. Also, NASA has recently adopted the Risk-Informed Decision Making (RIDM) process [1-1] as a valuable addition to supplement existing deterministic and experience-based engineering methods and tools. Over the years, NASA has been a leader in most of the technologies it has employed in its programs. One would think that PRA should be no exception. In fact, it would be natural for NASA to be a leader in PRA because, as a technology pioneer, NASA uses risk assessment and management implicitly or explicitly on a daily basis. NASA has probabilistic safety requirements (thresholds and goals) for crew transportation system missions to the International Space Station (ISS) [1-2]. NASA intends to have probabilistic requirements for any new human spaceflight transportation system acquisition. Methods to perform risk and reliability assessment in the early 1960s originated in U.S. aerospace and missile programs. Fault tree analysis (FTA) is an example. It would have been a reasonable extrapolation to expect that NASA would also become the world leader in the application of PRA. That was, however, not to happen. Early in the Apollo program, estimates of the probability for a successful roundtrip human mission to the moon yielded disappointingly low (and suspect) values and NASA became discouraged from further performing quantitative risk analyses until some two decades later when the methods were more refined, rigorous, and repeatable. Instead, NASA decided to rely primarily on the Hazard Analysis (HA) and Failure Modes and Effects Analysis (FMEA) methods for system safety assessment.

  2. [Interpretation in the Danish health-care system].

    PubMed

    Lund Hansen, Marianne Taulo; Nielsen, Signe Smith

    2013-03-04

    Communication between health professional and patient is central for treatment and patient safety in the health-care system. This systematic review examines the last ten years of specialist literature concerning interpretation in the Danish health-care system. Structural search in two databases, screening of references and recommended literature from two scientists led to identification of seven relevant articles. The review showed that professional interpreters were not used consistently when needed. Family members were also used as interpreters. These results were supported by international investigations.

  3. Assessing safety of extractables from materials and leachables in pharmaceuticals and biologics - Current challenges and approaches.

    PubMed

    Broschard, Thomas H; Glowienke, Susanne; Bruen, Uma S; Nagao, Lee M; Teasdale, Andrew; Stults, Cheryl L M; Li, Kim L; Iciek, Laurie A; Erexson, Greg; Martin, Elizabeth A; Ball, Douglas J

    2016-11-01

    Leachables from pharmaceutical container closure systems can present potential safety risks to patients. Extractables studies may be performed as a risk mitigation activity to identify potential leachables for dosage forms with a high degree of concern associated with the route of administration. To address safety concerns, approaches to toxicological safety evaluation of extractables and leachables have been developed and applied by pharmaceutical and biologics manufacturers. Details of these approaches may differ depending on the nature of the final drug product. These may include application, the formulation, route of administration and length of use. Current regulatory guidelines and industry standards provide general guidance on compound specific safety assessments but do not provide a comprehensive approach to safety evaluations of leachables and/or extractables. This paper provides a perspective on approaches to safety evaluations by reviewing and applying general concepts and integrating key steps in the toxicological evaluation of individual extractables or leachables. These include application of structure activity relationship studies, development of permitted daily exposure (PDE) values, and use of safety threshold concepts. Case studies are provided. The concepts presented seek to encourage discussion in the scientific community, and are not intended to represent a final opinion or "guidelines." Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Evaluation and review of the safety management system implementation in the Royal Thai Air Force

    NASA Astrophysics Data System (ADS)

    Chaiwan, Sakkarin

    This study was designed to determine situation and effectiveness of the safety management system currently implemented in the Royal Thai Air Force. Reviewing the ICAO's SMS and the RTAF's SMS was conducted to identify similarities and differences between the two safety management systems. Later, the researcher acquired safety statistics from the RTAF Safety Center to investigate effectiveness of its safety system. The researcher also collected data to identify other factors affecting effectiveness of the safety system during conducting in-depth interviews. Findings and Conclusions: The study shows that the Royal Thai Air Force has never applied the International Civil Aviation Organization's Safety management System to its safety system. However, the RTAF's SMS and the ICAO's SMS have been developed based on the same concepts. These concepts are from Richard H. Woods's book, Aviation safety programs: A management handbook. However, the effectiveness of the Royal Thai Air Force's safety system is in good stance. An accident rate has been decreasing regularly but there are no known factors to describe the increasing rate, according to the participants' opinion. The participants have informed that there are many issues to be resolved to improve the RTAF's safety system. Those issues are cooperation among safety center's staffs, attitude toward safety of the RTAF senior commanders, and safety standards.

  5. Structural Similitude and Scaling Laws

    NASA Technical Reports Server (NTRS)

    Simitses, George J.

    1998-01-01

    Aircraft and spacecraft comprise the class of aerospace structures that require efficiency and wisdom in design, sophistication and accuracy in analysis and numerous and careful experimental evaluations of components and prototype, in order to achieve the necessary system reliability, performance and safety. Preliminary and/or concept design entails the assemblage of system mission requirements, system expected performance and identification of components and their connections as well as of manufacturing and system assembly techniques. This is accomplished through experience based on previous similar designs, and through the possible use of models to simulate the entire system characteristics. Detail design is heavily dependent on information and concepts derived from the previous steps. This information identifies critical design areas which need sophisticated analyses, and design and redesign procedures to achieve the expected component performance. This step may require several independent analysis models, which, in many instances, require component testing. The last step in the design process, before going to production, is the verification of the design. This step necessitates the production of large components and prototypes in order to test component and system analytical predictions and verify strength and performance requirements under the worst loading conditions that the system is expected to encounter in service. Clearly then, full-scale testing is in many cases necessary and always very expensive. In the aircraft industry, in addition to full-scale tests, certification and safety necessitate large component static and dynamic testing. Such tests are extremely difficult, time consuming and definitely absolutely necessary. Clearly, one should not expect that prototype testing will be totally eliminated in the aircraft industry. It is hoped, though, that we can reduce full-scale testing to a minimum. Full-scale large component testing is necessary in other industries as well, Ship building, automobile and railway car construction all rely heavily on testing. Regardless of the application, a scaled-down (by a large factor) model (scale model) which closely represents the structural behavior of the full-scale system (prototype) can prove to be an extremely beneficial tool. This possible development must be based on the existence of certain structural parameters that control the behavior of a structural system when acted upon by static and/or dynamic loads. If such structural parameters exist, a scaled-down replica can be built, which will duplicate the response of the full-scale system. The two systems are then said to be structurally similar. The term, then, that best describes this similarity is structural similitude. Similarity of systems requires that the relevant system parameters be identical and these systems be governed by a unique set of characteristic equations. Thus, if a relation or equation of variables is written for a system, it is valid for all systems which are similar to it. Each variable in a model is proportional to the corresponding variable of the prototype. This ratio, which plays an essential role in predicting the relationship between the model and its prototype, is called the scale factor.

  6. A cadaver study of mastoidectomy using an image-guided human-robot collaborative control system.

    PubMed

    Yoo, Myung Hoon; Lee, Hwan Seo; Yang, Chan Joo; Lee, Seung Hwan; Lim, Hoon; Lee, Seongpung; Yi, Byung-Ju; Chung, Jong Woo

    2017-10-01

    Surgical precision would be better achieved with the development of an anatomical monitoring and controlling robot system than by traditional surgery techniques alone. We evaluated the feasibility of robot-assisted mastoidectomy in terms of duration, precision, and safety. Human cadaveric study. We developed a multi-degree-of-freedom robot system for a surgical drill with a balancing arm. The drill system is manipulated by the surgeon, the motion of the drill burr is monitored by the image-guided system, and the brake is controlled by the robotic system. The system also includes an alarm as well as the brake to help avoid unexpected damage to vital structures. Experimental mastoidectomy was performed in 11 temporal bones of six cadavers. Parameters including duration and safety were assessed, as well as intraoperative damage, which was judged via pre- and post-operative computed tomography. The duration of mastoidectomy in our study was comparable with that required for chronic otitis media patients. Although minor damage, such as dura exposure without tearing, was noted, no critical damage to the facial nerve or other important structures was observed. When the brake system was set to 1 mm from the facial nerve, the postoperative average bone thicknesses of the facial nerve was 1.39, 1.41, 1.22, 1.41, and 1.55 mm in the lateral, posterior pyramidal and anterior, lateral, and posterior mastoid portions, respectively. Mastoidectomy can be successfully performed using our robot-assisted system while maintaining a pre-set limit of 1 mm in most cases. This system may thus be useful for more inexperienced surgeons. NA.

  7. Characterizing the Conductivity and Enhancing the Piezoresistivity of Carbon Nanotube-Polymeric Thin Films

    PubMed Central

    Zhao, Yingjun; Schagerl, Martin; Viechtbauer, Christoph

    2017-01-01

    The concept of lightweight design is widely employed for designing and constructing aerospace structures that can sustain extreme loads while also being fuel-efficient. Popular lightweight materials such as aluminum alloy and fiber-reinforced polymers (FRPs) possess outstanding mechanical properties, but their structural integrity requires constant assessment to ensure structural safety. Next-generation structural health monitoring systems for aerospace structures should be lightweight and integrated with the structure itself. In this study, a multi-walled carbon nanotube (MWCNT)-based polymer paint was developed to detect distributed damage in lightweight structures. The thin film’s electromechanical properties were characterized via cyclic loading tests. Moreover, the thin film’s bulk conductivity was characterized by finite element modeling. PMID:28773084

  8. [Prerequisites for electronic systems evaluating safe and effective drug therapy. A contribution to the Action Plan of the Federal Health Ministry].

    PubMed

    Aly, A-F; Menges, K; Haas, C H; Zimmermann, L; Kaltschmidt, J; Criegee-Rieck, M

    2011-11-01

    Evaluation of effective and safe drug therapy assisted by electronic systems is based on certain prerequisites, including structured data of drugs and from patients. These prerequisites were identified in a workshop within the scope of the National Action Plan and have been reported in a 7+1-point plan: medicinal product data must be correct and up-to-date based on the summary of product characteristics approved by the responsible authorities. Product data must be available in an agreed textual structure and must use defined semantic elements within this structure. Identifiers must be allocated to all drugs and substances in order to enable unique identification and exchange across systems. Semantic structures of the product data, on the one hand, and of patient data, on the other, must be defined across system boundaries and for the whole German national health care system, and be available to every stakeholder, up-to-date, and preferably freely accessible. This consensus regarding content and structural conventions is a prerequisite for other scenarios in the health care system, such as transmitting individual case safety reports without system and media discontinuity, and is currently of great importance with respect to the European legislation on pharmacovigilance, which will be implemented nationally.

  9. SMART Layer and SMART Suitcase for structural health monitoring applications

    NASA Astrophysics Data System (ADS)

    Lin, Mark; Qing, Xinlin; Kumar, Amrita; Beard, Shawn J.

    2001-06-01

    Knowledge of integrity of in-service structures can greatly enhance their safety and reliability and lower structural maintenance cost. Current practices limit the extent of real-time knowledge that can be obtained from structures during inspection, are labor-intensive and thereby increase life-cycle costs. Utilization of distributed sensors integrated with the structure is a viable and cost-effective means of monitoring the structure and reducing inspection costs. Acellent Technologies is developing a novel system for actively and passively interrogating the health of a structure through an integrated network of sensors and actuators. Acellent's system comprises of SMART Layers, SMART Suitcase and diagnostic software. The patented SMART Layer is a thin dielectric film with an embedded network of distributed piezoelectric actuators/sensors that can be surface-mounted on metallic structures or embedded inside composite structures. The SMART Suitcase is a portable diagnostic unit designed with multiple sensor/actuator channels to interface with the SMART Layer, generate diagnostic signals from actuators and record measurements from the embedded sensors. With appropriate diagnostic software, Acellent's system can be used for monitoring structural condition and for detecting damage while the structures are in service. This paper enumerates on the SMART Layer and SMART Suitcase and their applicability to composite and metal structures.

  10. Structural Health Management for Future Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Prosser, W. H.; Allison, S. G.; Woodard, S. E.; Wincheski, R. A.; Cooper, E. G.; Price, D. C.; Hedley, M.; Prokopenko, M.; Scott, D. A.; Tessler, A.

    2004-01-01

    Structural Health Management (SHM) will be of critical importance to provide the safety, reliability and affordability necessary for the future long duration space missions described in America's Vision for Space Exploration. Long duration missions to the Moon, Mars and beyond cannot be accomplished with the current paradigm of periodic, ground based structural integrity inspections. As evidenced by the Columbia tragedy, this approach is also inadequate for the current Shuttle fleet, thus leading to its initial implementation of on-board SHM sensing for impact detection as part of the return to flight effort. However, future space systems, to include both vehicles as well as structures such as habitation modules, will require an integrated array of onboard in-situ sensing systems. In addition, advanced data systems architectures will be necessary to communicate, store and process massive amounts of SHM data from large numbers of diverse sensors. Further, improved structural analysis and design algorithms will be necessary to incorporate SHM sensing into the design and construction of aerospace structures, as well as to fully utilize these sensing systems to provide both diagnosis and prognosis of structural integrity. Ultimately, structural integrity information will feed into an Integrated Vehicle Health Management (IVHM) system that will provide real-time knowledge of structural, propulsion, thermal protection and other critical systems for optimal vehicle management and mission control. This paper will provide an overview of NASA research and development in the area of SHM as well as to highlight areas of technology improvement necessary to meet these future mission requirements.

  11. 33 CFR 183.550 - Fuel tanks: Installation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Fuel tanks: Installation. 183.550...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Manufacturer Requirements § 183.550 Fuel tanks: Installation. (a) Each fuel tank must not be integral with any boat structure or mounted on an engine. (b) Each...

  12. 10 CFR Appendix B to Part 50 - Quality Assurance Criteria for Nuclear Power Plants and Fuel Reprocessing Plants

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... related to the design, fabrication, construction, and testing of the structures, systems, and components... components. The pertinent requirements of this appendix apply to all activities affecting the safety-related..., which comprises those quality assurance actions related to the physical characteristics of a material...

  13. 33 CFR 183.550 - Fuel tanks: Installation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel tanks: Installation. 183.550...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Manufacturer Requirements § 183.550 Fuel tanks: Installation. (a) Each fuel tank must not be integral with any boat structure or mounted on an engine. (b) Each...

  14. Fire and the Design of Educational Buildings. Building Bulletin 7. Sixth Edition.

    ERIC Educational Resources Information Center

    Department of Education and Science, London (England).

    This bulletin offers guidance on English school premises regulations applying to safety protection against fires in the following general areas: means of escape in case of fire; precautionary measures to prevent fire; fire warning systems and fire fighting; fire spreading speed; structures and materials resistant to fires; and damage control. It…

  15. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-04-01

    This Requirements Identification Document (RID) describes an Occupational Health and Safety Program as defined through the Relevant DOE Orders, regulations, industry codes/standards, industry guidance documents and, as appropriate, good industry practice. The definition of an Occupational Health and Safety Program as specified by this document is intended to address Defense Nuclear Facilities Safety Board Recommendations 90-2 and 91-1, which call for the strengthening of DOE complex activities through the identification and application of relevant standards which supplement or exceed requirements mandated by DOE Orders. This RID applies to the activities, personnel, structures, systems, components, and programs involved in maintaining themore » facility and executing the mission of the High-Level Waste Storage Tank Farms.« less

  16. Modeling and control of a cable-suspended robot for inspection of vertical structures

    NASA Astrophysics Data System (ADS)

    Barry, Nicole; Fisher, Erin; Vaughan, Joshua

    2016-09-01

    In this paper, a cable-driven system is examined for the application of inspection of large, vertical-walled structures such as chemical storage tanks, large ship hulls, and high-rise buildings. Such cable-driven systems are not commonly used for these tasks due to vibration, which decreases inspection accuracy and degrades safety. The flexible nature of the cables make them difficult to control. In this paper, input shaping is implemented on a cable-driven system to reduce vibration. To design the input shapers, a model of the cable-driven system was developed. Analysis of the dominant dynamics and changes in them over the large workspace are also presented. The performance improvements provided by the input shaping controller are quantified through a series of simulations.

  17. Research on electromechanical resonance of two-axis tracking system

    NASA Astrophysics Data System (ADS)

    Zhao, Zhi-ming; Xue, Ying-jie; Zeng, Shu-qin; Li, Zhi-guo

    2017-02-01

    The multi-axes synchronous system about the spatial two-axis turntable is the key equipment for semi-physical simulation and test in aerospace. In this paper, the whole structure design of the turntable is created by using Solidworks, then putting the three-dimensional solid model into ANSYS to build the finite element model. The software ANSYS is used to do the simulation about the static and dynamic analysis of two-axis turntable. Based on the modal analysis, we can forecast the inherent frequencies and the mode of vibration during the launch conditions which is very important to the design and safety of the structure.

  18. International recommendations for national patient safety incident reporting systems: an expert Delphi consensus-building process.

    PubMed

    Howell, Ann-Marie; Burns, Elaine M; Hull, Louise; Mayer, Erik; Sevdalis, Nick; Darzi, Ara

    2017-02-01

    Patient safety incident reporting systems (PSRS) have been established for over a decade, but uncertainty remains regarding the role that they can and ought to play in quantifying healthcare-related harm and improving care. To establish international, expert consensus on the purpose of PSRS regarding monitoring and learning from incidents and developing recommendations for their future role. After a scoping review of the literature, semi-structured interviews with experts in PSRS were conducted. Based on these findings, a survey-based questionnaire was developed and subsequently completed by a larger expert panel. Using a Delphi approach, consensus was reached regarding the ideal role of PSRSs. Recommendations for best practice were devised. Forty recommendations emerged from the Delphi procedure on the role and use of PSRS. Experts agreed reporting system should not be used as an epidemiological tool to monitor the rate of harm over time or to appraise the relative safety of hospitals. They agreed reporting is a valuable mechanism for identifying organisational safety needs. The benefit of a national system was clear with respect to medication error, device failures, hospital-acquired infections and never events as these problems often require solutions at a national level. Experts recommended training for senior healthcare professionals in incident investigation. Consensus recommendation was for hospitals to take responsibility for creating safety solutions locally that could be shared nationally. We obtained reasonable consensus among experts on aims and specifications of PSRS. This information can be used to reflect on existing and future PSRS, and their role within the wider patient safety landscape. The role of PSRS as instruments for learning needs to be elaborated and developed further internationally. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  19. Modeling patient safety incidents knowledge with the Categorial Structure method.

    PubMed

    Souvignet, Julien; Bousquet, Cédric; Lewalle, Pierre; Trombert-Paviot, Béatrice; Rodrigues, Jean Marie

    2011-01-01

    Following the WHO initiative named World Alliance for Patient Safety (PS) launched in 2004 a conceptual framework developed by PS national reporting experts has summarized the knowledge available. As a second step, the Department of Public Health of the University of Saint Etienne team elaborated a Categorial Structure (a semi formal structure not related to an upper level ontology) identifying the elements of the semantic structure underpinning the broad concepts contained in the framework for patient safety. This knowledge engineering method has been developed to enable modeling patient safety information as a prerequisite for subsequent full ontology development. The present article describes the semantic dissection of the concepts, the elicitation of the ontology requirements and the domain constraints of the conceptual framework. This ontology includes 134 concepts and 25 distinct relations and will serve as basis for an Information Model for Patient Safety.

  20. Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-60) - Rocky Reach - Maple Valley No. 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Mark A.

    2002-04-15

    Vegetation Management along the Rocky Reach – Maple Valley No. 1 Transmission Line ROW from structure 110/1 to the Maple Valley Substation. The transmission line is a 500 kV line. BPA proposes to clear targeted vegetation along access roads and around tower structures that may impede the operation and maintenance of the subject transmission line. BPA plans to conduct vegetation management along existing access road and around structure landings for the purpose of maintaining access to structures site. All work will be in accordance with the National Electrical Safety Code and BPA standards.

  1. Traceability of Software Safety Requirements in Legacy Safety Critical Systems

    NASA Technical Reports Server (NTRS)

    Hill, Janice L.

    2007-01-01

    How can traceability of software safety requirements be created for legacy safety critical systems? Requirements in safety standards are imposed most times during contract negotiations. On the other hand, there are instances where safety standards are levied on legacy safety critical systems, some of which may be considered for reuse for new applications. Safety standards often specify that software development documentation include process-oriented and technical safety requirements, and also require that system and software safety analyses are performed supporting technical safety requirements implementation. So what can be done if the requisite documents for establishing and maintaining safety requirements traceability are not available?

  2. Overcrowding and diversion in the emergency department: the health care safety net unravels.

    PubMed

    Velianoff, George D

    2002-03-01

    Emergency department overcrowding and diversion of patients are serious problems that are symptomatic of larger health care system issues. Downsizing, government regulations, managed care, increased numbers of uninsured, and reimbursement decreases are issues that have created the overcrowding and diversion issues. The Emergency Medical Treatment and Active Labor Act (EMTALA), poor operations and hospital processes, unavailable inpatient beds and closures, consolidations and workforce shortages are also contributors to the overcrowding and diversion issues. Options and solutions are proposed to alleviate the problem, however, greater collaboration, changed work environments, and reimbursement structures need to be developed and instituted. The safety net of the US health system is unraveling, and without intervention, the emergency department will not be able to provide services to the public at any level of quality and efficiency.

  3. The state of quality improvement and patient safety teaching in health professional education in New Zealand.

    PubMed

    Robb, Gillian; Stolarek, Iwona; Wells, Susan; Bohm, Gillian

    2017-10-27

    To investigate how quality and patient safety domains are being taught in the pre-registration curricula of health profession education programmes in New Zealand. All tertiary institutions providing training for medicine, nursing, midwifery, dentistry, pharmacy, physiotherapy, dietetics and 11 other allied health professions in New Zealand were contacted and a person with relevant curriculum knowledge was invited to participate. Interviews were conducted using a semi-structured interview guide to explore nine quality and safety domains; improvement science, patient safety, quality and safety culture, evidence-based practice, patient-centred care, teamwork and communication, leadership for change, systems thinking and use of information technology (IT). Transcribed data were extracted and categorised by discipline and domain. Two researchers independently identified and categorised themes within each domain, using a general inductive approach. Forty-nine institutions were contacted and 43 (88%) people were interviewed. The inclusion and extent of quality and safety teaching was variable. Evidence-based practice, patient-centred care and teamwork and communication were the strongest domains and well embedded in programmes, while leadership, systems thinking and the role of IT were less explicitly included. Except for two institutions, improvement science was absent from pre-registration curricula. Patient safety teaching was focused mainly around incident reporting, and to a lesser extent learning from adverse events. Although a 'no blame' culture was articulated as important, the theme of individual accountability was still apparent. While participants agreed that all domains were important, the main barriers to incorporating improvement science and patient safety concepts into existing programmes included an 'already stretched curriculum' and having faculty with limited expertise in these areas. Although the building blocks for improving the quality and safety of healthcare are present, this national study of multiple health professional pre-registration education programmes has identified teaching gaps in patient safety and improvement science methods and tools. Failure to address these gaps will compromise the ability of new graduates to successfully implement and sustain improvements.

  4. Benefit from NASA

    NASA Image and Video Library

    2004-04-15

    The Waterblast Research Cell supports development of automated systems that remove thermal protection materials and coatings from space flight hardware. These systems remove expended coatings without harsh chemicals or damaging underlying material. Potential applications of this technology include the removal of coatings from industrial machinery, aircraft, and other large structures. Use of the robot improves worker safety by reducing the exposure of persornel to high-pressure water. This technology is a proactive alternative to hazardous chemical strippers.

  5. Seismic performance assessment of base-isolated safety-related nuclear structures

    USGS Publications Warehouse

    Huang, Y.-N.; Whittaker, A.S.; Luco, N.

    2010-01-01

    Seismic or base isolation is a proven technology for reducing the effects of earthquake shaking on buildings, bridges and infrastructure. The benefit of base isolation has been presented in terms of reduced accelerations and drifts on superstructure components but never quantified in terms of either a percentage reduction in seismic loss (or percentage increase in safety) or the probability of an unacceptable performance. Herein, we quantify the benefits of base isolation in terms of increased safety (or smaller loss) by comparing the safety of a sample conventional and base-isolated nuclear power plant (NPP) located in the Eastern U.S. Scenario- and time-based assessments are performed using a new methodology. Three base isolation systems are considered, namely, (1) Friction Pendulum??? bearings, (2) lead-rubber bearings and (3) low-damping rubber bearings together with linear viscous dampers. Unacceptable performance is defined by the failure of key secondary systems because these systems represent much of the investment in a new build power plant and ensure the safe operation of the plant. For the scenario-based assessments, the probability of unacceptable performance is computed for an earthquake with a magnitude of 5.3 at a distance 7.5 km from the plant. For the time-based assessments, the annual frequency of unacceptable performance is computed considering all potential earthquakes that may occur. For both assessments, the implementation of base isolation reduces the probability of unacceptable performance by approximately four orders of magnitude for the same NPP superstructure and secondary systems. The increase in NPP construction cost associated with the installation of seismic isolators can be offset by substantially reducing the required seismic strength of secondary components and systems and potentially eliminating the need to seismically qualify many secondary components and systems. ?? 2010 John Wiley & Sons, Ltd.

  6. Systems Engineering Approach to Technology Integration for NASA's 2nd Generation Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Thomas, Dale; Smith, Charles; Thomas, Leann; Kittredge, Sheryl

    2002-01-01

    The overall goal of the 2nd Generation RLV Program is to substantially reduce technical and business risks associated with developing a new class of reusable launch vehicles. NASA's specific goals are to improve the safety of a 2nd-generation system by 2 orders of magnitude - equivalent to a crew risk of 1-in-10,000 missions - and decrease the cost tenfold, to approximately $1,000 per pound of payload launched. Architecture definition is being conducted in parallel with the maturating of key technologies specifically identified to improve safety and reliability, while reducing operational costs. An architecture broadly includes an Earth-to-orbit reusable launch vehicle, on-orbit transfer vehicles and upper stages, mission planning, ground and flight operations, and support infrastructure, both on the ground and in orbit. The systems engineering approach ensures that the technologies developed - such as lightweight structures, long-life rocket engines, reliable crew escape, and robust thermal protection systems - will synergistically integrate into the optimum vehicle. To best direct technology development decisions, analytical models are employed to accurately predict the benefits of each technology toward potential space transportation architectures as well as the risks associated with each technology. Rigorous systems analysis provides the foundation for assessing progress toward safety and cost goals. The systems engineering review process factors in comprehensive budget estimates, detailed project schedules, and business and performance plans, against the goals of safety, reliability, and cost, in addition to overall technical feasibility. This approach forms the basis for investment decisions in the 2nd Generation RLV Program's risk-reduction activities. Through this process, NASA will continually refine its specialized needs and identify where Defense and commercial requirements overlap those of civil missions.

  7. Systems Engineering Approach to Technology Integration for NASA's 2nd Generation Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Thomas, Dale; Smith, Charles; Thomas, Leann; Kittredge, Sheryl

    2002-01-01

    The overall goal of the 2nd Generation RLV Program is to substantially reduce technical and business risks associated with developing a new class of reusable launch vehicles. NASA's specific goals are to improve the safety of a 2nd generation system by 2 orders of magnitude - equivalent to a crew risk of 1-in-10,000 missions - and decrease the cost tenfold, to approximately $1,000 per pound of payload launched. Architecture definition is being conducted in parallel with the maturating of key technologies specifically identified to improve safety and reliability, while reducing operational costs. An architecture broadly includes an Earth-to-orbit reusable launch vehicle, on-orbit transfer vehicles and upper stages, mission planning, ground and flight operations, and support infrastructure, both on the ground and in orbit. The systems engineering approach ensures that the technologies developed - such as lightweight structures, long-life rocket engines, reliable crew escape, and robust thermal protection systems - will synergistically integrate into the optimum vehicle. To best direct technology development decisions, analytical models are employed to accurately predict the benefits of each technology toward potential space transportation architectures as well as the risks associated with each technology. Rigorous systems analysis provides the foundation for assessing progress toward safety and cost goals. The systems engineering review process factors in comprehensive budget estimates, detailed project schedules, and business and performance plans, against the goals of safety, reliability, and cost, in addition to overall technical feasibility. This approach forms the basis for investment decisions in the 2nd Generation RLV Program's risk-reduction activities. Through this process, NASA will continually refine its specialized needs and identify where Defense and commercial requirements overlap those of civil missions.

  8. Design and implementation of an identification system in construction site safety for proactive accident prevention.

    PubMed

    Yang, Huanjia; Chew, David A S; Wu, Weiwei; Zhou, Zhipeng; Li, Qiming

    2012-09-01

    Identifying accident precursors using real-time identity information has great potential to improve safety performance in construction industry, which is still suffering from day to day records of accident fatality and injury. Based on the requirements analysis for identifying precursor and the discussion of enabling technology solutions for acquiring and sharing real-time automatic identification information on construction site, this paper proposes an identification system design for proactive accident prevention to improve construction site safety. Firstly, a case study is conducted to analyze the automatic identification requirements for identifying accident precursors in construction site. Results show that it mainly consists of three aspects, namely access control, training and inspection information and operation authority. The system is then designed to fulfill these requirements based on ZigBee enabled wireless sensor network (WSN), radio frequency identification (RFID) technology and an integrated ZigBee RFID sensor network structure. At the same time, an information database is also designed and implemented, which includes 15 tables, 54 queries and several reports and forms. In the end, a demonstration system based on the proposed system design is developed as a proof of concept prototype. The contributions of this study include the requirement analysis and technical design of a real-time identity information tracking solution for proactive accident prevention on construction sites. The technical solution proposed in this paper has a significant importance in improving safety performance on construction sites. Moreover, this study can serve as a reference design for future system integrations where more functions, such as environment monitoring and location tracking, can be added. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. 10 CFR 830 Major Modification Determination for the ATR Diesel Bus (E-3) and Switchgear Replacement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noel Duckwtiz

    2011-05-01

    Near term replacement of aging and obsolescent original ATR equipment has become important to ensure ATR capability in support of NE’s long term national missions. To that end, a mission needs statement has been prepared for a non-major system acquisition which is comprised of three interdependent subprojects. The first project, subject of this determination, will replace the existent diesel-electrical bus (E-3) and associated switchgear. More specifically, INL proposes transitioning ATR to 100% commercial power with appropriate emergency backup to include: • Provide commercial power as the normal source of power to the ATR loads currently supplied by diesel-electric power. •more » Provide backup power to the critical ATR loads in the event of a loss of commercial power. • Replace obsolescent critical ATR power distribution equipment, e.g., switchgear, transformers, motor control centers, distribution panels. Completion of this and two other age-related projects (primary coolant pump and motor replacement and emergency firewater injection system replacement) will resolve major age related operational issues plus make a significant contribution in sustaining the ATR safety and reliability profile. The major modification criteria evaluation of the project pre-conceptual design identified several issues make the project a major modification: 1. Evaluation Criteria #2 (Footprint change). The addition of a new PC-4 structure to the ATR Facility to house safety-related SSCs requires careful attention to maintaining adherence to applicable engineering and nuclear safety design criteria (e.g., structural qualification, fire suppression) to ensure no adverse impacts to the safety-related functions of the housed equipment. 2. Evaluation Criteria #3 (Change of existing process). The change to the strategy for providing continuous reliable power to the safety-related emergency coolant pumps requires careful attention and analysis to ensure it meets a project primary object to maintain or reduce CDF and does not negatively affect the efficacy of the currently approved strategy. 3. Evaluation Criteria #5 (Create the need for new or revised safety SSCs). The change to the strategy for providing continuous reliable power to the safety-related emergency coolant pumps, based on the pre-conceptual design, will require the addition of two quick start diesel generators, their associated power coordination/distribution controls, and a UPS to the list of safety-related SSCs. Similarly to item 1 above, the addition of these active SSCs to the list of safety-related SSCs and replacement of the E-3 bus requires careful attention to maintaining adherence to applicable engineering and nuclear safety design criteria (e.g., seismic qualification, isolation of redundant trains from common fault failures) to ensure no adverse impacts to the safety-related functions.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gougar, Hans

    This document outlines the development of a high fidelity, best estimate nuclear power plant severe transient simulation capability that will complement or enhance the integral system codes historically used for licensing and analysis of severe accidents. As with other tools in the Risk Informed Safety Margin Characterization (RISMC) Toolkit, the ultimate user of Enhanced Severe Transient Analysis and Prevention (ESTAP) capability is the plant decision-maker; the deliverable to that customer is a modern, simulation-based safety analysis capability, applicable to a much broader class of safety issues than is traditional Light Water Reactor (LWR) licensing analysis. Currently, the RISMC pathway’s majormore » emphasis is placed on developing RELAP-7, a next-generation safety analysis code, and on showing how to use RELAP-7 to analyze margin from a modern point of view: that is, by characterizing margin in terms of the probabilistic spectra of the “loads” applied to systems, structures, and components (SSCs), and the “capacity” of those SSCs to resist those loads without failing. The first objective of the ESTAP task, and the focus of one task of this effort, is to augment RELAP-7 analyses with user-selected multi-dimensional, multi-phase models of specific plant components to simulate complex phenomena that may lead to, or exacerbate, severe transients and core damage. Such phenomena include: coolant crossflow between PWR assemblies during a severe reactivity transient, stratified single or two-phase coolant flow in primary coolant piping, inhomogeneous mixing of emergency coolant water or boric acid with hot primary coolant, and water hammer. These are well-documented phenomena associated with plant transients but that are generally not captured in system codes. They are, however, generally limited to specific components, structures, and operating conditions. The second ESTAP task is to similarly augment a severe (post-core damage) accident integral analyses code with high fidelity simulations that would allow investigation of multi-dimensional, multi-phase containment phenomena that are only treated approximately in established codes.« less

  11. HESTIA Commodities Exchange Pallet and Sounding Rocket Test Stand

    NASA Technical Reports Server (NTRS)

    Chaparro, Javier

    2013-01-01

    During my Spring 2016 internship, my two major contributions were the design of the Commodities Exchange Pallet and the design of a test stand for a 100 pounds-thrust sounding rocket. The Commodities Exchange Pallet is a prototype developed for the Human Exploration Spacecraft Testbed for Integration and Advancement (HESTIA) program. Under the HESTIA initiative the Commodities Exchange Pallet was developed as a method for demonstrating multi-system integration thru the transportation of In-Situ Resource Utilization produced oxygen and water to a human habitat. Ultimately, this prototype's performance will allow for future evaluation of integration, which may lead to the development of a flight capable pallet for future deep-space exploration missions. For HESTIA, my main task was to design the Commodities Exchange Pallet system to be used for completing an integration demonstration. Under the guidance of my mentor, I designed, both, the structural frame and fluid delivery system for the commodities pallet. The fluid delivery system includes a liquid-oxygen to gaseous-oxygen system, a water delivery system, and a carbon-dioxide compressors system. The structural frame is designed to meet safety and transportation requirements, as well as the ability to interface with the ER division's Portable Utility Pallet. The commodities pallet structure also includes independent instrumentation oxygen/water panels for operation and system monitoring. My major accomplishments for the commodities exchange pallet were the completion of the fluid delivery systems and the structural frame designs. In addition, parts selection was completed in order to expedite construction of the prototype, scheduled to begin in May of 2016. Once the commodities pallet is assembled and tested it is expected to complete a fully integrated transfer demonstration with the ISRU unit and the Environmental Control and Life Support System test chamber in September of 2016. In addition to the development of the Commodities Exchange Pallet, I also assisted in preparation for testing the upper stage of a sounding rocket developed as a Center Innovation Fund project. The main objective of this project is to demonstrate the integration between a propulsion system and a solid oxide fuel cell (SOFC). The upper stage and SOFC are scheduled to complete an integrated test in August of 2016. As part of preparation for scheduled testing, I was responsible for designing the upper stage's test stand/support structure and main engine plume deflector to be used during hot-fire testing (fig. 3). The structural components of the test stand need to meet safety requirements for operation of the propulsion system, which consist of a 100 pounds-thrust main engine and two 15 pounds-thrust reaction control thrusters. My main accomplishment for this project was the completion of the design and the parts selection for construction of the structure, scheduled to begin late April of 2016.

  12. A systematic review of the safety climate intervention literature: Past trends and future directions.

    PubMed

    Lee, Jin; Huang, Yueng-Hsiang; Cheung, Janelle H; Chen, Zhuo; Shaw, William S

    2018-04-26

    Safety climate represents the meaningfulness of safety and how safety is valued in an organization. The contributions of safety climate to organizational safety have been well documented. There is a dearth of empirical research, however, on specific safety climate interventions and their effectiveness. The present study aims at examining the trend of safety climate interventions and offering compiled information for designing and implementing evidence-based safety climate interventions. Our literature search yielded 384 titles that were inspected by three examiners. Using a stepwise process that allowed for assessment of interobserver agreement, 19 full articles were selected and reviewed. Results showed that 10 out of the 19 articles (52.6%) were based on a quasi-experimental pre- and postintervention design, whereas 42.1% (n = 8) studies were based on a mixed-design approach (including both between- and within-subject design). All interventions in these 19 studies involved either safety-/health-related communication or education/training. Improvement of safety leadership was also a common component of safety climate interventions. According to the socio-technical systems classification of intervention strategies, all studies were categorized as interventions focusing on improving organizational and managerial structure as well as the personnel subsystem; four of them also aimed at improving technological aspects of work, and five of them aimed at improving the physical work subsystem. In general, a vast majority of the studies (89.5%, n = 17) showed a statistically significant improvement in safety climate across their organizations postintervention. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  13. Physicians' and nurses' perceptions of patient safety risks in the emergency department.

    PubMed

    Källberg, Ann-Sofie; Ehrenberg, Anna; Florin, Jan; Östergren, Jan; Göransson, Katarina E

    2017-07-01

    The emergency department has been described as a high-risk area for errors. It is also known that working conditions such as a high workload and shortage off staff in the healthcare field are common factors that negatively affect patient safety. A limited amount of research has been conducted with regard to patient safety in Swedish emergency departments. Additionally, there is a lack of knowledge about clinicians' perceptions of patient safety risks. Therefore, the purpose of this study was to describe emergency department clinicians' experiences with regard to patient safety risks. Semi-structured interviews were conducted with 10 physicians and 10 registered nurses from two emergency departments. Interviews were analysed by inductive content analysis. The experiences reflect the complexities involved in the daily operation of a professional practice, and the perception of risks due to a high workload, lack of control, communication and organizational failures. The results reflect a complex system in which high workload was perceived as a risk for patient safety and that, in a combination with other risks, was thought to further jeopardize patient safety. Emergency department staff should be involved in the development of patient safety procedures in order to increase knowledge regarding risk factors as well as identify strategies which can facilitate the maintenance of patient safety during periods in which the workload is high. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. 49 CFR 659.19 - System safety program plan: contents.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 7 2012-10-01 2012-10-01 false System safety program plan: contents. 659.19... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAIL FIXED GUIDEWAY SYSTEMS; STATE SAFETY OVERSIGHT Role of the State Oversight Agency § 659.19 System safety program plan: contents. The system safety plan shall...

  15. 49 CFR 659.19 - System safety program plan: contents.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 7 2011-10-01 2011-10-01 false System safety program plan: contents. 659.19... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAIL FIXED GUIDEWAY SYSTEMS; STATE SAFETY OVERSIGHT Role of the State Oversight Agency § 659.19 System safety program plan: contents. The system safety plan shall...

  16. 49 CFR 659.19 - System safety program plan: contents.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 7 2013-10-01 2013-10-01 false System safety program plan: contents. 659.19... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAIL FIXED GUIDEWAY SYSTEMS; STATE SAFETY OVERSIGHT Role of the State Oversight Agency § 659.19 System safety program plan: contents. The system safety plan shall...

  17. 49 CFR 659.19 - System safety program plan: contents.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 7 2014-10-01 2014-10-01 false System safety program plan: contents. 659.19... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAIL FIXED GUIDEWAY SYSTEMS; STATE SAFETY OVERSIGHT Role of the State Oversight Agency § 659.19 System safety program plan: contents. The system safety plan shall...

  18. 49 CFR 659.19 - System safety program plan: contents.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false System safety program plan: contents. 659.19... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAIL FIXED GUIDEWAY SYSTEMS; STATE SAFETY OVERSIGHT Role of the State Oversight Agency § 659.19 System safety program plan: contents. The system safety plan shall...

  19. NASA System Safety Handbook. Volume 2: System Safety Concepts, Guidelines, and Implementation Examples

    NASA Technical Reports Server (NTRS)

    Dezfuli, Homayoon; Benjamin, Allan; Everett, Christopher; Feather, Martin; Rutledge, Peter; Sen, Dev; Youngblood, Robert

    2015-01-01

    This is the second of two volumes that collectively comprise the NASA System Safety Handbook. Volume 1 (NASASP-210-580) was prepared for the purpose of presenting the overall framework for System Safety and for providing the general concepts needed to implement the framework. Volume 2 provides guidance for implementing these concepts as an integral part of systems engineering and risk management. This guidance addresses the following functional areas: 1.The development of objectives that collectively define adequate safety for a system, and the safety requirements derived from these objectives that are levied on the system. 2.The conduct of system safety activities, performed to meet the safety requirements, with specific emphasis on the conduct of integrated safety analysis (ISA) as a fundamental means by which systems engineering and risk management decisions are risk-informed. 3.The development of a risk-informed safety case (RISC) at major milestone reviews to argue that the systems safety objectives are satisfied (and therefore that the system is adequately safe). 4.The evaluation of the RISC (including supporting evidence) using a defined set of evaluation criteria, to assess the veracity of the claims made therein in order to support risk acceptance decisions.

  20. AdvoCATE - User Guide

    NASA Technical Reports Server (NTRS)

    Denney, Ewen W.

    2015-01-01

    The basic vision of AdvoCATE is to automate the creation, manipulation, and management of large-scale assurance cases based on a formal theory of argument structures. Its main purposes are for creating and manipulating argument structures for safety assurance cases using the Goal Structuring Notation (GSN), and as a test bed and proof-of-concept for the formal theory of argument structures. AdvoCATE is available for Windows 7, Macintosh OSX, and Linux. Eventually, AdvoCATE will serve as a dashboard for safety related information and provide an infrastructure for safety decisions and management.

Top