Sample records for safety system corrosion

  1. Corrosion sensor

    DOEpatents

    Glass, Robert S.; Clarke, Jr., Willis L.; Ciarlo, Dino R.

    1994-01-01

    A corrosion sensor array incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis.

  2. Corrosion sensor

    DOEpatents

    Glass, R.S.; Clarke, W.L. Jr.; Ciarlo, D.R.

    1994-04-26

    A corrosion sensor array is described incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis. 7 figures.

  3. Corrosion and scaling in solar heating systems

    NASA Astrophysics Data System (ADS)

    Foresti, R. J., Jr.

    1981-12-01

    Corrosion, as experienced in solar heating systems, is described in simplistic terms to familiarize designers and installers with potential problems and their solutions. The role of a heat transfer fluid in a solar system is briefly discussed, and the choice of an aqueous solution is justified. The complexities of the multiple chemical and physical reactions are discussed in order that uncertainties of corrosion behavior can be anticipated. Some basic theories of corrosion are described, aggressive environments for some common metals are identified, and the role of corrosion inhibitors is delineated. The similarities of thermal and material characteristics of a solor system and an automotive cooling system are discussed. Based on the many years of experience with corrosion in automotive systems, it is recommended that similar antifreezes and corrosion inhibitors should be used in solar systems. The importance of good solar system design and fabrication is stressed and specific characteristics that affect corrosion are identified.

  4. Novel Corrosion Sensor for Vision 21 Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heng Ban; Bharat Soni

    2007-03-31

    Advanced sensor technology is identified as a key component for advanced power systems for future energy plants that would have virtually no environmental impact. This project intends to develop a novel high temperature corrosion sensor and subsequent measurement system for advanced power systems. Fireside corrosion is the leading mechanism for boiler tube failures and has emerged to be a significant concern for current and future energy plants due to the introduction of technologies targeting emissions reduction, efficiency improvement, or fuel/oxidant flexibility. Corrosion damage can lead to catastrophic equipment failure, explosions, and forced outages. Proper management of corrosion requires real-time indicationmore » of corrosion rate. However, short-term, on-line corrosion monitoring systems for fireside corrosion remain a technical challenge to date due to the extremely harsh combustion environment. The overall goal of this project is to develop a technology for on-line fireside corrosion monitoring. This objective is achieved by the laboratory development of sensors and instrumentation, testing them in a laboratory muffle furnace, and eventually testing the system in a coal-fired furnace. This project successfully developed two types of sensors and measurement systems, and successful tested them in a muffle furnace in the laboratory. The capacitance sensor had a high fabrication cost and might be more appropriate in other applications. The low-cost resistance sensor was tested in a power plant burning eastern bituminous coals. The results show that the fireside corrosion measurement system can be used to determine the corrosion rate at waterwall and superheater locations. Electron microscope analysis of the corroded sensor surface provided detailed picture of the corrosion process.« less

  5. Method for monitoring environmental and corrosion

    DOEpatents

    Glass, R.S.; Clarke, W.L. Jr.; Ciarlo, D.R.

    1995-08-01

    A corrosion sensor array is described incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis. 7 figs.

  6. Method for monitoring environmental and corrosion

    DOEpatents

    Glass, Robert S.; Clarke, Jr., Willis L.; Ciarlo, Dino R.

    1995-01-01

    A corrosion sensor array incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis.

  7. Thermal control system corrosion study

    NASA Technical Reports Server (NTRS)

    Yee, Robert; Folsom, Rolfe A.; Mucha, Phillip E.

    1990-01-01

    During the development of an expert system for autonomous control of the Space Station Thermal Control System (TCS), the thermal performance of the Brassboard TCS began to gradually degrade. This degradation was due to filter clogging by metallic residue. A study was initiated to determine the source of the residue and the basic cause of the corrosion. The investigation focused on the TCS design, materials compatibility, Ames operating and maintenance procedures, and chemical analysis of the residue and of the anhydrous ammonia used as the principal refrigerant. It was concluded that the corrosion mechanisms involved two processes: the reaction of water alone with large, untreated aluminum parts in a high pH environment and the presence of chlorides and chloride salts. These salts will attack the aluminum oxide layer and may enable galvanic corrosion between the aluminum and the more noble stainless steel and other metallic elements present. Recommendations are made for modifications to the system design, the materials used, and the operating and maintenance procedures, which should largely prevent the recurrence of these corrosion mechanisms.

  8. Amplified OTDR systems for multipoint corrosion monitoring.

    PubMed

    Nascimento, Jehan F; Silva, Marcionilo J; Coêlho, Isnaldo J S; Cipriano, Eliel; Martins-Filho, Joaquim F

    2012-01-01

    We present two configurations of an amplified fiber-optic-based corrosion sensor using the optical time domain reflectometry (OTDR) technique as the interrogation method. The sensor system is multipoint, self-referenced, has no moving parts and can measure the corrosion rate several kilometers away from the OTDR equipment. The first OTDR monitoring system employs a remotely pumped in-line EDFA and it is used to evaluate the increase in system reach compared to a non-amplified configuration. The other amplified monitoring system uses an EDFA in booster configuration and we perform corrosion measurements and evaluations of system sensitivity to amplifier gain variations. Our experimental results obtained under controlled laboratory conditions show the advantages of the amplified system in terms of longer system reach with better spatial resolution, and also that the corrosion measurements obtained from our system are not sensitive to 3 dB gain variations.

  9. Amplified OTDR Systems for Multipoint Corrosion Monitoring

    PubMed Central

    Nascimento, Jehan F.; Silva, Marcionilo J.; Coêlho, Isnaldo J. S.; Cipriano, Eliel; Martins-Filho, Joaquim F.

    2012-01-01

    We present two configurations of an amplified fiber-optic-based corrosion sensor using the optical time domain reflectometry (OTDR) technique as the interrogation method. The sensor system is multipoint, self-referenced, has no moving parts and can measure the corrosion rate several kilometers away from the OTDR equipment. The first OTDR monitoring system employs a remotely pumped in-line EDFA and it is used to evaluate the increase in system reach compared to a non-amplified configuration. The other amplified monitoring system uses an EDFA in booster configuration and we perform corrosion measurements and evaluations of system sensitivity to amplifier gain variations. Our experimental results obtained under controlled laboratory conditions show the advantages of the amplified system in terms of longer system reach with better spatial resolution, and also that the corrosion measurements obtained from our system are not sensitive to 3 dB gain variations. PMID:22737017

  10. Corrosion inhibitors for solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Deramus, G. E., Jr.

    1977-01-01

    Problems dealing with corrosion and corrosion protection of solar heating and cooling systems are discussed. A test program was conducted to find suitable and effective corrosion inhibitors for systems employing either water or antifreeze solutions for heat transfer and storage. Aluminum-mild-steel-copper-stainless steel assemblies in electrical contact were used to simulate a multimetallic system which is the type most likely to be employed. Several inhibitors show promise for this application.

  11. A corrosion monitoring system for existing reinforced concrete structures.

    DOT National Transportation Integrated Search

    2015-05-01

    This study evaluated a multi-parameter corrosion monitoring system for existing reinforced concrete structures in chloride-laden service environments. The system was fabricated based on a prototype concrete corrosion measurement system that : had bee...

  12. Corrosion potential analysis system

    NASA Astrophysics Data System (ADS)

    Kiefer, Karl F.

    1998-03-01

    Many cities in the northeastern U.S. transport electrical power from place to place via underground cables, which utilize voltages from 68 kv to 348 kv. These cables are placed in seamless steel pipe to protect the conductors. These buried pipe-type-cables (PTCs) are carefully designed and constantly pressurized with transformer oil to prevent any possible contamination. A protective coating placed on the outside diameter of the pipe during manufacture protects the steel pipe from the soil environment. Notwithstanding the protection mechanisms available, the pipes remain vulnerable to electrochemical corrosion processes. If undetected, corrosion can cause the pipes to leak transformer oil into the environment. These leaks can assume serious proportions due to the constant pressure on the inside of the pipe. A need exists for a detection system that can dynamically monitor the corrosive potential on the length of the pipe and dynamically adjust cathodic protection to counter local and global changes in the cathodic environment surrounding the pipes. The northeastern United States contains approximately 1000 miles of this pipe. This milage is critical to the transportation and distribution of power. So critical, that each of the pipe runs has a redundant double running parallel to it. Invocon, Inc. proposed and tested a technically unique and cost effective solution to detect critical corrosion potential and to communicate that information to a central data collection and analysis location. Invocon's solution utilizes the steel of the casing pipe as a communication medium. Each data gathering station on the pipe can act as a relay for information gathered elsewhere on the pipe. These stations must have 'smart' network configuration algorithms that constantly test various communication paths and determine the best and most power efficient route through which information should flow. Each network station also performs data acquisition and analysis tasks that ultimately

  13. System for corrosion monitoring in pipeline applying fuzzy logic mathematics

    NASA Astrophysics Data System (ADS)

    Kuzyakov, O. N.; Kolosova, A. L.; Andreeva, M. A.

    2018-05-01

    A list of factors influencing corrosion rate on the external side of underground pipeline is determined. Principles of constructing a corrosion monitoring system are described; the system performance algorithm and program are elaborated. A comparative analysis of methods for calculating corrosion rate is undertaken. Fuzzy logic mathematics is applied to reduce calculations while considering a wider range of corrosion factors.

  14. Corrosion Prevention for Wheeled Vehicle Systems

    DTIC Science & Technology

    1993-08-13

    The audit objective was to evaluate the effectiveness and efficiency of the Army’s procedures for acquiring corrosion prevention and chemical agent...resistant coatings for wheeled vehicle systems. To accomplish this objective, we reviewed corrosion controls and painting processes. The audit also...included a review of the adequacy of internal controls related to the audit objective.

  15. Real-World Water System Lead and Copper Corrosion Control

    EPA Science Inventory

    This presentation provides specific background on lead and copper corrosion control chemistry and strategies, and integrates it with other important distribution system corrosion control objectives. Topics covered include: driving force for corrosion (oxidants); impacts of oxida...

  16. 49 CFR 192.491 - Corrosion control records.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Corrosion control records. 192.491 Section 192.491... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.491 Corrosion... detail to demonstrate the adequacy of corrosion control measures or that a corrosive condition does not...

  17. 49 CFR 192.491 - Corrosion control records.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Corrosion control records. 192.491 Section 192.491... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.491 Corrosion... detail to demonstrate the adequacy of corrosion control measures or that a corrosive condition does not...

  18. 49 CFR 192.491 - Corrosion control records.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Corrosion control records. 192.491 Section 192.491... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.491 Corrosion... detail to demonstrate the adequacy of corrosion control measures or that a corrosive condition does not...

  19. 49 CFR 192.491 - Corrosion control records.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Corrosion control records. 192.491 Section 192.491... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.491 Corrosion... detail to demonstrate the adequacy of corrosion control measures or that a corrosive condition does not...

  20. 49 CFR 192.491 - Corrosion control records.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Corrosion control records. 192.491 Section 192.491... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.491 Corrosion... detail to demonstrate the adequacy of corrosion control measures or that a corrosive condition does not...

  1. Corrosion of Magnesium in Multimaterial System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Vineet V.; Agnew, Sean

    The TMS Magnesium Committee has been actively involved in presenting cutting-edge research and development and the latest trends related to magnesium and its alloys to industry and academia. Topics including magnesium alloy development, applications, mechanism of deformation and corrosion, thermomechanical processing, modelling, etc. have been captured year after year through the Magnesium Technology symposium and conference proceedings at TMS and through special topics in JOM. Every year, based on the unanimous endorsement from the industry and academia, a topic is selected to address the latest developments within this subject in JOM. In continuation with last year’s coverage of Advances andmore » Achievements in In-Situ Analysis of Corrosions and Structure–Property Relationship in Mg Alloys,[1] this year’s topic focuses on the Corrosion of Magnesium in Multimaterial Systems. Magnesium, the lightest of all the structural materials, has garnered much interest in the transportation, electronics packaging, defense equipments and industries alike and are more commonly being incorporated in multimaterial design concepts.[2-4] However, the application of the same is limited due to its highly corrosive nature, and understanding and mitigating the corrosion of magnesium has been a major research challenge.« less

  2. Corrosion Behavior of an Abradable Seal Coating System

    NASA Astrophysics Data System (ADS)

    Zhang, Feng; Xu, Cunguan; Lan, Hao; Huang, Chuanbing; Zhou, Yang; Du, Lingzhong; Zhang, Weigang

    2014-08-01

    A novel NiTi/BN composite abradable coating and two traditional Ni/C and Ni/BN coatings were manufactured with NiAl as the bond layer using thermal spray technology and their corrosion behaviors were investigated. In salt spray corrosion testing of the Ni/BN coating, defective sites of the metal matrix were corroded preferentially. Simulated occlusion experiments and electrochemical tests indicated that migration of ions resulted in pH decrease and Cl- enrichment in defects, and a more aggressive electrolyte led to a decrease of the corrosion potential of the metal inside defects but an increase of the corrosion current density, representing an autocatalytic corrosion process. Moreover, galvanic corrosion between the top and bond coatings of the abradable system was studied via the electrochemical technique. The results showed that, for the NiTi/BN, Ni/BN, and Ni/graphite coatings with a NiAl bond coating, current flow was generated between the anode and cathode. The NiTi/BN coating acted as the cathode due to its passivation, while the Ni/BN and Ni/graphite coatings acted as the anode because of their lower corrosion potential compared with the NiAl coating. The anode suffered serious corrosion damage due to galvanic corrosion, while the cathode corroded only slightly.

  3. 49 CFR 193.2627 - Atmospheric corrosion control.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Atmospheric corrosion control. 193.2627 Section... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2627 Atmospheric corrosion... atmospheric corrosion by— (a) Material that has been designed and selected to resist the corrosive atmosphere...

  4. 49 CFR 193.2631 - Internal corrosion control.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Internal corrosion control. 193.2631 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2631 Internal corrosion control. Each component that is subject to internal corrosive attack must be protected from internal corrosion by— (a...

  5. Development of a Corrosion Sensor for AN Aircraft Vehicle Health Monitoring System

    NASA Astrophysics Data System (ADS)

    Scott, D. A.; Price, D. C.; Edwards, G. C.; Batten, A. B.; Kolmeder, J.; Muster, T. H.; Corrigan, P.; Cole, I. S.

    2010-02-01

    A Rayleigh-wave-based sensor has been developed to measure corrosion damage in aircraft. This sensor forms an important part of a corrosion monitoring system being developed for a major aircraft manufacturer. This system measures the corrosion rate at the location of its sensors, and through a model predicts the corrosion rates in nearby places on an aircraft into which no sensors can be placed. In order to calibrate this model, which yields corrosion rates rather than the accumulated effect, an absolute measure of the damage is required. In this paper the development of a surface wave sensor capable of measuring accumulated damage will be described in detail. This sensor allows the system to measure material loss due to corrosion regardless of the possible loss of historical corrosion rate data, and can provide, at any stage, a benchmark for the predictive model that would allow a good estimate of the accumulated corrosion damage in similar locations on an aircraft. This system may obviate the need for costly inspection of difficult-to-access places in aircraft, where presently the only way to check for corrosion is by periodic dismantling and reassembly.

  6. 49 CFR 193.2625 - Corrosion protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Corrosion protection. 193.2625 Section 193.2625...: FEDERAL SAFETY STANDARDS Maintenance § 193.2625 Corrosion protection. (a) Each operator shall determine which metallic components could, unless corrosion is controlled, have their integrity or reliability...

  7. 49 CFR 193.2625 - Corrosion protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Corrosion protection. 193.2625 Section 193.2625...: FEDERAL SAFETY STANDARDS Maintenance § 193.2625 Corrosion protection. (a) Each operator shall determine which metallic components could, unless corrosion is controlled, have their integrity or reliability...

  8. 49 CFR 193.2625 - Corrosion protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Corrosion protection. 193.2625 Section 193.2625...: FEDERAL SAFETY STANDARDS Maintenance § 193.2625 Corrosion protection. (a) Each operator shall determine which metallic components could, unless corrosion is controlled, have their integrity or reliability...

  9. 49 CFR 193.2625 - Corrosion protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Corrosion protection. 193.2625 Section 193.2625...: FEDERAL SAFETY STANDARDS Maintenance § 193.2625 Corrosion protection. (a) Each operator shall determine which metallic components could, unless corrosion is controlled, have their integrity or reliability...

  10. Corrosion consequences of microfouling in water reclamation systems

    NASA Technical Reports Server (NTRS)

    Ford, Tim; Mitchell, Ralph

    1991-01-01

    This paper examines the potential fouling and corrosion problems associated with microbial film formation throughout the water reclamation system (WRS) designed for the Space Station Freedom. It is shown that the use of advanced metal sputtering techiques combined with image analysis and FTIR spectroscopy will present realistic solutions for investigating the formation and function of biofilm on different alloys, the subsequent corrosion, and the efficiency of different treatments. These techniques, used in combination with electrochemical measurements of corrosion, will provide a powerful approach to examinations of materials considered for use in the WRS.

  11. Evaluation of several corrosion protective coating systems on aluminum

    NASA Technical Reports Server (NTRS)

    Higgins, R. H.

    1981-01-01

    A study of several protective coating systems for use on aluminum in seawater/seacoast environments was conducted to review the developments made on protective coatings since early in the Space Shuttle program and to perform comparative studies on these coatings to determine their effectiveness for providing corrosion protection during exposure to seawater/seacoast environments. Panels of 2219-T87 aluminum were coated with 21 different systems and exposed to a 5 percent salt spray for 4000 hr. Application properties, adhesion measurements, heat resistance and corrosion protection were evaluated. For comparative studies, the presently specified Bostik epoxy system used on the SRB structures was included. Results of these tests indicate four systems with outstanding performance and four additional systems with protection almost as good. These systems are based on a chromated pretreatment, a chromate epoxy primer, and a polyurethane topcoat. Consideration for one of these systems should be included for those applications where superior corrosion protection for aluminum surfaces is required.

  12. 49 CFR 192.475 - Internal corrosion control: General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Internal corrosion control: General. 192.475... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.475 Internal corrosion control: General. (a) Corrosive gas may not be transported by...

  13. 49 CFR 192.475 - Internal corrosion control: General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Internal corrosion control: General. 192.475... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.475 Internal corrosion control: General. (a) Corrosive gas may not be transported by...

  14. 49 CFR 192.477 - Internal corrosion control: Monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Internal corrosion control: Monitoring. 192.477... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.477 Internal corrosion control: Monitoring. If corrosive gas is being transported, coupons...

  15. 49 CFR 192.477 - Internal corrosion control: Monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Internal corrosion control: Monitoring. 192.477... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.477 Internal corrosion control: Monitoring. If corrosive gas is being transported, coupons...

  16. Corrosion inhibitors for solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.

    1978-01-01

    Inhibitors which appeared promising in previous tests and additional inhibitors including several proprietary products were evaluated. Evaluation of the inhibitors was based on corrosion protection afforded an aluminum-mild steel-copper-stainless steel assembly in a hot corrosive water. Of the inhibitors tested two were found to be effective and show promise for protecting multimetallic solar heating systems.

  17. 49 CFR 193.2627 - Atmospheric corrosion control.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Atmospheric corrosion control. 193.2627 Section... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2627 Atmospheric corrosion control. Each exposed component that is subject to atmospheric corrosive attack must be protected from...

  18. 49 CFR 193.2627 - Atmospheric corrosion control.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Atmospheric corrosion control. 193.2627 Section... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2627 Atmospheric corrosion control. Each exposed component that is subject to atmospheric corrosive attack must be protected from...

  19. 49 CFR 193.2627 - Atmospheric corrosion control.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Atmospheric corrosion control. 193.2627 Section... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2627 Atmospheric corrosion control. Each exposed component that is subject to atmospheric corrosive attack must be protected from...

  20. 49 CFR 193.2304 - Corrosion control overview.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Corrosion control overview. 193.2304 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Construction § 193.2304 Corrosion control overview. (a... materials specifications from a corrosion control viewpoint and determines that the materials involved will...

  1. 49 CFR 193.2635 - Monitoring corrosion control.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Monitoring corrosion control. 193.2635 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2635 Monitoring corrosion control. Corrosion protection provided as required by this subpart must be periodically monitored to give early...

  2. 49 CFR 193.2635 - Monitoring corrosion control.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Monitoring corrosion control. 193.2635 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2635 Monitoring corrosion control. Corrosion protection provided as required by this subpart must be periodically monitored to give early...

  3. 49 CFR 193.2635 - Monitoring corrosion control.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Monitoring corrosion control. 193.2635 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2635 Monitoring corrosion control. Corrosion protection provided as required by this subpart must be periodically monitored to give early...

  4. 49 CFR 193.2304 - Corrosion control overview.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Corrosion control overview. 193.2304 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Construction § 193.2304 Corrosion control overview. (a... materials specifications from a corrosion control viewpoint and determines that the materials involved will...

  5. 49 CFR 193.2304 - Corrosion control overview.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Corrosion control overview. 193.2304 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Construction § 193.2304 Corrosion control overview. (a... materials specifications from a corrosion control viewpoint and determines that the materials involved will...

  6. 49 CFR 193.2304 - Corrosion control overview.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Corrosion control overview. 193.2304 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Construction § 193.2304 Corrosion control overview. (a... materials specifications from a corrosion control viewpoint and determines that the materials involved will...

  7. 49 CFR 193.2635 - Monitoring corrosion control.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Monitoring corrosion control. 193.2635 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2635 Monitoring corrosion control. Corrosion protection provided as required by this subpart must be periodically monitored to give early...

  8. NON-CORROSIVE REACTOR FUEL SYSTEM

    DOEpatents

    Herrick, C.C.

    1962-08-14

    A non-corrosive nuclear reactor fuel system was developed utilizing a molten plutonium-- iron alloy fuel having about 2 at.% carbon and contained in a tantalum vessel. This carbon reacts with the interior surface of the tantalum vessel to form a plutonium resistant self-healing tantalum carbide film. (AEC)

  9. Control of corrosive bacterial community by bronopol in industrial water system.

    PubMed

    Narenkumar, Jayaraman; Ramesh, Nachimuthu; Rajasekar, Aruliah

    2018-01-01

    Ten aerobic corrosive bacterial strains were isolated from a cooling tower water system (CWS) which were identified based on the biochemical characterization and 16S rRNA gene sequencing. Out of them, dominant corrosion-causing bacteria, namely, Bacillus thuringiensis EN2, Terribacillus aidingensis EN3, and Bacillus oleronius EN9, were selected for biocorrosion studies on mild steel 1010 (MS) in a CWS. The biocorrosion behaviour of EN2, EN3, and EN9 strains was studied using immersion test (weight loss method), electrochemical analysis, and surface analysis. To address the corrosion problems, an anti-corrosive study using a biocide, bronopol was also demonstrated. Scanning electron microscopy and Fourier-transform infrared spectroscopy analyses of the MS coupons with biofilm developed after exposure to CWS confirmed the accumulation of extracellular polymeric substances and revealed that biofilms was formed as microcolonies, which subsequently cause pitting corrosion. In contrast, the biocide system, no pitting type of corrosion, was observed and weight loss was reduced about 32 ± 2 mg over biotic system (286 ± 2 mg). FTIR results confirmed the adsorption of bronopol on the MS metal surface as protective layer (co-ordination of NH 2 -Fe 3+ ) to prevent the biofilm formation and inhibit the corrosive chemical compounds and thus led to reduction of corrosion rate (10 ± 1 mm/year). Overall, the results from WL, EIS, SEM, XRD, and FTIR concluded that bronopol was identified as effective biocide and corrosion inhibitor which controls the both chemical and biocorrosion of MS in CWS.

  10. 49 CFR 193.2629 - External corrosion control: buried or submerged components.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2629 External... external corrosive attack must be protected from external corrosion by— (1) Material that has been designed...

  11. Method for inhibiting corrosion in aqueous systems

    DOEpatents

    DeMonbrun, James R.; Schmitt, Charles R.; Schreyer, James M.

    1980-01-01

    This invention is a method for inhibiting corrosion in aqueous systems containing components composed of aluminum, copper, iron, or alloys thereof. The method comprises (a) incorporating in the aqueous medium 2-10 ppm by weight of tolyltriazole; an effective amount of a biodegradable organic biocide; 500-1000 ppm by weight of sodium metasilicate; 500-2000 ppm by weight of sodium nitrite; and 500-2000 ppm by weight of sodium tetraborate, all of these concentrations being based on the weight of water in the system; and (b) maintaining the pH of the resulting system in the range of 7.5 to 8.0. The method permits longterm operation with very low corrosion rates and bacteria counts. All of the additives to the system are biodegradable, permitting the treated aqueous medium to be discharged to the environment without violating current regulations. The method has special application to solar systems in which an aqueous medium is circulated through aluminum-alloy heat exchangers.

  12. 49 CFR 192.465 - External corrosion control: Monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false External corrosion control: Monitoring. 192.465... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.465 External corrosion control: Monitoring. (a) Each pipeline that is under cathodic...

  13. 49 CFR 192.481 - Atmospheric corrosion control: Monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Atmospheric corrosion control: Monitoring. 192.481... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.481 Atmospheric corrosion control: Monitoring. (a) Each operator must inspect each pipeline...

  14. 49 CFR 192.465 - External corrosion control: Monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false External corrosion control: Monitoring. 192.465... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.465 External corrosion control: Monitoring. (a) Each pipeline that is under cathodic...

  15. 49 CFR 192.465 - External corrosion control: Monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false External corrosion control: Monitoring. 192.465... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.465 External corrosion control: Monitoring. (a) Each pipeline that is under cathodic...

  16. 49 CFR 192.465 - External corrosion control: Monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false External corrosion control: Monitoring. 192.465... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.465 External corrosion control: Monitoring. (a) Each pipeline that is under cathodic...

  17. 49 CFR 192.479 - Atmospheric corrosion control: General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... this section. (b) Coating material must be suitable for the prevention of atmospheric corrosion. (c... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion..., or experience appropriate to the environment of the pipeline that corrosion will— (1) Only be a light...

  18. 49 CFR 192.479 - Atmospheric corrosion control: General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... this section. (b) Coating material must be suitable for the prevention of atmospheric corrosion. (c... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion..., or experience appropriate to the environment of the pipeline that corrosion will— (1) Only be a light...

  19. Corrosion Prevention and Control Planning Guidebook for Military Systems and Equipment

    DTIC Science & Technology

    2014-04-02

    corrosion to applying advanced materials, coatings, inhibitors, and cathodic protection for corrosion control over many years, well before the DoD...requiring the delivery of the Contractor CPCP. Further, MIL-HDBK-1568 is for aerospace systems. Consider this when tailoring your Contract Data...Corrosion personnel from the user command; o Information Analysis Center personnel, such as Advanced Materials, Manufacturing, and Testing Information

  20. 49 CFR 193.2627 - Atmospheric corrosion control.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 193.2627 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2627 Atmospheric corrosion...

  1. 49 CFR 193.2635 - Monitoring corrosion control.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....2635 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2635 Monitoring corrosion control...

  2. 49 CFR 193.2304 - Corrosion control overview.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....2304 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Construction § 193.2304 Corrosion control overview. (a...

  3. 49 CFR 193.2631 - Internal corrosion control.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....2631 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2631 Internal corrosion control. Each...

  4. NASA's Corrosion Technology Laboratory at the Kennedy Space Center: Anticipating, Managing, and Preventing Corrosion

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina

    2015-01-01

    The marine environment at NASAs Kennedy Space Center (KSC) has been documented by ASM International (formerly American Society for Metals) as the most corrosive in North America. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pads were rendered even more severe by the highly corrosive hydrochloric acid (HCl) generated by the solid rocket boosters (SRBs). Numerous failures at the launch pads are caused by corrosion. The structural integrity of ground infrastructure and flight hardware is critical to the success, safety, cost, and sustainability of space missions. NASA has over fifty years of experience dealing with unexpected failures caused by corrosion and has developed expertise in corrosion control in the launch and other environments. The Corrosion Technology Laboratory at KSC evolved, from what started as an atmospheric exposure test site near NASAs launch pads, into a capability that provides technical innovations and engineering services in all areas of corrosion for NASA, external partners, and customers.This paper provides a chronological overview of NASAs role in anticipating, managing, and preventing corrosion in highly corrosive environments. One important challenge in managing and preventing corrosion involves the detrimental impact on humans and the environment of what have been very effective corrosion control strategies. This challenge has motivated the development of new corrosion control technologies that are more effective and environmentally friendly. Strategies for improved corrosion protection and durability can have a huge impact on the economic sustainability of human spaceflight operations.

  5. Corrosion and Corrosion Control in Light Water Reactors

    NASA Astrophysics Data System (ADS)

    Gordon, Barry M.

    2013-08-01

    Serious corrosion problems have plagued the light water reactor (LWR) industry for decades. The complex corrosion mechanisms involved and the development of practical engineering solutions for their mitigation will be discussed in this article. After a brief overview of the basic designs of the boiling water reactor (BWR) and pressurized water reactor (PWR), emphasis will be placed on the general corrosion of LWR containments, flow-accelerated corrosion of carbon steel components, intergranular stress corrosion cracking (IGSCC) in BWRs, primary water stress corrosion cracking (PWSCC) in PWRs, and irradiation-assisted stress corrosion cracking (IASCC) in both systems. Finally, the corrosion future of both plants will be discussed as plants extend their period of operation for an additional 20 to 40 years.

  6. Replacement of chromates in paints and corrosion protection systems [Stage 1

    DOT National Transportation Integrated Search

    2004-05-01

    This technical report presents the first stage results of a multi-year project to develop chromate-free paints and corrosion protection systems. Chromate coatings and chromate-containing paints are very effective in providing corrosion resistance and...

  7. Space Shuttle Corrosion Protection Performance

    NASA Technical Reports Server (NTRS)

    Curtis, Cris E.

    2007-01-01

    The reusable Manned Space Shuttle has been flying into Space and returning to earth for more than 25 years. The launch pad environment can be corrosive to metallic substrates and the Space Shuttles are exposed to this environment when preparing for launch. The Orbiter has been in service well past its design life of 10 years or 100 missions. As part of the aging vehicle assessment one question under evaluation is how the thermal protection system and aging protective coatings are performing to insure structural integrity. The assessment of this cost resources and time. The information is invaluable when minimizing risk to the safety of Astronauts and Vehicle. This paper will outline a strategic sampling plan and some operational improvements made by the Orbiter Structures team and Corrosion Control Review Board.

  8. Replacement of chromates in paints and corrosion protection systems [Stage 2

    DOT National Transportation Integrated Search

    2004-05-01

    This technical report presents the second stage results of a multi-year project to develop chromate-free paints and corrosion protection systems. Chromate-containing coatings and paints are very effective in providing corrosion resistance and are wid...

  9. Multiple corrosion protection systems for reinforced concrete bridge components.

    DOT National Transportation Integrated Search

    2007-07-01

    Eleven systems combining epoxy-coated reinforcement with another corrosion protection system are evaluated using : the rapid macrocell, Southern Exposure, cracked beam, and linear polarization resistance tests. The systems include : bars that are pre...

  10. 49 CFR 192.469 - External corrosion control: Test stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false External corrosion control: Test stations. 192.469... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.469 External corrosion control: Test stations. Each pipeline under cathodic protection...

  11. 49 CFR 192.469 - External corrosion control: Test stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false External corrosion control: Test stations. 192.469... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.469 External corrosion control: Test stations. Each pipeline under cathodic protection...

  12. 49 CFR 192.469 - External corrosion control: Test stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false External corrosion control: Test stations. 192.469... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.469 External corrosion control: Test stations. Each pipeline under cathodic protection...

  13. 49 CFR 192.469 - External corrosion control: Test stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false External corrosion control: Test stations. 192.469... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.469 External corrosion control: Test stations. Each pipeline under cathodic protection...

  14. 49 CFR 192.469 - External corrosion control: Test stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false External corrosion control: Test stations. 192.469... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.469 External corrosion control: Test stations. Each pipeline under cathodic protection...

  15. Biobased polymers for corrosion protection of metals

    USDA-ARS?s Scientific Manuscript database

    Anticorrosive biobased polymers were developed in our lab. We isolated an exopolysaccharide produced by a microbe that, when coated on metal substrates, exhibited unique corrosion inhibition. Corrosion is a worldwide problem and impacts the economy, jeopardizes human health and safety, and impedes t...

  16. On-Line Corrosion Monitoring of Plate Structures Based on Guided Wave Tomography Using Piezoelectric Sensors.

    PubMed

    Rao, Jing; Ratassepp, Madis; Lisevych, Danylo; Hamzah Caffoor, Mahadhir; Fan, Zheng

    2017-12-12

    Corrosion is a major safety and economic concern to various industries. In this paper, a novel ultrasonic guided wave tomography (GWT) system based on self-designed piezoelectric sensors is presented for on-line corrosion monitoring of large plate-like structures. Accurate thickness reconstruction of corrosion damages is achieved by using the dispersive regimes of selected guided waves and a reconstruction algorithm based on full waveform inversion (FWI). The system makes use of an array of miniaturised piezoelectric transducers that are capable of exciting and receiving highly dispersive A0 Lamb wave mode at low frequencies. The scattering from transducer array has been found to have a small effect on the thickness reconstruction. The efficiency and the accuracy of the new system have been demonstrated through continuous forced corrosion experiments. The FWI reconstructed thicknesses show good agreement with analytical predictions obtained by Faraday's law and laser measurements, and more importantly, the thickness images closely resemble the actual corrosion sites.

  17. 49 CFR 192.471 - External corrosion control: Test leads.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false External corrosion control: Test leads. 192.471... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.471 External corrosion control: Test leads. (a) Each test lead wire must be connected to the...

  18. 49 CFR 192.471 - External corrosion control: Test leads.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false External corrosion control: Test leads. 192.471... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.471 External corrosion control: Test leads. (a) Each test lead wire must be connected to the...

  19. Electrochemical noise measurements of sustained microbially influenced pitting corrosion in a laboratory flow loop system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Y.; Frank, J.R.; St. Martin, E.J.

    Because of the chaotic nature of the corrosion process and the complexity of the electrochemical noise signals that are generated, there is no generally accepted method of measuring and interpreting these signals that allows the consistent detection and identification of sustained localized pitting (SLP) as compared to general corrosion. The authors have reexamined electrochemical noise analysis (ENA) of localized corrosion using different hardware, signal collection, and signal processing designs than those used in conventional ENA techniques. The new data acquisition system was designed to identify and monitor the progress of SLP by analyzing the power spectral density (PSD) of themore » trend of the corrosion current noise level (CNL) and potential noise level (PNL). Each CNL and PNL data point was calculated from the root-mean-square value of the ac components of current and potential fluctuation signals, which were measured simultaneously during a short time period. The PSD analysis results consistently demonstrated that the trends of PNL and CNL contain information that can be used to differentiate between SLP and general corrosion mechanisms. The degree of linear slope in the low-frequency portion of the PSD analysis was correlated with the SLP process. Laboratory metal coupons as well as commercial corrosion probes were tested to ensure the reproducibility and consistency of the results. The on-line monitoring capability of this new ENA method was evaluated in a bench-scale flow-loop system, which simulated microbially influenced corrosion (MIC) activity. The conditions in the test flow-loop system were controlled by the addition of microbes and different substrates to favor accelerated corrosion. The ENA results demonstrated that this in-situ corrosion monitoring system could effectively identify SLP corrosion associated with MIC, compared to a more uniform general corrosion mechanism. A reduction in SLP activity could be clearly detected by the ENA

  20. Electrochemical noise measurements of sustained microbially influenced pitting corrosion in a laboratory flow loop system.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Y. J.

    Because of the chaotic nature of the corrosion process and the complexity of the electrochemical noise signals that are generated, there is no generally accepted method of measuring and interpreting these signals that allows the consistent detection and identification of sustained localized pitting (SLP) as compared to general corrosion. We have reexamined electrochemical noise analysis (ENA) of localized corrosion using different hardware, signal collection, and signal processing designs than those used in conventional ENA techniques. The new data acquisition system was designed to identify and monitor the progress of SLP by analyzing the power spectral density (PSD) of the trendmore » of the corrosion current noise level (CNL) and potential noise level (PNL). Each CNL and PNL data point was calculated from the root-mean- square value of the ac components of current and potential fluctuation signals, which were measured simultaneously during a short time period. The PSD analysis results consistently demonstrated that the trends of PNL and CNL contain information that can be used to differentiate between SLP and general corrosion mechanisms. The degree of linear slope in the low-frequency portion of the PSD analysis was correlated with the SLP process. Laboratory metal coupons as well as commercial corrosion probes were tested to ensure the reproducibility and consistency of the results. The on-line monitoring capability of this new ENA method was evaluated in a bench-scale flow-loop system, which simulated microbially influenced corrosion (MIC) activity. The conditions in the test flow-loop system were controlled by the addition of microbes and different substrates to favor accelerated corrosion. The ENA results demonstrated that this in-situ corrosion monitoring system could effectively identify SLP corrosion associated with MIC, compared to a more uniform general corrosion mechanism. A reduction in SLP activity could be clearly detected by the ENA monitoring

  1. Controlled-Release Microcapsules for Smart Coatings for Corrosion Applications

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Corrosion is a serious problem that has enormous costs and serious safety implications. Localized corrosion, such as pitting, is very dangerous and can cause catastrophic failures. The NASA Corrosion Technology Laboratory at Kennedy Space Center is developing a smart coating based on pH-sensitive microcapsules for corrosion applications. These versatile microcapsules are designed to be incorporated into a smart coating and deliver their core content when corrosion starts. Corrosion indication was the first function incorporated into the microcapsules. Current efforts are focused on incorporating the corrosion inhibition function through the encapsulation of corrosion inhibitors into water core and oil core microcapsules. Scanning electron microscopy (SEM) images of encapsulated corrosion inhibitors are shown.

  2. Airline Safety and Economy

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This video documents efforts at NASA Langley Research Center to improve safety and economy in aircraft. Featured are the cockpit weather information needs computer system, which relays real time weather information to the pilot, and efforts to improve techniques to detect structural flaws and corrosion, such as the thermal bond inspection system.

  3. 49 CFR 193.2625 - Corrosion protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Corrosion protection. 193.2625 Section 193.2625 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES...

  4. Potentiodynamic Corrosion Testing.

    PubMed

    Munir, Selin; Pelletier, Matthew H; Walsh, William R

    2016-09-04

    Different metallic materials have different polarization characteristics as dictated by the open circuit potential, breakdown potential, and passivation potential of the material. The detection of these electrochemical parameters identifies the corrosion factors of a material. A reliable and well-functioning corrosion system is required to achieve this. Corrosion of the samples was achieved via a potentiodynamic polarization technique employing a three-electrode configuration, consisting of reference, counter, and working electrodes. Prior to commencement a baseline potential is obtained. Following the stabilization of the corrosion potential (Ecorr), the applied potential is ramped at a slow rate in the positive direction relative to the reference electrode. The working electrode was a stainless steel screw. The reference electrode was a standard Ag/AgCl. The counter electrode used was a platinum mesh. Having a reliable and well-functioning in vitro corrosion system to test biomaterials provides an in-expensive technique that allows for the systematic characterization of the material by determining the breakdown potential, to further understand the material's response to corrosion. The goal of the protocol is to set up and run an in vitro potentiodynamic corrosion system to analyze pitting corrosion for small metallic medical devices.

  5. 49 CFR 193.2631 - Internal corrosion control.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Internal corrosion control. 193.2631 Section 193.2631 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS...

  6. 49 CFR 193.2631 - Internal corrosion control.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Internal corrosion control. 193.2631 Section 193.2631 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS...

  7. 49 CFR 193.2631 - Internal corrosion control.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Internal corrosion control. 193.2631 Section 193.2631 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS...

  8. Corrosion and scaling potential in drinking water distribution system of tabriz, northwestern iran.

    PubMed

    Taghipour, Hassan; Shakerkhatibi, Mohammad; Pourakbar, Mojtaba; Belvasi, Mehdi

    2012-01-01

    This paper discusses the corrosion and scaling potential of Tabriz drinking water distribution system in Northwest of Iran. Internal corrosion of piping is a serious problem in drinking water industry. Corrosive water can cause intrusion of heavy metals especially lead in to water, therefore effecting public health. The aim of this study was to determine corrosion and scaling potential in potable water distribution system of Tabriz during the spring and summer in 2011. This study was carried out using Langlier Saturation Index, Ryznar Stability Index, Puckorius Scaling Index, and Aggressiveness indices. Eighty samples were taken from all over the city within two seasons, spring, and summer. Related parameters including temperature, pH, total dissolved solids, calcium hardness, and total alkalinity in all samples were measured in laboratory according to standard method manual. For the statistical analysis of the results, SPSS software (version 11.5) was used The mean and standard deviation values of Langlier, Ryznar, Puckorius and Aggressiveness Indices were equal to -0.68 (±0.43), 8.43 (±0.55), 7.86 (±0.36) and 11.23 (±0.43), respectively. By survey of corrosion indices, it was found that Tabriz drinking water is corrosive. In order to corrosion control, it is suggested that laboratorial study with regard to the distribution system condition be carried out to adjust effective parameters such as pH.

  9. 49 CFR 192.465 - External corrosion control: Monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Section 192.465 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion...

  10. 49 CFR 195.589 - What corrosion control information do I have to maintain?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false What corrosion control information do I have to... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.589 What corrosion control... sufficient detail to demonstrate the adequacy of corrosion control measures or that corrosion requiring...

  11. 49 CFR 195.589 - What corrosion control information do I have to maintain?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false What corrosion control information do I have to... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.589 What corrosion control... sufficient detail to demonstrate the adequacy of corrosion control measures or that corrosion requiring...

  12. 49 CFR 195.589 - What corrosion control information do I have to maintain?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false What corrosion control information do I have to... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.589 What corrosion control... sufficient detail to demonstrate the adequacy of corrosion control measures or that corrosion requiring...

  13. 49 CFR 195.589 - What corrosion control information do I have to maintain?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false What corrosion control information do I have to... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.589 What corrosion control... sufficient detail to demonstrate the adequacy of corrosion control measures or that corrosion requiring...

  14. 49 CFR 195.589 - What corrosion control information do I have to maintain?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false What corrosion control information do I have to... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.589 What corrosion control... sufficient detail to demonstrate the adequacy of corrosion control measures or that corrosion requiring...

  15. Virtual Instrumentation Corrosion Controller for Natural Gas Pipelines

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, J.; Agnihotri, G.; Deshpande, D. M.

    2012-12-01

    Corrosion is an electrochemical process. Corrosion in natural gas (methane) pipelines leads to leakages. Corrosion occurs when anode and cathode are connected through electrolyte. Rate of corrosion in metallic pipeline can be controlled by impressing current to it and thereby making it to act as cathode of corrosion cell. Technologically advanced and energy efficient corrosion controller is required to protect natural gas pipelines. Proposed virtual instrumentation (VI) based corrosion controller precisely controls the external corrosion in underground metallic pipelines, enhances its life and ensures safety. Designing and development of proportional-integral-differential (PID) corrosion controller using VI (LabVIEW) is carried out. When the designed controller is deployed at field, it maintains the pipe to soil potential (PSP) within safe operating limit and not entering into over/under protection zone. Horizontal deployment of this technique can be done to protect all metallic structure, oil pipelines, which need corrosion protection.

  16. Threshold Corrosion Fatigue of Welded Shipbuilding Steels.

    DTIC Science & Technology

    1992-01-01

    8. J. C. Walter, E. Olbjorn, 0. Allstad and G. Elde, "Safety Against Corrosion Fatigue Offshore," Publication No. 94, Det Norske Ventas , Horik...Offshore. Publication No;. 94;, Det Norske Ventas , Horik, Norway, April 1976. 18. C. E. Jaske, D. Broek, J. E. Slater, W. E. Anderson. Corrosion Fatigue

  17. NASA's Corrosion Technology Laboratory at the Kennedy Space Center: Anticipating, Managing, and Preventing Corrosion

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina

    2014-01-01

    Corrosion is the degradation of a material that results from its interaction with the environment. The marine environment at NASAs Kennedy Space Center (KSC) has been documented by ASM International (formerly American Society for Metals) as the most corrosive in the United States. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pads were rendered even more severe by the 70 tons of highly corrosive hydrochloric acid that were generated by the solid rocket boosters. Numerous failures at the launch pads are caused by corrosion.The structural integrity of ground infrastructure and flight hardware is critical to the success, safety, cost, and sustainability of space missions. As a result of fifty years of experience with launch and ground operations in a natural marine environment that is highly corrosive, NASAs Corrosion Technology Laboratory at KSC is a major source of corrosion control expertise in the launch and other environments. Throughout its history, the Laboratory has evolved from what started as an atmospheric exposure facility near NASAs launch pads into a world-wide recognized capability that provides technical innovations and engineering services in all areas of corrosion for NASA and external customers.This presentation will provide a historical overview of the role of NASAs Corrosion Technology in anticipating, managing, and preventing corrosion. One important challenge in managing and preventing corrosion involves the detrimental impact on humans and the environment of what have been very effective corrosion control strategies. This challenge has motivated the development of new corrosion control technologies that are more effective and environmentally friendly. Strategies for improved corrosion protection and durability can have a huge impact on the economic sustainability of human spaceflight operations.

  18. Corrosion behaviour and biocorrosion of galvanized steel water distribution systems.

    PubMed

    Delaunois, F; Tosar, F; Vitry, V

    2014-06-01

    Galvanized steel tubes are a popular mean for water distribution systems but suffer from corrosion despite their zinc or zinc alloy coatings. First, the quality of hot-dip galvanized (HDG) coatings was studied. Their microstructure, defects, and common types of corrosion were observed. It was shown that many manufactured tubes do not reach European standard (NBN EN 10240), which is the cause of several corrosion problems. The average thickness of zinc layer was found at 41μm against 55μm prescribed by the European standard. However, lack of quality, together with the usual corrosion types known for HDG steel tubes was not sufficient to explain the high corrosion rate (reaching 20μm per year versus 10μm/y for common corrosion types). Electrochemical tests were also performed to understand the corrosion behaviours occurring in galvanized steel tubes. Results have shown that the limiting step was oxygen diffusion, favouring the growth of anaerobic bacteria in steel tubes. EDS analysis was carried out on corroded coatings and has shown the presence of sulphur inside deposits, suggesting the likely bacterial activity. Therefore biocorrosion effects have been investigated. Actually sulphate reducing bacteria (SRB) can reduce sulphate contained in water to hydrogen sulphide (H2S), causing the formation of metal sulphides. Although microbial corrosion is well-known in sea water, it is less investigated in supply water. Thus, an experimental water main was kept in operation for 6months. SRB were detected by BART tests in the test water main. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Corrosion science, corrosion engineering, and advanced technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latanision, R.M.

    1995-04-01

    Professor R.M. Latanision was the 1994 recipient of the Willis Rodney Whitney Award sponsored by NACE International. The present work is taken from his award lecture at CORROSION/94 held in March 1994 in Baltimore, MD. Latanision discussed the interplay between corrosion science and corrosion engineering in advancing technology. His lecture focused on supercritical water oxidation and other technologies that have been under study in the H.H. Uhlig Corrosion Laboratory and in which the chemical properties of new materials and traditional materials have proven integral to the development of contemporary or advanced engineering systems.

  20. Corrosion inhibitor for aqueous ammonia absorption system

    DOEpatents

    Phillips, Benjamin A.; Whitlow, Eugene P.

    1998-09-22

    A method of inhibiting corrosion and the formation of hydrogen and thus improving absorption in an ammonia/water absorption refrigeration, air conditioning or heat pump system by maintaining the hydroxyl ion concentration of the aqueous ammonia working fluid within a selected range under anaerobic conditions at temperatures up to 425.degree. F. This hydroxyl ion concentration is maintained by introducing to the aqueous ammonia working fluid an inhibitor in an amount effective to produce a hydroxyl ion concentration corresponding to a normality of the inhibitor relative to the water content ranging from about 0.015 N to about 0.2 N at 25.degree. C. Also, working fluids for inhibiting the corrosion of carbon steel and resulting hydrogen formation and improving absorption in an ammonia/water absorption system under anaerobic conditions at up to 425.degree. F. The working fluids may be aqueous solutions of ammonia and a strong base or aqueous solutions of ammonia, a strong base, and a specified buffer.

  1. Corrosion inhibitor for aqueous ammonia absorption system

    DOEpatents

    Phillips, B.A.; Whitlow, E.P.

    1998-09-22

    A method is described for inhibiting corrosion and the formation of hydrogen and thus improving absorption in an ammonia/water absorption refrigeration, air conditioning or heat pump system by maintaining the hydroxyl ion concentration of the aqueous ammonia working fluid within a selected range under anaerobic conditions at temperatures up to 425 F. This hydroxyl ion concentration is maintained by introducing to the aqueous ammonia working fluid an inhibitor in an amount effective to produce a hydroxyl ion concentration corresponding to a normality of the inhibitor relative to the water content ranging from about 0.015 N to about 0.2 N at 25 C. Also, working fluids for inhibiting the corrosion of carbon steel and resulting hydrogen formation and improving absorption in an ammonia/water absorption system under anaerobic conditions at up to 425 F. The working fluids may be aqueous solutions of ammonia and a strong base or aqueous solutions of ammonia, a strong base, and a specified buffer. 5 figs.

  2. Corrosion and stress corrosion cracking in supercritical water

    NASA Astrophysics Data System (ADS)

    Was, G. S.; Ampornrat, P.; Gupta, G.; Teysseyre, S.; West, E. A.; Allen, T. R.; Sridharan, K.; Tan, L.; Chen, Y.; Ren, X.; Pister, C.

    2007-09-01

    Supercritical water (SCW) has attracted increasing attention since SCW boiler power plants were implemented to increase the efficiency of fossil-based power plants. The SCW reactor (SCWR) design has been selected as one of the Generation IV reactor concepts because of its higher thermal efficiency and plant simplification as compared to current light water reactors (LWRs). Reactor operating conditions call for a core coolant temperature between 280 °C and 620 °C at a pressure of 25 MPa and maximum expected neutron damage levels to any replaceable or permanent core component of 15 dpa (thermal reactor design) and 100 dpa (fast reactor design). Irradiation-induced changes in microstructure (swelling, radiation-induced segregation (RIS), hardening, phase stability) and mechanical properties (strength, thermal and irradiation-induced creep, fatigue) are also major concerns. Throughout the core, corrosion, stress corrosion cracking, and the effect of irradiation on these degradation modes are critical issues. This paper reviews the current understanding of the response of candidate materials for SCWR systems, focusing on the corrosion and stress corrosion cracking response, and highlights the design trade-offs associated with certain alloy systems. Ferritic-martensitic steels generally have the best resistance to stress corrosion cracking, but suffer from the worst oxidation. Austenitic stainless steels and Ni-base alloys have better oxidation resistance but are more susceptible to stress corrosion cracking. The promise of grain boundary engineering and surface modification in addressing corrosion and stress corrosion cracking performance is discussed.

  3. Fighting Corrosion

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Reinforced concrete structures such as bridges, parking decks, and balconies are designed to have a service life of over 50 years. All too often, however, many structures fall short of this goal, requiring expensive repairs and protection work earlier than anticipated. The corrosion of reinforced steel within the concrete infrastructure is a major cause for this premature deterioration. Such corrosion is a particularly dangerous problem for the facilities at NASA s Kennedy Space Center. Located near the Atlantic Ocean in Florida, Kennedy is based in one of the most corrosive-prone areas in the world. In order to protect its launch support structures, highways, pipelines, and other steel-reinforced concrete structures, Kennedy engineers developed the Galvanic Liquid Applied Coating System. The system utilizes an inorganic coating material that slows or stops the corrosion of reinforced steel members inside concrete structures. Early tests determined that the coating meets the criteria of the National Association of Corrosion Engineers for complete protection of steel rebar embedded in concrete. Testing is being continued at the Kennedy's Materials Science Beach Corrosion Test Site.

  4. Stray Current Corrosion in Electrified Rail Systems - Final Report

    DOT National Transportation Integrated Search

    1995-05-01

    The objectives of this study were (1)to assess the scope of stray-current corrosion on electrified rail systems based upon information in the literature and from interviews with selected transit system operators, and (2)to determine whether new or ad...

  5. Corrosiveness of ground water in the Kirkwood-Cohansey aquifer system of the New Jersey Coastal Plain

    USGS Publications Warehouse

    Barringer, J.L.; Kish, G.R.; Velnich, A.J.

    1993-01-01

    Ground water from the unconfined part of the Kirkwood-Cohansey aquifer system in the New Jersey Coastal Plain typically is corrosive-- that is, it is acidic, soft, and has low concentrations of alkalinity. Corrosive ground water has the potential to leach trace elements and asbestos fibers from plumbing materials used in potable- water systems, thereby causing potentially harmful concentrations of these substances in drinking water. Corrosion indices were calculated from water-quality data for 370 wells in the unconfined Kirkwood-Cohansey aquifer system. Values of the Langelier Saturation Index are predominantly negative, indicating that the water is undersaturated with respect to calcium carbonate, and, therefore, is potentially corrosive. Values of the Aggressive Index, a similar estimator of the corrosiveness of water, range from 3.9 (highly corrosive) to 11.9 (moderately corrosive). The median Aggressive Index value calculated for the 370 wells is 6.0, a value that indicates that the water is highly corrosive. Moderately corrosive ground water is found in some coastal areas. Isolated instances of moderately corrosive water are found in northern Ocean County, and in Burlington, Camden, and Salem Counties. In the vicinity of Ocean County corrosion-index values change little with depth, but in Atlantic, Burlington, and Salem Counties the corrosiveness of ground water generally appears to decrease with depth. Analyses of standing tap water from newly constructed homes in the Coastal Plain show concentrations of lead and other trace elements are significantly higher than those in ambient ground water. The elevated trace-element concentrations are attributed to the corrosion of plumbing materials by ground water. Results of the tap-water analyses substantiate the corrosiveness of Kirkwood-Cohansey ground water, as estimated by corrosion-index values.

  6. Experimental Design for the Evaluation of Detection Techniques of Hidden Corrosion Beneath the Thermal Protective System of the Space Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Kammerer, Catherine C.; Jacoby, Joseph A.; Lomness, Janice K.; Hintze, Paul E.; Russell, Richard W.

    2007-01-01

    The United States Space Operational Space Shuttle Fleet Consists of three shuttles with an average age of 19.7 years. Shuttles are exposed to corrosive conditions while undergoing final closeout for missions at the launch pad and extreme conditions during ascent, orbit, and descent that may accelerate the corrosion process. Structural corrosion under TPS could progress undetected (without tile removal) and eventually result in reduction in structural capability sufficient to create negative margins of . safety and ultimate loss of local structural capability.

  7. SILICATES FOR CORROSION CONTROL IN BUILDING POTABLE WATER SYSTEMS

    EPA Science Inventory

    Silicates have been used to control the corrosion of drinking water distribution system materials. Previous work has shown that they are particularly useful in reducing the release of zinc from galvanized materials in hot water systems. Negatively charged silicate species were re...

  8. Smart aircraft fastener evaluation (SAFE) system: a condition-based corrosion detection system for aging aircraft

    NASA Astrophysics Data System (ADS)

    Schoess, Jeffrey N.; Seifert, Greg; Paul, Clare A.

    1996-05-01

    The smart aircraft fastener evaluation (SAFE) system is an advanced structural health monitoring effort to detect and characterize corrosion in hidden and inaccessible locations of aircraft structures. Hidden corrosion is the number one logistics problem for the U.S. Air Force, with an estimated maintenance cost of $700M per year in 1990 dollars. The SAFE system incorporates a solid-state electrochemical microsensor and smart sensor electronics in the body of a Hi-Lok aircraft fastener to process and autonomously report corrosion status to aircraft maintenance personnel. The long-term payoff for using SAFE technology will be in predictive maintenance for aging aircraft and rotorcraft systems, fugitive emissions applications such as control valves, chemical pipeline vessels, and industrial boilers. Predictive maintenance capability, service, and repair will replace the current practice of scheduled maintenance to substantially reduce operational costs. A summary of the SAFE concept, laboratory test results, and future field test plans is presented.

  9. Main Pipelines Corrosion Monitoring Device

    NASA Astrophysics Data System (ADS)

    Anatoliy, Bazhenov; Galina, Bondareva; Natalia, Grivennaya; Sergey, Malygin; Mikhail, Goryainov

    2017-01-01

    The aim of the article is to substantiate the technical solution for the problem of monitoring corrosion changes in oil and gas pipelines with use (using) of an electromagnetic NDT method. Pipeline wall thinning under operating conditions can lead to perforations and leakage of the product to be transported outside the pipeline. In most cases there is danger for human life and environment. Monitoring of corrosion changes in pipeline inner wall under operating conditions is complicated because pipelines are mainly made of structural steels with conductive and magnetic properties that complicate test signal passage through the entire thickness of the object under study. The technical solution of this problem lies in monitoring of the internal corrosion changes in pipes under operating conditions in order to increase safety of pipelines by automated prediction of achieving the threshold pre-crash values due to corrosion.

  10. Ammonium salt corrosion in hydrotreating unit stripper column overhead systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shargay, C.A.; Jacobs, G.E.; Price, M.D.

    In the past, the presence of ammonium bisulfide (NH{sub 4}HS) or ammonium chloride (NH{sub 4}Cl) in hydrotreater stripper overheads was relatively rare. However, designs of newer units and revamps to older units, are resulting in corrosive levels of NH{sub 4}HS or NH{sub 4}Cl in overhead systems. This is primarily due to the addition of a hot high pressure separator (HHPS) with the bottoms going directly (or through another separator) to the stripper. This paper presents data on one corrosion case history in detail, a summary of another case history reported in Retln-Cor 3.0 and the results of a brief surveymore » targeted to units with HHPS designs. Some correlations of the process conditions to the severity of corrosion are made based on the survey results, and recommended materials selection and other corrosion control methods to minimize the risk of this problem are given.« less

  11. Review and study of physics driven pitting corrosion modeling in 2024-T3 aluminum alloys

    NASA Astrophysics Data System (ADS)

    Yu, Lingyu; Jata, Kumar V.

    2015-04-01

    Material degradation due to corrosion and corrosion fatigue has been recognized to significantly affect the airworthiness of civilian and military aircraft, especially for the current fleet of airplanes that have served beyond their initial design life. The ability to predict the corrosion damage development in aircraft components and structures, therefore, is of great importance in managing timely maintenance for the aging aircraft vehicles and in assisting the design of new ones. The assessment of aircraft corrosion and its influence on fatigue life relies on appropriate quantitative models that can evaluate the initiation of the corrosion as well as the accumulation during the period of operation. Beyond the aircraft regime, corrosion has also affected the maintenance, safety and reliability of other systems such as nuclear power systems, steam and gas turbines, marine structures and so on. In the work presented in this paper, we reviewed and studied several physics based pitting corrosion models that have been reported in the literature. The classic work of particle induced pitting corrosion by Wei and Harlow is reviewed in detail. Two types of modeling, a power law based simplified model and a microstructure based model, are compared for 2024-T3 alloy. Data from literatures are used as model inputs. The paper ends with conclusions and recommendations for future work.

  12. Combustion system processes leading to corrosive deposits

    NASA Technical Reports Server (NTRS)

    Stearns, C. A.; Kohl, F. J.; Rosner, D. E.

    1981-01-01

    Degradation of turbine engine hot gas path components by high temperature corrosion can usually be associated with deposits even though other factors may also play a significant role. The origins of the corrosive deposits are traceable to chemical reactions which take place during the combustion process. In the case of hot corrosion/sulfidation, sodium sulfate was established as the deposited corrosive agent even when none of this salt enters the engine directly. The sodium sulfate is formed during the combustion and deposition processes from compounds of sulfur contained in the fuel as low level impurities and sodium compounds, such as sodium chloride, ingested with intake air. In other turbine and power generation situations, corrosive and/or fouling deposits can result from such metals as potassium, iron, calcium, vanadium, magnesium, and silicon.

  13. 49 CFR 195.559 - What coating material may I use for external corrosion control?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... corrosion control? 195.559 Section 195.559 Transportation Other Regulations Relating to Transportation...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.559 What coating material may I use for external corrosion control? Coating material for external corrosion control under...

  14. 49 CFR 195.559 - What coating material may I use for external corrosion control?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... corrosion control? 195.559 Section 195.559 Transportation Other Regulations Relating to Transportation...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.559 What coating material may I use for external corrosion control? Coating material for external corrosion control under...

  15. 49 CFR 195.559 - What coating material may I use for external corrosion control?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... corrosion control? 195.559 Section 195.559 Transportation Other Regulations Relating to Transportation...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.559 What coating material may I use for external corrosion control? Coating material for external corrosion control under...

  16. 49 CFR 195.559 - What coating material may I use for external corrosion control?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... corrosion control? 195.559 Section 195.559 Transportation Other Regulations Relating to Transportation...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.559 What coating material may I use for external corrosion control? Coating material for external corrosion control under...

  17. 49 CFR 195.559 - What coating material may I use for external corrosion control?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... corrosion control? 195.559 Section 195.559 Transportation Other Regulations Relating to Transportation...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.559 What coating material may I use for external corrosion control? Coating material for external corrosion control under...

  18. Corrosion control when using secondary treated municipal wastewater as alternative makeup water for cooling tower systems.

    PubMed

    Hsieh, Ming-Kai; Li, Heng; Chien, Shih-Hsiang; Monnell, Jason D; Chowdhury, Indranil; Dzombak, David A; Vidic, Radisav D

    2010-12-01

    Secondary treated municipal wastewater is a promising alternative to fresh water as power plant cooling water system makeup water, especially in arid regions. Laboratory and field testing was conducted in this study to evaluate the corrosiveness of secondary treated municipal wastewater for various metals and metal alloys in cooling systems. Different corrosion control strategies were evaluated based on varied chemical treatment. Orthophosphate, which is abundant in secondary treated municipal wastewater, contributed to more than 80% precipitative removal of phosphorous-based corrosion inhibitors. Tolyltriazole worked effectively to reduce corrosion of copper (greater than 95% inhibition effectiveness). The corrosion rate of mild steel in the presence of free chlorine 1 mg/L (as Cl2) was approximately 50% higher than in the presence of monochloramine 1 mg/L (as Cl2), indicating that monochloramine is a less corrosive biocide than free chlorine. The scaling layers observed on the metal alloys contributed to corrosion inhibition, which could be seen by comparing the mild steel 21-day average corrosion rate with the last 5-day average corrosion rate, the latter being approximately 50% lower than the former.

  19. Impact of chlorinated disinfection on copper corrosion in hot water systems

    NASA Astrophysics Data System (ADS)

    Montes, J. Castillo; Hamdani, F.; Creus, J.; Touzain, S.; Correc, O.

    2014-09-01

    In France, hot water quality control inside buildings is occasionally ensured by disinfection treatments using temperature increases or addition of sodium hypochlorite (between 0.5 ppm and 1 ppm residual free chlorine). This disinfectant is a strong oxidiser and it could interact with metallic pipes usually used in hot water systems. This work deals with the study of the impact of these treatments on the durability of copper pipes. The objective of this work was to investigate the influence of sodium hypochlorite concentration and temperature on the copper corrosion mechanism. Copper samples were tested under dynamic and static conditions of ageing with sodium hypochlorite solutions ranging from 0 to 100 ppm with temperature at 50 °C and 70 °C. The efficiency of a corrosion inhibitor was investigated in dynamic conditions. Visual observations and analytical analyses of the internal surface of samples was studied at different ageing duration. Corrosion products were characterised by X-ray diffraction and Raman spectroscopy. Temperature and disinfectant were found to considerably affect the copper corrosion mechanism. Surprisingly, the corrosiveness of the solution was higher at lower temperatures. The temperature influences the nature of corrosion products. The protection efficiency is then strongly depend on the nature of the corrosion products formed at the surface of copper samples exposed to the aggressive solutions containing different concentration of disinfectant.

  20. UNSOLVED PROBLEMS WITH CORROSION AND DISTRIBUTION SYSTEM INORGANICS

    EPA Science Inventory

    This presentation provides an overview of new research results and remaining research needs with respect to both corrosion control issues (lead, copper, iron) and to issues of inorganic contaminants that can form or accumulate in distribution system water, pipe scales and distrib...

  1. Demonstration of Antimicrobial Corrosion-Resisting Interior Coating Systems for Military Facilities in Warm, Humid Locations

    DTIC Science & Technology

    2017-06-01

    ER D C/ CE RL T R- 17 -1 9 DoD Corrosion Prevention and Control Program Demonstration of Antimicrobial Corrosion- Resisting Interior ...Demonstration of Antimicrobial Corrosion- Resisting Interior Coating Systems for Military Facilities in Warm, Humid Locations Final Report on...Under Project F10-AR04, “Application of New Corrosion-Resistant Mold Abatement Technologies for Interior Surfaces of Buildings at Fort Polk, LA” ERDC

  2. Characterization of microfouling and corrosive bacterial community of a firewater distribution system.

    PubMed

    Palaniappan, Balamurugan; Toleti, Subba Rao

    2016-04-01

    This investigation provides generic information on the culturable corrosive and the microfouling bacterial community in a firewater distribution system that uses freshwater. Conventional microbiological methods were used for the selective isolation of the major microfouling bacteria. The isolates were characterized by 16S rRNA gene sequencing and the biofilm as well as the corrosion characteristics of the isolates were evaluated. Pseudomonas aeruginosa and Bacillus cereus were predominantly observed in all the samples analysed. Denaturing gradient gel electrophoresis (DGGE) was carried out for the various samples of firewater system (FWS) and the high intensity bands were sequenced to identify the predominant bacteria. Bacterial groups such as Cyanobacteria, Proteobacteria, Actinobacteria, Bacteroidetes and Firmicutes were identified. Biofilm thickness was recorded using confocal scanning laser microscopy (CSLM). This was the first study to report Lysinibacillus fusiformis in a firewater system and its role in iron corrosion. Sulphidogenic bacteria Tissierella sp. and Clostridium bifermentans generated sulphides in the range of 400-900 ppm. Significant corrosion rates of carbon steel (CS) coupons were observed up to 4.3 mpy. C. bifermentans induced more localized corrosion in CS with a pit diameter of 50 μm. Overall, the data on the characterization of the fouling bacteria, their biofilm forming potential and subsequent metal deterioration studies supported in designing an effective water treatment program. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. A Comprehensive Investigation of Copper Pitting Corrosion in a Drinking Water Distribution System

    EPA Science Inventory

    Copper pipe pitting is a complicated corrosion process for which exact causes and solutions are uncertain. This paper presents the findings of a comprehensive investigation of a cold water copper pitting corrosion problem in a drinking water distribution system, including a refi...

  4. 49 CFR 195.557 - Which pipelines must have coating for external corrosion control?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... corrosion control? 195.557 Section 195.557 Transportation Other Regulations Relating to Transportation...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.557 Which pipelines must have coating for external corrosion control? Except bottoms of aboveground breakout tanks, each...

  5. 49 CFR 195.557 - Which pipelines must have coating for external corrosion control?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... corrosion control? 195.557 Section 195.557 Transportation Other Regulations Relating to Transportation...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.557 Which pipelines must have coating for external corrosion control? Except bottoms of aboveground breakout tanks, each...

  6. 49 CFR 195.557 - Which pipelines must have coating for external corrosion control?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... corrosion control? 195.557 Section 195.557 Transportation Other Regulations Relating to Transportation...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.557 Which pipelines must have coating for external corrosion control? Except bottoms of aboveground breakout tanks, each...

  7. 49 CFR 195.557 - Which pipelines must have coating for external corrosion control?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... corrosion control? 195.557 Section 195.557 Transportation Other Regulations Relating to Transportation...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.557 Which pipelines must have coating for external corrosion control? Except bottoms of aboveground breakout tanks, each...

  8. 49 CFR 195.557 - Which pipelines must have coating for external corrosion control?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... corrosion control? 195.557 Section 195.557 Transportation Other Regulations Relating to Transportation...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.557 Which pipelines must have coating for external corrosion control? Except bottoms of aboveground breakout tanks, each...

  9. System safety education focused on flight safety

    NASA Technical Reports Server (NTRS)

    Holt, E.

    1971-01-01

    The measures necessary for achieving higher levels of system safety are analyzed with an eye toward maintaining the combat capability of the Air Force. Several education courses were provided for personnel involved in safety management. Data include: (1) Flight Safety Officer Course, (2) Advanced Safety Program Management, (3) Fundamentals of System Safety, and (4) Quantitative Methods of Safety Analysis.

  10. Internal Corrosion and Deposition Control

    EPA Science Inventory

    This chapter reviews the current knowledge of the science of corrosion control and control of scaling in drinking water systems. Topics covered include: types of corrosion; physical, microbial and chemical factors influencing corrosion; corrosion of specific materials; direct ...

  11. Mathematical modeling of microbially induced crown corrosion in wastewater collection systems and laboratory investigation and modeling of sulfuric acid corrosion of concrete

    NASA Astrophysics Data System (ADS)

    Jahani, Fereidoun

    In the model for microbially induced crown corrosion, the diffusion of sulfide inside the concrete pores, its biological conversion to sulfuric acid, and the corrosion of calcium carbonate aggregates are represented. The corrosion front is modeled as a moving boundary. The location of the interface between the corrosion layer and the concrete is determined as part of the solution to the model equations. This model consisted of a system of one dimensional reaction-diffusion equations coupled to an equation describing the movement of the corrosion front. The equations were solved numerically using finite element Galerkin approximation. The concentration profiles of sulfide in the air and the liquid phases, the pH as a function of concrete depth, and the position of the corrosion front. A new equation for the corrosion rate was also derived. A more specific model for the degradation of a concrete specimen exposed to a sulfuric acid solution was also studied. In this model, diffusion of hydrogen ions and their reaction with alkaline components of concrete were expressed using Fick's Law of diffusion. The model equations described the moving boundary, the dissolution rate of alkaline components in the concrete, volume increase of sulfuric acid solution over the concrete specimen, and the boundary conditions on the surface of the concrete. An apparatus was designed and experiments were performed to measure pH changes on the surface of concrete. The data were used to calculate the dissolution rate of the concrete and, with the model, to determine the diffusion rate of sulfuric acid in the corrosion layer and corrosion layer thickness. Electrochemical Impedance Spectroscopy (EIS) was used to study the corrosion rate of iron pins embedded in the concrete sample. The open circuit potential (OCP) determined the onset of corrosion on the surface of the pins. Visual observation of the corrosion layer thickness was in good agreement with the simulation results.

  12. Assessing Corrosion Damage and Corrosion Progression in Multistrand Anchor Systems in Use at Corps Projects

    DTIC Science & Technology

    2013-07-01

    14  4.8  Corrosion fatigue ...particularly vulnerable. ERDC TR-13-3 15 4.8 Corrosion fatigue Fatigue that takes place in a corrosive environment can reduce the number of...cycles generally considered acceptable before fatigue and fatigue -related failure occur. ERDC TR-13-3 16 5 Historical Perspective: Post-Tensioned

  13. Formulation of a Product Containing the Multifunctional Corrosion Inhibitor System DNBM

    DTIC Science & Technology

    1989-12-22

    corrosion areas are shown in Figs. 14 through 16. The order of anticorrosion effectiveness via the method of time-to-failure was: Best 1. DNBM/Epoxy (No Cr...toluene. In the program described herein, a number of methods were investigated for solubilizing the salts in organic solvents. These included (1...NADC-90049-60 Section 2 DEVELOPMENT OF DNBM CORROSION INHIBITORS The two methods investigated for the solubilization of salts in organic systems were

  14. Demonstration of Three Corrosion-Resistant Sustainable Roofing Systems

    DTIC Science & Technology

    2013-06-01

    will significantly im- prove upon the performance of the original roofing systems . Improvement of energy efficiency, drainage , and other attributes...Sustainable Roofing Systems Final Report on Project F08-AR02 Co ns tr uc tio n En gi ne er in g R es ea rc h La bo ra to ry David M. Bailey...CERL TR-13-7 June 2013 Demonstration of Three Corrosion-Resistant Sustainable Roofing Systems Final Report on Project F08-AR02 David M. Bailey

  15. Microbiological corrosion of ASTM SA105 carbon steel pipe for industrial fire water usage

    NASA Astrophysics Data System (ADS)

    Chidambaram, S.; Ashok, K.; Karthik, V.; Venkatakrishnan, P. G.

    2018-02-01

    The large number of metallic systems developed for last few decades against both general uniform corrosion and localized corrosion. Among all microbiological induced corrosion (MIC) is attractive, multidisciplinary and complex in nature. Many chemical processing industries utilizes fresh water for fire service to nullify major/minor fire. One such fire water service line pipe attacked by micro-organisms leads to leakage which is industrially important from safety point of view. Also large numbers of leakage reported in similar fire water service of nearby food processing plant, paper & pulp plant, steel plant, electricity board etc…In present investigation one such industrial fire water service line failure analysis of carbon steel line pipe was analyzed to determine the cause of failure. The water sample subjected to various chemical and bacterial analyses. Turbidity, pH, calcium hardness, free chlorine, oxidation reduction potential, fungi, yeasts, sulphide reducing bacteria (SRB) and total bacteria (TB) were measured on water sample analysis. The corrosion rate was measured on steel samples and corrosion coupon measurements were installed in fire water for validating non flow assisted localized corrosion. The sulphide reducing bacteria (SRB) presents in fire water causes a localized micro biological corrosion attack of line pipe.

  16. Ultrasonic Measurement of Erosion/corrosion Rates in Industrial Piping Systems

    NASA Astrophysics Data System (ADS)

    Sinclair, A. N.; Safavi, V.; Honarvar, F.

    2011-06-01

    Industrial piping systems that carry aggressive corrosion or erosion agents may suffer from a gradual wall thickness reduction that eventually threatens pipe integrity. Thinning rates could be estimated from the very small change in wall thickness values measured by conventional ultrasound over a time span of at least a few months. However, measurements performed over shorter time spans would yield no useful information—minor signal distortions originating from grain noise and ultrasonic equipment imperfections prevent a meaningful estimate of the minuscule reduction in echo travel time. Using a Model-Based Estimation (MBE) technique, a signal processing scheme has been developed that enables the echo signals from the pipe wall to be separated from the noise. This was implemented in a laboratory experimental program, featuring accelerated erosion/corrosion on the inner wall of a test pipe. The result was a reduction in the uncertainty in the wall thinning rate by a factor of four. This improvement enables a more rapid response by system operators to a change in plant conditions that could pose a pipe integrity problem. It also enables a rapid evaluation of the effectiveness of new corrosion inhibiting agents under plant operating conditions.

  17. 49 CFR 192.455 - External corrosion control: Buried or submerged pipelines installed after July 31, 1971.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false External corrosion control: Buried or submerged... SAFETY STANDARDS Requirements for Corrosion Control § 192.455 External corrosion control: Buried or... against external corrosion, including the following: (1) It must have an external protective coating...

  18. 49 CFR 192.455 - External corrosion control: Buried or submerged pipelines installed after July 31, 1971.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false External corrosion control: Buried or submerged... SAFETY STANDARDS Requirements for Corrosion Control § 192.455 External corrosion control: Buried or... against external corrosion, including the following: (1) It must have an external protective coating...

  19. 49 CFR 192.455 - External corrosion control: Buried or submerged pipelines installed after July 31, 1971.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false External corrosion control: Buried or submerged... SAFETY STANDARDS Requirements for Corrosion Control § 192.455 External corrosion control: Buried or... against external corrosion, including the following: (1) It must have an external protective coating...

  20. 49 CFR 192.455 - External corrosion control: Buried or submerged pipelines installed after July 31, 1971.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false External corrosion control: Buried or submerged... SAFETY STANDARDS Requirements for Corrosion Control § 192.455 External corrosion control: Buried or... against external corrosion, including the following: (1) It must have an external protective coating...

  1. 49 CFR 192.475 - Internal corrosion control: General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Internal corrosion control: General. 192.475 Section 192.475 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE:...

  2. 49 CFR 192.475 - Internal corrosion control: General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Internal corrosion control: General. 192.475 Section 192.475 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE:...

  3. 49 CFR 192.477 - Internal corrosion control: Monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Internal corrosion control: Monitoring. 192.477 Section 192.477 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELIN...

  4. 49 CFR 192.475 - Internal corrosion control: General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Internal corrosion control: General. 192.475 Section 192.475 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE:...

  5. 49 CFR 192.477 - Internal corrosion control: Monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Internal corrosion control: Monitoring. 192.477 Section 192.477 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELIN...

  6. 49 CFR 192.477 - Internal corrosion control: Monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Internal corrosion control: Monitoring. 192.477 Section 192.477 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELIN...

  7. 49 CFR 195.583 - What must I do to monitor atmospheric corrosion control?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false What must I do to monitor atmospheric corrosion... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.583 What must I do to monitor atmospheric corrosion control? (a) You must inspect each pipeline or portion of pipeline that is...

  8. Engineering considerations for corrosion monitoring of gas gathering pipeline systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braga, T.G.; Asperger, R.G.

    1987-01-01

    Proper corrosion monitoring of gas gathering pipelines requires a system review to determine the appropriate monitor locations and types of monitoring techniques. This paper develops and discusses a classification of conditions such as flow regime and gas composition. Also discussed are junction categories which, for corrosion monitoring, need to be considered from two points of view. The first is related to fluid flow in the line and the second is related corrosion inhibitor movement along the pipeline. The appropriate application of the various monitoring techniques such as coupons, hydrogen detectors, electrical resistance probe and linear polarization probes are discussed inmore » relation to flow regime and gas composition. Problems caused by semi-conduction from iron sulfide are considered. Advantages and disadvantages of fluid gathering methods such as pots and flow-through drips are discussed in relation to their reliability as on-line monitoring locations.« less

  9. 49 CFR 192.457 - External corrosion control: Buried or submerged pipelines installed before August 1, 1971.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false External corrosion control: Buried or submerged... SAFETY STANDARDS Requirements for Corrosion Control § 192.457 External corrosion control: Buried or... areas in which active corrosion is found: (1) Bare or ineffectively coated transmission lines. (2) Bare...

  10. 49 CFR 192.457 - External corrosion control: Buried or submerged pipelines installed before August 1, 1971.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false External corrosion control: Buried or submerged... SAFETY STANDARDS Requirements for Corrosion Control § 192.457 External corrosion control: Buried or... areas in which active corrosion is found: (1) Bare or ineffectively coated transmission lines. (2) Bare...

  11. 49 CFR 192.457 - External corrosion control: Buried or submerged pipelines installed before August 1, 1971.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false External corrosion control: Buried or submerged... SAFETY STANDARDS Requirements for Corrosion Control § 192.457 External corrosion control: Buried or... areas in which active corrosion is found: (1) Bare or ineffectively coated transmission lines. (2) Bare...

  12. 49 CFR 192.457 - External corrosion control: Buried or submerged pipelines installed before August 1, 1971.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false External corrosion control: Buried or submerged... SAFETY STANDARDS Requirements for Corrosion Control § 192.457 External corrosion control: Buried or... areas in which active corrosion is found: (1) Bare or ineffectively coated transmission lines. (2) Bare...

  13. 49 CFR 192.457 - External corrosion control: Buried or submerged pipelines installed before August 1, 1971.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false External corrosion control: Buried or submerged... SAFETY STANDARDS Requirements for Corrosion Control § 192.457 External corrosion control: Buried or... areas in which active corrosion is found: (1) Bare or ineffectively coated transmission lines. (2) Bare...

  14. Software Safety Risk in Legacy Safety-Critical Computer Systems

    NASA Technical Reports Server (NTRS)

    Hill, Janice L.; Baggs, Rhoda

    2007-01-01

    Safety Standards contain technical and process-oriented safety requirements. Technical requirements are those such as "must work" and "must not work" functions in the system. Process-Oriented requirements are software engineering and safety management process requirements. Address the system perspective and some cover just software in the system > NASA-STD-8719.13B Software Safety Standard is the current standard of interest. NASA programs/projects will have their own set of safety requirements derived from the standard. Safety Cases: a) Documented demonstration that a system complies with the specified safety requirements. b) Evidence is gathered on the integrity of the system and put forward as an argued case. [Gardener (ed.)] c) Problems occur when trying to meet safety standards, and thus make retrospective safety cases, in legacy safety-critical computer systems.

  15. Software Safety Risk in Legacy Safety-Critical Computer Systems

    NASA Technical Reports Server (NTRS)

    Hill, Janice; Baggs, Rhoda

    2007-01-01

    Safety-critical computer systems must be engineered to meet system and software safety requirements. For legacy safety-critical computer systems, software safety requirements may not have been formally specified during development. When process-oriented software safety requirements are levied on a legacy system after the fact, where software development artifacts don't exist or are incomplete, the question becomes 'how can this be done?' The risks associated with only meeting certain software safety requirements in a legacy safety-critical computer system must be addressed should such systems be selected as candidates for reuse. This paper proposes a method for ascertaining formally, a software safety risk assessment, that provides measurements for software safety for legacy systems which may or may not have a suite of software engineering documentation that is now normally required. It relies upon the NASA Software Safety Standard, risk assessment methods based upon the Taxonomy-Based Questionnaire, and the application of reverse engineering CASE tools to produce original design documents for legacy systems.

  16. Galvanic Liquid Applied Coating System For Protection of Embedded Steel Surfaces from Corrosion

    NASA Technical Reports Server (NTRS)

    Curran, Joseph; Curran, Jerome; Voska, N. (Technical Monitor)

    2002-01-01

    Corrosion of reinforcing steel in concrete is an insidious problem facing Kennedy Space Center (KSC), other Government Agencies, and the general public. These problems include KSC launch support structures, highway bridge infrastructure, and building structures such as condominium balconies. Due to these problems, the development of a Galvanic Liquid Applied Coating System would be a breakthrough technology having great commercial value for the following industries: Transportation, Infrastructure, Marine Infrastructure, Civil Engineering, and the Construction Industry. This sacrificial coating system consists of a paint matrix that may include metallic components, conducting agents, and moisture attractors. Similar systems have been used in the past with varying degrees of success. These systems have no proven history of effectiveness over the long term. In addition, these types of systems have had limited success overcoming the initial resistance between the concrete/coating interface. The coating developed at KSC incorporates methods proven to overcome the barriers that previous systems could not achieve. Successful development and continued optimization of this breakthrough system would produce great interest in NASA/KSC for corrosion engineering technology and problem solutions. Commercial patents on this technology would enhance KSC's ability to attract industry partners for similar corrosion control applications.

  17. Research on corrosion mechanism of suspension insulator steel foot of direct current system and measures for corrosion inhibition

    NASA Astrophysics Data System (ADS)

    Chen, He; Yang, Yueguang; Su, Guolei; Wang, Xiaoqing; Zhang, Hourong; Sun, Xiaoyu; Fan, Youping

    2017-09-01

    There are increasingly serious electrocorrosion phenomena on insulator hardware caused by direct current transmission due to the wide-range popularization of extra high voltage direct current transmission engineering in our country. Steel foot corrosion is the main corrosion for insulators on positive polarity side of transmission lines. On one hand, the corrosion leads to the tapering off of steel foot diameter, having a direct influence on mechanical property of insulators; on the other hand, in condition of corrosion on steel foot wrapped in porcelain ware, the volume of the corrosion product is at least 50% more than that of the original steel foot, leading to bursting of porcelain ware, threatening safe operation of transmission lines. Therefore, it is necessary to conduct research on the phenomenon and propose feasible measures for corrosion inhibition. Starting with the corrosion mechanism, this article proposes two measures for corrosion inhibition, and verifies the inhibition effect in laboratory conditions, providing reference for application in engineering.

  18. NASA System Safety Handbook. Volume 2: System Safety Concepts, Guidelines, and Implementation Examples

    NASA Technical Reports Server (NTRS)

    Dezfuli, Homayoon; Benjamin, Allan; Everett, Christopher; Feather, Martin; Rutledge, Peter; Sen, Dev; Youngblood, Robert

    2015-01-01

    This is the second of two volumes that collectively comprise the NASA System Safety Handbook. Volume 1 (NASASP-210-580) was prepared for the purpose of presenting the overall framework for System Safety and for providing the general concepts needed to implement the framework. Volume 2 provides guidance for implementing these concepts as an integral part of systems engineering and risk management. This guidance addresses the following functional areas: 1.The development of objectives that collectively define adequate safety for a system, and the safety requirements derived from these objectives that are levied on the system. 2.The conduct of system safety activities, performed to meet the safety requirements, with specific emphasis on the conduct of integrated safety analysis (ISA) as a fundamental means by which systems engineering and risk management decisions are risk-informed. 3.The development of a risk-informed safety case (RISC) at major milestone reviews to argue that the systems safety objectives are satisfied (and therefore that the system is adequately safe). 4.The evaluation of the RISC (including supporting evidence) using a defined set of evaluation criteria, to assess the veracity of the claims made therein in order to support risk acceptance decisions.

  19. The Cost Analysis of Corrosion Protection Solutions for Steel Components in Terms of the Object Life Cycle Cost

    NASA Astrophysics Data System (ADS)

    Kowalski, Dariusz; Grzyl, Beata; Kristowski, Adam

    2017-09-01

    Steel materials, due to their numerous advantages - high availability, easiness of processing and possibility of almost any shaping are commonly applied in construction for carrying out basic carrier systems and auxiliary structures. However, the major disadvantage of this material is its high corrosion susceptibility, which depends strictly on the local conditions of the facility and the applied type of corrosion protection system. The paper presents an analysis of life cycle costs of structures installed on bridges used in the road lane conditions. Three anti-corrosion protection systems were considered, analyzing their essential cost components. The possibility of reducing significantly the costs associated with anti-corrosion protection at the stage of steel barriers maintenance over a period of 30 years has been indicated. The possibility of using a new approach based on the life cycle cost estimation in the anti-corrosion protection of steel elements is presented. The relationship between the method of steel barrier protection, the scope of repair, renewal work and costs is shown. The article proposes an optimal solution which, while reducing the cost of maintenance of road infrastructure components in the area of corrosion protection, allows to maintain certain safety standards for steel barriers that are installed on the bridge.

  20. Space engine safety system

    NASA Technical Reports Server (NTRS)

    Maul, William A.; Meyer, Claudia M.

    1991-01-01

    A rocket engine safety system was designed to initiate control procedures to minimize damage to the engine or vehicle or test stand in the event of an engine failure. The features and the implementation issues associated with rocket engine safety systems are discussed, as well as the specific concerns of safety systems applied to a space-based engine and long duration space missions. Examples of safety system features and architectures are given, based on recent safety monitoring investigations conducted for the Space Shuttle Main Engine and for future liquid rocket engines. Also, the general design and implementation process for rocket engine safety systems is presented.

  1. Report on accelerated corrosion studies.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mowry, Curtis Dale; Glass, Sarah Jill; Sorensen, Neil Robert

    2011-03-01

    Sandia National Laboratories (SNL) conducted accelerated atmospheric corrosion testing for the U.S. Consumer Product Safety Commission (CPSC) to help further the understanding of the development of corrosion products on conductor materials in household electrical components exposed to environmental conditions representative of homes constructed with problem drywall. The conditions of the accelerated testing were chosen to produce corrosion product growth that would be consistent with long-term exposure to environments containing humidity and parts per billion (ppb) levels of hydrogen sulfide (H{sub 2}S) that are thought to have been the source of corrosion in electrical components from affected homes. This report documentsmore » the test set-up, monitoring of electrical performance of powered electrical components during the exposure, and the materials characterization conducted on wires, screws, and contact plates from selected electrical components. No degradation in electrical performance (measured via voltage drop) was measured during the course of the 8-week exposure, which was approximately equivalent to 40 years of exposure in a light industrial environment. Analyses show that corrosion products consisting of various phases of copper sulfide, copper sulfate, and copper oxide are found on exposed surfaces of the conductor materials including wires, screws, and contact plates. The morphology and the thickness of the corrosion products showed a range of character. In some of the copper wires that were observed, corrosion product had flaked or spalled off the surface, exposing fresh metal to the reaction with the contaminant gasses; however, there was no significant change in the wire cross-sectional area.« less

  2. 49 CFR 195.561 - When must I inspect pipe coating used for external corrosion control?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... corrosion control? 195.561 Section 195.561 Transportation Other Regulations Relating to Transportation...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.561 When must I inspect pipe coating used for external corrosion control? (a) You must inspect all external pipe coating...

  3. 49 CFR 195.561 - When must I inspect pipe coating used for external corrosion control?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... corrosion control? 195.561 Section 195.561 Transportation Other Regulations Relating to Transportation...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.561 When must I inspect pipe coating used for external corrosion control? (a) You must inspect all external pipe coating...

  4. 49 CFR 195.561 - When must I inspect pipe coating used for external corrosion control?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... corrosion control? 195.561 Section 195.561 Transportation Other Regulations Relating to Transportation...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.561 When must I inspect pipe coating used for external corrosion control? (a) You must inspect all external pipe coating...

  5. 49 CFR 195.561 - When must I inspect pipe coating used for external corrosion control?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... corrosion control? 195.561 Section 195.561 Transportation Other Regulations Relating to Transportation...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.561 When must I inspect pipe coating used for external corrosion control? (a) You must inspect all external pipe coating...

  6. 49 CFR 195.561 - When must I inspect pipe coating used for external corrosion control?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... corrosion control? 195.561 Section 195.561 Transportation Other Regulations Relating to Transportation...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.561 When must I inspect pipe coating used for external corrosion control? (a) You must inspect all external pipe coating...

  7. Corrosion control and disinfection studies in spacecraft water systems. [considering Saturn 5 orbital workshop

    NASA Technical Reports Server (NTRS)

    Shea, T. G.

    1974-01-01

    Disinfection and corrosion control in the water systems of the Saturn 5 Orbital Workshop Program are considered. Within this framework, the problem areas of concern are classified into four general areas: disinfection; corrosion; membrane-associated problems of disinfectant uptake and diffusion; and taste and odor problems arising from membrane-disinfectant interaction.

  8. Aerospace Non Chrome Corrosion Inhibiting Primer Systems

    DTIC Science & Technology

    2009-09-01

    Meet all HSE specifications, TSCA, REACh, Akzo • Strippable • No weight increase over current system • Meet specification requirements for corrosion, not...Positive and negative controls • Primer only and topcoated samples Aerospace Coatings | Title 9 OEM CF Optimization/ Down Selects •Usual issues...found to be true • Good NSS ≠ Good filiform ≠ Good cure ≠ Good application properties • Down select process is to minimize ≠ and move to a balance of

  9. Corrosion of rock anchors in US coal mines

    NASA Astrophysics Data System (ADS)

    Bylapudi, Gopi

    The mining industry is a major consumer of rock bolts in the United States. Due to the high humidity in the underground mining environment, the rock bolts corrode and loose their load bearing capacity which in turn reduces the life expectancy of the ground support and, thus, creates operational difficulties and number of safety concerns[1]. Research on rock anchor corrosion has not been adequately extensive in the past and the effects of several factors in the mine atmosphere and waters are not clearly understood. One of the probable reasons for this lack of research may be attributed to the time required for gathering meaningful data that makes the study of corrosion quite challenging. In this particular work underground water samples from different mines in the Illinois coal basin were collected and the major chemical content was analyzed and used for the laboratory testing. The corrosion performance of the different commercial rock anchors was investigated by techniques such as laboratory immersion tests in five different corrosion chambers, and potentiodynamic polarization tests in simulated ground waters based on the Illinois coal basin. The experiments were conducted with simulate underground mining conditions (corrosive). The tensile strengths were measured for the selected rock anchors taken every 3 months from the salt spray corrosion chambers maintained at different pH values and temperatures. The corrosion potential (Ecorr ), corrosion current (Icorr) and the corresponding corrosion rates (CR) of the selected commercial rock bolts: #5, #6, #6 epoxy coated and #7 forged head rebar steels, #6 and #7 threaded head rebar steels were measured at the solution pH values of 5 and 8 at room temperature. The open circuit potential (OCP) values of the different rock anchors were recorded in 3 selected underground coal mines (A, B & C) in the Illinois coal basin and the data compared with the laboratory electrochemical tests for analyzing the life of the rock

  10. Corrosion control acceptance criteria for sacrificial anode type, cathodic protection systems (user guide)

    NASA Astrophysics Data System (ADS)

    Hock, Vincent F.; Noble, Michael; McLeod, Malcolm E.

    1994-07-01

    The Army currently operates and maintains more than 20,000 underground storage tanks and over 3000 miles of underground gas pipelines, all of which require some form of corrosion control. Cathodic protection is one method of corrosion control used to prevent corrosion-induced leaks when a steel structure is exposed to an aggressive soil. The corrosion control acceptance criteria for sacrificial anode type CP systems provides guidelines for the DEH/DPW cathodic protection installation inspectors whose responsibilities are to ensure that the materials and equipment specified are delivered to the job site and subsequently installed in accordance with the engineering drawings and specifications. The sacrificial anode CP acceptance criteria includes all components for the sacrificial anode system such as insulated conductors, anodes, anode backfills, and auxiliary equipment. The sacrificial anode CP acceptance criteria is composed of a checklist that lists each component and that contains a space for the inspector to either check 'yes' or 'no' to indicate whether the component complies with the job specifications. In some cases, the inspector must measure and record physical dimensions or electrical output and compare the measurements to standards shown in attached tables.

  11. Effect of pipe corrosion scales on chlorine dioxide consumption in drinking water distribution systems.

    PubMed

    Zhang, Zhe; Stout, Janet E; Yu, Victor L; Vidic, Radisav

    2008-01-01

    Previous studies showed that temperature and total organic carbon in drinking water would cause chlorine dioxide (ClO(2)) loss in a water distribution system and affect the efficiency of ClO(2) for Legionella control. However, among the various causes of ClO(2) loss in a drinking water distribution system, the loss of disinfectant due to the reaction with corrosion scales has not been studied in detail. In this study, the corrosion scales from a galvanized iron pipe and a copper pipe that have been in service for more than 10 years were characterized by energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The impact of these corrosion scale materials on ClO(2) decay was investigated in de-ionized water at 25 and 45 degrees C in a batch reactor with floating glass cover. ClO(2) decay was also investigated in a specially designed reactor made from the iron and copper pipes to obtain more realistic reaction rate data. Goethite (alpha-FeOOH) and magnetite (Fe(3)O(4)) were identified as the main components of iron corrosion scale. Cuprite (Cu(2)O) was identified as the major component of copper corrosion scale. The reaction rate of ClO(2) with both iron and copper oxides followed a first-order kinetics. First-order decay rate constants for ClO(2) reactions with iron corrosion scales obtained from the used service pipe and in the iron pipe reactor itself ranged from 0.025 to 0.083 min(-1). The decay rate constant for ClO(2) with Cu(2)O powder and in the copper pipe reactor was much smaller and it ranged from 0.0052 to 0.0062 min(-1). Based on these results, it can be concluded that the corrosion scale will cause much more significant ClO(2) loss in corroded iron pipes of the distribution system than the total organic carbon that may be present in finished water.

  12. Systemic safety project selection tool.

    DOT National Transportation Integrated Search

    2013-07-01

    "The Systemic Safety Project Selection Tool presents a process for incorporating systemic safety planning into traditional safety management processes. The Systemic Tool provides a step-by-step process for conducting systemic safety analysis; conside...

  13. Corrosion Potential Monitoring for Polymer Composite Wrapping and Galvanic CP System for Reinforced Concrete Marine Piles

    DTIC Science & Technology

    2010-02-01

    deteriorated – Rebar corrosion – Spalling concrete Repair Options • Patching • Polymeric composite wraps • Pre-fabricated composite shell with CP Objective... Corrosion Potential Monitoring for Polymer Composite Wrapping and Galvanic CP System for Reinforced Concrete Marine Piles David Bailey, Richard...Command DoD Corrosion Problem • Piers and wharves – Critical facilities – $14.5M maintenance costs – Reinforced concrete piles • Aged and

  14. Automated Corrosion Detection Program

    DTIC Science & Technology

    2001-10-01

    More detailed explanations of the methodology development can be found in Hidden Corrosion Detection Technology Assessment, a paper presented at...Detection Program, a paper presented at the Fourth Joint DoD/FAA/NASA Conference on Aging Aircraft, 2000. AS&M PULSE. The PULSE system, developed...selection can be found in The Evaluation of Hidden Corrosion Detection Technologies on the Automated Corrosion Detection Program, a paper presented

  15. System design description of forced-convection molten-salt corrosion loops MSR-FCL-3 and MSR-FCL-4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huntley, W.R.; Silverman, M.D.

    1976-11-01

    Molten-salt corrosion loops MSR-FCL-3 and MSR-FCL-4 are high-temperature test facilities designed to evaluate corrosion and mass transfer of modified Hastelloy N alloys for future use in Molten-Salt Breeder Reactors. Salt is circulated by a centrifugal sump pump to evaluate material compatibility with LiF-BeF/sub 2/-ThF/sub 4/-UF/sub 4/ fuel salt at velocities up to 6 m/s (20 fps) and at salt temperatures from 566 to 705/sup 0/C (1050 to 1300/sup 0/F). The report presents the design description of the various components and systems that make up each corrosion facility, such as the salt pump, corrosion specimens, salt piping, main heaters, salt coolers,more » salt sampling equipment, and helium cover-gas system, etc. The electrical systems and instrumentation and controls are described, and operational procedures, system limitations, and maintenance philosophy are discussed.« less

  16. Smart Coatings for Launch Site Corrosion Protection

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.

    2014-01-01

    Smart, environmentally friendly paint system for early corrosion detection, mitigation, and healing that will enable supportability in KSC launch facilities and ground systems through their operational life cycles. KSC's Corrosion Technology Laboratory is developing a smart, self-healing coating that can detect and repair corrosion at an early stage. This coating is being developed using microcapsules specifically designed to deliver the contents of their core when corrosion starts.

  17. Traceability of Software Safety Requirements in Legacy Safety Critical Systems

    NASA Technical Reports Server (NTRS)

    Hill, Janice L.

    2007-01-01

    How can traceability of software safety requirements be created for legacy safety critical systems? Requirements in safety standards are imposed most times during contract negotiations. On the other hand, there are instances where safety standards are levied on legacy safety critical systems, some of which may be considered for reuse for new applications. Safety standards often specify that software development documentation include process-oriented and technical safety requirements, and also require that system and software safety analyses are performed supporting technical safety requirements implementation. So what can be done if the requisite documents for establishing and maintaining safety requirements traceability are not available?

  18. Marine corrosion of mild steel at Lumut, Perak

    NASA Astrophysics Data System (ADS)

    Ting, Ong Shiou; Potty, Narayanan Sambu; Liew, Mohd. Shahir

    2012-09-01

    The corrosion rate of structural steels in the adverse marine and offshore environments affects the economic interest of offshore structures since the loss of steel may have significant impact on structural safety and performance. With more emphasis to maintain existing structures in service for longer time and hence to defer replacement costs, there is increasing interest in predicting corrosion rate at a given location for a given period of exposure once the protection coating or cathodic protection is lost. The immersion depth, salinity, steel composition and water pollution will be taken into account. Various corrosion allowances are prescribed for structural members by different standards. There are no studies to determine the appropriate corrosion allowance for steel structures in marine environment in Malaysia. The objectives of the research are to determine the nature and rate of corrosion in mm/year for steel structures in marine environment. It also tries to identify whether the corrosion rate is affected by differences in the chemical composition of the steels, and microalgae. Two sets of corrosion coupons of Type 3 Steel consisting of mild steel were fabricated and immersed in seawater using steel frames. The corrosion rate of the coupon in mm/ per year is estimated based on the material weight loss with time in service. The results are compared with recommendations of the code.

  19. Feasibility Study of Non-Destructive Techniques to Measure Corrosion in SAVY Containers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davenport, Matthew Nicholas

    2016-07-15

    Stainless Steel SAVY containers are used to transport and store nuclear material. They are prone to interior corrosion in the presence of certain chemicals and a low-oxygen environment. SAVY containers also have relatively thin walls to reduce their weight, making their structural integrity more vulnerable to the effects of corrosion. A nondestructive evaluation system that finds and monitors corrosion within containers in use would improve safety conditions and preclude hazards. Non-destructive testing can determine whether oxidation or corrosion is occurring inside the SAVY containers, and there are a variety of non-destructive testing methods that may be viable. The feasibility studymore » described will objectively decide which method best fits the requirements of the facility and the problem. To improve efficiency, the containers cannot be opened during the non-destructive examination. The chosen technique should also be user-friendly and relatively quick to apply. It must also meet facility requirements regarding wireless technology and maintenance. A feasibility study is an objective search for a new technology or product to solve a particular problem. First, the design, technical, and facility feasibility requirements are chosen and ranked in order of importance. Then each technology considered is given a score based upon a standard ranking system. The technology with the highest total score is deemed the best fit for a certain application.« less

  20. Effect of sulfate on the transformation of corrosion scale composition and bacterial community in cast iron water distribution pipes

    EPA Science Inventory

    The stability of iron corrosion products and the bacterial composition of biofilm in drinking water distribution systems (DWDS) could have great impact on the water safety at the consumer ends. In this work, pipe loops were setup to investigate the transformation characteristics ...

  1. Modelling the influence of ionic and fluid transport on rebars corrosion in unsaturated cement systems

    NASA Astrophysics Data System (ADS)

    Dridi, W.; Dangla, P.; Foct, F.; Petre-Lazar, I.

    2006-11-01

    This paper deals with numerical modelling of rebar corrosion kinetics in unsaturated concrete structures. The corrosion kinetics is investigated in terms of mechanistic coupling between reaction rates at the steel surface and the ionic transport processes in the concrete pore system. The ionic and mass transport model consists of time-dependent equations for the concentration of dissolved species, the liquid pressure and the electrical potential. The complete set of nonlinear equations is solved using the finite-volume method. The nonlinear boundary conditions dealing with corrosion are introduced at the steel-concrete interface where they are implicitly coupled with the mass transport model in the concrete structure. Both the case of free corrosion and potentiostatic polarisation are discussed in a one dimensional model.

  2. Autonomous Flight Safety System

    NASA Technical Reports Server (NTRS)

    Ferrell, Bob; Santuro, Steve; Simpson, James; Zoerner, Roger; Bull, Barton; Lanzi, Jim

    2004-01-01

    Autonomous Flight Safety System (AFSS) is an independent flight safety system designed for small to medium sized expendable launch vehicles launching from or needing range safety protection while overlying relatively remote locations. AFSS replaces the need for a man-in-the-loop to make decisions for flight termination. AFSS could also serve as the prototype for an autonomous manned flight crew escape advisory system. AFSS utilizes onboard sensors and processors to emulate the human decision-making process using rule-based software logic and can dramatically reduce safety response time during critical launch phases. The Range Safety flight path nominal trajectory, its deviation allowances, limit zones and other flight safety rules are stored in the onboard computers. Position, velocity and attitude data obtained from onboard global positioning system (GPS) and inertial navigation system (INS) sensors are compared with these rules to determine the appropriate action to ensure that people and property are not jeopardized. The final system will be fully redundant and independent with multiple processors, sensors, and dead man switches to prevent inadvertent flight termination. AFSS is currently in Phase III which includes updated algorithms, integrated GPS/INS sensors, large scale simulation testing and initial aircraft flight testing.

  3. Hydrogen Assisted Cracking and Corrosion of Some Highly Corrosion Resistant Alloys

    DTIC Science & Technology

    1990-01-01

    Stainless Steel", June 1985, and "On the Roles of Corrosion Products in Local Cell Processes", January 1986. Research on the latter has occurred in the...concern. In closed systems. howevter, such as nuclear reactor cooling pipes. acid container systems, fuel cells, and so on. the production of ti, gas and...mernhra lie is also imiportant. fihe stirf.ice should he flat. m-e1I-polished and free of filims. (Whde or other corrosion product film-. :Are easil% formed

  4. A New Corrosion Sensor to Determine the Start and Development of Embedded Rebar Corrosion Process at Coastal Concrete

    PubMed Central

    Xu, Chen; Li, Zhiyuan; Jin, Weiliang

    2013-01-01

    The corrosion of reinforcements induced by chloride has resulted to be one of the most frequent causes of their premature damage. Most corrosion sensors were designed to monitor corrosion state in concrete, such as Anode-Ladder-System and Corrowatch System, which are widely used to monitor chloride ingress in marine concrete. However, the monitoring principle of these corrosion sensors is based on the macro-cell test method, so erroneous information may be obtained, especially from concrete under drying or saturated conditions due to concrete resistance taking control in macro-cell corrosion. In this paper, a fast weak polarization method to test corrosion state of reinforcements based on electrochemical polarization dynamics was proposed. Furthermore, a new corrosion sensor for monitoring the corrosion state of concrete cover was developed based on the proposed test method. The sensor was tested in cement mortar, with dry-wet cycle tests to accelerate the chloride ingress rate. The results show that the corrosion sensor can effectively monitor chloride penetration into concrete with little influence of the relative humidity in the concrete. With a reasonable corrosion sensor electrode arrangement, it seems the Ohm-drop effect measured by EIS can be ignored, which makes the tested electrochemical parameters more accurate. PMID:24084117

  5. A new corrosion sensor to determine the start and development of embedded rebar corrosion process at coastal concrete.

    PubMed

    Xu, Chen; Li, Zhiyuan; Jin, Weiliang

    2013-09-30

    The corrosion of reinforcements induced by chloride has resulted to be one of the most frequent causes of their premature damage. Most corrosion sensors were designed to monitor corrosion state in concrete, such as Anode-Ladder-System and Corrowatch System, which are widely used to monitor chloride ingress in marine concrete. However, the monitoring principle of these corrosion sensors is based on the macro-cell test method, so erroneous information may be obtained, especially from concrete under drying or saturated conditions due to concrete resistance taking control in macro-cell corrosion. In this paper, a fast weak polarization method to test corrosion state of reinforcements based on electrochemical polarization dynamics was proposed. Furthermore, a new corrosion sensor for monitoring the corrosion state of concrete cover was developed based on the proposed test method. The sensor was tested in cement mortar, with dry-wet cycle tests to accelerate the chloride ingress rate. The results show that the corrosion sensor can effectively monitor chloride penetration into concrete with little influence of the relative humidity in the concrete. With a reasonable corrosion sensor electrode arrangement, it seems the Ohm-drop effect measured by EIS can be ignored, which makes the tested electrochemical parameters more accurate.

  6. Corrosion-Resistant Ball Bearings

    NASA Technical Reports Server (NTRS)

    Zdankiewicz, E. M.; Linaburg, E. L.; Lytle, L. J.

    1990-01-01

    Self-lubricating bearing system withstands highly corrosive environment of wastewater-recycling unit. New bearings contain cobalt-based-alloy balls and races, graphite/polyimide polymer ball cages, and single integral polytetrafluoroethylene seals on wet sides. Materials and design prevent corrosion by acids and provide lubrication.

  7. γ-radiation induced corrosion of copper in bentonite-water systems under anaerobic conditions

    NASA Astrophysics Data System (ADS)

    Karin Norrfors, K.; Björkbacka, Åsa; Kessler, Amanda; Wold, Susanna; Jonsson, Mats

    2018-03-01

    In this work we have experimentally studied the impact of bentonite clay on the process of radiation-induced copper corrosion in anoxic water. The motivation for this is to further develop our understanding of radiation-driven processes occurring in deep geological repositories for spent nuclear fuel where copper canisters containing the spent nuclear fuel will be embedded in compacted bentonite. Experiments on radiation-induced corrosion in the presence and absence of bentonite were performed along with experiments elucidating the impact irradiation on the Cu2+ adsorption capacity of bentonite. The experiments presented in this work show that the presence of bentonite clay has no or very little effect on the magnitude of radiation-induced corrosion of copper in anoxic aqueous systems. The absence of a protective effect similar to that observed for radiation-induced dissolution of UO2 is attributed to differences in the corrosion mechanism. This provides further support for the previously proposed mechanism where the hydroxyl radical is the key radiolytic oxidant responsible for the corrosion of copper. The radiation effect on the bentonite sorption capacity of Cu2+ (reduced capacity) is in line with what has previously been reported for other cations. The reduced cation sorption capacity is partly attributed to a loss of Al-OH sites upon irradiation.

  8. Demonstration and Validation of Two Coat High Performance Coating System for Steel Structures in Corrosive Environments

    DTIC Science & Technology

    2016-12-01

    System for Steel Structures in Corrosive Environments Final Report on Project F12-AR06 Co ns tr uc tio n En gi ne er in g R es ea rc h La bo ra...Prevention and Control Program ERDC/CERL TR-16-27 December 2016 Demonstration and Validation of Two-Coat High- Performance Coating System for Steel ...Performance Coating System for Steel Structures in Corrosive Environments” ERDC/CERL TR-16-27 ii Abstract Department of Defense (DoD) installations

  9. Evaluation of long-term corrosion durability and self-healing ability of scratched coating systems on carbon steel in a marine environment

    NASA Astrophysics Data System (ADS)

    Zhao, Xia; Chen, Changwei; Xu, Weichen; Zhu, Qingjun; Ge, Chengyue; Hou, Baorong

    2017-09-01

    Defects in protective-coating systems on steel surfaces are inevitable in practical engineering applications. A composite coating system, including a primer, middle coat and topcoat, were used to protect carbon steel from corrosion in a marine environment. Two environmental additives, glass fibers and thiourea, were applied in the middle coat to modify the coating system. The long-term corrosion durability and self-healing ability of the scratched coating system were evaluated by multiple methods. Results of the electrochemical technologies indicated that the coating system that contained 0.5 wt.% fibers and 0.5 wt.% thiourea presented good corrosion protection and self-healing for carbon steel when immersed in 3.5% NaCl for 120 d. Evolution of localized corrosion factors with time, as obtained from the current distribution showed that fibers combined with thiourea could inhibit the occurrence of local corrosion in scratched coating systems and retarded the corrosion development significantly. Surface characterization suggested that adequate thiourea could be absorbed uniformly on fibers for a long time to play an important role in protecting the carbon steel. Finally, schematic models were established to demonstrate the action of fibers and thiourea on the exposed surface of the carbon steel and the scratched coating system in the entire deterioration process.

  10. Corrosion control when using passively treated abandoned mine drainage as alternative makeup water for cooling systems.

    PubMed

    Hsieh, Ming-Kai; Chien, Shih-Hsiang; Li, Heng; Monnell, Jason D; Dzombak, David A; Vidic, Radisav D

    2011-09-01

    Passively treated abandoned mine drainage (AMD) is a promising alternative to fresh water as power plant cooling water system makeup water in mining regions where such water is abundant. Passive treatment and reuse of AMD can avoid the contamination of surface water caused by discharge of abandoned mine water, which typically is acidic and contains high concentrations of metals, especially iron. The purpose of this study was to evaluate the feasibility of reusing passively treated AMD in cooling systems with respect to corrosion control through laboratory experiments and pilot-scale field testing. The results showed that, with the addition of the inhibitor mixture orthophosphate and tolyltriazole, mild steel and copper corrosion rates were reduced to acceptable levels (< 0.127 mm/y and < 0.0076 mm/y, respectively). Aluminum had pitting corrosion problems in every condition tested, while cupronickel showed that, even in the absence of any inhibitor and in the presence of the biocide monochloramine, its corrosion rate was still very low (0.018 mm/y).

  11. Microencapsulation Technology for Corrosion Mitigation by Smart Coatings

    NASA Technical Reports Server (NTRS)

    Buhrow, Jerry; Li, Wenyan; Jolley, Scott; Calle, Luz M.

    2011-01-01

    A multifunctional, smart coating for the autonomous control of corrosion is being developed based on micro-encapsulation technology. Corrosion indicators as well as corrosion inhibitors have been incorporated into microcapsules, blended into several paint systems, and tested for corrosion detection and protection effectiveness. This paper summarizes the development, optimization, and testing of microcapsules specifically designed to be incorporated into a smart coating that will deliver corrosion inhibitors to mitigate corrosion autonomously. Key words: smart coating, corrosion inhibition, microencapsulation, microcapsule, pH sensitive microcapsule, corrosion inhibitor, corrosion protection pain

  12. Formation and Release Behavior of Iron Corrosion Products under the Influence of Bacterial Communities in a Simulated Water Distribution System

    EPA Science Inventory

    Understanding the effects of biofilm on the iron corrosion, iron release and associated corrosion by-products is critical for maintaining the water quality and the integrity of drinking water distribution system (DWDS). In this work, iron corrosion experiments under sterilized a...

  13. Rebar corrosion monitoring in concrete structure under salt water enviroment using fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Pan, Yuheng; Liu, Tiegen; Jiang, Junfeng; Liu, Kun; Wang, Shuang; He, Pan; Yan, Jinlin

    2015-08-01

    Monitoring corrosion of steel reinforcing bars is critical for the durability and safety of reinforced concrete structures. Corrosion sensors based on fiber optic have proved to exhibit meaningful benefits compared with the conventional electric ones. In recent years, Fiber Bragg Grating (FBG) has been used as a new kind of sensing element in an attempt to directly monitor the corrosion in concrete structure due to its remarkable advantages. In this paper, we present a novel kind of FBG based rebar corrosion monitoring sensor. The rebar corrosion is detected by volume expansion of the corroded rebar by transferring it to the axial strain of FBG when concrete structure is soaked in salt water. An accelerated salt water corrosion test was performed. The experiment results showed the corrosion can be monitored effectively and the corrosion rate is obtained by volume loss rate of rebar.

  14. Development of Computational Capabilities to Predict the Corrosion Wastage of Boiler Tubes in Advanced Combustion Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kung, Steven; Rapp, Robert

    A comprehensive corrosion research project consisting of pilot-scale combustion testing and long-term laboratory corrosion study has been successfully performed. A pilot-scale combustion facility available at Brigham Young University was selected and modified to enable burning of pulverized coals under the operating conditions typical for advanced coal-fired utility boilers. Eight United States (U.S.) coals were selected for this investigation, with the test conditions for all coals set to have the same heat input to the combustor. In addition, the air/fuel stoichiometric ratio was controlled so that staged combustion was established, with the stoichiometric ratio maintained at 0.85 in the burner zonemore » and 1.15 in the burnout zone. The burner zone represented the lower furnace of utility boilers, while the burnout zone mimicked the upper furnace areas adjacent to the superheaters and reheaters. From this staged combustion, approximately 3% excess oxygen was attained in the combustion gas at the furnace outlet. During each of the pilot-scale combustion tests, extensive online measurements of the flue gas compositions were performed. In addition, deposit samples were collected at the same location for chemical analyses. Such extensive gas and deposit analyses enabled detailed characterization of the actual combustion environments existing at the lower furnace walls under reducing conditions and those adjacent to the superheaters and reheaters under oxidizing conditions in advanced U.S. coal-fired utility boilers. The gas and deposit compositions were then carefully simulated in a series of 1000-hour laboratory corrosion tests, in which the corrosion performances of different commercial candidate alloys and weld overlays were evaluated at various temperatures for advanced boiler systems. Results of this laboratory study led to significant improvement in understanding of the corrosion mechanisms operating on the furnace walls as well as superheaters and

  15. Corrosion and Protection of Metal in the Seawater Desalination

    NASA Astrophysics Data System (ADS)

    Hou, Xiangyu; Gao, Lili; Cui, Zhendong; Yin, Jianhua

    2018-01-01

    Seawater desalination develops rapid for it can solve water scarcity efficiently. However, corrosion problem in the seawater desalination system is more serious than that in normal water. So, it is important to pay attention to the corrosion and protection of metal in seawater desalination. The corrosion characteristics and corrosion types of metal in the seawater desalination system are introduced in this paper; In addition, corrosion protect methods and main influencing factors are stated, the latest new technologies about anti-corrosion with quantum energy assisted and magnetic inhibitor are presented.

  16. Morphological and physicochemical characteristics of iron corrosion scales formed under different water source histories in a drinking water distribution system.

    PubMed

    Yang, Fan; Shi, Baoyou; Gu, Junnong; Wang, Dongsheng; Yang, Min

    2012-10-15

    The corrosion scales on iron pipes could have great impact on the water quality in drinking water distribution systems (DWDS). Unstable and less protective corrosion scale is one of the main factors causing "discolored water" issues when quality of water entering into distribution system changed significantly. The morphological and physicochemical characteristics of corrosion scales formed under different source water histories in duration of about two decades were systematically investigated in this work. Thick corrosion scales or densely distributed corrosion tubercles were mostly found in pipes transporting surface water, but thin corrosion scales and hollow tubercles were mostly discovered in pipes transporting groundwater. Magnetite and goethite were main constituents of iron corrosion products, but the mass ratio of magnetite/goethite (M/G) was significantly different depending on the corrosion scale structure and water source conditions. Thick corrosion scales and hard shell of tubercles had much higher M/G ratio (>1.0), while the thin corrosion scales had no magnetite detected or with much lower M/G ratio. The M/G ratio could be used to identify the characteristics and evaluate the performances of corrosion scales formed under different water conditions. Compared with the pipes transporting ground water, the pipes transporting surface water were more seriously corroded and could be in a relatively more active corrosion status all the time, which was implicated by relatively higher siderite, green rust and total iron contents in their corrosion scales. Higher content of unstable ferric components such as γ-FeOOH, β-FeOOH and amorphous iron oxide existed in corrosion scales of pipes receiving groundwater which was less corroded. Corrosion scales on groundwater pipes with low magnetite content had higher surface area and thus possibly higher sorption capacity. The primary trace inorganic elements in corrosion products were Br and heavy metals. Corrosion

  17. Corrosion and corrosion prevention in gas turbines

    NASA Technical Reports Server (NTRS)

    Mom, A. J. A.; Kolkman, H. J.

    1985-01-01

    The conditions governing the corrosion behavior in gas turbines are surveyed. Factors such as temperature, relative humidity, the presence of sulfur and nitrogen dioxide, and fuel quality are discussed. Electromechanical corrosion at relatively low temperature in compressors; oxidation; and hot corrosion (sulfidation) at high temperature in turbines are considered. Corrosion prevention by washing and rinsing, fueld additives, and corrosion resistant materials and coatings are reviewed.

  18. Corrosion engineering in the utilization of the Raft River geothermal resource

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, R.L.

    1976-08-01

    The economic impact of corrosion and the particular problems of corrosion in the utilization of geothermal energy resources are noted. Corrosion is defined and the parameters that control corrosion in geothermal systems are discussed. A general background of corrosion is presented in the context of the various forms of corrosion, in relation to the Raft River geothermal system. A basic reference for mechanical design engineers involved in the design of geothermal energy recovery systems is provided.

  19. Effect of tungsten on the corrosion behavior of sulfuric acid-resistant steels for flue gas desulfurization system

    NASA Astrophysics Data System (ADS)

    Ji, Woo-Soo; Jang, Young-Wook; Kim, Jung-Gu

    2011-06-01

    Flue gas desulfurization systems (FGDs) are operated in severely corrosive environments that cause sulfuric acid dew-point corrosion. The corrosion behavior of low-alloy steels was tested using electrochemical techniques (electrochemical impedance spectroscopy, potentiodynamic tests, potentiostatic tests), and the corrosion products were analyzed by scanning electron microscopy and X-ray photoelectron spectroscopy. The electrochemical results showed that alloying W with small amounts of Sb, Cu, and Co improves the corrosion resistance of steels. The results of surface analyses showed that the surface of the steels alloyed with W consisted of W oxides and higher amounts of Sb and Cu oxides. This suggests that the addition of W promotes the formation of a protective WO3 film, in addition to Sb2O5 and CuO films on the surface.

  20. Corrosion Monitors for Embedded Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Alex L.; Pfeifer, Kent B.; Casias, Adrian L.

    2017-05-01

    We have developed and characterized novel in-situ corrosion sensors to monitor and quantify the corrosive potential and history of localized environments. Embedded corrosion sensors can provide information to aid health assessments of internal electrical components including connectors, microelectronics, wires, and other susceptible parts. When combined with other data (e.g. temperature and humidity), theory, and computational simulation, the reliability of monitored systems can be predicted with higher fidelity.

  1. Corrosion and Biofouling of OTEC System Surfaces - Design Factors

    DTIC Science & Technology

    1978-11-01

    condition between different areas on a given member can lead to accelerated attack by a differential envirornment cell . These differences can be...resistance. As shown in Figure 1, -. gal- vanic cell is essentially a battery/load system. When the intermetallic resistance, R1 , or the environmental...members of a couple should be maximized when possible. Also, insulating or high resistance F bushings, etc., can reduce or el4 !.minate galvanic corrosion

  2. HWCTR CONTROL ROD AND SAFETY ROD DRIVE SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kale, S.H.

    1963-07-01

    The Heavy Water Components Test Reactor (HWCTR) is a pressurized, D/sub 2/O reactor designed for operation up to 70 Mw at 1500 psig and 3l5 deg C. It has 18 control rods and six safety rods, each driven by an electric motor through a rack and pinion gear train. Racks, pinions, and bearings are located inside individual pressure housings that are penetrated by means of floating ring labyrinth seals. The drives are mounted on the reactor vessel top head. Safety rods have electromagnetic clutches and fall into the reactor when scrammed. The reliability and performance of the rod drives aremore » very good. Seal leakage is well within design limits. Recent inspections of seals and control rod plants showed no evidence of crud buildup or stress corrosion cracking of type 17- 4PH'' stainless steel components. (auth)« less

  3. The procedure safety system

    NASA Technical Reports Server (NTRS)

    Obrien, Maureen E.

    1990-01-01

    Telerobotic operations, whether under autonomous or teleoperated control, require a much more sophisticated safety system than that needed for most industrial applications. Industrial robots generally perform very repetitive tasks in a controlled, static environment. The safety system in that case can be as simple as shutting down the robot if a human enters the work area, or even simply building a cage around the work space. Telerobotic operations, however, will take place in a dynamic, sometimes unpredictable environment, and will involve complicated and perhaps unrehearsed manipulations. This creates a much greater potential for damage to the robot or objects in its vicinity. The Procedural Safety System (PSS) collects data from external sensors and the robot, then processes it through an expert system shell to determine whether an unsafe condition or potential unsafe condition exists. Unsafe conditions could include exceeding velocity, acceleration, torque, or joint limits, imminent collision, exceeding temperature limits, and robot or sensor component failure. If a threat to safety exists, the operator is warned. If the threat is serious enough, the robot is halted. The PSS, therefore, uses expert system technology to enhance safety thus reducing operator work load, allowing him/her to focus on performing the task at hand without the distraction of worrying about violating safety criteria.

  4. Reliability-based management of buried pipelines considering external corrosion defects

    NASA Astrophysics Data System (ADS)

    Miran, Seyedeh Azadeh

    Corrosion is one of the main deteriorating mechanisms that degrade the energy pipeline integrity, due to transferring corrosive fluid or gas and interacting with corrosive environment. Corrosion defects are usually detected by periodical inspections using in-line inspection (ILI) methods. In order to ensure pipeline safety, this study develops a cost-effective maintenance strategy that consists of three aspects: corrosion growth model development using ILI data, time-dependent performance evaluation, and optimal inspection interval determination. In particular, the proposed study is applied to a cathodic protected buried steel pipeline located in Mexico. First, time-dependent power-law formulation is adopted to probabilistically characterize growth of the maximum depth and length of the external corrosion defects. Dependency between defect depth and length are considered in the model development and generation of the corrosion defects over time is characterized by the homogenous Poisson process. The growth models unknown parameters are evaluated based on the ILI data through the Bayesian updating method with Markov Chain Monte Carlo (MCMC) simulation technique. The proposed corrosion growth models can be used when either matched or non-matched defects are available, and have ability to consider newly generated defects since last inspection. Results of this part of study show that both depth and length growth models can predict damage quantities reasonably well and a strong correlation between defect depth and length is found. Next, time-dependent system failure probabilities are evaluated using developed corrosion growth models considering prevailing uncertainties where three failure modes, namely small leak, large leak and rupture are considered. Performance of the pipeline is evaluated through failure probability per km (or called a sub-system) where each subsystem is considered as a series system of detected and newly generated defects within that sub-system

  5. Galvanic Liquid Applied Coating System for Protection of Embedded Steel Surfaces from Corrosion

    NASA Technical Reports Server (NTRS)

    Curran, Joseph; MacDowell, Louis; Voska, N. (Technical Monitor)

    2002-01-01

    The corrosion of reinforcing steel in concrete is an insidious problem for the Kennedy Space Center, government agencies, and the general public. Existing corrosion protection systems on the market are costly, complex, and time-consuming to install, require continuous maintenance and monitoring, and require specialized skills for installation. NASA's galvanic liquid-applied coating offers companies the ability to conveniently protect embedded steel rebar surfaces from corrosion. Liquid-applied inorganic galvanic coating contains one ore more of the following metallic particles: magnesium, zinc, or indium and may contain moisture attracting compounds that facilitate the protection process. The coating is applied to the outer surface of reinforced concrete so that electrical current is established between metallic particles and surfaces of embedded steel rebar; and electric (ionic) current is responsible for providing the necessary cathodic protection for embedded rebar surfaces.

  6. Inter-relationships between corrosion and mineral-scale deposition in aqueous systems.

    PubMed

    Hodgkiess, T

    2004-01-01

    The processes of corrosion and scale deposition in natural and process waters are often linked and this paper considers a number of instances of interactions between the two phenomena. In some circumstances a scale layer (e.g. calcium carbonate) can be advantageously utilised as a corrosion-protection coating on components and this feature has been exploited for many decades in the conditioning of water to induce spontaneous precipitation of a scale layer upon the surfaces of engineering equipment. The electrochemical mechanisms associated with some corrosion and corrosion-control processes can promote alkaline-scale deposition directly upon component surfaces. This is a feature that can be exploited in the operation of cathodic protection (CP) of structures and components submerged in certain types of water (e.g. seawater). Similar phenomena can occur during bi-metallic corrosion and a case study, involving carbon steel/stainless steel couples in seawater, is presented. Additional complexities pertain during cyclic loading of submerged reinforced concrete members in which scale deposition may reduce the severity of fatigue stresses but can be associated with severe corrosion damage to embedded reinforcing steel. Also considered are scale-control/corrosion interactions in thermal desalination plant and an indirect consequence of the scale-control strategy on vapourside corrosion is discussed.

  7. Control of molten salt corrosion of fusion structural materials by metallic beryllium

    NASA Astrophysics Data System (ADS)

    Calderoni, P.; Sharpe, P.; Nishimura, H.; Terai, T.

    2009-04-01

    A series of tests have been performed between 2001 and 2006 at the Safety and Tritium Applied Research facility of the Idaho National Laboratory to demonstrate chemical compatibility between the molten salt flibe (2LiF + BeF 2 in moles) and fusion structural materials once suitable fluoride potential control methods are established. The tests adopted metallic beryllium contact as main fluoride potential control, and the results have been published in recent years. A further step was to expose two specimens of low activation ferritic/martensitic steel 9Cr-2W to static corrosion tests that include an active corrosion agent (hydrofluoric gas) in controlled conditions at 530 °C, and the results of the tests are presented in this paper. The results confirmed the expected correlation of the HF recovery with the concentration of metallic impurities dissolved in the salt because of specimen corrosion. The metals concentration dropped to levels close to the detectable limit when the beryllium rod was inserted and increased once the content of excess beryllium in the system had been consumed by HF reduction and specimen corrosion progressed. Metallographic analysis of the samples after 500 h exposure in reactive conditions showed evidence of the formation of unstable chromium oxide layers on the specimen's surface.

  8. Control of molten salt corrosion of fusion structural materials by metallic beryllium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. Calderoni; P. Sharpe; H. Nishimura

    2009-04-01

    A series of tests have been performed between 2001 and 2006 at the Safety and Tritium Applied Research facility of the Idaho National Laboratory to demonstrate chemical compatibility between the molten salt flibe (2LiF+BeF2 in moles) and fusion structural materials once suitable fluoride potential control methods are established. The tests adopted metallic beryllium contact as main fluoride potential control, and the results have been published in recent years. A further step was to expose two specimens of low activation ferritic/martensitic steel 9Cr-2W to static corrosion tests that include an active corrosion agent (hydrofluoric gas) in controlled conditions at 530 C,more » and the results of the tests are presented in this paper. The results confirmed the expected correlation of the HF recovery with the concentration of metallic impurities dissolved in the salt because of specimen corrosion. The metals concentration dropped to level close to the detectable limit when the beryllium rod was inserted and increased once the content of excess beryllium in the system had been consumed by HF reduction and specimens corrosion progressed. Metallographic analysis of the samples after 500 hours exposure in reactive conditions showed evidence of the formation of unstable chromium oxide layers on the specimens surface.« less

  9. Microencapsulation of Corrosion Indicators for Smart Coatings

    NASA Technical Reports Server (NTRS)

    Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott T.; Calle, Luz M.; Hanna,Joshua S.; Rawlins, James W.

    2011-01-01

    A multifunctional smart coating for the autonomous detection, indication, and control of corrosion is been developed based on microencapsulation technology. This paper summarizes the development, optimization, and testing of microcapsules specifically designed for early detection and indication of corrosion when incorporated into a smart coating. Results from experiments designed to test the ability of the microcapsules to detect and indicate corrosion, when blended into several paint systems, show that these experimental coatings generate a color change, indicative of spot specific corrosion events, that can be observed with the naked eye within hours rather than the hundreds of hours or months typical of the standard accelerated corrosion test protocols.. Key words: smart coating, corrosion detection, microencapsulation, microcapsule, pH-sensitive microcapsule, corrosion indicator, corrosion sensing paint

  10. Characteristics of iron corrosion scales and water quality variations in drinking water distribution systems of different pipe materials.

    PubMed

    Li, Manjie; Liu, Zhaowei; Chen, Yongcan; Hai, Yang

    2016-12-01

    Interaction between old, corroded iron pipe surfaces and bulk water is crucial to the water quality protection in drinking water distribution systems (WDS). Iron released from corrosion products will deteriorate water quality and lead to red water. This study attempted to understand the effects of pipe materials on corrosion scale characteristics and water quality variations in WDS. A more than 20-year-old hybrid pipe section assembled of unlined cast iron pipe (UCIP) and galvanized iron pipe (GIP) was selected to investigate physico-chemical characteristics of corrosion scales and their effects on water quality variations. Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDS), Inductively Coupled Plasma (ICP) and X-ray Diffraction (XRD) were used to analyze micromorphology and chemical composition of corrosion scales. In bench testing, water quality parameters, such as pH, dissolved oxygen (DO), oxidation reduction potential (ORP), alkalinity, conductivity, turbidity, color, Fe 2+ , Fe 3+ and Zn 2+ , were determined. Scale analysis and bench-scale testing results demonstrated a significant effect of pipe materials on scale characteristics and thereby water quality variations in WDS. Characteristics of corrosion scales sampled from different pipe segments show obvious differences, both in physical and chemical aspects. Corrosion scales were found highly amorphous. Thanks to the protection of zinc coatings, GIP system was identified as the best water quality stability, in spite of high zinc release potential. It is deduced that the complicated composition of corrosion scales and structural break by the weld result in the diminished water quality stability in HP system. Measurement results showed that iron is released mainly in ferric particulate form. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Characterization of biofilm and corrosion of cast iron pipes in drinking water distribution system with UV/Cl2 disinfection.

    PubMed

    Zhu, Ying; Wang, Haibo; Li, Xiaoxiao; Hu, Chun; Yang, Min; Qu, Jiuhui

    2014-09-01

    The effect of UV/Cl2 disinfection on the biofilm and corrosion of cast iron pipes in drinking water distribution system were studied using annular reactors (ARs). Passivation occurred more rapidly in the AR with UV/Cl2 than in the one with Cl2 alone, decreasing iron release for higher corrosivity of water. Based on functional gene, pyrosequencing assays and principal component analysis, UV disinfection not only reduced the required initial chlorine dose, but also enhanced denitrifying functional bacteria advantage in the biofilm of corrosion scales. The nitrate-reducing bacteria (NRB) Dechloromonas exhibited the greatest corrosion inhibition by inducing the redox cycling of iron to enhance the precipitation of iron oxides and formation of Fe3O4 in the AR with UV/Cl2, while the rhizobia Bradyrhizobium and Rhizobium, and the NRB Sphingomonas, Brucella producing siderophores had weaker corrosion-inhibition effect by capturing iron in the AR with Cl2. These results indicated that the microbial redox cycling of iron was possibly responsible for higher corrosion inhibition and lower effect of water Larson-Skold Index (LI) changes on corrosion. This finding could be applied toward the control of water quality in drinking water distribution systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Manned space flight nuclear system safety. Volume 6: Space base nuclear system safety plan

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A qualitative identification of the steps required to assure the incorporation of radiological system safety principles and objectives into all phases of a manned space base program are presented. Specific areas of emphasis include: (1) radiological program management, (2) nuclear system safety plan implementation, (3) impact on program, and (4) summary of the key operation and design guidelines and requirements. The plan clearly indicates the necessity of considering and implementing radiological system safety recommendations as early as possible in the development cycle to assure maximum safety and minimize the impact on design and mission plans.

  13. A Multifunctional Coating for Autonomous Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Hintze, Paul E.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott T.

    2010-01-01

    Corrosion is a destructive process that often causes failure in metallic components and structures. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of other existing microcapsules designs, the corrosion controlled release function that allows the delivery of corrosion indicators and inhibitors on demand only when and where they are needed. Corrosion indicators as well as corrosion inhibitors have been incorporated into the microcapsules, blended into several paint systems, and tested for corrosion detection and protection efficacy.

  14. Corrosion probe. Innovative technology summary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Over 253 million liters of high-level waste (HLW) generated from plutonium production is stored in mild steel tanks at the Department of Energy (DOE) Hanford Site. Corrosion monitoring of double-shell storage tanks (DSTs) is currently performed at Hanford using a combination of process knowledge and tank waste sampling and analysis. Available technologies for corrosion monitoring have progressed to a point where it is feasible to monitor and control corrosion by on-line monitoring of the corrosion process and direct addition of corrosion inhibitors. The electrochemical noise (EN) technique deploys EN-based corrosion monitoring probes into storage tanks. This system is specifically designedmore » to measure corrosion rates and detect changes in waste chemistry that trigger the onset of pitting and cracking. These on-line probes can determine whether additional corrosion inhibitor is required and, if so, provide information on an effective end point to the corrosion inhibitor addition procedure. This report describes the technology, its performance, its application, costs, regulatory and policy issues, and lessons learned.« less

  15. A corrosion control manual for rail rapid transit

    NASA Technical Reports Server (NTRS)

    Gilbert, L. O.; Fitzgerald, J. F., II; Menke, J. T.

    1982-01-01

    In 1979, during the planning stage of the Metropolitan Dade County Transit System, the need was expressed for a corrosion control manual oriented to urban rapid transit system use. This manual responds to that need. The objective of the manual is to aid rail rapid transit agencies by providing practical solutions to selected corrosion problems. The scope of the manual encompasses corrosion problems of the facilities of rapid transit systems: structures and tracks, platforms and stations, power and signals, and cars. It also discusses stray electric current corrosion. Both design and maintenance solutions are provided for each problem. Also included are descriptions of the types of corrosion and their causes, descriptions of rapid transit properties, a list of corrosion control committees and NASA, DOD, and ASTM specifications and design criteria to which reference is made in the manual. A bibliography of papers and excerpts of reports and a glossary of frequency used terms are provided.

  16. NASA System Safety Handbook. Volume 1; System Safety Framework and Concepts for Implementation

    NASA Technical Reports Server (NTRS)

    Dezfuli, Homayoon; Benjamin, Allan; Everett, Christopher; Smith, Curtis; Stamatelatos, Michael; Youngblood, Robert

    2011-01-01

    System safety assessment is defined in NPR 8715.3C, NASA General Safety Program Requirements as a disciplined, systematic approach to the analysis of risks resulting from hazards that can affect humans, the environment, and mission assets. Achievement of the highest practicable degree of system safety is one of NASA's highest priorities. Traditionally, system safety assessment at NASA and elsewhere has focused on the application of a set of safety analysis tools to identify safety risks and formulate effective controls.1 Familiar tools used for this purpose include various forms of hazard analyses, failure modes and effects analyses, and probabilistic safety assessment (commonly also referred to as probabilistic risk assessment (PRA)). In the past, it has been assumed that to show that a system is safe, it is sufficient to provide assurance that the process for identifying the hazards has been as comprehensive as possible and that each identified hazard has one or more associated controls. The NASA Aerospace Safety Advisory Panel (ASAP) has made several statements in its annual reports supporting a more holistic approach. In 2006, it recommended that "... a comprehensive risk assessment, communication and acceptance process be implemented to ensure that overall launch risk is considered in an integrated and consistent manner." In 2009, it advocated for "... a process for using a risk-informed design approach to produce a design that is optimally and sufficiently safe." As a rationale for the latter advocacy, it stated that "... the ASAP applauds switching to a performance-based approach because it emphasizes early risk identification to guide designs, thus enabling creative design approaches that might be more efficient, safer, or both." For purposes of this preface, it is worth mentioning three areas where the handbook emphasizes a more holistic type of thinking. First, the handbook takes the position that it is important to not just focus on risk on an individual

  17. Radiation Safety System for SPIDER Neutral Beam Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandri, S.; Poggi, C.; Coniglio, A.

    2011-12-13

    SPIDER (Source for Production of Ion of Deuterium Extracted from RF Plasma only) and MITICA (Megavolt ITER Injector Concept Advanced) are the ITER neutral beam injector (NBI) testing facilities of the PRIMA (Padova Research Injector Megavolt Accelerated) Center. Both injectors accelerate negative deuterium ions with a maximum energy of 1 MeV for MITICA and 100 keV for SPIDER with a maximum beam current of 40 A for both experiments. The SPIDER facility is classified in Italy as a particle accelerator. At present, the design of the radiation safety system for the facility has been completed and the relevant reports havemore » been presented to the Italian regulatory authorities. Before SPIDER can operate, approval must be obtained from the Italian Regulatory Authority Board (IRAB) following a detailed licensing process. In the present work, the main project information and criteria for the SPIDER injector source are reported together with the analysis of hypothetical accidental situations and safety issues considerations. Neutron and photon nuclear analysis is presented, along with special shielding solutions designed to meet Italian regulatory dose limits. The contribution of activated corrosion products (ACP) to external exposure of workers has also been assessed. Nuclear analysis indicates that the photon contribution to worker external exposure is negligible, and the neutron dose can be considered by far the main radiation protection issue. Our results confirm that the injector has no important radiological impact on the population living around the facility.« less

  18. Controlling corrosion in drinking water distribution systems: a grand challenge for the 21st century.

    PubMed

    Edwards, M

    2004-01-01

    It is argued that the water distribution system will be a key public health battlefield of the 21st century. Corrosion in private plumbing is deserving of special attention, since the health and economic impacts are probably of equal or greater magnitude compared to public systems, and there has not been an advocate working on behalf of the consumer to solve these problems. To better serve society in this endeavour we will need educational programs, aggressive research to minimize the unsustainable costs of corrosion, and to consider our legacy to future generations when making decisions on materials use.

  19. Radiation induced corrosion of copper for spent nuclear fuel storage

    NASA Astrophysics Data System (ADS)

    Björkbacka, Åsa; Hosseinpour, Saman; Johnson, Magnus; Leygraf, Christofer; Jonsson, Mats

    2013-11-01

    The long term safety of repositories for radioactive waste is one of the main concerns for countries utilizing nuclear power. The integrity of engineered and natural barriers in such repositories must be carefully evaluated in order to minimize the release of radionuclides to the biosphere. One of the most developed concepts of long term storage of spent nuclear fuel is the Swedish KBS-3 method. According to this method, the spent fuel will be sealed inside copper canisters surrounded by bentonite clay and placed 500 m down in stable bedrock. Despite the importance of the process of radiation induced corrosion of copper, relatively few studies have been reported. In this work the effect of the total gamma dose on radiation induced corrosion of copper in anoxic pure water has been studied experimentally. Copper samples submerged in water were exposed to a series of total doses using three different dose rates. Unirradiated samples were used as reference samples throughout. The copper surfaces were examined qualitatively using IRAS and XPS and quantitatively using cathodic reduction. The concentration of copper in solution after irradiation was measured using ICP-AES. The influence of aqueous radiation chemistry on the corrosion process was evaluated based on numerical simulations. The experiments show that the dissolution as well as the oxide layer thickness increase upon radiation. Interestingly, the evaluation using numerical simulations indicates that aqueous radiation chemistry is not the only process driving the corrosion of copper in these systems.

  20. 46 CFR 154.412 - Cargo tank corrosion allowance.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Cargo tank corrosion allowance. 154.412 Section 154.412... Containment Systems § 154.412 Cargo tank corrosion allowance. A cargo tank must be designed with a corrosion...) carries a cargo that corrodes the tank material. Note: Corrosion allowance for independent tank type C is...

  1. 46 CFR 154.412 - Cargo tank corrosion allowance.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo tank corrosion allowance. 154.412 Section 154.412... Containment Systems § 154.412 Cargo tank corrosion allowance. A cargo tank must be designed with a corrosion...) carries a cargo that corrodes the tank material. Note: Corrosion allowance for independent tank type C is...

  2. Experimental Design for the Evaluation of Detection Techniques of Hidden Corrosion Beneath the Thermal Protective System of the Space Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Kemmerer, Catherine C.; Jacoby, Joseph A.; Lomness, Janice K.; Hintze, Paul E.; Russell, Richard W.

    2007-01-01

    The detection of corrosion beneath Space Shuttle Orbiter thermal protective system is traditionally accomplished by removing the Reusable Surface Insulation tiles and performing a visual inspection of the aluminum substrate and corrosion protection system. This process is time consuming and has the potential to damage high cost tiles. To evaluate non-intrusive NDE methods, a Proof of Concept (PoC) experiment was designed and test panels were manufactured. The objective of the test plan was three-fold: establish the ability to detect corrosion hidden from view by tiles; determine the key factor affecting detectability; roughly quantify the detection threshold. The plan consisted of artificially inducing dimensionally controlled corrosion spots in two panels and rebonding tile over the spots to model the thermal protective system of the orbiter. The corrosion spot diameter ranged from 0.100" to 0.600" inches and the depth ranged from 0.003" to 0.020". One panel consisted of a complete factorial array of corrosion spots with and without tile coverage. The second panel consisted of randomized factorial points replicated and hidden by tile. Conventional methods such as ultrasonics, infrared, eddy current and microwave methods have shortcomings. Ultrasonics and IR cannot sufficiently penetrate the tiles, while eddy current and microwaves have inadequate resolution. As such, the panels were interrogated using Backscatter Radiography and Terahertz Imaging. The terahertz system successfully detected artificially induced corrosion spots under orbiter tile and functional testing is in-work in preparation for implementation.

  3. Hot Corrosion Behavior of Arc-Sprayed Highly Dense NiCr-Based Coatings in Chloride Salt Deposit

    NASA Astrophysics Data System (ADS)

    Qin, Enwei; Yin, Song; Ji, Hua; Huang, Qian; Liu, Zekun; Wu, Shuhui

    2017-04-01

    To make cities more environmentally friendly, combustible wastes tend to be incinerated in waste-to-energy power plant boilers. However, release of chlorine gas (Cl2) during incineration causes serious problems related to hot corrosion of boiler tubes and poses a safety threat for such plants. In this study, a pseudo-de Laval nozzle was employed in a twin-wire arc spray system to enhance the velocity of in-flight particles. Highly dense NiCr-based coatings were obtained using the modified nozzle gun. The coating morphology was characterized by optical microscopy and scanning electron microscopy, and hot corrosion testing was carried out in a synthetic molten chloride salt environment. Results showed that the dense NiCr-based coatings exhibited high resistance against corrosion by chlorine, which can be related to the typical splat lamellar microstructure and chemical composition as well as minor alloying elements such as Ti and Mo.

  4. A Multifunctional Coating for Autonomous Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott t.

    2011-01-01

    Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of existing microcapsulation designs, the corrosion controlled release function that triggers the delivery of corrosion indicators and inhibitors on demand, only when and where needed. Microencapsulation of self-healing agents for autonomous repair of mechanical damage to the coating is also being pursued. Corrosion indicators, corrosion inhibitors, as well as self-healing agents, have been encapsulated and dispersed into several paint systems to test the corrosion detection, inhibition, and self-healing properties of the coating. Key words: Corrosion, coating, autonomous corrosion control, corrosion indication, corrosion inhibition, self-healing coating, smart coating, multifunctional coating, microencapsulation.

  5. Initial study and verification of a distributed fiber optic corrosion monitoring system for transportation structures.

    DOT National Transportation Integrated Search

    2012-07-01

    For this study, a novel optical fiber sensing system was developed and tested for the monitoring of corrosion in : transportation systems. The optical fiber sensing system consists of a reference long period fiber gratings (LPFG) sensor : for corrosi...

  6. THE RELATIONSHIP BETWEEN THE CORROSION OF DISTRIBUTION SYSTEM MATERIALS, AND OXIDANT AND REDOX POTENTIAL

    EPA Science Inventory

    Scale build-up, corrosion rate, and metal release associated with drinking water distribution system pipes have been suggested to relate to the oxidant type and concentration. Conversely, different distribution system metals may exert different oxidant demands. The impact of ox...

  7. A Visualization Method for Corrosion Damage on Aluminum Plates Using an Nd:YAG Pulsed Laser Scanning System.

    PubMed

    Lee, Inbok; Zhang, Aoqi; Lee, Changgil; Park, Seunghee

    2016-12-16

    This paper proposes a non-contact nondestructive evaluation (NDE) technique that uses laser-induced ultrasonic waves to visualize corrosion damage in aluminum alloy plate structures. The non-contact, pulsed-laser ultrasonic measurement system generates ultrasonic waves using a galvanometer-based Q-switched Nd:YAG laser and measures the ultrasonic waves using a piezoelectric (PZT) sensor. During scanning, a wavefield can be acquired by changing the excitation location of the laser point and measuring waves using the PZT sensor. The corrosion damage can be detected in the wavefield snapshots using the scattering characteristics of the waves that encounter corrosion. The structural damage is visualized by calculating the logarithmic values of the root mean square (RMS), with a weighting parameter to compensate for the attenuation caused by geometrical spreading and dispersion of the waves. An intact specimen is used to conduct a comparison with corrosion at different depths and sizes in other specimens. Both sides of the plate are scanned with the same scanning area to observe the effect of the location where corrosion has formed. The results show that the damage can be successfully visualized for almost all cases using the RMS-based functions, whether it formed on the front or back side. Also, the system is confirmed to have distinguished corroded areas at different depths.

  8. Experimental study on corrosion and precipitation in non-isothermal Pb-17Li system for development of liquid breeder blanket of fusion reactor

    NASA Astrophysics Data System (ADS)

    Kondo, Masatoshi; Ishii, Masaomi; Norimatsu, Takayoshi; Muroga, Takeo

    2017-07-01

    The corrosion characteristics of RAFM steel JLF-1 in a non-isothermal Pb-17Li flowing system were investigated by means of the corrosion test using a non-isothermal mixing pot. The corrosion test was performed at 739K with a temperature gradient of 14K for 500 hours. The corrosion tests at a static and a flowing conditions in an isothermal Pb-17Li system were also performed at the same temperature for the same duration with the non-isothermal test. Then, the effect of mass transfer both by the flow and the temperature gradient on the corrosion behaviors was featured by the comparison of these results. The corrosion was caused by the dissolution of Fe and Cr from the steel surface into the flowing Pb-17Li. The specimen surface revealed a fine granular microstructure after the corrosion tests. A large number of pebbleshaped protrusions were observed on the specimen surface. This microstructure was different from the original martensite microstructure of the steel, and might be formed by the influence of the reaction with Li component in the alloy. The formation of the granular microstructure was accelerated by the flow and the temperature gradient. Some pebble-shaped protrusions had gaps at their bases. The removal of these pebble-shaped granules by the flowing Pb-17Li might cause a small-scale corrosion-erosion. The results of metallurgical analysis indicated that a large-scale corrosion-erosion was also caused by their destruction of the corroded layer on the surface. The non-isothermal mixing pot equipped a cold trap by a metal mesh in the low temperature region. The metal elements of Fe and Cr were recovered as they precipitated on the surface of the metal mesh. It was found that a Fe-Cr binary intermetallic compound was formed in the precipitation procedure. The overall mass transfer coefficient for the dissolution type corrosion in the non-isothermal system was much bigger than that in the isothermal system. This model evaluation indicated that the temperature

  9. A corrosion control concept by scale engineering: a novel green inhibitor applied for high temperature and pressure aqueous supercritical CO2 systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiabin, Han; Carey, James W; Zhang, Jinsuo

    2011-01-27

    Traditional corrosion inhibitors are bio-toxic chemicals with organic components that bond to the fresh metal surface and thus isolate them from corrosive environments. The shortcoming of these inhibitors is that they are less effective in high-temperature and high-pressure environments, and where corrosion scale is formed or particulates are deposited. In this paper, we describe a novel green inorganic inhibitor made of environmentally friendly and cost-effective geo-material that was developed for high-temperature and high-pressure environments, particularly under scale-forming conditions. It inhibits corrosion by enhancing the protectiveness of corrosion scale. In contrast to traditional corrosion inhibitors which are efficient for bare surfacemore » corrosion but not effective with scale, the novel inhibitor has no effect on bare surface corrosion but greatly improves corrosion inhibition under scale-formation conditions. This is because a homogeneous scale doped with inhibitor component forms. This enhanced corrosion scale demonstrated excellent protection against corrosion. In high-pressure CO{sub 2} systems (pCO{sub 2}=10 Mpa, T=50 C and [NaCl]=1 wt%) without inhibitor, the bare-surface corrosion rate decreases from ca. 10 mm/y to 0.3 mm/year due to formation of scale. Application of a six hundred ppm solution ofthe new inorganic inhibitor reduced the corrosion rate to 0.01 mm/year, an additional factor of 30. The current inhibitor product was designed for application to CO{sub 2} systems that form corrosion scale, including but not limited to oil and gas wells, offshore production of oil and gas, CO{sub 2} sequestration and enhanced geothermal production involving CO{sub 2}.« less

  10. Corrosion

    ERIC Educational Resources Information Center

    Slabaugh, W. H.

    1974-01-01

    Presents some materials for use in demonstration and experimentation of corrosion processes, including corrosion stimulation and inhibition. Indicates that basic concepts of electrochemistry, crystal structure, and kinetics can be extended to practical chemistry through corrosion explanation. (CC)

  11. Evaluation on the Corrosion of the Three Ni-Cr Alloys with Different Composition

    PubMed Central

    Rao, Srinivasa B.; Chowdhary, Ramesh

    2011-01-01

    Dental casting alloys are widely used in contact with oral tissue for many years now. With the development of new dental alloys over the past 15 years, many questions remain unanswered about their biologic safety. Concepts and current issues concerning the response to the biologic effects of dental casting alloys are presented. In this paper, samples of three commercially available nickel-chrome (Ni-cr) casting alloys (Dentaurum, Bego, Sankin) were taken to assess their corrosion behavior, using potentiodynamic polarization method (electrochemical method) with fusayama artificial saliva as an electrolyte medium to check for their biocompatibility. The parameters for corrosion rate and corrosion resistance were obtained from computer-controlled corrosion schematic instrument, namely, potentiostat through corrosion software (power CV). The results obtained were analyzed by classic Tafel analysis. Statistical analysis was done by Student's t-test and ANOVA test. It was concluded that Dentarum and Bego showed satisfactory corrosive behavior, with exception of Sankin which depicted higher corrosion rate and least resistance to corrosion. Thus, the selection of an alloy should be made on the basis of corrosion resistance and biologic data from dental manufactures. PMID:21461232

  12. NASA Safety Manual. Volume 3: System Safety

    NASA Technical Reports Server (NTRS)

    1970-01-01

    This Volume 3 of the NASA Safety Manual sets forth the basic elements and techniques for managing a system safety program and the technical methods recommended for use in developing a risk evaluation program that is oriented to the identification of hazards in aerospace hardware systems and the development of residual risk management information for the program manager that is based on the hazards identified. The methods and techniques described in this volume are in consonance with the requirements set forth in NHB 1700.1 (VI), Chapter 3. This volume and future volumes of the NASA Safety Manual shall not be rewritten, reprinted, or reproduced in any manner. Installation implementing procedures, if necessary, shall be inserted as page supplements in accordance with the provisions of Appendix A. No portion of this volume or future volumes of the NASA Safety Manual shall be invoked in contracts.

  13. Comprehensive Lifecycle for Assuring System Safety

    NASA Technical Reports Server (NTRS)

    Knight, John C.; Rowanhill, Jonathan C.

    2017-01-01

    CLASS is a novel approach to the enhancement of system safety in which the system safety case becomes the focus of safety engineering throughout the system lifecycle. CLASS also expands the role of the safety case across all phases of the system's lifetime, from concept formation to decommissioning. As CLASS has been developed, the concept has been generalized to a more comprehensive notion of assurance becoming the driving goal, where safety is an important special case. This report summarizes major aspects of CLASS and contains a bibliography of papers that provide additional details.

  14. Simulation on the steel galvanic corrosion and acoustic emission

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Shi, Xin; Yang, Ping

    2015-12-01

    Galvanic corrosion is a very destructive localized corrosion. The research on galvanic corrosion could determine equipment corrosion and prevent the accidents occurrence. Steel corrosion had been studied by COMSOL software with mathematical modeling. The galvanic corrosion of steel-aluminum submerged into 10% sodium chloride solution had been on-line detected by PIC-2 acoustic emission system. The results show that the acoustic emission event counts detected within unit time can qualitative judge galvanic corrosion rate and further erosion trend can be judged by the value changes.

  15. Assessment of tap water quality and corrosion scales from the selected distribution systems in northern Pakistan.

    PubMed

    Baig, Shams Ali; Lou, Zimo; Baig, Muzaffar Ali; Qasim, Muhammad; Shams, Dilawar Farhan; Mahmood, Qaisar; Xu, Xinhua

    2017-04-01

    Corrosion deposits formed within drinking water distribution systems deteriorate drinking water quality and resultantly cause public health consequences. In the present study, an attempt was made to investigate the concurrent conditions of corrosion scales and the drinking water quality in selected water supply schemes (WSS) in districts Chitral, Peshawar, and Abbottabad, northern Pakistan. Characterization analyses of the corrosion by-products revealed the presence of α-FeOOH, γ-FeOOH, Fe 3 O 4 , and SiO 2 as major constituents with different proportions. The constituents of all the representative XRD peaks of Peshawar WSS were found insignificant as compared to other WSS, and the reason could be the variation of source water quality. Well-crystallized particles in SEM images indicated the formation of dense oxide layer on corrosion by-products. A wider asymmetric vibration peak of SiO 2 appeared only in Chitral and Abbottabad WSS, which demonstrated higher siltation in the water source. One-way ANOVA analysis showed significant variations in pH, turbidity, TDS, K, Mg, PO 4 , Cl, and SO 4 values, which revealed that these parameters differently contributed to the source water quality. Findings from this study suggested the implementation of proper corrosion prevention measures and the establishment of international collaboration for best corrosion practices, expertise, and developing standards.

  16. PPM-based System for Guided Waves Communication Through Corrosion Resistant Multi-wire Cables

    NASA Astrophysics Data System (ADS)

    Trane, G.; Mijarez, R.; Guevara, R.; Pascacio, D.

    Novel wireless communication channels are a necessity in applications surrounded by harsh environments, for instance down-hole oil reservoirs. Traditional radio frequency (RF) communication schemes are not capable of transmitting signals through metal enclosures surrounded by corrosive gases and liquids. As an alternative to RF, a pulse position modulation (PPM) guided waves communication system has been developed and evaluated using a corrosion resistant 4H18 multi-wire cable, commonly used to descend electronic gauges in down-hole oil applications, as the communication medium. The system consists of a transmitter and a receiver that utilizes a PZT crystal, for electrical/mechanical coupling, attached to each extreme of the multi-wire cable. The modulator is based on a microcontroller, which transmits60 kHz guided wave pulses, and the demodulator is based on a commercial digital signal processor (DSP) module that performs real time DSP algorithms. Experimental results are presented, which were obtained using a 1m corrosion resistant 4H18multi-wire cable, commonly used with downhole electronic gauges in the oil sector. Although there was significant dispersion and multiple mode excitations of the transmitted guided wave energy pulses, the results show that data rates on the order of 500 bits per second are readily available employing PPM and simple communications techniques.

  17. Materials Safety - Not just Flammability and Toxic Offgassing

    NASA Technical Reports Server (NTRS)

    Pedley, Michael D.

    2007-01-01

    For many years, the safety community has focused on a limited subset of materials and processes requirements as key to safety: Materials flammability, Toxic offgassing, Propellant compatibility, Oxygen compatibility, and Stress-corrosion cracking. All these items are important, but the exclusive focus on these items neglects many other items that are equally important to materials safety. Examples include (but are not limited to): 1. Materials process control -- proper qualification and execution of manufacturing processes such as structural adhesive bonding, welding, and forging are crucial to materials safety. Limitation of discussions on materials process control to an arbitrary subset of processes, known as "critical processes" is a mistake, because any process where the quality of the product cannot be verified by inspection can potentially result in unsafe hardware 2 Materials structural design allowables -- development of valid design allowables when none exist in the literature requires extensive testing of multiple lots of materials and is extremely expensive. But, without valid allowables, structural analysis cannot verify structural safety 3. Corrosion control -- All forms of corrosion, not just stress corrosion, can affect structural integrity of hardware 4. Contamination control during ground processing -- contamination control is critical to manufacturing processes such as adhesive bonding and also to elimination foreign objects and debris (FOD) that are hazardous to the crew of manned spacecraft in microgravity environments. 5. Fasteners -- Fastener design, the use of verifiable secondary locking features, and proper verification of fastener torque are essential for proper structural performance This presentation discusses some of these key factors and the importance of considering them in ensuring the safety of space hardware.

  18. 49 CFR 192.929 - What are the requirements for using Direct Assessment for Stress Corrosion Cracking (SCCDA)?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Assessment for Stress Corrosion Cracking (SCCDA)? 192.929 Section 192.929 Transportation Other Regulations...: MINIMUM FEDERAL SAFETY STANDARDS Gas Transmission Pipeline Integrity Management § 192.929 What are the requirements for using Direct Assessment for Stress Corrosion Cracking (SCCDA)? (a) Definition. Stress...

  19. 49 CFR 192.929 - What are the requirements for using Direct Assessment for Stress Corrosion Cracking (SCCDA)?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Assessment for Stress Corrosion Cracking (SCCDA)? 192.929 Section 192.929 Transportation Other Regulations...: MINIMUM FEDERAL SAFETY STANDARDS Gas Transmission Pipeline Integrity Management § 192.929 What are the requirements for using Direct Assessment for Stress Corrosion Cracking (SCCDA)? (a) Definition. Stress...

  20. 49 CFR 192.929 - What are the requirements for using Direct Assessment for Stress Corrosion Cracking (SCCDA)?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Assessment for Stress Corrosion Cracking (SCCDA)? 192.929 Section 192.929 Transportation Other Regulations...: MINIMUM FEDERAL SAFETY STANDARDS Gas Transmission Pipeline Integrity Management § 192.929 What are the requirements for using Direct Assessment for Stress Corrosion Cracking (SCCDA)? (a) Definition. Stress...

  1. 49 CFR 192.929 - What are the requirements for using Direct Assessment for Stress Corrosion Cracking (SCCDA)?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Assessment for Stress Corrosion Cracking (SCCDA)? 192.929 Section 192.929 Transportation Other Regulations...: MINIMUM FEDERAL SAFETY STANDARDS Gas Transmission Pipeline Integrity Management § 192.929 What are the requirements for using Direct Assessment for Stress Corrosion Cracking (SCCDA)? (a) Definition. Stress...

  2. Bacterial exopolysaccharides for corrosion resistance on low carbon steel

    USDA-ARS?s Scientific Manuscript database

    Corrosion is a global issue that affects safety and economics. There is an increasing demand for bio-based polymers for industrial applications and production of polymers by micro-organisms is especially attractive. This work reports on the electrochemical and physical properties of exopolysaccharid...

  3. Corrosion Degradation of Coated Aluminum Alloy Systems through Galvanic Interactions

    DTIC Science & Technology

    2017-07-19

    non -­‐chromate  system,  the   equivalent  mass   losses  from  the  OP  data   (0.0062   and  0.0064   g...or   non -­‐chromated  (adhesion  promoting  pretreatment,  praseodymium-­‐rich   primer)  system  in  two  environments...coupled   to,  noble  metal   fasteners.  Corrosion  caused  22.4%  of  the   non -­‐available  days  for

  4. ECLSS Universal Waste Management System (UWMS) Metal Materials Compatibility Study- Electrochemical and Crevice Corrosion Evaluation

    NASA Technical Reports Server (NTRS)

    Lee, R. E.

    2017-01-01

    Electrochemical and crevice corrosion laboratory test results are presented for three noble metal candidates with possible application on the Universal Waste Management System (UWMS) in support of the Environmental Control and Life Support System (ECLSS) aboard the International Space Station (ISS). The three metal candidates, which included Inconel 625, Hastelloy C276 and Titanium 6Al-4V, were evaluated in two solutions representative of the acidic pretreatment formulations utilized during processing of waste liquids within the ECLSS. Final test results and data analysis indicated that the passive layer on all three metals provides excellent corrosion protection in both solutions under standard test conditions.

  5. Laser diagnostics for NTP fuel corrosion studies

    NASA Technical Reports Server (NTRS)

    Wantuck, Paul J.; Butt, D. P.; Sappey, A. D.

    1993-01-01

    Viewgraphs and explanations on laser diagnostics for nuclear thermal propulsion (NTP) fuel corrosion studies are presented. Topics covered include: NTP fuels; U-Zr-C system corrosion products; planar laser-induced fluorescence (PLIF); utilization of PLIF for corrosion product characterization of nuclear thermal rocket fuel elements under test; ZrC emission spectrum; and PLIF imaging of ZrC plume.

  6. 77 FR 70409 - System Safety Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-26

    ...-0060, Notice No. 2] 2130-AC31 System Safety Program AGENCY: Federal Railroad Administration (FRA... passenger railroads to develop and implement a system safety program (SSP) to improve the safety of their... Division, U.S. Department of Transportation, Federal Railroad Administration, Office of Railroad Safety...

  7. The corrosive nature of manganese in drinking water.

    PubMed

    Alvarez-Bastida, C; Martínez-Miranda, V; Vázquez-Mejía, G; Solache-Ríos, M; Fonseca-Montes de Oca, G; Trujillo-Flores, E

    2013-03-01

    Corrosion problems having to do with drinking water distribution systems are related to many processes and factors and two of them are ionic acidity and carbon dioxide, which were considered in this work. The corrosion character of water is determined by the corrosion indexes of Langelier, Ryznar, Larson, and Mojmir. The results show that pipes made of different materials, such as plastics or metals, are affected by corrosion, causing manganese to be deposited on materials and dissolved in water. The deterioration of the materials, the degree of corrosion, and the deposited corrosion products were determined by X-ray diffraction and Scanning Electron Microscopy. High levels of manganese and nitrate ions in water may cause serious damage to the health of consumers of water. Three wells were examined, one of them presented a high content of manganese; the others had high levels of nitrate ions, which increased the acidity of the water and, therefore, the amount of corrosion of the materials in the distribution systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. A Multifunctional Smart Coating for Autonomous Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Buhrow, Jerry W.; Jolley, Scott T.

    2012-01-01

    Corrosion is a destructive process that often causes failure in metallic components and structures. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to control it. The multi-functionality of the coating is based on micro-encapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of other existing microcapsules designs, the corrosion controlled release function that allows the delivery of corrosion indicators and inhibitors on demand only when and where needed. Corrosion indicators as well as corrosion inhibitors have been incorporated into microcapsules, blended into several paint systems, and tested for corrosion detection and protection efficacy. This

  9. Effects of disinfectant and biofilm on the corrosion of cast iron pipes in a reclaimed water distribution system.

    PubMed

    Wang, Haibo; Hu, Chun; Hu, Xuexiang; Yang, Min; Qu, Jiuhui

    2012-03-15

    The effects of disinfection and biofilm on the corrosion of cast iron pipe in a model reclaimed water distribution system were studied using annular reactors (ARs). The corrosion scales formed under different conditions were characterized by X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), and scanning electron microscopy (SEM), while the bacterial characteristics of biofilm on the surface were determined using several molecular methods. The corrosion scales from the ARs with chlorine included predominantly α-FeOOH and Fe2O3, while CaPO3(OH)·2H2O and α-FeOOH were the predominant phases after chloramines replaced chlorine. Studies of the consumption of chlorine and iron release indicated that the formation of dense oxide layers and biofilm inhibited iron corrosion, causing stable lower chlorine decay. It was verified that iron-oxidizing bacteria (IOB) such as Sediminibacterium sp., and iron-reducing bacteria (IRB) such as Shewanella sp., synergistically interacted with the corrosion product to prevent further corrosion. For the ARs without disinfection, α-FeOOH was the predominant phase at the primary stage, while CaCO3 and α-FeOOH were predominant with increasing time. The mixed corrosion-inducing bacteria, including the IRB Shewanella sp., the IOB Sediminibacterium sp., and the sulfur-oxidizing bacteria (SOB) Limnobacter thioxidans strain, promoted iron corrosion by synergistic interactions in the primary period, while anaerobic IRB became the predominant corrosion bacteria, preventing further corrosion via the formation of protective layers. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. A Visualization Method for Corrosion Damage on Aluminum Plates Using an Nd:YAG Pulsed Laser Scanning System

    PubMed Central

    Lee, Inbok; Zhang, Aoqi; Lee, Changgil; Park, Seunghee

    2016-01-01

    This paper proposes a non-contact nondestructive evaluation (NDE) technique that uses laser-induced ultrasonic waves to visualize corrosion damage in aluminum alloy plate structures. The non-contact, pulsed-laser ultrasonic measurement system generates ultrasonic waves using a galvanometer-based Q-switched Nd:YAG laser and measures the ultrasonic waves using a piezoelectric (PZT) sensor. During scanning, a wavefield can be acquired by changing the excitation location of the laser point and measuring waves using the PZT sensor. The corrosion damage can be detected in the wavefield snapshots using the scattering characteristics of the waves that encounter corrosion. The structural damage is visualized by calculating the logarithmic values of the root mean square (RMS), with a weighting parameter to compensate for the attenuation caused by geometrical spreading and dispersion of the waves. An intact specimen is used to conduct a comparison with corrosion at different depths and sizes in other specimens. Both sides of the plate are scanned with the same scanning area to observe the effect of the location where corrosion has formed. The results show that the damage can be successfully visualized for almost all cases using the RMS-based functions, whether it formed on the front or back side. Also, the system is confirmed to have distinguished corroded areas at different depths. PMID:27999252

  11. Electrochemistry and capillary condensation theory reveal the mechanism of corrosion in dense porous media.

    PubMed

    Stefanoni, Matteo; Angst, Ueli M; Elsener, Bernhard

    2018-05-09

    Corrosion in carbonated concrete is an example of corrosion in dense porous media of tremendous socio-economic and scientific relevance. The widespread research endeavors to develop novel, environmentally friendly cements raise questions regarding their ability to protect the embedded steel from corrosion. Here, we propose a fundamentally new approach to explain the scientific mechanism of corrosion kinetics in dense porous media. The main strength of our model lies in its simplicity and in combining the capillary condensation theory with electrochemistry. This reveals that capillary condensation in the pore structure defines the electrochemically active steel surface, whose variability upon changes in exposure relative humidity is accountable for the wide variability in measured corrosion rates. We performed experiments that quantify this effect and find good agreement with the theory. Our findings are essential to devise predictive models for the corrosion performance, needed to guarantee the safety and sustainability of traditional and future cements.

  12. Mesoporous silica nanoparticles for active corrosion protection.

    PubMed

    Borisova, Dimitriya; Möhwald, Helmuth; Shchukin, Dmitry G

    2011-03-22

    This work presents the synthesis of monodisperse, mesoporous silica nanoparticles and their application as nanocontainers loaded with corrosion inhibitor (1H-benzotriazole (BTA)) and embedded in hybrid SiOx/ZrOx sol-gel coating for the corrosion protection of aluminum alloy. The developed porous system of mechanically stable silica nanoparticles exhibits high surface area (∼1000 m2·g(-1)), narrow pore size distribution (d∼3 nm), and large pore volume (∼1 mL·g(-1)). As a result, a sufficiently high uptake and storage of the corrosion inhibitor in the mesoporous nanocontainers was achieved. The successful embedding and homogeneous distribution of the BTA-loaded monodisperse silica nanocontainers in the passive anticorrosive SiOx/ZrOx film improve the wet corrosion resistance of the aluminum alloy AA2024 in 0.1 M sodium chloride solution. The enhanced corrosion protection of this newly developed active system in comparison to the passive sol-gel coating was observed during a simulated corrosion process by the scanning vibrating electrode technique (SVET). These results, as well as the controlled pH-dependent release of BTA from the mesoporous silica nanocontainers without additional polyelectrolyte shell, suggest an inhibitor release triggered by the corrosion process leading to a self-healing effect.

  13. 40 CFR 141.82 - Description of corrosion control treatment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Description of corrosion control... § 141.82 Description of corrosion control treatment requirements. Each system shall complete the corrosion control treatment requirements described below which are applicable to such system under § 141.81...

  14. 40 CFR 141.82 - Description of corrosion control treatment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Description of corrosion control... § 141.82 Description of corrosion control treatment requirements. Each system shall complete the corrosion control treatment requirements described below which are applicable to such system under § 141.81...

  15. 40 CFR 141.82 - Description of corrosion control treatment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Description of corrosion control... § 141.82 Description of corrosion control treatment requirements. Each system shall complete the corrosion control treatment requirements described below which are applicable to such system under § 141.81...

  16. 40 CFR 141.82 - Description of corrosion control treatment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Description of corrosion control... § 141.82 Description of corrosion control treatment requirements. Each system shall complete the corrosion control treatment requirements described below which are applicable to such system under § 141.81...

  17. 40 CFR 141.82 - Description of corrosion control treatment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Description of corrosion control... § 141.82 Description of corrosion control treatment requirements. Each system shall complete the corrosion control treatment requirements described below which are applicable to such system under § 141.81...

  18. Manned space flight nuclear system safety. Volume 5: Nuclear System safety guidelines. Part 1: Space base nuclear safety

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The design and operations guidelines and requirements developed in the study of space base nuclear system safety are presented. Guidelines and requirements are presented for the space base subsystems, nuclear hardware (reactor, isotope sources, dynamic generator equipment), experiments, interfacing vehicles, ground support systems, range safety and facilities. Cross indices and references are provided which relate guidelines to each other, and to substantiating data in other volumes. The guidelines are intended for the implementation of nuclear safety related design and operational considerations in future space programs.

  19. Stem Migration and Fretting Corrosion of the Antirotation Pin in the K2/Apex Hip System.

    PubMed

    Kent, Michael; Edmondson, Mark; Ebert, Jay; Nivbrant, Nils; Kop, Alan; Wood, David; De Steiger, Richard

    2016-03-01

    Many exchangeable neck hip systems have been withdrawn because of fretting corrosion at the neck/stem coupling. Our prospective randomized study evaluating stem stability (Roentgen stereophotogrammetric analysis, dual-energy x-ray absorptiometry) and clinical outcomes between the K2/Apex hip systems was ceased early because of a withdrawal of the stems which had an unfavorably high early revision rate reported in the Australian Orthopaedic Association National Joint Registry (9.3% at 3 years). At 2 years, there are no clinical differences between the stems. Roentgen stereophotogrammetric analysis has identified a high proportion of potentially concerning subsidence and retroversion in both groups, more marked in the K2 stem, although mostly in asymptomatic patients. Dual-energy x-ray absorptiometry has shown similar bone density around the stems. Retrieval analysis of 3 study patients showed fretting corrosion of the antirotation pin and aseptic lymphocyte-dominated vasculitis-associated lesion, with no relationship to bearing type or size. Analysis of 7 further nonstudy K2/Apex stems confirmed similar corrosion. This study shows potentially concerning subsidence of both stems and is the first to describe corrosion at the neck-stem interface and a relationship to metal-related pathology. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  20. Hydroxyl carboxylate based non-phosphorus corrosion inhibition process for reclaimed water pipeline and downstream recirculating cooling water system.

    PubMed

    Wang, Jun; Wang, Dong; Hou, Deyin

    2016-01-01

    A combined process was developed to inhibit the corrosion both in the pipeline of reclaimed water supplies (PRWS) and in downstream recirculating cooling water systems (RCWS) using the reclaimed water as makeup. Hydroxyl carboxylate-based corrosion inhibitors (e.g., gluconate, citrate, tartrate) and zinc sulfate heptahydrate, which provided Zn(2+) as a synergistic corrosion inhibition additive, were added prior to the PRWS when the phosphate (which could be utilized as a corrosion inhibitor) content in the reclaimed water was below 1.7 mg/L, and no additional corrosion inhibitors were required for the downstream RCWS. Satisfactory corrosion inhibition was achieved even if the RCWS was operated under the condition of high numbers of concentration cycles. The corrosion inhibition requirement was also met by the appropriate combination of PO4(3-) and Zn(2+) when the phosphate content in the reclaimed water was more than 1.7 mg/L. The process integrated not only water reclamation and reuse, and the operation of a highly concentrated RCWS, but also the comprehensive utilization of phosphate in reclaimed water and the application of non-phosphorus corrosion inhibitors. The proposed process reduced the operating cost of the PRWS and the RCWS, and lowered the environmental hazard caused by the excessive discharge of phosphate. Furthermore, larger amounts of water resources could be conserved as a result. Copyright © 2015. Published by Elsevier B.V.

  1. Corrosion-Activated Micro-Containers for Environmentally Friendly Corrosion Protective Coatings

    NASA Technical Reports Server (NTRS)

    Li, Wenyan; Buhrow, J. W.; Zhang, X.; Johnsey, M. N.; Pearman, B. P.; Jolley, S. T.; Calle, L. M.

    2016-01-01

    This work concerns the development of environmentally friendly encapsulation technology, specifically designed to incorporate corrosion indicators, inhibitors, and self-healing agents into a coating, in such a way that the delivery of the indicators and inhibitors is triggered by the corrosion process, and the delivery of self-healing agents is triggered by mechanical damage to the coating. Encapsulation of the active corrosion control ingredients allows the incorporation of desired autonomous corrosion control functions such as: early corrosion detection, hidden corrosion detection, corrosion inhibition, and self-healing of mechanical damage into a coating. The technology offers the versatility needed to include one or several corrosion control functions into the same coating.The development of the encapsulation technology has progressed from the initial proof-of-concept work, in which a corrosion indicator was encapsulated into an oil-core (hydrophobic) microcapsule and shown to be delivered autonomously, under simulated corrosion conditions, to a sophisticated portfolio of micro carriers (organic, inorganic, and hybrid) that can be used to deliver a wide range of active corrosion ingredients at a rate that can be adjusted to offer immediate as well as long-term corrosion control. The micro carriers have been incorporated into different coating formulas to test and optimize the autonomous corrosion detection, inhibition, and self-healing functions of the coatings. This paper provides an overview of progress made to date and highlights recent technical developments, such as improved corrosion detection sensitivity, inhibitor test results in various types of coatings, and highly effective self-healing coatings based on green chemistry. The NASA Kennedy Space Centers Corrosion Technology Lab at the Kennedy Space Center in Florida, U.S.A. has been developing multifunctional smart coatings based on the microencapsulation of environmentally friendly corrosion

  2. Pilot-scale cooling tower to evaluate corrosion, scaling, and biofouling control strategies for cooling system makeup water.

    PubMed

    Chien, S H; Hsieh, M K; Li, H; Monnell, J; Dzombak, D; Vidic, R

    2012-02-01

    Pilot-scale cooling towers can be used to evaluate corrosion, scaling, and biofouling control strategies when using particular cooling system makeup water and particular operating conditions. To study the potential for using a number of different impaired waters as makeup water, a pilot-scale system capable of generating 27,000 kJ∕h heat load and maintaining recirculating water flow with a Reynolds number of 1.92 × 10(4) was designed to study these critical processes under conditions that are similar to full-scale systems. The pilot-scale cooling tower was equipped with an automatic makeup water control system, automatic blowdown control system, semi-automatic biocide feeding system, and corrosion, scaling, and biofouling monitoring systems. Observed operational data revealed that the major operating parameters, including temperature change (6.6 °C), cycles of concentration (N = 4.6), water flow velocity (0.66 m∕s), and air mass velocity (3660 kg∕h m(2)), were controlled quite well for an extended period of time (up to 2 months). Overall, the performance of the pilot-scale cooling towers using treated municipal wastewater was shown to be suitable to study critical processes (corrosion, scaling, biofouling) and evaluate cooling water management strategies for makeup waters of complex quality.

  3. Why system safety programs can fail

    NASA Technical Reports Server (NTRS)

    Hammer, W.

    1971-01-01

    Factors that cause system safety programs to fail are discussed from the viewpoint that in general these programs have not achieved their intended aims. The one item which is considered to contribute most to failure of a system safety program is a poor statement of work which consists of ambiguity, lack of clear definition, use of obsolete requirements, and pure typographical errors. It is pointed out that unless safety requirements are stated clearly, and where they are readily apparent as firm requirements, some of them will be overlooked by designers and contractors. The lack of clarity is stated as being a major contributing factor in system safety program failure and usually evidenced in: (1) lack of clear requirements by the procuring activity, (2) lack of clear understanding of system safety by other managers, and (3) lack of clear methodology to be employed by system safety engineers.

  4. Review on stress corrosion and corrosion fatigue failure of centrifugal compressor impeller

    NASA Astrophysics Data System (ADS)

    Sun, Jiao; Chen, Songying; Qu, Yanpeng; Li, Jianfeng

    2015-03-01

    Corrosion failure, especially stress corrosion cracking and corrosion fatigue, is the main cause of centrifugal compressor impeller failure. And it is concealed and destructive. This paper summarizes the main theories of stress corrosion cracking and corrosion fatigue and its latest developments, and it also points out that existing stress corrosion cracking theories can be reduced to the anodic dissolution (AD), the hydrogen-induced cracking (HIC), and the combined AD and HIC mechanisms. The corrosion behavior and the mechanism of corrosion fatigue in the crack propagation stage are similar to stress corrosion cracking. The effects of stress ratio, loading frequency, and corrosive medium on the corrosion fatigue crack propagation rate are analyzed and summarized. The corrosion behavior and the mechanism of stress corrosion cracking and corrosion fatigue in corrosive environments, which contain sulfide, chlorides, and carbonate, are analyzed. The working environments of the centrifugal compressor impeller show the behavior and the mechanism of stress corrosion cracking and corrosion fatigue in different corrosive environments. The current research methods for centrifugal compressor impeller corrosion failure are analyzed. Physical analysis, numerical simulation, and the fluid-structure interaction method play an increasingly important role in the research on impeller deformation and stress distribution caused by the joint action of aerodynamic load and centrifugal load.

  5. Pitting corrosion as a mixed system: coupled deterministic-probabilistic simulation of pit growth

    NASA Astrophysics Data System (ADS)

    Ibrahim, Israr B. M.; Fonna, S.; Pidaparti, R.

    2018-05-01

    Stochastic behavior of pitting corrosion poses a unique challenge in its computational analysis. However, it also stems from electrochemical activity causing general corrosion. In this paper, a framework for corrosion pit growth simulation based on the coupling of the Cellular Automaton (CA) and Boundary Element Methods (BEM) is presented. The framework assumes that pitting corrosion is controlled by electrochemical activity inside the pit cavity. The BEM provides the prediction of electrochemical activity given the geometrical data and polarization curves, while the CA is used to simulate the evolution of pit shapes based on electrochemical activity provided by BEM. To demonstrate the methodology, a sample case of local corrosion cells formed in pitting corrosion with varied dimensions and polarization functions is considered. Results show certain shapes tend to grow in certain types of environments. Some pit shapes appear to pose a higher risk by being potentially significant stress raisers or potentially increasing the rate of corrosion under the surface. Furthermore, these pits are comparable to commonly observed pit shapes in general corrosion environments.

  6. Solving A Corrosion Problem

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The corrosion problem, it turned out, stemmed from the process called electrolysis. When two different metals are in contact, an electrical potential is set up between them; when the metals are surrounded by an electrolyte, or a conducting medium, the resulting reaction causes corrosion, often very rapid corrosion. In this case the different metals were the copper grounding system and the ferry's aluminum hull; the dockside salt water in which the hull was resting served as the electrolyte. After identifying the source of the trouble, the Ames engineer provided a solution: a new wire-and-rod grounding system made of aluminum like the ferry's hull so there would no longer be dissimilar metals in contact. Ames research on the matter disclosed that the problem was not unique to the Golden Gate ferries. It is being experienced by many pleasure boat operators who are probably as puzzled about it as was the Golden Gate Transit Authority.

  7. Modeling of corrosion product migration in the secondary circuit of nuclear power plants with WWER-1200

    NASA Astrophysics Data System (ADS)

    Kritskii, V. G.; Berezina, I. G.; Gavrilov, A. V.; Motkova, E. A.; Zelenina, E. V.; Prokhorov, N. A.; Gorbatenko, S. P.; Tsitser, A. A.

    2016-04-01

    Models of corrosion and mass transfer of corrosion products in the pipes of the condensate-feeding and steam paths of the secondary circuit of NPPs with WWER-1200 are presented. The mass transfer and distribution of corrosion products over the currents of the working medium of the secondary circuit were calculated using the physicochemical model of mass transfer of corrosion products in which the secondary circuit is regarded as a cyclic system consisting of a number of interrelated elements. The circuit was divided into calculated regions in which the change in the parameters (flow rate, temperature, and pressure) was traced and the rates of corrosion and corrosion products entrainment, high-temperature pH, and iron concentration were calculated. The models were verified according to the results of chemical analyses at Kalinin NPP and iron corrosion product concentrations in the feed water at different NPPs depending on pH at 25°C (pH25) for service times τ ≥ 5000 h. The calculated pH values at a coolant temperature t (pH t ) in the secondary circuit of NPPs with WWER-1200 were presented. The calculation of the distribution of pH t and ethanolamine and ammonia concentrations over the condensate feed (CFC) and steam circuits is given. The models are designed for developing the calculation codes. The project solutions of ATOMPROEKT satisfy the safety and reliability requirements for power plants with WWER-1200. The calculated corrosion and corrosion product mass transfer parameters showed that the model allows the designer to choose between the increase of the correcting reagent concentration, the use of steel with higher chromium contents, and intermittent washing of the steam generator from sediments as the best solution for definite regions of the circuit.

  8. Does the concept of safety culture help or hinder systems thinking in safety?

    PubMed

    Reiman, Teemu; Rollenhagen, Carl

    2014-07-01

    The concept of safety culture has become established in safety management applications in all major safety-critical domains. The idea that safety culture somehow represents a "systemic view" on safety is seldom explicitly spoken out, but nevertheless seem to linger behind many safety culture discourses. However, in this paper we argue that the "new" contribution to safety management from safety culture never really became integrated with classical engineering principles and concepts. This integration would have been necessary for the development of a more genuine systems-oriented view on safety; e.g. a conception of safety in which human, technological, organisational and cultural factors are understood as mutually interacting elements. Without of this integration, researchers and the users of the various tools and methods associated with safety culture have sometimes fostered a belief that "safety culture" in fact represents such a systemic view about safety. This belief is, however, not backed up by theoretical or empirical evidence. It is true that safety culture, at least in some sense, represents a holistic term-a totality of factors that include human, organisational and technological aspects. However, the departure for such safety culture models is still human and organisational factors rather than technology (or safety) itself. The aim of this paper is to critically review the various uses of the concept of safety culture as representing a systemic view on safety. The article will take a look at the concepts of culture and safety culture based on previous studies, and outlines in more detail the theoretical challenges in safety culture as a systems concept. The paper also presents recommendations on how to make safety culture more systemic. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. The aviation safety reporting system

    NASA Technical Reports Server (NTRS)

    Reynard, W. D.

    1984-01-01

    The aviation safety reporting system, an accident reporting system, is presented. The system identifies deficiencies and discrepancies and the data it provides are used for long term identification of problems. Data for planning and policy making are provided. The system offers training in safety education to pilots. Data and information are drawn from the available data bases.

  10. NASA Aviation Safety Reporting System (ASRS)

    NASA Technical Reports Server (NTRS)

    Connell, Linda

    2011-01-01

    The NASA Aviation Safety Reporting System (ASRS) collects, analyzes, and distributes de-identified safety information provided through confidentially submitted reports from frontline aviation personnel. Since its inception in 1976, the ASRS has collected over 900,000 reports and has never breached the identity of the people sharing their information about events or safety issues. From this volume of data, the ASRS has released over 5,500 aviation safety alerts concerning potential hazards and safety concerns. The ASRS processes these reports, evaluates the information, and provides de-identified report information through the online ASRS Database at http://asrs.arc.nasa.gov. The NASA ASRS is also a founding member of the International Confidential Aviation Safety Systems (ICASS) group which is a collection of other national aviation reporting systems throughout the world. The ASRS model has also been replicated for application to improving safety in railroad, medical, fire fighting, and other domains. This presentation \\vill discuss confidential, voluntary, and non-punitive reporting systems and their advantages in providing information for safety improvements.

  11. NASA Aviation Safety Reporting System (ASRS)

    NASA Technical Reports Server (NTRS)

    Connell, Linda J.

    2017-01-01

    The NASA Aviation Safety Reporting System (ASRS) collects, analyzes, and distributes de-identified safety information provided through confidentially submitted reports from frontline aviation personnel. Since its inception in 1976, the ASRS has collected over 1.4 million reports and has never breached the identity of the people sharing their information about events or safety issues. From this volume of data, the ASRS has released over 6,000 aviation safety alerts concerning potential hazards and safety concerns. The ASRS processes these reports, evaluates the information, and provides selected de-identified report information through the online ASRS Database at http:asrs.arc.nasa.gov. The NASA ASRS is also a founding member of the International Confidential Aviation Safety Systems (ICASS) group which is a collection of other national aviation reporting systems throughout the world. The ASRS model has also been replicated for application to improving safety in railroad, medical, fire fighting, and other domains. This presentation will discuss confidential, voluntary, and non-punitive reporting systems and their advantages in providing information for safety improvements.

  12. Strontium Concentrations in Corrosion Products from Residential Drinking Water Distribution Systems

    DTIC Science & Technology

    2013-04-22

    associated with iron corrosion products that, if disturbed, could increase Sr2+ concentrations above the 0.3 μg L -1 US EPA reporting threshold...water travels through and interacts with the DWDS infrastructure and associated corrosion products.7,8 Starting in 2013, reporting to the US EPA is...techniques, Sr2+ binding mechanisms within the corrosion products were examined using in situ micro X-ray adsorption near edge spectroscopy (μ- XANES

  13. Experiments and models of general corrosion and flow-assisted corrosion of materials in nuclear reactor environments

    NASA Astrophysics Data System (ADS)

    Cook, William Gordon

    Corrosion and material degradation issues are of concern to all industries. However, the nuclear power industry must conform to more stringent construction, fabrication and operational guidelines due to the perceived additional risk of operating with radioactive components. Thus corrosion and material integrity are of considerable concern for the operators of nuclear power plants and the bodies that govern their operations. In order to keep corrosion low and maintain adequate material integrity, knowledge of the processes that govern the material's breakdown and failure in a given environment are essential. The work presented here details the current understanding of the general corrosion of stainless steel and carbon steel in nuclear reactor primary heat transport systems (PHTS) and examines the mechanisms and possible mitigation techniques for flow-assisted corrosion (FAC) in CANDU outlet feeder pipes. Mechanistic models have been developed based on first principles and a 'solution-pores' mechanism of metal corrosion. The models predict corrosion rates and material transport in the PHTS of a pressurized water reactor (PWR) and the influence of electrochemistry on the corrosion and flow-assisted corrosion of carbon steel in the CANDU outlet feeders. In-situ probes, based on an electrical resistance technique, were developed to measure the real-time corrosion rate of reactor materials in high-temperature water. The probes were used to evaluate the effects of coolant pH and flow on FAC of carbon steel as well as demonstrate of the use of titanium dioxide as a coolant additive to mitigated FAC in CANDU outlet feeder pipes.

  14. pH Sensitive Microcapsules for Delivery of Corrosion Inhibitors

    NASA Technical Reports Server (NTRS)

    Li, Wenyan; Calle, Luz M.

    2006-01-01

    A considerable number of corrosion problems can be solved by coatings. However, even the best protective coatings can fail by allowing the slow diffusion of oxygen and moisture to the metal surface. Corrosion accelerates when a coating delaminates. Often, the problems start when microscopic nicks or pits on the surface develop during manufacturing or through wear and tear. This problem can be solved by the incorporation of a self-healing function into the coating. Several new concepts are currently under development to incorporate this function into a coating. Conductive polymers, nanoparticles, and microcapsules are used to release corrosion-inhibiting ions at a defect site. The objective of this investigation is to develop a smart coating for the early detection and inhibition of corrosion. The dual function of this new smart coating system is performed by pH-triggered release microcapsules. The microcapsules can be used to deliver healing agents to terminate the corrosion process at its early stage or as corrosion indicators by releasing dyes at the localized corrosion sites. The dyes can be color dyes or fluorescent dyes, with or without pH sensitivity. Microcapsules were formed through the interfacial polymerization process. The average size of the microcapsules can be adjusted from 1 to 100 micron by adjusting the emulsion formula and the microcapsule forming conditions. A typical microcapsule size is around 10 microns with a narrow size distribution. The pH sensitivity of the microcapsule can also be controlled by adjusting the emulsion formula and the polymerization reaction time. Both corrosion indicator (pH indicator) and corrosion inhibitor containing microcapsules were formed and incorporated into paint systems. Test panels of selected steels and aluminum alloys were painted using these paints. Testing of compatibility between the microcapsule system and different paint systems are in progress. Initial experiments with the microcapsule containing paint

  15. Smart Coating for Corrosion Indication and Prevention: Recent Progress

    NASA Technical Reports Server (NTRS)

    Li, Wenyan; Hintze, Paul; Calle, Luz M.; Buhrow, Jerry; Curran, Jerry; Muehlberg, A. J.; Gelling, V. J.; Webster, D. C.; Croll, S. G.; Contu, F.; hide

    2009-01-01

    The authors are developing a smart coating system based on pH-triggered release microcapsules. These microcapsules can be incorporated into various coating systems for corrosion detection, protection and self-repair of mechanical coating damage. This paper will present the results from progress made to date in the controlled release properties of these microcapsules as well as in their corrosion indication and corrosion inhibition function.

  16. Improvement of the linear polarization resistance method for testing steel corrosion inhibitors

    NASA Astrophysics Data System (ADS)

    Faritov, A. T.; Rozhdestvenskii, Yu. G.; Yamshchikova, S. A.; Minnikhanova, E. R.; Tyusenkov, A. S.

    2016-11-01

    The linear polarization resistance method is used to improve the technique of corrosion control in liquid conducting according to GOST 9.514-99 (General Corrosion and Aging Protection System. Corrosion Inhibitors for Metals in Water Systems. Electrochemical Method of Determining the Protective Ability). Corrosion monitoring is shown to be performed by electronic devices with real-time data transfer to industrial controllers and SCADA systems.

  17. Integrating system safety into the basic systems engineering process

    NASA Technical Reports Server (NTRS)

    Griswold, J. W.

    1971-01-01

    The basic elements of a systems engineering process are given along with a detailed description of what the safety system requires from the systems engineering process. Also discussed is the safety that the system provides to other subfunctions of systems engineering.

  18. 49 CFR 385.103 - Safety monitoring system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Safety monitoring system. 385.103 Section 385.103... Safety Monitoring System for Mexico-Domiciled Carriers § 385.103 Safety monitoring system. (a) General... Vehicle Safety Standards (FMVSSs), and Hazardous Materials Regulations (HMRs). (b) Roadside monitoring...

  19. 49 CFR 385.103 - Safety monitoring system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Safety monitoring system. 385.103 Section 385.103... Safety Monitoring System for Mexico-Domiciled Carriers § 385.103 Safety monitoring system. (a) General... Vehicle Safety Standards (FMVSSs), and Hazardous Materials Regulations (HMRs). (b) Roadside monitoring...

  20. Recent Developments on Autonomous Corrosion Protection Through Encapsulation

    NASA Technical Reports Server (NTRS)

    Li, W.; Buhrow, J. W.; Calle, L. M.; Gillis, M.; Blanton, M.; Hanna, J.; Rawlins, J.

    2015-01-01

    This paper concerns recent progress in the development of a multifunctional smart coating, based on microencapsulation, for the autonomous detection and control of corrosion. Microencapsulation has been validated and optimized to incorporate desired corrosion control functionalities, such as early corrosion detection and inhibition, through corrosion-initiated release of corrosion indicators and inhibitors, as well as self-healing agent release triggered by mechanical damage. While proof-of-concept results have been previously reported, more recent research and development efforts have concentrated on improving coating compatibility and synthesis procedure scalability, with a targeted goal of obtaining easily dispersible pigment-grade type microencapsulated materials. The recent progress has resulted in the development of pH-sensitive microparticles as a corrosion-triggered delivery system for corrosion indicators and inhibitors. The synthesis and early corrosion indication results obtained with coating formulations that incorporate these microparticles are reported. The early corrosion indicating results were obtained with color changing and with fluorescent indicators.

  1. Strontium concentrations in corrosion products from residential drinking water distribution systems.

    PubMed

    Gerke, Tammie L; Little, Brenda J; Luxton, Todd P; Scheckel, Kirk G; Maynard, J Barry

    2013-05-21

    The United States Environmental Protection Agency (US EPA) will require some U.S. drinking water distribution systems (DWDS) to monitor nonradioactive strontium (Sr(2+)) in drinking water in 2013. Iron corrosion products from four DWDS were examined to assess the potential for Sr(2+) binding and release. Average Sr(2+) concentrations in the outermost layer of the corrosion products ranged from 3 to 54 mg kg(-1) and the Sr(2+) drinking water concentrations were all ≤0.3 mg L(-1). Micro-X-ray adsorption near edge structure spectroscopy and linear combination fitting determined that Sr(2+) was principally associated with CaCO3. Sr(2+) was also detected as a surface complex associated with α-FeOOH. Iron particulates deposited on a filter inside a home had an average Sr(2+) concentration of 40.3 mg kg(-1) and the associated drinking water at a tap was 210 μg L(-1). The data suggest that elevated Sr(2+) concentrations may be associated with iron corrosion products that, if disturbed, could increase Sr(2+) concentrations above the 0.3 μg L(-1) US EPA reporting threshold. Disassociation of very small particulates could result in drinking water Sr(2+) concentrations that exceed the US EPA health reference limit (4.20 mg kg(-1) body weight).

  2. All-Optical Photoacoustic Sensors for Steel Rebar Corrosion Monitoring.

    PubMed

    Du, Cong; Owusu Twumasi, Jones; Tang, Qixiang; Guo, Xu; Zhou, Jingcheng; Yu, Tzuyang; Wang, Xingwei

    2018-04-27

    This article presents an application of an active all-optical photoacoustic sensing system with four elements for steel rebar corrosion monitoring. The sensor utilized a photoacoustic mechanism of gold nanocomposites to generate 8 MHz broadband ultrasound pulses in 0.4 mm compact space. A nanosecond 532 nm pulsed laser and 400 μm multimode fiber were employed to incite an ultrasound reaction. The fiber Bragg gratings were used as distributed ultrasound detectors. Accelerated corrosion testing was applied to four sections of a single steel rebar with four different corrosion degrees. Our results demonstrated that the mass loss of steel rebar displayed an exponential growth with ultrasound frequency shifts. The sensitivity of the sensing system was such that 0.175 MHz central frequency reduction corresponded to 0.02 g mass loss of steel rebar corrosion. It was proved that the all-optical photoacoustic sensing system can actively evaluate the corrosion of steel rebar via ultrasound spectrum. This multipoint all-optical photoacoustic method is promising for embedment into a concrete structure for distributed corrosion monitoring.

  3. All-Optical Photoacoustic Sensors for Steel Rebar Corrosion Monitoring

    PubMed Central

    Du, Cong; Owusu Twumasi, Jones; Tang, Qixiang; Guo, Xu; Zhou, Jingcheng; Yu, Tzuyang; Wang, Xingwei

    2018-01-01

    This article presents an application of an active all-optical photoacoustic sensing system with four elements for steel rebar corrosion monitoring. The sensor utilized a photoacoustic mechanism of gold nanocomposites to generate 8 MHz broadband ultrasound pulses in 0.4 mm compact space. A nanosecond 532 nm pulsed laser and 400 μm multimode fiber were employed to incite an ultrasound reaction. The fiber Bragg gratings were used as distributed ultrasound detectors. Accelerated corrosion testing was applied to four sections of a single steel rebar with four different corrosion degrees. Our results demonstrated that the mass loss of steel rebar displayed an exponential growth with ultrasound frequency shifts. The sensitivity of the sensing system was such that 0.175 MHz central frequency reduction corresponded to 0.02 g mass loss of steel rebar corrosion. It was proved that the all-optical photoacoustic sensing system can actively evaluate the corrosion of steel rebar via ultrasound spectrum. This multipoint all-optical photoacoustic method is promising for embedment into a concrete structure for distributed corrosion monitoring. PMID:29702554

  4. Corrosion of carbon steel by bacteria from North Sea offshore seawater injection systems: laboratory investigation.

    PubMed

    Stipanicev, Marko; Turcu, Florin; Esnault, Loïc; Rosas, Omar; Basseguy, Régine; Sztyler, Magdalena; Beech, Iwona B

    2014-06-01

    Influence of sulfidogenic bacteria, from a North Sea seawater injection system, on the corrosion of S235JR carbon steel was studied in a flow bioreactor; operating anaerobically for 100days with either inoculated or filtrated seawater. Deposits formed on steel placed in reactors contained magnesium and calcium minerals plus iron sulfide. The dominant biofilm-forming organism was an anaerobic bacterium, genus Caminicella, known to produce hydrogen sulfide and carbon dioxide. Open Circuit Potentials (OCP) of steel in the reactors was, for nearly the entire test duration, in the range -800corrosion rate, expressed as 1/(Rp/Ω), was lower in the inoculated seawater though they varied significantly on both reactors. Initial and final corrosion rates were virtually identical, namely initial 1/(Rp/Ω)=2×10(-6)±5×10(-7) and final 1/(Rp/Ω)=1.1×10(-5)±2.5×10(-6). Measured data, including electrochemical noise transients and statistical parameters (0.0545), suggested pitting on steel samples within the inoculated environment. However, the actual degree of corrosion could neither be directly correlated with the electrochemical data and nor with the steel corrosion in the filtrated seawater environment. Further laboratory tests are thought to clarify the noticed apparent discrepancies. © 2013.

  5. 49 CFR 385.703 - Safety monitoring system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Safety monitoring system. 385.703 Section 385.703... Safety Monitoring System for Non-North American Carriers § 385.703 Safety monitoring system. (a) General... Vehicle Safety Standards (FMVSSs), and Hazardous Materials Regulations (HMRs). (b) Roadside monitoring...

  6. 49 CFR 385.703 - Safety monitoring system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Safety monitoring system. 385.703 Section 385.703... Safety Monitoring System for Non-North American Carriers § 385.703 Safety monitoring system. (a) General... Vehicle Safety Standards (FMVSSs), and Hazardous Materials Regulations (HMRs). (b) Roadside monitoring...

  7. System safety engineering analysis handbook

    NASA Technical Reports Server (NTRS)

    Ijams, T. E.

    1972-01-01

    The basic requirements and guidelines for the preparation of System Safety Engineering Analysis are presented. The philosophy of System Safety and the various analytic methods available to the engineering profession are discussed. A text-book description of each of the methods is included.

  8. Economic impact of corrosion and scaling problems in geothermal energy systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shannon, D.W.

    Corrosion and scaling problems have a significant impact on geothermal plant economics. A power plant must amortize the capital investment over a 20-year period and achieve satisfactory operating efficiency to achieve financial success. Corrosion and scale incrustations have been encountered in all geothermal plants, and to various degrees, adversely affected plant life times and power output. Using published data this report analyzes known geothermal corrosion and scaling phenomena for significant cost impacts on plant design and operation. It has been necessary to speculate about causes and mechanisms in order to estimate impacts on conceptual geothermal plants. Silica is highly solublemore » in hot geothermal water and solubility decreases as water is cooled in a geothermal power plant. Calculations indicate as much as 30,000 tons/year could pass through a 100 MWe water cycle plant. The major cost impact will be on the reinjection well system where costs of 1 to 10 mills/kwhr of power produced could accrue to waste handling alone. On the other hand, steam cycle geothermal plants have a definite advantage in that significant silica problems will probably only occur in hot dry rock concepts, where steam above 250 C is produced. Calculation methods are given for estimating the required size and cost impact of a silica filtration plant and for sizing scrubbers. The choice of materials is significantly affected by the pH of the geothermal water, temperature, chloride, and H{sub s} contents. Plant concepts which attempt to handle acid waters above 180 C will be forced to use expensive corrosion resistant alloys or develop specialized materials. On the other hand, handling steam up to 500 C, and pH 9 water up to 180 C appears feasible using nominal cost steels, typical of today's geothermal plants. A number of factors affecting plant or component availability have been identified. The most significant is a corrosion fatigue problem in geothermal turbines at the

  9. The Evolution of System Safety at NASA

    NASA Technical Reports Server (NTRS)

    Dezfuli, Homayoon; Everett, Chris; Groen, Frank

    2014-01-01

    The NASA system safety framework is in the process of change, motivated by the desire to promote an objectives-driven approach to system safety that explicitly focuses system safety efforts on system-level safety performance, and serves to unify, in a purposeful manner, safety-related activities that otherwise might be done in a way that results in gaps, redundancies, or unnecessary work. An objectives-driven approach to system safety affords more flexibility to determine, on a system-specific basis, the means by which adequate safety is achieved and verified. Such flexibility and efficiency is becoming increasingly important in the face of evolving engineering modalities and acquisition models, where, for example, NASA will increasingly rely on commercial providers for transportation services to low-earth orbit. A key element of this objectives-driven approach is the use of the risk-informed safety case (RISC): a structured argument, supported by a body of evidence, that provides a compelling, comprehensible and valid case that a system is or will be adequately safe for a given application in a given environment. The RISC addresses each of the objectives defined for the system, providing a rational basis for making informed risk acceptance decisions at relevant decision points in the system life cycle.

  10. Electrochemical Investigation of Corrosion in the Space Shuttle Launch Environment

    NASA Technical Reports Server (NTRS)

    Calle, L. M.

    2004-01-01

    Corrosion studies began at NASA/Kennedy Space Center in 1966 during the Gemini/Apollo Programs with the evaluation of long-term protective coatings for the atmospheric protection of carbon steel. An outdoor exposure facility on the beach near the launch pad was established for this purpose at that time. The site has provided over 35 years of technical information on the evaluation of the long-term corrosion performance of many materials and coatings as well as on maintenance procedures. Results from these evaluations have helped NASA find new materials and processes that increase the safety and reliability of our flight hardware, launch structures, and ground support equipment. The launch environment at the Kennedy Space Center (KSC) is extremely corrosive due to the combination of ocean salt spray, heat, humidity, and sunlight. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pad were rendered even more severe by the acidic exhaust from the solid rocket boosters. It has been estimated that 70 tons of hydrochloric acid (HC1) are produced during a launch. The Corrosion Laboratory at NASA/KSC was established in 1985 to conduct electrochemical studies of corrosion on materials and coatings under conditions similar to those encountered at the launch pads. I will present highlights of some of these investigations.

  11. Microencapsulation of Self Healing Agents for Corrosion Control Coatings

    NASA Technical Reports Server (NTRS)

    Jolley, S. T.; Li, W.; Buhrow, J. W.; Calle, L. M.

    2011-01-01

    Corrosion, the environmentally induced degradation of materials, is a very costly problem that has a major impact on the global economy. Results from a 2-year breakthrough study released in 2002 by the U.S. Federal Highway Administration (FHWA) showed that the total annual estimated direct cost associated with metallic corrosion in nearly every U.S. industry sector was a staggering $276 billion, approximately 3.1% of the nation's Gross Domestic Product (GOP). Corrosion protective coatings are widely used to protect metallic structures from the detrimental effects of corrosion but their effectiveness can be seriously compromised by mechanical damage, such as a scratch, that exposes the metallic substrate. The incorporation of a self healing mechanism into a corrosion control coating would have the potential to significantly increase its effectiveness and useful lifetime. This paper describes work performed to incorporate a number of microcapsule-based self healing systems into corrosion control coatings. The work includes the preparation and evaluation of self-healing systems based on curable epoxy, acrylate, and siloxane resins, as well as, microencapsulated systems based on passive, solvent born, healing agent delivery. The synthesis and optimization of microcapsule-based self healing systems for thin coating (less than 100 micron) will be presented.

  12. Corrosion chemistry closing comments: opportunities in corrosion science facilitated by operando experimental characterization combined with multi-scale computational modelling.

    PubMed

    Scully, John R

    2015-01-01

    Recent advances in characterization tools, computational capabilities, and theories have created opportunities for advancement in understanding of solid-fluid interfaces at the nanoscale in corroding metallic systems. The Faraday Discussion on Corrosion Chemistry in 2015 highlighted some of the current needs, gaps and opportunities in corrosion science. Themes were organized into several hierarchical categories that provide an organizational framework for corrosion. Opportunities to develop fundamental physical and chemical data which will enable further progress in thermodynamic and kinetic modelling of corrosion were discussed. These will enable new and better understanding of unit processes that govern corrosion at the nanoscale. Additional topics discussed included scales, films and oxides, fluid-surface and molecular-surface interactions, selected topics in corrosion science and engineering as well as corrosion control. Corrosion science and engineering topics included complex alloy dissolution, local corrosion, and modelling of specific corrosion processes that are made up of collections of temporally and spatially varying unit processes such as oxidation, ion transport, and competitive adsorption. Corrosion control and mitigation topics covered some new insights on coatings and inhibitors. Further advances in operando or in situ experimental characterization strategies at the nanoscale combined with computational modelling will enhance progress in the field, especially if coupling across length and time scales can be achieved incorporating the various phenomena encountered in corrosion. Readers are encouraged to not only to use this ad hoc organizational scheme to guide their immersion into the current opportunities in corrosion chemistry, but also to find value in the information presented in their own ways.

  13. A Multifunctional Coating for Autonomous Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, L. M.; Hintze, P. E.; Li, W.; Buhrow, J. W.; Jolley, S. T.

    2011-01-01

    This slide presentation reviews the effects of corrosion on various structures at the Kennedy Space Center, and the work to discover a corrosion control coating that will be autonomous and will indicate corrosion at an early point in the process. Kennedy Space Center has many environmental conditions that are corrosive: ocean salt spray, heat, humidity, sunlight and acidic exhaust from the Solid Rocket Boosters (SRBs). Presented is a chart which shows the corrosion rates of carbon steel at various locations. KSC has the highest corrosion rates with 42.0 mils/yr, leading the next highest Galeta Point Beach, in the Panama Canal Zone with 27 mils/yr corrosion. A chart shows the changes in corrosion rate with the distance from the ocean. The three types of corrosion protective coatings are described: barrier (passive), Barrier plus active corrosion inhibiting components, and smart. A smart coating will detect and respond actively to changes in its environment in a functional and predictable manner and is capable of adapting its properties dynamically. The smart coating uses microcapsules, particles or liquid drops coated in polymers, that can detect and control the corrosion caused by the environment. The mechanism for a pH sensitive microcapsule and the hydrophobic core microcapsule are demonstrated and the chemistry is reviewed. When corrosion begins, the microcapsule will release the contents of the core (indicator, inhibitor, and self healing agent) in close proximity to the corrosion. The response to a pH increase is demonstrated by a series of pictures that show the breakdown of the microcapsule and the contents release. An example of bolt corrosion is used, as an example of corrosion in places that are difficult to ascertain. A comparison of various coating systems is shown.

  14. Modelling safety of multistate systems with ageing components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kołowrocki, Krzysztof; Soszyńska-Budny, Joanna

    An innovative approach to safety analysis of multistate ageing systems is presented. Basic notions of the ageing multistate systems safety analysis are introduced. The system components and the system multistate safety functions are defined. The mean values and variances of the multistate systems lifetimes in the safety state subsets and the mean values of their lifetimes in the particular safety states are defined. The multi-state system risk function and the moment of exceeding by the system the critical safety state are introduced. Applications of the proposed multistate system safety models to the evaluation and prediction of the safty characteristics ofmore » the consecutive “m out of n: F” is presented as well.« less

  15. Evaluation of corrosion products formed by sulfidation as inhibitors of the naphthenic corrosion of AISI-316 steel

    NASA Astrophysics Data System (ADS)

    Sanabria-Cala, J. A.; Montañez, N. D.; Laverde Cataño, D.; Y Peña Ballesteros, D.; Mejía, C. A.

    2017-12-01

    Naphthenic acids present in oil from most regions worldwide currently stand as the main responsible for the naphthenic corrosion problems, affecting the oil-refining industry. The phenomenon of sulfidation, accompanying corrosion processes brought about by naphthenic acids in high-temperature refining plant applications, takes place when the combination of sulfidic acid (H2S) with Fe forms layers of iron sulphide (FeS) on the material surface, layers with the potential to protect the material from attack by other corrosive species like naphthenic acids. This work assessed corrosion products formed by sulfidation as inhibitors of naphthenic corrosion rate in AISI-316 steel exposed to processing conditions of simulated crude oil in a dynamic autoclave. Calculation of the sulfidation and naphthenic corrosion rates were determined by gravimetry. The surfaces of the AISI-316 gravimetric coupons exposed to acid systems; were characterized morphologically by X-Ray Diffraction (XRD) and X-ray Fluorescence by Energy Dispersive Spectroscopy (EDS) combined with Scanning Electron Microscopy (SEM). One of the results obtained was the determination of an inhibiting effect of corrosion products at 250 and 300°C, where lower corrosion rate levels were detected. For the temperature of 350°C, naphthenic corrosion rates increased due to deposition of naphthenic acids on the areas where corrosion products formed by sulfidation have lower homogeneity and stability on the surface, thus accelerating the destruction of AISI-316 steel. The above provides an initial contribution to oil industry in search of new alternatives to corrosion control by the attack of naphthenic acids, from the formation of FeS layers on exposed materials in the processing of heavy crude oils with high sulphur content.

  16. System safety education focused on industrial engineering

    NASA Technical Reports Server (NTRS)

    Johnston, W. L.; Morris, R. S.

    1971-01-01

    An educational program, designed to train students with the specific skills needed to become safety specialists, is described. The discussion concentrates on application, selection, and utilization of various system safety analytical approaches. Emphasis is also placed on the management of a system safety program, its relationship with other disciplines, and new developments and applications of system safety techniques.

  17. Corrosion Fatigue

    DTIC Science & Technology

    1981-10-01

    particularly under conditions of cathodic polarization. Sul- fate ion , while less damaging under free corrosion conditions, is equally aggressive at...Editing and Reproduction Ltd Harford 11ouse, 7-9 Charlotte St, London, WIP 1HD I I - PREFACE Failure by fatigue and degradation by corrosion continue to...of halide ions . In the unstressed state, this degrada- tion may be manifested by localized corrosion such as pitting, crevice corrosion or ex

  18. Environmentally Friendly Corrosion Preventative Compounds

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Montgomery, Eliza; Kolody, Mark; Curran, Jerry; Back, Teddy; Balles, Angela

    2012-01-01

    The objective of the Ground Systems Development and Operations Program Environmentally Friendly Corrosion Protective Coatings and Corrosion Preventive Compounds (CPCs) project is to identify, test, and develop qualification criteria for the use of environmentally friendly corrosion protective coatings and CPCs for flight hardware and ground support equipment. This document is the Final Report for Phase I evaluations, which included physical property, corrosion resistance, and NASA spaceport environment compatibility testing and analysis of fifteen CPC types. The CPCs consisted of ten different oily film CPCs and five different wax or grease CPC types. Physical property testing encompassed measuring various properties of the bulk CPCs, while corrosion resistance testing directly measured the ability of each CPC material to protect various metals against corrosion. The NASA spaceport environment compatibility testing included common tests required by NASA-STD-6001, "Flammability, Odor, Offgassing, and Compatibility Requirements and Test Procedures for Materials in Environments that Support Combustion". At the end of Phase I, CPC materials were down-selected for inclusion in the next test phases. This final report includes all data and analysis of results obtained by following the experimental test plan that was developed as part of the project. Highlights of the results are summarized by test criteria type.

  19. Corrosion Behavior of Ceramic Cup of Blast Furnace Hearth by Liquid Iron and Slag

    NASA Astrophysics Data System (ADS)

    Li, Yanglong; Cheng, Shusen; Wang, Zhifeng

    2016-10-01

    Three kinds of sample bricks of ceramic cups for blast furnace hearth were studied by dynamic corrosion tests based on different corrosion systems, i.e., liquid iron system, liquid slag system and liquid iron-slag system. Considering the influence of temperature and sample rotational speed, the corrosion profiles and mass loss of the samples were analyzed. In addition, the microstructure of the corroded samples was observed by optical microscope (OM) and scanning electron microscope (SEM). It was found that the corrosion profiles could be divided into iron corrosion region, slag corrosion region and iron-slag corrosion region via corrosion degree after iron-slag corrosion experiment. The most serious corrosion occurred in iron-slag corrosion region. This is due to Marangoni effect, which promotes a slag film formed between liquid iron and ceramic cup and results in local corrosion. The corrosion of the samples deepened with increasing temperature of liquid iron and slag from 1,623 K to 1,823 K. The variation of slag composition had greater influence on the erosion degree than that of rotational speed in this experiment. Taking these results into account the ceramic cup composition should be close to slag composition to decrease the chemical reaction. A microporous and strong material should be applied for ceramic cup.

  20. Systems Thinking and Patient Safety

    DTIC Science & Technology

    2005-01-01

    1 Prologue Systems Thinking and Patient Safety Paul M. Schyve Patient safety is a prominent theme in health care delivery today. This should... patient safety and a willingness to invest in patient safety research. This volume—published by the Agency for Healthcare Research and Quality (AHRQ...The recent advent of the health care field’s emphasis on patient safety came at a favorable time. One or two decades earlier, our response would have

  1. Corrosion Considerations for Thermochemical Biomass Liquefaction Process Systems in Biofuel Production

    NASA Astrophysics Data System (ADS)

    Brady, M. P.; Keiser, J. R.; Leonard, D. N.; Whitmer, L.; Thomson, J. K.

    2014-12-01

    Thermochemical liquefaction processing of biomass to produce bio-derived fuels (e.g., gasoline, jet fuel, diesel, home heating oil, etc.) is of great recent interest as a renewable energy source. Approaches under investigation include direct liquefaction, hydrothermal liquefaction, hydropyrolysis, fast pyrolysis, etc., to produce energy dense liquids that can be utilized as produced or further processed to provide products of higher value. An issue with bio-oils is that they tend to contain significant concentrations of organic oxygenates, including acids, which make the bio-oil a potential source of corrosion issues in transport, storage, and use. Efforts devoted to modified/further processing of bio-oils to make them less corrosive are currently being widely pursued. Another issue that must also be addressed in bio-oil liquefaction is potential corrosion issues in the process equipment. Depending on the specific process, bio-oil liquefaction production temperatures are typically in the 300-600°C range, and the process environment can contain aggressive sulfur and halide species from both the biomass used and/or process additives. Detailed knowledge of the corrosion resistance of candidate process equipment alloys in these bio-oil production environments is currently lacking. This paper summarizes recent, ongoing efforts to assess the extent of corrosion of bio-oil process equipment, with the ultimate goal of providing a basis for the selection of the lowest cost alloy grades capable of providing the long-term corrosion resistance needed for future bio-oil production plants.

  2. ENVIRONMENTALLY COMPLIANT CORROSION-ACTIVATED INHIBITOR SYSTEM FOR ALUMINUM ALLOYS - PHASE I

    EPA Science Inventory

    The federal government is estimated to spend $1 billion on painting/repainting aircraft annually. Aircraft have surfaces composed of aluminum alloys that are highly susceptible to corrosion and must be protected with corrosion-preventative treatments that typically conta...

  3. Product Engineering Class in the Software Safety Risk Taxonomy for Building Safety-Critical Systems

    NASA Technical Reports Server (NTRS)

    Hill, Janice; Victor, Daniel

    2008-01-01

    When software safety requirements are imposed on legacy safety-critical systems, retrospective safety cases need to be formulated as part of recertifying the systems for further use and risks must be documented and managed to give confidence for reusing the systems. The SEJ Software Development Risk Taxonomy [4] focuses on general software development issues. It does not, however, cover all the safety risks. The Software Safety Risk Taxonomy [8] was developed which provides a construct for eliciting and categorizing software safety risks in a straightforward manner. In this paper, we present extended work on the taxonomy for safety that incorporates the additional issues inherent in the development and maintenance of safety-critical systems with software. An instrument called a Software Safety Risk Taxonomy Based Questionnaire (TBQ) is generated containing questions addressing each safety attribute in the Software Safety Risk Taxonomy. Software safety risks are surfaced using the new TBQ and then analyzed. In this paper we give the definitions for the specialized Product Engineering Class within the Software Safety Risk Taxonomy. At the end of the paper, we present the tool known as the 'Legacy Systems Risk Database Tool' that is used to collect and analyze the data required to show traceability to a particular safety standard

  4. In-space propellant systems safety. Volume 3: System safety analysis

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The primary objective was to examine from a system safety viewpoint in-space propellant logistic elements and operations to define the potential hazards and to recommend means to reduce, eliminate or control them. A secondary objective was to conduct trade studies of specific systems or operations to determine the safest of alternate approaches.

  5. Monitoring corrosion and chemistry phenomena in supercritical aqueous systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macdonald, D.D.; Pang, J.; Liu, C.

    1994-12-31

    The in situ monitoring of the chemistry and electrochemistry of aqueous heat transport fluids in thermal (nuclear and fossil) power plants is now considered essential if adequate assessment and close control of corrosion and mass transfer phenomena are to be achieved. Because of the elevated temperatures and pressures involved. new sensor technologies are required that are able to measure key parameters under plant operating conditions for extended periods of time. In this paper, the authors outline a research and development program that is designed to develop practical sensors for use in thermal power plants. The current emphasis is on sensorsmore » for measuring corrosion potential, pH, the concentrations of oxygen and hydrogen, and the electrochemical noise generated by corrosion processes at temperatures ranging from {approximately}250 C to 500 C. The program is currently at the laboratory stage, but testing of prototype sensors in a coal-fired supercritical power plant in Spain will begin shortly.« less

  6. Evaluation and control of environmental corrosion for aluminum and steel alloys

    NASA Technical Reports Server (NTRS)

    Franklin, D. B.

    1977-01-01

    Corrosion protection systems for aerospace application and the effects of surface treatments and methods of controlling stress corrosion are evaluated. Chromate pigmented systems were found to be most effective for aluminum alloys; zinc-rich coatings gave the greatest protection to steel alloys. Various steel and aluminum alloys are rated for stress corrosion resistance.

  7. Stress Corrosion Evaluation of Various Metallic Materials for the International Space Station Water Recycling System

    NASA Technical Reports Server (NTRS)

    Torres, P. D.

    2015-01-01

    A stress corrosion evaluation was performed on Inconel 625, Hastelloy C276, titanium commercially pure (TiCP), Ti-6Al-4V, Ti-6Al-4V extra low interstitial, and Cronidur 30 steel as a consequence of a change in formulation of the pretreatment for processing the urine in the International Space Station Environmental Control and Life Support System Urine Processing Assembly from a sulfuric acid-based to a phosphoric acid-based solution. The first five listed were found resistant to stress corrosion in the pretreatment and brine. However, some of the Cronidur 30 specimens experienced reduction in load-carrying ability.

  8. Application of Mössbauer spectroscopy on corrosion products of NPP

    NASA Astrophysics Data System (ADS)

    Dekan, J.; Lipka, J.; Slugeň, V.

    2013-04-01

    Steam generator (SG) is generally one of the most important components at all nuclear power plants (NPP) with close impact to safe and long-term operation. Material degradation and corrosion/erosion processes are serious risks for long-term reliable operation. Steam generators of four VVER-440 units at nuclear power plants V-1 and V-2 in Jaslovske Bohunice (Slovakia) were gradually changed by new original "Bohunice" design in period 1994-1998, in order to improve corrosion resistance of SGs. Corrosion processes before and after these design and material changes in Bohunice secondary circuit were studied using Mössbauer spectroscopy during last 25 years. Innovations in the feed water pipeline design as well as material composition improvements were evaluated positively. Mössbauer spectroscopy studies of phase composition of corrosion products were performed on real specimens scrapped from water pipelines or in form of filters deposits. Newest results in our long-term corrosion study confirm good operational experiences and suitable chemical regimes (reduction environment) which results mostly in creation of magnetite (on the level 70 % or higher) and small portions of hematite, goethite or hydrooxides. Regular observation of corrosion/erosion processes is essential for keeping NPP operation on high safety level. The output from performed material analyses influences the optimisation of operating chemical regimes and it can be used in optimisation of regimes at decontamination and passivation of pipelines or secondary circuit components. It can be concluded that a longer passivation time leads more to magnetite fraction in the corrosion products composition.

  9. Behavior of tritium permeation induced by water corrosion of alpha iron around room temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otsuka, T.; Hashizume, K.

    2015-03-15

    Tritium (T) permeation leakage to surroundings is a great safety concern in fission and fusion reactor systems. T permeation potentially occurs from T contaminated water through cooling tubes or storage tank made of metals which dissolve some T evolved by water corrosion. In order to understand behaviors of hydrogen uptake and permeation in pure α-iron (αFe) during water corrosion around room temperature, hydrogen permeation experiments for an αFe membrane have been conducted by means of tritium tracer techniques. The present study suggests that hydrogen produced by water corrosion of αFe is trapped in product oxide layers to delay hydrogen uptakemore » in αFe for a moment. However, the oxide layers do not work as a sufficient barrier for hydrogen uptake. Some of hydrogen dissolved in αFe normally diffuses and permeates through the bulk in the early stage of permeation. In a later stage, hydrogen permeation could be apparently stopped by the disappearance of concentration difference of tritium. Hydrogen partial pressure at the water/αFe interface could be ranged from 0.7 to 9.5 kPa around room temperature.« less

  10. Software system safety

    NASA Technical Reports Server (NTRS)

    Uber, James G.

    1988-01-01

    Software itself is not hazardous, but since software and hardware share common interfaces there is an opportunity for software to create hazards. Further, these software systems are complex, and proven methods for the design, analysis, and measurement of software safety are not yet available. Some past software failures, future NASA software trends, software engineering methods, and tools and techniques for various software safety analyses are reviewed. Recommendations to NASA are made based on this review.

  11. NON-CORROSIVE PLUTONIUM FUEL SYSTEMS

    DOEpatents

    Coffinberry, A.S.; Waber, J.T.

    1962-10-23

    An improved plutonium reactor liquid fuel is described for utilization in a nuclear reactor having a tantalum fuel containment vessel. The fuel consists of plutonium and a diluent such as iron, cobalt, nickel, cerium, cerium-- iron, cerium--cobalt, cerium--nickel, and cerium--copper, and an additive of carbon and silicon. The carbon and silicon react with the tantalum container surface to form a coating that is self-healing and prevents the corrosive action of liquid plutonium on the said tantalum container. (AEC)

  12. Evaluation Of The Vehicle Radar Safety Systems Rashid Radar Safety Brake Collision Warning System, Final Report

    DOT National Transportation Integrated Search

    1988-02-01

    THIS EVALUATION OF THE VEHICLE RADAR SAFETY SYSTEMS? ANTI-COLLISION DEVICE (HEREAFTER VRSS) WAS UNDERTAKEN BY THE OPERATOR PERFORMANCE AND SAFETY ANALYSIS DIVISION OF THE TRANSPORTATION SYSTEMS CENTER AT THE REQUEST OF THE NATIONAL HIGHWAY TRAFFIC SA...

  13. Detection of stress corrosion cracking and general corrosion of mild steel in simulated defense nuclear waste solutions using electrochemical noise analysis

    NASA Astrophysics Data System (ADS)

    Edgemon, G. L.; Danielson, M. J.; Bell, G. E. C.

    1997-06-01

    Underground waste tanks fabricated from mild steel store more than 253 million liters of high level radioactive waste from 50 years of weapons production at the Hanford Site. The probable modes of corrosion failures are reported as nitrate stress corrosion cracking and pitting. In an effort to develop a waste tank corrosion monitoring system, laboratory tests were conducted to characterize electrochemical noise data for both uniform and localized corrosion of mild steel and other materials in simulated waste environments. The simulated waste solutions were primarily composed of ammonium nitrate or sodium nitrate and were held at approximately 97°C. The electrochemical noise of freely corroding specimens was monitored, recorded and analyzed for periods ranging between 10 and 500 h. At the end of each test period, the specimens were examined to correlate electrochemical noise data with corrosion damage. Data characteristic of uniform corrosion and stress corrosion cracking are presented.

  14. Corrosion considerations for thermochemical biomass liquefaction process systems in biofuel production

    DOE PAGES

    Brady, Michael P.; Keiser, James R.; Leonard, Donovan N.; ...

    2014-11-11

    Thermochemical liquifaction processing of biomass to produce bio-derived fuels (e.g. gasoline, jet fuel, diesel, home heating oil, etc.) is of great recent interest as a renewable energy source. Approaches under investigation include direct liquefaction, hydrothermal liquefaction, hydropyrolysis, fast pyrolysis, etc. to produce energy dense liquids that can be utilized as produced or further processed to provide products of higher value. An issue with bio-oils is that they tend to contain significant concentrations of organic compounds, which make the bio-oil acidic and a potential source of corrosion issues in in transport, storage, and use. Efforts devoted to modified/further processing of bio-oilsmore » to make them less corrosive are currently being widely pursued. Another aspect that must also be addressed is potential corrosion issues in the bio-oil liquefaction process equipment itself. Depending on the specific process, bio-oil liquefaction production temperatures can reach up to 400-600 °C, and involve the presence of aggressive sulfur, and halide species from both the biomass used and/or process additives. Detailed knowledge of the corrosion resistance of candidate process equipment alloys in these bio-oil production environments is currently lacking. Lastly, this paper summarizes our recent, ongoing efforts to assess the extent to which corrosion of bio-oil process equipment may be an issue, with the ultimate goal of providing the basis to select the lowest cost alloy grades capable of providing the long-term corrosion resistance needed for future bio-oil production plants.« less

  15. Stress Corrosion Evaluation of Nitinol 60 for the International Space Station Water Recycling System

    NASA Technical Reports Server (NTRS)

    Torres, P. D.

    2016-01-01

    A stress corrosion cracking (SCC) evaluation of Nitinol 60 was performed because this alloy is considered a candidate bearing material for the Environmental Control and Life Support System (ECLSS), specifically in the Urine Processing Assembly of the International Space Station. An SCC evaluation that preceded this one during the 2013-2014 timeframe included various alloys: Inconel 625, Hastelloy C-276, titanium (Ti) commercially pure (CP), Ti 6Al-4V, extra-low interstitial (ELI) Ti 6Al-4V, and Cronidur 30. In that evaluation, most specimens were exposed for a year. The results of that evaluation were published in NASA/TM-2015-218206, entitled "Stress Corrosion Evaluation of Various Metallic Materials for the International Space Station Water Recycling System,"1 available at the NASA Scientific and Technical Information program web page: http://www.sti.nasa.gov. Nitinol 60 was added to the test program in 2014.

  16. Corrosion Activities at the NASA Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Heidersbach, Robert H.

    2002-01-01

    This report documents summer faculty fellow efforts in the corrosion test bed at the NASA Kennedy Space Center. During the summer of 2002 efforts were concentrated on three activities: a short course on corrosion control for KSC personnel, evaluation of commercial wash additives used for corrosion control on Army aircraft, and improvements in the testing of a new cathodic protection system under development at KSC.

  17. A Taxonomy of Fallacies in System Safety Arguments

    NASA Technical Reports Server (NTRS)

    Greenwell, William S.; Knight, John C.; Holloway, C. Michael; Pease, Jacob J.

    2006-01-01

    Safety cases are gaining acceptance as assurance vehicles for safety-related systems. A safety case documents the evidence and argument that a system is safe to operate; however, logical fallacies in the underlying argument may undermine a system s safety claims. Removing these fallacies is essential to reduce the risk of safety-related system failure. We present a taxonomy of common fallacies in safety arguments that is intended to assist safety professionals in avoiding and detecting fallacious reasoning in the arguments they develop and review. The taxonomy derives from a survey of general argument fallacies and a separate survey of fallacies in real-world safety arguments. Our taxonomy is specific to safety argumentation, and it is targeted at professionals who work with safety arguments but may lack formal training in logic or argumentation. We discuss the rationale for the selection and categorization of fallacies in the taxonomy. In addition to its applications to the development and review of safety cases, our taxonomy could also support the analysis of system failures and promote the development of more robust safety case patterns.

  18. System safety management: A new discipline

    NASA Technical Reports Server (NTRS)

    Pope, W. C.

    1971-01-01

    The systems theory is discussed in relation to safety management. It is suggested that systems safety management, as a new discipline, holds great promise for reducing operating errors, conserving labor resources, avoiding operating costs due to mistakes, and for improving managerial techniques. It is pointed out that managerial failures or system breakdowns are the basic reasons for human errors and condition defects. In this respect, a recommendation is made that safety engineers stop visualizing the problem only with the individual (supervisor or employee) and see the problem from the systems point of view.

  19. Can the RUVIS reflected UV imaging system visualize fingerprint corrosion on brass cartridge casings postfiring?

    PubMed

    Leintz, Rachel; Bond, John W

    2013-05-01

    Comparisons are made between the visualization of fingerprint corrosion ridge detail on fired brass cartridge casings, where fingerprint sweat was deposited prefiring, using both ultraviolet (UV) and visible (natural daylight) light sources. A reflected ultraviolet imaging system (RUVIS), normally used for visualizing latent fingerprint sweat deposits, is compared with optical interference and digital color mapping of visible light, the latter using apparatus constructed to easily enable selection of the optimum viewing angle. Results show that reflected UV, with a monochromatic UV source of 254 nm, was unable to visualize fingerprint ridge detail on any of 12 casings analyzed, whereas optical interference and digital color mapping using natural daylight yielded ridge detail on three casings. Reasons for the lack of success with RUVIS are discussed in terms of the variation in thickness of the thin film of metal oxide corrosion and absorption wavelengths for the corrosion products of brass. © 2013 American Academy of Forensic Sciences.

  20. Nanocontainer-based corrosion sensing coating.

    PubMed

    Maia, F; Tedim, J; Bastos, A C; Ferreira, M G S; Zheludkevich, M L

    2013-10-18

    The present paper reports on the development of new sensing active coating on the basis of nanocontainers containing pH-indicating agent. The coating is able to detect active corrosion processes on different metallic substrates. The corrosion detection functionality based on the local colour change in active cathodic zones results from the interaction of hydroxide ions with phenolphthalein encapsulated in mesoporous nanocontainers which function as sensing nanoreactors. The mesoporous silica nanocontainers are synthesized and loaded with pH indicator phenolphthalein in a one-stage process. The resulting system is mesoporous, which together with bulkiness of the indicator molecules limits their leaching. At the same time, penetration of water molecules and ions inside the container is still possible, allowing encapsulated phenolphthalein to be sensitive to the pH in the surrounding environment and outperforming systems when an indicator is directly dispersed in the coating layer.The performed tests demonstrate the pH sensitivity of the developed nanocontainers being dispersed in aqueous solutions. The corrosion sensing functionality of the protective coatings with nanocontainers are proven for aluminium- and magnesium-based metallic substrates. As a result, the developed nanocontainers show high potential to be used in a new generation of active protective coatings with corrosion-sensing coatings.

  1. Summary of the Sixth Persh Workshop: Corrosion Policy Guiding Science and Technology

    DTIC Science & Technology

    2016-01-01

    mitigating corrosion. Corrosion affects military readiness, so corrosion prevention and control (CPC) have a high priority for the DOD since CPC is a...resulting in high -cost repairs. Corrosion mitigation is thus a key cost-effective approach for system maintainability and reduced life cycle costs. The... treatments . • Develop corrosion databases and corrosion models for predictive evaluation. Testing methods for realistic prediction of performance

  2. A Corrosion Control Manual for Rail Rapid Transit

    NASA Technical Reports Server (NTRS)

    Gilbert, L. O.; Fitzgerald, J. H., III; Menke, J. T.; Lizak, R. M. (Editor)

    1982-01-01

    This manual addresses corrosion problems in the design, contruction, and maintenance of rapid transit systems. Design and maintenance solutions are provided for each problem covered. The scope encompasses all facilities of urban rapid transit systems: structures and tracks, platforms and stations, power and signals, and cars. The types of corrosion and their causes as well as rapid transit properties are described. Corrosion control committees, and NASA, DOD, and ASTM specifications and design criteria to which reference is made in the manual are listed. A bibliography of papers and excerpts of reports is provided and a glossary of frequently used terms is included.

  3. Liquid Coatings for Reducing Corrosion of Steel in Concrete

    NASA Technical Reports Server (NTRS)

    MacDowell, Louis G.; Curran, Joseph

    2003-01-01

    Inorganic coating materials are being developed to slow or stop corrosion of reinforcing steel members inside concrete structures. It is much simpler and easier to use these coating materials than it is to use conventional corrosion-inhibiting systems based on impressed electric currents. Unlike impressed electrical corrosion-inhibiting systems, these coatings do not require continuous consumption of electrical power and maintenance of power-supply equipment. Whereas some conventional systems involve the use of expensive arc-spray equipment to apply the metallic zinc used as the sacrificial anode material, the developmental coatings can be applied by use of ordinary paint sprayers. A coating material of the type under development is formulated as a liquid containing blended metallic particles and/or moisture-attracting compounds. The liquid mixture is sprayed onto a concrete structure. Experiments have shown that even though such a coat resides on the exterior surface, it generates a protective galvanic current that flows to the interior reinforcing steel members. By effectively transferring the corrosion process from the steel reinforcement to the exterior coating, the protective current slows or stops corrosion of the embedded steel. Specific formulations have been found to meet depolarization criteria of the National Association of Corrosion Engineers (NACE) for complete protection of steel reinforcing bars ("rebar") embedded in concrete.

  4. Catalysis of copper corrosion products on chlorine decay and HAA formation in simulated distribution systems.

    PubMed

    Zhang, Hong; Andrews, Susan A

    2012-05-15

    This study investigated the effect of copper corrosion products, including Cu(II), Cu(2)O, CuO and Cu(2)(OH)(2)CO(3), on chlorine degradation, HAA formation, and HAA speciation under controlled experimental conditions. Chlorine decay and HAA formation were significantly enhanced in the presence of copper with the extent of copper catalysis being affected by the solution pH and the concentration of copper corrosion products. Accelerated chlorine decay and increased HAA formation were observed at pH 8.6 in the presence of 1.0 mg/L Cu(II) compared with that observed at pH 6.6 and pH 7.6. Further investigation of chlorine decay in the presence of both Suwannee River NOM and Cu(II) indicated that an increased reactivity of NOM with dissolved and/or solid surface-associated Cu(II), rather than chlorine auto-decomposition, was a primary reason for the observed rapid chlorine decay. Copper corrosion solids [Cu(2)O, CuO, Cu(2)(OH)(2)CO(3)] exhibited catalytic effects on both chlorine decay and HAA formation. Contrary to the results observed when in the absence of copper corrosion products, DCAA formation was consistently predominant over other HAA species in the presence of copper corrosion products, especially at neutral and high pH. This study improves the understanding for water utilities and households regarding chlorine residuals and HAA concentrations in distribution systems, in particular once the water reaches domestic plumbing where copper is widely used. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Patient Safety and the Malpractice System.

    PubMed

    Swift, James Q

    2017-05-01

    The cost of health care in the United States and malpractice insurance has escalated greatly over the past 30 years. In an ideal world, the goals of the tort system would be aligned with efforts at improving safety. In fact, there is little evidence that the tort system and the processes of risk management and informed consent have improved patient safety. This article explores the disunion between patient safety and the malpractice system. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Long term corrosion on T91 and AISI1 316L steel in flowing lead alloy and corrosion protection barrier development: Experiments and models

    NASA Astrophysics Data System (ADS)

    Weisenburger, A.; Schroer, C.; Jianu, A.; Heinzel, A.; Konys, J.; Steiner, H.; Müller, G.; Fazio, C.; Gessi, A.; Babayan, S.; Kobzova, A.; Martinelli, L.; Ginestar, K.; Balbaud-Célerier, F.; Martín-Muñoz, F. J.; Soler Crespo, L.

    2011-08-01

    Considering the status of knowledge on corrosion and corrosion protection and especially the need for long term compatibility data of structural materials in HLM a set of experiments to generate reliable long term data was defined and performed. The long term corrosion behaviour of the two structural materials foreseen in ADS, 316L and T91, was investigated in the design relevant temperature field, i.e. from 300 to 550 °C. The operational window of the two steels in this temperature range was identified and all oxidation data were used to develop and validate the models of oxide scale growth in PbBi. A mechanistic model capable to predict the oxidation rate applying some experimentally fitted parameters has been developed. This model assumes parabolic oxidation and might be used for design and safety relevant investigations in future. Studies on corrosion barrier development allowed to define the required Al content for the formation of thin alumina scales in LBE. These results as well as future steps and required improvements are discussed. Variation of experimental conditions clearly showed that specific care has to be taken with respect to local flow conditions and oxygen concentrations.

  7. Characterization of Stress Corrosion Cracking Using Laser Ultrasonics

    DOT National Transportation Integrated Search

    2007-02-15

    Stress Corrosion Cracking (SCC) is a phenomenon where metals, when subjected to a combination of suitable loads, corrosive environment and susceptible metallurgy, develop crack-clusters that may lead to a failure. Pipeline systems all-over the world ...

  8. Accelerated Corrosion Testing

    DTIC Science & Technology

    1982-12-01

    Treaty Organization, Brussels, 1971), p. 449. 14. D. 0. Sprowls, T. J. Summerson, G. M. Ugianski, S. G. Epstein, and H. L. Craig , Jr., in Stress...National Association of Corrosion Engineers Houston, TX, 1972). 22. H. L. Craig , Jr. (ed.), Stress Corrosion-New Approaches, ASTM-STP- 610 (American...62. M. Hishida and H. Nakada, Corrosion 33 (11) 403 (1977). b3. D. C. Deegan and B. E. Wilde, Corrosion 34 (6), 19 (1978). 64. S. Orman, Corrosion Sci

  9. Characterization of iron carbonate scales developed under carbon dioxide corrosion conditions

    NASA Astrophysics Data System (ADS)

    de Moraes, Flavio Dias

    1999-11-01

    Carbon steel CO2 corrosion is a common and very serious problem in the oil industry. It often results in severe damage to pipes and equipment. Besides controlling direct costs associated with loss of production and replacement or repair to the equipment damaged by corrosion, life and environmental safety must be protected with the thorough study of this type of corrosion. For a given type of steel, the CO2 corrosion rates are strongly influenced by many mechanical and environmental factors, such as flow velocity, temperature, gas-liquid ratio, oil-water ratio, CO2 partial pressure, and the chemical composition of the produced water. Under specific conditions, a corrosion product, the iron carbonate (FeCO3), can deposit over the corroding metal as a scale and dramatically reduce the CO2 corrosion rates on carbon steels. The ability to reliably predict the protective characteristics of such scales so that this knowledge may be used to mitigate the CO2 corrosion problem is the main objective of this research. CO2 corrosion tests performed under various CO2 corrosion flowing conditions in a flow loop were used to generate and study FeCO3 scales. In situ Electrochemical Impedance Spectroscopy (EIS) techniques were successfully used to monitor the development of the scales throughout the duration of the tests. The EIS monitoring enabled the identification of the type of scales being formed and the quantification of the protection they give. A procedure using EIS, SEM and X-ray diffraction was developed to electrochemically and morphologically characterize the scales formed. In this work, morphology of the scales was proved to be the most important characteristic related to CO2 corrosion protection, and temperature was found to be the main environmental parameter controlling the morphology of the scales. For the environmental conditions tested, a correlation was developed to predict the type of iron carbonate scales that would be formed and the amount of CO2 corrosion

  10. Safer Systems: A NextGen Aviation Safety Strategic Goal

    NASA Technical Reports Server (NTRS)

    Darr, Stephen T.; Ricks, Wendell R.; Lemos, Katherine A.

    2008-01-01

    The Joint Planning and Development Office (JPDO), is charged by Congress with developing the concepts and plans for the Next Generation Air Transportation System (NextGen). The National Aviation Safety Strategic Plan (NASSP), developed by the Safety Working Group of the JPDO, focuses on establishing the goals, objectives, and strategies needed to realize the safety objectives of the NextGen Integrated Plan. The three goal areas of the NASSP are Safer Practices, Safer Systems, and Safer Worldwide. Safer Practices emphasizes an integrated, systematic approach to safety risk management through implementation of formalized Safety Management Systems (SMS) that incorporate safety data analysis processes, and the enhancement of methods for ensuring safety is an inherent characteristic of NextGen. Safer Systems emphasizes implementation of safety-enhancing technologies, which will improve safety for human-centered interfaces and enhance the safety of airborne and ground-based systems. Safer Worldwide encourages coordinating the adoption of the safer practices and safer systems technologies, policies and procedures worldwide, such that the maximum level of safety is achieved across air transportation system boundaries. This paper introduces the NASSP and its development, and focuses on the Safer Systems elements of the NASSP, which incorporates three objectives for NextGen systems: 1) provide risk reducing system interfaces, 2) provide safety enhancements for airborne systems, and 3) provide safety enhancements for ground-based systems. The goal of this paper is to expose avionics and air traffic management system developers to NASSP objectives and Safer Systems strategies.

  11. Initiation criteria for crevice corrosion of titanium alloys used for HLW disposal overpack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akashi, Masatsune; Nakayama, Guen; Fukuda, Takanori

    1998-12-31

    The overpack that geologically stores the canisters containing vitrified high-level radioactive waste (HLW) for super-long term disposal is demanded of being able to hold the canisters securely for at least 1,000 years. For such a service, the greatest as well as essentially the sole factor that can mar the overpack`s working is corrosion by the groundwater. This paper discusses the notion and the methodology to prove for overpacks made of titanium (Ti) alloys that they are capable of stably maintaining the state of passivity indefinitely long time so as to be immune to the initiation of localized corrosion. it ismore » shown that (1) the critical potential for corrosion-crevice initiation, V{sub C,CREV}, can be substituted rationally by the corrosion-crevice repassivation potential, E{sub R,CREV}, which can be determined by the cyclic polarization test, and (2) the limits of safety usage of Ti alloys can be determined quantitatively by comparing E{sub R,CREV} and E{sub SP}, the steady-state corrosion potential.« less

  12. Natural analogues of nuclear waste glass corrosion.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abrajano, T.A. Jr.; Ebert, W.L.; Luo, J.S.

    1999-01-06

    This report reviews and summarizes studies performed to characterize the products and processes involved in the corrosion of natural glasses. Studies are also reviewed and evaluated on how well the corrosion of natural glasses in natural environments serves as an analogue for the corrosion of high-level radioactive waste glasses in an engineered geologic disposal system. A wide range of natural and experimental corrosion studies has been performed on three major groups of natural glasses: tektite, obsidian, and basalt. Studies of the corrosion of natural glass attempt to characterize both the nature of alteration products and the reaction kinetics. Information availablemore » on natural glass was then compared to corresponding information on the corrosion of nuclear waste glasses, specifically to resolve two key questions: (1) whether one or more natural glasses behave similarly to nuclear waste glasses in laboratory tests, and (2) how these similarities can be used to support projections of the long-term corrosion of nuclear waste glasses. The corrosion behavior of basaltic glasses was most similar to that of nuclear waste glasses, but the corrosion of tektite and obsidian glasses involves certain processes that also occur during the corrosion of nuclear waste glasses. The reactions and processes that control basalt glass dissolution are similar to those that are important in nuclear waste glass dissolution. The key reaction of the overall corrosion mechanism is network hydrolysis, which eventually breaks down the glass network structure that remains after the initial ion-exchange and diffusion processes. This review also highlights some unresolved issues related to the application of an analogue approach to predicting long-term behavior of nuclear waste glass corrosion, such as discrepancies between experimental and field-based estimates of kinetic parameters for basaltic glasses.« less

  13. Evaluation of biological stability and corrosion potential in drinking water distribution systems: a case study.

    PubMed

    Chien, C C; Kao, C M; Chen, C W; Dong, C D; Chien, H Y

    2009-06-01

    The appearance of assimilable organic carbon (AOC), microbial regrowth, disinfection by-products (DBPs), and pipe corrosion in drinking water distribution systems are among those major safe drinking water issues in many countries. The water distribution system of Cheng-Ching Lake Water Treatment Plant (CCLWTP) was selected in this study to evaluate the: (1) fate and transport of AOC, DBPs [e.g., trihalomethanes (THMs), haloacetic acids (HAAs)], and other organic carbon indicators in the selected distribution system, (2) correlations between AOC (or DBPs) and major water quality parameters [e.g. dissolved oxygen (DO), free residual chlorine, and bacteria, and (3) causes and significance of corrosion problems of the water pipes in this system. In this study, seasonal water samples were collected from 13 representative locations in the distribution system for analyses of AOC, DBPs, and other water quality indicators. Results indicate that residual free chlorine concentrations in the distribution system met the drinking water standards (0.2 to 1 mg l(-1)) established by Taiwan Environmental Protection Administration (TEPA). Results show that AOC measurements correlated positively with total organic carbon (TOC) and UV-254 (an organic indicator) values in this system. Moreover, AOC concentrations at some locations were higher than the 50 microg acetate-C l(-1) standard established by Taiwan Water Company. This indicates that the microbial regrowth might be a potential water quality problem in this system. Higher DO measurements (>5.7 mg l(-1)) might cause the aerobic biodegradation of THMs and HAAs in the system, and thus, low THMs (<0.035 mg l(-1)) and HAAs (<0.019 mg l(-1)) concentrations were observed at all sampling locations. Results from the observed negative Langelier Saturation Index (LSI) values, higher Ryznar Stability Index (RSI) values, and high Fe3+ concentrations at some pipe-end locations indicate that highly oxidative and corrosive conditions occurred

  14. Metal levels in corrosion of spinal implants

    PubMed Central

    Beguiristain, Jose; Duart, Julio

    2007-01-01

    Corrosion affects spinal instrumentations and may cause local and systemic complications. Diagnosis of corrosion is difficult, and nowadays it is performed almost exclusively by the examination of retrieved instrumentations. We conducted this study to determine whether it is possible to detect corrosion by measuring metal levels on patients with posterior instrumented spinal fusion. Eleven asymptomatic patients, with radiological signs of corrosion of their stainless steel spinal instrumentations, were studied by performing determinations of nickel and chromium in serum and urine. Those levels were compared with the levels of 22 patients with the same kind of instrumentation but without evidence of corrosion and to a control group of 22 volunteers without any metallic implants. Statistical analysis of our results revealed that the patients with spinal implants without radiological signs of corrosion have increased levels of chromium in serum and urine (P < 0.001) compared to volunteers without implants. Corrosion significantly raised metal levels, including nickel and chromium in serum and urine when compared to patients with no radiological signs of corrosion and to volunteers without metallic implants (P < 0.001). Metal levels measured in serum have high sensibility and specificity (area under the ROC curve of 0.981). By combining the levels of nickel and chromium in serum we were able to identify all the cases of corrosion in our series of patients. The results of our study confirm that metal levels in serum and urine are useful in the diagnosis of corrosion of spinal implants and may be helpful in defining the role of corrosion in recently described clinical entities such as late operative site pain or late infection of spinal implants. PMID:17256156

  15. Transportation systems safety hazard analysis tool (SafetyHAT) user guide (version 1.0)

    DOT National Transportation Integrated Search

    2014-03-24

    This is a user guide for the transportation system Safety Hazard Analysis Tool (SafetyHAT) Version 1.0. SafetyHAT is a software tool that facilitates System Theoretic Process Analysis (STPA.) This user guide provides instructions on how to download, ...

  16. An alternate to chromate conversion coatings for the corrosion protection of aluminum 2024-T3

    NASA Astrophysics Data System (ADS)

    Guo, Ruiguang

    Corrosion of high-strength aluminum alloys used for airspace application is an expensive and serious problem. The most significant environmental factor contributing to the corrosion of these alloys is water condensed from humid air and contaminated with soluble chloride salts. The Al 2024 series used for aircraft are particularly susceptible to corrosion in aqueous chloride solutions due to alloying constituents such as copper and other impurities. Chromates are efficient inhibitors of corrosion of aluminum in near neutral aqueous environments containing aggressive anions such as chlorides. Usually, aluminum alloys are initially protected by chromate conversion coatings. Additional polymer coatings are sometimes added during exposure to corrosive atmospheres such as marine environments. Although chromate coatings are widely used, they require the use of noxious solutions, so they have always presented effluent disposal problems. There are health and safety concerns over the use of chromates due to their toxicity and carcinogenic nature and, as a consequence, the environmental and health risks associated with the use of such coatings will be restricted in the future. It was these health and safety concerns that led to the development of alternative non-toxic coating processes with comparable adhesion properties and corrosion protection. A variety of process technologies are under development and are vying for acceptance in industrial markets. As an alternate conversion coating, a new titanate conversion coating was systematically researched and developed. Research concentrated on producing passive surfaces from a simple titanate solution using an immersion process. The corrosion resistance of the treated surface has been evaluated using simple, rapid electrochemical techniques as well as a more long-term salt spray test. Passivation by titanate conversion treatment exhibits many similarities to chromate conversion treatment. Based on this study of corrosion

  17. Rail Base Corrosion and Cracking Prevention: Phase 2

    DOT National Transportation Integrated Search

    2018-04-09

    EWI was engaged by the Federal Railroad Administration to research rail treatments to prevent rail base corrosion in corrosive environments. A coating system was selected in Phase 1 and recommended for field trials. In Phase 2, four railroads sponsor...

  18. Corrosion products of carbonation induced corrosion in existing reinforced concrete facades

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Köliö, Arto; Honkanen, Mari; Lahdensivu, Jukka

    Active corrosion in reinforced concrete structures is controlled by environmental conditions and material properties. These factors determine the corrosion rate and type of corrosion products which govern the total achieved service life. The type and critical amount of corrosion products were studied by electron microscopy and X-ray diffractometry on concrete and reinforcement samples from existing concrete facades on visually damaged locations. The corrosion products in outdoor environment exposed concrete facades are mostly hydroxides (Feroxyhite, Goethite and Lepidocrocite) with a volume ratio to Fe of approximately 3. The results can be used to calibrate calculation of the critical corrosion penetration ofmore » concrete facade panels.« less

  19. Safety features of subcritical fluid fueled systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, C.R.

    1995-10-01

    Accelerator-driven transmutation technology has been under study at Los Alamos for several years for application to nuclear waste treatment, tritium production, energy generation, and recently, to the disposition of excess weapons plutonium. Studies and evaluations performed to date at Los Alamos have led to a current focus on a fluid-fuel, fission system operating in a neutron source-supported subcritical mode, using molten salt reactor technology and accelerator-driven proton-neutron spallation. In this paper, the safety features and characteristics of such systems are explored from the perspective of the fundamental nuclear safety objectives that any reactor-type system should address. This exploration is qualitativemore » in nature and uses current vintage solid-fueled reactors as a baseline for comparison. Based on the safety perspectives presented, such systems should be capable of meeting the fundamental nuclear safety objectives. In addition, they should be able to provide the safety robustness desired for advanced reactors. However, the manner in which safety objectives and robustness are achieved is very different from that associated with conventional reactors. Also, there are a number of safety design and operational challenges that will have to be addressed for the safety potential of such systems to be credible.« less

  20. 46 CFR 62.25-15 - Safety control systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ....35-50. Note: Safety control systems include automatic and manual safety trip controls and automatic... engines. (e) Automatic safety trip control systems must— (1) Be provided where there is an immediate... 46 Shipping 2 2011-10-01 2011-10-01 false Safety control systems. 62.25-15 Section 62.25-15...

  1. Synergy effect of naphthenic acid corrosion and sulfur corrosion in crude oil distillation unit

    NASA Astrophysics Data System (ADS)

    Huang, B. S.; Yin, W. F.; Sang, D. H.; Jiang, Z. Y.

    2012-10-01

    The synergy effect of naphthenic acid corrosion and sulfur corrosion at high temperature in crude oil distillation unit was studied using Q235 carbon-manganese steel and 316 stainless steel. The corrosion of Q235 and 316 in corrosion media containing sulfur and/or naphthenic acid at 280 °C was investigated by weight loss, scanning electron microscope (SEM), EDS and X-ray diffractometer (XRD) analysis. The results showed that in corrosion media containing only sulfur, the corrosion rate of Q235 and 316 first increased and then decreased with the increase of sulfur content. In corrosion media containing naphthenic acid and sulfur, with the variations of acid value or sulfur content, the synergy effect of naphthenic acid corrosion and sulfur corrosion has a great influence on the corrosion rate of Q235 and 316. It was indicated that the sulfur accelerated naphthenic acid corrosion below a certain sulfur content but prevented naphthenic acid corrosion above that. The corrosion products on two steels after exposure to corrosion media were investigated. The stable Cr5S8 phases detected in the corrosion products film of 316 were considered as the reason why 316 has greater corrosion resistance to that of Q235.

  2. Microbiologically Influenced Corrosion in Copper and Nickel Seawater Piping Systems

    DTIC Science & Technology

    1990-09-01

    Influenced Tipton, D. G. and Kain, R. M. 1980. Effect of temperature onCorosiope in Nuclear Power Plants atudy a Mical Gnuide the resistance to pitting of...Monel alloy 400 in seawater. In:Corrosion in Nuclear Power Plants anda Practical ie fr Proceedings of Corrosion 󈨔. Chicago, Illinois: National...Sons Ltd. 441 pp. Quimica . Verink, E.D. and Pourbaix, M. 1971. Use of electrochemical Pope, D. H., Duquette, D. J., Johannes, A. H., and Wayner

  3. Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion

    PubMed Central

    Zhang, Xuming; Wu, Guosong; Peng, Xiang; Li, Limin; Feng, Hongqing; Gao, Biao; Huo, Kaifu; Chu, Paul K.

    2015-01-01

    Rapid corrosion of magnesium alloys is undesirable in structural and biomedical applications and a general way to control corrosion is to form a surface barrier layer isolating the bulk materials from the external environment. Herein, based on the insights gained from the anticorrosion behavior of corrosion products, a special way to mitigate aqueous corrosion is described. The concept is based on pre-corrosion by a hydrothermal treatment of Al-enriched Mg alloys in water. A uniform surface composed of an inner compact layer and top Mg-Al layered double hydroxide (LDH) microsheet is produced on a large area using a one-step process and excellent corrosion resistance is achieved in saline solutions. Moreover, inspired by the super-hydrophobic phenomenon in nature such as the lotus leaves effect, the orientation of the top microsheet layer is tailored by adjusting the hydrothermal temperature, time, and pH to produce a water-repellent surface after modification with fluorinated silane. As a result of the trapped air pockets in the microstructure, the super-hydrophobic surface with the Cassie state shows better corrosion resistance in the immersion tests. The results reveal an economical and environmentally friendly means to control and use the pre-corrosion products on magnesium alloys. PMID:26615896

  4. Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion.

    PubMed

    Zhang, Xuming; Wu, Guosong; Peng, Xiang; Li, Limin; Feng, Hongqing; Gao, Biao; Huo, Kaifu; Chu, Paul K

    2015-11-30

    Rapid corrosion of magnesium alloys is undesirable in structural and biomedical applications and a general way to control corrosion is to form a surface barrier layer isolating the bulk materials from the external environment. Herein, based on the insights gained from the anticorrosion behavior of corrosion products, a special way to mitigate aqueous corrosion is described. The concept is based on pre-corrosion by a hydrothermal treatment of Al-enriched Mg alloys in water. A uniform surface composed of an inner compact layer and top Mg-Al layered double hydroxide (LDH) microsheet is produced on a large area using a one-step process and excellent corrosion resistance is achieved in saline solutions. Moreover, inspired by the super-hydrophobic phenomenon in nature such as the lotus leaves effect, the orientation of the top microsheet layer is tailored by adjusting the hydrothermal temperature, time, and pH to produce a water-repellent surface after modification with fluorinated silane. As a result of the trapped air pockets in the microstructure, the super-hydrophobic surface with the Cassie state shows better corrosion resistance in the immersion tests. The results reveal an economical and environmentally friendly means to control and use the pre-corrosion products on magnesium alloys.

  5. Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion

    NASA Astrophysics Data System (ADS)

    Zhang, Xuming; Wu, Guosong; Peng, Xiang; Li, Limin; Feng, Hongqing; Gao, Biao; Huo, Kaifu; Chu, Paul K.

    2015-11-01

    Rapid corrosion of magnesium alloys is undesirable in structural and biomedical applications and a general way to control corrosion is to form a surface barrier layer isolating the bulk materials from the external environment. Herein, based on the insights gained from the anticorrosion behavior of corrosion products, a special way to mitigate aqueous corrosion is described. The concept is based on pre-corrosion by a hydrothermal treatment of Al-enriched Mg alloys in water. A uniform surface composed of an inner compact layer and top Mg-Al layered double hydroxide (LDH) microsheet is produced on a large area using a one-step process and excellent corrosion resistance is achieved in saline solutions. Moreover, inspired by the super-hydrophobic phenomenon in nature such as the lotus leaves effect, the orientation of the top microsheet layer is tailored by adjusting the hydrothermal temperature, time, and pH to produce a water-repellent surface after modification with fluorinated silane. As a result of the trapped air pockets in the microstructure, the super-hydrophobic surface with the Cassie state shows better corrosion resistance in the immersion tests. The results reveal an economical and environmentally friendly means to control and use the pre-corrosion products on magnesium alloys.

  6. 40 CFR 280.31 - Operation and maintenance of corrosion protection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Operation and maintenance of corrosion... UNDERGROUND STORAGE TANKS (UST) General Operating Requirements § 280.31 Operation and maintenance of corrosion protection. All owners and operators of steel UST systems with corrosion protection must comply with the...

  7. 40 CFR 280.31 - Operation and maintenance of corrosion protection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Operation and maintenance of corrosion... UNDERGROUND STORAGE TANKS (UST) General Operating Requirements § 280.31 Operation and maintenance of corrosion protection. All owners and operators of steel UST systems with corrosion protection must comply with the...

  8. 40 CFR 280.31 - Operation and maintenance of corrosion protection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Operation and maintenance of corrosion... UNDERGROUND STORAGE TANKS (UST) General Operating Requirements § 280.31 Operation and maintenance of corrosion protection. All owners and operators of steel UST systems with corrosion protection must comply with the...

  9. Influence of biofilm formation on corrosion and scaling in geothermal plants

    NASA Astrophysics Data System (ADS)

    Kleyböcker, Anne; Lerm, Stephanie; Monika, Kasina; Tobias, Lienen; Florian, Eichinger; Andrea, Seibt; Markus, Wolfgramm; Hilke, Würdemann

    2017-04-01

    Process failures may occur due to corrosion and scaling processes in open loop geothermal systems. Especially after heat extraction, sulfate reducing bacteria (SRB) contribute to corrosion processes due to a more favorable temperature for their growth. In biofilms containing FeS scales, corrosion processes are enhanced. Furthermore, scales can lead to reduced pipe profiles, to a diminished heat transfer and a decrease in the wellbore injectivity. Inhibitors are frequently applied to minimize scaling in technical systems. A prerequisite for the application of inhibitors in geothermal plants located in the Molasse basin is their degradability under reservoir conditions, e. g. in a reduced environment. In order to determine the effects of scale-inhibitors on the subsurface and microbial processes, laboratory experiments were performed focusing on the microbial inhibitor degradation. First results indicate that the inhibitor degradation under anaerobic conditions is possible. Besides the inhibitor application also other techniques are investigated to economically reduce corrosion and scaling in geothermal plants. In a mobile bypass system, the influence of biofilm formation on corrosion and scaling was investigated. The bypass system was tested at a geothermal heat store in the North German Basin. The plant is operated with highly saline fluid (salinity 130 g/L) and known to be affected by SRB. The SRB contributed to corrosion damages especially at the pump in the well on the cold side. Heat shocks were successfully used in the bypass system to reduce biofilm formation as well as corrosion and scaling processes.

  10. System theory and safety models in Swedish, UK, Dutch and Australian road safety strategies.

    PubMed

    Hughes, B P; Anund, A; Falkmer, T

    2015-01-01

    Road safety strategies represent interventions on a complex social technical system level. An understanding of a theoretical basis and description is required for strategies to be structured and developed. Road safety strategies are described as systems, but have not been related to the theory, principles and basis by which systems have been developed and analysed. Recently, road safety strategies, which have been employed for many years in different countries, have moved to a 'vision zero', or 'safe system' style. The aim of this study was to analyse the successful Swedish, United Kingdom and Dutch road safety strategies against the older, and newer, Australian road safety strategies, with respect to their foundations in system theory and safety models. Analysis of the strategies against these foundations could indicate potential improvements. The content of four modern cases of road safety strategy was compared against each other, reviewed against scientific systems theory and reviewed against types of safety model. The strategies contained substantial similarities, but were different in terms of fundamental constructs and principles, with limited theoretical basis. The results indicate that the modern strategies do not include essential aspects of systems theory that describe relationships and interdependencies between key components. The description of these strategies as systems is therefore not well founded and deserves further development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Design an optimum safety policy for personnel safety management - A system dynamic approach

    NASA Astrophysics Data System (ADS)

    Balaji, P.

    2014-10-01

    Personnel safety management (PSM) ensures that employee's work conditions are healthy and safe by various proactive and reactive approaches. Nowadays it is a complex phenomenon because of increasing dynamic nature of organisations which results in an increase of accidents. An important part of accident prevention is to understand the existing system properly and make safety strategies for that system. System dynamics modelling appears to be an appropriate methodology to explore and make strategy for PSM. Many system dynamics models of industrial systems have been built entirely for specific host firms. This thesis illustrates an alternative approach. The generic system dynamics model of Personnel safety management was developed and tested in a host firm. The model was undergone various structural, behavioural and policy tests. The utility and effectiveness of model was further explored through modelling a safety scenario. In order to create effective safety policy under resource constraint, DOE (Design of experiment) was used. DOE uses classic designs, namely, fractional factorials and central composite designs. It used to make second order regression equation which serve as an objective function. That function was optimized under budget constraint and optimum value used for safety policy which shown greatest improvement in overall PSM. The outcome of this research indicates that personnel safety management model has the capability for acting as instruction tool to improve understanding of safety management and also as an aid to policy making.

  12. Design an optimum safety policy for personnel safety management - A system dynamic approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balaji, P.

    2014-10-06

    Personnel safety management (PSM) ensures that employee's work conditions are healthy and safe by various proactive and reactive approaches. Nowadays it is a complex phenomenon because of increasing dynamic nature of organisations which results in an increase of accidents. An important part of accident prevention is to understand the existing system properly and make safety strategies for that system. System dynamics modelling appears to be an appropriate methodology to explore and make strategy for PSM. Many system dynamics models of industrial systems have been built entirely for specific host firms. This thesis illustrates an alternative approach. The generic system dynamicsmore » model of Personnel safety management was developed and tested in a host firm. The model was undergone various structural, behavioural and policy tests. The utility and effectiveness of model was further explored through modelling a safety scenario. In order to create effective safety policy under resource constraint, DOE (Design of experiment) was used. DOE uses classic designs, namely, fractional factorials and central composite designs. It used to make second order regression equation which serve as an objective function. That function was optimized under budget constraint and optimum value used for safety policy which shown greatest improvement in overall PSM. The outcome of this research indicates that personnel safety management model has the capability for acting as instruction tool to improve understanding of safety management and also as an aid to policy making.« less

  13. Corrosion initiation and propagation behavior of corrosion resistant concrete reinforcing materials

    NASA Astrophysics Data System (ADS)

    Hurley, Michael F.

    The life of a concrete structure exposed to deicing compounds or seawater is often limited by chloride induced corrosion of the steel reinforcement. In this study, the key material attributes that affect the corrosion initiation and propagation periods were studied. These included material composition, surface condition, ageing time, propagation behavior during active corrosion, morphology of attack, and type of corrosion products generated by each rebar material. The threshold chloride concentrations for solid 316LN stainless steel, 316L stainless steel clad over carbon steel, 2101 LDX, MMFX-2, and carbon steel rebar were investigated using electrochemical techniques in saturated calcium hydroxide solutions. Surface preparation, test method, duration of period exposed to a passivating condition prior to introduction of chloride, and presence of cladding defects all affected the threshold chloride concentration obtained. A model was implemented to predict the extension of time until corrosion initiation would be expected. 8 years was the predicted time to corrosion initiation for carbon steel. However, model results confirmed that use of 316LN may increase the time until onset of corrosion to 100 years or more. To assess the potential benefits afforded by new corrosion resistant rebar alloys from a corrosion resistance standpoint the corrosion propagation behavior and other factors that might affect the risk of corrosion-induced concrete cracking must also be considered. Radial pit growth was found to be ohmically controlled but repassivation occurred more readily at high potentials in the case of 316LN and 2101 stainless steels. The discovery of ohmically controlled propagation enabled transformation of propagation rates from simulated concrete pore solution to less conductive concrete by accounting for resistance changes in the surrounding medium. The corrosion propagation behavior as well as the morphology of attack directly affects the propensity for concrete

  14. Identification of microorganisms associated with corrosion of offshore oil production systems

    NASA Astrophysics Data System (ADS)

    Sørensen, Ketil; Grigoryan, Aleksandr; Holmkvist, Lars; Skovhus, Torben; Thomsen, Uffe; Lundgaard, Thomas

    2010-05-01

    Microbiologically influenced corrosion (MIC) poses a major challenge to oil producers and distributors. The annual cost associated with MIC-related pipeline failures and general maintenance and surveillance of installations amounts to several billion dollar in the oil production sector alone. Hence, large efforts are undertaken by some producers to control and monitor microbial growth in pipelines and other installations, and extensive surveillance programs are carried out in order to detect and quantify potential MIC-promoting microorganisms. Traditionally, efforts to mitigate and survey microbial growth in oil production systems have focused on sulfate-reducing Bacteria (SRB), and microorganisms have usually been enumerated by the culture-dependent MPN (most probable number) -technique. Culture-independent molecular tools yielding much more detailed information about the microbial communities have now been implemented as a reliable tool for routine surveillance of oil production systems in the North Sea. This has resulted in new and hitherto unattainable information regarding the distribution of different microorganisms in hot reservoirs and associated oil production systems. This presentation will provide a review of recent insights regarding thermophilic microbial communities and their implication for steel corrosion in offshore oil production systems. Data collected from solids and biofilms in different corroded pipelines and tubes indicate that in addition to SRB, other groups such as methanogens and sulfate-reducing Archaea (SRA) are also involved in MIC. In the hot parts of the system where the temperature approaches 80 ⁰C, SRA closely related to Archaeoglobus fulgidus outnumber SRB by several orders of magnitude. Methanogens affiliated with the genus Methanothermococcus were shown to completely dominate the microbial community at the metal surface in a sample of highly corroded piping. Thus, the microbial communities associated with MIC appear to be more

  15. Autonomous Flight Safety System

    NASA Technical Reports Server (NTRS)

    Simpson, James

    2010-01-01

    The Autonomous Flight Safety System (AFSS) is an independent self-contained subsystem mounted onboard a launch vehicle. AFSS has been developed by and is owned by the US Government. Autonomously makes flight termination/destruct decisions using configurable software-based rules implemented on redundant flight processors using data from redundant GPS/IMU navigation sensors. AFSS implements rules determined by the appropriate Range Safety officials.

  16. System Safety in Aircraft Acquisition

    DTIC Science & Technology

    1984-01-01

    Relationship Between JSSC and SOHP ..... .......... 6- 1 Some Similarities in the Departments’ Approaches to System Safety... RELATIONSHIP BETWEEN JSSC AND SOHP The annual JSSC sponsored by the safety centers coordinates safety activities. It was described recently as "an unchartered...developed an excellent working relationship . Re- presentatives from SOHP can and do influence tasks undertaken by JSSC. Con- versely, SOUP is the one

  17. System safety education focused on system management

    NASA Technical Reports Server (NTRS)

    Grose, V. L.

    1971-01-01

    System safety is defined and characteristics of the system are outlined. Some of the principle characteristics include role of humans in hazard analysis, clear language for input and output, system interdependence, self containment, and parallel analysis of elements.

  18. 76 FR 14592 - Safety Management System; Withdrawal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-17

    ...-06A] RIN 2120-AJ15 Safety Management System; Withdrawal AGENCY: Federal Aviation Administration (FAA... (``product/ service providers'') to develop a Safety Management System (SMS). The FAA is withdrawing the... management with a set of robust decision-making tools to use to improve safety. The FAA received 89 comments...

  19. REASONS FOR CORROSION CONTROL OTHER THAN THE LEAD AND COPPER RULE

    EPA Science Inventory

    A corrosion control program designed to accommodate all distribution system materials, as well as lead and copper, will produce significant benefits that are not always related to corrosion in an obvious way. Essential components of a good corrosion control program are the selec...

  20. External corrosion and leakage detection of oil and gas pipeline using FBG fiber optics and a trigger

    NASA Astrophysics Data System (ADS)

    Ge, Yaomou

    Oil and gas pipelines play a critical role in delivering the energy resources from producing fields to power communities around the world. However, there are many threats to pipeline integrity, which may lead to significant incidents, causing safety, environmental and economic problems. Corrosion has been a big threat to oil and gas pipelines for a long time, which has attributed to approximately 18% of the significant incidents in oil and gas pipelines. In addition, external corrosion of pipelines accounts for a significant portion (more than 25%) of pipeline failure. External corrosion detection is the research area of this thesis. In this thesis, a review of existing corrosion detection or monitoring methods is presented, and optical fiber sensors show a great promise in corrosion detection of oil and gas pipelines. Several scenarios of optical fiber corrosion sensors are discussed, and two of them are selected for future research. A new corrosion and leakage detection sensor, consisting of a custom designed trigger and a FBG optical fiber, will be presented. This new device has been experimentally tested and it shows great promise.

  1. Database management systems for process safety.

    PubMed

    Early, William F

    2006-03-17

    Several elements of the process safety management regulation (PSM) require tracking and documentation of actions; process hazard analyses, management of change, process safety information, operating procedures, training, contractor safety programs, pre-startup safety reviews, incident investigations, emergency planning, and compliance audits. These elements can result in hundreds of actions annually that require actions. This tracking and documentation commonly is a failing identified in compliance audits, and is difficult to manage through action lists, spreadsheets, or other tools that are comfortably manipulated by plant personnel. This paper discusses the recent implementation of a database management system at a chemical plant and chronicles the improvements accomplished through the introduction of a customized system. The system as implemented modeled the normal plant workflows, and provided simple, recognizable user interfaces for ease of use.

  2. Corrosion of RoHS-Compliant Surface Finishes in Corrosive Mixed Flowing Gas Environments

    NASA Astrophysics Data System (ADS)

    Hannigan, K.; Reid, M.; Collins, M. N.; Dalton, E.; Xu, C.; Wright, B.; Demirkan, K.; Opila, R. L.; Reents, W. D.; Franey, J. P.; Fleming, D. A.; Punch, J.

    2012-03-01

    Recently, the corrosion resistance of printed wiring board (PWB) finishes has generated considerable interest due to field failures observed in various parts of the world. This study investigates the corrosion issues associated with the different lead-free PWB surface finishes. Corrosion products on various PWB surface finishes generated in mixed flowing gas (MFG) environments were studied, and analysis techniques such as scanning electron microscopy, energy-dispersive x-ray, x-ray diffraction, focused ion beam, and scanning Auger microscopy were used to quantify the corrosion layer thickness and determine the composition of corrosion products. The corrosion on organic solderability preservative samples shows similar corrosion products to bare copper and is mainly due to direct attack of copper traces by corrosive gases. The corrosion on electroless nickel immersion gold occurs primarily through the porosity in the film and is accelerated by the galvanic potential between gold and copper; similar results were observed on immersion silver. Immersion tin shows excellent corrosion resistance due to its inherent corrosion resistance in the MFG environment as well as the opposite galvanic potential between tin and copper compared with gold or silver and copper.

  3. 40 CFR 141.81 - Applicability of corrosion control treatment steps to small, medium-size and large water systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... treatment steps to small, medium-size and large water systems. 141.81 Section 141.81 Protection of... to small, medium-size and large water systems. (a) Systems shall complete the applicable corrosion...) or (b)(3) of this section. (2) A small system (serving ≤3300 persons) and a medium-size system...

  4. 40 CFR 141.81 - Applicability of corrosion control treatment steps to small, medium-size and large water systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... treatment steps to small, medium-size and large water systems. 141.81 Section 141.81 Protection of... to small, medium-size and large water systems. (a) Systems shall complete the applicable corrosion...) or (b)(3) of this section. (2) A small system (serving ≤3300 persons) and a medium-size system...

  5. 40 CFR 141.81 - Applicability of corrosion control treatment steps to small, medium-size and large water systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... treatment steps to small, medium-size and large water systems. 141.81 Section 141.81 Protection of... to small, medium-size and large water systems. (a) Systems shall complete the applicable corrosion...) or (b)(3) of this section. (2) A small system (serving ≤3300 persons) and a medium-size system...

  6. 40 CFR 141.81 - Applicability of corrosion control treatment steps to small, medium-size and large water systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... treatment steps to small, medium-size and large water systems. 141.81 Section 141.81 Protection of... to small, medium-size and large water systems. (a) Systems shall complete the applicable corrosion...) or (b)(3) of this section. (2) A small system (serving ≤3300 persons) and a medium-size system...

  7. Assessment of severity and distribution of corrosive ground water in Pennsylvania

    USGS Publications Warehouse

    Langland, M.J.; Dugas, D.L.

    1996-01-01

    Relations between corrosive ground water, water chemistry, and geology in Pennsylvania were evaluated by use of a modified version of the Langelier Saturation Index (LSIsn) and a geologic contact dataset in a Geographic Information System. Water-chemistry information for water samples collected from 4,839 combined private and public-supply wells from 1900 to 1993 was used to calculate the LSIsn. Thirty-eight lithologic subgroups within four major rock types-carbonate, siliciclastic, crystalline, and unconsolidated-in Pennsylvania were grouped together if the mean of ranked LSIsn values were not significantly different. A water is considered corrosive if the LSIsn value is negative, preventing the precipitation of calcium carbonate, therefore, allowing corrosive reactions with the interior of piping systems. Statistical tests of the LSIsn values show the least corrosive waters are in the carbonate lithologic subgroup, and the most corrosive waters are in the quartzite lithologic subgroup. Approximately 58 percent of the 4,839 LSIsn values were considered moderately to extremely corrosive. A map showing the location of 4,839 wells and associated corrosivity range within 11 lithologic subgroups will aid in identifying potential areas of corrosive ground water in Pennsylvania.

  8. Demonstration Of A Nanomaterial-Modified Primer For Use In Corrosion-Inhibiting Coating Systems

    DTIC Science & Technology

    2011-11-01

    abrasive blasting or other means. This report documents the materials and methodologies used for testing and application of the new coating systems on the...method with improved corrosion resistant coatings will provide the DoD with a means to cost effectively rehabilitate the outer metal surfaces of...contained with environmental controls in place. ........................................ 9 Figure 6. Abrasive blast-cleaned tank surface

  9. Electrochemical evaluation for corrosion resistance of bacterial exopolysaccharides on low carbon steel

    USDA-ARS?s Scientific Manuscript database

    Corrosion is a global issue that affects safety and economics. There is an increasing demand for bio-based polymers for industrial applications and production of polymers by microorganisms is especially attractive. This work reports on the electrochemical and physical properties of 29 strains or fr...

  10. Nuclear Safety for Space Systems

    NASA Astrophysics Data System (ADS)

    Offiong, Etim

    2010-09-01

    It is trite, albeit a truism, to say that nuclear power can provide propulsion thrust needed to launch space vehicles and also, to provide electricity for powering on-board systems, especially for missions to the Moon, Mars and other deep space missions. Nuclear Power Sources(NPSs) are known to provide more capabilities than solar power, fuel cells and conventional chemical means. The worry has always been that of safety. The earliest superpowers(US and former Soviet Union) have designed and launched several nuclear-powered systems, with some failures. Nuclear failures and accidents, however little the number, could be far-reaching geographically, and are catastrophic to humans and the environment. Building on the numerous research works on nuclear power on Earth and in space, this paper seeks to bring to bear, issues relating to safety of space systems - spacecrafts, astronauts, Earth environment and extra terrestrial habitats - in the use and application of nuclear power sources. It also introduces a new formal training course in Space Systems Safety.

  11. Performance of ferritic stainless steels for automobile muffler corrosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarutani, Y.; Hashizume, T.

    1995-11-01

    Corrosion behavior of ferritic stainless steels was studied in artificial exhaust gas condensates containing corrosive ions such as Cl{sup {minus}} and SO{sub 3}{sup 2{minus}}. Continuous immersion tests in flasks and Dip and Dry tests by using the alternate corrosion tester with a heating system clarified the effects of chromium and molybdenum additions on the corrosion resistance of a ferritic stainless steel in the artificial exhaust gas condensates. Effects of surface oxidation on the corrosion behavior were investigated in a temperature range of 573K to 673K. Oxidation of 673K reduced the corrosion resistance of the ferritic stainless steels in the artificialmore » environment of the automobile muffler. Particulate matter deposited on the muffler inner shell from the automobile exhaust gas was also examined. Deposited particulate matter increased the corrosion rate of the ferritic stainless steel. Finally, the authors also investigated the corrosion of the automobile mufflers made of Type 436L ferritic stainless steel with 18% chromium-1.2% molybdenum after 24 months, in Japan. The sets of results clarified that Type 436L ferritic stainless steel as the material for the automobile muffler exhibited acceptable corrosion resistance.« less

  12. Thermal spray coating for corrosion under insulation (CUI) prevention

    NASA Astrophysics Data System (ADS)

    Fuad, Mohd Fazril Irfan Ahmad; Razak, Khalil Abdul; Alias, Nur Hashimah; Othman, Nur Hidayati; Lah, Nik Khairul Irfan Nik Ab

    2017-12-01

    Corrosion under insulation (CUI) is one of the predominant issues affecting process of Oil and Gas and Petrochemical industries. CUI refers to external corrosion, but it is difficult to be detected as the insulation cover masks the corrosion problem. One of the options to prevent CUI is by utilizing the protective coating systems. Thermal spray coating (TSC) is an advanced coating system and it shows promising performance in harsh environment, which could be used to prevent CUI. However, the application of TSC is not attractive due to the high initial cost. This work evaluates the potential of TSC based on corrosion performance using linear polarization resistance (LPR) method and salt spray test (SST). Prior to the evaluation, the mechanical performance of TSC was first investigated using adhesion test and bend test. Microstructure characterization of the coating was investigated using Scanning Electron Microscope (SEM). The LPR test results showed that low corrosion rate of 0.05 mm/years was obtained for TSC in compared to the bare steel especially at high temperature of 80 °C, where usually normal coating would fail. For the salt spray test, there was no sign of corrosion products especially at the center (fully coated region) was observed. From SEM images, no corrosion defects were observed after 336 hours of continuous exposure to salt fog test. This indicates that TSC protected the steel satisfactorily by acting as a barrier from a corrosive environment. In conclusion, TSC can be a possible solution to minimize the CUI in a long term. Further research should be done on corrosion performance and life cycle cost by comparing TSC with other conventional coating technology.

  13. Undergraduate Organic Chemistry Laboratory Safety

    NASA Astrophysics Data System (ADS)

    Luckenbaugh, Raymond W.

    1996-11-01

    Each organic chemistry student should become familiar with the educational and governmental laboratory safety requirements. One method for teaching laboratory safety is to assign each student to locate safety resources for a specific class laboratory experiment. The student should obtain toxicity and hazardous information for all chemicals used or produced during the assigned experiment. For example, what is the LD50 or LC50 for each chemical? Are there any specific hazards for these chemicals, carcinogen, mutagen, teratogen, neurotixin, chronic toxin, corrosive, flammable, or explosive agent? The school's "Chemical Hygiene Plan", "Prudent Practices for Handling Hazardous Chemicals in the Laboratory" (National Academy Press), and "Laboratory Standards, Part 1910 - Occupational Safety and Health Standards" (Fed. Register 1/31/90, 55, 3227-3335) should be reviewed for laboratory safety requirements for the assigned experiment. For example, what are the procedures for safe handling of vacuum systems, if a vacuum distillation is used in the assigned experiment? The literature survey must be submitted to the laboratory instructor one week prior to the laboratory session for review and approval. The student should then give a short presentation to the class on the chemicals' toxicity and hazards and describe the safety precautions that must be followed. This procedure gives the student first-hand knowledge on how to find and evaluate information to meet laboartory safety requirements.

  14. 49 CFR 659.19 - System safety program plan: contents.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 7 2012-10-01 2012-10-01 false System safety program plan: contents. 659.19... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAIL FIXED GUIDEWAY SYSTEMS; STATE SAFETY OVERSIGHT Role of the State Oversight Agency § 659.19 System safety program plan: contents. The system safety plan shall...

  15. 49 CFR 659.19 - System safety program plan: contents.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 7 2011-10-01 2011-10-01 false System safety program plan: contents. 659.19... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAIL FIXED GUIDEWAY SYSTEMS; STATE SAFETY OVERSIGHT Role of the State Oversight Agency § 659.19 System safety program plan: contents. The system safety plan shall...

  16. 49 CFR 659.19 - System safety program plan: contents.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 7 2013-10-01 2013-10-01 false System safety program plan: contents. 659.19... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAIL FIXED GUIDEWAY SYSTEMS; STATE SAFETY OVERSIGHT Role of the State Oversight Agency § 659.19 System safety program plan: contents. The system safety plan shall...

  17. 49 CFR 659.19 - System safety program plan: contents.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 7 2014-10-01 2014-10-01 false System safety program plan: contents. 659.19... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAIL FIXED GUIDEWAY SYSTEMS; STATE SAFETY OVERSIGHT Role of the State Oversight Agency § 659.19 System safety program plan: contents. The system safety plan shall...

  18. 49 CFR 659.19 - System safety program plan: contents.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false System safety program plan: contents. 659.19... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAIL FIXED GUIDEWAY SYSTEMS; STATE SAFETY OVERSIGHT Role of the State Oversight Agency § 659.19 System safety program plan: contents. The system safety plan shall...

  19. Safety climate and culture: Integrating psychological and systems perspectives.

    PubMed

    Casey, Tristan; Griffin, Mark A; Flatau Harrison, Huw; Neal, Andrew

    2017-07-01

    Safety climate research has reached a mature stage of development, with a number of meta-analyses demonstrating the link between safety climate and safety outcomes. More recently, there has been interest from systems theorists in integrating the concept of safety culture and to a lesser extent, safety climate into systems-based models of organizational safety. Such models represent a theoretical and practical development of the safety climate concept by positioning climate as part of a dynamic work system in which perceptions of safety act to constrain and shape employee behavior. We propose safety climate and safety culture constitute part of the enabling capitals through which organizations build safety capability. We discuss how organizations can deploy different configurations of enabling capital to exert control over work systems and maintain safe and productive performance. We outline 4 key strategies through which organizations to reconcile the system control problems of promotion versus prevention, and stability versus flexibility. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  20. NASA aviation safety reporting system

    NASA Technical Reports Server (NTRS)

    Billings, C. E.; Lauber, J. K.; Funkhouser, H.; Lyman, E. G.; Huff, E. M.

    1976-01-01

    The origins and development of the NASA Aviation Safety Reporting System (ASRS) are briefly reviewed. The results of the first quarter's activity are summarized and discussed. Examples are given of bulletins describing potential air safety hazards, and the disposition of these bulletins. During the first quarter of operation, the ASRS received 1464 reports; 1407 provided data relevant to air safety. All reports are being processed for entry into the ASRS data base. During the reporting period, 130 alert bulletins describing possible problems in the aviation system were generated and disseminated. Responses were received from FAA and others regarding 108 of the alert bulletins. Action was being taken with respect to 70 of the 108 responses received. Further studies are planned of a number of areas, including human factors problems related to automation of the ground and airborne portions of the national aviation system.

  1. Investigation of electrochemical phenomena related to corrosion in high temperature aqueous systems

    NASA Astrophysics Data System (ADS)

    Biswas, Ritwik

    1999-11-01

    Three separate phenomena, each related to the problem of corrosion of metals, in high temperature aqueous solutions, have been studied. These are: (1) Kinetics of the Hydrogen Oxidation Reaction (HOR), (2) Effect of solutions containing sulfur oxyanions on Stainless Steel 347 and Inconel 600, and (3) Characterization of electrochemical behavior of intermetallic compounds Ni3Nb and Ni3(TiAl). The anodic transfer coefficient and the Tafel constant, for the HOR, on platinized nickel, in 0.1 m NaOH solution, was experimentally measured over the temperature range of 25°C to 300°C. Potentiodynamic polarization experiments, under controlled hydrodynamic flow conditions, in a cell with annular flow geometry, were used for these measurements. The anodic transfer coefficient and the Tafel constant were found to increase with increase in solution temperature. At high anodic potentials (>1V vs. rest potential), passivation of the platinum electrode was observed. Electron tunneling theory was used to determine that this was the result of formation of platinum oxide (PtO) on the surface of the platinum electrode. The relative corrosion properties of Stainless Steel 347 and Inconel 600, exposed to an aqueous electrolyte containing sulfur oxyanions, at temperatures up to 285°C, was studied using electrochemical tests, mathematical modeling and surface analysis. The presence of sulfur oxyanions was found to cause the breakdown of the protective passive film on both the alloy surfaces, and increase their corrosion rates. As a result of exposure to the electrolyte, a porous layer of corrosion product was formed on both alloys. This porous layer was composed principally of Ni3S2 in the case of Inconel 600 and Fe3O4 in the case of Stainless Steel 347. The corrosive effect of sulfur oxyanions was found to be greater on Inconel 600 than Stainless Steel 347. Galvanic coupling experiments were conducted on the intermetallics Ni 3Nb and Ni3(TiAl) and a nickel rich alloy. It was

  2. Corrosion of High-Density Sintered Tungsten Alloys. Part 2. Accelerated Corrosion Testing

    DTIC Science & Technology

    1988-12-01

    REPORT MRL-R- 1145 CORROSION OF HIGH-DENSITY SINTERED TUNGSTEN ALLOYS PART 2: ACCELERATED CORROSION TESTING J.J. Batten and B.T. Moore I DTIC . *arit*fl...Commo,,wea°h 91 Avor,++.°_ DECEMBER 1988 012 rI DEPARTMENT OF DEFENCE MATERIALS RESEARCH LABORATORY REPORT MRL-R- 1145 CORROSION OF HIGH-DENSITY SINTERED...TUNGSTEN ALLOYS PART 2: ACCELERATED CORROSION TESTING J.J. Batten and B.T. Moore ABSTRACT As a consequence of corrosion during long-term storage in

  3. Health and safety management systems: liability or asset?

    PubMed

    Bennett, David

    2002-01-01

    Health and safety management systems have a background in theory and in various interests among employers and workplace health and safety professionals. These have resulted in a number of national systems emanating from national standard-writing centres and from employers' organizations. In some cases these systems have been recognized as national standards. The contenders for an international standard have been the International Organization of Standardization (ISO) and the International Labour Organization (ILO). The quality and environmental management systems of ISO indicate what an ISO health and safety management standard would look like. The ILO Guidelines on Safety and Health Management Systems, by contrast, are stringent, specific and potentially effective in improving health and safety performance in the workplace.

  4. Copper and Lead Corrosion in a Full Scale Home Plumbning system Simulation

    EPA Science Inventory

    The corrosion of household or premise plumbing materials (such as copper, brass, and solder) and the metal release that results from that corrosion can cause numerous problems, ranging from elevated lead and copper levels to blue water and copper pinhole leaks. If left untreate...

  5. Implementation of Polyurea Applications for Wastewater System Corrosion-Mitigation Projects: Final Report on Project F15-AR04

    DTIC Science & Technology

    2017-07-24

    Corrosion-Mitigation Projects Final Report on Project F15-AR04 Co ns tr uc tio n En gi ne er in g R es ea rc h La bo ra to ry Clint A. Wilson...2017 Implementation of Polyurea Applications for Wastewater System Corrosion-Mitigation Projects Final Report on Project F15-AR04 Clint A...Secretary of Defense Washington, DC 20301-3090 Under Project F15-AR04, “Polyurea Coating for Rehabilitation of Concrete and Metal Infrastructure

  6. Effect of substrate roughness on the corrosion behaviour of the Al2O3/MA 956 system.

    PubMed

    García-Alonso, M C; Escudero, M L; González-Carrasco, J L; Chao, J

    2000-01-01

    This paper presents the influence of substrate roughness on the corrosion behaviour of the Al2O3/MA 956 system. An alumina layer of thickness 1-5 microm was generated of the MA956 alloy by thermal oxidation at 1100 degrees C using different exposure times. This Al2O3/MA 956 system with a polished substrate has shown excellent corrosion behaviour in a physiological fluid, due to the fact that the alpha-Al2O3 layer formed is dense, continuous and firmly adhered to the substrate, irrespective of the scale thickness. This good adherence allows it to withstand potentials above 1.7 V. Specimens with rough finish substrate and treatment times above 10 h present spallation of the alumina layer at the crests of the roughness profile. In this case a mixed corrosion behaviour between an alumina coated material and one with a passive layer is observed. In both types of specimens, rough and smooth, once the passivation layer is broken the repassivation capacity of the substrate is ensured due to the high chromium content of the alloy, under oxygenation conditions.

  7. Electrochemical characterization of corrosion in materials of grounding systems, simulating conditions of synthetic soils with characteristics of local soils

    NASA Astrophysics Data System (ADS)

    Salas, Y.; Guerrero, L.; Vera-Monroy, S. P.; Blanco, J.; Jimenez, C.

    2017-12-01

    The integrity of structures buried in earthing becomes relevant when analysing maintenance and replacement costs of these systems, as the deterioration is mainly due to two factors, namely: the failures caused in the electrical systems, which are due to the system. Failure in earthing due to corrosion at the interface cause an alteration in the structure of the component material and generates an undesirable resistivity that cause malfunction in this type of protection systems. Two local soils were chosen that were categorized as sandy loam and clay loam type, whose chemical characteristics were simulated by means of an electrolyte corresponding to the amount of ions present determined by a soil characterization based on the CICE (effective cation exchange coefficient), which allows us to deduce the percentage of chloride and sulphate ions present for the different levels established in the experimental matrix. The interaction of these soils with grounding electrodes is a complex problem involving many factors to consider. In this study, the rates and corrosion currents of the different soils on two types of electrodes, one copper and the other AISI 304 stainless steel, were approximated by electrochemical techniques such as potentiodynamic curves and electrochemical impedance spectra. Considerably higher speeds were determined for copper-type electrodes when compared to those based on steel. However, from the Nyquist diagrams, it was noted that copper electrodes have better electrical performance than steel ones. The soil with the highest ionic activity turned out to be the sandy loam. The clay loam soil presents a tendency to water retention and this may be the reason for the different behaviour with respect to ionic mobility. The diffusion control in the steel seems to alter the ionic mobility because its corrosion rates proved to be very similar regardless of the type of soil chemistry. In general, corrosion rates fell since tenths of a millimetre every year to

  8. Electrochemical Measurement of Atmospheric Corrosion

    NASA Technical Reports Server (NTRS)

    DeArmond, Anna H.; Davis, Dennis D.; Beeson, Harold D.

    1999-01-01

    Corrosion of Shuttle thruster components in atmospheres containing high concentrations of nitrogen tetroxide (NTO) and water is an important issue in ground operations of bipropellant systems in humid locations. Measurements of the corrosivities of NTO-containing atmospheres and the responses of different materials to these atmospheres have been accomplished using an electrochemical sensor. The sensor is composed of alternating aluminum/titanium strips separated by thin insulating layers. Under high humidity conditions a thin film of water covers the surface of the sensor. Added NTO vapor reacts with the water film to form a conductive medium and establishes a galvanic cell. The current from this cell can be integrated with respect to time and related to the corrosion activity. The surface layer formed from humid air/NTO reacts in the same way as an aqueous solution of nitric acid. Nitric acid is generally considered an important agent in NTO corrosion situations. The aluminum/titanium sensor is unresponsive to dry air, responds slightly to humid air (> 75% RH), and responds strongly to the combination of humid air and NTO. The sensor response is a power function (n = 2) of the NTO concentration. The sensor does not respond to NTO in dry air. The response of other materials in this type of sensor is related to position of the material in a galvanic series in aqueous nitric acid. The concept and operation of this electrochemical corrosion measurement is being applied to other corrosive atmospheric contaminants such as hydrogen chloride, hydrogen fluoride, sulfur dioxide, and acidic aerosols.

  9. Effects of sulfate on heavy metal release from iron corrosion scales in drinking water distribution system.

    PubMed

    Sun, Huifang; Shi, Baoyou; Yang, Fan; Wang, Dongsheng

    2017-05-01

    Trace heavy metals accumulated in iron corrosion scales within a drinking water distribution system (DWDS) could potentially be released to bulk water and consequently deteriorate the tap water quality. The objective of this study was to identify and evaluate the release of trace heavy metals in DWDS under changing source water conditions. Experimental pipe loops with different iron corrosion scales were set up to simulate the actual DWDS. The effects of sulfate levels on heavy metal release were systemically investigated. Heavy metal releases of Mn, Ni, Cu, Pb, Cr and As could be rapidly triggered by sulfate addition but the releases slowly decreased over time. Heavy metal release was more severe in pipes transporting groundwater (GW) than in pipes transporting surface water (SW). There were strong positive correlations (R 2  > 0.8) between the releases of Fe and Mn, Fe and Ni, Fe and Cu, and Fe and Pb. When switching to higher sulfate water, iron corrosion scales in all pipe loops tended to be more stable (especially in pipes transporting GW), with a larger proportion of stable constituents (mainly Fe 3 O 4 ) and fewer unstable compounds (β-FeOOH, γ-FeOOH, FeCO 3 and amorphous iron oxides). The main functional iron reducing bacteria (IRB) communities were favorable for the formation of Fe 3 O 4 . The transformation of corrosion scales and the growth of sulfate reducing bacteria (SRB) accounted for the gradually reduced heavy metal release with time. The higher metal release in pipes transporting GW could be due to increased Fe 6 (OH) 12 CO 3 content under higher sulfate concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Quantitative safety assessment of air traffic control systems through system control capacity

    NASA Astrophysics Data System (ADS)

    Guo, Jingjing

    Quantitative Safety Assessments (QSA) are essential to safety benefit verification and regulations of developmental changes in safety critical systems like the Air Traffic Control (ATC) systems. Effectiveness of the assessments is particularly desirable today in the safe implementations of revolutionary ATC overhauls like NextGen and SESAR. QSA of ATC systems are however challenged by system complexity and lack of accident data. Extending from the idea "safety is a control problem" in the literature, this research proposes to assess system safety from the control perspective, through quantifying a system's "control capacity". A system's safety performance correlates to this "control capacity" in the control of "safety critical processes". To examine this idea in QSA of the ATC systems, a Control-capacity Based Safety Assessment Framework (CBSAF) is developed which includes two control capacity metrics and a procedural method. The two metrics are Probabilistic System Control-capacity (PSC) and Temporal System Control-capacity (TSC); each addresses an aspect of a system's control capacity. And the procedural method consists three general stages: I) identification of safety critical processes, II) development of system control models and III) evaluation of system control capacity. The CBSAF was tested in two case studies. The first one assesses an en-route collision avoidance scenario and compares three hypothetical configurations. The CBSAF was able to capture the uncoordinated behavior between two means of control, as was observed in a historic midair collision accident. The second case study compares CBSAF with an existing risk based QSA method in assessing the safety benefits of introducing a runway incursion alert system. Similar conclusions are reached between the two methods, while the CBSAF has the advantage of simplicity and provides a new control-based perspective and interpretation to the assessments. The case studies are intended to investigate the

  11. Evaluation of annual corrosion tests for aggressive water

    NASA Astrophysics Data System (ADS)

    Dubová, V.; Ilavský, J.; Barloková, D.

    2011-12-01

    Internal corrosion has a significant effect on the useful life of pipes, the hydraulic conditions of a distribution system and the quality of the water transported. All water is corrosive under some conditions, and the level of this corrosion depends on the physical and chemical properties of the water and properties of the pipe material. Galvanic treatment is an innovation for protecting against corrosion, and this method is also suitable for removal of water stone too. This method consists of the electrogalvanic principle, which is generated by the flowing of water between a zinc anode and the cupro-alloy cover of a column. This article presents experimental corrosion tests at water resource Pernek (This water resource-well marked as HL-1 is close to the Pernek of village), where the device is operating based on this principle.

  12. 49 CFR 659.15 - System safety program standard.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false System safety program standard. 659.15 Section 659... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAIL FIXED GUIDEWAY SYSTEMS; STATE SAFETY OVERSIGHT Role of the State Oversight Agency § 659.15 System safety program standard. (a) General requirement. Each state...

  13. Effects of microbial redox cycling of iron on cast iron pipe corrosion in drinking water distribution systems.

    PubMed

    Wang, Haibo; Hu, Chun; Zhang, Lili; Li, Xiaoxiao; Zhang, Yu; Yang, Min

    2014-11-15

    Bacterial characteristics in corrosion products and their effect on the formation of dense corrosion scales on cast iron coupons were studied in drinking water, with sterile water acting as a reference. The corrosion process and corrosion scales were characterized by electrochemical and physico-chemical measurements. The results indicated that the corrosion was more rapidly inhibited and iron release was lower due to formation of more dense protective corrosion scales in drinking water than in sterile water. The microbial community and denitrifying functional genes were analyzed by pyrosequencing and quantitative polymerase chain reactions (qPCR), respectively. Principal component analysis (PCA) showed that the bacteria in corrosion products played an important role in the corrosion process in drinking water. Nitrate-reducing bacteria (NRB) Acidovorax and Hydrogenophaga enhanced iron corrosion before 6 days. After 20 days, the dominant bacteria became NRB Dechloromonas (40.08%) with the protective corrosion layer formation. The Dechloromonas exhibited the stronger corrosion inhibition by inducing the redox cycling of iron, to enhance the precipitation of iron oxides and formation of Fe3O4. Subsequently, other minor bacteria appeared in the corrosion scales, including iron-respiring bacteria and Rhizobium which captured iron by the produced siderophores, having a weaker corrosion-inhibition effect. Therefore, the microbially-driven redox cycling of iron with associated microbial capture of iron caused more compact corrosion scales formation and lower iron release. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. 46 CFR 111.01-11 - Corrosion-resistant parts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Corrosion-resistant parts. 111.01-11 Section 111.01-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-11 Corrosion-resistant parts. Each enclosure and part of electric...

  15. 46 CFR 111.01-11 - Corrosion-resistant parts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Corrosion-resistant parts. 111.01-11 Section 111.01-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-11 Corrosion-resistant parts. Each enclosure and part of electric...

  16. 46 CFR 111.01-11 - Corrosion-resistant parts.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Corrosion-resistant parts. 111.01-11 Section 111.01-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-11 Corrosion-resistant parts. Each enclosure and part of electric...

  17. 46 CFR 111.01-11 - Corrosion-resistant parts.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Corrosion-resistant parts. 111.01-11 Section 111.01-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-11 Corrosion-resistant parts. Each enclosure and part of electric...

  18. 46 CFR 111.01-11 - Corrosion-resistant parts.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Corrosion-resistant parts. 111.01-11 Section 111.01-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-11 Corrosion-resistant parts. Each enclosure and part of electric...

  19. Safety status system for operating room devices.

    PubMed

    Guédon, Annetje C P; Wauben, Linda S G L; Overvelde, Marlies; Blok, Joleen H; van der Elst, Maarten; Dankelman, Jenny; van den Dobbelsteen, John J

    2014-01-01

    Since the increase of the number of technological aids in the operating room (OR), equipment-related incidents have come to be a common kind of adverse events. This underlines the importance of adequate equipment management to improve the safety in the OR. A system was developed to monitor the safety status (periodic maintenance and registered malfunctions) of OR devices and to facilitate the notification of malfunctions. The objective was to assess whether the system is suitable for use in an busy OR setting and to analyse its effect on the notification of malfunctions. The system checks automatically the safety status of OR devices through constant communication with the technical facility management system, informs the OR staff real-time and facilitates notification of malfunctions. The system was tested for a pilot period of six months in four ORs of a Dutch teaching hospital and 17 users were interviewed on the usability of the system. The users provided positive feedback on the usability. For 86.6% of total time, the localisation of OR devices was accurate. 62 malfunctions of OR devices were reported, an increase of 12 notifications compared to the previous year. The safety status system was suitable for an OR complex, both from a usability and technical point of view, and an increase of reported malfunctions was observed. The system eases monitoring the safety status of equipment and is a promising tool to improve the safety related to OR devices.

  20. NASA's Beachside Corrosion Test Site and Current Environmentally Friendly Corrosion Control Initiatives

    NASA Technical Reports Server (NTRS)

    Russell, Richard W.; Calle, Luz Marina; Johnston, Frederick; Montgomery, Eliza L.; Curran, Jerome P.; Kolody, Mark R.

    2013-01-01

    NASA began corrosion studies at the Kennedy Space Center (KSC) in 1966 during the Gemini/Apollo Programs with the evaluation of long-term corrosion protective coatings for carbon steel. KSC's Beachside Corrosion Test Site (BCTS), which has been documented by the American Society of Materials (ASM) as one of the most corrosive, naturally occurring, environments in the world, was established at that time. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pad were rendered even more severe by the acid ic exhaust from the solid rocket boosters. In the years that followed, numerous studies have identified materials, coatings, and maintenance procedures for launch hardware and equipment exposed to the highly corrosive environment at the launch pad. This paper presents a historical overview of over 45 years of corrosion and coating evaluation studies and a description of the BCTS's current capabilities. Additionally, current research and testing programs involving chromium free coatings, environmentally friendly corrosion preventative compounds, and alternates to nitric acid passivation will be discussed.

  1. 49 CFR 659.15 - System safety program standard.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... included in the affected rail transit agency's system safety program plan relating to the hazard management... 49 Transportation 7 2011-10-01 2011-10-01 false System safety program standard. 659.15 Section 659... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAIL FIXED GUIDEWAY SYSTEMS; STATE SAFETY OVERSIGHT Role of the...

  2. Corrosion susceptibility of steel drums containing cemented intermediate level nuclear wastes

    NASA Astrophysics Data System (ADS)

    Duffó, Gustavo S.; Farina, Silvia B.; Schulz, Fátima M.; Marotta, Francesca

    2010-10-01

    Cementation processes are used as immobilization techniques for low or intermediate level radioactive waste for economical and safety reasons and for being a simple operation. In particular, ion-exchange resins commonly used for purification of radioactive liquid waste from nuclear reactors are immobilized before being stored to improve the leach resistance of the waste matrix and to maintain mechanical stability. Combustible solid radioactive waste can be incinerated and the resulting ashes can also be immobilized before storage. The immobilized resins and ashes are then contained in steel drums that may undergo corrosion depending on the presence of certain contaminants. The work described in this paper was aimed at evaluating the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins and incineration ashes containing different concentrations of aggressive species (mostly chloride and sulphate ions). A special type of specimen was designed to simulate the cemented waste in the drum. The evolution of the corrosion potential and the corrosion current density of the steel, as well as the electrical resistivity of the matrix were monitored over a time period of 1 year. The results show the deleterious effect of chloride on the expected lifespan of the waste containers.

  3. Utilization of artificial recharged effluent as makeup water for industrial cooling system: corrosion and scaling.

    PubMed

    Wei, Liangliang; Qin, Kena; Zhao, Qingliang; Noguera, Daniel R; Xin, Ming; Liu, Chengcai; Keene, Natalie; Wang, Kun; Cui, Fuyi

    2016-01-01

    The secondary effluent from wastewater treatment plants was reused for industrial cooling water after pre-treatment with a laboratory-scale soil aquifer treatment (SAT) system. Up to a 95.3% removal efficiency for suspended solids (SS), 51.4% for chemical oxygen demand (COD), 32.1% for Cl(-) and 30.0% SO4(2-) were observed for the recharged secondary effluent after the SAT operation, which is essential for controlling scaling and corrosion during the cooling process. As compared to the secondary effluent, the reuse of the 1.5 m depth SAT effluent decreased the corrosion by 75.0%, in addition to a 55.1% decline of the scales/biofouling formation (with a compacted structure). The experimental results can satisfy the Chinese criterion of Design Criterion of the Industrial Circulating Cooling Water Treatment (GB 50050-95), and was more efficient than tertiary effluent which coagulated with ferric chloride. In addition, chemical structure of the scales/biofouling obtained from the cooling system was analyzed.

  4. Corrosion resistance of grouted post-tensioning systems : [summary].

    DOT National Transportation Integrated Search

    2013-08-01

    The increased popularity of post-tensioned bridge construction in the United States has led to concerns about corrosion and its impact on the life cycle of these bridges. Although the vast majority of post-tensioned bridges in the United States have ...

  5. 46 CFR 62.25-15 - Safety control systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... manual safety trip controls must be provided for all main boilers, turbines, and internal combustion... 46 Shipping 2 2012-10-01 2012-10-01 false Safety control systems. 62.25-15 Section 62.25-15... AUTOMATION General Requirements for All Automated Vital Systems § 62.25-15 Safety control systems. (a...

  6. 46 CFR 62.25-15 - Safety control systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... manual safety trip controls must be provided for all main boilers, turbines, and internal combustion... 46 Shipping 2 2013-10-01 2013-10-01 false Safety control systems. 62.25-15 Section 62.25-15... AUTOMATION General Requirements for All Automated Vital Systems § 62.25-15 Safety control systems. (a...

  7. 46 CFR 62.25-15 - Safety control systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... manual safety trip controls must be provided for all main boilers, turbines, and internal combustion... 46 Shipping 2 2014-10-01 2014-10-01 false Safety control systems. 62.25-15 Section 62.25-15... AUTOMATION General Requirements for All Automated Vital Systems § 62.25-15 Safety control systems. (a...

  8. Elevated corrosion rates and hydrogen sulfide in homes with 'Chinese Drywall'.

    PubMed

    Allen, Joseph G; MacIntosh, David L; Saltzman, Lori E; Baker, Brian J; Matheson, Joanna M; Recht, Joel R; Minegishi, Taeko; Fragala, Matt A; Myatt, Theodore A; Spengler, John D; Stewart, James H; McCarthy, John F

    2012-06-01

    In December 2008, the U.S. Consumer Product Safety Commission (CPSC) began receiving reports about odors, corrosion, and health concerns related to drywall originating from China. In response, a detailed environmental health and engineering evaluation was conducted of 41 complaint and 10 non-complaint homes in the Southeast U.S. Each home investigation included characterization of: 1) drywall composition; 2) indoor and outdoor air quality; 3) temperature, moisture, and building ventilation; and 4) copper and silver corrosion rates. Complaint homes had significantly higher hydrogen sulfide concentrations (mean 0.82 vs. corrosion compared to non-complaint homes (Cu(2)S: 476 vs. <32 Å/30 d, p<0.01; Ag(2)S: 1472 vs. 389 Å/30 d, p<0.01). The abundance of carbonate and strontium in drywall was also elevated in complaint homes, and appears to be useful objective marker of problematic drywall in homes that meet other screening criteria (e.g., constructed or renovated in 2006-2007, reports of malodor and accelerated corrosion). This research provides empirical evidence of the direct association between homes constructed with 'Chinese Drywall' in 2006-2007 and elevated corrosion rates and hydrogen sulfide concentrations in indoor air. Copyright © 2012. Published by Elsevier B.V.

  9. Graphene coatings for protection against microbiologically induced corrosion

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Ajay

    Microbiologically induced corrosion (MIC) is a special form of electrochemical corrosion where micro-organisms affect the local environmental conditions at the metal-electrolyte interface by forming a stable biofilm. The biofilm introduces localized concentration cells, which accelerate the electrochemical corrosion rates. MIC has been found to affect many industrial systems such as sewage waste water pipes, heat exchangers, ships, underwater pipes etc. It has been traditionally eradicated by physical, biochemical and surface protection methods. The cleaning methods and the biocidal deliveries are required periodically and don't provide a permanent solution to the problem. Further, the use of biocides has been harshly criticized by environmentalists due to safety concerns associated with their usage. Surface based coatings have their own drawback of rapid degradation under harsh microbial environments. This has led to the exploration of thin, robust, inert, conformal passivation coatings for the protection of metallic surfaces from microbiologically induced corrosion. Graphene is a 2D arrangement of carbon atoms in a hexagonal honeycomb lattice. The carbon atoms are bonded to one another by sp2 hybridization and each layer of the carbon ring arrangement spans to a thickness of less than a nm. Due to its unique 2D arrangement of carbon atoms, graphene exhibits interesting in-plane and out of plane properties that have led to it being considered as the material for the future. Its excellent thermal, mechanical, electrical and optical properties are being explored in great depth to understand and realize potential applications in various technological realms. Early studies have shown the ability of bulk and monolayer graphene to protect metallic surfaces from air oxidation and solution based galvanic corrosion processes for short periods. However, the role of graphene in resisting MIC is yet to be determined, particularly over the long time spans characteristic of

  10. Microbially Influenced Corrosion of 304 Stainless Steel and Titanium by P. variotii and A. niger in Humid Atmosphere

    NASA Astrophysics Data System (ADS)

    Zhang, Dawei; Zhou, Feichi; Xiao, Kui; Cui, Tianyu; Qian, Hongchong; Li, Xiaogang

    2015-07-01

    Microbially induced corrosion (MIC) poses significant threats to reliability and safety of engineering materials and structures. While most MIC studies focus on prokaryotic bacteria such as sulfate-reducing bacteria, the influence of fungi on corrosion behaviors of metals has not been adequately reported. In this study, 304 stainless steel and titanium were exposed to two very common fungi, Paecilomyces variotii, Aspergillus niger and their mixtures under highly humid atmosphere. The initial corrosion behaviors within 28 days were studied via scanning Kelvin probe, which showed marked surface ennoblement and increasingly heterogeneous potential distribution upon prolonged fungus exposure. Using stereomicroscopy, fungus growth as well as corrosion morphology of 304 stainless steel and titanium were also evaluated after a long-term exposure for 60 days. The presence of fungi decreased the corrosion resistance for both 304 stainless steel and titanium. Titanium showed higher resistance to fungus growth and the induced corrosion. Exposure to the mixed strains resulted in the highest fungus growth rate but the mildest corrosion, possibly due to the decreased oxygen level by increased fungal activities.

  11. Solvent Effects of Model Polymeric Corrosion Control Coatings on Water Transport and Corrosion Rate

    NASA Astrophysics Data System (ADS)

    Konecki, Christina

    (removal of water) as an attempt to decrease the number of water transport pathways during exposure. Results found that samples rejuvenated at temperatures above the glass transition temperature of the samples achieved lower moisture content and consequently, lower corrosion growth rates. In commercial systems, rejuvenation lowered the corrosion rate up to 60% indicating better coating formulations and maintenance cycles would control the corrosion rate.

  12. Systems pharmacology augments drug safety surveillance

    PubMed Central

    Lorberbaum, Tal; Nasir, Mavra; Keiser, Michael J.; Vilar, Santiago; Hripcsak, George; Tatonetti, Nicholas P.

    2014-01-01

    Small molecule drugs are the foundation of modern medical practice yet their use is limited by the onset of unexpected and severe adverse events (AEs). Regulatory agencies rely on post-marketing surveillance to monitor safety once drugs are approved for clinical use. Despite advances in pharmacovigilance methods that address issues of confounding bias, clinical data of AEs are inherently noisy. Systems pharmacology– the integration of systems biology and chemical genomics – can illuminate drug mechanisms of action. We hypothesize that these data can improve drug safety surveillance by highlighting drugs with a mechanistic connection to the target phenotype (enriching true positives) and filtering those that do not (depleting false positives). We present an algorithm, the modular assembly of drug safety subnetworks (MADSS), to combine systems pharmacology and pharmacovigilance data and significantly improve drug safety monitoring for four clinically relevant adverse drug reactions. PMID:25670520

  13. Irradiation-Accelerated Corrosion of Reactor Core Materials. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Zhujie; Was, Gary; Bartels, David

    2015-04-02

    This project aims to understand how radiation accelerates corrosion of reactor core materials. The combination of high temperature, chemically aggressive coolants, a high radiation flux and mechanical stress poses a major challenge for the life extension of current light water reactors, as well as the success of most all GenIV concepts. Of these four drivers, the combination of radiation and corrosion places the most severe demands on materials, for which an understanding of the fundamental science is simply absent. Only a few experiments have been conducted to understand how corrosion occurs under irradiation, yet the limited data indicates that themore » effect is large; irradiation causes order of magnitude increases in corrosion rates. Without a firm understanding of the mechanisms by which radiation and corrosion interact in film formation, growth, breakdown and repair, the extension of the current LWR fleet beyond 60 years and the success of advanced nuclear energy systems are questionable. The proposed work will address the process of irradiation-accelerated corrosion that is important to all current and advanced reactor designs, but remains very poorly understood. An improved understanding of the role of irradiation in the corrosion process will provide the community with the tools to develop predictive models for in-reactor corrosion, and to address specific, important forms of corrosion such as irradiation assisted stress corrosion cracking.« less

  14. Corrosion protection

    DOEpatents

    Brown, Donald W.; Wagh, Arun S.

    2003-05-27

    There has been invented a chemically bonded phosphate corrosion protection material and process for application of the corrosion protection material for corrosion prevention. A slurry of iron oxide and phosphoric acid is used to contact a warm surface of iron, steel or other metal to be treated. In the presence of ferrous ions from the iron, steel or other metal, the slurry reacts to form iron phosphates which form grains chemically bonded onto the surface of the steel.

  15. Trinity cable safety system.

    DOT National Transportation Integrated Search

    2007-01-31

    Cab1eSafety System (CASS).is being tested by the Oklahoma Department of Transportation (ODOT) along I-35 in McClain County. CASS will be compare with two other system approve by ODOT. Using C-shaped post tensioned cables, CASS is designed to...

  16. Launch Pad Coatings for Smart Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Hintze, Paul E.; Bucherl, Cori N.; Li, Wenyan; Buhrow, Jerry W.; Curran, Jerome P.; Whitten, Mary C.

    2010-01-01

    . Researchers at NASA's Corrosion Technology Laboratory at KSC are developing a smart, environmentally friendly coating system for early corrosion detection, inhibition, and self healing of mechanical damage without external intervention. This smart coating will detect and respond actively to corrosion and mechanical damage such as abrasion and scratches, in a functional and predictable manner, and will be capable of adapting its properties dynamically. This coating is being developed using corrosion sensitive microcapsules that deliver the contents of their core (corrosion inhibiting compounds, corrosion indicators, and self healing agents) on demand when corrosion or mechanical damage to the coating occurs.

  17. Corrosion Behavior of Alloys in Molten Fluoride Salts

    NASA Astrophysics Data System (ADS)

    Zheng, Guiqiu

    The molten fluoride salt-cooled high-temperature nuclear reactor (FHR) has been proposed as a candidate Generation IV nuclear reactor. This reactor combines the latest nuclear technology with the use of molten fluoride salt as coolant to significantly enhance safety and efficiency. However, an important challenge in FHR development is the corrosion of structural materials in high-temperature molten fluoride salt. The structural alloys' degradation, particularly in terms of chromium depletion, and the molten salt chemistry are key factors that impact the lifetime of nuclear reactors and the development of future FHR designs. In support of materials development for the FHR, the nickel base alloy of Hastelloy N and iron-chromium base alloy 316 stainless steel are being actively considered as critical structural alloys. Enriched 27LiF-BeF2 (named as FLiBe) is a promising coolant for the FHR because of its neutronic properties and heat transfer characteristics while operating at atmospheric pressure. In this study, the corrosion behavior of Ni-5Cr and Ni-20Cr binary model alloys, and Hastelloy N and 316 stainless steel in molten FLiBe with and without graphite were investigated through various microstructural analyses. Based on the understanding of the corrosion behavior and data of above four alloys in molten FLiBe, a long-term corrosion prediction model has been developed that is applicable specifically for these four materials in FLiBe at 700ºC. The model uses Cr concentration profile C(x, t) as a function of corrosion distance in the materials and duration fundamentally derived from the Fick's diffusion laws. This model was validated with reasonable accuracy for the four alloys by fitting the calculated profiles with experimental data and can be applied to evaluate corrosion attack depth over the long-term. The critical constant of the overall diffusion coefficient (Deff) in this model can be quickly calculated from the experimental measurement of alloys' weight

  18. Aircraft Corrosion

    DTIC Science & Technology

    1981-08-01

    protective coating between the plates, the reduction in frictional effects caused by the fluid did cause a significant reduction in fatigue life ... surface treatments for aluminum alloys , there has been a return to anodizing for new weapons systems rather than chromate conversion coatings . Both sulfuric...good alternate coating material in many applications requiring good corrosion resistance and minimal effect on fatigue properties. Only two aluminum

  19. Interim Report on the Examination of Corrosion Damage in Homes Constructed With Imported Wallboard: Examination of Samples Received September 28, 2009.

    PubMed

    Pitchure, D J; Ricker, R E; Williams, M E; Claggett, S A

    2010-01-01

    Since many household systems are fabricated out of metallic materials, changes to the household environment that accelerate corrosion rates will increase the frequency of failures in these systems. Recently, it has been reported that homes constructed with imported wallboard have increased failure rates in appliances, air conditioner heat exchanger coils, and visible corrosion on electrical wiring and other metal components. At the request of the Consumer Product Safety Commission (CPSC), the National Institute of Standards and Technology (NIST) became involved through the Interagency Agreement CPSC-1-09-0023 to perform metallurgical analyses on samples and corrosion products removed from homes constructed using imported wallboard. This document reports on the analysis of the first group of samples received by NIST from CPSC. The samples received by NIST on September 28, 2009 consisted of copper tubing for supplying natural gas and two air conditioner heat exchanger coils. The examinations performed by NIST consisted of photography, metallurgical cross-sectioning, optical microscopy, scanning electron microscopy (SEM), and x-ray diffraction (XRD). Leak tests were also performed on the air conditioner heat exchanger coils. The objective of these examinations was to determine extent and nature of the corrosive attack, the chemical composition of the corrosion product, and the potential chemical reactions or environmental species responsible for accelerated corrosion. A thin black corrosion product was found on samples of the copper tubing. The XRD analysis of this layer indicated that this corrosion product was a copper sulfide phase and the diffraction peaks corresponded with those for the mineral digenite (Cu9S5). Corrosion products were also observed on other types of metals in the air conditioner coils where condensation would frequently wet the metals. The thickness of the corrosion product layer on a copper natural gas supply pipe with a wall thickness of 1

  20. Interim Report on the Examination of Corrosion Damage in Homes Constructed With Imported Wallboard: Examination of Samples Received September 28, 2009

    PubMed Central

    Pitchure, D. J.; Ricker, R. E.; Williams, M. E.; Claggett, S. A.

    2010-01-01

    Since many household systems are fabricated out of metallic materials, changes to the household environment that accelerate corrosion rates will increase the frequency of failures in these systems. Recently, it has been reported that homes constructed with imported wallboard have increased failure rates in appliances, air conditioner heat exchanger coils, and visible corrosion on electrical wiring and other metal components. At the request of the Consumer Product Safety Commission (CPSC), the National Institute of Standards and Technology (NIST) became involved through the Interagency Agreement CPSC-1-09-0023 to perform metallurgical analyses on samples and corrosion products removed from homes constructed using imported wallboard. This document reports on the analysis of the first group of samples received by NIST from CPSC. The samples received by NIST on September 28, 2009 consisted of copper tubing for supplying natural gas and two air conditioner heat exchanger coils. The examinations performed by NIST consisted of photography, metallurgical cross-sectioning, optical microscopy, scanning electron microscopy (SEM), and x-ray diffraction (XRD). Leak tests were also performed on the air conditioner heat exchanger coils. The objective of these examinations was to determine extent and nature of the corrosive attack, the chemical composition of the corrosion product, and the potential chemical reactions or environmental species responsible for accelerated corrosion. A thin black corrosion product was found on samples of the copper tubing. The XRD analysis of this layer indicated that this corrosion product was a copper sulfide phase and the diffraction peaks corresponded with those for the mineral digenite (Cu9S5). Corrosion products were also observed on other types of metals in the air conditioner coils where condensation would frequently wet the metals. The thickness of the corrosion product layer on a copper natural gas supply pipe with a wall thickness of 1

  1. Racial/ethnic differences in obesity and comorbidities between safety-net- and non safety-net integrated health systems

    PubMed Central

    Balasubramanian, Bijal A.; Garcia, Michael P.; Corley, Douglas A.; Doubeni, Chyke A.; Haas, Jennifer S.; Kamineni, Aruna; Quinn, Virginia P.; Wernli, Karen; Zheng, Yingye; Skinner, Celette Sugg

    2017-01-01

    Abstract Previous research shows that patients in integrated health systems experience fewer racial disparities compared with more traditional healthcare systems. Little is known about patterns of racial/ethnic disparities between safety-net and non safety-net integrated health systems. We evaluated racial/ethnic differences in body mass index (BMI) and the Charlson comorbidity index from 3 non safety-net- and 1 safety-net integrated health systems in a cross-sectional study. Multinomial logistic regression modeled comorbidity and BMI on race/ethnicity and health care system type adjusting for age, sex, insurance, and zip-code-level income The study included 1.38 million patients. Higher proportions of safety-net versus non safety-net patients had comorbidity score of 3+ (11.1% vs. 5.0%) and BMI ≥35 (27.7% vs. 15.8%). In both types of systems, blacks and Hispanics were more likely than whites to have higher BMIs. Whites were more likely than blacks or Hispanics to have higher comorbidity scores in a safety net system, but less likely to have higher scores in the non safety-nets. The odds of comorbidity score 3+ and BMI 35+ in blacks relative to whites were significantly lower in safety-net than in non safety-net settings. Racial/ethnic differences were present within both safety-net and non safety-net integrated health systems, but patterns differed. Understanding patterns of racial/ethnic differences in health outcomes in safety-net and non safety-net integrated health systems is important to tailor interventions to eliminate racial/ethnic disparities in health and health care. PMID:28296752

  2. 49 CFR 385.715 - Duration of safety monitoring system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Duration of safety monitoring system. 385.715... SAFETY FITNESS PROCEDURES Safety Monitoring System for Non-North American Carriers § 385.715 Duration of safety monitoring system. (a) Each non-North America-domiciled carrier subject to this subpart will...

  3. 49 CFR 385.117 - Duration of safety monitoring system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Duration of safety monitoring system. 385.117... SAFETY FITNESS PROCEDURES Safety Monitoring System for Mexico-Domiciled Carriers § 385.117 Duration of safety monitoring system. (a) Each Mexico-domiciled carrier subject to this subpart will remain in the...

  4. 49 CFR 385.117 - Duration of safety monitoring system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Duration of safety monitoring system. 385.117... SAFETY FITNESS PROCEDURES Safety Monitoring System for Mexico-Domiciled Carriers § 385.117 Duration of safety monitoring system. (a) Each Mexico-domiciled carrier subject to this subpart will remain in the...

  5. 49 CFR 385.715 - Duration of safety monitoring system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Duration of safety monitoring system. 385.715... SAFETY FITNESS PROCEDURES Safety Monitoring System for Non-North American Carriers § 385.715 Duration of safety monitoring system. (a) Each non-North America-domiciled carrier subject to this subpart will...

  6. An investigation of microbial diversity in crude oil & seawater injection systems and microbiologically influenced corrosion (MIC) of linepipe steels under different exposure conditions

    NASA Astrophysics Data System (ADS)

    AlAbbas, Faisal Mohammed

    During oil and gas operations, pipeline networks are subjected to different corrosion deterioration mechanisms that result from the interaction between the fluid process and the linepipe steel. Among these mechanisms is microbiologically influenced corrosion (MIC) that results from accelerated deterioration caused by different indigenous microorganisms that naturally reside in the hydrocarbon and associated seawater injection systems. The focus of this research is to obtain comprehensive understanding of MIC. This work has explored the most essential elements (identifications, implications and mitigations) required to fully understand MIC. Advanced molecular-based techniques, including sequencing of 16S rRNA genes via 454 pyrosequencing methodologies, were deployed to provide in-depth understanding of the microbial diversity associated with crude oil and seawater injection systems and their relevant impact on MIC. Key microbes including sulfate reducing bacteria (SRB) and iron reducing bacteria (IRB) were cultivated from sour oil well field samples. The microbes' phylotypes were identified in the laboratory to gain more thorough understanding of how they impact microbial corrosion. Electrochemical and advanced surface analytical techniques were used for corrosion evaluations of linepipe carbon steels (API 5L X52 and X80) under different exposure conditions. On the identification front, 454 pyrosequencing of both 16S rRNA genes indicated that the microbial communities in the corrosion products obtained from the sour oil pipeline, sweet crude pipeline and seawater pipeline were dominated by bacteria, though archaeal sequences (predominately Methanobacteriaceae and Methanomicrobiaceae) were also identified in the sweet and sour crude oil samples, respectively. The dominant bacterial phylotypes in the sour crude sample included members of the Thermoanaerobacterales, Synergistales, and Syntrophobacterales. In the sweet crude sample, the dominant phylotypes included

  7. Treatment Prevents Corrosion in Steel and Concrete Structures

    NASA Technical Reports Server (NTRS)

    2007-01-01

    In the mid-1990s, to protect rebar from corrosion, NASA developed an electromigration technique that sends corrosion-inhibiting ions into rebar to prevent rust, corrosion, and separation from the surrounding concrete. Kennedy Space Center worked with Surtreat Holding LLC, of Pittsburgh, Pennsylvania, a company that had developed a chemical option to fight structural corrosion, combining Surtreat's TPS-II anti-corrosive solution and electromigration. Kennedy's materials scientists reviewed the applicability of the chemical treatment to the electromigration process and determined that it was an effective and environmentally friendly match. Ten years later, NASA is still using this approach to fight concrete corrosion, and it has also developed a new technology that will further advance these efforts-a liquid galvanic coating applied to the outer surface of reinforced concrete to protect the embedded rebar from corrosion. Surtreat licensed this new coating technology and put it to use at the U.S. Army Naha Port, in Okinawa, Japan. The new coating prevents corrosion of steel in concrete in several applications, including highway and bridge infrastructures, piers and docks, concrete balconies and ceilings, parking garages, cooling towers, and pipelines. A natural compliment to the new coating, Surtreat's Total Performance System provides diagnostic testing and site analysis to identify the scope of problems for each project, manufactures and prescribes site-specific solutions, controls material application, and verifies performance through follow-up testing and analysis.

  8. Critical Characteristics of Radiation Detection System Components to be Dedicated for use in Safety Class and Safety Significant System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DAVIS, S.J.

    2000-05-25

    This document identifies critical characteristics of components to be dedicated for use in Safety Class (SC) or Safety Significant (SS) Systems, Structures, or Components (SSCs). This document identifies the requirements for the components of the common radiation area monitor alarm in the WESF pool cell. These are procured as Commercial Grade Items (CGI), with the qualification testing and formal dedication to be performed at the Waste Encapsulation Storage Facility (WESF), in safety class, safety significant systems. System modifications are to be performed in accordance with the instructions provided on ECN 658230. Components for this change are commercially available and interchangeablemore » with the existing alarm configuration This document focuses on the operational requirements for alarm, declaration of the safety classification, identification of critical characteristics, and interpretation of requirements for procurement. Critical characteristics are identified herein and must be verified, followed by formal dedication, prior to the components being used in safety related applications.« less

  9. Influence of Stress Corrosion Crack Morphology on Ultrasonic Examination Performances

    NASA Astrophysics Data System (ADS)

    Dupond, O.; Duwig, V.; Fouquet, T.

    2009-03-01

    Stress Corrosion Cracking represents a potential damage for several components in PWR. For this reason, NDE of stress corrosion cracks corresponds to an important stake for Electricité de France (EDF) both for availability and for safety of plants. This paper is dedicated to the ultrasonic examination of SCC crack defects. The study mixes an experimental approach conducted on artificial flaws—meant to represent the characteristic morphologic features often encountered on SCC cracks—and a 2D finite element modelling with the code ATHENA 2D developed by EDF. Results indicate that ATHENA reproduces correctly the interaction of the beam on the complex defect. Indeed specific ultrasonic responses resulting from the defect morphology have been observed experimentally and reproduced with the modelling.

  10. Overview of Energy Systems` safety analysis report programs. Safety Analysis Report Update Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-03-01

    The primary purpose of an Safety Analysis Report (SAR) is to provide a basis for judging the adequacy of a facility`s safety. The SAR documents the safety analyses that systematically identify the hazards posed by the facility, analyze the consequences and risk of potential accidents, and describe hazard control measures that protect the health and safety of the public and employees. In addition, some SARs document, as Technical Safety Requirements (TSRs, which include Technical Specifications and Operational Safety Requirements), technical and administrative requirements that ensure the facility is operated within prescribed safety limits. SARs also provide conveniently summarized information thatmore » may be used to support procedure development, training, inspections, and other activities necessary to facility operation. This ``Overview of Energy Systems Safety Analysis Report Programs`` Provides an introduction to the programs and processes used in the development and maintenance of the SARs. It also summarizes some of the uses of the SARs within Energy Systems and DOE.« less

  11. Analyzing Software Requirements Errors in Safety-Critical, Embedded Systems

    NASA Technical Reports Server (NTRS)

    Lutz, Robyn R.

    1993-01-01

    This paper analyzes the root causes of safety-related software errors in safety-critical, embedded systems. The results show that software errors identified as potentially hazardous to the system tend to be produced by different error mechanisms than non- safety-related software errors. Safety-related software errors are shown to arise most commonly from (1) discrepancies between the documented requirements specifications and the requirements needed for correct functioning of the system and (2) misunderstandings of the software's interface with the rest of the system. The paper uses these results to identify methods by which requirements errors can be prevented. The goal is to reduce safety-related software errors and to enhance the safety of complex, embedded systems.

  12. Corrosion and corrosion fatigue of airframe aluminum alloys

    NASA Technical Reports Server (NTRS)

    Chen, G. S.; Gao, M.; Harlow, D. G.; Wei, R. P.

    1994-01-01

    Localized corrosion and corrosion fatigue crack nucleation and growth are recognized as degradation mechanisms that effect the durability and integrity of commercial transport aircraft. Mechanically based understanding is needed to aid the development of effective methodologies for assessing durability and integrity of airframe components. As a part of the methodology development, experiments on pitting corrosion, and on corrosion fatigue crack nucleation and early growth from these pits were conducted. Pitting was found to be associated with constituent particles in the alloys and pit growth often involved coalescence of individual particle-nucleated pits, both laterally and in depth. Fatigue cracks typically nucleated from one of the larger pits that formed by a cluster of particles. The size of pit at which fatigue crack nucleates is a function of stress level and fatigue loading frequency. The experimental results are summarized, and their implications on service performance and life prediction are discussed.

  13. Safety System Design for Technology Education. A Safety Guide for Technology Education Courses K-12.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Instruction, Raleigh. Div. of Vocational Education.

    This manual is designed to involve both teachers and students in planning and controlling a safety system for technology education classrooms. The safety program involves students in the design and maintenance of the system by including them in the analysis of the classroom environment, job safety analysis, safety inspection, and machine safety…

  14. Corrosion behaviors and effects of corrosion products of plasma electrolytic oxidation coated AZ31 magnesium alloy under the salt spray corrosion test

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Huang, Zhiquan; Yan, Qin; Liu, Chen; Liu, Peng; Zhang, Yi; Guo, Changhong; Jiang, Guirong; Shen, Dejiu

    2016-08-01

    The effects of corrosion products on corrosion behaviors of AZ31 magnesium alloy with a plasma electrolytic oxidation (PEO) coating were investigated under the salt spray corrosion test (SSCT). The surface morphology, cross-sectional microstructure, chemical and phase compositions of the PEO coating were determined using scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction analysis (XRD), respectively. Further, the corrosion process of the samples under the SSCT was examined in a non-aqueous electrolyte (methanol) using electrochemical impedance spectroscopy (EIS) coupled with equivalent circuit. The results show that the inner layer of the coating was destroyed firstly and the corrosion products have significant effects on the corrosion behaviors of the coating. The results above are discussed and an electrochemical corrosion model is proposed in the paper.

  15. Implementation Procedure for STS Payloads, System Safety Requirements

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Guidelines and instructions for the implementation of the SP&R system safety requirements applicable to STS payloads are provided. The initial contact meeting with the payload organization and the subsequent safety reviews necessary to comply with the system safety requirements of the SP&R document are described. Waiver instructions are included for the cases in which a safety requirement cannot be met.

  16. Corrosion Behavior of Plasma-Passivated Cu

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbour, J.C.; Braithwaite, J.W.; Son, K.A.

    1999-07-09

    A new approach is being pursued to study corrosion in Cu alloy systems by using combinatorial analysis combined with microscopic experimentation (the Combinatorial Microlab) to determine mechanisms for copper corrosion in air. Corrosion studies are inherently difficult because of complex interactions between materials and environment, forming a multidimensional phase space of corrosion variables. The Combinatorial Microlab was specifically developed to address the mechanism of Cu sulfidation, which is an important reliability issue for electronic components. This approach differs from convention by focusing on microscopic length scales, the relevant scale for corrosion. During accelerated aging, copper is exposed to a varietymore » of corrosive environments containing sulfidizing species that cause corrosion. A matrix experiment was done to determine independent and synergistic effects of initial Cu oxide thickness and point defect density. The CuO{sub x} was controlled by oxidizing Cu in an electron cyclotron resonance (ECR) O{sub 2} plasma, and the point defect density was modified by Cu ion irradiation. The matrix was exposed to 600 ppb H{sub 2}S in 65% relative humidity air atmosphere. This combination revealed the importance of oxide quality in passivating Cu and prevention of the sulfidizing reaction. A native oxide and a defect-laden ECR oxide both react at 20 C to form a thick Cu{sub 2}S layer after exposure to H{sub 2}S, while different thicknesses of as-grown ECR oxide stop the formation of Cu{sub 2}S. The species present in the ECR oxide will be compared to that of an air oxide, and the sulfide layer growth rate will be presented.« less

  17. NASA aviation safety reporting system

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The human factors frequency considered a cause of or contributor to hazardous events onboard air carriers are examined with emphasis on distractions. Safety reports that have been analyzed, processed, and entered into the aviation safety reporting system data base are discussed. A sampling of alert bulletins and responses to them is also presented.

  18. Analysis of Aviation Safety Reporting System Incident Data Associated with the Technical Challenges of the System-Wide Safety and Assurance Technologies Project

    NASA Technical Reports Server (NTRS)

    Withrow, Colleen A.; Reveley, Mary S.

    2015-01-01

    The Aviation Safety Program (AvSP) System-Wide Safety and Assurance Technologies (SSAT) Project asked the AvSP Systems and Portfolio Analysis Team to identify SSAT-related trends. SSAT had four technical challenges: advance safety assurance to enable deployment of NextGen systems; automated discovery of precursors to aviation safety incidents; increasing safety of human-automation interaction by incorporating human performance, and prognostic algorithm design for safety assurance. This report reviews incident data from the NASA Aviation Safety Reporting System (ASRS) for system-component-failure- or-malfunction- (SCFM-) related and human-factor-related incidents for commercial or cargo air carriers (Part 121), commuter airlines (Part 135), and general aviation (Part 91). The data was analyzed by Federal Aviation Regulations (FAR) part, phase of flight, SCFM category, human factor category, and a variety of anomalies and results. There were 38 894 SCFM-related incidents and 83 478 human-factorrelated incidents analyzed between January 1993 and April 2011.

  19. 14 CFR 415.131 - Flight safety system crew data.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Flight safety system crew data. 415.131... Launch Vehicle From a Non-Federal Launch Site § 415.131 Flight safety system crew data. (a) An applicant's safety review document must identify each flight safety system crew position and the role of that...

  20. AGARD Corrosion Handbook. Volume 2. Aircraft Corrosion Control Documents: A Descriptive Catalogue

    DTIC Science & Technology

    1987-03-01

    sweelb other than recommending that the use of maraging steel bolts be prohibited. However, it does provide a very good overview of the corrosion problems...as corrosion resistant steels in this manual. The metallurgy and general corrosion behavior of these steels is discussed in AGARD Corrosio.t Handbook...specifically with the selection of corrosion resistapt steels is a recommendation for prohibiting the use of maraging steel bolts in uncontrolled

  1. Molten salt corrosion of SiC and Si3N4

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Smialek, James L.; Fox, Dennis S.

    1988-01-01

    Industrial systems such as heat engines and heat exchangers involve harsh environments. The structural materials are subjected to high temperatures as well as corrosive gases and condensed phases. Past experience with metal alloys has shown that these condensed phases can be particularly corrosive and are often the limiting factor in the operation of these systems. In a heat engine the most common condensed corrodent is Na2SO4 whereas in a heat exchanger an oxide slag may be present. The primary emphasis is on Na2SO4 induced corrosion, however, similarities and differences to oxide slag are also discussed. The extensive research on corrosion of metal alloys has led to understanding and controlling corrosion for these materials. Currently silicon based ceramics are prime candidates for the applications discussed. Therefore it is important to understand the effects of condensed phase deposits on this emerging class of high temperature materials. Both the thermodynamic and strength of the ceramic is also examined. Finally some control strategies for corrosion of silicon based ceramics are explored.

  2. Cushion System for Multi-Use Child Safety Seat

    NASA Technical Reports Server (NTRS)

    Dabney, Richard W. (Inventor); Elrod, Susan V. (Inventor)

    2007-01-01

    A cushion system for use with a child safety seat has a plurality of bladders assembled to form a seat cushion that cooperates with the seat's safety harness. One or more sensors coupled to the safety harness sense tension therein and generate a signal indicative of the tension. Each of the bladders is individually pressurized by a pressurization system to define a support configuration of the seat cushion. The pressurization system is disabled when tension in the safety harness has attained a threshold level.

  3. Cushion system for multi-use child safety seat

    NASA Technical Reports Server (NTRS)

    Elrod, Susan V. (Inventor); Dabney, Richard W. (Inventor)

    2007-01-01

    A cushion system for use with a child safety seat has a plurality of bladders assembled to form a seat cushion that cooperates with the seat's safety harness. One or more sensors coupled to the safety harness sense tension therein and generate a signal indicative of the tension. Each of the bladders is individually pressurized by a pressurization system to define a support configuration of the seat cushion. The pressurization system is disabled when tension in the safety harness has attained a threshold level.

  4. Corrosion of aluminium metal in OPC- and CAC-based cement matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinoshita, Hajime, E-mail: h.kinoshita@sheffield.ac.uk; Swift, Paul; Utton, Claire

    Corrosion of aluminium metal in ordinary Portland cement (OPC) based pastes produces hydrogen gas and expansive reaction products causing problems for the encapsulation of aluminium containing nuclear wastes. Although corrosion of aluminium in cements has been long known, the extent of aluminium corrosion in the cement matrices and effects of such reaction on the cement phases are not well established. The present study investigates the corrosion reaction of aluminium in OPC, OPC-blast furnace slag (BFS) and calcium aluminate cement (CAC) based systems. The total amount of aluminium able to corrode in an OPC and 4:1 BFS:OPC system was determined, andmore » the correlation between the amount of calcium hydroxide in the system and the reaction of aluminium obtained. It was also shown that a CAC-based system could offer a potential matrix to incorporate aluminium metal with a further reduction of pH by introduction of phosphate, producing a calcium phosphate cement.« less

  5. Ampule tests to simulate glass corrosion in ambient temperature lithium batteries. Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglas, S.C.; Bunker, B.C.; Crafts, C.C.

    1984-06-01

    Glass corrosion in battery headers has been found to limit the shelf life of ambient temperature lithium batteries. Glass corrosion can lead to loss of battery electrolytes or to shorts across the conductive corrosion product. Tests have been conducted which simulate the corrosive environment in a battery by sealing headers attached to lithium metal into Pyrex ampules containing battery electrolyte. Using the ampule test, glass corrosion kinetics have been determined at 70/sup 0/C for the Li/SO/sub 2/, Li/SOCl/sub 2/, and Li/SOCl/sub 2/ + BrCl battery systems. Test results indicate that corrosion of commercial glass compositions is extensive in all electrolytesmore » tested, resulting in predicted battery failures after several months. Sandia's TA-23 glass corrodes at a much slower rate, indicating a projected battery lifetime of over five years in the Li/SO/sub 2/ system. Test results reveal that corrosion kinetics are sensitive to header polarization, stress, and configuration as well as glass composition.« less

  6. TEST PLAN AND PROCEDURE FOR THE EXAMINATION OF TANK 241-AY-101 MULTI-PROBE CORROSION MONITORING SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WYRWAS RB; PAGE JS; COOKE GS

    This test plan describes the methods to be used in the forensic examination of the Multi-probe Corrosion Monitoring System (MPCMS) installed in the double-shell tank 241-AY-101 (AY-101). The probe was designed by Applied Research and Engineering Sciences (ARES) Corporation. The probe contains four sections, each of which can be removed from the tank independently (H-14-107634, AY-101 MPCMS Removable Probe Assembly) and one fixed center assembly. Each removable section contains three types of passive corrosion coupons: bar coupons, round coupons, and stressed C-rings (H-14-l07635, AY-101 MPCMS Details). Photographs and weights of each coupon were recorded and reported on drawing H-14-107634 andmore » in RPP-RPT-40629, 241-AY-101 MPCMS C-Ring Coupon Photographs. The coupons will be the subject of the forensic analyses. The purpose of this examination will be to document the nature and extent of corrosion of the 29 coupons. This documentation will consist of photographs and photomicrographs of the C-rings and round coupons, as well as the weights of the bar and round coupons during corrosion removal. The total weight loss of the cleaned coupons will be used in conjunction with the surface area of each to calculate corrosion rates in mils per year. The bar coupons were presumably placed to investigate the liquid-air-interface. An analysis of the waste level heights in the waste tank will be investigated as part of this examination.« less

  7. Local Food Systems Food Safety Concerns.

    PubMed

    Chapman, Benjamin; Gunter, Chris

    2018-04-01

    Foodborne disease causes an estimated 48 million illnesses and 3,000 deaths annually (Scallan E, et al., Emerg Infect Dis 17:7-15, 2011), with U.S. economic costs estimated at $152 billion to $1.4 trillion annually (Roberts T, Am J Agric Econ 89:1183-1188, 2007; Scharff RL, http://www.pewtrusts.org/en/research-and-analysis/reports/0001/01/01/healthrelated-costs-from-foodborne-illness-in-the-united-states, 2010). An increasing number of these illnesses are associated with fresh fruits and vegetables. An analysis of outbreaks from 1990 to 2003 found that 12% of outbreaks and 20% of outbreak-related illnesses were associated with produce (Klein S, Smith DeWaal CS, Center for Science in the Public Interest, https://cspinet.org/sites/default/files/attachment/ddreport.pdf, June 2008; Lynch M, Tauxe R, Hedberg C, Epidemiol Infect 137:307-315, 2009). These food safety problems have resulted in various stakeholders recommending the shift to a more preventative and risk-based food safety system. A modern risk-based food safety system takes a farm-to-fork preventative approach to food safety and relies on the proactive collection and analysis of data to better understand potential hazards and risk factors, to design and evaluate interventions, and to prioritize prevention efforts. Such a system focuses limited resources at the points in the food system with the likelihood of having greatest benefit to public health. As shared kitchens, food hubs, and local food systems such as community supported agriculture are becoming more prevalent throughout the United States, so are foodborne illness outbreaks at these locations. At these locations, many with limited resources, food safety methods of prevention are rarely the main focus. This lack of focus on food safety knowledge is why a growing number of foodborne illness outbreaks are occurring at these locations.

  8. Understanding patient safety performance and educational needs using the 'Safety-II' approach for complex systems.

    PubMed

    McNab, Duncan; Bowie, Paul; Morrison, Jill; Ross, Alastair

    2016-11-01

    Participation in projects to improve patient safety is a key component of general practice (GP) specialty training, appraisal and revalidation. Patient safety training priorities for GPs at all career stages are described in the Royal College of General Practitioners' curriculum. Current methods that are taught and employed to improve safety often use a 'find-and-fix' approach to identify components of a system (including humans) where performance could be improved. However, the complex interactions and inter-dependence between components in healthcare systems mean that cause and effect are not always linked in a predictable manner. The Safety-II approach has been proposed as a new way to understand how safety is achieved in complex systems that may improve quality and safety initiatives and enhance GP and trainee curriculum coverage. Safety-II aims to maximise the number of events with a successful outcome by exploring everyday work. Work-as-done often differs from work-as-imagined in protocols and guidelines and various ways to achieve success, dependent on work conditions, may be possible. Traditional approaches to improve the quality and safety of care often aim to constrain variability but understanding and managing variability may be a more beneficial approach. The application of a Safety-II approach to incident investigation, quality improvement projects, prospective analysis of risk in systems and performance indicators may offer improved insight into system performance leading to more effective change. The way forward may be to combine the Safety-II approach with 'traditional' methods to enhance patient safety training, outcomes and curriculum coverage.

  9. Elastomer-induced crevice corrosion and stress corrosion cracking of stainless steel heat exchanger plates in sour amine service

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hay, M.G.; Baron, J.J.; Moffat, T.A.

    1996-08-01

    Types S31600 and S31254 stainless steel heat exchanger plates have suffered crevice corrosion and stress corrosion cracking under gaskets in rich amine service in a sour gas plant. The gasket material, ethylene-propylene-diene monomer (EPDM), has been used successfully for many years at other sour gas plants. Laboratory testing has duplicated the corrosion observed and shown that the mechanism is synergistic sulfide-halide attack. The use of a bromine plus chlorine-activated curing system for the EPDM rubber gaskets provided the necessary halides. Laboratory testing identified some nickel-based superalloys which were resistant to this corrosion and also demonstrated that essentially halogen-free, peroxide-cured EPDMmore » gaskets do not cause attack of S31600 or S31254. The heat exchanger packs were replaced with S31600 plates and peroxide-cured EPDM gaskets having a specified total halogen concentration of 200 ppm maximum. Field operating experience has been excellent.« less

  10. Current techniques in acid-chloride corrosion control and monitoring at The Geysers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirtz, Paul; Buck, Cliff; Kunzman, Russell

    1991-01-01

    Acid chloride corrosion of geothermal well casings, production piping and power plant equipment has resulted in costly corrosion damage, frequent curtailments of power plants and the permanent shut-in of wells in certain areas of The Geysers. Techniques have been developed to mitigate these corrosion problems, allowing continued production of steam from high chloride wells with minimal impact on production and power generation facilities.The optimization of water and caustic steam scrubbing, steam/liquid separation and process fluid chemistry has led to effective and reliable corrosion mitigation systems currently in routine use at The Geysers. When properly operated, these systems can yield steammore » purities equal to or greater than those encountered in areas of The Geysers where chloride corrosion is not a problem. Developments in corrosion monitoring techniques, steam sampling and analytical methodologies for trace impurities, and computer modeling of the fluid chemistry has been instrumental in the success of this technology.« less

  11. Paint for detection of corrosion and warning of chemical and radiological attack

    DOEpatents

    Farmer, Joseph C [Tracy, CA

    2010-08-24

    A system for warning of corrosion, chemical, or radiological substances. The system comprises painting a surface with a paint or coating that includes an indicator material and monitoring the surface for indications of the corrosion, chemical, or radiological substances.

  12. Comparative Stress Corrosion Cracking and General Corrosion Resistance of Annealed and Hardened 440 C Stainless Steel - New Techniques in Stress Corrosion Testing

    NASA Technical Reports Server (NTRS)

    Mendreck, M. J.; Hurless, B. E.; Torres, P. D.; Danford, M. D.

    1998-01-01

    The corrosion and stress corrosion cracking (SCC) characteristics of annealed and hardened 440C stainless steel were evaluated in high humidity and 3.5-percent NaCl solution. Corrosion testing consisted of an evaluation of flat plates, with and without grease, in high humidity, as well as electrochemical testing in 3.5-percent NaCl. Stress corrosion testing consisted of conventional, constant strain, smooth bar testing in high humidity in addition to two relatively new techniques under evaluation at MSFC. These techniques involve either incremental or constant rate increases in the load applied to a precracked SE(B) specimen, monitoring the crack-opening-displacement response for indications of crack growth. The electrochemical corrosion testing demonstrated an order of magnitude greater general corrosion rate in the annealed 440C. All techniques for stress corrosion testing showed substantially better SCC resistance in the annealed material. The efficacy of the new techniques for stress corrosion testing was demonstrated both by the savings in time and the ability to better quantify SCC data.

  13. Ozone inhibits corrosion in cooling towers

    NASA Technical Reports Server (NTRS)

    French, K. R.; Howe, R. D.; Humphrey, M. F.

    1980-01-01

    Commercially available corona discharge ozone generator, fitted onto industrial cooling tower, significantly reduces formation of scales (calcium carbonate) and corrosion. System also controls growth of algae and other microorganisms. Modification lowers cost and improves life of cooling system.

  14. Corrosion-resistant metal surfaces

    DOEpatents

    Sugama, Toshifumi [Wading River, NY

    2009-03-24

    The present invention relates to metal surfaces having thereon an ultrathin (e.g., less than ten nanometer thickness) corrosion-resistant film, thereby rendering the metal surfaces corrosion-resistant. The corrosion-resistant film includes an at least partially crosslinked amido-functionalized silanol component in combination with rare-earth metal oxide nanoparticles. The invention also relates to methods for producing such corrosion-resistant films.

  15. NASA aviation safety reporting system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    During the third quarter of operation of the Aviation Safety Reporting System (ASRS), 1429 reports concerning aviation safety were received from pilots, air traffic controllers, and others in the national aviation system. Details of the administration and results of the program are discussed. The design and construction of the ASRS data base are briefly presented. Altitude deviations and potential aircraft conflicts associated with misunderstood clearances were studied and the results are discussed. Summary data regarding alert bulletins, examples of alert bulletins and responses to them, and a sample of deidentified ASRS reports are provided.

  16. Environmentally Friendly Corrosion Preventative Compounds for Ground Support Structures

    NASA Technical Reports Server (NTRS)

    Montgomery Eliza L.; Calle, Luz, Marina; Curran, Jerome P.; Kolody, Mark R.

    2013-01-01

    The need to use environmentally friendly technologies throughout future space-related launch programs prompted a study aimed at replacing current petroleum and solvent-based Corrosion Preventive Compounds (CPCs) with environmentally friendly alternatives. The work in this paper focused on the identification and evaluation of environmentally friendly CPCs for use in protecting flight hardware and ground support equipment from atmospheric corrosion. CPCs are used as temporary protective coatings and must survive in the aggressive coastal marine environment that exists throughout the Kennedy Space Center, Florida. The different protection behaviors of fifteen different oily film CPCs, both common petroleum-based and newer environmentally friendly types, were evaluated on various steel and aluminum substrates. CPC and substrate systems were subjected to atmospheric testing at the Kennedy Space Center's Beachside Atmospheric Corrosion Test Site, as well as cyclic accelerated corrosion testing. Each CPC also underwent physical characterization and launch-related compatibility testing. The results for the fifteen CPC systems are presented in this paper.

  17. Environmentally friendly corrosion preventive compounds for ground support structures

    NASA Astrophysics Data System (ADS)

    Montgomery, Eliza; Curran, Jerome; Calle, Luz Marina; Kolody, Mark

    The need to use environmentally friendly technologies throughout future space-related launch programs prompted a study aimed at replacing current petroleum and solvent-based corrosion preventive compounds (CPCs) with environmentally friendly alternatives. The work in this paper focused on the identification and evaluation of environmentally friendly CPCs for use in protecting flight hardware and ground support equipment from atmospheric corrosion. CPCs are used as temporary protective coatings and must survive in the aggressive coastal marine environment that exists throughout the Kennedy Space Center, Florida. The different protection behaviors of fifteen different oily film CPCs, both common petroleum-based and newer environmentally friendly types, were evaluated on various steel and aluminum substrates. CPC and substrate systems were subjected to atmospheric testing at the Kennedy Space Center's Beachside Atmospheric Corrosion Test Site, as well as cyclic accelerated corrosion testing. Each CPC also underwent physical characterization and launch-related compatibility testing. The results for the fifteen CPC systems are presented in this paper.

  18. Application of Terahertz Radiation to the Detection of Corrosion Under the Shuttle's Thermal Protection System

    NASA Astrophysics Data System (ADS)

    Madaras, Eric I.; Anastasi, Robert F.; Smith, Stephen W.; Seebo, Jeffrey P.; Walker, James L.; Lomness, Janice K.; Hintze, Paul E.; Kammerer, Catherine C.; Winfree, William P.; Russell, Richard W.

    2008-02-01

    There is currently no method for detecting corrosion under Shuttle tiles except for the expensive process of tile removal and replacement; hence NASA is investigating new NDE methods for detecting hidden corrosion. Time domain terahertz radiation has been applied to corrosion detection under tiles in samples ranging from small lab samples to a Shuttle with positive results. Terahertz imaging methods have been able to detect corrosion at thicknesses of 5 mils or greater under 1" thick Shuttle tiles and 7-12 mils or greater under 2" thick Shuttle tiles.

  19. Application of Terahertz Radiation to the Detection of Corrosion under the Shuttle's Thermal Protection System

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.; Anastasi, Robert F.; Smith, Stephen W.; Seebo, Jeffrey P.; Walker, James L.; Lomness, Janice K.; Hintze, Paul E.; Kammerer, Catherine C.; Winfree, William P.; Russell, Richard W.

    2007-01-01

    There is currently no method for detecting corrosion under Shuttle tiles except for the expensive process of tile removal and replacement; hence NASA is investigating new NDE methods for detecting hidden corrosion. Time domain terahertz radiation has been applied to corrosion detection under tiles in samples ranging from small lab samples to a Shuttle with positive results. Terahertz imaging methods have been able to detect corrosion at thicknesses of 5 mils or greater under 1" thick Shuttle tiles and 7-12 mils or greater under 2" thick Shuttle tiles.

  20. System Safety in an IT Service Organization

    NASA Astrophysics Data System (ADS)

    Parsons, Mike; Scutt, Simon

    Within Logica UK, over 30 IT service projects are considered safetyrelated. These include operational IT services for airports, railway infrastructure asset management, nationwide radiation monitoring and hospital medical records services. A recent internal audit examined the processes and documents used to manage system safety on these services and made a series of recommendations for improvement. This paper looks at the changes and the challenges to introducing them, especially where the service is provided by multiple units supporting both safety and non-safety related services from multiple locations around the world. The recommendations include improvements to service agreements, improved process definitions, routine safety assessment of changes, enhanced call logging, improved staff competency and training, and increased safety awareness. Progress is reported as of today, together with a road map for implementation of the improvements to the service safety management system. A proposal for service assurance levels (SALs) is discussed as a way forward to cover the wide variety of services and associated safety risks.

  1. Aviation Safety Reporting System: Process and Procedures

    NASA Technical Reports Server (NTRS)

    Connell, Linda J.

    1997-01-01

    The Aviation Safety Reporting System (ASRS) was established in 1976 under an agreement between the Federal Aviation Administration (FAA) and the National Aeronautics and Space Administration (NASA). This cooperative safety program invites pilots, air traffic controllers, flight attendants, maintenance personnel, and others to voluntarily report to NASA any aviation incident or safety hazard. The FAA provides most of the program funding. NASA administers the program, sets its policies in consultation with the FAA and aviation community, and receives the reports submitted to the program. The FAA offers those who use the ASRS program two important reporting guarantees: confidentiality and limited immunity. Reports sent to ASRS are held in strict confidence. More than 350,000 reports have been submitted since the program's beginning without a single reporter's identity being revealed. ASRS removes all personal names and other potentially identifying information before entering reports into its database. This system is a very successful, proof-of-concept for gathering safety data in order to provide timely information about safety issues. The ASRS information is crucial to aviation safety efforts both nationally and internationally. It can be utilized as the first step in safety by providing the direction and content to informed policies, procedures, and research, especially human factors. The ASRS process and procedures will be presented as one model of safety reporting feedback systems.

  2. COPPER CORROSION RESEARCH UPDATE

    EPA Science Inventory

    Copper release and corrosion related issues continue to be important to many water systems. The objective of this presentation is to discuss the current state of copper research at the USEPA. Specifically, the role of aging on copper release, use of phosphates for copper corrosio...

  3. Active corrosion protection performance of an epoxy coating applied on the mild steel modified with an eco-friendly sol-gel film impregnated with green corrosion inhibitor loaded nanocontainers

    NASA Astrophysics Data System (ADS)

    Izadi, M.; Shahrabi, T.; Ramezanzadeh, B.

    2018-05-01

    In this study the corrosion resistance, active protection, and cathodic disbonding performance of an epoxy coating were improved through surface modification of steel by a hybrid sol-gel system filled with green corrosion inhibitors loaded nanocontainer as intermediate layer on mild steel substrate. The green inhibitor loaded nanocontainers (GIN) were used to induce active inhibition performance in the protective coating system. The corrosion protection performance of the coated panels was investigated by electrochemical impedance spectroscopy (EIS), salt spray, and cathodic disbonding tests. It was observed that the corrosion inhibition performance of the coated mild steel panels was significantly improved by utilization of active multilayer coating system. The inhibitor release from nanocontainers at the epoxy-silane film/steel interface resulted in the anodic and cathodic reactions restriction, leading to the lower coating delamination from the substrate and corrosion products progress. Also, the active inhibition performance of the coating system was approved by electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), and energy dispersive X-ray (EDS) analysis on the panels with artificial defects. The inhibitive agents were released to the scratch region and blocked the active sites on the metal surface.

  4. Integrated therapy safety management system

    PubMed Central

    Podtschaske, Beatrice; Fuchs, Daniela; Friesdorf, Wolfgang

    2013-01-01

    Aims The aim is to demonstrate the benefit of the medico-ergonomic approach for the redesign of clinical work systems. Based on the six layer model, a concept for an ‘integrated therapy safety management’ is drafted. This concept could serve as a basis to improve resilience. Methods The concept is developed through a concept-based approach. The state of the art of safety and complexity research in human factors and ergonomics forms the basis. The findings are synthesized to a concept for ‘integrated therapy safety management’. The concept is applied by way of example for the ‘medication process’ to demonstrate its practical implementation. Results The ‘integrated therapy safety management’ is drafted in accordance with the six layer model. This model supports a detailed description of specific work tasks, the corresponding responsibilities and related workflows at different layers by using the concept of ‘bridge managers’. ‘Bridge managers’ anticipate potential errors and monitor the controlled system continuously. If disruptions or disturbances occur, they respond with corrective actions which ensure that no harm results and they initiate preventive measures for future procedures. The concept demonstrates that in a complex work system, the human factor is the key element and final authority to cope with the residual complexity. The expertise of the ‘bridge managers’ and the recursive hierarchical structure results in highly adaptive clinical work systems and increases their resilience. Conclusions The medico-ergonomic approach is a highly promising way of coping with two complexities. It offers a systematic framework for comprehensive analyses of clinical work systems and promotes interdisciplinary collaboration. PMID:24007448

  5. Role of calcium-depositing bacteria Agrobacterium tumefaciens and its influence on corrosion of different engineering metals used in cooling water system.

    PubMed

    Narenkumar, Jayaraman; Sathishkumar, Kuppusamy; Selvi, Adikesavan; Gobinath, Rajagopalan; Murugan, Kadarkarai; Rajasekar, Aruliah

    2017-12-01

    The present investigation deals with the role of calcium-depositing bacterial community on corrosion of various engineering metals, namely, brass alloy (BS), copper (Cu), stainless steel (SS) and mild steel (MS). Based on the corrosion behavior, Agrobacterium tumefaciens EN13, an aerobic bacterium is identified as calcium-depositing bacteria on engineering metals. The results of the study are supported with biochemical characterization, 16S rRNA gene sequencing, calcium quantification, weight loss, electrochemical (impedance and polarization) and surface analysis (XRD and FTIR) studies. The calcium quantification study showed carbonate precipitation in abiotic system/biotic system as 50 and 700 ppm, respectively. FTIR results too confirmed the accumulation of calcium deposits from the environment on the metal surface by EN13. Electrochemical studies too supported the corrosion mechanism by showing a significant increase in the charge transfer resistance ( R ct ) of abiotic system (44, 33.6, 45, 29.6 Ω cm 2 ) than compared to biotic system (41, 10.1 29 and 25 Ω cm 2 ). Hence, the outcome of the present study confirmed the enhanced bioaccumulation behavior of calcium by the strain, EN13.

  6. Review of recent developments in the field of magnesium corrosion: Recent developments in Mg corrosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atrens, Andrej; Song, Guang -Ling; Liu, Ming

    2015-01-07

    This paper provides a review of recent developments in the field of Mg corrosion and puts those into context. This includes considerations of corrosion manifestations, material influences, surface treatment, anodization, coatings, inhibition, biodegradable medical applications, stress corrosion cracking, flammability, corrosion mechanisms for HP Mg, critical evaluation of corrosion mechanisms, and concluding remarks. There has been much research recently, and much research continues in this area. In conclusion, this is expected to produce significantly better, more-corrosion-resistant Mg alloys.

  7. Corrosion-resistant multilayer structures with improved reflectivity

    DOEpatents

    Soufli, Regina; Fernandez-Perea, Monica; Robinson, Jeff C.

    2013-04-09

    In one general embodiment, a thin film structure includes a substrate; a first corrosion barrier layer above the substrate; a reflective layer above the first corrosion barrier layer, wherein the reflective layer comprises at least one repeating set of sub-layers, wherein one of the sub-layers of each set of sub-layers being of a corrodible material; and a second corrosion barrier layer above the reflective layer. In another general embodiment, a system includes an optical element having a thin film structure as recited above; and an image capture or spectrometer device. In a further general embodiment, a laser according to one embodiment includes a light source and the thin film structure as recited above.

  8. SRB seawater corrosion project

    NASA Technical Reports Server (NTRS)

    Bozack, M. J.

    1991-01-01

    The corrosion behavior of 2219 aluminum when exposed to seawater was characterized. Controlled corrosion experiments at three different temperatures (30, 60 and 100 C) and two different environments (seawater and 3.5 percent salt solution) were designed to elucidate the initial stages in the corrosion process. It was found that 2219 aluminum is an active catalytic surface for growth of Al2O3, NaCl, and MgO. Formation of Al2O3 is favored at lower temperatures, while MgO is favored at higher temperatures. Visible corrosion products are formed within 30 minutes after seawater exposure. Corrosion characteristics in 3.5 percent salt solution are different than corrosion in seawater. Techniques utilized were: (1) scanning electron microscopy, (2) energy dispersive x-ray spectroscopy, and (3) Auger electron spectroscopy.

  9. A novel capacitance sensor for fireside corrosion measurement.

    PubMed

    Ban, Heng; Li, Zuoping

    2009-11-01

    Fireside corrosion in coal-fired power plants is a leading mechanism for boiler tube failures. Online monitoring of fireside corrosion can provide timely data to plant operators for mitigation implementation. This paper presents a novel sensor concept for measuring metal loss based on electrical capacitance. Laboratory-scale experiments demonstrated the feasibility of design, fabrication, and operation of the sensor. The fabrication of the prototype sensor involved sputtering deposition of a thin metal coating with varying thickness on a ceramic substrate. Corrosion metal loss resulted in a proportional decrease in electrical capacitance of the sensor. Laboratory experiments using a muffle furnace with an oxidation environment demonstrated that low carbon steel coatings on ceramic substrate survived cyclic temperatures over 500 degrees C. Measured corrosion rates of sputtered coating in air had an Arrhenius exponential dependence on temperature, with metal thickness loss ranging from 2.0 nm/h at 200 degrees C to 2.0 microm/h at 400 degrees C. Uncertainty analysis indicated that the overall measurement uncertainty was within 4%. The experimental system showed high signal-to-noise ratio, and the sensor could measure submicrometer metal thickness changes. The laboratory experiments demonstrated that the sensor concept and measurement system are capable of short term, online monitoring of metal loss, indicating the potential for the sensor to be used for fireside corrosion monitoring and other metal loss measurement.

  10. A novel capacitance sensor for fireside corrosion measurement

    NASA Astrophysics Data System (ADS)

    Ban, Heng; Li, Zuoping

    2009-11-01

    Fireside corrosion in coal-fired power plants is a leading mechanism for boiler tube failures. Online monitoring of fireside corrosion can provide timely data to plant operators for mitigation implementation. This paper presents a novel sensor concept for measuring metal loss based on electrical capacitance. Laboratory-scale experiments demonstrated the feasibility of design, fabrication, and operation of the sensor. The fabrication of the prototype sensor involved sputtering deposition of a thin metal coating with varying thickness on a ceramic substrate. Corrosion metal loss resulted in a proportional decrease in electrical capacitance of the sensor. Laboratory experiments using a muffle furnace with an oxidation environment demonstrated that low carbon steel coatings on ceramic substrate survived cyclic temperatures over 500 °C. Measured corrosion rates of sputtered coating in air had an Arrhenius exponential dependence on temperature, with metal thickness loss ranging from 2.0 nm/h at 200 °C to 2.0 μm/h at 400 °C. Uncertainty analysis indicated that the overall measurement uncertainty was within 4%. The experimental system showed high signal-to-noise ratio, and the sensor could measure submicrometer metal thickness changes. The laboratory experiments demonstrated that the sensor concept and measurement system are capable of short term, online monitoring of metal loss, indicating the potential for the sensor to be used for fireside corrosion monitoring and other metal loss measurement.

  11. Revised fire safety system cuts emergency response time.

    PubMed

    Keir, D C

    1979-03-01

    As Margaret R. Pardee Memorial Hospital, Hendersonville, NC. expanded, fire safety plans had to be reevaluated. With each new addition, fire safety responsibilities for hospital personnel multiplied and overlapped. Confusion resulted, and a revised, simplified, and coordinated fire safety system was devised. Seventeen false alarms within one year, caused by a faulty sprinkler system, gave hospital personnel ample opportunity to test the system and iron out unexpected problems.

  12. Nano-engineering of superhydrophobic aluminum surfaces for anti-corrosion

    NASA Astrophysics Data System (ADS)

    Jeong, Chanyoung

    Metal corrosion is a serious problem, both economically and operationally, for engineering systems such as aircraft, automobiles, pipelines, and naval vessels. In such engineering systems, aluminum is one of the primary materials of construction due to its light weight compared to steel and good general corrosion resistance. However, because of aluminum's relatively lower resistance to corrosion in salt water environments, protective measures such as thick coatings, paints, or cathodic protection must be used for satisfactory service life. Unfortunately, such anti-corrosion methods can create other concerns, such as environmental contamination, protection durability, and negative impact on hydrodynamic efficiency. Recently, a novel approach to preventing metal corrosion has emerged, using superhydrophobic surfaces. Superhydrophobic surfaces create a composite interface to liquid by retaining air within the surface structures, thus minimizing the direct contact of the liquid environment to the metal surface. The result is a highly non-wetting and anti-adherent surface that can offer other benefits such as biofouling resistance and hydrodynamic low friction. Prior research with superhydrophobic surfaces for corrosion applications was based on irregular surface roughening and/or chemical coatings, which resulted in random surface features, mostly on the micrometer scale. Such microscale surface roughness with poor controllability of structural dimensions and shapes has been a critical limitation to deeper understanding of the anti-corrosive effectiveness and optimized application of this approach. The research reported here provides a novel approach to producing controlled superhydrophobic nanostructures on aluminum that allows a systematic investigation of the superhydrophobic surface parameters on the corrosion resistance and hence can provide a route to optimization of the surface. Electrochemical anodization is used to controllably modulate the oxide layer

  13. Striving for safety: communicating and deciding in sociotechnical systems

    PubMed Central

    Flach, John M.; Carroll, John S.; Dainoff, Marvin J.; Hamilton, W. Ian

    2015-01-01

    How do communications and decisions impact the safety of sociotechnical systems? This paper frames this question in the context of a dynamic system of nested sub-systems. Communications are related to the construct of observability (i.e. how components integrate information to assess the state with respect to local and global constraints). Decisions are related to the construct of controllability (i.e. how component sub-systems act to meet local and global safety goals). The safety dynamics of sociotechnical systems are evaluated as a function of the coupling between observability and controllability across multiple closed-loop components. Two very different domains (nuclear power and the limited service food industry) provide examples to illustrate how this framework might be applied. While the dynamical systems framework does not offer simple prescriptions for achieving safety, it does provide guides for exploring specific systems to consider the potential fit between organisational structures and work demands, and for generalising across different systems regarding how safety can be managed. Practitioner Summary: While offering no simple prescriptions about how to achieve safety in sociotechnical systems, this paper develops a theoretical framework based on dynamical systems theory as a practical guide for generalising from basic research to work domains and for generalising across alternative work domains to better understand how patterns of communication and decision-making impact system safety. PMID:25761155

  14. Corrosion of Nickel-Based Alloys in Ultra-High Temperature Heat Transfer Fluid

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Reddy, Ramana G.

    2017-03-01

    MgCl2-KCl binary system has been proposed to be used as high temperature reactor coolant. Due to its relatively low melting point, good heat capacity and excellent thermal stability, this system can also be used in high operation temperature concentrating solar power generation system as heat transfer fluid (HTF). The corrosion behaviors of nickel based alloys in MgCl2-KCl molten salt system at 1,000 °C were determined based on long-term isothermal dipping test. After 500 h exposure tests under strictly maintained high purity argon gas atmosphere, the weight loss and corrosion rate analysis were conducted. Among all the tested samples, Ni-201 demonstrated the lowest corrosion rate due to the excellent resistance of Ni to high temperature element dissolution. Detailed surface topography and corrosion mechanisms were also determined by using scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS).

  15. PREDICTING LEAD DISSOLUTION IN DRINKING WATER DISTRIBUTION SYSTEMS: EFFECT OF FLUORIDE ADDITIVES ON LEAD SOLUBILITY AND CORROSION

    EPA Science Inventory

    Many water systems have encountered difficulties in meeting the action levels established by the Lead and Copper Rule. Several chemical parameters contribute to the corrosion of lead plumbing and may influence the nature of the passivating films formed on distribution materials....

  16. Identifying behaviour patterns of construction safety using system archetypes.

    PubMed

    Guo, Brian H W; Yiu, Tak Wing; González, Vicente A

    2015-07-01

    Construction safety management involves complex issues (e.g., different trades, multi-organizational project structure, constantly changing work environment, and transient workforce). Systems thinking is widely considered as an effective approach to understanding and managing the complexity. This paper aims to better understand dynamic complexity of construction safety management by exploring archetypes of construction safety. To achieve this, this paper adopted the ground theory method (GTM) and 22 interviews were conducted with participants in various positions (government safety inspector, client, health and safety manager, safety consultant, safety auditor, and safety researcher). Eight archetypes were emerged from the collected data: (1) safety regulations, (2) incentive programs, (3) procurement and safety, (4) safety management in small businesses (5) production and safety, (6) workers' conflicting goals, (7) blame on workers, and (8) reactive and proactive learning. These archetypes capture the interactions between a wide range of factors within various hierarchical levels and subsystems. As a free-standing tool, they advance the understanding of dynamic complexity of construction safety management and provide systemic insights into dealing with the complexity. They also can facilitate system dynamics modelling of construction safety process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Effectiveness of oil-soluble corrosion inhibitors during corrosion-mechanical breakdown in acid and neutral media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kardash, N.V.; Egorov, V.V.; Forman, A.Y.

    1986-11-01

    The purpose of the present study is to ascertain the effectiveness of familiar additives and oil-soluble inhibitors under conditions of acid corrosion in comparison with their rapid action and waterreplacement efficiency, and the capacity to inhibit an electrolyte that forms in the oils, to protect against electrochemical corrosion, especially from pitting, and to reduce the mechanical-corrosion forms of wear. Characteristics of several oil-soluble corrosion inhibitors and the effectiveness of the oil-soluble inhibitors are shown. The additives M, ALOP, and MONIKA are most effective under fretting-corrosion conditions. It is shown that only the combined additives and compositions that provide for metalmore » protection in both acid and neutral media are sufficiently effective in preventing corrosion cracking, fatigue, corrosion fatigue and corrosion fretting.« less

  18. Super-Hydrophobic Green Corrosion Inhibitor On Carbon Steel

    NASA Astrophysics Data System (ADS)

    Hassan, H.; Ismail, A.; Ahmad, S.; Soon, C. F.

    2017-06-01

    There are many examples of organic coatings used for corrosion protection. In particular, hydrophobic and super-hydrophobic coatings are shown to give good protection because of their enhanced ability to slow down transport of water and ions through the coating. The purpose of this research is to develop water repellent coating to avoid direct contact between metal and environment corrosive and mitigate corrosion attack at pipeline system. This water repellent characteristic on super-hydrophobic coating was coated by electrodeposition method. Wettability of carbon steel with super-hydrophobic coating (cerium chloride and myristic acid) and oxidized surface was investigated through contact angle and inhibitor performance test. The inhibitor performance was studied in 25% tannin acid corrosion test at 30°C and 3.5% sodium chloride (NaCl). The water contact angle test was determined by placing a 4-μL water droplet of distilled water. It shows that the wettability of contact angle super-hydrophobic with an angle of 151.60° at zero minute can be classified as super-hydrophobic characteristic. By added tannin acid as inhibitor the corrosion protection on carbon steel becomes more consistent. This reveals that the ability of the coating to withstand with the corrosion attack in the seawater at different period of immersions. The results elucidate that the weight loss increased as the time of exposure increased. However, the corrosion rates for uncoated carbon steel is high compared to coated carbon steel. As a conclusion, from both samples it can be seen that the coated carbon steel has less corrosion rated compared to uncoated carbon steel and addition of inhibitor to the seawater provides more protection to resist corrosion attack on carbon steel.

  19. Corrosion detector apparatus for universal assessment of pollution in data centers

    DOEpatents

    Hamann, Hendrik F.; Klein, Levente I.

    2015-08-18

    A compact corrosion measurement apparatus and system includes an air fan, a corrosion sensor, a temperature sensor, a humidity sensor, a heater element, and an air flow sensor all under control to monitor and maintain constant air parameters in an environment and minimize environmental fluctuations around the corrosion sensor to overcome the variation commonly encountered in corrosion rate measurement. The corrosion measurement apparatus includes a structure providing an enclosure within which are located the sensors. Constant air flow and temperature is maintained within the enclosure where the corrosion sensor is located by integrating a variable speed air fan and a heater with the corresponding feedback loop control. Temperature and air flow control loops ensure that corrosivity is measured under similar conditions in different facilities offering a general reference point that allow a one to one comparison between facilities with similar or different pollution levels.

  20. Potential corrosivity of untreated groundwater in the United States

    USGS Publications Warehouse

    Belitz, Kenneth; Jurgens, Bryant C.; Johnson, Tyler D.

    2016-07-12

    Corrosive groundwater, if untreated, can dissolve lead and other metals from pipes and other components in water distribution systems. Two indicators of potential corrosivity—the Langelier Saturation Index (LSI) and the Potential to Promote Galvanic Corrosion (PPGC)—were used to identify which areas in the United States might be more susceptible to elevated concentrations of metals in household drinking water and which areas might be less susceptible. On the basis of the LSI, about one-third of the samples collected from about 21,000 groundwater sites are classified as potentially corrosive. On the basis of the PPGC, about two-thirds of the samples collected from about 27,000 groundwater sites are classified as moderate PPGC, and about one-tenth as high PPGC. Potentially corrosive groundwater occurs in all 50 states and the District of Columbia.National maps have been prepared to identify the occurrence of potentially corrosive groundwater in the 50 states and the District of Columbia. Eleven states and the District of Columbia were classified as having a very high prevalence of potentially corrosive groundwater, 14 states as having a high prevalence of potentially corrosive groundwater, 19 states as having a moderate prevalence of potentially corrosive groundwater, and 6 states as having a low prevalence of potentially corrosive groundwater. These findings have the greatest implication for people dependent on untreated groundwater for drinking water, such as the 44 million people that are self-supplied and depend on domestic wells or springs for their water supply.

  1. The corrosion mechanisms for primer coated 2219-T87 aluminum

    NASA Technical Reports Server (NTRS)

    Danford, Merlin D.; Knockemus, Ward W.

    1987-01-01

    To investigate metal surface corrosion and the breakdown of metal protective coatings, the ac Impedance Method was applied to zinc chromate primer coated 2219-T87 aluminum. The EG&GPARC Model 368 ac Impedance Measurement System, along with dc measurements with the same system using the Polarization Resistance Method, was used to monitor changing properties of coated aluminum disks immersed in 3.5 percent NaCl solutions buffered at pH 5.5 and pH 8.2 over periods of 40 days each. The corrosion system can be represented by an electronic analog called an equivalent circuit consisting of resistors and capacitors in specific arrangements. This equivalent circuit parallels the impedance behavior of the corrosion system during a frequency scan. Values for resistances and capacitances, that can be assigned in the equivalent circuit following a least squares analysis of the data, describe changes occurring on the corroding metal surface and in the protective coatings. A suitable equivalent circuit has been determined which predicts the correct Bode phase and magnitude for the experimental sample. The dc corrosion current density data are related to equivalent circuit element parameters.

  2. Effect of Pseudomonas fluorescens on Buried Steel Pipeline Corrosion.

    PubMed

    Spark, Amy J; Law, David W; Ward, Liam P; Cole, Ivan S; Best, Adam S

    2017-08-01

    Buried steel infrastructure can be a source of iron ions for bacterial species, leading to microbiologically influenced corrosion (MIC). Localized corrosion of pipelines due to MIC is one of the key failure mechanisms of buried steel pipelines. In order to better understand the mechanisms of localized corrosion in soil, semisolid agar has been developed as an analogue for soil. Here, Pseudomonas fluorescens has been introduced to the system to understand how bacteria interact with steel. Through electrochemical testing including open circuit potentials, potentiodynamic scans, anodic potential holds, and electrochemical impedance spectroscopy it has been shown that P. fluorescens increases the rate of corrosion. Time for oxide and biofilms to develop was shown to not impact on the rate of corrosion but did alter the consistency of biofilm present and the viability of P. fluorescens following electrochemical testing. The proposed mechanism for increased corrosion rates of carbon steel involves the interactions of pyoverdine with the steel, preventing the formation of a cohesive passive layer, after initial cell attachment, followed by the formation of a metal concentration gradient on the steel surface.

  3. Safety Management Systems.

    ERIC Educational Resources Information Center

    Fido, A. T.; Wood, D. O.

    This document discusses the issues that need to be considered by the education and training system as it responds to the changing needs of industry in Great Britain. Following a general introduction, the development of quality management ideas is traced. The underlying principles of safety and risk management are clarified and the implications of…

  4. 46 CFR 62.25-15 - Safety control systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Safety control systems. 62.25-15 Section 62.25-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING VITAL SYSTEM AUTOMATION General Requirements for All Automated Vital Systems § 62.25-15 Safety control systems. (a...

  5. The Corrosion and Corrosion Fatigue Behavior of Nickel Based Alloy Weld Overlay and Coextruded Claddings

    NASA Astrophysics Data System (ADS)

    Stockdale, Andrew

    The use of low NOx boilers in coal fired power plants has resulted in sulfidizing corrosive conditions within the boilers and a reduction in the service lifetime of the waterwall tubes. As a solution to this problem, Ni-based weld overlays are used to provide the necessary corrosion resistance however; they are susceptible to corrosion fatigue. There are several metallurgical factors which give rise to corrosion fatigue that are associated with the localized melting and solidification of the weld overlay process. Coextruded coatings offer the potential for improved corrosion fatigue resistance since coextrusion is a solid state coating process. The corrosion and corrosion fatigue behavior of alloy 622 weld overlays and coextruded claddings was investigated using a Gleeble thermo-mechanical simulator retrofitted with a retort. The experiments were conducted at a constant temperature of 600°C using a simulated combustion gas of N2-10%CO-5%CO2-0.12%H 2S. An alternating stress profile was used with a minimum tensile stress of 0 MPa and a maximum tensile stress of 300 MPa (ten minute fatigue cycles). The results have demonstrated that the Gleeble can be used to successfully simulate the known corrosion fatigue cracking mechanism of Ni-based weld overlays in service. Multilayer corrosion scales developed on each of the claddings that consisted of inner and outer corrosion layers. The scales formed by the outward diffusion of cations and the inward diffusion of sulfur and oxygen anions. The corrosion fatigue behavior was influenced by the surface finish and the crack interactions. The initiation of a large number of corrosion fatigue cracks was not necessarily detrimental to the corrosion fatigue resistance. Finally, the as-received coextruded cladding exhibited the best corrosion fatigue resistance.

  6. Electrochemical corrosion studies

    NASA Technical Reports Server (NTRS)

    Knockemus, W. W.

    1986-01-01

    The objective was to gain familiarity with the Model 350 Corrosion Measurement Console, to determine if metal protection by grease coatings can be measured by the polarization-resistance method, and to compare corrosion rates of 4130 steel coated with various greases. Results show that grease protection of steel may be determined electrochemically. Studies were also conducted to determine the effectiveness of certain corrosion inhibitors on aluminum and steel.

  7. Army Corrosion Prevention and Control (CPC) Program for Facilities and Infrastructure

    DTIC Science & Technology

    2010-02-01

    FY2009 - 2011 • Benefits: Reduced corrosion due to elimination of metallic rebar , reduced weight equates to reduced dead load and increased dynamic...Decks as Replacement for Steel Reinforced Concrete Decks F09AR04: Corrosion Resistant Roofs with Integrated Sustainable PV Power Systems • Where...Army Corrosion Prevention and Control (CPC) Program for Facilities and Infrastructure Dr. Craig E. College Deputy Assistant Chief of Staff for

  8. 33 CFR 96.220 - What makes up a safety management system?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SECURITY VESSEL OPERATING REGULATIONS RULES FOR THE SAFE OPERATION OF VESSELS AND SAFETY MANAGEMENT SYSTEMS Company and Vessel Safety Management Systems § 96.220 What makes up a safety management system? (a) The safety management system must document the responsible person's— (1) Safety and pollution prevention...

  9. Characterization of Encapsulated Corrosion Inhibitors Containing Microparticles for Environmentally Friendly Smart Coatings

    NASA Technical Reports Server (NTRS)

    Pearman, Benjamin Pieter; Calle, Luz M.

    2015-01-01

    This poster presents the results obtained from experiments designed to evaluate the release properties, as well as the corrosion inhibition effectiveness, of several encapsulated corrosion inhibitors. Microencapsulation has been used in the development of environmentally friendly multifunctional smart coatings. This technique enables the incorporation of autonomous corrosion detection, inhibition and self-healing functionalities into many commercially available coating systems. Select environmentally friendly corrosion inhibitors were encapsulated in organic and inorganic pH-sensitive microparticles and their release in basic solutions was studied. The release rate results showed that the encapsulation can be tailored from fast, for immediate corrosion protection, to slow, which will provide continued long-term corrosion protection. The incorporation of several corrosion inhibitor release profiles into a coating provides effective corrosion protection properties. To investigate the corrosion inhibition efficiency of the encapsulated inhibitors, electrochemical techniques were used to obtain corrosion potential, polarization curve and polarization resistance data. These measurements were performed using the free as well as the encapsulated inhibitors singly or in combinations. Results from these electrochemical tests will be compared to those obtained from weight loss and other accelerated corrosion experiments.

  10. Nuclear Repository steel canister: experimental corrosion rates

    NASA Astrophysics Data System (ADS)

    Caporuscio, F.; Norskog, K.

    2017-12-01

    The U.S. Spent Fuel & Waste Science & Technology campaign evaluates various generic geological repositories for the disposal of spent nuclear fuel. This experimental work analyzed and characterized the canister corrosion and steel interface mineralogy of bentonite-based EBS 304 stainless steel (SS), 316 SS, and low-carbon steel coupons in brine at higher heat loads and pressures. Experiments contrasted EBS with and without an argillite wall rock. Unprocessed bentonite from Colony, Wyoming simulated the clay buffer and Opalinus Clay represented the wall rock. Redox conditions were buffered at the magnetite-iron oxygen fugacity univariant curve. A K-Na-Ca-Cl-based brine was chosen to replicate generic granitic groundwater compositions, while Opalinous Clay groundwater was used in the wall rock series of experiments. Most experiments were run at 150 bar and 300°C for 4 to 6 weeks and one was held at elevated conditions for 6 months. The two major experimental mixtures were 1) brine-bentonite clay- steel, and 2) brine-bentonite clay-Opalinus Clay-steel. Both systems were equilibrated at a high liquid/clay ratio. Mineralogy and aqueous geochemistry of each experiment were evaluated to monitor the reactions that took place. In total 4291 measurements were obtained: 2500 measured steel corrosion depths and 1791 were of phyllosilicate mineral reactions/growths at the interface. The low carbon steel corrosion mechanism was via pit corrosion, while 304 SS and 316 SS were by general corrosion. The low carbon steel corrosion rate (1.95 μm/day) was most rapid. The 304 SS corrosion rate (0.37 μm/day) was slightly accelerated versus the 316 SS corrosion rate (0.26 μm/day). Note that the six month 316 SS experiment shows inhibited corrosion rates (0.07 μm/day). This may be in part due to mantling by the Fe-saponite/chlorite authigenic minerals. All phyllosilicate growth rates at the interface exhibit similar growth rate patterns to the steels (i.e. LCS>304>316> 316 six month).

  11. Performance Analysis of Retrofitted Tribo-Corrosion Test Rig for Monitoring In Situ Oil Conditions.

    PubMed

    Siddaiah, Arpith; Khan, Zulfiqar Ahmad; Ramachandran, Rahul; Menezes, Pradeep L

    2017-09-28

    Oils and lubricants, once extracted after use from a mechanical system, can hardly be reused, and should be refurbished or replaced in most applications. New methods of in situ oil and lubricant efficiency monitoring systems have been introduced for a wide variety of mechanical systems, such as automobiles, aerospace aircrafts, ships, offshore wind turbines, and deep sea oil drilling rigs. These methods utilize electronic sensors to monitor the "byproduct effects" in a mechanical system that are not indicative of the actual remaining lifecycle and reliability of the oils. A reliable oil monitoring system should be able to monitor the wear rate and the corrosion rate of the tribo-pairs due to the inclusion of contaminants. The current study addresses this technological gap, and presents a novel design of a tribo-corrosion test rig for oils used in a dynamic system. A pin-on-disk tribometer test rig retrofitted with a three electrode-potentiostat corrosion monitoring system was used to analyze the corrosion and wear rate of a steel tribo-pair in industrial grade transmission oil. The effectiveness of the retrofitted test rig was analyzed by introducing various concentrations of contaminants in an oil medium that usually leads to a corrosive working environment. The results indicate that the retrofitted test rig can effectively monitor the in situ tribological performance of the oil in a controlled dynamic corrosive environment. It is a useful method to understand the wear-corrosion synergies for further experimental work, and to develop accurate predictive lifecycle assessment and prognostic models. The application of this system is expected to have economic benefits and help reduce the ecological oil waste footprint.

  12. Performance Analysis of Retrofitted Tribo-Corrosion Test Rig for Monitoring In Situ Oil Conditions

    PubMed Central

    Ramachandran, Rahul; Menezes, Pradeep L.

    2017-01-01

    Oils and lubricants, once extracted after use from a mechanical system, can hardly be reused, and should be refurbished or replaced in most applications. New methods of in situ oil and lubricant efficiency monitoring systems have been introduced for a wide variety of mechanical systems, such as automobiles, aerospace aircrafts, ships, offshore wind turbines, and deep sea oil drilling rigs. These methods utilize electronic sensors to monitor the “byproduct effects” in a mechanical system that are not indicative of the actual remaining lifecycle and reliability of the oils. A reliable oil monitoring system should be able to monitor the wear rate and the corrosion rate of the tribo-pairs due to the inclusion of contaminants. The current study addresses this technological gap, and presents a novel design of a tribo-corrosion test rig for oils used in a dynamic system. A pin-on-disk tribometer test rig retrofitted with a three electrode-potentiostat corrosion monitoring system was used to analyze the corrosion and wear rate of a steel tribo-pair in industrial grade transmission oil. The effectiveness of the retrofitted test rig was analyzed by introducing various concentrations of contaminants in an oil medium that usually leads to a corrosive working environment. The results indicate that the retrofitted test rig can effectively monitor the in situ tribological performance of the oil in a controlled dynamic corrosive environment. It is a useful method to understand the wear–corrosion synergies for further experimental work, and to develop accurate predictive lifecycle assessment and prognostic models. The application of this system is expected to have economic benefits and help reduce the ecological oil waste footprint. PMID:28956819

  13. Combining hygrothermal and corrosion models to predict corrosion of metal fasteners embedded in wood

    Treesearch

    Samuel L. Zelinka; Dominique Derome; Samuel V. Glass

    2011-01-01

    A combined heat, moisture, and corrosion model is presented and used to simulate the corrosion of metal fasteners embedded in solid wood exposed to the exterior environment. First, the moisture content and temperature at the wood/fastener interface is determined at each time step. Then, the amount of corrosion is determined spatially using an empirical corrosion rate...

  14. Characterization of bacterial community and iron corrosion in drinking water distribution systems with O3-biological activated carbon treatment.

    PubMed

    Xing, Xueci; Wang, Haibo; Hu, Chun; Liu, Lizhong

    2018-07-01

    Bacterial community structure and iron corrosion were investigated for simulated drinking water distribution systems (DWDSs) composed of annular reactors incorporating three different treatments: ozone, biologically activated carbon and chlorination (O 3 -BAC-Cl 2 ); ozone and chlorination (O 3 -Cl 2 ); or chlorination alone (Cl 2 ). The lowest corrosion rate and iron release, along with more Fe 3 O 4 formation, occurred in DWDSs with O 3 -BAC-Cl 2 compared to those without a BAC filter. It was verified that O 3 -BAC influenced the bacterial community greatly to promote the relative advantage of nitrate-reducing bacteria (NRB) in DWDSs. Moreover, the advantaged NRB induced active Fe(III) reduction coupled to Fe(II) oxidation, enhancing Fe 3 O 4 formation and inhibiting corrosion. In addition, O 3 -BAC pretreatment could reduce high-molecular-weight fractions of dissolved organic carbon effectively to promote iron particle aggregation and inhibit further iron release. Our findings indicated that the O 3 -BAC treatment, besides removing organic pollutants in water, was also a good approach for controlling cast iron corrosion and iron release in DWDSs. Copyright © 2017. Published by Elsevier B.V.

  15. Stress Corrosion-Cracking and Corrosion Fatigue Impact of IZ-C17+ Zinc Nickel on 4340 Steel

    DTIC Science & Technology

    2017-05-17

    REPORT NO: NAWCADPAX/TIM-2016/189 STRESS CORROSION-CRACKING AND CORROSION FATIGUE IMPACT OF IZ-C17+ ZINC-NICKEL ON 4340 STEEL by...CORROSION-CRACKING AND CORROSION FATIGUE IMPACT OF IZ-C17+ ZINC-NICKEL ON 4340 STEEL by Craig Matzdorf Charles Lei Matt Stanley...5a. CONTRACT NUMBER STRESS CORROSION-CRACKING AND CORROSION FATIGUE IMPACT OF IZ-C17+ ZINC-NICKEL ON 4340 STEEL 5b. GRANT NUMBER 5c. PROGRAM

  16. Analysis of Aviation Safety Reporting System Incident Data Associated With the Technical Challenges of the Vehicle Systems Safety Technology Project

    NASA Technical Reports Server (NTRS)

    Withrow, Colleen A.; Reveley, Mary S.

    2014-01-01

    This analysis was conducted to support the Vehicle Systems Safety Technology (VSST) Project of the Aviation Safety Program (AVsP) milestone VSST4.2.1.01, "Identification of VSST-Related Trends." In particular, this is a review of incident data from the NASA Aviation Safety Reporting System (ASRS). The following three VSST-related technical challenges (TCs) were the focus of the incidents searched in the ASRS database: (1) Vechicle health assurance, (2) Effective crew-system interactions and decisions in all conditions; and (3) Aircraft loss of control prevention, mitigation, and recovery.

  17. A review of nuclear thermal propulsion carbide fuel corrosion and key issues

    NASA Technical Reports Server (NTRS)

    Pelaccio, Dennis G.; El-Genk, Mohamed S.

    1994-01-01

    Corrosion (mass loss) of carbide nuclear fuels due to their exposure to hot hydrogen in nuclear thermal propulsion engine systems greatly impacts the performance, thrust-to-weight and life of such systems. This report provides an overview of key issues and processes associated with the corrosion of carbide materials. Additionally, past pertinent development reactor test observations, as well as related experimental work and analysis modeling efforts are reviewed. At the conclusion, recommendations are presented, which provide the foundation for future corrosion modeling and verification efforts.

  18. Corrosion Control 101: A Journey in Rediscovery | Science ...

    EPA Pesticide Factsheets

    The presentation covers the general water chemistry of lead and copper, how contamination originates from home plumbing systems, what treatments are appropriate for controlling lead and copper to meet the Lead and Copper Rule, and what water quality and treatment factors directly impact the success and failure of corrosion control treatment. This talk re-introduces the overriding principles of corrosion control treatment to a water industry audience

  19. Development of Self-Powered Wireless-Ready High Temperature Electrochemical Sensors for In-Situ Corrosion Monitoring for Boiler Tubes in Next Generation Coal-based Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xingbo

    The key innovation of this project is the synergy of the high temperature sensor technology based on the science of electrochemical measurement and state-of-the-art wireless communication technology. A novel self-powered wireless high temperature electrochemical sensor system has been developed for coal-fired boilers used for power generation. An initial prototype of the in-situ sensor demonstrated the capability of the wireless communication system in the laboratory and in a pilot plant (Industrial USC Boiler Setting) environment to acquire electrochemical potential and current signals during the corrosion process. Uniform and localized under-coal ash deposit corrosion behavior of Inconel 740 superalloy has been studiedmore » at different simulated coal ash hot corrosion environments using the developed sensor. Two typical potential noise patterns were found to correlate with the oxidation and sulfidation stages in the hot coal ash corrosion process. Two characteristic current noise patterns indicate the extent of the corrosion. There was a good correlation between the responses of electrochemical test data and the results from corroded surface analysis. Wireless electrochemical potential and current noise signals from a simulated coal ash hot corrosion process were concurrently transmitted and recorded. The results from the performance evaluation of the sensor confirm a high accuracy in the thermodynamic and kinetic response represented by the electrochemical noise and impedance test data.« less

  20. Defense Infrastructure: DOD Should Improve Reporting and Communication on Its Corrosion Prevention and Control Activities

    DTIC Science & Technology

    2013-05-01

    Cycle Prediction for Equipment and Facilities 33.1 33.1 12 FAR16 Corrosion Prevention of Rebar in Concrete in Critical Facilities Located in Coastal...through 2007. 16 N-F-229 Integrated Concrete Pier Piling Repair and Corrosion Protection System 1.9 1.9 2006 17 FNV01 Corrosion Protection...Protection System 3.4 3.0 2007 21 F07NV03 Corrosion Inhibitor Evaluation for Concrete Repairs 16.8 16.8 22 F07NV04 Satellite Based Remote Monitoring