Sample records for safety verification testing

  1. Hard and Soft Safety Verifications

    NASA Technical Reports Server (NTRS)

    Wetherholt, Jon; Anderson, Brenda

    2012-01-01

    The purpose of this paper is to examine the differences between and the effects of hard and soft safety verifications. Initially, the terminology should be defined and clarified. A hard safety verification is datum which demonstrates how a safety control is enacted. An example of this is relief valve testing. A soft safety verification is something which is usually described as nice to have but it is not necessary to prove safe operation. An example of a soft verification is the loss of the Solid Rocket Booster (SRB) casings from Shuttle flight, STS-4. When the main parachutes failed, the casings impacted the water and sank. In the nose cap of the SRBs, video cameras recorded the release of the parachutes to determine safe operation and to provide information for potential anomaly resolution. Generally, examination of the casings and nozzles contributed to understanding of the newly developed boosters and their operation. Safety verification of SRB operation was demonstrated by examination for erosion or wear of the casings and nozzle. Loss of the SRBs and associated data did not delay the launch of the next Shuttle flight.

  2. Projected Impact of Compositional Verification on Current and Future Aviation Safety Risk

    NASA Technical Reports Server (NTRS)

    Reveley, Mary S.; Withrow, Colleen A.; Leone, Karen M.; Jones, Sharon M.

    2014-01-01

    The projected impact of compositional verification research conducted by the National Aeronautic and Space Administration System-Wide Safety and Assurance Technologies on aviation safety risk was assessed. Software and compositional verification was described. Traditional verification techniques have two major problems: testing at the prototype stage where error discovery can be quite costly and the inability to test for all potential interactions leaving some errors undetected until used by the end user. Increasingly complex and nondeterministic aviation systems are becoming too large for these tools to check and verify. Compositional verification is a "divide and conquer" solution to addressing increasingly larger and more complex systems. A review of compositional verification research being conducted by academia, industry, and Government agencies is provided. Forty-four aviation safety risks in the Biennial NextGen Safety Issues Survey were identified that could be impacted by compositional verification and grouped into five categories: automation design; system complexity; software, flight control, or equipment failure or malfunction; new technology or operations; and verification and validation. One capability, 1 research action, 5 operational improvements, and 13 enablers within the Federal Aviation Administration Joint Planning and Development Office Integrated Work Plan that could be addressed by compositional verification were identified.

  3. General-Purpose Heat Source Safety Verification Test Program: Edge-on flyer plate tests

    NASA Astrophysics Data System (ADS)

    George, T. G.

    1987-03-01

    The radioisotope thermoelectric generator (RTG) that will supply power for the Galileo and Ulysses space missions contains 18 General-Purpose Heat Source (GPHS) modules. The GPHS modules provide power by transmitting the heat of Pu-238 alpha-decay to an array of thermoelectric elements. Each module contains four Pu-238O2-fueled clads and generates 250 W(t). Because the possibility of a launch vehicle explosion always exists, and because such an explosion could generate a field of high-energy fragments, the fueled clads within each GPHS module must survive fragment impact. The edge-on flyer plate tests were included in the Safety Verification Test series to provide information on the module/clad response to the impact of high-energy plate fragments. The test results indicate that the edge-on impact of a 3.2-mm-thick, aluminum-alloy (2219-T87) plate traveling at 915 m/s causes the complete release of fuel from capsules contained within a bare GPHS module, and that the threshold velocity sufficient to cause the breach of a bare, simulant-fueled clad impacted by a 3.5-mm-thick, aluminum-alloy (5052-TO) plate is approximately 140 m/s.

  4. Advanced Test Reactor Safety Basis Upgrade Lessons Learned Relative to Design Basis Verification and Safety Basis Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G. L. Sharp; R. T. McCracken

    The Advanced Test Reactor (ATR) is a pressurized light-water reactor with a design thermal power of 250 MW. The principal function of the ATR is to provide a high neutron flux for testing reactor fuels and other materials. The reactor also provides other irradiation services such as radioisotope production. The ATR and its support facilities are located at the Test Reactor Area of the Idaho National Engineering and Environmental Laboratory (INEEL). An audit conducted by the Department of Energy's Office of Independent Oversight and Performance Assurance (DOE OA) raised concerns that design conditions at the ATR were not adequately analyzedmore » in the safety analysis and that legacy design basis management practices had the potential to further impact safe operation of the facility.1 The concerns identified by the audit team, and issues raised during additional reviews performed by ATR safety analysts, were evaluated through the unreviewed safety question process resulting in shutdown of the ATR for more than three months while these concerns were resolved. Past management of the ATR safety basis, relative to facility design basis management and change control, led to concerns that discrepancies in the safety basis may have developed. Although not required by DOE orders or regulations, not performing design basis verification in conjunction with development of the 10 CFR 830 Subpart B upgraded safety basis allowed these potential weaknesses to be carried forward. Configuration management and a clear definition of the existing facility design basis have a direct relation to developing and maintaining a high quality safety basis which properly identifies and mitigates all hazards and postulated accident conditions. These relations and the impact of past safety basis management practices have been reviewed in order to identify lessons learned from the safety basis upgrade process and appropriate actions to resolve possible concerns with respect to the current ATR

  5. Ares I-X Range Safety Simulation Verification and Analysis Independent Validation and Verification

    NASA Technical Reports Server (NTRS)

    Merry, Carl M.; Tarpley, Ashley F.; Craig, A. Scott; Tartabini, Paul V.; Brewer, Joan D.; Davis, Jerel G.; Dulski, Matthew B.; Gimenez, Adrian; Barron, M. Kyle

    2011-01-01

    NASA s Ares I-X vehicle launched on a suborbital test flight from the Eastern Range in Florida on October 28, 2009. To obtain approval for launch, a range safety final flight data package was generated to meet the data requirements defined in the Air Force Space Command Manual 91-710 Volume 2. The delivery included products such as a nominal trajectory, trajectory envelopes, stage disposal data and footprints, and a malfunction turn analysis. The Air Force s 45th Space Wing uses these products to ensure public and launch area safety. Due to the criticality of these data, an independent validation and verification effort was undertaken to ensure data quality and adherence to requirements. As a result, the product package was delivered with the confidence that independent organizations using separate simulation software generated data to meet the range requirements and yielded consistent results. This document captures Ares I-X final flight data package verification and validation analysis, including the methodology used to validate and verify simulation inputs, execution, and results and presents lessons learned during the process

  6. Safety Verification of the Small Aircraft Transportation System Concept of Operations

    NASA Technical Reports Server (NTRS)

    Carreno, Victor; Munoz, Cesar

    2005-01-01

    A critical factor in the adoption of any new aeronautical technology or concept of operation is safety. Traditionally, safety is accomplished through a rigorous process that involves human factors, low and high fidelity simulations, and flight experiments. As this process is usually performed on final products or functional prototypes, concept modifications resulting from this process are very expensive to implement. This paper describe an approach to system safety that can take place at early stages of a concept design. It is based on a set of mathematical techniques and tools known as formal methods. In contrast to testing and simulation, formal methods provide the capability of exhaustive state exploration analysis. We present the safety analysis and verification performed for the Small Aircraft Transportation System (SATS) Concept of Operations (ConOps). The concept of operations is modeled using discrete and hybrid mathematical models. These models are then analyzed using formal methods. The objective of the analysis is to show, in a mathematical framework, that the concept of operation complies with a set of safety requirements. It is also shown that the ConOps has some desirable characteristic such as liveness and absence of dead-lock. The analysis and verification is performed in the Prototype Verification System (PVS), which is a computer based specification language and a theorem proving assistant.

  7. 46 CFR 61.40-6 - Periodic safety tests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Periodic safety tests. 61.40-6 Section 61.40-6 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PERIODIC TESTS AND INSPECTIONS Design Verification and Periodic Testing of Vital System Automation § 61.40-6 Periodic safety...

  8. 46 CFR 61.40-6 - Periodic safety tests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Periodic safety tests. 61.40-6 Section 61.40-6 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PERIODIC TESTS AND INSPECTIONS Design Verification and Periodic Testing of Vital System Automation § 61.40-6 Periodic safety...

  9. 46 CFR 61.40-6 - Periodic safety tests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Periodic safety tests. 61.40-6 Section 61.40-6 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PERIODIC TESTS AND INSPECTIONS Design Verification and Periodic Testing of Vital System Automation § 61.40-6 Periodic safety...

  10. 46 CFR 61.40-6 - Periodic safety tests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Periodic safety tests. 61.40-6 Section 61.40-6 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PERIODIC TESTS AND INSPECTIONS Design Verification and Periodic Testing of Vital System Automation § 61.40-6 Periodic safety...

  11. 46 CFR 61.40-6 - Periodic safety tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Periodic safety tests. 61.40-6 Section 61.40-6 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PERIODIC TESTS AND INSPECTIONS Design Verification and Periodic Testing of Vital System Automation § 61.40-6 Periodic safety...

  12. Test load verification through strain data analysis

    NASA Technical Reports Server (NTRS)

    Verderaime, V.; Harrington, F.

    1995-01-01

    A traditional binding acceptance criterion on polycrystalline structures is the experimental verification of the ultimate factor of safety. At fracture, the induced strain is inelastic and about an order-of-magnitude greater than designed for maximum expected operational limit. At this extreme strained condition, the structure may rotate and displace at the applied verification load such as to unknowingly distort the load transfer into the static test article. Test may result in erroneously accepting a submarginal design or rejecting a reliable one. A technique was developed to identify, monitor, and assess the load transmission error through two back-to-back surface-measured strain data. The technique is programmed for expediency and convenience. Though the method was developed to support affordable aerostructures, the method is also applicable for most high-performance air and surface transportation structural systems.

  13. VEG-01: Veggie Hardware Verification Testing

    NASA Technical Reports Server (NTRS)

    Massa, Gioia; Newsham, Gary; Hummerick, Mary; Morrow, Robert; Wheeler, Raymond

    2013-01-01

    The Veggie plant/vegetable production system is scheduled to fly on ISS at the end of2013. Since much of the technology associated with Veggie has not been previously tested in microgravity, a hardware validation flight was initiated. This test will allow data to be collected about Veggie hardware functionality on ISS, allow crew interactions to be vetted for future improvements, validate the ability of the hardware to grow and sustain plants, and collect data that will be helpful to future Veggie investigators as they develop their payloads. Additionally, food safety data on the lettuce plants grown will be collected to help support the development of a pathway for the crew to safely consume produce grown on orbit. Significant background research has been performed on the Veggie plant growth system, with early tests focusing on the development of the rooting pillow concept, and the selection of fertilizer, rooting medium and plant species. More recent testing has been conducted to integrate the pillow concept into the Veggie hardware and to ensure that adequate water is provided throughout the growth cycle. Seed sanitation protocols have been established for flight, and hardware sanitation between experiments has been studied. Methods for shipping and storage of rooting pillows and the development of crew procedures and crew training videos for plant activities on-orbit have been established. Science verification testing was conducted and lettuce plants were successfully grown in prototype Veggie hardware, microbial samples were taken, plant were harvested, frozen, stored and later analyzed for microbial growth, nutrients, and A TP levels. An additional verification test, prior to the final payload verification testing, is desired to demonstrate similar growth in the flight hardware and also to test a second set of pillows containing zinnia seeds. Issues with root mat water supply are being resolved, with final testing and flight scheduled for later in 2013.

  14. 77 FR 26822 - Pipeline Safety: Verification of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-07

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No. PHMSA-2012-0068] Pipeline Safety: Verification of Records AGENCY: Pipeline and Hazardous Materials... issuing an Advisory Bulletin to remind operators of gas and hazardous liquid pipeline facilities to verify...

  15. 78 FR 32010 - Pipeline Safety: Public Workshop on Integrity Verification Process

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-28

    .... PHMSA-2013-0119] Pipeline Safety: Public Workshop on Integrity Verification Process AGENCY: Pipeline and... announcing a public workshop to be held on the concept of ``Integrity Verification Process.'' The Integrity Verification Process shares similar characteristics with fitness for service processes. At this workshop, the...

  16. Verification of MCNP6.2 for Nuclear Criticality Safety Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Forrest B.; Rising, Michael Evan; Alwin, Jennifer Louise

    2017-05-10

    Several suites of verification/validation benchmark problems were run in early 2017 to verify that the new production release of MCNP6.2 performs correctly for nuclear criticality safety applications (NCS). MCNP6.2 results for several NCS validation suites were compared to the results from MCNP6.1 [1] and MCNP6.1.1 [2]. MCNP6.1 is the production version of MCNP® released in 2013, and MCNP6.1.1 is the update released in 2014. MCNP6.2 includes all of the standard features for NCS calculations that have been available for the past 15 years, along with new features for sensitivity-uncertainty based methods for NCS validation [3]. Results from the benchmark suitesmore » were compared with results from previous verification testing [4-8]. Criticality safety analysts should consider testing MCNP6.2 on their particular problems and validation suites. No further development of MCNP5 is planned. MCNP6.1 is now 4 years old, and MCNP6.1.1 is now 3 years old. In general, released versions of MCNP are supported only for about 5 years, due to resource limitations. All future MCNP improvements, bug fixes, user support, and new capabilities are targeted only to MCNP6.2 and beyond.« less

  17. 78 FR 56268 - Pipeline Safety: Public Workshop on Integrity Verification Process, Comment Extension

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-12

    .... PHMSA-2013-0119] Pipeline Safety: Public Workshop on Integrity Verification Process, Comment Extension... public workshop on ``Integrity Verification Process'' which took place on August 7, 2013. The notice also sought comments on the proposed ``Integrity Verification Process.'' In response to the comments received...

  18. 46 CFR 61.40-3 - Design verification testing.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Design verification testing. 61.40-3 Section 61.40-3... INSPECTIONS Design Verification and Periodic Testing of Vital System Automation § 61.40-3 Design verification testing. (a) Tests must verify that automated vital systems are designed, constructed, and operate in...

  19. Dynamic testing for shuttle design verification

    NASA Technical Reports Server (NTRS)

    Green, C. E.; Leadbetter, S. A.; Rheinfurth, M. H.

    1972-01-01

    Space shuttle design verification requires dynamic data from full scale structural component and assembly tests. Wind tunnel and other scaled model tests are also required early in the development program to support the analytical models used in design verification. Presented is a design philosophy based on mathematical modeling of the structural system strongly supported by a comprehensive test program; some of the types of required tests are outlined.

  20. Static test induced loads verification beyond elastic limit

    NASA Technical Reports Server (NTRS)

    Verderaime, V.; Harrington, F.

    1996-01-01

    Increasing demands for reliable and least-cost high-performance aerostructures are pressing design analyses, materials, and manufacturing processes to new and narrowly experienced performance and verification technologies. This study assessed the adequacy of current experimental verification of the traditional binding ultimate safety factor which covers rare events in which no statistical design data exist. Because large high-performance structures are inherently very flexible, boundary rotations and deflections under externally applied loads approaching fracture may distort their transmission and unknowingly accept submarginal structures or prematurely fracturing reliable ones. A technique was developed, using measured strains from back-to-back surface mounted gauges, to analyze, define, and monitor induced moments and plane forces through progressive material changes from total-elastic to total-inelastic zones within the structural element cross section. Deviations from specified test loads are identified by the consecutively changing ratios of moment-to-axial load.

  1. Static test induced loads verification beyond elastic limit

    NASA Technical Reports Server (NTRS)

    Verderaime, V.; Harrington, F.

    1996-01-01

    Increasing demands for reliable and least-cost high performance aerostructures are pressing design analyses, materials, and manufacturing processes to new and narrowly experienced performance and verification technologies. This study assessed the adequacy of current experimental verification of the traditional binding ultimate safety factor which covers rare events in which no statistical design data exist. Because large, high-performance structures are inherently very flexible, boundary rotations and deflections under externally applied loads approaching fracture may distort their transmission and unknowingly accept submarginal structures or prematurely fracturing reliable ones. A technique was developed, using measured strains from back-to-back surface mounted gauges, to analyze, define, and monitor induced moments and plane forces through progressive material changes from total-elastic to total inelastic zones within the structural element cross section. Deviations from specified test loads are identified by the consecutively changing ratios of moment-to-axial load.

  2. 77 FR 50723 - Verification, Validation, Reviews, and Audits for Digital Computer Software Used in Safety...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-22

    ... Digital Computer Software Used in Safety Systems of Nuclear Power Plants AGENCY: Nuclear Regulatory..., ``Verification, Validation, Reviews, and Audits for Digital Computer Software used in Safety Systems of Nuclear... NRC regulations promoting the development of, and compliance with, software verification and...

  3. Space Station automated systems testing/verification and the Galileo Orbiter fault protection design/verification

    NASA Technical Reports Server (NTRS)

    Landano, M. R.; Easter, R. W.

    1984-01-01

    Aspects of Space Station automated systems testing and verification are discussed, taking into account several program requirements. It is found that these requirements lead to a number of issues of uncertainties which require study and resolution during the Space Station definition phase. Most, if not all, of the considered uncertainties have implications for the overall testing and verification strategy adopted by the Space Station Program. A description is given of the Galileo Orbiter fault protection design/verification approach. Attention is given to a mission description, an Orbiter description, the design approach and process, the fault protection design verification approach/process, and problems of 'stress' testing.

  4. Verification and Implementation of Operations Safety Controls for Flight Missions

    NASA Technical Reports Server (NTRS)

    Jones, Cheryl L.; Smalls, James R.; Carrier, Alicia S.

    2010-01-01

    Approximately eleven years ago, the International Space Station launched the first module from Russia, the Functional Cargo Block (FGB). Safety and Mission Assurance (S&MA) Operations (Ops) Engineers played an integral part in that endeavor by executing strict flight product verification as well as continued staffing of S&MA's console in the Mission Evaluation Room (MER) for that flight mission. How were these engineers able to conduct such a complicated task? They conducted it based on product verification that consisted of ensuring that safety requirements were adequately contained in all flight products that affected crew safety. S&MA Ops engineers apply both systems engineering and project management principles in order to gain a appropriate level of technical knowledge necessary to perform thorough reviews which cover the subsystem(s) affected. They also ensured that mission priorities were carried out with a great detail and success.

  5. Space shuttle propellant constitutive law verification tests

    NASA Technical Reports Server (NTRS)

    Thompson, James R.

    1995-01-01

    As part of the Propellants Task (Task 2.0) on the Solid Propulsion Integrity Program (SPIP), a database of material properties was generated for the Space Shuttle Redesigned Solid Rocket Motor (RSRM) PBAN-based propellant. A parallel effort on the Propellants Task was the generation of an improved constitutive theory for the PBAN propellant suitable for use in a finite element analysis (FEA) of the RSRM. The outcome of an analysis with the improved constitutive theory would be more reliable prediction of structural margins of safety. The work described in this report was performed by Materials Laboratory personnel at Thiokol Corporation/Huntsville Division under NASA contract NAS8-39619, Mod. 3. The report documents the test procedures for the refinement and verification tests for the improved Space Shuttle RSRM propellant material model, and summarizes the resulting test data. TP-H1148 propellant obtained from mix E660411 (manufactured February 1989) which had experienced ambient igloo storage in Huntsville, Alabama since January 1990, was used for these tests.

  6. 46 CFR 61.40-3 - Design verification testing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PERIODIC TESTS AND INSPECTIONS Design Verification and Periodic Testing of Vital System Automation § 61.40-3 Design verification testing. (a) Tests must verify that automated vital systems are designed, constructed, and operate in...

  7. ENVIRONMENTAL TECHNOLOGY VERIFICATION TEST PROTOCOL, GENERAL VENTILATION FILTERS

    EPA Science Inventory

    The Environmental Technology Verification Test Protocol, General Ventilation Filters provides guidance for verification tests.

    Reference is made in the protocol to the ASHRAE 52.2P "Method of Testing General Ventilation Air-cleaning Devices for Removal Efficiency by P...

  8. Enhanced Verification Test Suite for Physics Simulation Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamm, J R; Brock, J S; Brandon, S T

    2008-10-10

    This document discusses problems with which to augment, in quantity and in quality, the existing tri-laboratory suite of verification problems used by Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and Sandia National Laboratories (SNL). The purpose of verification analysis is demonstrate whether the numerical results of the discretization algorithms in physics and engineering simulation codes provide correct solutions of the corresponding continuum equations. The key points of this document are: (1) Verification deals with mathematical correctness of the numerical algorithms in a code, while validation deals with physical correctness of a simulation in a regime of interest.more » This document is about verification. (2) The current seven-problem Tri-Laboratory Verification Test Suite, which has been used for approximately five years at the DOE WP laboratories, is limited. (3) Both the methodology for and technology used in verification analysis have evolved and been improved since the original test suite was proposed. (4) The proposed test problems are in three basic areas: (a) Hydrodynamics; (b) Transport processes; and (c) Dynamic strength-of-materials. (5) For several of the proposed problems we provide a 'strong sense verification benchmark', consisting of (i) a clear mathematical statement of the problem with sufficient information to run a computer simulation, (ii) an explanation of how the code result and benchmark solution are to be evaluated, and (iii) a description of the acceptance criterion for simulation code results. (6) It is proposed that the set of verification test problems with which any particular code be evaluated include some of the problems described in this document. Analysis of the proposed verification test problems constitutes part of a necessary--but not sufficient--step that builds confidence in physics and engineering simulation codes. More complicated test cases, including physics models of

  9. Validation and verification of the laser range safety tool (LRST)

    NASA Astrophysics Data System (ADS)

    Kennedy, Paul K.; Keppler, Kenneth S.; Thomas, Robert J.; Polhamus, Garrett D.; Smith, Peter A.; Trevino, Javier O.; Seaman, Daniel V.; Gallaway, Robert A.; Crockett, Gregg A.

    2003-06-01

    The U.S. Dept. of Defense (DOD) is currently developing and testing a number of High Energy Laser (HEL) weapons systems. DOD range safety officers now face the challenge of designing safe methods of testing HEL's on DOD ranges. In particular, safety officers need to ensure that diffuse and specular reflections from HEL system targets, as well as direct beam paths, are contained within DOD boundaries. If both the laser source and the target are moving, as they are for the Airborne Laser (ABL), a complex series of calculations is required and manual calculations are impractical. Over the past 5 years, the Optical Radiation Branch of the Air Force Research Laboratory (AFRL/HEDO), the ABL System Program Office, Logicon-RDA, and Northrup-Grumman, have worked together to develop a computer model called teh Laser Range Safety Tool (LRST), specifically designed for HEL reflection hazard analyses. The code, which is still under development, is currently tailored to support the ABL program. AFRL/HEDO has led an LRST Validation and Verification (V&V) effort since 1998, in order to determine if code predictions are accurate. This paper summarizes LRST V&V efforts to date including: i) comparison of code results with laboratory measurements of reflected laser energy and with reflection measurements made during actual HEL field tests, and ii) validation of LRST's hazard zone computations.

  10. Built-in-Test Verification Techniques

    DTIC Science & Technology

    1987-02-01

    report documents the results of the effort for the Rome Air Development Center Contract F30602-84-C-0021, BIT Verification Techniques. The work was...Richard Spillman of Sp.,llman Research Associates. The principal investigators were Mike Partridge and subsequently Jeffrey Albert. The contract was...two your effort to develop techniques for Built-In Test (BIT) verification. The objective of the contract was to develop specifications and technical

  11. NEXT Thruster Component Verification Testing

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Sovey, James S.

    2007-01-01

    Component testing is a critical part of thruster life validation activities under NASA s Evolutionary Xenon Thruster (NEXT) project testing. The high voltage propellant isolators were selected for design verification testing. Even though they are based on a heritage design, design changes were made because the isolators will be operated under different environmental conditions including temperature, voltage, and pressure. The life test of two NEXT isolators was therefore initiated and has accumulated more than 10,000 hr of operation. Measurements to date indicate only a negligibly small increase in leakage current. The cathode heaters were also selected for verification testing. The technology to fabricate these heaters, developed for the International Space Station plasma contactor hollow cathode assembly, was transferred to Aerojet for the fabrication of the NEXT prototype model ion thrusters. Testing the contractor-fabricated heaters is necessary to validate fabrication processes for high reliability heaters. This paper documents the status of the propellant isolator and cathode heater tests.

  12. Gender verification testing in sport.

    PubMed

    Ferris, E A

    1992-07-01

    Gender verification testing in sport, first introduced in 1966 by the International Amateur Athletic Federation (IAAF) in response to fears that males with a physical advantage in terms of muscle mass and strength were cheating by masquerading as females in women's competition, has led to unfair disqualifications of women athletes and untold psychological harm. The discredited sex chromatin test, which identifies only the sex chromosome component of gender and is therefore misleading, was abandoned in 1991 by the IAAF in favour of medical checks for all athletes, women and men, which preclude the need for gender testing. But, women athletes will still be tested at the Olympic Games at Albertville and Barcelona using polymerase chain reaction (PCR) to amplify DNA sequences on the Y chromosome which identifies genetic sex only. Gender verification testing may in time be abolished when the sporting community are fully cognizant of its scientific and ethical implications.

  13. Structural Deterministic Safety Factors Selection Criteria and Verification

    NASA Technical Reports Server (NTRS)

    Verderaime, V.

    1992-01-01

    Though current deterministic safety factors are arbitrarily and unaccountably specified, its ratio is rooted in resistive and applied stress probability distributions. This study approached the deterministic method from a probabilistic concept leading to a more systematic and coherent philosophy and criterion for designing more uniform and reliable high-performance structures. The deterministic method was noted to consist of three safety factors: a standard deviation multiplier of the applied stress distribution; a K-factor for the A- or B-basis material ultimate stress; and the conventional safety factor to ensure that the applied stress does not operate in the inelastic zone of metallic materials. The conventional safety factor is specifically defined as the ratio of ultimate-to-yield stresses. A deterministic safety index of the combined safety factors was derived from which the corresponding reliability proved the deterministic method is not reliability sensitive. The bases for selecting safety factors are presented and verification requirements are discussed. The suggested deterministic approach is applicable to all NASA, DOD, and commercial high-performance structures under static stresses.

  14. 40 CFR 1066.420 - Pre-test verification procedures and pre-test data collection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Pre-test verification procedures and pre-test data collection. 1066.420 Section 1066.420 Protection of Environment ENVIRONMENTAL PROTECTION... Test § 1066.420 Pre-test verification procedures and pre-test data collection. (a) Follow the...

  15. 40 CFR 1066.420 - Pre-test verification procedures and pre-test data collection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Pre-test verification procedures and pre-test data collection. 1066.420 Section 1066.420 Protection of Environment ENVIRONMENTAL PROTECTION... Test § 1066.420 Pre-test verification procedures and pre-test data collection. (a) Follow the...

  16. 40 CFR 1065.520 - Pre-test verification procedures and pre-test data collection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Pre-test verification procedures and pre-test data collection. 1065.520 Section 1065.520 Protection of Environment ENVIRONMENTAL PROTECTION... Specified Duty Cycles § 1065.520 Pre-test verification procedures and pre-test data collection. (a) If your...

  17. 40 CFR 1065.520 - Pre-test verification procedures and pre-test data collection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Pre-test verification procedures and pre-test data collection. 1065.520 Section 1065.520 Protection of Environment ENVIRONMENTAL PROTECTION... Specified Duty Cycles § 1065.520 Pre-test verification procedures and pre-test data collection. (a) If your...

  18. 40 CFR 1065.520 - Pre-test verification procedures and pre-test data collection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Pre-test verification procedures and pre-test data collection. 1065.520 Section 1065.520 Protection of Environment ENVIRONMENTAL PROTECTION... Specified Duty Cycles § 1065.520 Pre-test verification procedures and pre-test data collection. (a) For...

  19. 40 CFR 1065.520 - Pre-test verification procedures and pre-test data collection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Pre-test verification procedures and pre-test data collection. 1065.520 Section 1065.520 Protection of Environment ENVIRONMENTAL PROTECTION... Specified Duty Cycles § 1065.520 Pre-test verification procedures and pre-test data collection. (a) If your...

  20. 40 CFR 1065.520 - Pre-test verification procedures and pre-test data collection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Pre-test verification procedures and pre-test data collection. 1065.520 Section 1065.520 Protection of Environment ENVIRONMENTAL PROTECTION... Specified Duty Cycles § 1065.520 Pre-test verification procedures and pre-test data collection. (a) If your...

  1. Response to "Improving Patient Safety With Error Identification in Chemotherapy Orders by Verification Nurses"
.

    PubMed

    Zhu, Ling-Ling; Lv, Na; Zhou, Quan

    2016-12-01

    We read, with great interest, the study by Baldwin and Rodriguez (2016), which described the role of the verification nurse and details the verification process in identifying errors related to chemotherapy orders. We strongly agree with their findings that a verification nurse, collaborating closely with the prescribing physician, pharmacist, and treating nurse, can better identify errors and maintain safety during chemotherapy administration.

  2. Ada(R) Test and Verification System (ATVS)

    NASA Technical Reports Server (NTRS)

    Strelich, Tom

    1986-01-01

    The Ada Test and Verification System (ATVS) functional description and high level design are completed and summarized. The ATVS will provide a comprehensive set of test and verification capabilities specifically addressing the features of the Ada language, support for embedded system development, distributed environments, and advanced user interface capabilities. Its design emphasis was on effective software development environment integration and flexibility to ensure its long-term use in the Ada software development community.

  3. Electric power system test and verification program

    NASA Technical Reports Server (NTRS)

    Rylicki, Daniel S.; Robinson, Frank, Jr.

    1994-01-01

    Space Station Freedom's (SSF's) electric power system (EPS) hardware and software verification is performed at all levels of integration, from components to assembly and system level tests. Careful planning is essential to ensure the EPS is tested properly on the ground prior to launch. The results of the test performed on breadboard model hardware and analyses completed to date have been evaluated and used to plan for design qualification and flight acceptance test phases. These results and plans indicate the verification program for SSF's 75-kW EPS would have been successful and completed in time to support the scheduled first element launch.

  4. Structural verification for GAS experiments

    NASA Technical Reports Server (NTRS)

    Peden, Mark Daniel

    1992-01-01

    The purpose of this paper is to assist the Get Away Special (GAS) experimenter in conducting a thorough structural verification of its experiment structural configuration, thus expediting the structural review/approval process and the safety process in general. Material selection for structural subsystems will be covered with an emphasis on fasteners (GSFC fastener integrity requirements) and primary support structures (Stress Corrosion Cracking requirements and National Space Transportation System (NSTS) requirements). Different approaches to structural verifications (tests and analyses) will be outlined especially those stemming from lessons learned on load and fundamental frequency verification. In addition, fracture control will be covered for those payloads that utilize a door assembly or modify the containment provided by the standard GAS Experiment Mounting Plate (EMP). Structural hazard assessment and the preparation of structural hazard reports will be reviewed to form a summation of structural safety issues for inclusion in the safety data package.

  5. Test and Verification Approach for the NASA Constellation Program

    NASA Technical Reports Server (NTRS)

    Strong, Edward

    2008-01-01

    This viewgraph presentation is a test and verification approach for the NASA Constellation Program. The contents include: 1) The Vision for Space Exploration: Foundations for Exploration; 2) Constellation Program Fleet of Vehicles; 3) Exploration Roadmap; 4) Constellation Vehicle Approximate Size Comparison; 5) Ares I Elements; 6) Orion Elements; 7) Ares V Elements; 8) Lunar Lander; 9) Map of Constellation content across NASA; 10) CxP T&V Implementation; 11) Challenges in CxP T&V Program; 12) T&V Strategic Emphasis and Key Tenets; 13) CxP T&V Mission & Vision; 14) Constellation Program Organization; 15) Test and Evaluation Organization; 16) CxP Requirements Flowdown; 17) CxP Model Based Systems Engineering Approach; 18) CxP Verification Planning Documents; 19) Environmental Testing; 20) Scope of CxP Verification; 21) CxP Verification - General Process Flow; 22) Avionics and Software Integrated Testing Approach; 23) A-3 Test Stand; 24) Space Power Facility; 25) MEIT and FEIT; 26) Flight Element Integrated Test (FEIT); 27) Multi-Element Integrated Testing (MEIT); 28) Flight Test Driving Principles; and 29) Constellation s Integrated Flight Test Strategy Low Earth Orbit Servicing Capability.

  6. Verification and Implementation of Operations Safety Controls for Flight Missions

    NASA Technical Reports Server (NTRS)

    Smalls, James R.; Jones, Cheryl L.; Carrier, Alicia S.

    2010-01-01

    There are several engineering disciplines, such as reliability, supportability, quality assurance, human factors, risk management, safety, etc. Safety is an extremely important engineering specialty within NASA, and the consequence involving a loss of crew is considered a catastrophic event. Safety is not difficult to achieve when properly integrated at the beginning of each space systems project/start of mission planning. The key is to ensure proper handling of safety verification throughout each flight/mission phase. Today, Safety and Mission Assurance (S&MA) operations engineers continue to conduct these flight product reviews across all open flight products. As such, these reviews help ensure that each mission is accomplished with safety requirements along with controls heavily embedded in applicable flight products. Most importantly, the S&MA operations engineers are required to look for important design and operations controls so that safety is strictly adhered to as well as reflected in the final flight product.

  7. Bayesian Estimation of Combined Accuracy for Tests with Verification Bias

    PubMed Central

    Broemeling, Lyle D.

    2011-01-01

    This presentation will emphasize the estimation of the combined accuracy of two or more tests when verification bias is present. Verification bias occurs when some of the subjects are not subject to the gold standard. The approach is Bayesian where the estimation of test accuracy is based on the posterior distribution of the relevant parameter. Accuracy of two combined binary tests is estimated employing either “believe the positive” or “believe the negative” rule, then the true and false positive fractions for each rule are computed for two tests. In order to perform the analysis, the missing at random assumption is imposed, and an interesting example is provided by estimating the combined accuracy of CT and MRI to diagnose lung cancer. The Bayesian approach is extended to two ordinal tests when verification bias is present, and the accuracy of the combined tests is based on the ROC area of the risk function. An example involving mammography with two readers with extreme verification bias illustrates the estimation of the combined test accuracy for ordinal tests. PMID:26859487

  8. The End-To-End Safety Verification Process Implemented to Ensure Safe Operations of the Columbus Research Module

    NASA Astrophysics Data System (ADS)

    Arndt, J.; Kreimer, J.

    2010-09-01

    The European Space Laboratory COLUMBUS was launched in February 2008 with NASA Space Shuttle Atlantis. Since successful docking and activation this manned laboratory forms part of the International Space Station(ISS). Depending on the objectives of the Mission Increments the on-orbit configuration of the COLUMBUS Module varies with each increment. This paper describes the end-to-end verification which has been implemented to ensure safe operations under the condition of a changing on-orbit configuration. That verification process has to cover not only the configuration changes as foreseen by the Mission Increment planning but also those configuration changes on short notice which become necessary due to near real-time requests initiated by crew or Flight Control, and changes - most challenging since unpredictable - due to on-orbit anomalies. Subject of the safety verification is on one hand the on orbit configuration itself including the hardware and software products, on the other hand the related Ground facilities needed for commanding of and communication to the on-orbit System. But also the operational products, e.g. the procedures prepared for crew and ground control in accordance to increment planning, are subject of the overall safety verification. In order to analyse the on-orbit configuration for potential hazards and to verify the implementation of the related Safety required hazard controls, a hierarchical approach is applied. The key element of the analytical safety integration of the whole COLUMBUS Payload Complement including hardware owned by International Partners is the Integrated Experiment Hazard Assessment(IEHA). The IEHA especially identifies those hazardous scenarios which could potentially arise through physical and operational interaction of experiments. A major challenge is the implementation of a Safety process which owns quite some rigidity in order to provide reliable verification of on-board Safety and which likewise provides enough

  9. Space station data management system - A common GSE test interface for systems testing and verification

    NASA Technical Reports Server (NTRS)

    Martinez, Pedro A.; Dunn, Kevin W.

    1987-01-01

    This paper examines the fundamental problems and goals associated with test, verification, and flight-certification of man-rated distributed data systems. First, a summary of the characteristics of modern computer systems that affect the testing process is provided. Then, verification requirements are expressed in terms of an overall test philosophy for distributed computer systems. This test philosophy stems from previous experience that was gained with centralized systems (Apollo and the Space Shuttle), and deals directly with the new problems that verification of distributed systems may present. Finally, a description of potential hardware and software tools to help solve these problems is provided.

  10. Test/QA Plan for Verification of Leak Detection and Repair Technologies

    EPA Science Inventory

    The purpose of the leak detection and repair (LDAR) test and quality assurance plan is to specify procedures for a verification test applicable to commercial LDAR technologies. The purpose of the verification test is to evaluate the performance of participating technologies in b...

  11. Process Sensitivity, Performance, and Direct Verification Testing of Adhesive Locking Features

    NASA Technical Reports Server (NTRS)

    Golden, Johnny L.; Leatherwood, Michael D.; Montoya, Michael D.; Kato, Ken A.; Akers, Ed

    2012-01-01

    Phase I: The use of adhesive locking features or liquid locking compounds (LLCs) (e.g., Loctite) as a means of providing a secondary locking feature has been used on NASA programs since the Apollo program. In many cases Loctite was used as a last resort when (a) self-locking fasteners were no longer functioning per their respective drawing specification, (b) access was limited for removal & replacement, or (c) replacement could not be accomplished without severe impact to schedule. Long-term use of Loctite became inevitable in cases where removal and replacement of worn hardware was not cost effective and Loctite was assumed to be fully cured and working. The NASA Engineering & Safety Center (NESC) and United Space Alliance (USA) recognized the need for more extensive testing of Loctite grades to better understand their capabilities and limitations as a secondary locking feature. These tests, identified as Phase I, were designed to identify processing sensitivities, to determine proper cure time, the correct primer to use on aerospace nutplate, insert and bolt materials such as A286 and MP35N, and the minimum amount of Loctite that is required to achieve optimum breakaway torque values. The .1900-32 was the fastener size tested, due to wide usage in the aerospace industry. Three different grades of Loctite were tested. Results indicate that, with proper controls, adhesive locking features can be successfully used in the repair of locking features and should be considered for design. Phase II: Threaded fastening systems used in aerospace programs typically have a requirement for a redundant locking feature. The primary locking method is the fastener preload and the traditional redundant locking feature is a self-locking mechanical device that may include deformed threads, non-metallic inserts, split beam features, or other methods that impede movement between threaded members. The self-locking resistance of traditional locking features can be directly verified

  12. PFLOTRAN Verification: Development of a Testing Suite to Ensure Software Quality

    NASA Astrophysics Data System (ADS)

    Hammond, G. E.; Frederick, J. M.

    2016-12-01

    In scientific computing, code verification ensures the reliability and numerical accuracy of a model simulation by comparing the simulation results to experimental data or known analytical solutions. The model is typically defined by a set of partial differential equations with initial and boundary conditions, and verification ensures whether the mathematical model is solved correctly by the software. Code verification is especially important if the software is used to model high-consequence systems which cannot be physically tested in a fully representative environment [Oberkampf and Trucano (2007)]. Justified confidence in a particular computational tool requires clarity in the exercised physics and transparency in its verification process with proper documentation. We present a quality assurance (QA) testing suite developed by Sandia National Laboratories that performs code verification for PFLOTRAN, an open source, massively-parallel subsurface simulator. PFLOTRAN solves systems of generally nonlinear partial differential equations describing multiphase, multicomponent and multiscale reactive flow and transport processes in porous media. PFLOTRAN's QA test suite compares the numerical solutions of benchmark problems in heat and mass transport against known, closed-form, analytical solutions, including documentation of the exercised physical process models implemented in each PFLOTRAN benchmark simulation. The QA test suite development strives to follow the recommendations given by Oberkampf and Trucano (2007), which describes four essential elements in high-quality verification benchmark construction: (1) conceptual description, (2) mathematical description, (3) accuracy assessment, and (4) additional documentation and user information. Several QA tests within the suite will be presented, including details of the benchmark problems and their closed-form analytical solutions, implementation of benchmark problems in PFLOTRAN simulations, and the criteria used to

  13. Gaia challenging performances verification: combination of spacecraft models and test results

    NASA Astrophysics Data System (ADS)

    Ecale, Eric; Faye, Frédéric; Chassat, François

    2016-08-01

    To achieve the ambitious scientific objectives of the Gaia mission, extremely stringent performance requirements have been given to the spacecraft contractor (Airbus Defence and Space). For a set of those key-performance requirements (e.g. end-of-mission parallax, maximum detectable magnitude, maximum sky density or attitude control system stability), this paper describes how they are engineered during the whole spacecraft development process, with a focus on the end-to-end performance verification. As far as possible, performances are usually verified by end-to-end tests onground (i.e. before launch). However, the challenging Gaia requirements are not verifiable by such a strategy, principally because no test facility exists to reproduce the expected flight conditions. The Gaia performance verification strategy is therefore based on a mix between analyses (based on spacecraft models) and tests (used to directly feed the models or to correlate them). Emphasis is placed on how to maximize the test contribution to performance verification while keeping the test feasible within an affordable effort. In particular, the paper highlights the contribution of the Gaia Payload Module Thermal Vacuum test to the performance verification before launch. Eventually, an overview of the in-flight payload calibration and in-flight performance verification is provided.

  14. Integrated testing and verification system for research flight software

    NASA Technical Reports Server (NTRS)

    Taylor, R. N.

    1979-01-01

    The MUST (Multipurpose User-oriented Software Technology) program is being developed to cut the cost of producing research flight software through a system of software support tools. An integrated verification and testing capability was designed as part of MUST. Documentation, verification and test options are provided with special attention on real-time, multiprocessing issues. The needs of the entire software production cycle were considered, with effective management and reduced lifecycle costs as foremost goals.

  15. Generic Verification Protocol for Verification of Online Turbidimeters

    EPA Science Inventory

    This protocol provides generic procedures for implementing a verification test for the performance of online turbidimeters. The verification tests described in this document will be conducted under the Environmental Technology Verification (ETV) Program. Verification tests will...

  16. Verification test report on a solar heating and hot water system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Information is provided on the development, qualification and acceptance verification of commercial solar heating and hot water systems and components. The verification includes the performances, the efficiences and the various methods used, such as similarity, analysis, inspection, test, etc., that are applicable to satisfying the verification requirements.

  17. Sierra/SolidMechanics 4.48 Verification Tests Manual.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plews, Julia A.; Crane, Nathan K; de Frias, Gabriel Jose

    2018-03-01

    Presented in this document is a small portion of the tests that exist in the Sierra / SolidMechanics (Sierra / SM) verification test suite. Most of these tests are run nightly with the Sierra / SM code suite, and the results of the test are checked versus the correct analytical result. For each of the tests presented in this document, the test setup, a description of the analytic solution, and comparison of the Sierra / SM code results to the analytic solution is provided. Mesh convergence is also checked on a nightly basis for several of these tests. This documentmore » can be used to confirm that a given code capability is verified or referenced as a compilation of example problems. Additional example problems are provided in the Sierra / SM Example Problems Manual. Note, many other verification tests exist in the Sierra / SM test suite, but have not yet been included in this manual.« less

  18. Sierra/SolidMechanics 4.48 Verification Tests Manual.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plews, Julia A.; Crane, Nathan K.; de Frias, Gabriel Jose

    Presented in this document is a small portion of the tests that exist in the Sierra / SolidMechanics (Sierra / SM) verification test suite. Most of these tests are run nightly with the Sierra / SM code suite, and the results of the test are checked versus the correct analytical result. For each of the tests presented in this document, the test setup, a description of the analytic solution, and comparison of the Sierra / SM code results to the analytic solution is provided. Mesh convergence is also checked on a nightly basis for several of these tests. This documentmore » can be used to confirm that a given code capability is verified or referenced as a compilation of example problems. Additional example problems are provided in the Sierra / SM Example Problems Manual. Note, many other verification tests exist in the Sierra / SM test suite, but have not yet been included in this manual.« less

  19. Analytical Verifications in Cryogenic Testing of NGST Advanced Mirror System Demonstrators

    NASA Technical Reports Server (NTRS)

    Cummings, Ramona; Levine, Marie; VanBuren, Dave; Kegley, Jeff; Green, Joseph; Hadaway, James; Presson, Joan; Cline, Todd; Stahl, H. Philip (Technical Monitor)

    2002-01-01

    Ground based testing is a critical and costly part of component, assembly, and system verifications of large space telescopes. At such tests, however, with integral teamwork by planners, analysts, and test personnel, segments can be included to validate specific analytical parameters and algorithms at relatively low additional cost. This paper opens with strategy of analytical verification segments added to vacuum cryogenic testing of Advanced Mirror System Demonstrator (AMSD) assemblies. These AMSD assemblies incorporate material and architecture concepts being considered in the Next Generation Space Telescope (NGST) design. The test segments for workmanship testing, cold survivability, and cold operation optical throughput are supplemented by segments for analytical verifications of specific structural, thermal, and optical parameters. Utilizing integrated modeling and separate materials testing, the paper continues with support plan for analyses, data, and observation requirements during the AMSD testing, currently slated for late calendar year 2002 to mid calendar year 2003. The paper includes anomaly resolution as gleaned by authors from similar analytical verification support of a previous large space telescope, then closes with draft of plans for parameter extrapolations, to form a well-verified portion of the integrated modeling being done for NGST performance predictions.

  20. Verification tests of durable TPS concepts

    NASA Technical Reports Server (NTRS)

    Shideler, J. L.; Webb, G. L.; Pittman, C. M.

    1984-01-01

    Titanium multiwall, superalloy honeycomb, and Advanced Carbon-carbon (ACC) multipost Thermal Protection System (TPS) concepts are being developed to provide durable protection for surfaces of future space transportation systems. Verification tests including thermal, vibration, acoustic, water absorption, lightning strike, and aerothermal tests are described. Preliminary results indicate that the three TPS concepts are viable up to a surface temperature in excess of 2300 F.

  1. Code Verification Results of an LLNL ASC Code on Some Tri-Lab Verification Test Suite Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, S R; Bihari, B L; Salari, K

    As scientific codes become more complex and involve larger numbers of developers and algorithms, chances for algorithmic implementation mistakes increase. In this environment, code verification becomes essential to building confidence in the code implementation. This paper will present first results of a new code verification effort within LLNL's B Division. In particular, we will show results of code verification of the LLNL ASC ARES code on the test problems: Su Olson non-equilibrium radiation diffusion, Sod shock tube, Sedov point blast modeled with shock hydrodynamics, and Noh implosion.

  2. Improving Patient Safety With Error Identification in Chemotherapy Orders by Verification Nurses.

    PubMed

    Baldwin, Abigail; Rodriguez, Elizabeth S

    2016-02-01

    The prevalence of medication errors associated with chemotherapy administration is not precisely known. Little evidence exists concerning the extent or nature of errors; however, some evidence demonstrates that errors are related to prescribing. This article demonstrates how the review of chemotherapy orders by a designated nurse known as a verification nurse (VN) at a National Cancer Institute-designated comprehensive cancer center helps to identify prescribing errors that may prevent chemotherapy administration mistakes and improve patient safety in outpatient infusion units. This article will describe the role of the VN and details of the verification process. To identify benefits of the VN role, a retrospective review and analysis of chemotherapy near-miss events from 2009-2014 was performed. A total of 4,282 events related to chemotherapy were entered into the Reporting to Improve Safety and Quality system. A majority of the events were categorized as near-miss events, or those that, because of chance, did not result in patient injury, and were identified at the point of prescribing.

  3. Definition of ground test for Large Space Structure (LSS) control verification

    NASA Technical Reports Server (NTRS)

    Waites, H. B.; Doane, G. B., III; Tollison, D. K.

    1984-01-01

    An overview for the definition of a ground test for the verification of Large Space Structure (LSS) control is given. The definition contains information on the description of the LSS ground verification experiment, the project management scheme, the design, development, fabrication and checkout of the subsystems, the systems engineering and integration, the hardware subsystems, the software, and a summary which includes future LSS ground test plans. Upon completion of these items, NASA/Marshall Space Flight Center will have an LSS ground test facility which will provide sufficient data on dynamics and control verification of LSS so that LSS flight system operations can be reasonably ensured.

  4. Verification of performance specifications of a molecular test: cystic fibrosis carrier testing using the Luminex liquid bead array.

    PubMed

    Lacbawan, Felicitas L; Weck, Karen E; Kant, Jeffrey A; Feldman, Gerald L; Schrijver, Iris

    2012-01-01

    The number of clinical laboratories introducing various molecular tests to their existing test menu is continuously increasing. Prior to offering a US Food and Drug Administration-approved test, it is necessary that performance characteristics of the test, as claimed by the company, are verified before the assay is implemented in a clinical laboratory. To provide an example of the verification of a specific qualitative in vitro diagnostic test: cystic fibrosis carrier testing using the Luminex liquid bead array (Luminex Molecular Diagnostics, Inc, Toronto, Ontario). The approach used by an individual laboratory for verification of a US Food and Drug Administration-approved assay is described. Specific verification data are provided to highlight the stepwise verification approach undertaken by a clinical diagnostic laboratory. Protocols for verification of in vitro diagnostic assays may vary between laboratories. However, all laboratories must verify several specific performance specifications prior to implementation of such assays for clinical use. We provide an example of an approach used for verifying performance of an assay for cystic fibrosis carrier screening.

  5. Verification and benchmark testing of the NUFT computer code

    NASA Astrophysics Data System (ADS)

    Lee, K. H.; Nitao, J. J.; Kulshrestha, A.

    1993-10-01

    This interim report presents results of work completed in the ongoing verification and benchmark testing of the NUFT (Nonisothermal Unsaturated-saturated Flow and Transport) computer code. NUFT is a suite of multiphase, multicomponent models for numerical solution of thermal and isothermal flow and transport in porous media, with application to subsurface contaminant transport problems. The code simulates the coupled transport of heat, fluids, and chemical components, including volatile organic compounds. Grid systems may be cartesian or cylindrical, with one-, two-, or fully three-dimensional configurations possible. In this initial phase of testing, the NUFT code was used to solve seven one-dimensional unsaturated flow and heat transfer problems. Three verification and four benchmarking problems were solved. In the verification testing, excellent agreement was observed between NUFT results and the analytical or quasianalytical solutions. In the benchmark testing, results of code intercomparison were very satisfactory. From these testing results, it is concluded that the NUFT code is ready for application to field and laboratory problems similar to those addressed here. Multidimensional problems, including those dealing with chemical transport, will be addressed in a subsequent report.

  6. Idaho out-of-service verification field operational test

    DOT National Transportation Integrated Search

    2000-02-01

    The Out-of-Service Verification Field Operational Test Project was initiated in 1994. The purpose of the project was to test the feasibility of using sensors and a computerized tracking system to augment the ability of inspectors to monitor and contr...

  7. Assessment of Galileo modal test results for mathematical model verification

    NASA Technical Reports Server (NTRS)

    Trubert, M.

    1984-01-01

    The modal test program for the Galileo Spacecraft was completed at the Jet Propulsion Laboratory in the summer of 1983. The multiple sine dwell method was used for the baseline test. The Galileo Spacecraft is a rather complex 2433 kg structure made of a central core on which seven major appendages representing 30 percent of the total mass are attached, resulting in a high modal density structure. The test revealed a strong nonlinearity in several major modes. This nonlinearity discovered in the course of the test necessitated running additional tests at the unusually high response levels of up to about 21 g. The high levels of response were required to obtain a model verification valid at the level of loads for which the spacecraft was designed. Because of the high modal density and the nonlinearity, correlation between the dynamic mathematical model and the test results becomes a difficult task. Significant changes in the pre-test analytical model are necessary to establish confidence in the upgraded analytical model used for the final load verification. This verification, using a test verified model, is required by NASA to fly the Galileo Spacecraft on the Shuttle/Centaur launch vehicle in 1986.

  8. Standardized Definitions for Code Verification Test Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doebling, Scott William

    This document contains standardized definitions for several commonly used code verification test problems. These definitions are intended to contain sufficient information to set up the test problem in a computational physics code. These definitions are intended to be used in conjunction with exact solutions to these problems generated using Exact- Pack, www.github.com/lanl/exactpack.

  9. Test/QA Plan (TQAP) for Verification of Semi-Continuous Ambient Air Monitoring Systems

    EPA Science Inventory

    The purpose of the semi-continuous ambient air monitoring technology (or MARGA) test and quality assurance plan is to specify procedures for a verification test applicable to commercial semi-continuous ambient air monitoring technologies. The purpose of the verification test is ...

  10. 9 CFR 416.17 - Agency verification.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Agency verification. 416.17 Section 416.17 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... (d) Direct observation or testing to assess the sanitary conditions in the establishment. ...

  11. 9 CFR 416.17 - Agency verification.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Agency verification. 416.17 Section 416.17 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... (d) Direct observation or testing to assess the sanitary conditions in the establishment. ...

  12. 9 CFR 416.17 - Agency verification.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Agency verification. 416.17 Section 416.17 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... (d) Direct observation or testing to assess the sanitary conditions in the establishment. ...

  13. 9 CFR 416.17 - Agency verification.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Agency verification. 416.17 Section 416.17 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... (d) Direct observation or testing to assess the sanitary conditions in the establishment. ...

  14. 9 CFR 416.17 - Agency verification.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Agency verification. 416.17 Section 416.17 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... (d) Direct observation or testing to assess the sanitary conditions in the establishment. ...

  15. PERFORMANCE VERIFICATION TEST FOR FIELD-PORTABLE MEASUREMENTS OF LEAD IN DUST

    EPA Science Inventory

    The US Environmental Protection Agency (EPA) Environmental Technology Verification (ETV) program (www.epa.jzov/etv) conducts performance verification tests of technologies used for the characterization and monitoring of contaminated media. The program exists to provide high-quali...

  16. VERIFICATION TESTING OF HIGH-RATE MECHANICAL INDUCTION MIXERS FOR CHEMICAL DISINFECTANTS

    EPA Science Inventory

    This paper describes the results of verification testing of mechanical induction mixers for dispersion of chemical disinfectants in wet-weather flow (WWF) conducted under the U.S. Environmental Protection Agency's Environmental Technology Verification (ETV) WWF Pilot Program. Th...

  17. Orbit attitude processor. STS-1 bench program verification test plan

    NASA Technical Reports Server (NTRS)

    Mcclain, C. R.

    1980-01-01

    A plan for the static verification of the STS-1 ATT PROC ORBIT software requirements is presented. The orbit version of the SAPIENS bench program is used to generate the verification data. A brief discussion of the simulation software and flight software modules is presented along with a description of the test cases.

  18. Probabilistic Requirements (Partial) Verification Methods Best Practices Improvement. Variables Acceptance Sampling Calculators: Empirical Testing. Volume 2

    NASA Technical Reports Server (NTRS)

    Johnson, Kenneth L.; White, K. Preston, Jr.

    2012-01-01

    The NASA Engineering and Safety Center was requested to improve on the Best Practices document produced for the NESC assessment, Verification of Probabilistic Requirements for the Constellation Program, by giving a recommended procedure for using acceptance sampling by variables techniques as an alternative to the potentially resource-intensive acceptance sampling by attributes method given in the document. In this paper, the results of empirical tests intended to assess the accuracy of acceptance sampling plan calculators implemented for six variable distributions are presented.

  19. Integration and verification testing of the Large Synoptic Survey Telescope camera

    NASA Astrophysics Data System (ADS)

    Lange, Travis; Bond, Tim; Chiang, James; Gilmore, Kirk; Digel, Seth; Dubois, Richard; Glanzman, Tom; Johnson, Tony; Lopez, Margaux; Newbry, Scott P.; Nordby, Martin E.; Rasmussen, Andrew P.; Reil, Kevin A.; Roodman, Aaron J.

    2016-08-01

    We present an overview of the Integration and Verification Testing activities of the Large Synoptic Survey Telescope (LSST) Camera at the SLAC National Accelerator Lab (SLAC). The LSST Camera, the sole instrument for LSST and under construction now, is comprised of a 3.2 Giga-pixel imager and a three element corrector with a 3.5 degree diameter field of view. LSST Camera Integration and Test will be taking place over the next four years, with final delivery to the LSST observatory anticipated in early 2020. We outline the planning for Integration and Test, describe some of the key verification hardware systems being developed, and identify some of the more complicated assembly/integration activities. Specific details of integration and verification hardware systems will be discussed, highlighting some of the technical challenges anticipated.

  20. ON-LINE MONITORING OF I&C TRANSMITTERS AND SENSORS FOR CALIBRATION VERIFICATION AND RESPONSE TIME TESTING WAS SUCCESSFULLY IMPLEMENTED AT ATR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, Phillip A.; O'Hagan, Ryan; Shumaker, Brent

    The Advanced Test Reactor (ATR) has always had a comprehensive procedure to verify the performance of its critical transmitters and sensors, including RTDs, and pressure, level, and flow transmitters. These transmitters and sensors have been periodically tested for response time and calibration verification to ensure accuracy. With implementation of online monitoring techniques at ATR, the calibration verification and response time testing of these transmitters and sensors are verified remotely, automatically, hands off, include more portions of the system, and can be performed at almost any time during process operations. The work was done under a DOE funded SBIR project carriedmore » out by AMS. As a result, ATR is now able to save the manpower that has been spent over the years on manual calibration verification and response time testing of its temperature and pressure sensors and refocus those resources towards more equipment reliability needs. More importantly, implementation of OLM will help enhance the overall availability, safety, and efficiency. Together with equipment reliability programs of ATR, the integration of OLM will also help with I&C aging management goals of the Department of Energy and long-time operation of ATR.« less

  1. Environmental Testing Campaign and Verification of Satellite Deimos-2 at INTA

    NASA Astrophysics Data System (ADS)

    Hernandez, Daniel; Vazquez, Mercedes; Anon, Manuel; Olivo, Esperanza; Gallego, Pablo; Morillo, Pablo; Parra, Javier; Capraro; Luengo, Mar; Garcia, Beatriz; Villacorta, Pablo

    2014-06-01

    In this paper the environmental test campaign and verification of the DEIMOS-2 (DM2) satellite will be presented and described. DM2 will be ready for launch in 2014.Firstly, a short description of the satellite is presented, including its physical characteristics and intended optical performances. DEIMOS-2 is a LEO satellite for earth observation that will provide high resolution imaging services for agriculture, civil protection, environmental issues, disasters monitoring, climate change, urban planning, cartography, security and intelligence.Then, the verification and test campaign carried out on the SM and FM models at INTA is described; including Mechanical test for the SM and Climatic, Mechanical and Electromagnetic Compatibility tests for the FM. In addition, this paper includes Centre of Gravity and Moment of Inertia measurements for both models, and other verification activities carried out in order to ensure satellite's health during launch and its in orbit performance.

  2. A robust method using propensity score stratification for correcting verification bias for binary tests

    PubMed Central

    He, Hua; McDermott, Michael P.

    2012-01-01

    Sensitivity and specificity are common measures of the accuracy of a diagnostic test. The usual estimators of these quantities are unbiased if data on the diagnostic test result and the true disease status are obtained from all subjects in an appropriately selected sample. In some studies, verification of the true disease status is performed only for a subset of subjects, possibly depending on the result of the diagnostic test and other characteristics of the subjects. Estimators of sensitivity and specificity based on this subset of subjects are typically biased; this is known as verification bias. Methods have been proposed to correct verification bias under the assumption that the missing data on disease status are missing at random (MAR), that is, the probability of missingness depends on the true (missing) disease status only through the test result and observed covariate information. When some of the covariates are continuous, or the number of covariates is relatively large, the existing methods require parametric models for the probability of disease or the probability of verification (given the test result and covariates), and hence are subject to model misspecification. We propose a new method for correcting verification bias based on the propensity score, defined as the predicted probability of verification given the test result and observed covariates. This is estimated separately for those with positive and negative test results. The new method classifies the verified sample into several subsamples that have homogeneous propensity scores and allows correction for verification bias. Simulation studies demonstrate that the new estimators are more robust to model misspecification than existing methods, but still perform well when the models for the probability of disease and probability of verification are correctly specified. PMID:21856650

  3. A Hardware-in-the-Loop Simulation Platform for the Verification and Validation of Safety Control Systems

    NASA Astrophysics Data System (ADS)

    Rankin, Drew J.; Jiang, Jin

    2011-04-01

    Verification and validation (V&V) of safety control system quality and performance is required prior to installing control system hardware within nuclear power plants (NPPs). Thus, the objective of the hardware-in-the-loop (HIL) platform introduced in this paper is to verify the functionality of these safety control systems. The developed platform provides a flexible simulated testing environment which enables synchronized coupling between the real and simulated world. Within the platform, National Instruments (NI) data acquisition (DAQ) hardware provides an interface between a programmable electronic system under test (SUT) and a simulation computer. Further, NI LabVIEW resides on this remote DAQ workstation for signal conversion and routing between Ethernet and standard industrial signals as well as for user interface. The platform is applied to the testing of a simplified implementation of Canadian Deuterium Uranium (CANDU) shutdown system no. 1 (SDS1) which monitors only the steam generator level of the simulated NPP. CANDU NPP simulation is performed on a Darlington NPP desktop training simulator provided by Ontario Power Generation (OPG). Simplified SDS1 logic is implemented on an Invensys Tricon v9 programmable logic controller (PLC) to test the performance of both the safety controller and the implemented logic. Prior to HIL simulation, platform availability of over 95% is achieved for the configuration used during the V&V of the PLC. Comparison of HIL simulation results to benchmark simulations shows good operational performance of the PLC following a postulated initiating event (PIE).

  4. Space telescope observatory management system preliminary test and verification plan

    NASA Technical Reports Server (NTRS)

    Fritz, J. S.; Kaldenbach, C. F.; Williams, W. B.

    1982-01-01

    The preliminary plan for the Space Telescope Observatory Management System Test and Verification (TAV) is provided. Methodology, test scenarios, test plans and procedure formats, schedules, and the TAV organization are included. Supporting information is provided.

  5. Test/QA Plan for Verification of Ozone Indicator Cards

    EPA Science Inventory

    This verification test will address ozone indicator cards (OICs) that provide short-term semi-quantitative measures of ozone concentration in ambient air. Testing will be conducted under the auspices of the U.S. Environmental Protection Agency (EPA) through the Environmental Tec...

  6. Safety Verification of a Fault Tolerant Reconfigurable Autonomous Goal-Based Robotic Control System

    NASA Technical Reports Server (NTRS)

    Braman, Julia M. B.; Murray, Richard M; Wagner, David A.

    2007-01-01

    Fault tolerance and safety verification of control systems are essential for the success of autonomous robotic systems. A control architecture called Mission Data System (MDS), developed at the Jet Propulsion Laboratory, takes a goal-based control approach. In this paper, a method for converting goal network control programs into linear hybrid systems is developed. The linear hybrid system can then be verified for safety in the presence of failures using existing symbolic model checkers. An example task is simulated in MDS and successfully verified using HyTech, a symbolic model checking software for linear hybrid systems.

  7. VERIFICATION TESTING OF HIGH-RATE MECHANICAL INDUCTION MIXERS FOR CHEMICAL DISINFECTANTS, Oregon

    EPA Science Inventory

    This paper describes the results of verification testing of mechanical induction mixers for dispersion of chemical disinfectants in wet-weather flow (WWF) conducted under the U.S. Environmental Protection Agency's Environmental Technology Verification (ETV) WWF Pilot Program. Th...

  8. Ares I-X Range Safety Simulation Verification and Analysis IV and V

    NASA Technical Reports Server (NTRS)

    Tarpley, Ashley; Beaty, James; Starr, Brett

    2010-01-01

    NASA s ARES I-X vehicle launched on a suborbital test flight from the Eastern Range in Florida on October 28, 2009. NASA generated a Range Safety (RS) flight data package to meet the RS trajectory data requirements defined in the Air Force Space Command Manual 91-710. Some products included in the flight data package were a nominal ascent trajectory, ascent flight envelope trajectories, and malfunction turn trajectories. These data are used by the Air Force s 45th Space Wing (45SW) to ensure Eastern Range public safety and to make flight termination decisions on launch day. Due to the criticality of the RS data in regards to public safety and mission success, an independent validation and verification (IV&V) effort was undertaken to accompany the data generation analyses to ensure utmost data quality and correct adherence to requirements. Multiple NASA centers and contractor organizations were assigned specific products to IV&V. The data generation and IV&V work was coordinated through the Launch Constellation Range Safety Panel s Trajectory Working Group, which included members from the prime and IV&V organizations as well as the 45SW. As a result of the IV&V efforts, the RS product package was delivered with confidence that two independent organizations using separate simulation software generated data to meet the range requirements and yielded similar results. This document captures ARES I-X RS product IV&V analysis, including the methodology used to verify inputs, simulation, and output data for an RS product. Additionally a discussion of lessons learned is presented to capture advantages and disadvantages to the IV&V processes used.

  9. Progress of Ongoing NASA Lithium-Ion Cell Verification Testing for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    McKissock, Barbara I.; Manzo, Michelle A.; Miller, Thomas B.; Reid, Concha M.; Bennett, William R.; Gemeiner, Russel

    2008-01-01

    A Lithium-ion Verification and Validation Program with the purpose to assess the capabilities of current aerospace lithium-ion (Li-ion) battery cells to perform in a low-earth-orbit (LEO) regime was initiated in 2002. This program involves extensive characterization and LEO life testing at ten different combinations of depth-of-discharge, temperature, and end-of-charge voltage. The test conditions selected for the life tests are defined as part of a statistically designed test matrix developed to determine the effects of operating conditions on performance and life of Li-ion cells. Results will be used to model and predict cell performance and degradation as a function of test operating conditions. Testing is being performed at the Naval Surface Warfare Center/Crane Division in Crane, Indiana. Testing was initiated in September 2004 with 40 Ah cells from Saft and 30 Ah cells from Lithion. The test program has been expanded with the addition of modules composed of 18650 cells from ABSL Power Solutions in April 2006 and the addition of 50 Ah cells from Mine Safety Appliances Co. (MSA) in June 2006. Preliminary results showing the average voltage and average available discharge capacity for the Saft and Lithion packs at the test conditions versus cycles are presented.

  10. Mutation Testing for Effective Verification of Digital Components of Physical Systems

    NASA Astrophysics Data System (ADS)

    Kushik, N. G.; Evtushenko, N. V.; Torgaev, S. N.

    2015-12-01

    Digital components of modern physical systems are often designed applying circuitry solutions based on the field programmable gate array technology (FPGA). Such (embedded) digital components should be carefully tested. In this paper, an approach for the verification of digital physical system components based on mutation testing is proposed. The reference description of the behavior of a digital component in the hardware description language (HDL) is mutated by introducing into it the most probable errors and, unlike mutants in high-level programming languages, the corresponding test case is effectively derived based on a comparison of special scalable representations of the specification and the constructed mutant using various logic synthesis and verification systems.

  11. GENERIC VERIFICATION PROTOCOL: DISTRIBUTED GENERATION AND COMBINED HEAT AND POWER FIELD TESTING PROTOCOL

    EPA Science Inventory

    This report is a generic verification protocol by which EPA’s Environmental Technology Verification program tests newly developed equipment for distributed generation of electric power, usually micro-turbine generators and internal combustion engine generators. The protocol will ...

  12. Discrete Abstractions of Hybrid Systems: Verification of Safety and Application to User-Interface Design

    NASA Technical Reports Server (NTRS)

    Oishi, Meeko; Tomlin, Claire; Degani, Asaf

    2003-01-01

    Human interaction with complex hybrid systems involves the user, the automation's discrete mode logic, and the underlying continuous dynamics of the physical system. Often the user-interface of such systems displays a reduced set of information about the entire system. In safety-critical systems, how can we identify user-interface designs which do not have adequate information, or which may confuse the user? Here we describe a methodology, based on hybrid system analysis, to verify that a user-interface contains information necessary to safely complete a desired procedure or task. Verification within a hybrid framework allows us to account for the continuous dynamics underlying the simple, discrete representations displayed to the user. We provide two examples: a car traveling through a yellow light at an intersection and an aircraft autopilot in a landing/go-around maneuver. The examples demonstrate the general nature of this methodology, which is applicable to hybrid systems (not fully automated) which have operational constraints we can pose in terms of safety. This methodology differs from existing work in hybrid system verification in that we directly account for the user's interactions with the system.

  13. AN ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) PERFORMANCE TESTING OF THE INDUSTRIAL TEST SYSTEM, INC. CYANIDE REAGENTSTRIP™ TEST KIT

    EPA Science Inventory

    Cyanide can be present in various forms in water. The cyanide test kit evaluated in this verification study (Industrial Test System, Inc. Cyanide Regent Strip ™ Test Kit) was designed to detect free cyanide in water. This is done by converting cyanide in water to cyanogen...

  14. Successful MPPF Pneumatics Verification and Validation Testing

    NASA Image and Video Library

    2017-03-28

    Engineers and technicians completed verification and validation testing of several pneumatic systems inside and outside the Multi-Payload Processing Facility (MPPF) at NASA's Kennedy Space Center in Florida. In view is the service platform for Orion spacecraft processing. The MPPF will be used for offline processing and fueling of the Orion spacecraft and service module stack before launch. Orion also will be de-serviced in the MPPF after a mission. The Ground Systems Development and Operations Program (GSDO) is overseeing upgrades to the facility. The Engineering Directorate led the recent pneumatic tests.

  15. 76 FR 50164 - Protocol Gas Verification Program and Minimum Competency Requirements for Air Emission Testing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-12

    ...-AQ06 Protocol Gas Verification Program and Minimum Competency Requirements for Air Emission Testing... correct certain portions of the Protocol Gas Verification Program and Minimum Competency Requirements for... final rule that amends the Agency's Protocol Gas Verification Program (PGVP) and the minimum competency...

  16. Test/QA Plan for Verification of Cavity Ringdown Spectroscopy Systems for Ammonia Monitoring in Stack Gas

    EPA Science Inventory

    The purpose of the cavity ringdown spectroscopy (CRDS) technology test and quality assurance plan is to specify procedures for a verification test applicable to commercial cavity ringdown spectroscopy technologies. The purpose of the verification test is to evaluate the performa...

  17. WE-D-BRA-04: Online 3D EPID-Based Dose Verification for Optimum Patient Safety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spreeuw, H; Rozendaal, R; Olaciregui-Ruiz, I

    2015-06-15

    Purpose: To develop an online 3D dose verification tool based on EPID transit dosimetry to ensure optimum patient safety in radiotherapy treatments. Methods: A new software package was developed which processes EPID portal images online using a back-projection algorithm for the 3D dose reconstruction. The package processes portal images faster than the acquisition rate of the portal imager (∼ 2.5 fps). After a portal image is acquired, the software seeks for “hot spots” in the reconstructed 3D dose distribution. A hot spot is in this study defined as a 4 cm{sup 3} cube where the average cumulative reconstructed dose exceedsmore » the average total planned dose by at least 20% and 50 cGy. If a hot spot is detected, an alert is generated resulting in a linac halt. The software has been tested by irradiating an Alderson phantom after introducing various types of serious delivery errors. Results: In our first experiment the Alderson phantom was irradiated with two arcs from a 6 MV VMAT H&N treatment having a large leaf position error or a large monitor unit error. For both arcs and both errors the linac was halted before dose delivery was completed. When no error was introduced, the linac was not halted. The complete processing of a single portal frame, including hot spot detection, takes about 220 ms on a dual hexacore Intel Xeon 25 X5650 CPU at 2.66 GHz. Conclusion: A prototype online 3D dose verification tool using portal imaging has been developed and successfully tested for various kinds of gross delivery errors. The detection of hot spots was proven to be effective for the timely detection of these errors. Current work is focused on hot spot detection criteria for various treatment sites and the introduction of a clinical pilot program with online verification of hypo-fractionated (lung) treatments.« less

  18. NASA's Evolutionary Xenon Thruster (NEXT) Component Verification Testing

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Pinero, Luis R.; Sovey, James S.

    2009-01-01

    Component testing is a critical facet of the comprehensive thruster life validation strategy devised by the NASA s Evolutionary Xenon Thruster (NEXT) program. Component testing to-date has consisted of long-duration high voltage propellant isolator and high-cycle heater life validation testing. The high voltage propellant isolator, a heritage design, will be operated under different environmental condition in the NEXT ion thruster requiring verification testing. The life test of two NEXT isolators was initiated with comparable voltage and pressure conditions with a higher temperature than measured for the NEXT prototype-model thruster. To date the NEXT isolators have accumulated 18,300 h of operation. Measurements indicate a negligible increase in leakage current over the testing duration to date. NEXT 1/2 in. heaters, whose manufacturing and control processes have heritage, were selected for verification testing based upon the change in physical dimensions resulting in a higher operating voltage as well as potential differences in thermal environment. The heater fabrication processes, developed for the International Space Station (ISS) plasma contactor hollow cathode assembly, were utilized with modification of heater dimensions to accommodate a larger cathode. Cyclic testing of five 1/22 in. diameter heaters was initiated to validate these modified fabrication processes while retaining high reliability heaters. To date two of the heaters have been cycled to 10,000 cycles and suspended to preserve hardware. Three of the heaters have been cycled to failure giving a B10 life of 12,615 cycles, approximately 6,000 more cycles than the established qualification B10 life of the ISS plasma contactor heaters.

  19. Evaluation of verification and testing tools for FORTRAN programs

    NASA Technical Reports Server (NTRS)

    Smith, K. A.

    1980-01-01

    Two automated software verification and testing systems were developed for use in the analysis of computer programs. An evaluation of the static analyzer DAVE and the dynamic analyzer PET, which are used in the analysis of FORTRAN programs on Control Data (CDC) computers, are described. Both systems were found to be effective and complementary, and are recommended for use in testing FORTRAN programs.

  20. Fabrication and verification testing of ETM 30 cm diameter ion thrusters

    NASA Technical Reports Server (NTRS)

    Collett, C.

    1977-01-01

    Engineering model designs and acceptance tests are described for the 800 and 900 series 30 cm electron bombardment thrustors. Modifications to the test console for a 1000 hr verification test were made. The 10,000 hr endurance test of the S/N 701 thruster is described, and post test analysis results are included.

  1. Investigation of a Verification and Validation Tool with a Turbofan Aircraft Engine Application

    NASA Technical Reports Server (NTRS)

    Uth, Peter; Narang-Siddarth, Anshu; Wong, Edmond

    2018-01-01

    The development of more advanced control architectures for turbofan aircraft engines can yield gains in performance and efficiency over the lifetime of an engine. However, the implementation of these increasingly complex controllers is contingent on their ability to provide safe, reliable engine operation. Therefore, having the means to verify the safety of new control algorithms is crucial. As a step towards this goal, CoCoSim, a publicly available verification tool for Simulink, is used to analyze C-MAPSS40k, a 40,000 lbf class turbo-fan engine model developed at NASA for testing new control algorithms. Due to current limitations of the verification software, several modifications are made to C-MAPSS40k to achieve compatibility with CoCoSim. Some of these modifications sacrifice fidelity to the original model. Several safety and performance requirements typical for turbofan engines are identified and constructed into a verification framework. Preliminary results using an industry standard baseline controller for these requirements are presented. While verification capabilities are demonstrated, a truly comprehensive analysis will require further development of the verification tool.

  2. Universal Verification Methodology Based Register Test Automation Flow.

    PubMed

    Woo, Jae Hun; Cho, Yong Kwan; Park, Sun Kyu

    2016-05-01

    In today's SoC design, the number of registers has been increased along with complexity of hardware blocks. Register validation is a time-consuming and error-pron task. Therefore, we need an efficient way to perform verification with less effort in shorter time. In this work, we suggest register test automation flow based UVM (Universal Verification Methodology). UVM provides a standard methodology, called a register model, to facilitate stimulus generation and functional checking of registers. However, it is not easy for designers to create register models for their functional blocks or integrate models in test-bench environment because it requires knowledge of SystemVerilog and UVM libraries. For the creation of register models, many commercial tools support a register model generation from register specification described in IP-XACT, but it is time-consuming to describe register specification in IP-XACT format. For easy creation of register model, we propose spreadsheet-based register template which is translated to IP-XACT description, from which register models can be easily generated using commercial tools. On the other hand, we also automate all the steps involved integrating test-bench and generating test-cases, so that designers may use register model without detailed knowledge of UVM or SystemVerilog. This automation flow involves generating and connecting test-bench components (e.g., driver, checker, bus adaptor, etc.) and writing test sequence for each type of register test-case. With the proposed flow, designers can save considerable amount of time to verify functionality of registers.

  3. Successful MPPF Pneumatics Verification and Validation Testing

    NASA Image and Video Library

    2017-03-28

    Engineers and technicians completed verification and validation testing of several pneumatic systems inside and outside the Multi-Payload Processing Facility (MPPF) at NASA's Kennedy Space Center in Florida. In view is the top level of the service platform for Orion spacecraft processing. The MPPF will be used for offline processing and fueling of the Orion spacecraft and service module stack before launch. Orion also will be de-serviced in the MPPF after a mission. The Ground Systems Development and Operations Program (GSDO) is overseeing upgrades to the facility. The Engineering Directorate led the recent pneumatic tests.

  4. Successful MPPF Pneumatics Verification and Validation Testing

    NASA Image and Video Library

    2017-03-28

    Engineers and technicians completed verification and validation testing of several pneumatic systems inside and outside the Multi-Payload Processing Facility (MPPF) at NASA's Kennedy Space Center in Florida. In view is the service platform for Orion spacecraft processing. To the left are several pneumatic panels. The MPPF will be used for offline processing and fueling of the Orion spacecraft and service module stack before launch. Orion also will be de-serviced in the MPPF after a mission. The Ground Systems Development and Operations Program (GSDO) is overseeing upgrades to the facility. The Engineering Directorate led the recent pneumatic tests.

  5. Process Document, Joint Verification Protocol, and Joint Test Plan for Verification of HACH-LANGE GmbH LUMIStox 300 Bench Top Luminometer and ECLOX Handheld Luminometer for Luminescent Bacteria Test for use in Wastewater

    EPA Science Inventory

    The Danish Environmental Technology Verification program (DANETV) Water Test Centre operated by DHI, is supported by the Danish Ministry for Science, Technology and Innovation. DANETV, the United States Environmental Protection Agency Environmental Technology Verification Progra...

  6. Design and Verification of Critical Pressurised Windows for Manned Spaceflight

    NASA Astrophysics Data System (ADS)

    Lamoure, Richard; Busto, Lara; Novo, Francisco; Sinnema, Gerben; Leal, Mendes M.

    2014-06-01

    The Window Design for Manned Spaceflight (WDMS) project was tasked with establishing the state-of-art and explore possible improvements to the current structural integrity verification and fracture control methodologies for manned spacecraft windows.A critical review of the state-of-art in spacecraft window design, materials and verification practice was conducted. Shortcomings of the methodology in terms of analysis, inspection and testing were identified. Schemes for improving verification practices and reducing conservatism whilst maintaining the required safety levels were then proposed.An experimental materials characterisation programme was defined and carried out with the support of the 'Glass and Façade Technology Research Group', at the University of Cambridge. Results of the sample testing campaign were analysed, post-processed and subsequently applied to the design of a breadboard window demonstrator.Two Fused Silica glass window panes were procured and subjected to dedicated analyses, inspection and testing comprising both qualification and acceptance programmes specifically tailored to the objectives of the activity.Finally, main outcomes have been compiled into a Structural Verification Guide for Pressurised Windows in manned spacecraft, incorporating best practices and lessons learned throughout this project.

  7. Design for Verification: Enabling Verification of High Dependability Software-Intensive Systems

    NASA Technical Reports Server (NTRS)

    Mehlitz, Peter C.; Penix, John; Markosian, Lawrence Z.; Koga, Dennis (Technical Monitor)

    2003-01-01

    Strategies to achieve confidence that high-dependability applications are correctly implemented include testing and automated verification. Testing deals mainly with a limited number of expected execution paths. Verification usually attempts to deal with a larger number of possible execution paths. While the impact of architecture design on testing is well known, its impact on most verification methods is not as well understood. The Design for Verification approach considers verification from the application development perspective, in which system architecture is designed explicitly according to the application's key properties. The D4V-hypothesis is that the same general architecture and design principles that lead to good modularity, extensibility and complexity/functionality ratio can be adapted to overcome some of the constraints on verification tools, such as the production of hand-crafted models and the limits on dynamic and static analysis caused by state space explosion.

  8. CAPTIONALS: A computer aided testing environment for the verification and validation of communication protocols

    NASA Technical Reports Server (NTRS)

    Feng, C.; Sun, X.; Shen, Y. N.; Lombardi, Fabrizio

    1992-01-01

    This paper covers the verification and protocol validation for distributed computer and communication systems using a computer aided testing approach. Validation and verification make up the so-called process of conformance testing. Protocol applications which pass conformance testing are then checked to see whether they can operate together. This is referred to as interoperability testing. A new comprehensive approach to protocol testing is presented which address: (1) modeling for inter-layer representation for compatibility between conformance and interoperability testing; (2) computational improvement to current testing methods by using the proposed model inclusive of formulation of new qualitative and quantitative measures and time-dependent behavior; (3) analysis and evaluation of protocol behavior for interactive testing without extensive simulation.

  9. Power System Test and Verification at Satellite Level

    NASA Astrophysics Data System (ADS)

    Simonelli, Giulio; Mourra, Olivier; Tonicello, Ferdinando

    2008-09-01

    Most of the articles on Power Systems deal with the architecture and technical solutions related to the functionalities of the power system and their performances. Very few articles, if none, address integration and verification aspects of the Power System at satellite level and the related issues with the Power EGSE (Electrical Ground Support Equipment), which, also, have to support the AIT/AIV (Assembly Integration Test and Verification) program of the satellite and, eventually, the launch campaign. In the last years a more complex development and testing concept based on MDVE (Model Based Development and Verification Environment) has been introduced. In the MDVE approach the simulation software is used to simulate the Satellite environment and, in the early stages, the satellites units. This approach changed significantly the Power EGSE requirements. Power EGSEs or, better, Power SCOEs (Special Check Out Equipment) are now requested to provide the instantaneous power generated by the solar array throughout the orbit. To achieve that, the Power SCOE interfaces to the RTS (Real Time Simulator) of the MDVE. The RTS provides the instantaneous settings, which belong to that point along the orbit, to the Power SCOE so that the Power SCOE generates the instantaneous {I,V} curve of the SA (Solar Array). That means a real time test for the power system, which is even more valuable for EO (Earth Observation) satellites where the Solar Array aspect angle to the sun is rarely fixed, and the power load profile can be particularly complex (for example, in radar applications). In this article the major issues related to integration and testing of Power Systems will be discussed taking into account different power system topologies (i.e. regulated bus, unregulated bus, battery bus, based on MPPT or S3R…). Also aspects about Power System AIT I/Fs (interfaces) and Umbilical I/Fs with the launcher and the Power SCOE I/Fs will be addressed. Last but not least, protection strategy

  10. Verification Testing: Meet User Needs Figure of Merit

    NASA Technical Reports Server (NTRS)

    Kelly, Bryan W.; Welch, Bryan W.

    2017-01-01

    Verification is the process through which Modeling and Simulation(M&S) software goes to ensure that it has been rigorously tested and debugged for its intended use. Validation confirms that said software accurately models and represents the real world system. Credibility gives an assessment of the development and testing effort that the software has gone through as well as how accurate and reliable test results are. Together, these three components form Verification, Validation, and Credibility(VV&C), the process by which all NASA modeling software is to be tested to ensure that it is ready for implementation. NASA created this process following the CAIB (Columbia Accident Investigation Board) report seeking to understand the reasons the Columbia space shuttle failed during reentry. The reports conclusion was that the accident was fully avoidable, however, among other issues, the necessary data to make an informed decision was not there and the result was complete loss of the shuttle and crew. In an effort to mitigate this problem, NASA put out their Standard for Models and Simulations, currently in version NASA-STD-7009A, in which they detailed their recommendations, requirements and rationale for the different components of VV&C. They did this with the intention that it would allow for people receiving MS software to clearly understand and have data from the past development effort. This in turn would allow the people who had not worked with the MS software before to move forward with greater confidence and efficiency in their work. This particular project looks to perform Verification on several MATLAB (Registered Trademark)(The MathWorks, Inc.) scripts that will be later implemented in a website interface. It seeks to take note and define the limits of operation, the units and significance, and the expected datatype and format of the inputs and outputs of each of the scripts. This is intended to prevent the code from attempting to make incorrect or impossible

  11. Integrated testing and verification system for research flight software design document

    NASA Technical Reports Server (NTRS)

    Taylor, R. N.; Merilatt, R. L.; Osterweil, L. J.

    1979-01-01

    The NASA Langley Research Center is developing the MUST (Multipurpose User-oriented Software Technology) program to cut the cost of producing research flight software through a system of software support tools. The HAL/S language is the primary subject of the design. Boeing Computer Services Company (BCS) has designed an integrated verification and testing capability as part of MUST. Documentation, verification and test options are provided with special attention on real time, multiprocessing issues. The needs of the entire software production cycle have been considered, with effective management and reduced lifecycle costs as foremost goals. Capabilities have been included in the design for static detection of data flow anomalies involving communicating concurrent processes. Some types of ill formed process synchronization and deadlock also are detected statically.

  12. 76 FR 81991 - National Spectrum Sharing Research Experimentation, Validation, Verification, Demonstration and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-29

    ... non-federal community, including the academic, commercial, and public safety sectors, to implement a..., Verification, Demonstration and Trials: Technical Workshop II on Coordinating Federal Government/Private Sector Spectrum Innovation Testing Needs AGENCY: The National Coordination Office (NCO) for Networking and...

  13. Bias in estimating accuracy of a binary screening test with differential disease verification

    PubMed Central

    Brinton, John T.; Ringham, Brandy M.; Glueck, Deborah H.

    2011-01-01

    SUMMARY Sensitivity, specificity, positive and negative predictive value are typically used to quantify the accuracy of a binary screening test. In some studies it may not be ethical or feasible to obtain definitive disease ascertainment for all subjects using a gold standard test. When a gold standard test cannot be used an imperfect reference test that is less than 100% sensitive and specific may be used instead. In breast cancer screening, for example, follow-up for cancer diagnosis is used as an imperfect reference test for women where it is not possible to obtain gold standard results. This incomplete ascertainment of true disease, or differential disease verification, can result in biased estimates of accuracy. In this paper, we derive the apparent accuracy values for studies subject to differential verification. We determine how the bias is affected by the accuracy of the imperfect reference test, the percent who receive the imperfect reference standard test not receiving the gold standard, the prevalence of the disease, and the correlation between the results for the screening test and the imperfect reference test. It is shown that designs with differential disease verification can yield biased estimates of accuracy. Estimates of sensitivity in cancer screening trials may be substantially biased. However, careful design decisions, including selection of the imperfect reference test, can help to minimize bias. A hypothetical breast cancer screening study is used to illustrate the problem. PMID:21495059

  14. Space station prototype Sabatier reactor design verification testing

    NASA Technical Reports Server (NTRS)

    Cusick, R. J.

    1974-01-01

    A six-man, flight prototype carbon dioxide reduction subsystem for the SSP ETC/LSS (Space Station Prototype Environmental/Thermal Control and Life Support System) was developed and fabricated for the NASA-Johnson Space Center between February 1971 and October 1973. Component design verification testing was conducted on the Sabatier reactor covering design and off-design conditions as part of this development program. The reactor was designed to convert a minimum of 98 per cent hydrogen to water and methane for both six-man and two-man reactant flow conditions. Important design features of the reactor and test conditions are described. Reactor test results are presented that show design goals were achieved and off-design performance was stable.

  15. Voltage verification unit

    DOEpatents

    Martin, Edward J [Virginia Beach, VA

    2008-01-15

    A voltage verification unit and method for determining the absence of potentially dangerous potentials within a power supply enclosure without Mode 2 work is disclosed. With this device and method, a qualified worker, following a relatively simple protocol that involves a function test (hot, cold, hot) of the voltage verification unit before Lock Out/Tag Out and, and once the Lock Out/Tag Out is completed, testing or "trying" by simply reading a display on the voltage verification unit can be accomplished without exposure of the operator to the interior of the voltage supply enclosure. According to a preferred embodiment, the voltage verification unit includes test leads to allow diagnostics with other meters, without the necessity of accessing potentially dangerous bus bars or the like.

  16. Generic Verification Protocol for Testing Pesticide Application Spray Drift Reduction Technologies for Row and Field Crops

    EPA Pesticide Factsheets

    This generic verification protocol provides a detailed method to conduct and report results from a verification test of pesticide application technologies that can be used to evaluate these technologies for their potential to reduce spray drift.

  17. Ground vibration tests of a high fidelity truss for verification of on orbit damage location techniques

    NASA Technical Reports Server (NTRS)

    Kashangaki, Thomas A. L.

    1992-01-01

    This paper describes a series of modal tests that were performed on a cantilevered truss structure. The goal of the tests was to assemble a large database of high quality modal test data for use in verification of proposed methods for on orbit model verification and damage detection in flexible truss structures. A description of the hardware is provided along with details of the experimental setup and procedures for 16 damage cases. Results from selected cases are presented and discussed. Differences between ground vibration testing and on orbit modal testing are also described.

  18. Testing of Hand-Held Mine Detection Systems

    DTIC Science & Technology

    2015-01-08

    ITOP 04-2-5208 for guidance on software testing . Testing software is necessary to ensure that safety is designed into the software algorithm, and that...sensor verification areas or target lanes. F.2. TESTING OBJECTIVES. a. Testing objectives will impact on the test design . Some examples of...overall safety, performance, and reliability of the system. It describes activities necessary to ensure safety is designed into the system under test

  19. The concept verification testing of materials science payloads

    NASA Technical Reports Server (NTRS)

    Griner, C. S.; Johnston, M. H.; Whitaker, A.

    1976-01-01

    The concept Verification Testing (CVT) project at the Marshall Space Flight Center, Alabama, is a developmental activity that supports Shuttle Payload Projects such as Spacelab. It provides an operational 1-g environment for testing NASA and other agency experiment and support systems concepts that may be used in shuttle. A dedicated Materials Science Payload was tested in the General Purpose Laboratory to assess the requirements of a space processing payload on a Spacelab type facility. Physical and functional integration of the experiments into the facility was studied, and the impact of the experiments on the facility (and vice versa) was evaluated. A follow-up test designated CVT Test IVA was also held. The purpose of this test was to repeat Test IV experiments with a crew composed of selected and trained scientists. These personnel were not required to have prior knowledge of the materials science disciplines, but were required to have a basic knowledge of science and the scientific method.

  20. In-Space Engine (ISE-100) Development - Design Verification Test

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P.; Popp, Chris; Bullard, Brad

    2017-01-01

    In the past decade, NASA has formulated science mission concepts with an anticipation of landing spacecraft on the lunar surface, meteoroids, and other planets. Advancing thruster technology for spacecraft propulsion systems has been considered for maximizing science payload. Starting in 2010, development of In-Space Engine (designated as ISE-100) has been carried out. ISE-100 thruster is designed based on heritage Missile Defense Agency (MDA) technology aimed for a lightweight and efficient system in terms volume and packaging. It runs with a hypergolic bi-propellant system: MON-25 (nitrogen tetroxide, N2O4, with 25% of nitric oxide, NO) and MMH (monomethylhydrazine, CH6N2) for NASA spacecraft applications. The utilization of this propellant system will provide a propulsion system capable of operating at wide range of temperatures, from 50 C (122 F) down to -30 C (-22 F) to drastically reduce heater power. The thruster is designed to deliver 100 lb(sub f) of thrust with the capability of a pulse mode operation for a wide range of mission duty cycles (MDCs). Two thrusters were fabricated. As part of the engine development, this test campaign is dedicated for the design verification of the thruster. This presentation will report the efforts of the design verification hot-fire test program of the ISE-100 thruster in collaboration between NASA Marshall Space Flight Center (MSFC) and Aerojet Rocketdyne (AR) test teams. The hot-fire tests were conducted at Advance Mobile Propulsion Test (AMPT) facility in Durango, Colorado, from May 13 to June 10, 2016. This presentation will also provide a summary of key points from the test results.

  1. Verification Challenges of Dynamic Testing of Space Flight Hardware

    NASA Technical Reports Server (NTRS)

    Winnitoy, Susan

    2010-01-01

    The Six Degree-of-Freedom Dynamic Test System (SDTS) is a test facility at the National Aeronautics and Space Administration (NASA) Johnson Space Center in Houston, Texas for performing dynamic verification of space structures and hardware. Some examples of past and current tests include the verification of on-orbit robotic inspection systems, space vehicle assembly procedures and docking/berthing systems. The facility is able to integrate a dynamic simulation of on-orbit spacecraft mating or demating using flight-like mechanical interface hardware. A force moment sensor is utilized for input to the simulation during the contact phase, thus simulating the contact dynamics. While the verification of flight hardware presents many unique challenges, one particular area of interest is with respect to the use of external measurement systems to ensure accurate feedback of dynamic contact. There are many commercial off-the-shelf (COTS) measurement systems available on the market, and the test facility measurement systems have evolved over time to include two separate COTS systems. The first system incorporates infra-red sensing cameras, while the second system employs a laser interferometer to determine position and orientation data. The specific technical challenges with the measurement systems in a large dynamic environment include changing thermal and humidity levels, operational area and measurement volume, dynamic tracking, and data synchronization. The facility is located in an expansive high-bay area that is occasionally exposed to outside temperature when large retractable doors at each end of the building are opened. The laser interferometer system, in particular, is vulnerable to the environmental changes in the building. The operational area of the test facility itself is sizeable, ranging from seven meters wide and five meters deep to as much as seven meters high. Both facility measurement systems have desirable measurement volumes and the accuracies vary

  2. Applying Independent Verification and Validation to Automatic Test Equipment

    NASA Technical Reports Server (NTRS)

    Calhoun, Cynthia C.

    1997-01-01

    This paper describes a general overview of applying Independent Verification and Validation (IV&V) to Automatic Test Equipment (ATE). The overview is not inclusive of all IV&V activities that can occur or of all development and maintenance items that can be validated and verified, during the IV&V process. A sampling of possible IV&V activities that can occur within each phase of the ATE life cycle are described.

  3. The Sedov Blast Wave as a Radial Piston Verification Test

    DOE PAGES

    Pederson, Clark; Brown, Bart; Morgan, Nathaniel

    2016-06-22

    The Sedov blast wave is of great utility as a verification problem for hydrodynamic methods. The typical implementation uses an energized cell of finite dimensions to represent the energy point source. We avoid this approximation by directly finding the effects of the energy source as a boundary condition (BC). Furthermore, the proposed method transforms the Sedov problem into an outward moving radial piston problem with a time-varying velocity. A portion of the mesh adjacent to the origin is removed and the boundaries of this hole are forced with the velocities from the Sedov solution. This verification test is implemented onmore » two types of meshes, and convergence is shown. Our results from the typical initial condition (IC) method and the new BC method are compared.« less

  4. Design verification and cold-flow modeling test report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-07-01

    This report presents a compilation of the following three test reports prepared by TRW for Alaska Industrial Development and Export Authority (AIDEA) as part of the Healy Clean Coal Project, Phase 1 Design of the TRW Combustor and Auxiliary Systems, which is co-sponsored by the Department of Energy under the Clean Coal Technology 3 Program: (1) Design Verification Test Report, dated April 1993, (2) Combustor Cold Flow Model Report, dated August 28, 1992, (3) Coal Feed System Cold Flow Model Report, October 28, 1992. In this compilation, these three reports are included in one volume consisting of three parts, andmore » TRW proprietary information has been excluded.« less

  5. Safety validation test equipment operation

    NASA Astrophysics Data System (ADS)

    Kurosaki, Tadaaki; Watanabe, Takashi

    1992-08-01

    An overview of the activities conducted on safety validation test equipment operation for materials used for NASA manned missions is presented. Safety validation tests, such as flammability, odor, offgassing, and so forth were conducted in accordance with NASA-NHB-8060.1C using test subjects common with those used by NASA, and the equipment used were qualified for their functions and performances in accordance with NASDA-CR-99124 'Safety Validation Test Qualification Procedures.' Test procedure systems were established by preparing 'Common Procedures for Safety Validation Test' as well as test procedures for flammability, offgassing, and odor tests. The test operation organization chaired by the General Manager of the Parts and Material Laboratory of NASDA (National Space Development Agency of Japan) was established, and the test leaders and operators in the organization were qualified in accordance with the specified procedures. One-hundred-one tests had been conducted so far by the Parts and Material Laboratory according to the request submitted by the manufacturers through the Space Station Group and the Safety and Product Assurance for Manned Systems Office.

  6. Definition of ground test for verification of large space structure control

    NASA Technical Reports Server (NTRS)

    Doane, G. B., III; Glaese, J. R.; Tollison, D. K.; Howsman, T. G.; Curtis, S. (Editor); Banks, B.

    1984-01-01

    Control theory and design, dynamic system modelling, and simulation of test scenarios are the main ideas discussed. The overall effort is the achievement at Marshall Space Flight Center of a successful ground test experiment of a large space structure. A simplified planar model of ground test experiment of a large space structure. A simplified planar model of ground test verification was developed. The elimination from that model of the uncontrollable rigid body modes was also examined. Also studied was the hardware/software of computation speed.

  7. Knowledge Based Systems (KBS) Verification, Validation, Evaluation, and Testing (VVE&T) Bibliography: Topical Categorization

    DTIC Science & Technology

    2003-03-01

    Different?," Jour. of Experimental & Theoretical Artificial Intelligence, Special Issue on Al for Systems Validation and Verification, 12(4), 2000, pp...Hamilton, D., " Experiences in Improving the State of Practice in Verification and Validation of Knowledge-Based Systems," Workshop Notes of the AAAI...Unsuspected Power of the Standard Turing Test," Jour. of Experimental & Theoretical Artificial Intelligence., 12, 2000, pp3 3 1-3 4 0 . [30] Gaschnig

  8. Design, analysis, and test verification of advanced encapsulation systems

    NASA Technical Reports Server (NTRS)

    Mardesich, N.; Minning, C.

    1982-01-01

    Design sensitivities are established for the development of photovoltaic module criteria and the definition of needed research tasks. The program consists of three phases. In Phase I, analytical models were developed to perform optical, thermal, electrical, and structural analyses on candidate encapsulation systems. From these analyses several candidate systems will be selected for qualification testing during Phase II. Additionally, during Phase II, test specimens of various types will be constructed and tested to determine the validity of the analysis methodology developed in Phase I. In Phse III, a finalized optimum design based on knowledge gained in Phase I and II will be developed. All verification testing was completed during this period. Preliminary results and observations are discussed. Descriptions of the thermal, thermal structural, and structural deflection test setups are included.

  9. NDEC: A NEA platform for nuclear data testing, verification and benchmarking

    NASA Astrophysics Data System (ADS)

    Díez, C. J.; Michel-Sendis, F.; Cabellos, O.; Bossant, M.; Soppera, N.

    2017-09-01

    The selection, testing, verification and benchmarking of evaluated nuclear data consists, in practice, in putting an evaluated file through a number of checking steps where different computational codes verify that the file and the data it contains complies with different requirements. These requirements range from format compliance to good performance in application cases, while at the same time physical constraints and the agreement with experimental data are verified. At NEA, the NDEC (Nuclear Data Evaluation Cycle) platform aims at providing, in a user friendly interface, a thorough diagnose of the quality of a submitted evaluated nuclear data file. Such diagnose is based on the results of different computational codes and routines which carry out the mentioned verifications, tests and checks. NDEC also searches synergies with other existing NEA tools and databases, such as JANIS, DICE or NDaST, including them into its working scheme. Hence, this paper presents NDEC, its current development status and its usage in the JEFF nuclear data project.

  10. Constrained structural dynamic model verification using free vehicle suspension testing methods

    NASA Technical Reports Server (NTRS)

    Blair, Mark A.; Vadlamudi, Nagarjuna

    1988-01-01

    Verification of the validity of a spacecraft's structural dynamic math model used in computing ascent (or in the case of the STS, ascent and landing) loads is mandatory. This verification process requires that tests be carried out on both the payload and the math model such that the ensuing correlation may validate the flight loads calculations. To properly achieve this goal, the tests should be performed with the payload in the launch constraint (i.e., held fixed at only the payload-booster interface DOFs). The practical achievement of this set of boundary conditions is quite difficult, especially with larger payloads, such as the 12-ton Hubble Space Telescope. The development of equations in the paper will show that by exciting the payload at its booster interface while it is suspended in the 'free-free' state, a set of transfer functions can be produced that will have minima that are directly related to the fundamental modes of the payload when it is constrained in its launch configuration.

  11. Test/QA Plan for Verification of Semi-Continuous Ambient Air Monitoring Systems - Second Round

    EPA Science Inventory

    Test/QA Plan for Verification of Semi-Continuous Ambient Air Monitoring Systems - Second Round. Changes reflect performance of second round of testing at new location and with various changes to personnel. Additional changes reflect general improvements to the Version 1 test/QA...

  12. 9 CFR 310.25 - Contamination with microorganisms; process control verification criteria and testing; pathogen...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... CERTIFICATION POST-MORTEM INSPECTION § 310.25 Contamination with microorganisms; process control verification... testing. (1) Each official establishment that slaughters livestock must test for Escherichia coli Biotype... poultry, shall test the type of livestock or poultry slaughtered in the greatest number. The establishment...

  13. 9 CFR 310.25 - Contamination with microorganisms; process control verification criteria and testing; pathogen...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... CERTIFICATION POST-MORTEM INSPECTION § 310.25 Contamination with microorganisms; process control verification... testing. (1) Each official establishment that slaughters livestock must test for Escherichia coli Biotype... poultry, shall test the type of livestock or poultry slaughtered in the greatest number. The establishment...

  14. 9 CFR 310.25 - Contamination with microorganisms; process control verification criteria and testing; pathogen...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... CERTIFICATION POST-MORTEM INSPECTION § 310.25 Contamination with microorganisms; process control verification... testing. (1) Each official establishment that slaughters livestock must test for Escherichia coli Biotype... poultry, shall test the type of livestock or poultry slaughtered in the greatest number. The establishment...

  15. 9 CFR 310.25 - Contamination with microorganisms; process control verification criteria and testing; pathogen...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... CERTIFICATION POST-MORTEM INSPECTION § 310.25 Contamination with microorganisms; process control verification... testing. (1) Each official establishment that slaughters livestock must test for Escherichia coli Biotype... poultry, shall test the type of livestock or poultry slaughtered in the greatest number. The establishment...

  16. 9 CFR 310.25 - Contamination with microorganisms; process control verification criteria and testing; pathogen...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... CERTIFICATION POST-MORTEM INSPECTION § 310.25 Contamination with microorganisms; process control verification... testing. (1) Each official establishment that slaughters livestock must test for Escherichia coli Biotype... poultry, shall test the type of livestock or poultry slaughtered in the greatest number. The establishment...

  17. Design verification test matrix development for the STME thrust chamber assembly

    NASA Technical Reports Server (NTRS)

    Dexter, Carol E.; Elam, Sandra K.; Sparks, David L.

    1993-01-01

    This report presents the results of the test matrix development for design verification at the component level for the National Launch System (NLS) space transportation main engine (STME) thrust chamber assembly (TCA) components including the following: injector, combustion chamber, and nozzle. A systematic approach was used in the development of the minimum recommended TCA matrix resulting in a minimum number of hardware units and a minimum number of hot fire tests.

  18. Review of waste package verification tests. Semiannual report, October 1982-March 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soo, P.

    1983-08-01

    The current study is part of an ongoing task to specify tests that may be used to verify that engineered waste package/repository systems comply with NRC radionuclide containment and controlled release performance objectives. Work covered in this report analyzes verification tests for borosilicate glass waste forms and bentonite- and zeolite-based packing mateials (discrete backfills). 76 references.

  19. Verification of VLSI designs

    NASA Technical Reports Server (NTRS)

    Windley, P. J.

    1991-01-01

    In this paper we explore the specification and verification of VLSI designs. The paper focuses on abstract specification and verification of functionality using mathematical logic as opposed to low-level boolean equivalence verification such as that done using BDD's and Model Checking. Specification and verification, sometimes called formal methods, is one tool for increasing computer dependability in the face of an exponentially increasing testing effort.

  20. Test/QA Plan for Verification of Nitrate Sensors for Groundwater Remediation Monitoring

    EPA Science Inventory

    A submersible nitrate sensor is capable of collecting in-situ measurements of dissolved nitrate concentrations in groundwater. Although several types of nitrate sensors currently exist, this verification test will focus on submersible sensors equipped with a nitrate-specific ion...

  1. Environmental Technology Verification Report for Abraxis Ecologenia® 17β-Estradiol (E2) Microplate Enzyme-Linked Immunosorbent Assay (ELISA) Test Kits

    EPA Science Inventory

    This verification test was conducted according to procedures specifiedin the Test/QA Planfor Verification of Enzyme-Linked Immunosorbent Assay (ELISA) Test Kis for the Quantitative Determination of Endocrine Disrupting Compounds (EDCs) in Aqueous Phase Samples. Deviations to the...

  2. Cassini's Test Methodology for Flight Software Verification and Operations

    NASA Technical Reports Server (NTRS)

    Wang, Eric; Brown, Jay

    2007-01-01

    The Cassini spacecraft was launched on 15 October 1997 on a Titan IV-B launch vehicle. The spacecraft is comprised of various subsystems, including the Attitude and Articulation Control Subsystem (AACS). The AACS Flight Software (FSW) and its development has been an ongoing effort, from the design, development and finally operations. As planned, major modifications to certain FSW functions were designed, tested, verified and uploaded during the cruise phase of the mission. Each flight software upload involved extensive verification testing. A standardized FSW testing methodology was used to verify the integrity of the flight software. This paper summarizes the flight software testing methodology used for verifying FSW from pre-launch through the prime mission, with an emphasis on flight experience testing during the first 2.5 years of the prime mission (July 2004 through January 2007).

  3. Verification and classification bias interactions in diagnostic test accuracy studies for fine-needle aspiration biopsy.

    PubMed

    Schmidt, Robert L; Walker, Brandon S; Cohen, Michael B

    2015-03-01

    Reliable estimates of accuracy are important for any diagnostic test. Diagnostic accuracy studies are subject to unique sources of bias. Verification bias and classification bias are 2 sources of bias that commonly occur in diagnostic accuracy studies. Statistical methods are available to estimate the impact of these sources of bias when they occur alone. The impact of interactions when these types of bias occur together has not been investigated. We developed mathematical relationships to show the combined effect of verification bias and classification bias. A wide range of case scenarios were generated to assess the impact of bias components and interactions on total bias. Interactions between verification bias and classification bias caused overestimation of sensitivity and underestimation of specificity. Interactions had more effect on sensitivity than specificity. Sensitivity was overestimated by at least 7% in approximately 6% of the tested scenarios. Specificity was underestimated by at least 7% in less than 0.1% of the scenarios. Interactions between verification bias and classification bias create distortions in accuracy estimates that are greater than would be predicted from each source of bias acting independently. © 2014 American Cancer Society.

  4. Test/QA Plan For Verification Of Anaerobic Digester For Energy Production And Pollution Prevention

    EPA Science Inventory

    The ETV-ESTE Program conducts third-party verification testing of commercially available technologies that improve the environmental conditions in the U.S. A stakeholder committee of buyers and users of such technologies guided the development of this test on anaerobic digesters...

  5. Workgroup for Hydraulic laboratory Testing and Verification of Hydroacoustic Instrumentation

    USGS Publications Warehouse

    Fulford, Janice M.; Armstrong, Brandy N.; Thibodeaux, Kirk G.

    2015-01-01

    An international workgroup was recently formed for hydraulic laboratory testing and verification of hydroacoustic instrumentation used for water velocity measurements. The activities of the workgroup have included one face to face meeting, conference calls and an inter-laboratory exchange of two acoustic meters among participating laboratories. Good agreement was found among four laboratories at higher tow speeds and poorer agreement at the lowest tow speed.

  6. Power Performance Verification of a Wind Farm Using the Friedman's Test.

    PubMed

    Hernandez, Wilmar; López-Presa, José Luis; Maldonado-Correa, Jorge L

    2016-06-03

    In this paper, a method of verification of the power performance of a wind farm is presented. This method is based on the Friedman's test, which is a nonparametric statistical inference technique, and it uses the information that is collected by the SCADA system from the sensors embedded in the wind turbines in order to carry out the power performance verification of a wind farm. Here, the guaranteed power curve of the wind turbines is used as one more wind turbine of the wind farm under assessment, and a multiple comparison method is used to investigate differences between pairs of wind turbines with respect to their power performance. The proposed method says whether the power performance of the specific wind farm under assessment differs significantly from what would be expected, and it also allows wind farm owners to know whether their wind farm has either a perfect power performance or an acceptable power performance. Finally, the power performance verification of an actual wind farm is carried out. The results of the application of the proposed method showed that the power performance of the specific wind farm under assessment was acceptable.

  7. Environmental Technology Verification: Supplement to Test/QA Plan for Biological and Aerosol Testing of General Ventilation Air Cleaners; Bioaerosol Inactivation Efficiency by HVAC In-Duct Ultraviolet Light Air Cleaners

    EPA Science Inventory

    The Air Pollution Control Technology Verification Center has selected general ventilation air cleaners as a technology area. The Generic Verification Protocol for Biological and Aerosol Testing of General Ventilation Air Cleaners is on the Environmental Technology Verification we...

  8. Software Testing and Verification in Climate Model Development

    NASA Technical Reports Server (NTRS)

    Clune, Thomas L.; Rood, RIchard B.

    2011-01-01

    Over the past 30 years most climate models have grown from relatively simple representations of a few atmospheric processes to a complex multi-disciplinary system. Computer infrastructure over that period has gone from punch card mainframes to modem parallel clusters. Model implementations have become complex, brittle, and increasingly difficult to extend and maintain. Existing verification processes for model implementations rely almost exclusively upon some combination of detailed analysis of output from full climate simulations and system-level regression tests. In additional to being quite costly in terms of developer time and computing resources, these testing methodologies are limited in terms of the types of defects that can be detected, isolated and diagnosed. Mitigating these weaknesses of coarse-grained testing with finer-grained "unit" tests has been perceived as cumbersome and counter-productive. In the commercial software sector, recent advances in tools and methodology have led to a renaissance for systematic fine-grained testing. We discuss the availability of analogous tools for scientific software and examine benefits that similar testing methodologies could bring to climate modeling software. We describe the unique challenges faced when testing complex numerical algorithms and suggest techniques to minimize and/or eliminate the difficulties.

  9. Fracture mechanics life analytical methods verification testing

    NASA Technical Reports Server (NTRS)

    Favenesi, J. A.; Clemons, T. G.; Riddell, W. T.; Ingraffea, A. R.; Wawrzynek, P. A.

    1994-01-01

    The objective was to evaluate NASCRAC (trademark) version 2.0, a second generation fracture analysis code, for verification and validity. NASCRAC was evaluated using a combination of comparisons to the literature, closed-form solutions, numerical analyses, and tests. Several limitations and minor errors were detected. Additionally, a number of major flaws were discovered. These major flaws were generally due to application of a specific method or theory, not due to programming logic. Results are presented for the following program capabilities: K versus a, J versus a, crack opening area, life calculation due to fatigue crack growth, tolerable crack size, proof test logic, tearing instability, creep crack growth, crack transitioning, crack retardation due to overloads, and elastic-plastic stress redistribution. It is concluded that the code is an acceptable fracture tool for K solutions of simplified geometries, for a limited number of J and crack opening area solutions, and for fatigue crack propagation with the Paris equation and constant amplitude loads when the Paris equation is applicable.

  10. Prototype test article verification of the Space Station Freedom active thermal control system microgravity performance

    NASA Technical Reports Server (NTRS)

    Chen, I. Y.; Ungar, E. K.; Lee, D. Y.; Beckstrom, P. S.

    1993-01-01

    To verify the on-orbit operation of the Space Station Freedom (SSF) two-phase external Active Thermal Control System (ATCS), a test and verification program will be performed prior to flight. The first system level test of the ATCS is the Prototype Test Article (PTA) test that will be performed in early 1994. All ATCS loops will be represented by prototypical components and the line sizes and lengths will be representative of the flight system. In this paper, the SSF ATCS and a portion of its verification process are described. The PTA design and the analytical methods that were used to quantify the gravity effects on PTA operation are detailed. Finally, the gravity effects are listed, and the applicability of the 1-g PTA test results to the validation of on-orbit ATCS operation is discussed.

  11. Replacement of Hydrochlorofluorocarbon (HCFC) -225 Solvent for Cleaning and Verification Sampling of NASA Propulsion Oxygen Systems Hardware, Ground Support Equipment, and Associated Test Systems

    NASA Technical Reports Server (NTRS)

    Burns, H. D.; Mitchell, M. A.; McMillian, J. H.; Farner, B. R.; Harper, S. A.; Peralta, S. F.; Lowrey, N. M.; Ross, H. R.; Juarez, A.

    2015-01-01

    Since the 1990's, NASA's rocket propulsion test facilities at Marshall Space Flight Center (MSFC) and Stennis Space Center (SSC) have used hydrochlorofluorocarbon-225 (HCFC-225), a Class II ozone-depleting substance, to safety clean and verify the cleanliness of large scale propulsion oxygen systems and associated test facilities. In 2012 through 2014, test laboratories at MSFC, SSC, and Johnson Space Center-White Sands Test Facility collaborated to seek out, test, and qualify an environmentally preferred replacement for HCFC-225. Candidate solvents were selected, a test plan was developed, and the products were tested for materials compatibility, oxygen compatibility, cleaning effectiveness, and suitability for use in cleanliness verification and field cleaning operations. Honewell Soltice (TradeMark) Performance Fluid (trans-1-chloro-3,3, 3-trifluoropropene) was selected to replace HCFC-225 at NASA's MSFC and SSC rocket propulsion test facilities.

  12. Test/QA Plan for Verification of Radio Frequency Identification (RFID) for Tracking Hazardous Waste Shipments across International Borders

    EPA Science Inventory

    The verification test will be conducted under the auspices of the U.S. Environmental Protection Agency (EPA) through the Environmental Technology Verification (ETV) Program. It will be performed by Battelle, which is managing the ETV Advanced Monitoring Systems (AMS) Center throu...

  13. Acoustic emissions verification testing of International Space Station experiment racks at the NASA Glenn Research Center Acoustical Testing Laboratory

    NASA Astrophysics Data System (ADS)

    Akers, James C.; Passe, Paul J.; Cooper, Beth A.

    2005-09-01

    The Acoustical Testing Laboratory (ATL) at the NASA John H. Glenn Research Center (GRC) in Cleveland, OH, provides acoustic emission testing and noise control engineering services for a variety of specialized customers, particularly developers of equipment and science experiments manifested for NASA's manned space missions. The ATL's primary customer has been the Fluids and Combustion Facility (FCF), a multirack microgravity research facility being developed at GRC for the USA Laboratory Module of the International Space Station (ISS). Since opening in September 2000, ATL has conducted acoustic emission testing of components, subassemblies, and partially populated FCF engineering model racks. The culmination of this effort has been the acoustic emission verification tests on the FCF Combustion Integrated Rack (CIR) and Fluids Integrated Rack (FIR), employing a procedure that incorporates ISO 11201 (``Acoustics-Noise emitted by machinery and equipment-Measurement of emission sound pressure levels at a work station and at other specified positions-Engineering method in an essentially free field over a reflecting plane''). This paper will provide an overview of the test methodology, software, and hardware developed to perform the acoustic emission verification tests on the CIR and FIR flight racks and lessons learned from these tests.

  14. 9 CFR 417.4 - Validation, Verification, Reassessment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... not have a HACCP plan because a hazard analysis has revealed no food safety hazards that are.... 417.4 Section 417.4 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... ACT HAZARD ANALYSIS AND CRITICAL CONTROL POINT (HACCP) SYSTEMS § 417.4 Validation, Verification...

  15. 9 CFR 417.4 - Validation, Verification, Reassessment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... not have a HACCP plan because a hazard analysis has revealed no food safety hazards that are.... 417.4 Section 417.4 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... ACT HAZARD ANALYSIS AND CRITICAL CONTROL POINT (HACCP) SYSTEMS § 417.4 Validation, Verification...

  16. 9 CFR 417.4 - Validation, Verification, Reassessment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... not have a HACCP plan because a hazard analysis has revealed no food safety hazards that are.... 417.4 Section 417.4 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... ACT HAZARD ANALYSIS AND CRITICAL CONTROL POINT (HACCP) SYSTEMS § 417.4 Validation, Verification...

  17. [Implication of inverse-probability weighting method in the evaluation of diagnostic test with verification bias].

    PubMed

    Kang, Leni; Zhang, Shaokai; Zhao, Fanghui; Qiao, Youlin

    2014-03-01

    To evaluate and adjust the verification bias existed in the screening or diagnostic tests. Inverse-probability weighting method was used to adjust the sensitivity and specificity of the diagnostic tests, with an example of cervical cancer screening used to introduce the Compare Tests package in R software which could be implemented. Sensitivity and specificity calculated from the traditional method and maximum likelihood estimation method were compared to the results from Inverse-probability weighting method in the random-sampled example. The true sensitivity and specificity of the HPV self-sampling test were 83.53% (95%CI:74.23-89.93)and 85.86% (95%CI: 84.23-87.36). In the analysis of data with randomly missing verification by gold standard, the sensitivity and specificity calculated by traditional method were 90.48% (95%CI:80.74-95.56)and 71.96% (95%CI:68.71-75.00), respectively. The adjusted sensitivity and specificity under the use of Inverse-probability weighting method were 82.25% (95% CI:63.11-92.62) and 85.80% (95% CI: 85.09-86.47), respectively, whereas they were 80.13% (95%CI:66.81-93.46)and 85.80% (95%CI: 84.20-87.41) under the maximum likelihood estimation method. The inverse-probability weighting method could effectively adjust the sensitivity and specificity of a diagnostic test when verification bias existed, especially when complex sampling appeared.

  18. Enhanced verification test suite for physics simulation codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamm, James R.; Brock, Jerry S.; Brandon, Scott T.

    2008-09-01

    This document discusses problems with which to augment, in quantity and in quality, the existing tri-laboratory suite of verification problems used by Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and Sandia National Laboratories (SNL). The purpose of verification analysis is demonstrate whether the numerical results of the discretization algorithms in physics and engineering simulation codes provide correct solutions of the corresponding continuum equations.

  19. Verification and Validation for Flight-Critical Systems (VVFCS)

    NASA Technical Reports Server (NTRS)

    Graves, Sharon S.; Jacobsen, Robert A.

    2010-01-01

    On March 31, 2009 a Request for Information (RFI) was issued by NASA s Aviation Safety Program to gather input on the subject of Verification and Validation (V & V) of Flight-Critical Systems. The responses were provided to NASA on or before April 24, 2009. The RFI asked for comments in three topic areas: Modeling and Validation of New Concepts for Vehicles and Operations; Verification of Complex Integrated and Distributed Systems; and Software Safety Assurance. There were a total of 34 responses to the RFI, representing a cross-section of academic (26%), small & large industry (47%) and government agency (27%).

  20. The politics of verification and the control of nuclear tests, 1945-1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallagher, N.W.

    1990-01-01

    This dissertation addresses two questions: (1) why has agreement been reached on verification regimes to support some arms control accords but not others; and (2) what determines the extent to which verification arrangements promote stable cooperation. This study develops an alternative framework for analysis by examining the politics of verification at two levels. The logical politics of verification are shaped by the structure of the problem of evaluating cooperation under semi-anarchical conditions. The practical politics of verification are driven by players' attempts to use verification arguments to promote their desired security outcome. The historical material shows that agreements on verificationmore » regimes are reached when key domestic and international players desire an arms control accord and believe that workable verification will not have intolerable costs. Clearer understanding of how verification is itself a political problem, and how players manipulate it to promote other goals is necessary if the politics of verification are to support rather than undermine the development of stable cooperation.« less

  1. Verification tests of the US Electricar Corporation Lectric Leopard

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dowgiallo, E.J. Jr.; Snellings, I.R.; Chapman, R.D.

    1982-04-01

    The Lectric Leopard, manufactured by US Electricar Corporation, was tested during the period 3 August 1981 to 25 September 1981. Part of the verification results are summarized below (complete tests results are contained in Section V): Acceleration: 0-50 km/h (31.1 mi/h) in 9.9 s. Range: SAE J227a cycle ''C'' on level (+-1-percent grade) terrain yielded 66.2 km (41.2 mi) and 120 cycles. Forward Speed Capability: Forward speed of 80 km/h (50 mi/h) was maintained for more than 5 min on the level (+-1-percent grade) portion of the MERADCOM Test Track. Gradeability at Speed: At 25 km/h (15.5 mi/h) the vehiclemore » can traverse a 15.5-percent grade based on calculations from acceleration tests. Gradeability Limit: Calculations based on drawbar-pull test indicate a 35.2-percent forward and a 36.4-percent gradeability for at least 20 s.« less

  2. Space transportation system payload interface verification

    NASA Technical Reports Server (NTRS)

    Everline, R. T.

    1977-01-01

    The paper considers STS payload-interface verification requirements and the capability provided by STS to support verification. The intent is to standardize as many interfaces as possible, not only through the design, development, test and evaluation (DDT and E) phase of the major payload carriers but also into the operational phase. The verification process is discussed in terms of its various elements, such as the Space Shuttle DDT and E (including the orbital flight test program) and the major payload carriers DDT and E (including the first flights). Five tools derived from the Space Shuttle DDT and E are available to support the verification process: mathematical (structural and thermal) models, the Shuttle Avionics Integration Laboratory, the Shuttle Manipulator Development Facility, and interface-verification equipment (cargo-integration test equipment).

  3. Simulation verification techniques study

    NASA Technical Reports Server (NTRS)

    Schoonmaker, P. B.; Wenglinski, T. H.

    1975-01-01

    Results are summarized of the simulation verification techniques study which consisted of two tasks: to develop techniques for simulator hardware checkout and to develop techniques for simulation performance verification (validation). The hardware verification task involved definition of simulation hardware (hardware units and integrated simulator configurations), survey of current hardware self-test techniques, and definition of hardware and software techniques for checkout of simulator subsystems. The performance verification task included definition of simulation performance parameters (and critical performance parameters), definition of methods for establishing standards of performance (sources of reference data or validation), and definition of methods for validating performance. Both major tasks included definition of verification software and assessment of verification data base impact. An annotated bibliography of all documents generated during this study is provided.

  4. Measurement of a True [Formula: see text]O2max during a Ramp Incremental Test Is Not Confirmed by a Verification Phase.

    PubMed

    Murias, Juan M; Pogliaghi, Silvia; Paterson, Donald H

    2018-01-01

    The accuracy of an exhaustive ramp incremental (RI) test to determine maximal oxygen uptake ([Formula: see text]O 2max ) was recently questioned and the utilization of a verification phase proposed as a gold standard. This study compared the oxygen uptake ([Formula: see text]O 2 ) during a RI test to that obtained during a verification phase aimed to confirm attainment of [Formula: see text]O 2max . Sixty-one healthy males [31 older (O) 65 ± 5 yrs; 30 younger (Y) 25 ± 4 yrs] performed a RI test (15-20 W/min for O and 25 W/min for Y). At the end of the RI test, a 5-min recovery period was followed by a verification phase of constant load cycling to fatigue at either 85% ( n = 16) or 105% ( n = 45) of the peak power output obtained from the RI test. The highest [Formula: see text]O 2 after the RI test (39.8 ± 11.5 mL·kg -1 ·min -1 ) and the verification phase (40.1 ± 11.2 mL·kg -1 ·min -1 ) were not different ( p = 0.33) and they were highly correlated ( r = 0.99; p < 0.01). This response was not affected by age or intensity of the verification phase. The Bland-Altman analysis revealed a very small absolute bias (-0.25 mL·kg -1 ·min -1 , not different from 0) and a precision of ±1.56 mL·kg -1 ·min -1 between measures. This study indicated that a verification phase does not highlight an under-estimation of [Formula: see text]O 2max derived from a RI test, in a large and heterogeneous group of healthy younger and older men naïve to laboratory testing procedures. Moreover, only minor within-individual differences were observed between the maximal [Formula: see text]O 2 elicited during the RI and the verification phase. Thus a verification phase does not add any validation of the determination of a [Formula: see text]O 2max . Therefore, the recommendation that a verification phase should become a gold standard procedure, although initially appealing, is not supported by the experimental data.

  5. Exomars Mission Verification Approach

    NASA Astrophysics Data System (ADS)

    Cassi, Carlo; Gilardi, Franco; Bethge, Boris

    According to the long-term cooperation plan established by ESA and NASA in June 2009, the ExoMars project now consists of two missions: A first mission will be launched in 2016 under ESA lead, with the objectives to demonstrate the European capability to safely land a surface package on Mars, to perform Mars Atmosphere investigation, and to provide communi-cation capability for present and future ESA/NASA missions. For this mission ESA provides a spacecraft-composite, made up of an "Entry Descent & Landing Demonstrator Module (EDM)" and a Mars Orbiter Module (OM), NASA provides the Launch Vehicle and the scientific in-struments located on the Orbiter for Mars atmosphere characterisation. A second mission with it launch foreseen in 2018 is lead by NASA, who provides spacecraft and launcher, the EDL system, and a rover. ESA contributes the ExoMars Rover Module (RM) to provide surface mobility. It includes a drill system allowing drilling down to 2 meter, collecting samples and to investigate them for signs of past and present life with exobiological experiments, and to investigate the Mars water/geochemical environment, In this scenario Thales Alenia Space Italia as ESA Prime industrial contractor is in charge of the design, manufacturing, integration and verification of the ESA ExoMars modules, i.e.: the Spacecraft Composite (OM + EDM) for the 2016 mission, the RM for the 2018 mission and the Rover Operations Control Centre, which will be located at Altec-Turin (Italy). The verification process of the above products is quite complex and will include some pecu-liarities with limited or no heritage in Europe. Furthermore the verification approach has to be optimised to allow full verification despite significant schedule and budget constraints. The paper presents the verification philosophy tailored for the ExoMars mission in line with the above considerations, starting from the model philosophy, showing the verification activities flow and the sharing of tests

  6. 9 CFR 113.39 - Cat safety tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Cat safety tests. 113.39 Section 113... Procedures § 113.39 Cat safety tests. The safety tests provided in this section shall be conducted when... recommended for use in cats. (a) The cat safety test provided in this paragraph shall be used when the Master...

  7. Validation and Verification of Future Integrated Safety-Critical Systems Operating under Off-Nominal Conditions

    NASA Technical Reports Server (NTRS)

    Belcastro, Christine M.

    2010-01-01

    Loss of control remains one of the largest contributors to aircraft fatal accidents worldwide. Aircraft loss-of-control accidents are highly complex in that they can result from numerous causal and contributing factors acting alone or (more often) in combination. Hence, there is no single intervention strategy to prevent these accidents and reducing them will require a holistic integrated intervention capability. Future onboard integrated system technologies developed for preventing loss of vehicle control accidents must be able to assure safe operation under the associated off-nominal conditions. The transition of these technologies into the commercial fleet will require their extensive validation and verification (V and V) and ultimate certification. The V and V of complex integrated systems poses major nontrivial technical challenges particularly for safety-critical operation under highly off-nominal conditions associated with aircraft loss-of-control events. This paper summarizes the V and V problem and presents a proposed process that could be applied to complex integrated safety-critical systems developed for preventing aircraft loss-of-control accidents. A summary of recent research accomplishments in this effort is also provided.

  8. Verification of Ceramic Structures

    NASA Astrophysics Data System (ADS)

    Behar-Lafenetre, Stephanie; Cornillon, Laurence; Rancurel, Michael; De Graaf, Dennis; Hartmann, Peter; Coe, Graham; Laine, Benoit

    2012-07-01

    In the framework of the “Mechanical Design and Verification Methodologies for Ceramic Structures” contract [1] awarded by ESA, Thales Alenia Space has investigated literature and practices in affiliated industries to propose a methodological guideline for verification of ceramic spacecraft and instrument structures. It has been written in order to be applicable to most types of ceramic or glass-ceramic materials - typically Cesic®, HBCesic®, Silicon Nitride, Silicon Carbide and ZERODUR®. The proposed guideline describes the activities to be performed at material level in order to cover all the specific aspects of ceramics (Weibull distribution, brittle behaviour, sub-critical crack growth). Elementary tests and their post-processing methods are described, and recommendations for optimization of the test plan are given in order to have a consistent database. The application of this method is shown on an example in a dedicated article [7]. Then the verification activities to be performed at system level are described. This includes classical verification activities based on relevant standard (ECSS Verification [4]), plus specific analytical, testing and inspection features. The analysis methodology takes into account the specific behaviour of ceramic materials, especially the statistical distribution of failures (Weibull) and the method to transfer it from elementary data to a full-scale structure. The demonstration of the efficiency of this method is described in a dedicated article [8]. The verification is completed by classical full-scale testing activities. Indications about proof testing, case of use and implementation are given and specific inspection and protection measures are described. These additional activities are necessary to ensure the required reliability. The aim of the guideline is to describe how to reach the same reliability level as for structures made of more classical materials (metals, composites).

  9. Hubble Space Telescope high speed photometer science verification test report

    NASA Technical Reports Server (NTRS)

    Richards, Evan E.

    1992-01-01

    The purpose of this report is to summarize the results of the HSP Science Verification (SV) tests, the status of the HSP at the end of the SV period, and the work remaining to be done. The HSP OV report (November 1991) covered all activities (OV, SV, and SAO) from launch to the completion of phase three alignment, OV 3233 performed in the 91154 SMS, on June 8, 1991. This report covers subsequent activities through May 1992.

  10. Environmental Technology Verification--Baghouse Filtration Products: GE Energy QG061 Filtration Media (Tested September 2008)

    EPA Science Inventory

    This report reviews the filtration and pressure drop performance of GE Energy's QG061 filtration media. Environmental Technology Verification (ETV) testing of this technology/product was conducted during a series of tests in September 2008. The objective of the ETV Program is to ...

  11. Generic Verification Protocol for Testing Pesticide Application Spray Drift Reduction Technologies for Row and Field Crops (Version 1.4)

    EPA Science Inventory

    This generic verification protocol provides a detailed method for conducting and reporting results from verification testing of pesticide application technologies. It can be used to evaluate technologies for their potential to reduce spray drift, hence the term “drift reduction t...

  12. Litmus tests for verification of feeding tube location in infants: evaluation of their clinical use.

    PubMed

    Nyqvist, Kerstin Hedberg; Sorell, Annette; Ewald, Uwe

    2005-04-01

    To examine the clinical use of litmus paper tests for the assessment of aspirates in infants. In connection with establishing a programme for home care of infants with requirement of tube feeding with parents as the infants' carers, the need for a research-based method for verification of feeding tube position was identified by nurses as a complement to other methods. In adult care the litmus paper test is commonly used when visual inspection is not sufficient for assessment of aspirates obtained from feeding tubes. Observational study. Nurses performed litmus tests for verification of feeding tube location in a convenience sample of 60 infants born at a gestational age (GA) of 24-42 weeks. Presence/absence and volumes of aspirates were recorded as well as positive/negative litmus test reactions. Analyses on the association between test results and the infants' GA and postmenstrual and postnatal age at the time of the tests were conducted. Data were obtained from 2970 tube feeds. Aspirates were present on 1840 occasions (62%). A higher proportion of infants with absence of aspirates were born at a GA below 32 weeks. A positive reaction occurred in 97% of the tests in volumes between 0.01 and 22 ml. Birth at a GA below 32 weeks and respiratory problems were associated with negative tests. The high ratio of positive litmus reactions at all maturational levels supports the bedside use of analysis of pH in gastric aspirates for verification of feeding tube location. Application of pH indicator paper is recommended as a complementary method for assessment of aspirates from feeding tubes.

  13. Automated Installation Verification of COMSOL via LiveLink for MATLAB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowell, Michael W

    Verifying that a local software installation performs as the developer intends is a potentially time-consuming but necessary step for nuclear safety-related codes. Automating this process not only saves time, but can increase reliability and scope of verification compared to ‘hand’ comparisons. While COMSOL does not include automatic installation verification as many commercial codes do, it does provide tools such as LiveLink™ for MATLAB® and the COMSOL API for use with Java® through which the user can automate the process. Here we present a successful automated verification example of a local COMSOL 5.0 installation for nuclear safety-related calculations at the Oakmore » Ridge National Laboratory’s High Flux Isotope Reactor (HFIR).« less

  14. Power Performance Verification of a Wind Farm Using the Friedman’s Test

    PubMed Central

    Hernandez, Wilmar; López-Presa, José Luis; Maldonado-Correa, Jorge L.

    2016-01-01

    In this paper, a method of verification of the power performance of a wind farm is presented. This method is based on the Friedman’s test, which is a nonparametric statistical inference technique, and it uses the information that is collected by the SCADA system from the sensors embedded in the wind turbines in order to carry out the power performance verification of a wind farm. Here, the guaranteed power curve of the wind turbines is used as one more wind turbine of the wind farm under assessment, and a multiple comparison method is used to investigate differences between pairs of wind turbines with respect to their power performance. The proposed method says whether the power performance of the specific wind farm under assessment differs significantly from what would be expected, and it also allows wind farm owners to know whether their wind farm has either a perfect power performance or an acceptable power performance. Finally, the power performance verification of an actual wind farm is carried out. The results of the application of the proposed method showed that the power performance of the specific wind farm under assessment was acceptable. PMID:27271628

  15. Innovative safety valve selection techniques and data.

    PubMed

    Miller, Curt; Bredemyer, Lindsey

    2007-04-11

    The new valve data resources and modeling tools that are available today are instrumental in verifying that that safety levels are being met in both current installations and project designs. If the new ISA 84 functional safety practices are followed closely, good industry validated data used, and a user's maintenance integrity program strictly enforced, plants should feel confident that their design has been quantitatively reinforced. After 2 years of exhaustive reliability studies, there are now techniques and data available to support this safety system component deficiency. Everyone who has gone through the process of safety integrity level (SIL) verification (i.e. reliability math) will appreciate the progress made in this area. The benefits of these advancements are improved safety with lower lifecycle costs such as lower capital investment and/or longer testing intervals. This discussion will start with a review of the different valve, actuator, and solenoid/positioner combinations that can be used and their associated application restraints. Failure rate reliability studies (i.e. FMEDA) and data associated with the final combinations will then discussed. Finally, the impact of the selections on each safety system's SIL verification will be reviewed.

  16. TOPEX Microwave Radiometer - Thermal design verification test and analytical model validation

    NASA Technical Reports Server (NTRS)

    Lin, Edward I.

    1992-01-01

    The testing of the TOPEX Microwave Radiometer (TMR) is described in terms of hardware development based on the modeling and thermal vacuum testing conducted. The TMR and the vacuum-test facility are described, and the thermal verification test includes a hot steady-state segment, a cold steady-state segment, and a cold survival mode segment totalling 65 hours. A graphic description is given of the test history which is related temperature tracking, and two multinode TMR test-chamber models are compared to the test results. Large discrepancies between the test data and the model predictions are attributed to contact conductance, effective emittance from the multilayer insulation, and heat leaks related to deviations from the flight configuration. The TMR thermal testing/modeling effort is shown to provide technical corrections for the procedure outlined, and the need for validating predictive models is underscored.

  17. Analysis of large system black box verification test data

    NASA Technical Reports Server (NTRS)

    Clapp, Kenneth C.; Iyer, Ravishankar Krishnan

    1993-01-01

    Issues regarding black box, large systems verification are explored. It begins by collecting data from several testing teams. An integrated database containing test, fault, repair, and source file information is generated. Intuitive effectiveness measures are generated using conventional black box testing results analysis methods. Conventional analysts methods indicate that the testing was effective in the sense that as more tests were run, more faults were found. Average behavior and individual data points are analyzed. The data is categorized and average behavior shows a very wide variation in number of tests run and in pass rates (pass rates ranged from 71 percent to 98 percent). The 'white box' data contained in the integrated database is studied in detail. Conservative measures of effectiveness are discussed. Testing efficiency (ratio of repairs to number of tests) is measured at 3 percent, fault record effectiveness (ratio of repairs to fault records) is measured at 55 percent, and test script redundancy (ratio of number of failed tests to minimum number of tests needed to find the faults) ranges from 4.2 to 15.8. Error prone source files and subsystems are identified. A correlational mapping of test functional area to product subsystem is completed. A new adaptive testing process based on real-time generation of the integrated database is proposed.

  18. Management of the JWST MIRI pFM environmental and performance verification test campaign

    NASA Astrophysics Data System (ADS)

    Eccleston, Paul; Glasse, Alistair; Grundy, Timothy; Detre, Örs Hunor; O'Sullivan, Brian; Shaughnessy, Bryan; Sykes, Jon; Thatcher, John; Walker, Helen; Wells, Martyn; Wright, Gillian; Wright, David

    2012-09-01

    The Mid-Infrared Instrument (MIRI) is one of four scientific instruments on the James Webb Space Telescope (JWST) observatory, scheduled for launch in 2018. It will provide unique capabilities to probe the distant or deeply dust-enshrouded regions of the Universe, investigating the history of star and planet formation from the earliest universe to the present day. To enable this the instrument optical module must be cooled below 7K, presenting specific challenges for the environmental testing and calibration activities. The assembly, integration and verification (AIV) activities for the proto-flight model (pFM) instrument ran from March 2010 to May 2012 at RAL where the instrument has been put through a full suite of environmental and performance tests with a non-conventional single cryo-test approach. In this paper we present an overview of the testing conducted on the MIRI pFM including ambient alignment testing, vibration testing, gravity release testing, cryogenic performance and calibration testing, functional testing at ambient and operational temperatures, thermal balance tests, and Electro-Magnetic Compatibility (EMC) testing. We discuss how tests were planned and managed to ensure that the whole AIV process remained on schedule and give an insight into the lessons learned from this process. We also show how the process of requirement verification for this complex system was managed and documented. We describe how the risks associated with a single long duration test at operating temperature were controlled so that the complete suite of environmental tests could be used to build up a full picture of instrument compliance.

  19. GENERIC VERIFICATION PROTOCOL FOR THE VERIFICATION OF PESTICIDE SPRAY DRIFT REDUCTION TECHNOLOGIES FOR ROW AND FIELD CROPS

    EPA Science Inventory

    This ETV program generic verification protocol was prepared and reviewed for the Verification of Pesticide Drift Reduction Technologies project. The protocol provides a detailed methodology for conducting and reporting results from a verification test of pesticide drift reductio...

  20. Challenges in High-Assurance Runtime Verification

    NASA Technical Reports Server (NTRS)

    Goodloe, Alwyn E.

    2016-01-01

    Safety-critical systems are growing more complex and becoming increasingly autonomous. Runtime Verification (RV) has the potential to provide protections when a system cannot be assured by conventional means, but only if the RV itself can be trusted. In this paper, we proffer a number of challenges to realizing high-assurance RV and illustrate how we have addressed them in our research. We argue that high-assurance RV provides a rich target for automated verification tools in hope of fostering closer collaboration among the communities.

  1. ANDalyze Lead 100 Test Kit and AND1000 Fluorimeter Environmental Technology Verification Report and Statement

    EPA Science Inventory

    This report provides results for the verification testing of the Lead100/AND1000. The following is a description of the technology based on information provided by the vendor. The information provided below was not verified in this test. The ANDalyze Lead100/AND1000 was des...

  2. A methodology for model-based development and automated verification of software for aerospace systems

    NASA Astrophysics Data System (ADS)

    Martin, L.; Schatalov, M.; Hagner, M.; Goltz, U.; Maibaum, O.

    Today's software for aerospace systems typically is very complex. This is due to the increasing number of features as well as the high demand for safety, reliability, and quality. This complexity also leads to significant higher software development costs. To handle the software complexity, a structured development process is necessary. Additionally, compliance with relevant standards for quality assurance is a mandatory concern. To assure high software quality, techniques for verification are necessary. Besides traditional techniques like testing, automated verification techniques like model checking become more popular. The latter examine the whole state space and, consequently, result in a full test coverage. Nevertheless, despite the obvious advantages, this technique is rarely yet used for the development of aerospace systems. In this paper, we propose a tool-supported methodology for the development and formal verification of safety-critical software in the aerospace domain. The methodology relies on the V-Model and defines a comprehensive work flow for model-based software development as well as automated verification in compliance to the European standard series ECSS-E-ST-40C. Furthermore, our methodology supports the generation and deployment of code. For tool support we use the tool SCADE Suite (Esterel Technology), an integrated design environment that covers all the requirements for our methodology. The SCADE Suite is well established in avionics and defense, rail transportation, energy and heavy equipment industries. For evaluation purposes, we apply our approach to an up-to-date case study of the TET-1 satellite bus. In particular, the attitude and orbit control software is considered. The behavioral models for the subsystem are developed, formally verified, and optimized.

  3. Magnetic cleanliness verification approach on tethered satellite

    NASA Technical Reports Server (NTRS)

    Messidoro, Piero; Braghin, Massimo; Grande, Maurizio

    1990-01-01

    Magnetic cleanliness testing was performed on the Tethered Satellite as the last step of an articulated verification campaign aimed at demonstrating the capability of the satellite to support its TEMAG (TEthered MAgnetometer) experiment. Tests at unit level and analytical predictions/correlations using a dedicated mathematical model (GANEW program) are also part of the verification activities. Details of the tests are presented, and the results of the verification are described together with recommendations for later programs.

  4. Requirement Assurance: A Verification Process

    NASA Technical Reports Server (NTRS)

    Alexander, Michael G.

    2011-01-01

    Requirement Assurance is an act of requirement verification which assures the stakeholder or customer that a product requirement has produced its "as realized product" and has been verified with conclusive evidence. Product requirement verification answers the question, "did the product meet the stated specification, performance, or design documentation?". In order to ensure the system was built correctly, the practicing system engineer must verify each product requirement using verification methods of inspection, analysis, demonstration, or test. The products of these methods are the "verification artifacts" or "closure artifacts" which are the objective evidence needed to prove the product requirements meet the verification success criteria. Institutional direction is given to the System Engineer in NPR 7123.1A NASA Systems Engineering Processes and Requirements with regards to the requirement verification process. In response, the verification methodology offered in this report meets both the institutional process and requirement verification best practices.

  5. Development of a pilot-scale kinetic extruder feeder system and test program. Phase II. Verification testing. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1984-01-12

    This report describes the work done under Phase II, the verification testing of the Kinetic Extruder. The main objective of the test program was to determine failure modes and wear rates. Only minor auxiliary equipment malfunctions were encountered. Wear rates indicate useful life expectancy of from 1 to 5 years for wear-exposed components. Recommendations are made for adapting the equipment for pilot plant and commercial applications. 3 references, 20 figures, 12 tables.

  6. [Safety verification for reuse of PET and glass bottles].

    PubMed

    Hayashi, Eiichi; Imai, Toshio; Niimi, Hiroji

    2011-01-01

    In order to verify the safety associated with reusing PET and glass bottles, a challenge test was conducted with five surrogate contaminants: 1,1,1-trichloroethane, chlorobenzene, toluene, benzophenone and phenyl cyclohexane. Bottles were filled with a cocktail solution of these contaminants and stored at 50 °C for 7 days, then washed with water and alkaline solutions. Material and migration tests were conducted at each step. The material test results showed that 430-1,440 µg/g of the contaminants were retained after water washing, and that even after washing with a 3.5% NaOH solution, 225-925 µg/g of the contaminants were retained. The migration tests revealed that 0.095-7.35 µg/mL of the contaminants were eluted. Similar tests were conducted with a soft drink ingredient, limonene. The results revealed that 48 µg/g of limonene was retained even after washing with NaOH solution, and that 0.16 µg/mL of limonene was eluted. Conversely, no contaminants were eluted from glass bottles after washing with the NaOH solution. Thus, from the viewpoint of safety and the preservation of content quality, PET bottles are not considered suitable for reuse when compared with glass bottles.

  7. Control and Non-Payload Communications (CNPC) Prototype Radio Verification Test Report

    NASA Technical Reports Server (NTRS)

    Bishop, William D.; Frantz, Brian D.; Thadhani, Suresh K.; Young, Daniel P.

    2017-01-01

    This report provides an overview and results from the verification of the specifications that defines the operational capabilities of the airborne and ground, L Band and C Band, Command and Non-Payload Communications radio link system. An overview of system verification is provided along with an overview of the operation of the radio. Measurement results are presented for verification of the radios operation.

  8. 78 FR 28812 - Energy Efficiency Program for Industrial Equipment: Petition of UL Verification Services Inc. for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-16

    ... are engineers. UL today is comprised of five businesses, Product Safety, Verification Services, Life..., Director--Global Technical Research, UL Verification Services. Subscribed and sworn to before me this 20... (431.447(c)(4)) General Personnel Overview UL is a global independent safety science company with more...

  9. 9 CFR 113.40 - Dog safety tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Dog safety tests. 113.40 Section 113... Procedures § 113.40 Dog safety tests. The safety tests provided in this section shall be conducted when... recommended for use in dogs. Serials which are not found to be satisfactory when tested pursuant to the...

  10. 9 CFR 113.40 - Dog safety tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Dog safety tests. 113.40 Section 113... Procedures § 113.40 Dog safety tests. The safety tests provided in this section shall be conducted when... recommended for use in dogs. Serials which are not found to be satisfactory when tested pursuant to the...

  11. 9 CFR 113.40 - Dog safety tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Dog safety tests. 113.40 Section 113... Procedures § 113.40 Dog safety tests. The safety tests provided in this section shall be conducted when... recommended for use in dogs. Serials which are not found to be satisfactory when tested pursuant to the...

  12. 9 CFR 113.40 - Dog safety tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Dog safety tests. 113.40 Section 113... Procedures § 113.40 Dog safety tests. The safety tests provided in this section shall be conducted when... recommended for use in dogs. Serials which are not found to be satisfactory when tested pursuant to the...

  13. 9 CFR 113.40 - Dog safety tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Dog safety tests. 113.40 Section 113... Procedures § 113.40 Dog safety tests. The safety tests provided in this section shall be conducted when... recommended for use in dogs. Serials which are not found to be satisfactory when tested pursuant to the...

  14. TQAP for Verification of Qualitative Lead Test Kits

    EPA Science Inventory

    There are lead-based paint test kits available to help home owners and contractors identify lead-based paint hazards before any Renovation, Repair, and Painting (RRP) activities take place so that proper health and safety meaures can be enacted. However, many of these test kits ...

  15. Testing Conducted for Lithium-Ion Cell and Battery Verification

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Miller, Thomas B.; Manzo, Michelle A.

    2004-01-01

    The NASA Glenn Research Center has been conducting in-house testing in support of NASA's Lithium-Ion Cell Verification Test Program, which is evaluating the performance of lithium-ion cells and batteries for NASA mission operations. The test program is supported by NASA's Office of Aerospace Technology under the NASA Aerospace Flight Battery Systems Program, which serves to bridge the gap between the development of technology advances and the realization of these advances into mission applications. During fiscal year 2003, much of the in-house testing effort focused on the evaluation of a flight battery originally intended for use on the Mars Surveyor Program 2001 Lander. Results of this testing will be compared with the results for similar batteries being tested at the Jet Propulsion Laboratory, the Air Force Research Laboratory, and the Naval Research Laboratory. Ultimately, this work will be used to validate lithium-ion battery technology for future space missions. The Mars Surveyor Program 2001 Lander battery was characterized at several different voltages and temperatures before life-cycle testing was begun. During characterization, the battery displayed excellent capacity and efficiency characteristics across a range of temperatures and charge/discharge conditions. Currently, the battery is undergoing lifecycle testing at 0 C and 40-percent depth of discharge under low-Earth-orbit (LEO) conditions.

  16. 9 CFR 113.41 - Calf safety test.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Calf safety test. 113.41 Section 113.41 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... Procedures § 113.41 Calf safety test. The calf safety test provided in this section shall be conducted when...

  17. 9 CFR 113.45 - Sheep safety test.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Sheep safety test. 113.45 Section 113.45 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... Procedures § 113.45 Sheep safety test. The sheep safety test provided in this section shall be conducted when...

  18. 9 CFR 113.41 - Calf safety test.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Calf safety test. 113.41 Section 113.41 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... Procedures § 113.41 Calf safety test. The calf safety test provided in this section shall be conducted when...

  19. 9 CFR 113.45 - Sheep safety test.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Sheep safety test. 113.45 Section 113.45 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... Procedures § 113.45 Sheep safety test. The sheep safety test provided in this section shall be conducted when...

  20. Conducted-Susceptibility Testing as an Alternative Approach to Unit-Level Radiated-Susceptibility Verifications

    NASA Astrophysics Data System (ADS)

    Badini, L.; Grassi, F.; Pignari, S. A.; Spadacini, G.; Bisognin, P.; Pelissou, P.; Marra, S.

    2016-05-01

    This work presents a theoretical rationale for the substitution of radiated-susceptibility (RS) verifications defined in current aerospace standards with an equivalent conducted-susceptibility (CS) test procedure based on bulk current injection (BCI) up to 500 MHz. Statistics is used to overcome the lack of knowledge about uncontrolled or uncertain setup parameters, with particular reference to the common-mode impedance of equipment. The BCI test level is properly investigated so to ensure correlation of currents injected in the equipment under test via CS and RS. In particular, an over-testing probability quantifies the severity of the BCI test with respect to the RS test.

  1. 9 CFR 113.33 - Mouse safety tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Mouse safety tests. 113.33 Section 113... Procedures § 113.33 Mouse safety tests. One of the mouse safety tests provided in this section shall be... or more ingredients makes the biological product lethal or toxic for mice but not lethal or toxic for...

  2. 9 CFR 113.33 - Mouse safety tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Mouse safety tests. 113.33 Section 113... Procedures § 113.33 Mouse safety tests. One of the mouse safety tests provided in this section shall be... or more ingredients makes the biological product lethal or toxic for mice but not lethal or toxic for...

  3. 9 CFR 113.33 - Mouse safety tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Mouse safety tests. 113.33 Section 113... Procedures § 113.33 Mouse safety tests. One of the mouse safety tests provided in this section shall be... or more ingredients makes the biological product lethal or toxic for mice but not lethal or toxic for...

  4. 9 CFR 113.33 - Mouse safety tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Mouse safety tests. 113.33 Section 113... Procedures § 113.33 Mouse safety tests. One of the mouse safety tests provided in this section shall be... or more ingredients makes the biological product lethal or toxic for mice but not lethal or toxic for...

  5. 9 CFR 113.33 - Mouse safety tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Mouse safety tests. 113.33 Section 113... Procedures § 113.33 Mouse safety tests. One of the mouse safety tests provided in this section shall be... or more ingredients makes the biological product lethal or toxic for mice but not lethal or toxic for...

  6. 9 CFR 113.44 - Swine safety test.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Swine safety test. 113.44 Section 113... Procedures § 113.44 Swine safety test. The swine safety test provided in this section shall be conducted when.... (1) Inject each of two swine of the minimum age for which the product is recommended with the...

  7. 9 CFR 113.44 - Swine safety test.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Swine safety test. 113.44 Section 113... Procedures § 113.44 Swine safety test. The swine safety test provided in this section shall be conducted when.... (1) Inject each of two swine of the minimum age for which the product is recommended with the...

  8. 9 CFR 113.44 - Swine safety test.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Swine safety test. 113.44 Section 113... Procedures § 113.44 Swine safety test. The swine safety test provided in this section shall be conducted when.... (1) Inject each of two swine of the minimum age for which the product is recommended with the...

  9. 9 CFR 113.44 - Swine safety test.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Swine safety test. 113.44 Section 113... Procedures § 113.44 Swine safety test. The swine safety test provided in this section shall be conducted when.... (1) Inject each of two swine of the minimum age for which the product is recommended with the...

  10. 9 CFR 113.44 - Swine safety test.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Swine safety test. 113.44 Section 113... Procedures § 113.44 Swine safety test. The swine safety test provided in this section shall be conducted when.... (1) Inject each of two swine of the minimum age for which the product is recommended with the...

  11. A new method to address verification bias in studies of clinical screening tests: cervical cancer screening assays as an example.

    PubMed

    Xue, Xiaonan; Kim, Mimi Y; Castle, Philip E; Strickler, Howard D

    2014-03-01

    Studies to evaluate clinical screening tests often face the problem that the "gold standard" diagnostic approach is costly and/or invasive. It is therefore common to verify only a subset of negative screening tests using the gold standard method. However, undersampling the screen negatives can lead to substantial overestimation of the sensitivity and underestimation of the specificity of the diagnostic test. Our objective was to develop a simple and accurate statistical method to address this "verification bias." We developed a weighted generalized estimating equation approach to estimate, in a single model, the accuracy (eg, sensitivity/specificity) of multiple assays and simultaneously compare results between assays while addressing verification bias. This approach can be implemented using standard statistical software. Simulations were conducted to assess the proposed method. An example is provided using a cervical cancer screening trial that compared the accuracy of human papillomavirus and Pap tests, with histologic data as the gold standard. The proposed approach performed well in estimating and comparing the accuracy of multiple assays in the presence of verification bias. The proposed approach is an easy to apply and accurate method for addressing verification bias in studies of multiple screening methods. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Providing an empirical basis for optimizing the verification and testing phases of software development

    NASA Technical Reports Server (NTRS)

    Briand, Lionel C.; Basili, Victor R.; Hetmanski, Christopher J.

    1992-01-01

    Applying equal testing and verification effort to all parts of a software system is not very efficient, especially when resources are limited and scheduling is tight. Therefore, one needs to be able to differentiate low/high fault density components so that the testing/verification effort can be concentrated where needed. Such a strategy is expected to detect more faults and thus improve the resulting reliability of the overall system. This paper presents an alternative approach for constructing such models that is intended to fulfill specific software engineering needs (i.e. dealing with partial/incomplete information and creating models that are easy to interpret). Our approach to classification is as follows: (1) to measure the software system to be considered; and (2) to build multivariate stochastic models for prediction. We present experimental results obtained by classifying FORTRAN components developed at the NASA/GSFC into two fault density classes: low and high. Also we evaluate the accuracy of the model and the insights it provides into the software process.

  13. Verification Games: Crowd-Sourced Formal Verification

    DTIC Science & Technology

    2016-03-01

    VERIFICATION GAMES : CROWD-SOURCED FORMAL VERIFICATION UNIVERSITY OF WASHINGTON MARCH 2016 FINAL TECHNICAL REPORT...DATES COVERED (From - To) JUN 2012 – SEP 2015 4. TITLE AND SUBTITLE VERIFICATION GAMES : CROWD-SOURCED FORMAL VERIFICATION 5a. CONTRACT NUMBER FA8750...clarification memorandum dated 16 Jan 09. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Over the more than three years of the project Verification Games : Crowd-sourced

  14. Considerations in STS payload environmental verification

    NASA Technical Reports Server (NTRS)

    Keegan, W. B.

    1978-01-01

    Considerations regarding the Space Transportation System (STS) payload environmental verification are reviewed. It is noted that emphasis is placed on testing at the subassembly level and that the basic objective of structural dynamic payload verification is to ensure reliability in a cost-effective manner. Structural analyses consist of: (1) stress analysis for critical loading conditions, (2) model analysis for launch and orbital configurations, (3) flight loads analysis, (4) test simulation analysis to verify models, (5) kinematic analysis of deployment/retraction sequences, and (6) structural-thermal-optical program analysis. In addition to these approaches, payload verification programs are being developed in the thermal-vacuum area. These include the exposure to extreme temperatures, temperature cycling, thermal-balance testing and thermal-vacuum testing.

  15. 40 CFR 1066.240 - Torque transducer verification.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... POLLUTION CONTROLS VEHICLE-TESTING PROCEDURES Dynamometer Specifications § 1066.240 Torque transducer verification. Verify torque-measurement systems by performing the verifications described in §§ 1066.270 and... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Torque transducer verification. 1066...

  16. Integrated vehicle-based safety systems heavy-truck on-road test report

    DOT National Transportation Integrated Search

    2008-08-01

    This report presents results from a series of on-road verification tests performed to determine the readiness of a prototype : integrated warning system to advance to field testing, as well as to identify areas of system performance that should be im...

  17. Integrated vehicle-based safety systems light-vehicle on-road test report

    DOT National Transportation Integrated Search

    2008-08-01

    This report presents results from a series of on-road verification tests performed to determine the readiness of a prototype : integrated warning system to advance to field testing, as well as to identify areas of system performance that should be im...

  18. 9 CFR 417.8 - Agency verification.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ....8 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... ANALYSIS AND CRITICAL CONTROL POINT (HACCP) SYSTEMS § 417.8 Agency verification. FSIS will verify the... plan or system; (f) Direct observation or measurement at a CCP; (g) Sample collection and analysis to...

  19. 9 CFR 417.8 - Agency verification.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ....8 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... ANALYSIS AND CRITICAL CONTROL POINT (HACCP) SYSTEMS § 417.8 Agency verification. FSIS will verify the... plan or system; (f) Direct observation or measurement at a CCP; (g) Sample collection and analysis to...

  20. 9 CFR 417.8 - Agency verification.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ....8 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... ANALYSIS AND CRITICAL CONTROL POINT (HACCP) SYSTEMS § 417.8 Agency verification. FSIS will verify the... plan or system; (f) Direct observation or measurement at a CCP; (g) Sample collection and analysis to...

  1. 9 CFR 417.8 - Agency verification.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ....8 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... ANALYSIS AND CRITICAL CONTROL POINT (HACCP) SYSTEMS § 417.8 Agency verification. FSIS will verify the... plan or system; (f) Direct observation or measurement at a CCP; (g) Sample collection and analysis to...

  2. 9 CFR 417.8 - Agency verification.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....8 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... ANALYSIS AND CRITICAL CONTROL POINT (HACCP) SYSTEMS § 417.8 Agency verification. FSIS will verify the... plan or system; (f) Direct observation or measurement at a CCP; (g) Sample collection and analysis to...

  3. Case Study: Test Results of a Tool and Method for In-Flight, Adaptive Control System Verification on a NASA F-15 Flight Research Aircraft

    NASA Technical Reports Server (NTRS)

    Jacklin, Stephen A.; Schumann, Johann; Guenther, Kurt; Bosworth, John

    2006-01-01

    Adaptive control technologies that incorporate learning algorithms have been proposed to enable autonomous flight control and to maintain vehicle performance in the face of unknown, changing, or poorly defined operating environments [1-2]. At the present time, however, it is unknown how adaptive algorithms can be routinely verified, validated, and certified for use in safety-critical applications. Rigorous methods for adaptive software verification end validation must be developed to ensure that. the control software functions as required and is highly safe and reliable. A large gap appears to exist between the point at which control system designers feel the verification process is complete, and when FAA certification officials agree it is complete. Certification of adaptive flight control software verification is complicated by the use of learning algorithms (e.g., neural networks) and degrees of system non-determinism. Of course, analytical efforts must be made in the verification process to place guarantees on learning algorithm stability, rate of convergence, and convergence accuracy. However, to satisfy FAA certification requirements, it must be demonstrated that the adaptive flight control system is also able to fail and still allow the aircraft to be flown safely or to land, while at the same time providing a means of crew notification of the (impending) failure. It was for this purpose that the NASA Ames Confidence Tool was developed [3]. This paper presents the Confidence Tool as a means of providing in-flight software assurance monitoring of an adaptive flight control system. The paper will present the data obtained from flight testing the tool on a specially modified F-15 aircraft designed to simulate loss of flight control faces.

  4. 30 CFR 27.34 - Test for intrinsic safety.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Test for intrinsic safety. 27.34 Section 27.34 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Test Requirements § 27.34 Test for intrinsic safety...

  5. 30 CFR 27.34 - Test for intrinsic safety.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Test for intrinsic safety. 27.34 Section 27.34 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Test Requirements § 27.34 Test for intrinsic safety...

  6. Multibody modeling and verification

    NASA Technical Reports Server (NTRS)

    Wiens, Gloria J.

    1989-01-01

    A summary of a ten week project on flexible multibody modeling, verification and control is presented. Emphasis was on the need for experimental verification. A literature survey was conducted for gathering information on the existence of experimental work related to flexible multibody systems. The first portion of the assigned task encompassed the modeling aspects of flexible multibodies that can undergo large angular displacements. Research in the area of modeling aspects were also surveyed, with special attention given to the component mode approach. Resulting from this is a research plan on various modeling aspects to be investigated over the next year. The relationship between the large angular displacements, boundary conditions, mode selection, and system modes is of particular interest. The other portion of the assigned task was the generation of a test plan for experimental verification of analytical and/or computer analysis techniques used for flexible multibody systems. Based on current and expected frequency ranges of flexible multibody systems to be used in space applications, an initial test article was selected and designed. A preliminary TREETOPS computer analysis was run to ensure frequency content in the low frequency range, 0.1 to 50 Hz. The initial specifications of experimental measurement and instrumentation components were also generated. Resulting from this effort is the initial multi-phase plan for a Ground Test Facility of Flexible Multibody Systems for Modeling Verification and Control. The plan focusses on the Multibody Modeling and Verification (MMV) Laboratory. General requirements of the Unobtrusive Sensor and Effector (USE) and the Robot Enhancement (RE) laboratories were considered during the laboratory development.

  7. Estimation of diagnostic test accuracy without full verification: a review of latent class methods

    PubMed Central

    Collins, John; Huynh, Minh

    2014-01-01

    The performance of a diagnostic test is best evaluated against a reference test that is without error. For many diseases, this is not possible, and an imperfect reference test must be used. However, diagnostic accuracy estimates may be biased if inaccurately verified status is used as the truth. Statistical models have been developed to handle this situation by treating disease as a latent variable. In this paper, we conduct a systematized review of statistical methods using latent class models for estimating test accuracy and disease prevalence in the absence of complete verification. PMID:24910172

  8. Verification System: First System-Wide Performance Test

    NASA Astrophysics Data System (ADS)

    Chernobay, I.; Zerbo, L.

    2006-05-01

    System-wide performance tests are essential for the development, testing and evaluation of individual components of the verification system. In addition to evaluating global readiness it helps establishing the practical and financial requirements for eventual operations. The first system-wide performance test (SPT1) was conducted in three phases: - A preparatory phase in May-June 2004 - A performance testing phase in April-June 2005 - An evaluation phase in the last half of 2005. The preparatory phase was developmental in nature. The main objectives for the performance testing phase included establishment of performance baseline under current provisional mode of operation (CTBT/PC- 19/1/Annex II, CTBT/WGB-21/1), examination of established requirements and procedures for operation and maintenance. To establish a system-wide performance baseline the system configuration was fixed for April-May 2005. The third month (June 2005) was used for implementation of 21 test case scenarios to examine either particular operational procedures or the response of the system components to the failures simulated under controlled conditions. A total of 163 stations and 5 certified radionuclide laboratories of International Monitoring System (IMS) participated in the performance testing phase - about 50% of the eventual IMS network. 156 IMS facilities and 40 National Data Centres (NDCs) were connected to the International Data Centre (IDC) via Global Communication Infrastructure (GCI) communication links. In addition, 12 legacy stations in the auxiliary seismic network sent data to the IDC over the Internet. During the performance testing phase, the IDC produced all required products, analysed more than 6100 seismic events and 1700 radionuclide spectra. Performance of all system elements was documented and analysed. IDC products were compared with results of data processing at the NDCs. On the basis of statistics and information collected during the SPT1 a system-wide performance

  9. TEST DESIGN FOR ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) OF ADD-ON NOX CONTROL UTILIZING OZONE INJECTION

    EPA Science Inventory

    The paper discusses the test design for environmental technology verification (ETV) of add-0n nitrogen oxides (NOx) control utilizing ozone injection. (NOTE: ETV is an EPA-established program to enhance domestic and international market acceptance of new or improved commercially...

  10. ENVIRONMENTAL TECHNOLOGY VERIFICATION FOR INDOOR AIR PRODUCTS

    EPA Science Inventory

    The paper discusses environmental technology verification (ETV) for indoor air products. RTI is developing the framework for a verification testing program for indoor air products, as part of EPA's ETV program. RTI is establishing test protocols for products that fit into three...

  11. A Study on Performance and Safety Tests of Electrosurgical Equipment.

    PubMed

    Tavakoli Golpaygani, A; Movahedi, M M; Reza, M

    2016-09-01

    Modern medicine employs a wide variety of instruments with different physiological effects and measurements. Periodic verifications are routinely used in legal metrology for industrial measuring instruments. The correct operation of electrosurgical generators is essential to ensure patient's safety and management of the risks associated with the use of high and low frequency electrical currents on human body. The metrological reliability of 20 electrosurgical equipment in six hospitals (3 private and 3 public) was evaluated in one of the provinces of Iran according to international and national standards. The achieved results show that HF leakage current of ground-referenced generators are more than isolated generators and the power analysis of only eight units delivered acceptable output values and the precision in the output power measurements was low. Results indicate a need for new and severe regulations on periodic performance verifications and medical equipment quality control program especially in high risk instruments. It is also necessary to provide training courses for operating staff in the field of meterology in medicine to be acquianted with critical parameters to get accuracy results with operation room equipment.

  12. 18 CFR 12.13 - Verification form.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Verification form. 12.13 Section 12.13 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT SAFETY OF WATER POWER PROJECTS AND PROJECT WORKS...

  13. HDL to verification logic translator

    NASA Technical Reports Server (NTRS)

    Gambles, J. W.; Windley, P. J.

    1992-01-01

    The increasingly higher number of transistors possible in VLSI circuits compounds the difficulty in insuring correct designs. As the number of possible test cases required to exhaustively simulate a circuit design explodes, a better method is required to confirm the absence of design faults. Formal verification methods provide a way to prove, using logic, that a circuit structure correctly implements its specification. Before verification is accepted by VLSI design engineers, the stand alone verification tools that are in use in the research community must be integrated with the CAD tools used by the designers. One problem facing the acceptance of formal verification into circuit design methodology is that the structural circuit descriptions used by the designers are not appropriate for verification work and those required for verification lack some of the features needed for design. We offer a solution to this dilemma: an automatic translation from the designers' HDL models into definitions for the higher-ordered logic (HOL) verification system. The translated definitions become the low level basis of circuit verification which in turn increases the designer's confidence in the correctness of higher level behavioral models.

  14. International Space Station Requirement Verification for Commercial Visiting Vehicles

    NASA Technical Reports Server (NTRS)

    Garguilo, Dan

    2017-01-01

    The COTS program demonstrated NASA could rely on commercial providers for safe, reliable, and cost-effective cargo delivery to ISS. The ISS Program has developed a streamlined process to safely integrate commercial visiting vehicles and ensure requirements are met Levy a minimum requirement set (down from 1000s to 100s) focusing on the ISS interface and safety, reducing the level of NASA oversight/insight and burden on the commercial Partner. Partners provide a detailed verification and validation plan documenting how they will show they've met NASA requirements. NASA conducts process sampling to ensure that the established verification processes is being followed. NASA participates in joint verification events and analysis for requirements that require both parties verify. Verification compliance is approved by NASA and launch readiness certified at mission readiness reviews.

  15. Baseline and Verification Tests of the Electric Vehicle Associates’ Current Fare Station Wagon.

    DTIC Science & Technology

    1983-01-01

    ELECTRIC Final Test Report VEICLE ASSOCIATES’CURRENT FARE STATION WAGON 27 March 1980 -6 November 1981 6. PERFORMING ORG. REPORT NUMBER * .7. AUTNOR(s) a...Whe,% Doe. Er(,rrrd) -I PREFACE Z..1~ The electric and hybrid vehicle test was conducted by the U.S. Army Mobility Equipment Research and Development...COAST-DOWN D. ELECTRIC AND HYBRID VEHICLE 92 VERIFICATION PROCEDURES 1".f S. -..°.o. . *-.. .,". .. " . ,. . . . . . . % % %d° ILLUSTRATIONS Figure

  16. 40 CFR 1065.920 - PEMS Calibrations and verifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Field Testing and Portable Emission Measurement Systems § 1065... verification. The verification consists of operating an engine over a duty cycle in the laboratory and... by laboratory equipment as follows: (1) Mount an engine on a dynamometer for laboratory testing...

  17. Formal Verification of the AAMP-FV Microcode

    NASA Technical Reports Server (NTRS)

    Miller, Steven P.; Greve, David A.; Wilding, Matthew M.; Srivas, Mandayam

    1999-01-01

    This report describes the experiences of Collins Avionics & Communications and SRI International in formally specifying and verifying the microcode in a Rockwell proprietary microprocessor, the AAMP-FV, using the PVS verification system. This project built extensively on earlier experiences using PVS to verify the microcode in the AAMP5, a complex, pipelined microprocessor designed for use in avionics displays and global positioning systems. While the AAMP5 experiment demonstrated the technical feasibility of formal verification of microcode, the steep learning curve encountered left unanswered the question of whether it could be performed at reasonable cost. The AAMP-FV project was conducted to determine whether the experience gained on the AAMP5 project could be used to make formal verification of microcode cost effective for safety-critical and high volume devices.

  18. 14 CFR 460.17 - Verification program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... software in an operational flight environment before allowing any space flight participant on board during a flight. Verification must include flight testing. ... TRANSPORTATION LICENSING HUMAN SPACE FLIGHT REQUIREMENTS Launch and Reentry with Crew § 460.17 Verification...

  19. 14 CFR 460.17 - Verification program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... software in an operational flight environment before allowing any space flight participant on board during a flight. Verification must include flight testing. ... TRANSPORTATION LICENSING HUMAN SPACE FLIGHT REQUIREMENTS Launch and Reentry with Crew § 460.17 Verification...

  20. 14 CFR 460.17 - Verification program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... software in an operational flight environment before allowing any space flight participant on board during a flight. Verification must include flight testing. ... TRANSPORTATION LICENSING HUMAN SPACE FLIGHT REQUIREMENTS Launch and Reentry with Crew § 460.17 Verification...

  1. 14 CFR 460.17 - Verification program.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... software in an operational flight environment before allowing any space flight participant on board during a flight. Verification must include flight testing. ... TRANSPORTATION LICENSING HUMAN SPACE FLIGHT REQUIREMENTS Launch and Reentry with Crew § 460.17 Verification...

  2. 14 CFR 460.17 - Verification program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... software in an operational flight environment before allowing any space flight participant on board during a flight. Verification must include flight testing. ... TRANSPORTATION LICENSING HUMAN SPACE FLIGHT REQUIREMENTS Launch and Reentry with Crew § 460.17 Verification...

  3. Concept Verification Test - Evaluation of Spacelab/Payload operation concepts

    NASA Technical Reports Server (NTRS)

    Mcbrayer, R. O.; Watters, H. H.

    1977-01-01

    The Concept Verification Test (CVT) procedure is used to study Spacelab operational concepts by conducting mission simulations in a General Purpose Laboratory (GPL) which represents a possible design of Spacelab. In conjunction with the laboratory a Mission Development Simulator, a Data Management System Simulator, a Spacelab Simulator, and Shuttle Interface Simulator have been designed. (The Spacelab Simulator is more functionally and physically representative of the Spacelab than the GPL.) Four simulations of Spacelab mission experimentation were performed, two involving several scientific disciplines, one involving life sciences, and the last involving material sciences. The purpose of the CVT project is to support the pre-design and development of payload carriers and payloads, and to coordinate hardware, software, and operational concepts of different developers and users.

  4. 9 CFR 113.38 - Guinea pig safety test.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Guinea pig safety test. 113.38 Section... Standard Procedures § 113.38 Guinea pig safety test. The guinea pig safety test provided in this section... be injected either intramuscularly or subcutaneously into each of two guinea pigs and the animals...

  5. 9 CFR 113.38 - Guinea pig safety test.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Guinea pig safety test. 113.38 Section... Standard Procedures § 113.38 Guinea pig safety test. The guinea pig safety test provided in this section... be injected either intramuscularly or subcutaneously into each of two guinea pigs and the animals...

  6. 9 CFR 113.38 - Guinea pig safety test.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Guinea pig safety test. 113.38 Section... Standard Procedures § 113.38 Guinea pig safety test. The guinea pig safety test provided in this section... be injected either intramuscularly or subcutaneously into each of two guinea pigs and the animals...

  7. 9 CFR 113.38 - Guinea pig safety test.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Guinea pig safety test. 113.38 Section... Standard Procedures § 113.38 Guinea pig safety test. The guinea pig safety test provided in this section... be injected either intramuscularly or subcutaneously into each of two guinea pigs and the animals...

  8. 9 CFR 113.38 - Guinea pig safety test.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Guinea pig safety test. 113.38 Section... Standard Procedures § 113.38 Guinea pig safety test. The guinea pig safety test provided in this section... be injected either intramuscularly or subcutaneously into each of two guinea pigs and the animals...

  9. CD volume design and verification

    NASA Technical Reports Server (NTRS)

    Li, Y. P.; Hughes, J. S.

    1993-01-01

    In this paper, we describe a prototype for CD-ROM volume design and verification. This prototype allows users to create their own model of CD volumes by modifying a prototypical model. Rule-based verification of the test volumes can then be performed later on against the volume definition. This working prototype has proven the concept of model-driven rule-based design and verification for large quantity of data. The model defined for the CD-ROM volumes becomes a data model as well as an executable specification.

  10. Mitigating errors caused by interruptions during medication verification and administration: interventions in a simulated ambulatory chemotherapy setting

    PubMed Central

    Prakash, Varuna; Koczmara, Christine; Savage, Pamela; Trip, Katherine; Stewart, Janice; McCurdie, Tara; Cafazzo, Joseph A; Trbovich, Patricia

    2014-01-01

    Background Nurses are frequently interrupted during medication verification and administration; however, few interventions exist to mitigate resulting errors, and the impact of these interventions on medication safety is poorly understood. Objective The study objectives were to (A) assess the effects of interruptions on medication verification and administration errors, and (B) design and test the effectiveness of targeted interventions at reducing these errors. Methods The study focused on medication verification and administration in an ambulatory chemotherapy setting. A simulation laboratory experiment was conducted to determine interruption-related error rates during specific medication verification and administration tasks. Interventions to reduce these errors were developed through a participatory design process, and their error reduction effectiveness was assessed through a postintervention experiment. Results Significantly more nurses committed medication errors when interrupted than when uninterrupted. With use of interventions when interrupted, significantly fewer nurses made errors in verifying medication volumes contained in syringes (16/18; 89% preintervention error rate vs 11/19; 58% postintervention error rate; p=0.038; Fisher's exact test) and programmed in ambulatory pumps (17/18; 94% preintervention vs 11/19; 58% postintervention; p=0.012). The rate of error commission significantly decreased with use of interventions when interrupted during intravenous push (16/18; 89% preintervention vs 6/19; 32% postintervention; p=0.017) and pump programming (7/18; 39% preintervention vs 1/19; 5% postintervention; p=0.017). No statistically significant differences were observed for other medication verification tasks. Conclusions Interruptions can lead to medication verification and administration errors. Interventions were highly effective at reducing unanticipated errors of commission in medication administration tasks, but showed mixed effectiveness at

  11. General Environmental Verification Specification

    NASA Technical Reports Server (NTRS)

    Milne, J. Scott, Jr.; Kaufman, Daniel S.

    2003-01-01

    The NASA Goddard Space Flight Center s General Environmental Verification Specification (GEVS) for STS and ELV Payloads, Subsystems, and Components is currently being revised based on lessons learned from GSFC engineering and flight assurance. The GEVS has been used by Goddard flight projects for the past 17 years as a baseline from which to tailor their environmental test programs. A summary of the requirements and updates are presented along with the rationale behind the changes. The major test areas covered by the GEVS include mechanical, thermal, and EMC, as well as more general requirements for planning, tracking of the verification programs.

  12. Hydrologic data-verification management program plan

    USGS Publications Warehouse

    Alexander, C.W.

    1982-01-01

    Data verification refers to the performance of quality control on hydrologic data that have been retrieved from the field and are being prepared for dissemination to water-data users. Water-data users now have access to computerized data files containing unpublished, unverified hydrologic data. Therefore, it is necessary to develop techniques and systems whereby the computer can perform some data-verification functions before the data are stored in user-accessible files. Computerized data-verification routines can be developed for this purpose. A single, unified concept describing master data-verification program using multiple special-purpose subroutines, and a screen file containing verification criteria, can probably be adapted to any type and size of computer-processing system. Some traditional manual-verification procedures can be adapted for computerized verification, but new procedures can also be developed that would take advantage of the powerful statistical tools and data-handling procedures available to the computer. Prototype data-verification systems should be developed for all three data-processing environments as soon as possible. The WATSTORE system probably affords the greatest opportunity for long-range research and testing of new verification subroutines. (USGS)

  13. 9 CFR 113.39 - Cat safety tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Cat safety tests. 113.39 Section 113.39 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... Seed Virus is tested for safety. (1) The test animals shall be determined to be susceptible to the...

  14. Safety Assurances at Space Test Centres: Lessons Learned

    NASA Astrophysics Data System (ADS)

    Alarcon Ruiz, Raul; O'Neil, Sean; Valls, Rafel Prades

    2010-09-01

    The European Space Agency’s(ESA) experts in quality, cleanliness and contamination control, safety, test facilities and test methods have accumulated valuable experience during the performance of dedicated audits of space test centres in Europe over a period of 10 years. This paper is limited to a summary of the safety findings and provides a valuable reference to the lessons learned, identifying opportunities for improvement in the areas of risk prevention measures associated to the safety of all test centre personnel, the test specimen, the test facilities and associated infrastructure. Through the analysis of the audit results the authors present what are the main lessons learned, and conclude how an effective safety management system will contribute to successful test campaigns and have a positive impact on the cost and schedule of space projects.

  15. 40 CFR 1065.920 - PEMS calibrations and verifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Field Testing and Portable Emission Measurement Systems § 1065... that your new configuration meets this verification. The verification consists of operating an engine... with data simultaneously generated and recorded by laboratory equipment as follows: (1) Mount an engine...

  16. 40 CFR 1065.920 - PEMS calibrations and verifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Field Testing and Portable Emission Measurement Systems § 1065... that your new configuration meets this verification. The verification consists of operating an engine... with data simultaneously generated and recorded by laboratory equipment as follows: (1) Mount an engine...

  17. 40 CFR 1065.920 - PEMS calibrations and verifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Field Testing and Portable Emission Measurement Systems § 1065... that your new configuration meets this verification. The verification consists of operating an engine... with data simultaneously generated and recorded by laboratory equipment as follows: (1) Mount an engine...

  18. On Demand Internal Short Circuit Device Enables Verification of Safer, Higher Performing Battery Designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darcy, Eric; Keyser, Matthew

    The Internal Short Circuit (ISC) device enables critical battery safety verification. With the aluminum interstitial heat sink between the cells, normal trigger cells cannot be driven into thermal runaway without excessive temperature bias of adjacent cells. With an implantable, on-demand ISC device, thermal runaway tests show that the conductive heat sinks protected adjacent cells from propagation. High heat dissipation and structural support of Al heat sinks show high promise for safer, higher performing batteries.

  19. Software Verification of Orion Cockpit Displays

    NASA Technical Reports Server (NTRS)

    Biswas, M. A. Rafe; Garcia, Samuel; Prado, Matthew; Hossain, Sadad; Souris, Matthew; Morin, Lee

    2017-01-01

    NASA's latest spacecraft Orion is in the development process of taking humans deeper into space. Orion is equipped with three main displays to monitor and control the spacecraft. To ensure the software behind the glass displays operates without faults, rigorous testing is needed. To conduct such testing, the Rapid Prototyping Lab at NASA's Johnson Space Center along with the University of Texas at Tyler employed a software verification tool, EggPlant Functional by TestPlant. It is an image based test automation tool that allows users to create scripts to verify the functionality within a program. A set of edge key framework and Common EggPlant Functions were developed to enable creation of scripts in an efficient fashion. This framework standardized the way to code and to simulate user inputs in the verification process. Moreover, the Common EggPlant Functions can be used repeatedly in verification of different displays.

  20. Application verification research of cloud computing technology in the field of real time aerospace experiment

    NASA Astrophysics Data System (ADS)

    Wan, Junwei; Chen, Hongyan; Zhao, Jing

    2017-08-01

    According to the requirements of real-time, reliability and safety for aerospace experiment, the single center cloud computing technology application verification platform is constructed. At the IAAS level, the feasibility of the cloud computing technology be applied to the field of aerospace experiment is tested and verified. Based on the analysis of the test results, a preliminary conclusion is obtained: Cloud computing platform can be applied to the aerospace experiment computing intensive business. For I/O intensive business, it is recommended to use the traditional physical machine.

  1. First Order Reliability Application and Verification Methods for Semistatic Structures

    NASA Technical Reports Server (NTRS)

    Verderaime, Vincent

    1994-01-01

    Escalating risks of aerostructures stimulated by increasing size, complexity, and cost should no longer be ignored by conventional deterministic safety design methods. The deterministic pass-fail concept is incompatible with probability and risk assessments, its stress audits are shown to be arbitrary and incomplete, and it compromises high strength materials performance. A reliability method is proposed which combines first order reliability principles with deterministic design variables and conventional test technique to surmount current deterministic stress design and audit deficiencies. Accumulative and propagation design uncertainty errors are defined and appropriately implemented into the classical safety index expression. The application is reduced to solving for a factor that satisfies the specified reliability and compensates for uncertainty errors, and then using this factor as, and instead of, the conventional safety factor in stress analyses. The resulting method is consistent with current analytical skills and verification practices, the culture of most designers, and with the pace of semistatic structural designs.

  2. First-order reliability application and verification methods for semistatic structures

    NASA Astrophysics Data System (ADS)

    Verderaime, V.

    1994-11-01

    Escalating risks of aerostructures stimulated by increasing size, complexity, and cost should no longer be ignored in conventional deterministic safety design methods. The deterministic pass-fail concept is incompatible with probability and risk assessments; stress audits are shown to be arbitrary and incomplete, and the concept compromises the performance of high-strength materials. A reliability method is proposed that combines first-order reliability principles with deterministic design variables and conventional test techniques to surmount current deterministic stress design and audit deficiencies. Accumulative and propagation design uncertainty errors are defined and appropriately implemented into the classical safety-index expression. The application is reduced to solving for a design factor that satisfies the specified reliability and compensates for uncertainty errors, and then using this design factor as, and instead of, the conventional safety factor in stress analyses. The resulting method is consistent with current analytical skills and verification practices, the culture of most designers, and the development of semistatic structural designs.

  3. bcROCsurface: an R package for correcting verification bias in estimation of the ROC surface and its volume for continuous diagnostic tests.

    PubMed

    To Duc, Khanh

    2017-11-18

    Receiver operating characteristic (ROC) surface analysis is usually employed to assess the accuracy of a medical diagnostic test when there are three ordered disease status (e.g. non-diseased, intermediate, diseased). In practice, verification bias can occur due to missingness of the true disease status and can lead to a distorted conclusion on diagnostic accuracy. In such situations, bias-corrected inference tools are required. This paper introduce an R package, named bcROCsurface, which provides utility functions for verification bias-corrected ROC surface analysis. The shiny web application of the correction for verification bias in estimation of the ROC surface analysis is also developed. bcROCsurface may become an important tool for the statistical evaluation of three-class diagnostic markers in presence of verification bias. The R package, readme and example data are available on CRAN. The web interface enables users less familiar with R to evaluate the accuracy of diagnostic tests, and can be found at http://khanhtoduc.shinyapps.io/bcROCsurface_shiny/ .

  4. Annual verifications--a tick-box exercise?

    PubMed

    Walker, Gwen; Williams, David

    2014-09-01

    With the onus on healthcare providers and their staff to protect patients against all elements of 'avoidable harm' perhaps never greater, Gwen Walker, a highly experienced infection prevention control nurse specialist, and David Williams, MD of Approved Air, who has 30 years' experience in validation and verification of ventilation and ultraclean ventilation systems, examine changing requirements for, and trends in, operating theatre ventilation. Validation and verification reporting on such vital HVAC equipment should not, they argue, merely be viewed as a 'tick-box exercise'; it should instead 'comprehensively inform key stakeholders, and ultimately form part of clinical governance, thus protecting those ultimately named responsible for organisation-wide safety at Trust board level'.

  5. Integrated verification and testing system (IVTS) for HAL/S programs

    NASA Technical Reports Server (NTRS)

    Senn, E. H.; Ames, K. R.; Smith, K. A.

    1983-01-01

    The IVTS is a large software system designed to support user-controlled verification analysis and testing activities for programs written in the HAL/S language. The system is composed of a user interface and user command language, analysis tools and an organized data base of host system files. The analysis tools are of four major types: (1) static analysis, (2) symbolic execution, (3) dynamic analysis (testing), and (4) documentation enhancement. The IVTS requires a split HAL/S compiler, divided at the natural separation point between the parser/lexical analyzer phase and the target machine code generator phase. The IVTS uses the internal program form (HALMAT) between these two phases as primary input for the analysis tools. The dynamic analysis component requires some way to 'execute' the object HAL/S program. The execution medium may be an interpretive simulation or an actual host or target machine.

  6. 76 FR 20536 - Protocol Gas Verification Program and Minimum Competency Requirements for Air Emission Testing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 75 [EPA-HQ-OAR-2009-0837; FRL-9280-9] RIN 2060-AQ06 Protocol Gas Verification Program and Minimum Competency Requirements for Air Emission Testing Correction In rule document 2011-6216 appearing on pages 17288-17325 in the issue of Monday, March 28, 2011...

  7. Constitutive modeling of superalloy single crystals with verification testing

    NASA Technical Reports Server (NTRS)

    Jordan, Eric; Walker, Kevin P.

    1985-01-01

    The goal is the development of constitutive equations to describe the elevated temperature stress-strain behavior of single crystal turbine blade alloys. The program includes both the development of a suitable model and verification of the model through elevated temperature-torsion testing. A constitutive model is derived from postulated constitutive behavior on individual crystallographic slip systems. The behavior of the entire single crystal is then arrived at by summing up the slip on all the operative crystallographic slip systems. This type of formulation has a number of important advantages, including the prediction orientation dependence and the ability to directly represent the constitutive behavior in terms which metallurgists use in describing the micromechanisms. Here, the model is briefly described, followed by the experimental set-up and some experimental findings to date.

  8. Simulation verification techniques study: Simulation self test hardware design and techniques report

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The final results are presented of the hardware verification task. The basic objectives of the various subtasks are reviewed along with the ground rules under which the overall task was conducted and which impacted the approach taken in deriving techniques for hardware self test. The results of the first subtask and the definition of simulation hardware are presented. The hardware definition is based primarily on a brief review of the simulator configurations anticipated for the shuttle training program. The results of the survey of current self test techniques are presented. The data sources that were considered in the search for current techniques are reviewed, and results of the survey are presented in terms of the specific types of tests that are of interest for training simulator applications. Specifically, these types of tests are readiness tests, fault isolation tests and incipient fault detection techniques. The most applicable techniques were structured into software flows that are then referenced in discussions of techniques for specific subsystems.

  9. A Study on Performance and Safety Tests of Electrosurgical Equipment

    PubMed Central

    Tavakoli Golpaygani, A.; Movahedi, M.M.; Reza, M.

    2016-01-01

    Introduction: Modern medicine employs a wide variety of instruments with different physiological effects and measurements. Periodic verifications are routinely used in legal metrology for industrial measuring instruments. The correct operation of electrosurgical generators is essential to ensure patient’s safety and management of the risks associated with the use of high and low frequency electrical currents on human body. Material and Methods: The metrological reliability of 20 electrosurgical equipment in six hospitals (3 private and 3 public) was evaluated in one of the provinces of Iran according to international and national standards. Results: The achieved results show that HF leakage current of ground-referenced generators are more than isolated generators and the power analysis of only eight units delivered acceptable output values and the precision in the output power measurements was low. Conclusion: Results indicate a need for new and severe regulations on periodic performance verifications and medical equipment quality control program especially in high risk instruments. It is also necessary to provide training courses for operating staff in the field of meterology in medicine to be acquianted with critical parameters to get accuracy results with operation room equipment. PMID:27853725

  10. 9 CFR 417.4 - Validation, Verification, Reassessment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... analysis. Any establishment that does not have a HACCP plan because a hazard analysis has revealed no food.... 417.4 Section 417.4 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... ACT HAZARD ANALYSIS AND CRITICAL CONTROL POINT (HACCP) SYSTEMS § 417.4 Validation, Verification...

  11. 9 CFR 417.4 - Validation, Verification, Reassessment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... analysis. Any establishment that does not have a HACCP plan because a hazard analysis has revealed no food.... 417.4 Section 417.4 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... ACT HAZARD ANALYSIS AND CRITICAL CONTROL POINT (HACCP) SYSTEMS § 417.4 Validation, Verification...

  12. Verification testing of the PKI collector at Sandia National Laboratories, Albuquerque, New Mexico

    NASA Technical Reports Server (NTRS)

    Hauger, J. S.; Pond, S. L.

    1982-01-01

    Verification testing of a solar collector was undertaken prior to its operation as part of an industrial process heat plant at Capitol Concrete Products in Topeka, Kansas. Testing was performed at a control plant installed at Sandia National Laboratory, Albuquerque, New Mexico (SNLA). Early results show that plant performance is even better than anticipated and far in excess of test criteria. Overall plant efficiencies of 65 to 80 percent were typical during hours of good insolation. A number of flaws and imperfections were detected during operability testing, the most important being a problem in elevation drive alignment due to a manufacturing error. All problems were corrected as they occurred and the plant, with over 40 hours of operation, is currently continuing operability testing in a wholly-automatic mode.

  13. Verification testing of the PKI collector at Sandia National Laboratories, Albuquerque, New Mexico

    NASA Astrophysics Data System (ADS)

    Hauger, J. S.; Pond, S. L.

    1982-07-01

    Verification testing of a solar collector was undertaken prior to its operation as part of an industrial process heat plant at Capitol Concrete Products in Topeka, Kansas. Testing was performed at a control plant installed at Sandia National Laboratory, Albuquerque, New Mexico (SNLA). Early results show that plant performance is even better than anticipated and far in excess of test criteria. Overall plant efficiencies of 65 to 80 percent were typical during hours of good insolation. A number of flaws and imperfections were detected during operability testing, the most important being a problem in elevation drive alignment due to a manufacturing error. All problems were corrected as they occurred and the plant, with over 40 hours of operation, is currently continuing operability testing in a wholly-automatic mode.

  14. Software safety - A user's practical perspective

    NASA Technical Reports Server (NTRS)

    Dunn, William R.; Corliss, Lloyd D.

    1990-01-01

    Software safety assurance philosophy and practices at the NASA Ames are discussed. It is shown that, to be safe, software must be error-free. Software developments on two digital flight control systems and two ground facility systems are examined, including the overall system and software organization and function, the software-safety issues, and their resolution. The effectiveness of safety assurance methods is discussed, including conventional life-cycle practices, verification and validation testing, software safety analysis, and formal design methods. It is concluded (1) that a practical software safety technology does not yet exist, (2) that it is unlikely that a set of general-purpose analytical techniques can be developed for proving that software is safe, and (3) that successful software safety-assurance practices will have to take into account the detailed design processes employed and show that the software will execute correctly under all possible conditions.

  15. Verification Test for Ultra-Light Deployment Mechanism for Sectioned Deployable Antenna Reflectors

    NASA Astrophysics Data System (ADS)

    Zajac, Kai; Schmidt, Tilo; Schiller, Marko; Seifart, Klaus; Schmalbach, Matthias; Scolamiero, Lucio

    2013-09-01

    The ultra-light deployment mechanism (UDM) is based on three carbon fibre reinforced plastics (CFRP) curved tape springs made of carbon fibre / cyanate ester prepregs.In the frame of the activity its space application suitability for the deployment of solid reflector antenna sections was investigated. A projected diameter of the full reflector of 4 m to 7 m and specific mass in the order of magnitude of 2.6kg/m2 was focused for requirement derivation.Extensive verification tests including health checks, environmental and functional tests were carried out with an engineering model to enable representative characterizing of the UDM unit.This paper presents the design and a technical description of the UDM as well as a summary of achieved development status with respect to test results and possible design improvements.

  16. 40 CFR 86.1847-01 - Manufacturer in-use verification and in-use confirmatory testing; submittal of information and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... laboratory equipment calibrations and verifications as prescribed by subpart B of this part or by good... in-use confirmatory testing; submittal of information and maintenance of records. 86.1847-01 Section... confirmatory testing; submittal of information and maintenance of records. (a) The manufacturer who conducts or...

  17. Cassini's RTGs undergo mechanical and electrical verification tests in the PHSF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This radioisotope thermoelectric generator (RTG), at center, is ready for electrical verification testing now that it has been installed on the Cassini spacecraft in the Payload Hazardous Servicing Facility. A handling fixture, at far left, remains attached. This is the third and final RTG to be installed on Cassini for the prelaunch tests. The RTGs will provide electrical power to Cassini on its 6.7-year trip to the Saturnian system and during its four-year mission at Saturn. RTGs use heat from the natural decay of plutonium to generate electric power. The generators enable spacecraft to operate at great distances from the Sun where solar power systems are not feasible. The Cassini mission is targeted for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle.

  18. BAGHOUSE FILTRATION PRODUCTS VERIFICATION TESTING, HOW IT BENEFITS THE BOILER BAGHOUSE OPERATOR

    EPA Science Inventory

    The paper describes the Environmental Technology Verification (ETV) Program for baghouse filtration products developed by the Air Pollution Control Technology Verification Center, one of six Centers under the ETV Program, and discusses how it benefits boiler baghouse operators. A...

  19. Testing Dialog-Verification of SIP Phones with Single-Message Denial-of-Service Attacks

    NASA Astrophysics Data System (ADS)

    Seedorf, Jan; Beckers, Kristian; Huici, Felipe

    The Session Initiation Protocol (SIP) is widely used for signaling in multimedia communications. However, many SIP implementations are still in their infancy and vulnerable to malicious messages. We investigate flaws in the SIP implementations of eight phones, showing that the deficient verification of SIP dialogs further aggravates the problem by making it easier for attacks to succeed. Our results show that the majority of the phones we tested are susceptible to these attacks.

  20. Simulation environment based on the Universal Verification Methodology

    NASA Astrophysics Data System (ADS)

    Fiergolski, A.

    2017-01-01

    Universal Verification Methodology (UVM) is a standardized approach of verifying integrated circuit designs, targeting a Coverage-Driven Verification (CDV). It combines automatic test generation, self-checking testbenches, and coverage metrics to indicate progress in the design verification. The flow of the CDV differs from the traditional directed-testing approach. With the CDV, a testbench developer, by setting the verification goals, starts with an structured plan. Those goals are targeted further by a developed testbench, which generates legal stimuli and sends them to a device under test (DUT). The progress is measured by coverage monitors added to the simulation environment. In this way, the non-exercised functionality can be identified. Moreover, the additional scoreboards indicate undesired DUT behaviour. Such verification environments were developed for three recent ASIC and FPGA projects which have successfully implemented the new work-flow: (1) the CLICpix2 65 nm CMOS hybrid pixel readout ASIC design; (2) the C3PD 180 nm HV-CMOS active sensor ASIC design; (3) the FPGA-based DAQ system of the CLICpix chip. This paper, based on the experience from the above projects, introduces briefly UVM and presents a set of tips and advices applicable at different stages of the verification process-cycle.

  1. Considerations in STS payload environmental verification

    NASA Technical Reports Server (NTRS)

    Keegan, W. B.

    1978-01-01

    The current philosophy of the GSFS regarding environmental verification of Shuttle payloads is reviewed. In the structures area, increased emphasis will be placed on the use of analysis for design verification, with selective testing performed as necessary. Furthermore, as a result of recent cost optimization analysis, the multitier test program will presumably give way to a comprehensive test program at the major payload subassembly level after adequate workmanship at the component level has been verified. In the thermal vacuum area, thought is being given to modifying the approaches used for conventional spacecraft.

  2. AN ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) PERFORMANCE TESTING OF FOUR IMMUNOASSAY TEST KITS

    EPA Science Inventory

    The Environmental Technology Verification (ETV) Program, beginning as an initiative of the U.S. Environmental Protection Agency (EPA) in 1995, verifies the performance of commercially available, innovative technologies that can be used to measure environmental quality. The ETV p...

  3. Verification and Validation Methodology of Real-Time Adaptive Neural Networks for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Gupta, Pramod; Loparo, Kenneth; Mackall, Dale; Schumann, Johann; Soares, Fola

    2004-01-01

    Recent research has shown that adaptive neural based control systems are very effective in restoring stability and control of an aircraft in the presence of damage or failures. The application of an adaptive neural network with a flight critical control system requires a thorough and proven process to ensure safe and proper flight operation. Unique testing tools have been developed as part of a process to perform verification and validation (V&V) of real time adaptive neural networks used in recent adaptive flight control system, to evaluate the performance of the on line trained neural networks. The tools will help in certification from FAA and will help in the successful deployment of neural network based adaptive controllers in safety-critical applications. The process to perform verification and validation is evaluated against a typical neural adaptive controller and the results are discussed.

  4. Verification and Validation Studies for the LAVA CFD Solver

    NASA Technical Reports Server (NTRS)

    Moini-Yekta, Shayan; Barad, Michael F; Sozer, Emre; Brehm, Christoph; Housman, Jeffrey A.; Kiris, Cetin C.

    2013-01-01

    The verification and validation of the Launch Ascent and Vehicle Aerodynamics (LAVA) computational fluid dynamics (CFD) solver is presented. A modern strategy for verification and validation is described incorporating verification tests, validation benchmarks, continuous integration and version control methods for automated testing in a collaborative development environment. The purpose of the approach is to integrate the verification and validation process into the development of the solver and improve productivity. This paper uses the Method of Manufactured Solutions (MMS) for the verification of 2D Euler equations, 3D Navier-Stokes equations as well as turbulence models. A method for systematic refinement of unstructured grids is also presented. Verification using inviscid vortex propagation and flow over a flat plate is highlighted. Simulation results using laminar and turbulent flow past a NACA 0012 airfoil and ONERA M6 wing are validated against experimental and numerical data.

  5. 49 CFR 236.905 - Railroad Safety Program Plan (RSPP).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... to be used in the verification and validation process, consistent with appendix C to this part. The...; and (iv) The identification of the safety assessment process. (2) Design for verification and validation. The RSPP must require the identification of verification and validation methods for the...

  6. 49 CFR 236.905 - Railroad Safety Program Plan (RSPP).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... to be used in the verification and validation process, consistent with appendix C to this part. The...; and (iv) The identification of the safety assessment process. (2) Design for verification and validation. The RSPP must require the identification of verification and validation methods for the...

  7. 49 CFR 236.905 - Railroad Safety Program Plan (RSPP).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... to be used in the verification and validation process, consistent with appendix C to this part. The...; and (iv) The identification of the safety assessment process. (2) Design for verification and validation. The RSPP must require the identification of verification and validation methods for the...

  8. 49 CFR 236.905 - Railroad Safety Program Plan (RSPP).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... to be used in the verification and validation process, consistent with appendix C to this part. The...; and (iv) The identification of the safety assessment process. (2) Design for verification and validation. The RSPP must require the identification of verification and validation methods for the...

  9. Distilling the Verification Process for Prognostics Algorithms

    NASA Technical Reports Server (NTRS)

    Roychoudhury, Indranil; Saxena, Abhinav; Celaya, Jose R.; Goebel, Kai

    2013-01-01

    The goal of prognostics and health management (PHM) systems is to ensure system safety, and reduce downtime and maintenance costs. It is important that a PHM system is verified and validated before it can be successfully deployed. Prognostics algorithms are integral parts of PHM systems. This paper investigates a systematic process of verification of such prognostics algorithms. To this end, first, this paper distinguishes between technology maturation and product development. Then, the paper describes the verification process for a prognostics algorithm as it moves up to higher maturity levels. This process is shown to be an iterative process where verification activities are interleaved with validation activities at each maturation level. In this work, we adopt the concept of technology readiness levels (TRLs) to represent the different maturity levels of a prognostics algorithm. It is shown that at each TRL, the verification of a prognostics algorithm depends on verifying the different components of the algorithm according to the requirements laid out by the PHM system that adopts this prognostics algorithm. Finally, using simplified examples, the systematic process for verifying a prognostics algorithm is demonstrated as the prognostics algorithm moves up TRLs.

  10. Influence of the Redundant Verification and the Non-Redundant Verification on the Hydraulic Tomography

    NASA Astrophysics Data System (ADS)

    Wei, T. B.; Chen, Y. L.; Lin, H. R.; Huang, S. Y.; Yeh, T. C. J.; Wen, J. C.

    2016-12-01

    In the groundwater study, it estimated the heterogeneous spatial distribution of hydraulic Properties, there were many scholars use to hydraulic tomography (HT) from field site pumping tests to estimate inverse of heterogeneous spatial distribution of hydraulic Properties, to prove the most of most field site aquifer was heterogeneous hydrogeological parameters spatial distribution field. Many scholars had proposed a method of hydraulic tomography to estimate heterogeneous spatial distribution of hydraulic Properties of aquifer, the Huang et al. [2011] was used the non-redundant verification analysis of pumping wells changed, observation wells fixed on the inverse and the forward, to reflect the feasibility of the heterogeneous spatial distribution of hydraulic Properties of field site aquifer of the non-redundant verification analysis on steady-state model.From post literature, finding only in steady state, non-redundant verification analysis of pumping well changed location and observation wells fixed location for inverse and forward. But the studies had not yet pumping wells fixed or changed location, and observation wells fixed location for redundant verification or observation wells change location for non-redundant verification of the various combinations may to explore of influences of hydraulic tomography method. In this study, it carried out redundant verification method and non-redundant verification method for forward to influences of hydraulic tomography method in transient. And it discuss above mentioned in NYUST campus sites the actual case, to prove the effectiveness of hydraulic tomography methods, and confirmed the feasibility on inverse and forward analysis from analysis results.Keywords: Hydraulic Tomography, Redundant Verification, Heterogeneous, Inverse, Forward

  11. Verification of performance specifications for a US Food and Drug Administration-approved molecular microbiology test: Clostridium difficile cytotoxin B using the Becton, Dickinson and Company GeneOhm Cdiff assay.

    PubMed

    Schlaberg, Robert; Mitchell, Michael J; Taggart, Edward W; She, Rosemary C

    2012-01-01

    US Food and Drug Administration (FDA)-approved diagnostic tests based on molecular genetic technologies are becoming available for an increasing number of microbial pathogens. Advances in technology and lower costs have moved molecular diagnostic tests formerly performed for research purposes only into much wider use in clinical microbiology laboratories. To provide an example of laboratory studies performed to verify the performance of an FDA-approved assay for the detection of Clostridium difficile cytotoxin B compared with the manufacturer's performance standards. We describe the process and protocols used by a laboratory for verification of an FDA-approved assay, assess data from the verification studies, and implement the assay after verification. Performance data from the verification studies conducted by the laboratory were consistent with the manufacturer's performance standards and the assay was implemented into the laboratory's test menu. Verification studies are required for FDA-approved diagnostic assays prior to use in patient care. Laboratories should develop a standardized approach to verification studies that can be adapted and applied to different types of assays. We describe the verification of an FDA-approved real-time polymerase chain reaction assay for the detection of a toxin gene in a bacterial pathogen.

  12. Test/QA plan for the verification testing of alternative or reformulated liquid fuels, fuel additives, fuel emulsions, and lubricants for highway and nonroad use heavy-duty diesel engines

    EPA Science Inventory

    This Environmental Technology Verification Program test/QA plan for heavy-duty diesel engine testing at the Southwest Research Institute’s Department of Emissions Research describes how the Federal Test Procedure (FTP), as listed in 40 CFR Part 86 for highway engines and 40 CFR P...

  13. 49 CFR Appendix F to Part 236 - Minimum Requirements of FRA Directed Independent Third-Party Assessment of PTC System Safety...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Third-Party Assessment of PTC System Safety Verification and Validation F Appendix F to Part 236... Safety Verification and Validation (a) This appendix provides minimum requirements for mandatory independent third-party assessment of PTC system safety verification and validation pursuant to subpart H or I...

  14. 49 CFR Appendix F to Part 236 - Minimum Requirements of FRA Directed Independent Third-Party Assessment of PTC System Safety...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Third-Party Assessment of PTC System Safety Verification and Validation F Appendix F to Part 236... Safety Verification and Validation (a) This appendix provides minimum requirements for mandatory independent third-party assessment of PTC system safety verification and validation pursuant to subpart H or I...

  15. 49 CFR Appendix F to Part 236 - Minimum Requirements of FRA Directed Independent Third-Party Assessment of PTC System Safety...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Third-Party Assessment of PTC System Safety Verification and Validation F Appendix F to Part 236... Safety Verification and Validation (a) This appendix provides minimum requirements for mandatory independent third-party assessment of PTC system safety verification and validation pursuant to subpart H or I...

  16. 49 CFR Appendix F to Part 236 - Minimum Requirements of FRA Directed Independent Third-Party Assessment of PTC System Safety...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Third-Party Assessment of PTC System Safety Verification and Validation F Appendix F to Part 236... Safety Verification and Validation (a) This appendix provides minimum requirements for mandatory independent third-party assessment of PTC system safety verification and validation pursuant to subpart H or I...

  17. Formal verification of an avionics microprocessor

    NASA Technical Reports Server (NTRS)

    Srivas, Mandayam, K.; Miller, Steven P.

    1995-01-01

    Formal specification combined with mechanical verification is a promising approach for achieving the extremely high levels of assurance required of safety-critical digital systems. However, many questions remain regarding their use in practice: Can these techniques scale up to industrial systems, where are they likely to be useful, and how should industry go about incorporating them into practice? This report discusses a project undertaken to answer some of these questions, the formal verification of the AAMPS microprocessor. This project consisted of formally specifying in the PVS language a rockwell proprietary microprocessor at both the instruction-set and register-transfer levels and using the PVS theorem prover to show that the microcode correctly implemented the instruction-level specification for a representative subset of instructions. Notable aspects of this project include the use of a formal specification language by practicing hardware and software engineers, the integration of traditional inspections with formal specifications, and the use of a mechanical theorem prover to verify a portion of a commercial, pipelined microprocessor that was not explicitly designed for formal verification.

  18. Long-Term Pavement Performance Materials Characterization Program: Verification of Dynamic Test Systems with an Emphasis on Resilient Modulus

    DOT National Transportation Integrated Search

    2005-09-01

    This document describes a procedure for verifying a dynamic testing system (closed-loop servohydraulic). The procedure is divided into three general phases: (1) electronic system performance verification, (2) calibration check and overall system perf...

  19. Verification Testing of Air Pollution Control Technology Quality Management Plan Revision 2.3

    EPA Pesticide Factsheets

    The Air Pollution Control Technology Verification Center was established in 1995 as part of the EPA’s Environmental Technology Verification Program to accelerate the development and commercialization of improved environmental technologies’ performance.

  20. Implementation and verification of global optimization benchmark problems

    NASA Astrophysics Data System (ADS)

    Posypkin, Mikhail; Usov, Alexander

    2017-12-01

    The paper considers the implementation and verification of a test suite containing 150 benchmarks for global deterministic box-constrained optimization. A C++ library for describing standard mathematical expressions was developed for this purpose. The library automate the process of generating the value of a function and its' gradient at a given point and the interval estimates of a function and its' gradient on a given box using a single description. Based on this functionality, we have developed a collection of tests for an automatic verification of the proposed benchmarks. The verification has shown that literary sources contain mistakes in the benchmarks description. The library and the test suite are available for download and can be used freely.

  1. Verification and Validation of Flight-Critical Systems

    NASA Technical Reports Server (NTRS)

    Brat, Guillaume

    2010-01-01

    For the first time in many years, the NASA budget presented to congress calls for a focused effort on the verification and validation (V&V) of complex systems. This is mostly motivated by the results of the VVFCS (V&V of Flight-Critical Systems) study, which should materialize as a a concrete effort under the Aviation Safety program. This talk will present the results of the study, from requirements coming out of discussions with the FAA and the Joint Planning and Development Office (JPDO) to technical plan addressing the issue, and its proposed current and future V&V research agenda, which will be addressed by NASA Ames, Langley, and Dryden as well as external partners through NASA Research Announcements (NRA) calls. This agenda calls for pushing V&V earlier in the life cycle and take advantage of formal methods to increase safety and reduce cost of V&V. I will present the on-going research work (especially the four main technical areas: Safety Assurance, Distributed Systems, Authority and Autonomy, and Software-Intensive Systems), possible extensions, and how VVFCS plans on grounding the research in realistic examples, including an intended V&V test-bench based on an Integrated Modular Avionics (IMA) architecture and hosted by Dryden.

  2. ENVIRONMENTAL TECHNOLOGY VERIFICATION--GENERIC VERIFICATION PROTOCOL FOR BIOLOGICAL AND AEROSOL TESTING OF GENERAL VENTILATION AIR CLEANERS

    EPA Science Inventory

    Under EPA's Environmental Technology Verification Program, Research Triangle Institute (RTI) will operate the Air Pollution Control Technology Center to verify the filtration efficiency and bioaerosol inactivation efficiency of heating, ventilation and air conditioning air cleane...

  3. Limitations in learning: How treatment verifications fail and what to do about it?

    PubMed

    Richardson, Susan; Thomadsen, Bruce

    The purposes of this study were: to provide dialog on why classic incident learning systems have been insufficient for patient safety improvements, discuss failures in treatment verification, and to provide context to the reasons and lessons that can be learned from these failures. Historically, incident learning in brachytherapy is performed via database mining which might include reading of event reports and incidents followed by incorporating verification procedures to prevent similar incidents. A description of both classic event reporting databases and current incident learning and reporting systems is given. Real examples of treatment failures based on firsthand knowledge are presented to evaluate the effectiveness of verification. These failures will be described and analyzed by outlining potential pitfalls and problems based on firsthand knowledge. Databases and incident learning systems can be limited in value and fail to provide enough detail for physicists seeking process improvement. Four examples of treatment verification failures experienced firsthand by experienced brachytherapy physicists are described. These include both underverification and oververification of various treatment processes. Database mining is an insufficient method to affect substantial improvements in the practice of brachytherapy. New incident learning systems are still immature and being tested. Instead, a new method of shared learning and implementation of changes must be created. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  4. Hazards of Electromagnetic Radiation to Ordnance (HERO) Safety Test

    DTIC Science & Technology

    2013-01-10

    Ordnance Test Procedure (JOTP)-061 Hazards of Electromagnetic Radiation to...DEPARTMENT OF DEFENSE JOINT ORDNANCE TEST PROCEDURE (JOTP)-061 HAZARDS OF ELECTROMAGNETIC RADIATION TO ORDNANCE (HERO) SAFETY...TEST Joint Services Munition Safety Test Working Group Joint Ordnance Test Procedure (JOTP)-061 Hazards of Electromagnetic Radiation

  5. 46 CFR 61.30-20 - Automatic control and safety tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Automatic control and safety tests. 61.30-20 Section 61... TESTS AND INSPECTIONS Tests and Inspections of Fired Thermal Fluid Heaters § 61.30-20 Automatic control and safety tests. Operational tests and checks of all safety and limit controls, combustion controls...

  6. 40 CFR 1066.250 - Base inertia verification.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Base inertia verification. 1066.250... CONTROLS VEHICLE-TESTING PROCEDURES Dynamometer Specifications § 1066.250 Base inertia verification. (a) Overview. This section describes how to verify the dynamometer's base inertia. (b) Scope and frequency...

  7. 40 CFR 1066.250 - Base inertia verification.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Base inertia verification. 1066.250... CONTROLS VEHICLE-TESTING PROCEDURES Dynamometer Specifications § 1066.250 Base inertia verification. (a) Overview. This section describes how to verify the dynamometer's base inertia. (b) Scope and frequency...

  8. 40 CFR 1066.250 - Base inertia verification.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Base inertia verification. 1066.250... CONTROLS VEHICLE-TESTING PROCEDURES Dynamometer Specifications § 1066.250 Base inertia verification. (a) Overview. This section describes how to verify the dynamometer's base inertia. (b) Scope and frequency...

  9. Optical Testing and Verification Methods for the James Webb Space Telescope Integrated Science Instrument Module Element

    NASA Technical Reports Server (NTRS)

    Antonille, Scott R.; Miskey, Cherie L.; Ohl, Raymond G.; Rohrbach, Scott O.; Aronstein, David L.; Bartoszyk, Andrew E.; Bowers, Charles W.; Cofie, Emmanuel; Collins, Nicholas R.; Comber, Brian J.; hide

    2016-01-01

    NASA's James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy (40K). The JWST Observatory includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) that contains four science instruments (SI) and the fine guider. The SIs are mounted to a composite metering structure. The SI and guider units were integrated to the ISIM structure and optically tested at the NASA Goddard Space Flight Center as a suite using the Optical Telescope Element SIMulator (OSIM). OSIM is a full field, cryogenic JWST telescope simulator. SI performance, including alignment and wave front error, were evaluated using OSIM. We describe test and analysis methods for optical performance verification of the ISIM Element, with an emphasis on the processes used to plan and execute the test. The complexity of ISIM and OSIM drove us to develop a software tool for test planning that allows for configuration control of observations, associated scripts, and management of hardware and software limits and constraints, as well as tools for rapid data evaluation, and flexible re-planning in response to the unexpected. As examples of our test and analysis approach, we discuss how factors such as the ground test thermal environment are compensated in alignment. We describe how these innovative methods for test planning and execution and post-test analysis were instrumental in the verification program for the ISIM element, with enough information to allow the reader to consider these innovations and lessons learned in this successful effort in their future testing for other programs.

  10. Optical testing and verification methods for the James Webb Space Telescope Integrated Science Instrument Module element

    NASA Astrophysics Data System (ADS)

    Antonille, Scott R.; Miskey, Cherie L.; Ohl, Raymond G.; Rohrbach, Scott O.; Aronstein, David L.; Bartoszyk, Andrew E.; Bowers, Charles W.; Cofie, Emmanuel; Collins, Nicholas R.; Comber, Brian J.; Eichhorn, William L.; Glasse, Alistair C.; Gracey, Renee; Hartig, George F.; Howard, Joseph M.; Kelly, Douglas M.; Kimble, Randy A.; Kirk, Jeffrey R.; Kubalak, David A.; Landsman, Wayne B.; Lindler, Don J.; Malumuth, Eliot M.; Maszkiewicz, Michael; Rieke, Marcia J.; Rowlands, Neil; Sabatke, Derek S.; Smith, Corbett T.; Smith, J. Scott; Sullivan, Joseph F.; Telfer, Randal C.; Te Plate, Maurice; Vila, M. Begoña.; Warner, Gerry D.; Wright, David; Wright, Raymond H.; Zhou, Julia; Zielinski, Thomas P.

    2016-09-01

    NASA's James Webb Space Telescope (JWST) is a 6.5m diameter, segmented, deployable telescope for cryogenic IR space astronomy. The JWST Observatory includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM), that contains four science instruments (SI) and the Fine Guidance Sensor (FGS). The SIs are mounted to a composite metering structure. The SIs and FGS were integrated to the ISIM structure and optically tested at NASA's Goddard Space Flight Center using the Optical Telescope Element SIMulator (OSIM). OSIM is a full-field, cryogenic JWST telescope simulator. SI performance, including alignment and wavefront error, was evaluated using OSIM. We describe test and analysis methods for optical performance verification of the ISIM Element, with an emphasis on the processes used to plan and execute the test. The complexity of ISIM and OSIM drove us to develop a software tool for test planning that allows for configuration control of observations, implementation of associated scripts, and management of hardware and software limits and constraints, as well as tools for rapid data evaluation, and flexible re-planning in response to the unexpected. As examples of our test and analysis approach, we discuss how factors such as the ground test thermal environment are compensated in alignment. We describe how these innovative methods for test planning and execution and post-test analysis were instrumental in the verification program for the ISIM element, with enough information to allow the reader to consider these innovations and lessons learned in this successful effort in their future testing for other programs.

  11. RELAP-7 Software Verification and Validation Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Curtis L.; Choi, Yong-Joon; Zou, Ling

    This INL plan comprehensively describes the software for RELAP-7 and documents the software, interface, and software design requirements for the application. The plan also describes the testing-based software verification and validation (SV&V) process—a set of specially designed software models used to test RELAP-7. The RELAP-7 (Reactor Excursion and Leak Analysis Program) code is a nuclear reactor system safety analysis code being developed at Idaho National Laboratory (INL). The code is based on the INL’s modern scientific software development framework – MOOSE (Multi-Physics Object-Oriented Simulation Environment). The overall design goal of RELAP-7 is to take advantage of the previous thirty yearsmore » of advancements in computer architecture, software design, numerical integration methods, and physical models. The end result will be a reactor systems analysis capability that retains and improves upon RELAP5’s capability and extends the analysis capability for all reactor system simulation scenarios.« less

  12. A Verification-Driven Approach to Traceability and Documentation for Auto-Generated Mathematical Software

    NASA Technical Reports Server (NTRS)

    Denney, Ewen W.; Fischer, Bernd

    2009-01-01

    Model-based development and automated code generation are increasingly used for production code in safety-critical applications, but since code generators are typically not qualified, the generated code must still be fully tested, reviewed, and certified. This is particularly arduous for mathematical and control engineering software which requires reviewers to trace subtle details of textbook formulas and algorithms to the code, and to match requirements (e.g., physical units or coordinate frames) not represented explicitly in models or code. Both tasks are complicated by the often opaque nature of auto-generated code. We address these problems by developing a verification-driven approach to traceability and documentation. We apply the AUTOCERT verification system to identify and then verify mathematical concepts in the code, based on a mathematical domain theory, and then use these verified traceability links between concepts, code, and verification conditions to construct a natural language report that provides a high-level structured argument explaining why and how the code uses the assumptions and complies with the requirements. We have applied our approach to generate review documents for several sub-systems of NASA s Project Constellation.

  13. Mitigating errors caused by interruptions during medication verification and administration: interventions in a simulated ambulatory chemotherapy setting.

    PubMed

    Prakash, Varuna; Koczmara, Christine; Savage, Pamela; Trip, Katherine; Stewart, Janice; McCurdie, Tara; Cafazzo, Joseph A; Trbovich, Patricia

    2014-11-01

    Nurses are frequently interrupted during medication verification and administration; however, few interventions exist to mitigate resulting errors, and the impact of these interventions on medication safety is poorly understood. The study objectives were to (A) assess the effects of interruptions on medication verification and administration errors, and (B) design and test the effectiveness of targeted interventions at reducing these errors. The study focused on medication verification and administration in an ambulatory chemotherapy setting. A simulation laboratory experiment was conducted to determine interruption-related error rates during specific medication verification and administration tasks. Interventions to reduce these errors were developed through a participatory design process, and their error reduction effectiveness was assessed through a postintervention experiment. Significantly more nurses committed medication errors when interrupted than when uninterrupted. With use of interventions when interrupted, significantly fewer nurses made errors in verifying medication volumes contained in syringes (16/18; 89% preintervention error rate vs 11/19; 58% postintervention error rate; p=0.038; Fisher's exact test) and programmed in ambulatory pumps (17/18; 94% preintervention vs 11/19; 58% postintervention; p=0.012). The rate of error commission significantly decreased with use of interventions when interrupted during intravenous push (16/18; 89% preintervention vs 6/19; 32% postintervention; p=0.017) and pump programming (7/18; 39% preintervention vs 1/19; 5% postintervention; p=0.017). No statistically significant differences were observed for other medication verification tasks. Interruptions can lead to medication verification and administration errors. Interventions were highly effective at reducing unanticipated errors of commission in medication administration tasks, but showed mixed effectiveness at reducing predictable errors of detection in

  14. A digital flight control system verification laboratory

    NASA Technical Reports Server (NTRS)

    De Feo, P.; Saib, S.

    1982-01-01

    A NASA/FAA program has been established for the verification and validation of digital flight control systems (DFCS), with the primary objective being the development and analysis of automated verification tools. In order to enhance the capabilities, effectiveness, and ease of using the test environment, software verification tools can be applied. Tool design includes a static analyzer, an assertion generator, a symbolic executor, a dynamic analysis instrument, and an automated documentation generator. Static and dynamic tools are integrated with error detection capabilities, resulting in a facility which analyzes a representative testbed of DFCS software. Future investigations will ensue particularly in the areas of increase in the number of software test tools, and a cost effectiveness assessment.

  15. Verification test of the Battronic Truck Volta Electric Pickup. Report for Jul 80-Jan 81

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dowgiallo, E.J. Jr; Snellings, I.R.; Chapman, R.D.

    1982-04-01

    The Volta Pickup is an electric 1/2-ton truck manufactured by the Battronic Truck Co. It was tested by MERADCOM at Fort Belvoir, Virginia as part of a Department of Energy project to verify conformity to performance standards of electric vehicles. The verification test results are presented in this report. The Volta Pickup is powered by 24 6-V lead-acid batteries, has a 38 hp series wound d.c. motor, SCR chopper controller, regenerative braking, and a 2-speed Helical gear transmission.

  16. THIRD PARTY TECHNOLOGY PERFORMANCE VERIFICATION DATA FROM A STAKEHOLD-DRIVEN TECHNOLOGY TESTING PROGRAM

    EPA Science Inventory

    The Greenhouse Gas (GHG) Technology Verification Center is one of 12 independently operated verification centers established by the U.S. Environmental Protection Agency. The Center provides third-party performance data to stakeholders interested in environmetnal technologies tha...

  17. Validation and Verification (V&V) of Safety-Critical Systems Operating Under Off-Nominal Conditions

    NASA Technical Reports Server (NTRS)

    Belcastro, Christine M.

    2012-01-01

    Loss of control (LOC) remains one of the largest contributors to aircraft fatal accidents worldwide. Aircraft LOC accidents are highly complex in that they can result from numerous causal and contributing factors acting alone or more often in combination. Hence, there is no single intervention strategy to prevent these accidents. Research is underway at the National Aeronautics and Space Administration (NASA) in the development of advanced onboard system technologies for preventing or recovering from loss of vehicle control and for assuring safe operation under off-nominal conditions associated with aircraft LOC accidents. The transition of these technologies into the commercial fleet will require their extensive validation and verification (V&V) and ultimate certification. The V&V of complex integrated systems poses highly significant technical challenges and is the subject of a parallel research effort at NASA. This chapter summarizes the V&V problem and presents a proposed process that could be applied to complex integrated safety-critical systems developed for preventing aircraft LOC accidents. A summary of recent research accomplishments in this effort is referenced.

  18. On the Formal Verification of Conflict Detection Algorithms

    NASA Technical Reports Server (NTRS)

    Munoz, Cesar; Butler, Ricky W.; Carreno, Victor A.; Dowek, Gilles

    2001-01-01

    Safety assessment of new air traffic management systems is a main issue for civil aviation authorities. Standard techniques such as testing and simulation have serious limitations in new systems that are significantly more autonomous than the older ones. In this paper, we present an innovative approach, based on formal verification, for establishing the correctness of conflict detection systems. Fundamental to our approach is the concept of trajectory, which is a continuous path in the x-y plane constrained by physical laws and operational requirements. From the Model of trajectories, we extract, and formally prove, high level properties that can serve as a framework to analyze conflict scenarios. We use the Airborne Information for Lateral Spacing (AILS) alerting algorithm as a case study of our approach.

  19. Development of photovoltaic array and module safety requirements

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Safety requirements for photovoltaic module and panel designs and configurations likely to be used in residential, intermediate, and large-scale applications were identified and developed. The National Electrical Code and Building Codes were reviewed with respect to present provisions which may be considered to affect the design of photovoltaic modules. Limited testing, primarily in the roof fire resistance field was conducted. Additional studies and further investigations led to the development of a proposed standard for safety for flat-plate photovoltaic modules and panels. Additional work covered the initial investigation of conceptual approaches and temporary deployment, for concept verification purposes, of a differential dc ground-fault detection circuit suitable as a part of a photovoltaic array safety system.

  20. Testing of electrical equipment for a commercial grade dedication program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, J.L.; Srinivas, N.

    1995-10-01

    The availability of qualified safety related replacement parts for use in nuclear power plants has decreased over time. This has caused many nuclear power plants to purchase commercial grade items (CGI) and utilize the commercial grade dedication process to qualify the items for use in nuclear safety related applications. The laboratories of Technical and Engineering Services (the testing facility of Detroit Edison) have been providing testing services for verification of critical characteristics of these items. This paper presents an overview of the experience in testing electrical equipment with an emphasis on fuses.

  1. Land Ice Verification and Validation Kit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-07-15

    To address a pressing need to better understand the behavior and complex interaction of ice sheets within the global Earth system, significant development of continental-scale, dynamical ice-sheet models is underway. The associated verification and validation process of these models is being coordinated through a new, robust, python-based extensible software package, the Land Ice Verification and Validation toolkit (LIVV). This release provides robust and automated verification and a performance evaluation on LCF platforms. The performance V&V involves a comprehensive comparison of model performance relative to expected behavior on a given computing platform. LIVV operates on a set of benchmark and testmore » data, and provides comparisons for a suite of community prioritized tests, including configuration and parameter variations, bit-4-bit evaluation, and plots of tests where differences occur.« less

  2. Verification of cardiac mechanics software: benchmark problems and solutions for testing active and passive material behaviour.

    PubMed

    Land, Sander; Gurev, Viatcheslav; Arens, Sander; Augustin, Christoph M; Baron, Lukas; Blake, Robert; Bradley, Chris; Castro, Sebastian; Crozier, Andrew; Favino, Marco; Fastl, Thomas E; Fritz, Thomas; Gao, Hao; Gizzi, Alessio; Griffith, Boyce E; Hurtado, Daniel E; Krause, Rolf; Luo, Xiaoyu; Nash, Martyn P; Pezzuto, Simone; Plank, Gernot; Rossi, Simone; Ruprecht, Daniel; Seemann, Gunnar; Smith, Nicolas P; Sundnes, Joakim; Rice, J Jeremy; Trayanova, Natalia; Wang, Dafang; Jenny Wang, Zhinuo; Niederer, Steven A

    2015-12-08

    Models of cardiac mechanics are increasingly used to investigate cardiac physiology. These models are characterized by a high level of complexity, including the particular anisotropic material properties of biological tissue and the actively contracting material. A large number of independent simulation codes have been developed, but a consistent way of verifying the accuracy and replicability of simulations is lacking. To aid in the verification of current and future cardiac mechanics solvers, this study provides three benchmark problems for cardiac mechanics. These benchmark problems test the ability to accurately simulate pressure-type forces that depend on the deformed objects geometry, anisotropic and spatially varying material properties similar to those seen in the left ventricle and active contractile forces. The benchmark was solved by 11 different groups to generate consensus solutions, with typical differences in higher-resolution solutions at approximately 0.5%, and consistent results between linear, quadratic and cubic finite elements as well as different approaches to simulating incompressible materials. Online tools and solutions are made available to allow these tests to be effectively used in verification of future cardiac mechanics software.

  3. EOS-AM precision pointing verification

    NASA Technical Reports Server (NTRS)

    Throckmorton, A.; Braknis, E.; Bolek, J.

    1993-01-01

    The Earth Observing System (EOS) AM mission requires tight pointing knowledge to meet scientific objectives, in a spacecraft with low frequency flexible appendage modes. As the spacecraft controller reacts to various disturbance sources and as the inherent appendage modes are excited by this control action, verification of precision pointing knowledge becomes particularly challenging for the EOS-AM mission. As presently conceived, this verification includes a complementary set of multi-disciplinary analyses, hardware tests and real-time computer in the loop simulations, followed by collection and analysis of hardware test and flight data and supported by a comprehensive data base repository for validated program values.

  4. Verification of chemistry reference ranges using a simple method in sub-Saharan Africa

    PubMed Central

    Taylor, Douglas; Mandala, Justin; Nanda, Kavita; Van Campenhout, Christel; Agingu, Walter; Madurai, Lorna; Barsch, Eva-Maria; Deese, Jennifer; Van Damme, Lut; Crucitti, Tania

    2016-01-01

    Background Chemistry safety assessments are interpreted by using chemistry reference ranges (CRRs). Verification of CRRs is time consuming and often requires a statistical background. Objectives We report on an easy and cost-saving method to verify CRRs. Methods Using a former method introduced by Sigma Diagnostics, three study sites in sub-Saharan Africa, Bondo, Kenya, and Pretoria and Bloemfontein, South Africa, verified the CRRs for hepatic and renal biochemistry assays performed during a clinical trial of HIV antiretroviral pre-exposure prophylaxis. The aspartate aminotransferase/alanine aminotransferase, creatinine and phosphorus results from 10 clinically-healthy participants at the screening visit were used. In the event the CRRs did not pass the verification, new CRRs had to be calculated based on 40 clinically-healthy participants. Results Within a few weeks, the study sites accomplished verification of the CRRs without additional costs. The aspartate aminotransferase reference ranges for the Bondo, Kenya site and the alanine aminotransferase reference ranges for the Pretoria, South Africa site required adjustment. The phosphorus CRR passed verification and the creatinine CRR required adjustment at every site. The newly-established CRR intervals were narrower than the CRRs used previously at these study sites due to decreases in the upper limits of the reference ranges. As a result, more toxicities were detected. Conclusion To ensure the safety of clinical trial participants, verification of CRRs should be standard practice in clinical trials conducted in settings where the CRR has not been validated for the local population. This verification method is simple, inexpensive, and can be performed by any medical laboratory. PMID:28879112

  5. Verification of chemistry reference ranges using a simple method in sub-Saharan Africa.

    PubMed

    De Baetselier, Irith; Taylor, Douglas; Mandala, Justin; Nanda, Kavita; Van Campenhout, Christel; Agingu, Walter; Madurai, Lorna; Barsch, Eva-Maria; Deese, Jennifer; Van Damme, Lut; Crucitti, Tania

    2016-01-01

    Chemistry safety assessments are interpreted by using chemistry reference ranges (CRRs). Verification of CRRs is time consuming and often requires a statistical background. We report on an easy and cost-saving method to verify CRRs. Using a former method introduced by Sigma Diagnostics, three study sites in sub-Saharan Africa, Bondo, Kenya, and Pretoria and Bloemfontein, South Africa, verified the CRRs for hepatic and renal biochemistry assays performed during a clinical trial of HIV antiretroviral pre-exposure prophylaxis. The aspartate aminotransferase/alanine aminotransferase, creatinine and phosphorus results from 10 clinically-healthy participants at the screening visit were used. In the event the CRRs did not pass the verification, new CRRs had to be calculated based on 40 clinically-healthy participants. Within a few weeks, the study sites accomplished verification of the CRRs without additional costs. The aspartate aminotransferase reference ranges for the Bondo, Kenya site and the alanine aminotransferase reference ranges for the Pretoria, South Africa site required adjustment. The phosphorus CRR passed verification and the creatinine CRR required adjustment at every site. The newly-established CRR intervals were narrower than the CRRs used previously at these study sites due to decreases in the upper limits of the reference ranges. As a result, more toxicities were detected. To ensure the safety of clinical trial participants, verification of CRRs should be standard practice in clinical trials conducted in settings where the CRR has not been validated for the local population. This verification method is simple, inexpensive, and can be performed by any medical laboratory.

  6. Guidance and Control Software Project Data - Volume 3: Verification Documents

    NASA Technical Reports Server (NTRS)

    Hayhurst, Kelly J. (Editor)

    2008-01-01

    The Guidance and Control Software (GCS) project was the last in a series of software reliability studies conducted at Langley Research Center between 1977 and 1994. The technical results of the GCS project were recorded after the experiment was completed. Some of the support documentation produced as part of the experiment, however, is serving an unexpected role far beyond its original project context. Some of the software used as part of the GCS project was developed to conform to the RTCA/DO-178B software standard, "Software Considerations in Airborne Systems and Equipment Certification," used in the civil aviation industry. That standard requires extensive documentation throughout the software development life cycle, including plans, software requirements, design and source code, verification cases and results, and configuration management and quality control data. The project documentation that includes this information is open for public scrutiny without the legal or safety implications associated with comparable data from an avionics manufacturer. This public availability has afforded an opportunity to use the GCS project documents for DO-178B training. This report provides a brief overview of the GCS project, describes the 4-volume set of documents and the role they are playing in training, and includes the verification documents from the GCS project. Volume 3 contains four appendices: A. Software Verification Cases and Procedures for the Guidance and Control Software Project; B. Software Verification Results for the Pluto Implementation of the Guidance and Control Software; C. Review Records for the Pluto Implementation of the Guidance and Control Software; and D. Test Results Logs for the Pluto Implementation of the Guidance and Control Software.

  7. 33 CFR 159.129 - Safety: Ignition prevention test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Safety: Ignition prevention test. 159.129 Section 159.129 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.129 Safety: Ignition...

  8. Hydrogen and Storage Initiatives at the NASA JSC White Sands Test Facility

    NASA Technical Reports Server (NTRS)

    Maes, Miguel; Woods, Stephen S.

    2006-01-01

    NASA WSTF Hydrogen Activities: a) Aerospace Test; b) System Certification & Verification; c) Component, System, & Facility Hazard Assessment; d) Safety Training Technical Transfer: a) Development of Voluntary Consensus Standards and Practices; b) Support of National Hydrogen Infrastructure Development.

  9. 46 CFR 61.30-20 - Automatic control and safety tests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Automatic control and safety tests. 61.30-20 Section 61.30-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PERIODIC... and safety tests. Operational tests and checks of all safety and limit controls, combustion controls...

  10. 46 CFR 61.30-20 - Automatic control and safety tests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Automatic control and safety tests. 61.30-20 Section 61.30-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PERIODIC... and safety tests. Operational tests and checks of all safety and limit controls, combustion controls...

  11. 46 CFR 61.30-20 - Automatic control and safety tests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Automatic control and safety tests. 61.30-20 Section 61.30-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PERIODIC... and safety tests. Operational tests and checks of all safety and limit controls, combustion controls...

  12. 78 FR 54510 - New Entrant Safety Assurance Program Operational Test

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-04

    ...-0298] New Entrant Safety Assurance Program Operational Test AGENCY: Federal Motor Carrier Safety...) announces an operational test of procedural changes to the New Entrant Safety Assurance Program. The operational test began in July 2013 and will be in effect for up to 12 months. It is applicable to new entrant...

  13. 40 CFR 1066.275 - Daily dynamometer readiness verification.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) AIR POLLUTION CONTROLS VEHICLE-TESTING PROCEDURES Dynamometer Specifications § 1066.275 Daily... automated process for this verification procedure, perform this evaluation by setting the initial speed and... your dynamometer does not perform this verification with an automated process: (1) With the dynamometer...

  14. Environmental Technology Verification Report -- Baghouse filtration products, GE Energy QG061 filtration media ( tested May 2007)

    EPA Science Inventory

    EPA has created the Environmental Technology Verification Program to facilitate the deployment of innovative or improved environmental technologies through performance verification and dissemination of information. The Air Pollution Control Technology Verification Center, a cente...

  15. Orion GN&C Fault Management System Verification: Scope And Methodology

    NASA Technical Reports Server (NTRS)

    Brown, Denise; Weiler, David; Flanary, Ronald

    2016-01-01

    In order to ensure long-term ability to meet mission goals and to provide for the safety of the public, ground personnel, and any crew members, nearly all spacecraft include a fault management (FM) system. For a manned vehicle such as Orion, the safety of the crew is of paramount importance. The goal of the Orion Guidance, Navigation and Control (GN&C) fault management system is to detect, isolate, and respond to faults before they can result in harm to the human crew or loss of the spacecraft. Verification of fault management/fault protection capability is challenging due to the large number of possible faults in a complex spacecraft, the inherent unpredictability of faults, the complexity of interactions among the various spacecraft components, and the inability to easily quantify human reactions to failure scenarios. The Orion GN&C Fault Detection, Isolation, and Recovery (FDIR) team has developed a methodology for bounding the scope of FM system verification while ensuring sufficient coverage of the failure space and providing high confidence that the fault management system meets all safety requirements. The methodology utilizes a swarm search algorithm to identify failure cases that can result in catastrophic loss of the crew or the vehicle and rare event sequential Monte Carlo to verify safety and FDIR performance requirements.

  16. Selected Examples of LDRD Projects Supporting Test Ban Treaty Verification and Nonproliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, K.; Al-Ayat, R.; Walter, W. R.

    The Laboratory Directed Research and Development (LDRD) Program at the DOE National Laboratories was established to ensure the scientific and technical vitality of these institutions and to enhance the their ability to respond to evolving missions and anticipate national needs. LDRD allows the Laboratory directors to invest a percentage of their total annual budget in cutting-edge research and development projects within their mission areas. We highlight a selected set of LDRD-funded projects, in chronological order, that have helped provide capabilities, people and infrastructure that contributed greatly to our ability to respond to technical challenges in support of test ban treatymore » verification and nonproliferation.« less

  17. MESA: Message-Based System Analysis Using Runtime Verification

    NASA Technical Reports Server (NTRS)

    Shafiei, Nastaran; Tkachuk, Oksana; Mehlitz, Peter

    2017-01-01

    In this paper, we present a novel approach and framework for run-time verication of large, safety critical messaging systems. This work was motivated by verifying the System Wide Information Management (SWIM) project of the Federal Aviation Administration (FAA). SWIM provides live air traffic, site and weather data streams for the whole National Airspace System (NAS), which can easily amount to several hundred messages per second. Such safety critical systems cannot be instrumented, therefore, verification and monitoring has to happen using a nonintrusive approach, by connecting to a variety of network interfaces. Due to a large number of potential properties to check, the verification framework needs to support efficient formulation of properties with a suitable Domain Specific Language (DSL). Our approach is to utilize a distributed system that is geared towards connectivity and scalability and interface it at the message queue level to a powerful verification engine. We implemented our approach in the tool called MESA: Message-Based System Analysis, which leverages the open source projects RACE (Runtime for Airspace Concept Evaluation) and TraceContract. RACE is a platform for instantiating and running highly concurrent and distributed systems and enables connectivity to SWIM and scalability. TraceContract is a runtime verication tool that allows for checking traces against properties specified in a powerful DSL. We applied our approach to verify a SWIM service against several requirements.We found errors such as duplicate and out-of-order messages.

  18. Cassini's RTGs undergo mechanical and electrical verification testing in the PHSF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Jet Propulsion Laboratory (JPL) engineers examine the interface surface on the Cassini spacecraft prior to installation of the third radioisotope thermoelectric generator (RTG). The other two RTGs, at left, already are installed on Cassini. The three RTGs will be used to power Cassini on its mission to the Saturnian system. They are undergoing mechanical and electrical verification testing in the Payload Hazardous Servicing Facility. RTGs use heat from the natural decay of plutonium to generate electric power. The generators enable spacecraft to operate far from the Sun where solar power systems are not feasible. The Cassini mission is scheduled for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle. Cassini is built and managed for NASA by JPL.

  19. Cassini's RTGs undergo mechanical and electrical verification tests in the PHSF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Workers in the Payload Hazardous Servicing Facility remove the storage collar from a radioisotope thermoelectric generator (RTG) in preparation for installation on the Cassini spacecraft. Cassini will be outfitted with three RTGs. The power units are undergoing mechanical and electrical verification tests in the PHSF. The RTGs will provide electrical power to Cassini on its 6.7-year trip to the Saturnian system and during its four-year mission at Saturn. RTGs use heat from the natural decay of plutonium to generate electric power. The generators enable spacecraft to operate at great distances from the Sun where solar power systems are not feasible. The Cassini mission is targeted for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle.

  20. Structural Design Requirements and Factors of Safety for Spaceflight Hardware: For Human Spaceflight. Revision A

    NASA Technical Reports Server (NTRS)

    Bernstein, Karen S.; Kujala, Rod; Fogt, Vince; Romine, Paul

    2011-01-01

    This document establishes the structural requirements for human-rated spaceflight hardware including launch vehicles, spacecraft and payloads. These requirements are applicable to Government Furnished Equipment activities as well as all related contractor, subcontractor and commercial efforts. These requirements are not imposed on systems other than human-rated spacecraft, such as ground test articles, but may be tailored for use in specific cases where it is prudent to do so such as for personnel safety or when assets are at risk. The requirements in this document are focused on design rather than verification. Implementation of the requirements is expected to be described in a Structural Verification Plan (SVP), which should describe the verification of each structural item for the applicable requirements. The SVP may also document unique verifications that meet or exceed these requirements with NASA Technical Authority approval.

  1. EPA/NSF ETV Equipment Verification Testing Plan for the Removal of Volatile Organic Chemical Contaminants by Adsorptive Media Processes

    EPA Science Inventory

    This document is the Environmental Technology Verification (ETV) Technology Specific Test Plan (TSTP) for evaluation of drinking water treatment equipment utilizing adsorptive media for synthetic organic chemical (SOC) removal. This TSTP is to be used within the structure provid...

  2. Neutronics, steady-state, and transient analyses for the Poland MARIA reactor for irradiation testing of LEU lead test fuel assemblies from CERCA : ANL independent verification results.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garner, P. L.; Hanan, N. A.

    The MARIA reactor at the Institute of Atomic Energy (IAE) in Swierk (30 km SE of Warsaw) in the Republic of Poland is considering conversion from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel assemblies (FA). The FA design in MARIA is rather unique; a suitable LEU FA has never been designed or tested. IAE has contracted with CERCA (the fuel supply portion of AREVA in France) to supply 2 lead test assemblies (LTA). The LTAs will be irradiated in MARIA to burnup level of at least 40% for both LTAs and to 60% for one LTA. IAE may decidemore » to purchase additional LEU FAs for a full core conversion after the test irradiation. The Reactor Safety Committee within IAE and the National Atomic Energy Agency in Poland (PAA) must approve the LTA irradiation process. The approval will be based, in part, on IAE submitting revisions to portions of the Safety Analysis Report (SAR) which are affected by the insertion of the LTAs. (A similar process will be required for the full core conversion to LEU fuel.) The analysis required was established during working meetings between Argonne National Laboratory (ANL) and IAE staff during August 2006, subsequent email correspondence, and subsequent staff visits. The analysis needs to consider the current high-enriched uranium (HEU) core and 4 core configurations containing 1 and 2 LEU LTAs in various core positions. Calculations have been performed at ANL in support of the LTA irradiation. These calculations are summarized in this report and include criticality, burn-up, neutronics parameters, steady-state thermal hydraulics, and postulated transients. These calculations have been performed at the request of the IAE staff, who are performing similar calculations to be used in their SAR amendment submittal to the PAA. The ANL analysis has been performed independently from that being performed by IAE and should only be used as one step in the verification process.« less

  3. ENVIRONMENTAL TECHNOLOGY VERIFICATION COATINGS AND COATING EQUIPMENT PROGRAM (ETV CCEP), FINAL TECHNOLOGY APPLICATIONS GROUP TAGNITE--TESTING AND QUALITY ASSURANCE PLAN (T/QAP)

    EPA Science Inventory

    The overall objective of the Environmental Testing and Verification Coatings and Coating Equipment Program is to verify pollution prevention and performance characteristics of coating technologies and make the results of the testing available to prospective coating technology use...

  4. Initial results from safety testing of US AGR-2 irradiation test fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, Robert Noel; Hunn, John D.; Baldwin, Charles A.

    Two cylindrical compacts containing tristructural isotropic (TRISO)-coated particles with kernels that contained a mixture of uranium carbide and uranium oxide (UCO) and two compacts with UO 2-kernel TRISO particles have undergone 1600°C safety testing. These compacts were irradiated in the US Advanced Gas Reactor Fuel Development and Qualification Program's second irradiation test (AGR-2). The time-dependent releases of several radioisotopes ( 110mAg, 134Cs, 137Cs, 154Eu, 155Eu, 90Sr, and 85Kr) were monitored while heating the fuel specimens to 1600°C in flowing helium for 300 h. The UCO compacts behaved similarly to previously reported 1600°C-safety-tested UCO compacts from the AGR-1 irradiation. No failedmore » TRISO or failed SiC were detected (based on krypton and cesium release), and cesium release through intact SiC was very low. Release behavior of silver, europium, and strontium appeared to be dominated by inventory originally released through intact coating layers during irradiation but retained in the compact matrix until it was released during safety testing. Both UO 2 compacts exhibited cesium release from multiple particles whose SiC failed during the safety test. Europium and strontium release from these two UO 2 compacts appeared to be dominated by release from the particles with failed SiC. Silver release was characteristically like the release from the UCO compacts in that an initial release of the majority of silver trapped in the matrix occurred during ramping to 1600°C. However, additional silver release was observed later in the safety testing due to the UO 2 TRISO with failed SiC. Failure of the SiC layer in the UO 2 fuel appears to have been dominated by CO corrosion, as opposed to the palladium degradation observed in AGR-1 UCO fuel.« less

  5. Initial results from safety testing of US AGR-2 irradiation test fuel

    DOE PAGES

    Morris, Robert Noel; Hunn, John D.; Baldwin, Charles A.; ...

    2017-08-18

    Two cylindrical compacts containing tristructural isotropic (TRISO)-coated particles with kernels that contained a mixture of uranium carbide and uranium oxide (UCO) and two compacts with UO 2-kernel TRISO particles have undergone 1600°C safety testing. These compacts were irradiated in the US Advanced Gas Reactor Fuel Development and Qualification Program's second irradiation test (AGR-2). The time-dependent releases of several radioisotopes ( 110mAg, 134Cs, 137Cs, 154Eu, 155Eu, 90Sr, and 85Kr) were monitored while heating the fuel specimens to 1600°C in flowing helium for 300 h. The UCO compacts behaved similarly to previously reported 1600°C-safety-tested UCO compacts from the AGR-1 irradiation. No failedmore » TRISO or failed SiC were detected (based on krypton and cesium release), and cesium release through intact SiC was very low. Release behavior of silver, europium, and strontium appeared to be dominated by inventory originally released through intact coating layers during irradiation but retained in the compact matrix until it was released during safety testing. Both UO 2 compacts exhibited cesium release from multiple particles whose SiC failed during the safety test. Europium and strontium release from these two UO 2 compacts appeared to be dominated by release from the particles with failed SiC. Silver release was characteristically like the release from the UCO compacts in that an initial release of the majority of silver trapped in the matrix occurred during ramping to 1600°C. However, additional silver release was observed later in the safety testing due to the UO 2 TRISO with failed SiC. Failure of the SiC layer in the UO 2 fuel appears to have been dominated by CO corrosion, as opposed to the palladium degradation observed in AGR-1 UCO fuel.« less

  6. Verification test of the Battronic Truck Volta Electric Pickup, July 1980-January 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dowgiallo, E.J. Jr.; Snellings, I.R.; Chapman, R.D.

    1982-04-01

    The Volta pickup truck is an electric, multipurpose utility vehicle manufactured by the Battronic Truck Corporation of Boyertown, Pennsylvania. The vehicle was teted from July 1980 to September 1981. Complete test results are contained in Section V of this report. Part of the verification test results are summarized below: (1) Acceleration: 0 to 50 km/h (31.1 mi/h) in 10.0 s. (2) Range: SAE J227a ''B'' cycle on level (+-1-percent grade) terrain yielded 55.2 km (34.3 mi) and 162 cycles. (3) Forward Speed Capability: The vehicle maintained 70 km/h (43.5 mi/h) for more than 5 min on the level (+-1-percent) portionmore » of the MERADCOM test track. (4) Gradeability at Speed: At 25 km/h (15.5 mi/h) the vehicle can traverse a 13-percent grade based on calculations from acceleration tests. (5) Gradeability Limit: Calculations based on drawbar-pull tests indicate a 11.5-percent forward and 12.4-percent reverse gradeability for at least 20 s.« less

  7. 75 FR 9018 - Pipeline Safety: Random Drug Testing Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-26

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket ID PHMSA-2010-0034] Pipeline Safety: Random Drug Testing Rate AGENCY: Pipeline and Hazardous Materials... pipelines and operators of liquefied natural gas facilities must select and test a percentage of covered...

  8. 77 FR 2606 - Pipeline Safety: Random Drug Testing Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-18

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket ID PHMSA-2012-0004] Pipeline Safety: Random Drug Testing Rate AGENCY: Pipeline and Hazardous Materials... pipelines and operators of liquefied natural gas facilities must select and test a percentage of covered...

  9. Verification of component mode techniques for flexible multibody systems

    NASA Technical Reports Server (NTRS)

    Wiens, Gloria J.

    1990-01-01

    Investigations were conducted in the modeling aspects of flexible multibodies undergoing large angular displacements. Models were to be generated and analyzed through application of computer simulation packages employing the 'component mode synthesis' techniques. Multibody Modeling, Verification and Control Laboratory (MMVC) plan was implemented, which includes running experimental tests on flexible multibody test articles. From these tests, data was to be collected for later correlation and verification of the theoretical results predicted by the modeling and simulation process.

  10. Performance verification and environmental testing of a unimorph deformable mirror for space applications

    NASA Astrophysics Data System (ADS)

    Rausch, Peter; Verpoort, Sven; Wittrock, Ulrich

    2017-11-01

    Concepts for future large space telescopes require an active optics system to mitigate aberrations caused by thermal deformation and gravitational release. Such a system would allow on-site correction of wave-front errors and ease the requirements for thermal and gravitational stability of the optical train. In the course of the ESA project "Development of Adaptive Deformable Mirrors for Space Instruments" we have developed a unimorph deformable mirror designed to correct for low-order aberrations and dedicated to be used in space environment. We briefly report on design and manufacturing of the deformable mirror and present results from performance verifications and environmental testing.

  11. Aerospace Nickel-cadmium Cell Verification

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Strawn, D. Michael; Hall, Stephen W.

    2001-01-01

    During the early years of satellites, NASA successfully flew "NASA-Standard" nickel-cadmium (Ni-Cd) cells manufactured by GE/Gates/SAFF on a variety of spacecraft. In 1992 a NASA Battery Review Board determined that the strategy of a NASA Standard Cell and Battery Specification and the accompanying NASA control of a standard manufacturing control document (MCD) for Ni-Cd cells and batteries was unwarranted. As a result of that determination, standards were abandoned and the use of cells other than the NASA Standard was required. In order to gain insight into the performance and characteristics of the various aerospace Ni-Cd products available, tasks were initiated within the NASA Aerospace Flight Battery Systems Program that involved the procurement and testing of representative aerospace Ni-Cd cell designs. A standard set of test conditions was established in order to provide similar information about the products from various vendors. The objective of this testing was to provide independent verification of representative commercial flight cells available in the marketplace today. This paper will provide a summary of the verification tests run on cells from various manufacturers: Sanyo 35 Ampere-hour (Ali) standard and 35 Ali advanced Ni-Cd cells, SAFr 50 Ah Ni-Cd cells and Eagle-Picher 21 Ali Magnum and 21 Ali Super Ni-CdTM cells from Eagle-Picher were put through a full evaluation. A limited number of 18 and 55 Ali cells from Acme Electric were also tested to provide an initial evaluation of the Acme aerospace cell designs. Additionally, 35 Ali aerospace design Ni-MH cells from Sanyo were evaluated under the standard conditions established for this program. Ile test program is essentially complete. The cell design parameters, the verification test plan and the details of the test result will be discussed.

  12. 30 CFR 250.804 - Production safety-system testing and records.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Production safety-system testing and records... Gas Production Safety Systems § 250.804 Production safety-system testing and records. (a) Inspection... devices operating at temperatures which could ignite a methane-air mixture shall not be used. All...

  13. 30 CFR 250.804 - Production safety-system testing and records.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Production safety-system testing and records... Gas Production Safety Systems § 250.804 Production safety-system testing and records. (a) Inspection... devices operating at temperatures which could ignite a methane-air mixture shall not be used. All...

  14. 30 CFR 250.804 - Production safety-system testing and records.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Production safety-system testing and records... Gas Production Safety Systems § 250.804 Production safety-system testing and records. (a) Inspection... devices operating at temperatures which could ignite a methane-air mixture shall not be used. All...

  15. 21 CFR 610.11a - Inactivated influenza vaccine, general safety test.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Inactivated influenza vaccine, general safety test... Inactivated influenza vaccine, general safety test. For inactivated influenza vaccine, the general safety test... subcutaneous or intraperitoneal injection of 5.0 milliliters of inactivated influenza vaccine into each guinea...

  16. 21 CFR 610.11a - Inactivated influenza vaccine, general safety test.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Inactivated influenza vaccine, general safety test... Inactivated influenza vaccine, general safety test. For inactivated influenza vaccine, the general safety test... subcutaneous or intraperitoneal injection of 5.0 milliliters of inactivated influenza vaccine into each guinea...

  17. 21 CFR 610.11a - Inactivated influenza vaccine, general safety test.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Inactivated influenza vaccine, general safety test... Inactivated influenza vaccine, general safety test. For inactivated influenza vaccine, the general safety test... subcutaneous or intraperitoneal injection of 5.0 milliliters of inactivated influenza vaccine into each guinea...

  18. 21 CFR 610.11a - Inactivated influenza vaccine, general safety test.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Inactivated influenza vaccine, general safety test... Inactivated influenza vaccine, general safety test. For inactivated influenza vaccine, the general safety test... subcutaneous or intraperitoneal injection of 5.0 milliliters of inactivated influenza vaccine into each guinea...

  19. Biomedical support systems. [use and verification of biomedical hardware in altitude test

    NASA Technical Reports Server (NTRS)

    Brockett, R. M.; Ferguson, J. M.; Luczkowski, S. M.

    1973-01-01

    Biomedical support hardware for SMEAT consisted basically of two systems, the inflight medical support system, and the operational bioinstrumentation system. The former is essentially a diagnostic and therapeutic kit; the latter is a belt equipped with sensors worn by the crewman to permit monitoring of his vital signs. Special attention was given during to the use and verification of the items in the systems so that changes required in the equipment could be pinpointed and effected prior to the Skylab mission. During the in-chamber testing, evaluations were made of the effectiveness of the proposed microbiology procedures, techniques, equipment, and the stability of media and reagents over the extended period of storage.

  20. Definition of ground test for verification of large space structure control

    NASA Technical Reports Server (NTRS)

    Glaese, John R.

    1994-01-01

    Under this contract, the Large Space Structure Ground Test Verification (LSSGTV) Facility at the George C. Marshall Space Flight Center (MSFC) was developed. Planning in coordination with NASA was finalized and implemented. The contract was modified and extended with several increments of funding to procure additional hardware and to continue support for the LSSGTV facility. Additional tasks were defined for the performance of studies in the dynamics, control and simulation of tethered satellites. When the LSSGTV facility development task was completed, support and enhancement activities were funded through a new competitive contract won by LCD. All work related to LSSGTV performed under NAS8-35835 has been completed and documented. No further discussion of these activities will appear in this report. This report summarizes the tether dynamics and control studies performed.

  1. Cassini's RTGs undergo mechanical and electrical verification tests in the PHSF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Jet Propulsion Laboratory (JPL) worker Mary Reaves mates connectors on a radioisotope thermoelectric generator (RTG) to power up the Cassini spacecraft, while quality assurance engineer Peter Sorci looks on. The three RTGs which will be used on Cassini are undergoing mechanical and electrical verification testing in the Payload Hazardous Servicing Facility. The RTGs will provide electrical power to Cassini on its 6.7-year trip to the Saturnian system and during its four-year mission at Saturn. RTGs use heat from the natural decay of plutonium to generate electric power. The generators enable spacecraft to operate at great distances from the Sun where solar power systems are not feasible. The Cassini mission is targeted for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle. Cassini is built and managed by JPL.

  2. Cassini's RTGs undergo mechanical and electrical verification tests in the PHSF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Carrying a neutron radiation detector, Fred Sanders (at center), a health physicist with the Jet Propulsion Laboratory (JPL), and other health physics personnel monitor radiation in the Payload Hazardous Servicing Facility after three radioisotope thermoelectric generators (RTGs) were installed on the Cassini spacecraft for mechanical and electrical verification tests. The RTGs will provide electrical power to Cassini on its 6.7-year trip to the Saturnian system and during its four-year mission at Saturn. RTGs use heat from the natural decay of plutonium to generate electric power. The generators enable spacecraft to operate at great distances from the Sun where solar power systems are not feasible. The Cassini mission is targeted for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle. Cassini is built and managed by JPL.

  3. Certification and verification for Calmac flat plate solar collector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Information used in the certification and verification of the Calmac Flat Plate Collector is presented. Contained are such items as test procedures and results, information on materials used, installation, operation, and maintenance manuals, and other information pertaining to the verification and certification.

  4. 40 CFR 1066.240 - Torque transducer verification and calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) AIR POLLUTION CONTROLS VEHICLE-TESTING PROCEDURES Dynamometer Specifications § 1066.240 Torque transducer verification and calibration. Calibrate torque-measurement systems as described in 40 CFR 1065.310. ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Torque transducer verification and...

  5. 40 CFR 1066.240 - Torque transducer verification and calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) AIR POLLUTION CONTROLS VEHICLE-TESTING PROCEDURES Dynamometer Specifications § 1066.240 Torque transducer verification and calibration. Calibrate torque-measurement systems as described in 40 CFR 1065.310. ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Torque transducer verification and...

  6. Large-Scale Spacecraft Fire Safety Tests

    NASA Technical Reports Server (NTRS)

    Urban, David; Ruff, Gary A.; Ferkul, Paul V.; Olson, Sandra; Fernandez-Pello, A. Carlos; T'ien, James S.; Torero, Jose L.; Cowlard, Adam J.; Rouvreau, Sebastien; Minster, Olivier; hide

    2014-01-01

    An international collaborative program is underway to address open issues in spacecraft fire safety. Because of limited access to long-term low-gravity conditions and the small volume generally allotted for these experiments, there have been relatively few experiments that directly study spacecraft fire safety under low-gravity conditions. Furthermore, none of these experiments have studied sample sizes and environment conditions typical of those expected in a spacecraft fire. The major constraint has been the size of the sample, with prior experiments limited to samples of the order of 10 cm in length and width or smaller. This lack of experimental data forces spacecraft designers to base their designs and safety precautions on 1-g understanding of flame spread, fire detection, and suppression. However, low-gravity combustion research has demonstrated substantial differences in flame behavior in low-gravity. This, combined with the differences caused by the confined spacecraft environment, necessitates practical scale spacecraft fire safety research to mitigate risks for future space missions. To address this issue, a large-scale spacecraft fire experiment is under development by NASA and an international team of investigators. This poster presents the objectives, status, and concept of this collaborative international project (Saffire). The project plan is to conduct fire safety experiments on three sequential flights of an unmanned ISS re-supply spacecraft (the Orbital Cygnus vehicle) after they have completed their delivery of cargo to the ISS and have begun their return journeys to earth. On two flights (Saffire-1 and Saffire-3), the experiment will consist of a flame spread test involving a meter-scale sample ignited in the pressurized volume of the spacecraft and allowed to burn to completion while measurements are made. On one of the flights (Saffire-2), 9 smaller (5 x 30 cm) samples will be tested to evaluate NASAs material flammability screening tests

  7. Monitoring and verification R&D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pilat, Joseph F; Budlong - Sylvester, Kory W; Fearey, Bryan L

    2011-01-01

    The 2010 Nuclear Posture Review (NPR) report outlined the Administration's approach to promoting the agenda put forward by President Obama in Prague on April 5, 2009. The NPR calls for a national monitoring and verification R&D program to meet future challenges arising from the Administration's nonproliferation, arms control and disarmament agenda. Verification of a follow-on to New START could have to address warheads and possibly components along with delivery capabilities. Deeper cuts and disarmament would need to address all of these elements along with nuclear weapon testing, nuclear material and weapon production facilities, virtual capabilities from old weapon and existingmore » energy programs and undeclared capabilities. We only know how to address some elements of these challenges today, and the requirements may be more rigorous in the context of deeper cuts as well as disarmament. Moreover, there is a critical need for multiple options to sensitive problems and to address other challenges. There will be other verification challenges in a world of deeper cuts and disarmament, some of which we are already facing. At some point, if the reductions process is progressing, uncertainties about past nuclear materials and weapons production will have to be addressed. IAEA safeguards will need to continue to evolve to meet current and future challenges, and to take advantage of new technologies and approaches. Transparency/verification of nuclear and dual-use exports will also have to be addressed, and there will be a need to make nonproliferation measures more watertight and transparent. In this context, and recognizing we will face all of these challenges even if disarmament is not achieved, this paper will explore possible agreements and arrangements; verification challenges; gaps in monitoring and verification technologies and approaches; and the R&D required to address these gaps and other monitoring and verification challenges.« less

  8. VERIFICATION TESTING OF AIR POLLUTION CONTROL TECHNOLOGY QUALITY MANAGEMENT PLAN

    EPA Science Inventory

    This document is the basis for quality assurance for the Air Pollution Control Technology Verification Center (APCT Center) operated under the U.S. Environmental Protection Agency (EPA). It describes the policies, organizational structure, responsibilities, procedures, and qualit...

  9. 46 CFR 61.30-20 - Automatic control and safety tests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Automatic control and safety tests. 61.30-20 Section 61.30-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PERIODIC TESTS AND INSPECTIONS Tests and Inspections of Fired Thermal Fluid Heaters § 61.30-20 Automatic control and safety tests. Operational tests and check...

  10. Probabilistic Requirements (Partial) Verification Methods Best Practices Improvement. Variables Acceptance Sampling Calculators: Derivations and Verification of Plans. Volume 1

    NASA Technical Reports Server (NTRS)

    Johnson, Kenneth L.; White, K, Preston, Jr.

    2012-01-01

    The NASA Engineering and Safety Center was requested to improve on the Best Practices document produced for the NESC assessment, Verification of Probabilistic Requirements for the Constellation Program, by giving a recommended procedure for using acceptance sampling by variables techniques. This recommended procedure would be used as an alternative to the potentially resource-intensive acceptance sampling by attributes method given in the document. This document contains the outcome of the assessment.

  11. Current status of verification practices in clinical biochemistry in Spain.

    PubMed

    Gómez-Rioja, Rubén; Alvarez, Virtudes; Ventura, Montserrat; Alsina, M Jesús; Barba, Núria; Cortés, Mariano; Llopis, María Antonia; Martínez, Cecilia; Ibarz, Mercè

    2013-09-01

    Verification uses logical algorithms to detect potential errors before laboratory results are released to the clinician. Even though verification is one of the main processes in all laboratories, there is a lack of standardization mainly in the algorithms used and the criteria and verification limits applied. A survey in clinical laboratories in Spain was conducted in order to assess the verification process, particularly the use of autoverification. Questionnaires were sent to the laboratories involved in the External Quality Assurance Program organized by the Spanish Society of Clinical Biochemistry and Molecular Pathology. Seven common biochemical parameters were included (glucose, cholesterol, triglycerides, creatinine, potassium, calcium, and alanine aminotransferase). Completed questionnaires were received from 85 laboratories. Nearly all the laboratories reported using the following seven verification criteria: internal quality control, instrument warnings, sample deterioration, reference limits, clinical data, concordance between parameters, and verification of results. The use of all verification criteria varied according to the type of verification (automatic, technical, or medical). Verification limits for these parameters are similar to biological reference ranges. Delta Check was used in 24% of laboratories. Most laboratories (64%) reported using autoverification systems. Autoverification use was related to laboratory size, ownership, and type of laboratory information system, but amount of use (percentage of test autoverified) was not related to laboratory size. A total of 36% of Spanish laboratories do not use autoverification, despite the general implementation of laboratory information systems, most of them, with autoverification ability. Criteria and rules for seven routine biochemical tests were obtained.

  12. Safety testing of lithium cells

    NASA Technical Reports Server (NTRS)

    Liberto, Nick

    1991-01-01

    Safety testing is intended to simulate, under laboratory conditions and controls, situations that will subject a cell to externally induced stress. The stresses can occur at any time during the useful life of the cell, from the time of manufacture until it is expended during mission deployment. Abuse testing can be divided into three major categories: Electrical, Mechanical, and Thermal. Although electrical abuses are generally found to occur during handling or deployment, Mechanical and Thermal stresses can be induced during transportation and storage. Therefore, it would be prudent to include predicted environmental exposure as part of the test plan. In the selection of a test program. specific test requirements should be tailored to meet the predicted mission requirements.

  13. Safety testing of lithium cells

    NASA Astrophysics Data System (ADS)

    Liberto, Nick

    1991-05-01

    Safety testing is intended to simulate, under laboratory conditions and controls, situations that will subject a cell to externally induced stress. The stresses can occur at any time during the useful life of the cell, from the time of manufacture until it is expended during mission deployment. Abuse testing can be divided into three major categories: Electrical, Mechanical, and Thermal. Although electrical abuses are generally found to occur during handling or deployment, Mechanical and Thermal stresses can be induced during transportation and storage. Therefore, it would be prudent to include predicted environmental exposure as part of the test plan. In the selection of a test program. specific test requirements should be tailored to meet the predicted mission requirements.

  14. AXAF-I Low Intensity-Low Temperature (LILT) Testing of the Development Verification Test (DVT) Solar Panel

    NASA Technical Reports Server (NTRS)

    Alexander, Doug; Edge, Ted; Willowby, Doug

    1998-01-01

    The planned orbit of the AXAF-I spacecraft will subject the spacecraft to both short, less than 30 minutes for solar and less than 2 hours for lunar, and long earth eclipses and lunar eclipses with combined conjunctive duration of up to 3 to 4 hours. Lack of proper Electrical Power System (EPS) conditioning prior to eclipse may cause loss of mission. To avoid this problem, for short eclipses, it is necessary to off-point the solar array prior to or at the beginning of the eclipse to reduce the battery state of charge (SOC). This yields less overcharge during the high charge currents at sun entry. For long lunar eclipses, solar array pointing and load scheduling must be tailored for the profile of the eclipse. The battery SOC, loads, and solar array current-voltage (I-V) must be known or predictable to maintain the bus voltage within acceptable range. To address engineering concerns about the electrical performance of the AXAF-I solar array under Low Intensity and Low Temperature (LILT) conditions, Marshall Space Flight Center (MSFC) engineers undertook special testing of the AXAF-I Development Verification Test (DVT) solar panel in September-November 1997. In the test the DVT test panel was installed in a thermal vacuum chamber with a large view window with a mechanical "flapper door". The DVT test panel was "flash" tested with a Large Area Pulse Solar Simulator (LAPSS) at various fractional sun intensities and panel (solar cell) temperatures. The testing was unique with regards to the large size of the test article and type of testing performed. The test setup, results, and lessons learned from the testing will be presented.

  15. The experimental verification of wall movement influence coefficients for an adaptive walled test section

    NASA Technical Reports Server (NTRS)

    Neal, G.

    1988-01-01

    Flexible walled wind tunnels have for some time been used to reduce wall interference effects at the model. A necessary part of the 3-D wall adjustment strategy being developed for the Transonic Self-Streamlining Wind Tunnel (TSWT) of Southampton University is the use of influence coefficients. The influence of a wall bump on the centerline flow in TSWT has been calculated theoretically using a streamline curvature program. This report details the experimental verification of these influence coefficients and concludes that it is valid to use the theoretically determined values in 3-D model testing.

  16. Formal Verification of Complex Systems based on SysML Functional Requirements

    DTIC Science & Technology

    2014-12-23

    Formal Verification of Complex Systems based on SysML Functional Requirements Hoda Mehrpouyan1, Irem Y. Tumer2, Chris Hoyle2, Dimitra Giannakopoulou3...requirements for design of complex engineered systems. The proposed ap- proach combines a SysML modeling approach to document and structure safety requirements...methods and tools to support the integration of safety into the design solution. 2.1. SysML for Complex Engineered Systems Traditional methods and tools

  17. Safety analysis in test facility design

    NASA Astrophysics Data System (ADS)

    Valk, A.; Jonker, R. J.

    1990-09-01

    The application of safety analysis techniques as developed in, for example nuclear and petrochemical industry, can be very beneficial in coping with the increasing complexity of modern test facility installations and their operations. To illustrate the various techniques available and their phasing in a project, an overview of the most commonly used techniques is presented. Two case studies are described: the hazard and operability study techniques and safety zoning in relation to the possible presence of asphyxiating atmospheres.

  18. Formal Foundations for Hierarchical Safety Cases

    NASA Technical Reports Server (NTRS)

    Denney, Ewen; Pai, Ganesh; Whiteside, Iain

    2015-01-01

    Safety cases are increasingly being required in many safety-critical domains to assure, using structured argumentation and evidence, that a system is acceptably safe. However, comprehensive system-wide safety arguments present appreciable challenges to develop, understand, evaluate, and manage, partly due to the volume of information that they aggregate, such as the results of hazard analysis, requirements analysis, testing, formal verification, and other engineering activities. Previously, we have proposed hierarchical safety cases, hicases, to aid the comprehension of safety case argument structures. In this paper, we build on a formal notion of safety case to formalise the use of hierarchy as a structuring technique, and show that hicases satisfy several desirable properties. Our aim is to provide a formal, theoretical foundation for safety cases. In particular, we believe that tools for high assurance systems should be granted similar assurance to the systems to which they are applied. To this end, we formally specify and prove the correctness of key operations for constructing and managing hicases, which gives the specification for implementing hicases in AdvoCATE, our toolset for safety case automation. We motivate and explain the theory with the help of a simple running example, extracted from a real safety case and developed using AdvoCATE.

  19. Hazardous material transportation safety and security field operational test final detailed test plans : executive summary

    DOT National Transportation Integrated Search

    2003-09-16

    The objective of this Hazardous Material (HazMat) Transportation Safety and Security Field Operational Test (FOT) Final Detailed Test Plans evaluation is to measure the impact of technology solutions on the safety, security, and operational efficienc...

  20. The Verification-based Analysis of Reliable Multicast Protocol

    NASA Technical Reports Server (NTRS)

    Wu, Yunqing

    1996-01-01

    Reliable Multicast Protocol (RMP) is a communication protocol that provides an atomic, totally ordered, reliable multicast service on top of unreliable IP Multicasting. In this paper, we develop formal models for R.W using existing automatic verification systems, and perform verification-based analysis on the formal RMP specifications. We also use the formal models of RW specifications to generate a test suite for conformance testing of the RMP implementation. Throughout the process of RMP development, we follow an iterative, interactive approach that emphasizes concurrent and parallel progress between the implementation and verification processes. Through this approach, we incorporate formal techniques into our development process, promote a common understanding for the protocol, increase the reliability of our software, and maintain high fidelity between the specifications of RMP and its implementation.

  1. Verification test of the SURF and SURFplus models in xRage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menikoff, Ralph

    2016-05-18

    As a verification test of the SURF and SURFplus models in the xRage code we use a propagating underdriven detonation wave in 1-D. This is about the only test cases for which an accurate solution can be determined based on the theoretical structure of the solution. The solution consists of a steady ZND reaction zone profile joined with a scale invariant rarefaction or Taylor wave and followed by a constant state. The end of the reaction profile and the head of the rarefaction coincide with the sonic CJ state of the detonation wave. The constant state is required to matchmore » a rigid wall boundary condition. For a test case, we use PBX 9502 with the same EOS and burn rate as previously used to test the shock detector algorithm utilized by the SURF model. The detonation wave is propagated for 10 μs (slightly under 80mm). As expected, the pointwise errors are largest in the neighborhood of discontinuities; pressure discontinuity at the lead shock front and pressure derivative discontinuities at the head and tail of the rarefaction. As a quantitative measure of the overall accuracy, the L2 norm of the difference of the numerical pressure and the exact solution is used. Results are presented for simulations using both a uniform grid and an adaptive grid that refines the reaction zone.« less

  2. 30 CFR 250.911 - If my platform is subject to the Platform Verification Program, what must I do?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false If my platform is subject to the Platform Verification Program, what must I do? 250.911 Section 250.911 Mineral Resources BUREAU OF SAFETY AND... CONTINENTAL SHELF Platforms and Structures Platform Verification Program § 250.911 If my platform is subject...

  3. 30 CFR 250.911 - If my platform is subject to the Platform Verification Program, what must I do?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false If my platform is subject to the Platform Verification Program, what must I do? 250.911 Section 250.911 Mineral Resources BUREAU OF SAFETY AND... CONTINENTAL SHELF Platforms and Structures Platform Verification Program § 250.911 If my platform is subject...

  4. 30 CFR 250.911 - If my platform is subject to the Platform Verification Program, what must I do?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false If my platform is subject to the Platform Verification Program, what must I do? 250.911 Section 250.911 Mineral Resources BUREAU OF SAFETY AND... CONTINENTAL SHELF Platforms and Structures Platform Verification Program § 250.911 If my platform is subject...

  5. Measurement, testing, and safety technology: A compilation

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Methods and techniques in the related areas of measurement, testing, and safety are presented. Measuring techniques and devices and testing methods and devices are described. Articles on equipment modifications or procedures are included. Patent information is presented.

  6. An Update on the Lithium-Ion Cell Low-Earth-Orbit Verification Test Program

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Manzo, Michelle A.; Miller, Thomas B.; McKissock, Barbara I.; Bennett, William

    2007-01-01

    A Lithium-Ion Cell Low-Earth-Orbit Verification Test Program is being conducted by NASA Glenn Research Center to assess the performance of lithium-ion (Li-ion) cells over a wide range of low-Earth-orbit (LEO) conditions. The data generated will be used to build an empirical model for Li-ion batteries. The goal of the modeling will be to develop a tool to predict the performance and cycle life of Li-ion batteries operating at a specified set of mission conditions. Using this tool, mission planners will be able to design operation points of the battery system while factoring in mission requirements and the expected life and performance of the batteries. Test conditions for the program were selected via a statistical design of experiments to span a range of feasible operational conditions for LEO aerospace applications. The variables under evaluation are temperature, depth-of-discharge (DOD), and end-of-charge voltage (EOCV). The baseline matrix was formed by generating combinations from a set of three values for each variable. Temperature values are 10 C, 20 C and 30 C. Depth-of-discharge values are 20%, 30% and 40%. EOCV values are 3.85 V, 3.95 V, and 4.05 V. Test conditions for individual cells may vary slightly from the baseline test matrix depending upon the cell manufacturer s recommended operating conditions. Cells from each vendor are being evaluated at each of ten sets of test conditions. Cells from four cell manufacturers are undergoing life cycle tests. Life cycling on the first sets of cells began in September 2004. These cells consist of Saft 40 ampere-hour (Ah) cells and Lith ion 30 Ah cells. These cells have achieved over 10,000 cycles each, equivalent to about 20 months in LEO. In the past year, the test program has expanded to include the evaluation of Mine Safety Appliances (MSA) 50 Ah cells and ABSL battery modules. The MSA cells will begin life cycling in October 2006. The ABSL battery modules consist of commercial Sony hard carbon 18650 lithium

  7. Cassini's RTGs undergo mechanical and electrical verification tests in the PHSF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Lockheed Martin Missile and Space Co. employees Joe Collingwood, at right, and Ken Dickinson retract pins in the storage base to release a radioisotope thermoelectric generator (RTG) in preparation for hoisting operations. This RTG and two others will be installed on the Cassini spacecraft for mechanical and electrical verification testing in the Payload Hazardous Servicing Facility. The RTGs will provide electrical power to Cassini on its 6.7-year trip to the Saturnian system and during its four-year mission at Saturn. RTGs use heat from the natural decay of plutonium to generate electric power. The generators enable spacecraft to operate at great distances from the Sun where solar power systems are not feasible. The Cassini mission is targeted for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle. Cassini is built and managed by NASA's Jet Propulsion Laboratory.

  8. Cassini's RTGs undergo mechanical and electrical verification tests in the PHSF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Jet Propulsion Laboratory (JPL) employees bolt a radioisotope thermoelectric generator (RTG) onto the Cassini spacecraft, at left, while other JPL workers, at right, operate the installation cart on a raised platform in the Payload Hazardous Servicing Facility (PHSF). Cassini will be outfitted with three RTGs. The power units are undergoing mechanical and electrical verification tests in the PHSF. The RTGs will provide electrical power to Cassini on its 6.7-year trip to the Saturnian system and during its four-year mission at Saturn. RTGs use heat from the natural decay of plutonium to generate electric power. The generators enable spacecraft to operate at great distances from the Sun where solar power systems are not feasible. The Cassini mission is targeted for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle. Cassini is built and managed by JPL.

  9. Cassini's RTGs undergo mechanical and electrical verification testing in the PHSF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Jet Propulsion Laboratory (JPL) workers carefully roll into place a platform with a second radioisotope thermoelectric generator (RTG) for installation on the Cassini spacecraft. In background at left, the first of three RTGs already has been installed on Cassini. The RTGs will provide electrical power to Cassini on its 6.7-year trip to the Saturnian system and during its four-year mission at Saturn. The power units are undergoing mechanical and electrical verification testing in the Payload Hazardous Servicing Facility. RTGs use heat from the natural decay of plutonium to generate electric power. The generators enable spacecraft to operate far from the Sun where solar power systems are not feasible. The Cassini mission is scheduled for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle. Cassini is built and managed for NASA by JPL.

  10. Cassini's RTGs undergo mechanical and electrical verification tests in the PHSF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Jet Propulsion Laboratory (JPL) employees Norm Schwartz, at left, and George Nakatsukasa transfer one of three radioisotope thermoelectric generators (RTGs) to be used on the Cassini spacecraft from the installation cart to a lift fixture in preparation for returning the power unit to storage. The three RTGs underwent mechanical and electrical verification testing in the Payload Hazardous Servicing Facility. The RTGs will provide electrical power to Cassini on its 6.7-year trip to the Saturnian system and during its four-year mission at Saturn. RTGs use heat from the natural decay of plutonium to generate electric power. The generators enable spacecraft to operate at great distances from the Sun where solar power systems are not feasible. The Cassini mission is targeted for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle. Cassini is built and managed by JPL.

  11. ENVIRONMENTAL TECHNOLOGY VERIFICATION: JOINT (NSF-EPA) VERIFICATION STATEMENT AND REPORT FOR TREATMENT OF WASTEWATER GENERATED DURING DECONTAMINATION ACTIVITIES - ULTRASTRIP SYSTEMS, INC., MOBILE EMERGENCY FILTRATION SYSTEM (MEFS) - 04/14/WQPC-HS

    EPA Science Inventory

    Performance verification testing of the UltraStrip Systems, Inc., Mobile Emergency Filtration System (MEFS) was conducted under EPA's Environmental Technology Verification (ETV) Program at the EPA Test and Evaluation (T&E) Facility in Cincinnati, Ohio, during November, 2003, thr...

  12. Improvements in safety testing of lithium cells

    NASA Astrophysics Data System (ADS)

    Stinebring, R. C.; Krehl, P.

    1985-07-01

    A systematic approach was developed for evaluating the basic safety parameters of high power lithium soluble cathode cells. This approach consists of performing a series of tests on each cell model during the design, prototype and production phases. Abusive testing is performed in a facility where maximum protection is given to test personnel.

  13. Improvements in safety testing of lithium cells

    NASA Technical Reports Server (NTRS)

    Stinebring, R. C.; Krehl, P.

    1985-01-01

    A systematic approach was developed for evaluating the basic safety parameters of high power lithium soluble cathode cells. This approach consists of performing a series of tests on each cell model during the design, prototype and production phases. Abusive testing is performed in a facility where maximum protection is given to test personnel.

  14. Glove-based approach to online signature verification.

    PubMed

    Kamel, Nidal S; Sayeed, Shohel; Ellis, Grant A

    2008-06-01

    Utilizing the multiple degrees of freedom offered by the data glove for each finger and the hand, a novel on-line signature verification system using the Singular Value Decomposition (SVD) numerical tool for signature classification and verification is presented. The proposed technique is based on the Singular Value Decomposition in finding r singular vectors sensing the maximal energy of glove data matrix A, called principal subspace, so the effective dimensionality of A can be reduced. Having modeled the data glove signature through its r-principal subspace, signature authentication is performed by finding the angles between the different subspaces. A demonstration of the data glove is presented as an effective high-bandwidth data entry device for signature verification. This SVD-based signature verification technique is tested and its performance is shown to be able to recognize forgery signatures with a false acceptance rate of less than 1.2%.

  15. Software verification plan for GCS. [guidance and control software

    NASA Technical Reports Server (NTRS)

    Dent, Leslie A.; Shagnea, Anita M.; Hayhurst, Kelly J.

    1990-01-01

    This verification plan is written as part of an experiment designed to study the fundamental characteristics of the software failure process. The experiment will be conducted using several implementations of software that were produced according to industry-standard guidelines, namely the Radio Technical Commission for Aeronautics RTCA/DO-178A guidelines, Software Consideration in Airborne Systems and Equipment Certification, for the development of flight software. This plan fulfills the DO-178A requirements for providing instructions on the testing of each implementation of software. The plan details the verification activities to be performed at each phase in the development process, contains a step by step description of the testing procedures, and discusses all of the tools used throughout the verification process.

  16. Application of the Life Safety Code to a Historic Test Stand

    NASA Technical Reports Server (NTRS)

    Askins, Bruce; Lemke, Paul R.; Lewis, William L.; Covell, Carol C.

    2011-01-01

    NASA has conducted a study to assess alternatives to refurbishing existing launch vehicle modal test facilities as opposed to developing new test facilities to meet the demands of a very fiscally constrained test and evaluation environment. The results of this study showed that Marshall Space Flight Center (MSFC) Test Stand (TS) 4550 could be made compliant, within reasonable cost and schedule impacts, if safety processes and operational limitations were put in place to meet the safety codes and concerns of the Fire Marshall. Trades were performed with key selection criteria to ensure that appropriate levels of occupant safety are incorporated into test facility design modifications. In preparation for the ground vibration tests that were to be performed on the Ares I launch vehicle, the Ares Flight and Integrated Test Office (FITO) organization evaluated the available test facility options, which included the existing mothballed structural dynamic TS4550 used by Apollo and Shuttle, alternative ground vibration test facilities at other locations, and construction of a new dynamic test stand. After an exhaustive assessment of the alternatives, the results favored modifying the TS4550 because it was the lowest cost option and presented the least schedule risk to the NASA Constellation Program for Ares Integrated Vehicle Ground Vibration Test (IVGVT). As the renovation design plans and drawings were being developed for TS4550, a safety concern was discovered the original design for the construction of the test stand, originally built for the Apollo Program and renovated for the Shuttle Program, was completed before NASA s adoption of the currently imposed safety and building codes per National Fire Protection Association Life Safety Code [NFPA 101] and International Building Codes. The initial FITO assessment of the design changes, required to make TS4550 compliant with current safety and building standards, identified a significant cost increase and schedule impact

  17. Posttest analysis of the FFTF inherent safety tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padilla, A. Jr.; Claybrook, S.W.

    Inherent safety tests were performed during 1986 in the 400-MW (thermal) Fast Flux Test Facility (FFTF) reactor to demonstrate the effectiveness of an inherent shutdown device called the gas expansion module (GEM). The GEM device provided a strong negative reactivity feedback during loss-of-flow conditions by increasing the neutron leakage as a result of an expanding gas bubble. The best-estimate pretest calculations for these tests were performed using the IANUS plant analysis code (Westinghouse Electric Corporation proprietary code) and the MELT/SIEX3 core analysis code. These two codes were also used to perform the required operational safety analyses for the FFTF reactormore » and plant. Although it was intended to also use the SASSYS systems (core and plant) analysis code, the calibration of the SASSYS code for FFTF core and plant analysis was not completed in time to perform pretest analyses. The purpose of this paper is to present the results of the posttest analysis of the 1986 FFTF inherent safety tests using the SASSYS code.« less

  18. A verification library for multibody simulation software

    NASA Technical Reports Server (NTRS)

    Kim, Sung-Soo; Haug, Edward J.; Frisch, Harold P.

    1989-01-01

    A multibody dynamics verification library, that maintains and manages test and validation data is proposed, based on RRC Robot arm and CASE backhoe validation and a comparitive study of DADS, DISCOS, and CONTOPS that are existing public domain and commercial multibody dynamic simulation programs. Using simple representative problems, simulation results from each program are cross checked, and the validation results are presented. Functionalities of the verification library are defined, in order to automate validation procedure.

  19. APPLICATION OF STEEL PIPE PILE LOADING TESTS TO DESIGN VERIFICATION OF FOUNDATION OF THE TOKYO GATE BRIDGE

    NASA Astrophysics Data System (ADS)

    Saitou, Yutaka; Kikuchi, Yoshiaki; Kusakabe, Osamu; Kiyomiya, Osamu; Yoneyama, Haruo; Kawakami, Taiji

    Steel sheet pipe pile foundations with large diameter steel pipe sheet pile were used for the foundation of the main pier of the Tokyo Gateway bridge. However, as for the large diameter steel pipe pile, the bearing mechanism including a pile tip plugging effect is still unclear due to lack of the practical examinations even though loading tests are performed on Trans-Tokyo Bay Highway. In the light of the foregoing problems, static pile loading tests both vertical and horizontal directions, a dynamic loading test, and cone penetration tests we re conducted for determining proper design parameters of the ground for the foundations. Design parameters were determined rationally based on the tests results. Rational design verification was obtained from this research.

  20. Formal testing and utilization of streaming media to improve flight crew safety knowledge.

    PubMed

    Bellazzini, Marc A; Rankin, Peter M; Quisling, Jason; Gangnon, Ronald; Kohrs, Mike

    2008-01-01

    Increased concerns over the safety of air medical transport have prompted development of novel ways to increase safety. The objective of our study was to determine if an Internet streaming media safety video increased crew safety knowledge. 23 out of 40 crew members took an online safety pre-test, watched a safety video specific to our program and completed immediate and long-term post-testing 6 months later. Mean pre-test, post-test and 6 month follow up test scores were 84.9%, 92.3% and 88.4% respectively. There was a statistically significant difference in all scores (p safety training in our study.

  1. Applying Formal Verification Techniques to Ambient Assisted Living Systems

    NASA Astrophysics Data System (ADS)

    Benghazi, Kawtar; Visitación Hurtado, María; Rodríguez, María Luisa; Noguera, Manuel

    This paper presents a verification approach based on timed traces semantics and MEDISTAM-RT [1] to check the fulfillment of non-functional requirements, such as timeliness and safety, and assure the correct functioning of the Ambient Assisted Living (AAL) systems. We validate this approach by its application to an Emergency Assistance System for monitoring people suffering from cardiac alteration with syncope.

  2. An Overview of the Runtime Verification Tool Java PathExplorer

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus; Rosu, Grigore; Clancy, Daniel (Technical Monitor)

    2002-01-01

    We present an overview of the Java PathExplorer runtime verification tool, in short referred to as JPAX. JPAX can monitor the execution of a Java program and check that it conforms with a set of user provided properties formulated in temporal logic. JPAX can in addition analyze the program for concurrency errors such as deadlocks and data races. The concurrency analysis requires no user provided specification. The tool facilitates automated instrumentation of a program's bytecode, which when executed will emit an event stream, the execution trace, to an observer. The observer dispatches the incoming event stream to a set of observer processes, each performing a specialized analysis, such as the temporal logic verification, the deadlock analysis and the data race analysis. Temporal logic specifications can be formulated by the user in the Maude rewriting logic, where Maude is a high-speed rewriting system for equational logic, but here extended with executable temporal logic. The Maude rewriting engine is then activated as an event driven monitoring process. Alternatively, temporal specifications can be translated into efficient automata, which check the event stream. JPAX can be used during program testing to gain increased information about program executions, and can potentially furthermore be applied during operation to survey safety critical systems.

  3. Safeguard: Progress and Test Results for a Reliable Independent On-Board Safety Net for UAS

    NASA Technical Reports Server (NTRS)

    Young, Steven D.; Dill, Evan T.; Hayhurst, Kelly J.; Gilabert, Russell V.

    2017-01-01

    As demands increase to use unmanned aircraft systems (UAS) for a broad spectrum of commercial applications, regulatory authorities are examining how to safely integrate them without compromising safety or disrupting traditional airspace operations. For small UAS, several operational rules have been established; e.g., do not operate beyond visual line-of-sight, do not fly within five miles of a commercial airport, do not fly above 400 feet above ground level. Enforcing these rules is challenging for UAS, as evidenced by the number of incident reports received by the Federal Aviation Administration (FAA). This paper reviews the development of an onboard system - Safeguard - designed to monitor and enforce conformance to a set of operational rules defined prior to flight (e.g., geospatial stay-out or stay-in regions, speed limits, and altitude constraints). Unlike typical geofencing or geo-limitation functions, Safeguard operates independently of the off-the-shelf UAS autopilot and is designed in a way that can be realized by a small set of verifiable functions to simplify compliance with existing standards for safety-critical systems (e.g. for spacecraft and manned commercial transportation aircraft systems). A framework is described that decouples the system from any other devices on the UAS as well as introduces complementary positioning source(s) for applications that require integrity and availability beyond what can be provided by the Global Positioning System (GPS). This paper summarizes the progress and test results for Safeguard research and development since presentation of the design concept at the 35th Digital Avionics Systems Conference (DASC '16). Significant accomplishments include completion of software verification and validation in accordance with NASA standards for spacecraft systems (to Class B), development of improved hardware prototypes, development of a simulation platform that allows for hardware-in-the-loop testing and fast-time Monte Carlo

  4. TET-1- A German Microsatellite for Technology On -Orbit Verification

    NASA Astrophysics Data System (ADS)

    Föckersperger, S.; Lattner, K.; Kaiser, C.; Eckert, S.; Bärwald, W.; Ritzmann, S.; Mühlbauer, P.; Turk, M.; Willemsen, P.

    2008-08-01

    Due to the high safety standards in the space industry every new product must go through a verification process before qualifying for operation in a space system. Within the verification process the payload undergoes a series of tests which prove that it is in accordance with mission requirements in terms of function, reliability and safety. Important verification components are the qualification for use on the ground as well as the On-Orbit Verification (OOV), i.e. proof that the product is suitable for use under virtual space conditions (on-orbit). Here it is demonstrated that the product functions under conditions which cannot or can only be partially simulated on the ground. The OOV-Program of the DLR serves to bridge the gap between the product tested and qualified on the ground and the utilization of the product in space. Due to regular and short-term availability of flight opportunities industry and research facilities can verify their latest products under space conditions and demonstrate their reliability and marketability. The Technologie-Erprobungs-Tr&äger TET (Technology Experiments Carrier) comprises the core elements of the OOV Program. A programmatic requirement of the OOV Program is that a satellite bus already verified in orbit be used in the first segment of the program. An analysis of suitable satellite buses showed that a realization of the TET satellite bus based on the BIRD satellite bus fulfilled the programmatic requirements best. Kayser-Threde was selected by DLR as Prime Contractor to perform the project together with its major subcontractors Astro- und Feinwerktechnik, Berlin for the platform development and DLR-GSOC for the ground segment development. TET is now designed to be a modular and flexible micro-satellite for any orbit between 450 and 850 km altitude and inclination between 53° and SSO. With an overall mass of 120 kg TET is able to accommodate experiments of up to 50 kg. A multipurpose payload supply systemThere is

  5. Safety Performance of Airborne Separation: Preliminary Baseline Testing

    NASA Technical Reports Server (NTRS)

    Consiglio, Maria C.; Hoadley, Sherwood T.; Wing, David J.; Baxley, Brian T.

    2007-01-01

    The Safety Performance of Airborne Separation (SPAS) study is a suite of Monte Carlo simulation experiments designed to analyze and quantify safety behavior of airborne separation. This paper presents results of preliminary baseline testing. The preliminary baseline scenario is designed to be very challenging, consisting of randomized routes in generic high-density airspace in which all aircraft are constrained to the same flight level. Sustained traffic density is varied from approximately 3 to 15 aircraft per 10,000 square miles, approximating up to about 5 times today s traffic density in a typical sector. Research at high traffic densities and at multiple flight levels are planned within the next two years. Basic safety metrics for aircraft separation are collected and analyzed. During the progression of experiments, various errors, uncertainties, delays, and other variables potentially impacting system safety will be incrementally introduced to analyze the effect on safety of the individual factors as well as their interaction and collective effect. In this paper we report the results of the first experiment that addresses the preliminary baseline condition tested over a range of traffic densities. Early results at five times the typical traffic density in today s NAS indicate that, under the assumptions of this study, airborne separation can be safely performed. In addition, we report on initial observations from an exploration of four additional factors tested at a single traffic density: broadcast surveillance signal interference, extent of intent sharing, pilot delay, and wind prediction error.

  6. Report on the formal specification and partial verification of the VIPER microprocessor

    NASA Technical Reports Server (NTRS)

    Brock, Bishop; Hunt, Warren A., Jr.

    1991-01-01

    The formal specification and partial verification of the VIPER microprocessor is reviewed. The VIPER microprocessor was designed by RSRE, Malvern, England, for safety critical computing applications (e.g., aircraft, reactor control, medical instruments, armaments). The VIPER was carefully specified and partially verified in an attempt to provide a microprocessor with completely predictable operating characteristics. The specification of VIPER is divided into several levels of abstraction, from a gate-level description up to an instruction execution model. Although the consistency between certain levels was demonstrated with mechanically-assisted mathematical proof, the formal verification of VIPER was never completed.

  7. Safety Testing of Ammonium Nitrate Based Mixtures

    NASA Astrophysics Data System (ADS)

    Phillips, Jason; Lappo, Karmen; Phelan, James; Peterson, Nathan; Gilbert, Don

    2013-06-01

    Ammonium nitrate (AN)/ammonium nitrate based explosives have a lengthy documented history of use by adversaries in acts of terror. While historical research has been conducted on AN-based explosive mixtures, it has primarily focused on detonation performance while varying the oxygen balance between the oxidizer and fuel components. Similarly, historical safety data on these materials is often lacking in pertinent details such as specific fuel type, particle size parameters, oxidizer form, etc. A variety of AN-based fuel-oxidizer mixtures were tested for small-scale sensitivity in preparation for large-scale testing. Current efforts focus on maintaining a zero oxygen-balance (a stoichiometric ratio for active chemical participants) while varying factors such as charge geometry, oxidizer form, particle size, and inert diluent ratios. Small-scale safety testing was conducted on various mixtures and fuels. It was found that ESD sensitivity is significantly affected by particle size, while this is less so for impact and friction. Thermal testing is in progress to evaluate hazards that may be experienced during large-scale testing.

  8. HVI-Test Setup for Debris Detector Verification

    NASA Astrophysics Data System (ADS)

    Bauer, Waldemar; Romberg, Oliver; Wiedemann, Carsten; Putzar, Robin; Drolshagen, Gerhard; Vorsmann, Peter

    2013-08-01

    concerning space debris and micrometeoroids. In this way, the SOLID method will allow the generation of a large amount of impact data for environmental model validation. The ground verification of the SOLID method was performed at Fraunhofer EMI. For this purpose, a test model was developed. This paper focuses on the test methodology and development of the Hypervelocity Impact (HVI) test setup, including pretesting at the German Aerospace Centre (DLR), Bremen. Foreseen hardware and software for the automatic damage assessment of the detector after the impact are also presented.

  9. Joint Ordnance Test Procedure (JOTP)-010 Safety and Suitability for Service Assessment Testing for Shoulder Launched Munitions

    DTIC Science & Technology

    2016-05-09

    electromagnetic environment for which they are designed to be used. These tests are performed on a powered weapon during simulated normal operation and are...010B SAFETY AND SUITABILITY FOR SERVICE ASSESSMENT TESTING FOR SHOULDER LAUNCHED MUNITIONS Joint Services Munition Safety Test Working Group JOTP...12 6.8 Test Sample Quantities .......................................................... 13 7. PRE- AND POST - TEST INSPECTIONS

  10. Reserve Li/SOC12 Battery Safety Testing

    NASA Technical Reports Server (NTRS)

    Dils, C. T.; Garoutte, K. F.

    1984-01-01

    A reserve Lithium/Thionyl Chloride Battery concept is developed and undergoing feasibility testing in terms of performance, safety and abusive conditions. The feasibility of employing a battery of this type to replace thermal batteries in certain applications is demonstrated. Excellent performance of a Li/SOCl2 reserve battery is obtained across the temperature range from 0 C to +44 C. Performance improvement over the thermal battery usage is greater by a factor of 3 when discharge time and energy density are compared. Performance over an expanded temperature range is also possible. Safety and abusive testing is accomplished successfully on a series of five units. Further performance improvements can be achieved with regard to battery weight and volume reductions.

  11. Seismic design verification of LMFBR structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1977-07-01

    The report provides an assessment of the seismic design verification procedures currently used for nuclear power plant structures, a comparison of dynamic test methods available, and conclusions and recommendations for future LMFB structures.

  12. Improved Detection Technique for Solvent Rinse Cleanliness Verification

    NASA Technical Reports Server (NTRS)

    Hornung, S. D.; Beeson, H. D.

    2001-01-01

    The NASA White Sands Test Facility (WSTF) has an ongoing effort to reduce or eliminate usage of cleaning solvents such as CFC-113 and its replacements. These solvents are used in the final clean and cleanliness verification processes for flight and ground support hardware, especially for oxygen systems where organic contaminants can pose an ignition hazard. For the final cleanliness verification in the standard process, the equivalent of one square foot of surface area of parts is rinsed with the solvent, and the final 100 mL of the rinse is captured. The amount of nonvolatile residue (NVR) in the solvent is determined by weight after the evaporation of the solvent. An improved process of sampling this rinse, developed at WSTF, requires evaporation of less than 2 mL of the solvent to make the cleanliness verification. Small amounts of the solvent are evaporated in a clean stainless steel cup, and the cleanliness of the stainless steel cup is measured using a commercially available surface quality monitor. The effectiveness of this new cleanliness verification technique was compared to the accepted NVR sampling procedures. Testing with known contaminants in solution, such as hydraulic fluid, fluorinated lubricants, and cutting and lubricating oils, was performed to establish a correlation between amount in solution and the process response. This report presents the approach and results and discusses the issues in establishing the surface quality monitor-based cleanliness verification.

  13. Neurovirulence safety testing of mumps vaccines--historical perspective and current status.

    PubMed

    Rubin, S A; Afzal, M A

    2011-04-05

    Many live, attenuated viral vaccines are derived from wild type viruses with known neurovirulent properties. To assure the absence of residual neurotoxicity, pre-clinical neurovirulence safety testing of candidate vaccines is performed. For mumps virus, a highly neurotropic virus, neurovirulence safety testing is performed in monkeys. However, laboratory studies suggest an inability of this test to correctly discern among virus strains of varying neurovirulence potential in man, and, further, some vaccines found to be neuroattenuated in monkeys were later found to be neurovirulent in humans when administered in large numbers. Over the past decade, concerted efforts have been made to replace monkey-based neurovirulence safety testing with more informative, alternative methods. This review summarizes the current status of mumps vaccine neurovirulence safety testing and insights into models currently approved and those under development. Published by Elsevier Ltd.

  14. Z-2 Architecture Description and Requirements Verification Results

    NASA Technical Reports Server (NTRS)

    Graziosi, Dave; Jones, Bobby; Ferl, Jinny; Scarborough, Steve; Hewes, Linda; Ross, Amy; Rhodes, Richard

    2016-01-01

    The Z-2 Prototype Planetary Extravehicular Space Suit Assembly is a continuation of NASA's Z series of spacesuits. The Z-2 is another step in NASA's technology development roadmap leading to human exploration of the Martian surface. The suit was designed for maximum mobility at 8.3 psid, reduced mass, and to have high fidelity life support interfaces. As Z-2 will be man-tested at full vacuum in NASA JSC's Chamber B, it was manufactured as Class II, making it the most flight-like planetary walking suit produced to date. The Z-2 suit architecture is an evolution of previous EVA suits, namely the ISS EMU, Mark III, Rear Entry I-Suit and Z-1 spacesuits. The suit is a hybrid hard and soft multi-bearing, rear entry spacesuit. The hard upper torso (HUT) is an all-composite structure and includes a 2-bearing rolling convolute shoulder with Vernier sizing mechanism, removable suit port interface plate (SIP), elliptical hemispherical helmet and self-don/doff shoulder harness. The hatch is a hybrid aluminum and composite construction with Apollo style gas connectors, custom water pass-thru, removable hatch cage and interfaces to primary and auxiliary life support feed water bags. The suit includes Z-1 style lower arms with cam brackets for Vernier sizing and government furnished equipment (GFE) Phase VI gloves. The lower torso includes a telescopic waist sizing system, waist bearing, rolling convolute waist joint, hard brief, 2 bearing soft hip thigh, Z-1 style legs with ISS EMU style cam brackets for sizing, and conformal walking boots with ankle bearings. The Z-2 Requirements Verification Plan includes the verification of more than 200 individual requirements. The verification methods include test, analysis, inspection, demonstration or a combination of methods. Examples of unmanned requirements include suit leakage, proof pressure testing, operational life, mass, isometric man-loads, sizing adjustment ranges, internal and external interfaces such as in-suit drink bag

  15. High-Throughput Toxicity Testing: New Strategies for Assessing Chemical Safety

    EPA Science Inventory

    In recent years, the food industry has made progress in improving safety testing methods focused on microbial contaminants in order to promote food safety. However, food industry toxicologists must also assess the safety of food-relevant chemicals including pesticides, direct add...

  16. Autonomous Flight Safety System September 27, 2005, Aircraft Test

    NASA Technical Reports Server (NTRS)

    Simpson, James C.

    2005-01-01

    This report describes the first aircraft test of the Autonomous Flight Safety System (AFSS). The test was conducted on September 27, 2005, near Kennedy Space Center (KSC) using a privately-owned single-engine plane and evaluated the performance of several basic flight safety rules using real-time data onboard a moving aerial vehicle. This test follows the first road test of AFSS conducted in February 2005 at KSC. AFSS is a joint KSC and Wallops Flight Facility (WEF) project that is in its third phase of development. AFSS is an independent subsystem intended for use with Expendable Launch Vehicles that uses tracking data from redundant onboard sensors to autonomously make flight termination decisions using software-based rules implemented on redundant flight processors. The goals of this project are to increase capabilities by allowing launches from locations that do not have or cannot afford extensive ground-based range safety assets, to decrease range costs, and to decrease reaction time for special situations. The mission rules are configured for each operation by the responsible Range Safety authorities and can be loosely categorized in four major categories: Parameter Threshold Violations, Physical Boundary Violations present position and instantaneous impact point (TIP), Gate Rules static and dynamic, and a Green-Time Rule. Examples of each of these rules were evaluated during this aircraft test.

  17. Verification survey report of the south waste tank farm training/test tower and hazardous waste storage lockers at the West Valley demonstration project, West Valley, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, Phyllis C.

    A team from ORAU's Independent Environmental Assessment and Verification Program performed verification survey activities on the South Test Tower and four Hazardous Waste Storage Lockers. Scan data collected by ORAU determined that both the alpha and alpha-plus-beta activity was representative of radiological background conditions. The count rate distribution showed no outliers that would be indicative of alpha or alpha-plus-beta count rates in excess of background. It is the opinion of ORAU that independent verification data collected support the site?s conclusions that the South Tower and Lockers sufficiently meet the site criteria for release to recycle and reuse.

  18. Compressive sensing using optimized sensing matrix for face verification

    NASA Astrophysics Data System (ADS)

    Oey, Endra; Jeffry; Wongso, Kelvin; Tommy

    2017-12-01

    Biometric appears as one of the solutions which is capable in solving problems that occurred in the usage of password in terms of data access, for example there is possibility in forgetting password and hard to recall various different passwords. With biometrics, physical characteristics of a person can be captured and used in the identification process. In this research, facial biometric is used in the verification process to determine whether the user has the authority to access the data or not. Facial biometric is chosen as its low cost implementation and generate quite accurate result for user identification. Face verification system which is adopted in this research is Compressive Sensing (CS) technique, in which aims to reduce dimension size as well as encrypt data in form of facial test image where the image is represented in sparse signals. Encrypted data can be reconstructed using Sparse Coding algorithm. Two types of Sparse Coding namely Orthogonal Matching Pursuit (OMP) and Iteratively Reweighted Least Squares -ℓp (IRLS-ℓp) will be used for comparison face verification system research. Reconstruction results of sparse signals are then used to find Euclidean norm with the sparse signal of user that has been previously saved in system to determine the validity of the facial test image. Results of system accuracy obtained in this research are 99% in IRLS with time response of face verification for 4.917 seconds and 96.33% in OMP with time response of face verification for 0.4046 seconds with non-optimized sensing matrix, while 99% in IRLS with time response of face verification for 13.4791 seconds and 98.33% for OMP with time response of face verification for 3.1571 seconds with optimized sensing matrix.

  19. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, REMOVAL OF ARSENIC IN DRINKING WATER: PHASE 1-ADI PILOT TEST UNIT NO. 2002-09 WITH MEDIA G2®

    EPA Science Inventory

    Integrity verification testing of the ADI International Inc. Pilot Test Unit No. 2002-09 with MEDIA G2® arsenic adsorption media filter system was conducted at the Hilltown Township Water and Sewer Authority (HTWSA) Well Station No. 1 in Sellersville, Pennsylvania from October 8...

  20. 40 CFR 1065.372 - NDUV analyzer HC and H2O interference verification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... compensation algorithms that utilize measurements of other gases to meet this interference verification, simultaneously conduct such measurements to test the algorithms during the analyzer interference verification. (c...

  1. 40 CFR 1065.372 - NDUV analyzer HC and H2O interference verification.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications Nox and N2o... recommend that you extract engine exhaust to perform this verification. Use a CLD that meets the..., if one is used during testing, introduce the engine exhaust to the NDUV analyzer. (4) Allow time for...

  2. 40 CFR 1065.372 - NDUV analyzer HC and H2O interference verification.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications Nox and N2o... recommend that you extract engine exhaust to perform this verification. Use a CLD that meets the..., if one is used during testing, introduce the engine exhaust to the NDUV analyzer. (4) Allow time for...

  3. 40 CFR 1065.372 - NDUV analyzer HC and H2O interference verification.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications Nox and N2o... recommend that you extract engine exhaust to perform this verification. Use a CLD that meets the..., if one is used during testing, introduce the engine exhaust to the NDUV analyzer. (4) Allow time for...

  4. 40 CFR 1065.372 - NDUV analyzer HC and H2O interference verification.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications Nox and N2o... recommend that you extract engine exhaust to perform this verification. Use a CLD that meets the..., if one is used during testing, introduce the engine exhaust to the NDUV analyzer. (4) Allow time for...

  5. Laboratory testing of alcohol safety interlock systems employing divided attention tests

    DOT National Transportation Integrated Search

    1975-12-01

    Author's abstract: Prototype Alcohol Safety Interlock Systems employing measurements of tracking ability, reaction time, and response accuracy to discern alcohol impairment were submitted to laboratory testing. These systems were modified versions of...

  6. Thermal design verification testing of the Clementine spacecraft: Quick, cheap, and useful

    NASA Technical Reports Server (NTRS)

    Kim, Jeong H.; Hyman, Nelson L.

    1994-01-01

    At this writing, Clementine had successfully fulfilled its moon-mapping mission; at this reading it will have also, with continued good fortune, taken a close look at the asteroid Geographos. The thermal design that made all this possible was indeed formidable in many respects, with very high ratios of requirements-to-available resources and performance-to-cost and mass. There was no question that a test verification of this quite unique and complex design was essential, but it had to be squeezed into an unyielding schedule and executed with bare-bones cost and manpower. After describing the thermal control subsystem's features, we report all the drama, close-calls, and cost-cutting, how objectives were achieved under severe handicap but (thankfully) with little management and documentation interference. Topics include the newly refurbished chamber (ready just in time), the reality level of the engineering model, using the analytical thermal model, the manner of environment simulation, the hand-scratched film heaters, functioning of all three types of heat pipes (but not all heat pipes), and the BMDO sensors' checkout through the chamber window. Test results revealed some surprises and much valuable data, resulting in thermal model and flight hardware refinements. We conclude with the level of correlation between predictions and both test temperatures and flight telemetry.

  7. Post-OPC verification using a full-chip pattern-based simulation verification method

    NASA Astrophysics Data System (ADS)

    Hung, Chi-Yuan; Wang, Ching-Heng; Ma, Cliff; Zhang, Gary

    2005-11-01

    In this paper, we evaluated and investigated techniques for performing fast full-chip post-OPC verification using a commercial product platform. A number of databases from several technology nodes, i.e. 0.13um, 0.11um and 90nm are used in the investigation. Although it has proven that for most cases, our OPC technology is robust in general, due to the variety of tape-outs with complicated design styles and technologies, it is difficult to develop a "complete or bullet-proof" OPC algorithm that would cover every possible layout patterns. In the evaluation, among dozens of databases, some OPC databases were found errors by Model-based post-OPC checking, which could cost significantly in manufacturing - reticle, wafer process, and more importantly the production delay. From such a full-chip OPC database verification, we have learned that optimizing OPC models and recipes on a limited set of test chip designs may not provide sufficient coverage across the range of designs to be produced in the process. And, fatal errors (such as pinch or bridge) or poor CD distribution and process-sensitive patterns may still occur. As a result, more than one reticle tape-out cycle is not uncommon to prove models and recipes that approach the center of process for a range of designs. So, we will describe a full-chip pattern-based simulation verification flow serves both OPC model and recipe development as well as post OPC verification after production release of the OPC. Lastly, we will discuss the differentiation of the new pattern-based and conventional edge-based verification tools and summarize the advantages of our new tool and methodology: 1). Accuracy: Superior inspection algorithms, down to 1nm accuracy with the new "pattern based" approach 2). High speed performance: Pattern-centric algorithms to give best full-chip inspection efficiency 3). Powerful analysis capability: Flexible error distribution, grouping, interactive viewing and hierarchical pattern extraction to narrow

  8. Verification of the SENTINEL-4 Focal Plane Subsystem

    NASA Astrophysics Data System (ADS)

    Williges, C.; Hohn, R.; Rossmann, H.; Hilbert, S.; Uhlig, M.; Buchwinkler, K.; Reulke, R.

    2017-05-01

    The Sentinel-4 payload is a multi-spectral camera system which is designed to monitor atmospheric conditions over Europe. The German Aerospace Center (DLR) in Berlin, Germany conducted the verification campaign of the Focal Plane Subsystem (FPS) on behalf of Airbus Defense and Space GmbH, Ottobrunn, Germany. The FPS consists, inter alia, of two Focal Plane Assemblies (FPAs), one for the UV-VIS spectral range (305 nm … 500 nm), the second for NIR (750 nm … 775 nm). In this publication, we will present in detail the opto-mechanical laboratory set-up of the verification campaign of the Sentinel-4 Qualification Model (QM) which will also be used for the upcoming Flight Model (FM) verification. The test campaign consists mainly of radiometric tests performed with an integrating sphere as homogenous light source. The FPAs have mainly to be operated at 215 K ± 5 K, making it necessary to exploit a thermal vacuum chamber (TVC) for the test accomplishment. This publication focuses on the challenge to remotely illuminate both Sentinel-4 detectors as well as a reference detector homogeneously over a distance of approximately 1 m from outside the TVC. Furthermore selected test analyses and results will be presented, showing that the Sentinel-4 FPS meets specifications.

  9. Verification of the Sentinel-4 focal plane subsystem

    NASA Astrophysics Data System (ADS)

    Williges, Christian; Uhlig, Mathias; Hilbert, Stefan; Rossmann, Hannes; Buchwinkler, Kevin; Babben, Steffen; Sebastian, Ilse; Hohn, Rüdiger; Reulke, Ralf

    2017-09-01

    The Sentinel-4 payload is a multi-spectral camera system, designed to monitor atmospheric conditions over Europe from a geostationary orbit. The German Aerospace Center, DLR Berlin, conducted the verification campaign of the Focal Plane Subsystem (FPS) during the second half of 2016. The FPS consists, of two Focal Plane Assemblies (FPAs), two Front End Electronics (FEEs), one Front End Support Electronic (FSE) and one Instrument Control Unit (ICU). The FPAs are designed for two spectral ranges: UV-VIS (305 nm - 500 nm) and NIR (750 nm - 775 nm). In this publication, we will present in detail the set-up of the verification campaign of the Sentinel-4 Qualification Model (QM). This set up will also be used for the upcoming Flight Model (FM) verification, planned for early 2018. The FPAs have to be operated at 215 K +/- 5 K, making it necessary to exploit a thermal vacuum chamber (TVC) for the test accomplishment. The test campaign consists mainly of radiometric tests. This publication focuses on the challenge to remotely illuminate both Sentinel-4 detectors as well as a reference detector homogeneously over a distance of approximately 1 m from outside the TVC. Selected test analyses and results will be presented.

  10. Autonomous Flight Safety System Road Test

    NASA Technical Reports Server (NTRS)

    Simpson, James C.; Zoemer, Roger D.; Forney, Chris S.

    2005-01-01

    On February 3, 2005, Kennedy Space Center (KSC) conducted the first Autonomous Flight Safety System (AFSS) test on a moving vehicle -- a van driven around the KSC industrial area. A subset of the Phase III design was used consisting of a single computer, GPS receiver, and UPS antenna. The description and results of this road test are described in this report.AFSS is a joint KSC and Wallops Flight Facility project that is in its third phase of development. AFSS is an independent subsystem intended for use with Expendable Launch Vehicles that uses tracking data from redundant onboard sensors to autonomously make flight termination decisions using software-based rules implemented on redundant flight processors. The goals of this project are to increase capabilities by allowing launches from locations that do not have or cannot afford extensive ground-based range safety assets, to decrease range costs, and to decrease reaction time for special situations.

  11. Ontology Matching with Semantic Verification.

    PubMed

    Jean-Mary, Yves R; Shironoshita, E Patrick; Kabuka, Mansur R

    2009-09-01

    ASMOV (Automated Semantic Matching of Ontologies with Verification) is a novel algorithm that uses lexical and structural characteristics of two ontologies to iteratively calculate a similarity measure between them, derives an alignment, and then verifies it to ensure that it does not contain semantic inconsistencies. In this paper, we describe the ASMOV algorithm, and then present experimental results that measure its accuracy using the OAEI 2008 tests, and that evaluate its use with two different thesauri: WordNet, and the Unified Medical Language System (UMLS). These results show the increased accuracy obtained by combining lexical, structural and extensional matchers with semantic verification, and demonstrate the advantage of using a domain-specific thesaurus for the alignment of specialized ontologies.

  12. Cognitive Bias in Systems Verification

    NASA Technical Reports Server (NTRS)

    Larson, Steve

    2012-01-01

    Working definition of cognitive bias: Patterns by which information is sought and interpreted that can lead to systematic errors in decisions. Cognitive bias is used in diverse fields: Economics, Politics, Intelligence, Marketing, to name a few. Attempts to ground cognitive science in physical characteristics of the cognitive apparatus exceed our knowledge. Studies based on correlations; strict cause and effect is difficult to pinpoint. Effects cited in the paper and discussed here have been replicated many times over, and appear sound. Many biases have been described, but it is still unclear whether they are all distinct. There may only be a handful of fundamental biases, which manifest in various ways. Bias can effect system verification in many ways . Overconfidence -> Questionable decisions to deploy. Availability -> Inability to conceive critical tests. Representativeness -> Overinterpretation of results. Positive Test Strategies -> Confirmation bias. Debiasing at individual level very difficult. The potential effect of bias on the verification process can be managed, but not eliminated. Worth considering at key points in the process.

  13. Assume-Guarantee Verification of Source Code with Design-Level Assumptions

    NASA Technical Reports Server (NTRS)

    Giannakopoulou, Dimitra; Pasareanu, Corina S.; Cobleigh, Jamieson M.

    2004-01-01

    Model checking is an automated technique that can be used to determine whether a system satisfies certain required properties. To address the 'state explosion' problem associated with this technique, we propose to integrate assume-guarantee verification at different phases of system development. During design, developers build abstract behavioral models of the system components and use them to establish key properties of the system. To increase the scalability of model checking at this level, we have developed techniques that automatically decompose the verification task by generating component assumptions for the properties to hold. The design-level artifacts are subsequently used to guide the implementation of the system, but also to enable more efficient reasoning at the source code-level. In particular we propose to use design-level assumptions to similarly decompose the verification of the actual system implementation. We demonstrate our approach on a significant NASA application, where design-level models were used to identify; and correct a safety property violation, and design-level assumptions allowed us to check successfully that the property was presented by the implementation.

  14. Verification of Autonomous Systems for Space Applications

    NASA Technical Reports Server (NTRS)

    Brat, G.; Denney, E.; Giannakopoulou, D.; Frank, J.; Jonsson, A.

    2006-01-01

    Autonomous software, especially if it is based on model, can play an important role in future space applications. For example, it can help streamline ground operations, or, assist in autonomous rendezvous and docking operations, or even, help recover from problems (e.g., planners can be used to explore the space of recovery actions for a power subsystem and implement a solution without (or with minimal) human intervention). In general, the exploration capabilities of model-based systems give them great flexibility. Unfortunately, it also makes them unpredictable to our human eyes, both in terms of their execution and their verification. The traditional verification techniques are inadequate for these systems since they are mostly based on testing, which implies a very limited exploration of their behavioral space. In our work, we explore how advanced V&V techniques, such as static analysis, model checking, and compositional verification, can be used to gain trust in model-based systems. We also describe how synthesis can be used in the context of system reconfiguration and in the context of verification.

  15. Online 3D EPID-based dose verification: Proof of concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spreeuw, Hanno; Rozendaal, Roel, E-mail: r.rozenda

    Purpose: Delivery errors during radiotherapy may lead to medical harm and reduced life expectancy for patients. Such serious incidents can be avoided by performing dose verification online, i.e., while the patient is being irradiated, creating the possibility of halting the linac in case of a large overdosage or underdosage. The offline EPID-based 3D in vivo dosimetry system clinically employed at our institute is in principle suited for online treatment verification, provided the system is able to complete 3D dose reconstruction and verification within 420 ms, the present acquisition time of a single EPID frame. It is the aim of thismore » study to show that our EPID-based dosimetry system can be made fast enough to achieve online 3D in vivo dose verification. Methods: The current dose verification system was sped up in two ways. First, a new software package was developed to perform all computations that are not dependent on portal image acquisition separately, thus removing the need for doing these calculations in real time. Second, the 3D dose reconstruction algorithm was sped up via a new, multithreaded implementation. Dose verification was implemented by comparing planned with reconstructed 3D dose distributions delivered to two regions in a patient: the target volume and the nontarget volume receiving at least 10 cGy. In both volumes, the mean dose is compared, while in the nontarget volume, the near-maximum dose (D2) is compared as well. The real-time dosimetry system was tested by irradiating an anthropomorphic phantom with three VMAT plans: a 6 MV head-and-neck treatment plan, a 10 MV rectum treatment plan, and a 10 MV prostate treatment plan. In all plans, two types of serious delivery errors were introduced. The functionality of automatically halting the linac was also implemented and tested. Results: The precomputation time per treatment was ∼180 s/treatment arc, depending on gantry angle resolution. The complete processing of a single portal frame

  16. Online 3D EPID-based dose verification: Proof of concept.

    PubMed

    Spreeuw, Hanno; Rozendaal, Roel; Olaciregui-Ruiz, Igor; González, Patrick; Mans, Anton; Mijnheer, Ben; van Herk, Marcel

    2016-07-01

    Delivery errors during radiotherapy may lead to medical harm and reduced life expectancy for patients. Such serious incidents can be avoided by performing dose verification online, i.e., while the patient is being irradiated, creating the possibility of halting the linac in case of a large overdosage or underdosage. The offline EPID-based 3D in vivo dosimetry system clinically employed at our institute is in principle suited for online treatment verification, provided the system is able to complete 3D dose reconstruction and verification within 420 ms, the present acquisition time of a single EPID frame. It is the aim of this study to show that our EPID-based dosimetry system can be made fast enough to achieve online 3D in vivo dose verification. The current dose verification system was sped up in two ways. First, a new software package was developed to perform all computations that are not dependent on portal image acquisition separately, thus removing the need for doing these calculations in real time. Second, the 3D dose reconstruction algorithm was sped up via a new, multithreaded implementation. Dose verification was implemented by comparing planned with reconstructed 3D dose distributions delivered to two regions in a patient: the target volume and the nontarget volume receiving at least 10 cGy. In both volumes, the mean dose is compared, while in the nontarget volume, the near-maximum dose (D2) is compared as well. The real-time dosimetry system was tested by irradiating an anthropomorphic phantom with three VMAT plans: a 6 MV head-and-neck treatment plan, a 10 MV rectum treatment plan, and a 10 MV prostate treatment plan. In all plans, two types of serious delivery errors were introduced. The functionality of automatically halting the linac was also implemented and tested. The precomputation time per treatment was ∼180 s/treatment arc, depending on gantry angle resolution. The complete processing of a single portal frame, including dose verification, took

  17. 47 CFR 25.132 - Verification of earth station antenna performance standards.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Verification of earth station antenna... Verification of earth station antenna performance standards. (a)(1) Except for applications for 20/30 GHz earth... the antenna manufacturer on representative equipment in representative configurations, and the test...

  18. Debris Detector Verification by Hvi-Tests

    NASA Astrophysics Data System (ADS)

    Bauer, Waldemar; Drolshagen, Gerhard; Vörsmann, Peter; Romberg, Oliver; Putzar, Robin

    impact detection. Considering that the SOLID method could be applied to several S/Cs in different orbits, the spatial coverage in space concerning SD and MM can be significantly increased. In this way the method allows to generate large amount of impact data, which can be used for environmental model validation. This paper focuses on the verification of the SOLID method by Hypervelocity Impact (HVI) tests performed at Fraunhofer EMI. The test set-up as well as achieved results are presented and discussed.

  19. Flow visualization methods for field test verification of CFD analysis of an open gloveport

    DOE PAGES

    Strons, Philip; Bailey, James L.

    2017-01-01

    Anemometer readings alone cannot provide a complete picture of air flow patterns at an open gloveport. Having a means to visualize air flow for field tests in general provides greater insight by indicating direction in addition to the magnitude of the air flow velocities in the region of interest. Furthermore, flow visualization is essential for Computational Fluid Dynamics (CFD) verification, where important modeling assumptions play a significant role in analyzing the chaotic nature of low-velocity air flow. A good example is shown Figure 1, where an unexpected vortex pattern occurred during a field test that could not have been measuredmore » relying only on anemometer readings. Here by, observing and measuring the patterns of the smoke flowing into the gloveport allowed the CFD model to be appropriately updated to match the actual flow velocities in both magnitude and direction.« less

  20. Photovoltaic system criteria documents. Volume 5: Safety criteria for photovoltaic applications

    NASA Technical Reports Server (NTRS)

    Koenig, John C.; Billitti, Joseph W.; Tallon, John M.

    1979-01-01

    Methodology is described for determining potential safety hazards involved in the construction and operation of photovoltaic power systems and provides guidelines for the implementation of safety considerations in the specification, design and operation of photovoltaic systems. Safety verification procedures for use in solar photovoltaic systems are established.

  1. The SeaHorn Verification Framework

    NASA Technical Reports Server (NTRS)

    Gurfinkel, Arie; Kahsai, Temesghen; Komuravelli, Anvesh; Navas, Jorge A.

    2015-01-01

    In this paper, we present SeaHorn, a software verification framework. The key distinguishing feature of SeaHorn is its modular design that separates the concerns of the syntax of the programming language, its operational semantics, and the verification semantics. SeaHorn encompasses several novelties: it (a) encodes verification conditions using an efficient yet precise inter-procedural technique, (b) provides flexibility in the verification semantics to allow different levels of precision, (c) leverages the state-of-the-art in software model checking and abstract interpretation for verification, and (d) uses Horn-clauses as an intermediate language to represent verification conditions which simplifies interfacing with multiple verification tools based on Horn-clauses. SeaHorn provides users with a powerful verification tool and researchers with an extensible and customizable framework for experimenting with new software verification techniques. The effectiveness and scalability of SeaHorn are demonstrated by an extensive experimental evaluation using benchmarks from SV-COMP 2015 and real avionics code.

  2. A study of compositional verification based IMA integration method

    NASA Astrophysics Data System (ADS)

    Huang, Hui; Zhang, Guoquan; Xu, Wanmeng

    2018-03-01

    The rapid development of avionics systems is driving the application of integrated modular avionics (IMA) systems. But meanwhile it is improving avionics system integration, complexity of system test. Then we need simplify the method of IMA system test. The IMA system supports a module platform that runs multiple applications, and shares processing resources. Compared with federated avionics system, IMA system is difficult to isolate failure. Therefore, IMA system verification will face the critical problem is how to test shared resources of multiple application. For a simple avionics system, traditional test methods are easily realizing to test a whole system. But for a complex system, it is hard completed to totally test a huge and integrated avionics system. Then this paper provides using compositional-verification theory in IMA system test, so that reducing processes of test and improving efficiency, consequently economizing costs of IMA system integration.

  3. Verification testing to confirm VO2max attainment in persons with spinal cord injury.

    PubMed

    Astorino, Todd A; Bediamol, Noelle; Cotoia, Sarah; Ines, Kenneth; Koeu, Nicolas; Menard, Natasha; Nyugen, Brianna; Olivo, Cassandra; Phillips, Gabrielle; Tirados, Ardreen; Cruz, Gabriela Velasco

    2018-01-22

    Maximal oxygen uptake (VO 2 max) is a widely used measure of cardiorespiratory fitness, aerobic function, and overall health risk. Although VO 2 max has been measured for almost 100 yr, no standardized criteria exist to verify VO 2 max attainment. Studies document that incidence of 'true' VO 2 max obtained from incremental exercise (INC) can be confirmed using a subsequent verification test (VER). In this study, we examined efficacy of VER in persons with spinal cord injury (SCI). Repeated measures, within-subjects study. University laboratory in San Diego, CA. Ten individuals (age and injury duration = 33.3 ± 10.5 yr and 6.8 ± 6.2 yr) with SCI and 10 able-bodied (AB) individuals (age = 24.1 ± 7.4 yr). Peak oxygen uptake (VO 2 peak) was determined during INC on an arm ergometer followed by VER at 105 percent of peak power output (% PPO). Gas exchange data, heart rate (HR), and blood lactate concentration (BLa) were measured during exercise. Across all participants, VO 2 peak was highly related between protocols (ICC = 0.98) and the mean difference was equal to 0.08 ± 0.11 L/min. Compared to INC, VO 2 peak from VER was not different in SCI (1.30 ± 0.45 L/min vs. 1.31 ± 0.43 L/min) but higher in AB (1.63 ± 0.40 L/min vs. 1.76 ± 0.40 L/min). Data show similar VO 2 peak between incremental and verification tests in SCI, suggesting that VER confirms VO 2 max attainment. However, in AB participants completing arm ergometry, VER is essential to validate appearance of 'true' VO 2 peak.

  4. 46 CFR 131.513 - Verification of compliance with applicable stability requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Verification of compliance with applicable stability...) OFFSHORE SUPPLY VESSELS OPERATIONS Tests, Drills, and Inspections § 131.513 Verification of compliance with applicable stability requirements. (a) After loading but before departure, and at other times necessary to...

  5. 46 CFR 131.513 - Verification of compliance with applicable stability requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Verification of compliance with applicable stability...) OFFSHORE SUPPLY VESSELS OPERATIONS Tests, Drills, and Inspections § 131.513 Verification of compliance with applicable stability requirements. (a) After loading but before departure, and at other times necessary to...

  6. 46 CFR 131.513 - Verification of compliance with applicable stability requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Verification of compliance with applicable stability...) OFFSHORE SUPPLY VESSELS OPERATIONS Tests, Drills, and Inspections § 131.513 Verification of compliance with applicable stability requirements. (a) After loading but before departure, and at other times necessary to...

  7. Block 2 SRM conceptual design studies. Volume 1, Book 2: Preliminary development and verification plan

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Activities that will be conducted in support of the development and verification of the Block 2 Solid Rocket Motor (SRM) are described. Development includes design, fabrication, processing, and testing activities in which the results are fed back into the project. Verification includes analytical and test activities which demonstrate SRM component/subassembly/assembly capability to perform its intended function. The management organization responsible for formulating and implementing the verification program is introduced. It also identifies the controls which will monitor and track the verification program. Integral with the design and certification of the SRM are other pieces of equipment used in transportation, handling, and testing which influence the reliability and maintainability of the SRM configuration. The certification of this equipment is also discussed.

  8. Design and Realization of Controllable Ultrasonic Fault Detector Automatic Verification System

    NASA Astrophysics Data System (ADS)

    Sun, Jing-Feng; Liu, Hui-Ying; Guo, Hui-Juan; Shu, Rong; Wei, Kai-Li

    The ultrasonic flaw detection equipment with remote control interface is researched and the automatic verification system is developed. According to use extensible markup language, the building of agreement instruction set and data analysis method database in the system software realizes the controllable designing and solves the diversification of unreleased device interfaces and agreements. By using the signal generator and a fixed attenuator cascading together, a dynamic error compensation method is proposed, completes what the fixed attenuator does in traditional verification and improves the accuracy of verification results. The automatic verification system operating results confirms that the feasibility of the system hardware and software architecture design and the correctness of the analysis method, while changes the status of traditional verification process cumbersome operations, and reduces labor intensity test personnel.

  9. Survey of Verification and Validation Techniques for Small Satellite Software Development

    NASA Technical Reports Server (NTRS)

    Jacklin, Stephen A.

    2015-01-01

    The purpose of this paper is to provide an overview of the current trends and practices in small-satellite software verification and validation. This document is not intended to promote a specific software assurance method. Rather, it seeks to present an unbiased survey of software assurance methods used to verify and validate small satellite software and to make mention of the benefits and value of each approach. These methods include simulation and testing, verification and validation with model-based design, formal methods, and fault-tolerant software design with run-time monitoring. Although the literature reveals that simulation and testing has by far the longest legacy, model-based design methods are proving to be useful for software verification and validation. Some work in formal methods, though not widely used for any satellites, may offer new ways to improve small satellite software verification and validation. These methods need to be further advanced to deal with the state explosion problem and to make them more usable by small-satellite software engineers to be regularly applied to software verification. Last, it is explained how run-time monitoring, combined with fault-tolerant software design methods, provides an important means to detect and correct software errors that escape the verification process or those errors that are produced after launch through the effects of ionizing radiation.

  10. Abstraction and Assume-Guarantee Reasoning for Automated Software Verification

    NASA Technical Reports Server (NTRS)

    Chaki, S.; Clarke, E.; Giannakopoulou, D.; Pasareanu, C. S.

    2004-01-01

    Compositional verification and abstraction are the key techniques to address the state explosion problem associated with model checking of concurrent software. A promising compositional approach is to prove properties of a system by checking properties of its components in an assume-guarantee style. This article proposes a framework for performing abstraction and assume-guarantee reasoning of concurrent C code in an incremental and fully automated fashion. The framework uses predicate abstraction to extract and refine finite state models of software and it uses an automata learning algorithm to incrementally construct assumptions for the compositional verification of the abstract models. The framework can be instantiated with different assume-guarantee rules. We have implemented our approach in the COMFORT reasoning framework and we show how COMFORT out-performs several previous software model checking approaches when checking safety properties of non-trivial concurrent programs.

  11. Environmental Technology Verification Program Fact Sheet

    EPA Science Inventory

    This is a Fact Sheet for the ETV Program. The EPA Environmental Technology Verification Program (ETV) develops test protocols and verifies the performance of innovative technologies that have the potential to improve protection of human health and the environment. The program ...

  12. Adjusting for partial verification or workup bias in meta-analyses of diagnostic accuracy studies.

    PubMed

    de Groot, Joris A H; Dendukuri, Nandini; Janssen, Kristel J M; Reitsma, Johannes B; Brophy, James; Joseph, Lawrence; Bossuyt, Patrick M M; Moons, Karel G M

    2012-04-15

    A key requirement in the design of diagnostic accuracy studies is that all study participants receive both the test under evaluation and the reference standard test. For a variety of practical and ethical reasons, sometimes only a proportion of patients receive the reference standard, which can bias the accuracy estimates. Numerous methods have been described for correcting this partial verification bias or workup bias in individual studies. In this article, the authors describe a Bayesian method for obtaining adjusted results from a diagnostic meta-analysis when partial verification or workup bias is present in a subset of the primary studies. The method corrects for verification bias without having to exclude primary studies with verification bias, thus preserving the main advantages of a meta-analysis: increased precision and better generalizability. The results of this method are compared with the existing methods for dealing with verification bias in diagnostic meta-analyses. For illustration, the authors use empirical data from a systematic review of studies of the accuracy of the immunohistochemistry test for diagnosis of human epidermal growth factor receptor 2 status in breast cancer patients.

  13. Overview of RICOR's reliability theoretical analysis, accelerated life demonstration test results and verification by field data

    NASA Astrophysics Data System (ADS)

    Vainshtein, Igor; Baruch, Shlomi; Regev, Itai; Segal, Victor; Filis, Avishai; Riabzev, Sergey

    2018-05-01

    The growing demand for EO applications that work around the clock 24hr/7days a week, such as in border surveillance systems, emphasizes the need for a highly reliable cryocooler having increased operational availability and optimized system's Integrated Logistic Support (ILS). In order to meet this need, RICOR developed linear and rotary cryocoolers which achieved successfully this goal. Cryocoolers MTTF was analyzed by theoretical reliability evaluation methods, demonstrated by normal and accelerated life tests at Cryocooler level and finally verified by field data analysis derived from Cryocoolers operating at system level. The following paper reviews theoretical reliability analysis methods together with analyzing reliability test results derived from standard and accelerated life demonstration tests performed at Ricor's advanced reliability laboratory. As a summary for the work process, reliability verification data will be presented as a feedback from fielded systems.

  14. GENERIC VERIFICATION PROTOCOL FOR AQUEOUS CLEANER RECYCLING TECHNOLOGIES

    EPA Science Inventory

    This generic verification protocol has been structured based on a format developed for ETV-MF projects. This document describes the intended approach and explain plans for testing with respect to areas such as test methodology, procedures, parameters, and instrumentation. Also ...

  15. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT--BAGHOUSE FILTRATION PRODUCTS, W.L. GORE ASSOC., INC.

    EPA Science Inventory

    The U.S. Environmental Protection Agency Air Pollution Control Technology (APCT) Verification Center evaluates the performance of baghouse filtration products used primarily to control PM2.5 emissions. This verification statement summarizes the test results for W.L. Gore & Assoc....

  16. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the SPACEHAB Facility, STS-96 Mission Specialist Ellen Ochoa and Commander Kent Rominger pause during a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station. Other crew members at KSC for the IVT are Pilot Rick Husband and Mission Specialists Tamara Jernigan, Dan Barry, Julie Payette and Valery Tokarev of Russia. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m. EDT.

  17. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Posing on the platform next to the SPACEHAB Logistics Double Module in the SPACEHAB Facility are the STS-96 crew (from left) Mission Specialists Dan Barry, Tamara Jernigan, Valery Tokarev of Russia, and Julie Payette; Pilot Rick Husband; Mission Specialist Ellen Ochoa; and Commander Kent Rominger. The crew is at KSC for a payload Interface Verification Test for their upcoming mission to the International Space Station. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  18. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the SPACEHAB Facility, STS-96 Mission Specialist Ellen Ochoa and Commander Kent Rominger smile for the camera during a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station. Other crew members at KSC for the IVT are Pilot Rick Husband and Mission Specialists Tamara Jernigan, Dan Barry, Julie Payette and Valery Tokarev of Russia. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m. EDT.

  19. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a payload Interface Verification Test (IVT) for the upcoming mission to the International Space Station , Chris Jaskolka of Boeing points out a piece of equipment in the SPACEHAB module to STS-96 Commander Kent Rominger, Mission Specialist Ellen Ochoa and Pilot Rick Husband. Other crew members visiting KSC for the IVT are Mission Specialists Tamara Jernigan, Dan Barry, Julie Payette and Valery Tokarev of Russia. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m. EDT.

  20. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, STS-96 Mission Specialists Dan Barry and Tamara Jernigan discuss procedures during a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station. Other STS-96 crew members at KSC for the IVT are Commander Kent Rominger, Pilot Rick Husband and Mission Specialists Ellen Ochoa, Julie Payette and Valery Tokarev of Russia. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  1. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, James Behling, with Boeing, talks about equipment for mission STS-96 during a payload Interface Verification Test (IVT). Watching are (from left) Mission Specialists Ellen Ochoa, Julie Payette and Dan Berry, and Pilot Rick Husband. Other STS-96 crew members at KSC for the IVT are Commander Kent Rominger and Mission Specialists Tamara Jernigan and Valery Tokarev of Russia. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  2. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station, STS-96 Mission Specialists Julie Payette, Dan Barry, and Valery Tokarev of Russia, look at a Sequential Shunt Unit in the SPACEHAB Facility. Other crew members at KSC for the IVT are Commander Kent Rominger, Pilot Rick Husband, and Mission Specialists Ellen Ochoa and Tamara Jernigan. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m. EDT.

  3. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility for a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station are (left to right) Mission Specialists Valery Tokarev, Julie Payette (holding a lithium hydroxide canister) and Dan Barry. Other crew members at KSC for the IVT are Commander Kent Rominger, Pilot Rick Husband and Mission Specialists Ellen Ochoa and Tamara Jernigan. Mission STS-96 carries the SPACEHAB Logistics Double Module, which has equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  4. Formal verification of software-based medical devices considering medical guidelines.

    PubMed

    Daw, Zamira; Cleaveland, Rance; Vetter, Marcus

    2014-01-01

    Software-based devices have increasingly become an important part of several clinical scenarios. Due to their critical impact on human life, medical devices have very strict safety requirements. It is therefore necessary to apply verification methods to ensure that the safety requirements are met. Verification of software-based devices is commonly limited to the verification of their internal elements without considering the interaction that these elements have with other devices as well as the application environment in which they are used. Medical guidelines define clinical procedures, which contain the necessary information to completely verify medical devices. The objective of this work was to incorporate medical guidelines into the verification process in order to increase the reliability of the software-based medical devices. Medical devices are developed using the model-driven method deterministic models for signal processing of embedded systems (DMOSES). This method uses unified modeling language (UML) models as a basis for the development of medical devices. The UML activity diagram is used to describe medical guidelines as workflows. The functionality of the medical devices is abstracted as a set of actions that is modeled within these workflows. In this paper, the UML models are verified using the UPPAAL model-checker. For this purpose, a formalization approach for the UML models using timed automaton (TA) is presented. A set of requirements is verified by the proposed approach for the navigation-guided biopsy. This shows the capability for identifying errors or optimization points both in the workflow and in the system design of the navigation device. In addition to the above, an open source eclipse plug-in was developed for the automated transformation of UML models into TA models that are automatically verified using UPPAAL. The proposed method enables developers to model medical devices and their clinical environment using clinical workflows as one

  5. Physics Verification Overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doebling, Scott William

    The purpose of the verification project is to establish, through rigorous convergence analysis, that each ASC computational physics code correctly implements a set of physics models and algorithms (code verification); Evaluate and analyze the uncertainties of code outputs associated with the choice of temporal and spatial discretization (solution or calculation verification); and Develop and maintain the capability to expand and update these analyses on demand. This presentation describes project milestones.

  6. SSME Alternate Turbopump Development Program: Design verification specification for high-pressure fuel turbopump

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The design and verification requirements are defined which are appropriate to hardware at the detail, subassembly, component, and engine levels and to correlate these requirements to the development demonstrations which provides verification that design objectives are achieved. The high pressure fuel turbopump requirements verification matrix provides correlation between design requirements and the tests required to verify that the requirement have been met.

  7. EMC: Verification

    Science.gov Websites

    , GFS, RAP, HRRR, HIRESW, SREF mean, International Global Models, HPC analysis Precipitation Skill Scores : 1995-Present NAM, GFS, NAM CONUS nest, International Models EMC Forecast Verfication Stats: NAM ) Real Time Verification of NCEP Operational Models against observations Real Time Verification of NCEP

  8. SMAP Verification and Validation Project - Final Report

    NASA Technical Reports Server (NTRS)

    Murry, Michael

    2012-01-01

    In 2007, the National Research Council (NRC) released the Decadal Survey of Earth science. In the future decade, the survey identified 15 new space missions of significant scientific and application value for the National Aeronautics and Space Administration (NASA) to undertake. One of these missions was the Soil Moisture Active Passive (SMAP) mission that NASA assigned to the Jet Propulsion Laboratory (JPL) in 2008. The goal of SMAP1 is to provide global, high resolution mapping of soil moisture and its freeze/thaw states. The SMAP project recently passed its Critical Design Review and is proceeding with its fabrication and testing phase.Verification and Validation (V&V) is widely recognized as a critical component in system engineering and is vital to the success of any space mission. V&V is a process that is used to check that a system meets its design requirements and specifications in order to fulfill its intended purpose. Verification often refers to the question "Have we built the system right?" whereas Validation asks "Have we built the right system?" Currently the SMAP V&V team is verifying design requirements through inspection, demonstration, analysis, or testing. An example of the SMAP V&V process is the verification of the antenna pointing accuracy with mathematical models since it is not possible to provide the appropriate micro-gravity environment for testing the antenna on Earth before launch.

  9. Formal verification and testing: An integrated approach to validating Ada programs

    NASA Technical Reports Server (NTRS)

    Cohen, Norman H.

    1986-01-01

    An integrated set of tools called a validation environment is proposed to support the validation of Ada programs by a combination of methods. A Modular Ada Validation Environment (MAVEN) is described which proposes a context in which formal verification can fit into the industrial development of Ada software.

  10. Safety and Suitability for Service Assessment Testing for Aircraft Launched Munitions

    DTIC Science & Technology

    2013-07-01

    2013 12 benefits in terms of cost and test efficiency that tend to associate the Analytical S3 Test Approach with complex missile systems and the... systems containing expensive, non-safety related components. c. When using the Analytical S3 Test Approach for aircraft launched bombs, full BTCA is...establish safety margin of the system . Details of the Empirical Test Flow with full and reduced BTCA options are provided in Appendix B, Annexes 3 and

  11. 75 FR 76078 - Pipeline Safety: Random Drug Testing Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-07

    ... PHMSA-2010-0323] Pipeline Safety: Random Drug Testing Rate AGENCY: Pipeline and Hazardous Materials... testing. SUMMARY: PHMSA has determined that the minimum random drug testing rate for covered employees... employees for random drug testing. Pursuant to 49 CFR 199.105(c)(2), (3), and (4), the PHMSA Administrator's...

  12. Validation (not just verification) of Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Duren, Riley M.

    2006-01-01

    ion & Validation (V&V) is a widely recognized and critical systems engineering function. However, the often used definition 'Verification proves the design is right; validation proves it is the right design' is rather vague. And while Verification is a reasonably well standardized systems engineering process, Validation is a far more abstract concept and the rigor and scope applied to it varies widely between organizations and individuals. This is reflected in the findings in recent Mishap Reports for several NASA missions, in which shortfalls in Validation (not just Verification) were cited as root- or contributing-factors in catastrophic mission loss. Furthermore, although there is strong agreement in the community that Test is the preferred method for V&V, many people equate 'V&V' with 'Test', such that Analysis and Modeling aren't given comparable attention. Another strong motivator is a realization that the rapid growth in complexity of deep-space missions (particularly Planetary Landers and Space Observatories given their inherent unknowns) is placing greater demands on systems engineers to 'get it right' with Validation.

  13. Method and computer product to increase accuracy of time-based software verification for sensor networks

    DOEpatents

    Foo Kune, Denis [Saint Paul, MN; Mahadevan, Karthikeyan [Mountain View, CA

    2011-01-25

    A recursive verification protocol to reduce the time variance due to delays in the network by putting the subject node at most one hop from the verifier node provides for an efficient manner to test wireless sensor nodes. Since the software signatures are time based, recursive testing will give a much cleaner signal for positive verification of the software running on any one node in the sensor network. In this protocol, the main verifier checks its neighbor, who in turn checks its neighbor, and continuing this process until all nodes have been verified. This ensures minimum time delays for the software verification. Should a node fail the test, the software verification downstream is halted until an alternative path (one not including the failed node) is found. Utilizing techniques well known in the art, having a node tested twice, or not at all, can be avoided.

  14. Formal Verification of a Conflict Resolution and Recovery Algorithm

    NASA Technical Reports Server (NTRS)

    Maddalon, Jeffrey; Butler, Ricky; Geser, Alfons; Munoz, Cesar

    2004-01-01

    New air traffic management concepts distribute the duty of traffic separation among system participants. As a consequence, these concepts have a greater dependency and rely heavily on on-board software and hardware systems. One example of a new on-board capability in a distributed air traffic management system is air traffic conflict detection and resolution (CD&R). Traditional methods for safety assessment such as human-in-the-loop simulations, testing, and flight experiments may not be sufficient for this highly distributed system as the set of possible scenarios is too large to have a reasonable coverage. This paper proposes a new method for the safety assessment of avionics systems that makes use of formal methods to drive the development of critical systems. As a case study of this approach, the mechanical veri.cation of an algorithm for air traffic conflict resolution and recovery called RR3D is presented. The RR3D algorithm uses a geometric optimization technique to provide a choice of resolution and recovery maneuvers. If the aircraft adheres to these maneuvers, they will bring the aircraft out of conflict and the aircraft will follow a conflict-free path to its original destination. Veri.cation of RR3D is carried out using the Prototype Verification System (PVS).

  15. Verification Failures: What to Do When Things Go Wrong

    NASA Astrophysics Data System (ADS)

    Bertacco, Valeria

    Every integrated circuit is released with latent bugs. The damage and risk implied by an escaped bug ranges from almost imperceptible to potential tragedy; unfortunately it is impossible to discern within this range before a bug has been exposed and analyzed. While the past few decades have witnessed significant efforts to improve verification methodology for hardware systems, these efforts have been far outstripped by the massive complexity of modern digital designs, leading to product releases for which an always smaller fraction of system's states has been verified. The news of escaped bugs in large market designs and/or safety critical domains is alarming because of safety and cost implications (due to replacements, lawsuits, etc.).

  16. Structural Element Testing in Support of the Design of the NASA Composite Crew Module

    NASA Technical Reports Server (NTRS)

    Kellas, Sotiris; Jackson, Wade C.; Thesken, John C.; Schleicher, Eric; Wagner, Perry; Kirsch, Michael T.

    2012-01-01

    In January 2007, the NASA Administrator and Associate Administrator for the Exploration Systems Mission Directorate chartered the NASA Engineering and Safety Center (NESC) to design, build, and test a full-scale Composite Crew Module (CCM). For the design and manufacturing of the CCM, the team adopted the building block approach where design and manufacturing risks were mitigated through manufacturing trials and structural testing at various levels of complexity. Following NASA's Structural Design Verification Requirements, a further objective was the verification of design analysis methods and the provision of design data for critical structural features. Test articles increasing in complexity from basic material characterization coupons through structural feature elements and large structural components, to full-scale structures were evaluated. This paper discusses only four elements tests three of which include joints and one that includes a tapering honeycomb core detail. For each test series included are specimen details, instrumentation, test results, a brief analysis description, test analysis correlation and conclusions.

  17. 40 CFR 1066.215 - Summary of verification and calibration procedures for chassis dynamometers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS VEHICLE-TESTING PROCEDURES Dynamometer... manufacturer instructions and good engineering judgment. (c) Automated dynamometer verifications and... accomplish the verifications and calibrations specified in this subpart. You may use these automated...

  18. 40 CFR 1066.215 - Summary of verification and calibration procedures for chassis dynamometers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS VEHICLE-TESTING PROCEDURES Dynamometer... manufacturer instructions and good engineering judgment. (c) Automated dynamometer verifications and... accomplish the verifications and calibrations specified in this subpart. You may use these automated...

  19. Certification and verification for Northrup Model NSC-01-0732 Fresnel lens concentrating solar collector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-03-01

    The certification and verification of the Northrup Model NSC-01-0732 Fresnel lens tracking solar collector are presented. A certification statement is included with signatures and a separate report on the structural analysis of the collector system. System verification against the Interim Performance Criteria are indicated by matrices with verification discussion, analysis, and enclosed test results.

  20. 46 CFR 109.227 - Verification of vessel compliance with applicable stability requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Verification of vessel compliance with applicable stability requirements. 109.227 Section 109.227 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.227 Verification...

  1. 46 CFR 109.227 - Verification of vessel compliance with applicable stability requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Verification of vessel compliance with applicable stability requirements. 109.227 Section 109.227 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.227 Verification...

  2. 46 CFR 109.227 - Verification of vessel compliance with applicable stability requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Verification of vessel compliance with applicable stability requirements. 109.227 Section 109.227 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.227 Verification...

  3. 46 CFR 109.227 - Verification of vessel compliance with applicable stability requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Verification of vessel compliance with applicable stability requirements. 109.227 Section 109.227 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.227 Verification...

  4. 46 CFR 109.227 - Verification of vessel compliance with applicable stability requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Verification of vessel compliance with applicable stability requirements. 109.227 Section 109.227 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.227 Verification...

  5. A Novel Lithium-ion Laminated Pouch Cell Tested For Performance And Safety

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith A.; Inoue, Takefumi

    2006-01-01

    A new Li-ion 4.0 Ah pouch cell from GS Yuasa has been tested to determine its performance and safety. The cell is of a laminate pouch design with liquid electrolyte. The rate, thermal and vacuum performance capabilities have been tested to determine the optimum parameters. Under vacuum conditions, the cells were cycled under restrained and unrestrained configurations. The burst pressure of the laminate pouch was also determined. The overcharge, overdischarge into reversal and external short circuit safety tests were also performed to determine the cell s tolerance to abuse. Key Words: Li-ion, safety, vacuum test, abuse, COTS batteries, rate capability

  6. Bioluminescence lights the way to food safety

    NASA Astrophysics Data System (ADS)

    Brovko, Lubov Y.; Griffiths, Mansel W.

    2003-07-01

    The food industry is increasingly adopting food safety and quality management systems that are more proactive and preventive than those used in the past which have tended to rely on end product testing and visual inspection. The regulatory agencies in many countries are promoting one such management tool, Hazard Analysis Critical Control Point (HACCP), as a way to achieve a safer food supply and as a basis for harmonization of trading standards. Verification that the process is safe must involve microbiological testing but the results need not be generated in real-time. Of all the rapid microbiological tests currently available, the only ones that come close to offering real-time results are bioluminescence-based methods. Recent developments in application of bioluminescence for food safety issues are presented in the paper. These include the use of genetically engineered microorganisms with bioluminescent and fluorescent phenotypes as a real time indicator of physiological state and survival of food-borne pathogens in food and food processing environments as well as novel bioluminescent-based methods for rapid detection of pathogens in food and environmental samples. Advantages and pitfalls of the methods are discussed.

  7. Capturing Safety Requirements to Enable Effective Task Allocation Between Humans and Automaton in Increasingly Autonomous Systems

    NASA Technical Reports Server (NTRS)

    Neogi, Natasha A.

    2016-01-01

    There is a current drive towards enabling the deployment of increasingly autonomous systems in the National Airspace System (NAS). However, shifting the traditional roles and responsibilities between humans and automation for safety critical tasks must be managed carefully, otherwise the current emergent safety properties of the NAS may be disrupted. In this paper, a verification activity to assess the emergent safety properties of a clearly defined, safety critical, operational scenario that possesses tasks that can be fluidly allocated between human and automated agents is conducted. Task allocation role sets were proposed for a human-automation team performing a contingency maneuver in a reduced crew context. A safety critical contingency procedure (engine out on takeoff) was modeled in the Soar cognitive architecture, then translated into the Hybrid Input Output formalism. Verification activities were then performed to determine whether or not the safety properties held over the increasingly autonomous system. The verification activities lead to the development of several key insights regarding the implicit assumptions on agent capability. It subsequently illustrated the usefulness of task annotations associated with specialized requirements (e.g., communication, timing etc.), and demonstrated the feasibility of this approach.

  8. Environmental Technology Verification Program Materials Management and Remediation Center Generic Protocol for Verification of In Situ Chemical Oxidation

    EPA Science Inventory

    The protocol provides generic procedures for implementing a verification test for the performance of in situ chemical oxidation (ISCO), focused specifically to expand the application of ISCO at manufactured gas plants with polyaromatic hydrocarbon (PAH) contamination (MGP/PAH) an...

  9. Combustion Safety Simplified Test Protocol Field Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brand, L; Cautley, D.; Bohac, D.

    2015-11-05

    "9Combustions safety is an important step in the process of upgrading homes for energy efficiency. There are several approaches used by field practitioners, but researchers have indicated that the test procedures in use are complex to implement and provide too many false positives. Field failures often mean that the house is not upgraded until after remediation or not at all, if not include in the program. In this report the PARR and NorthernSTAR DOE Building America Teams provide a simplified test procedure that is easier to implement and should produce fewer false positives. A survey of state weatherization agencies onmore » combustion safety issues, details of a field data collection instrumentation package, summary of data collected over seven months, data analysis and results are included. The project provides several key results. State weatherization agencies do not generally track combustion safety failures, the data from those that do suggest that there is little actual evidence that combustion safety failures due to spillage from non-dryer exhaust are common and that only a very small number of homes are subject to the failures. The project team collected field data on 11 houses in 2015. Of these homes, two houses that demonstrated prolonged and excessive spillage were also the only two with venting systems out of compliance with the National Fuel Gas Code. The remaining homes experienced spillage that only occasionally extended beyond the first minute of operation. Combustion zone depressurization, outdoor temperature, and operation of individual fans all provide statistically significant predictors of spillage.« less

  10. Expose : procedure and results of the joint experiment verification tests

    NASA Astrophysics Data System (ADS)

    Panitz, C.; Rettberg, P.; Horneck, G.; Rabbow, E.; Baglioni, P.

    The International Space Station will carry the EXPOSE facility accommodated at the universal workplace URM-D located outside the Russian Service Module. The launch will be affected in 2005 and it is planned to stay in space for 1.5 years. The tray like structure will accomodate 2 chemical and 6 biological PI-experiments or experiment systems of the ROSE (Response of Organisms to Space Environment) consortium. EXPOSE will support long-term in situ studies of microbes in artificial meteorites, as well as of microbial communities from special ecological niches, such as endolithic and evaporitic ecosystems. The either vented or sealed experiment pockets will be covered by an optical filter system to control intensity and spectral range of solar UV irradiation. Control of sun exposure will be achieved by the use of individual shutters. To test the compatibility of the different biological systems and their adaptation to the opportunities and constraints of space conditions a profound ground support program has been developed. The procedure and first results of this joint Experiment Verification Tests (EVT) will be presented. The results will be essential for the success of the EXPOSE mission and have been done in parallel with the development and construction of the final hardware design of the facility. The results of the mission will contribute to the understanding of the organic chemistry processes in space, the biological adaptation strategies to extreme conditions, e.g. on early Earth and Mars, and the distribution of life beyond its planet of origin.

  11. AN ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) TESTING OF FOUR DIOXIN EMISSION MONITORING SYSTEMS

    EPA Science Inventory

    The Environmental Technology Verification (ETV) Program, beginning as an initiative of the U.S. Environmental Protection Agency (EPA) in 1995, verifies the performance of commercially available, innovative technologies that can be used to measure environmental quality. The ETV p...

  12. Formal Verification of the Runway Safety Monitor

    NASA Technical Reports Server (NTRS)

    Siminiceanu, Radu; Ciardo, Gianfranco

    2006-01-01

    The Runway Safety Monitor (RSM) designed by Lockheed Martin is part of NASA's effort to reduce runway accidents. We developed a Petri net model of the RSM protocol and used the model checking functions of our tool SMART to investigate a number of safety properties in RSM. To mitigate the impact of state-space explosion, we built a highly discretized model of the system, obtained by partitioning the monitored runway zone into a grid of smaller volumes and by considering scenarios involving only two aircraft. The model also assumes that there are no communication failures, such as bad input from radar or lack of incoming data, thus it relies on a consistent view of reality by all participants. In spite of these simplifications, we were able to expose potential problems in the RSM conceptual design. Our findings were forwarded to the design engineers, who undertook corrective action. Additionally, the results stress the efficiency attained by the new model checking algorithms implemented in SMART, and demonstrate their applicability to real-world systems.

  13. Composite Overwrapped Pressure Vessel (COPV) Stress Rupture Testing

    NASA Technical Reports Server (NTRS)

    Greene, Nathanael J.; Saulsberry, Regor L.; Leifeste, Mark R.; Yoder, Tommy B.; Keddy, Chris P.; Forth, Scott C.; Russell, Rick W.

    2010-01-01

    This paper reports stress rupture testing of Kevlar(TradeMark) composite overwrapped pressure vessels (COPVs) at NASA White Sands Test Facility. This 6-year test program was part of the larger effort to predict and extend the lifetime of flight vessels. Tests were performed to characterize control parameters for stress rupture testing, and vessel life was predicted by statistical modeling. One highly instrumented 102-cm (40-in.) diameter Kevlar(TradeMark) COPV was tested to failure (burst) as a single-point model verification. Significant data were generated that will enhance development of improved NDE methods and predictive modeling techniques, and thus better address stress rupture and other composite durability concerns that affect pressure vessel safety, reliability and mission assurance.

  14. New Physical Optics Method for Curvilinear Refractive Surfaces and its Verification in the Design and Testing of W-band Dual-Aspheric Lenses

    DTIC Science & Technology

    2013-10-01

    its Verification in the Design and Testing of W-band Dual-Aspheric Lenses A. Altintas and V. Yurchenko EEE Department, Bilkent University Ankara...Theory and Techn., Vol. 55, 239, 2007 [5] ZEMAX Development Corporation, Zemax- EE , http://www.zemax.com/ [6] Pasqualini D. and Maci S., ”High-Frequency

  15. What is the Final Verification of Engineering Requirements?

    NASA Technical Reports Server (NTRS)

    Poole, Eric

    2010-01-01

    This slide presentation reviews the process of development through the final verification of engineering requirements. The definition of the requirements is driven by basic needs, and should be reviewed by both the supplier and the customer. All involved need to agree upon a formal requirements including changes to the original requirements document. After the requirements have ben developed, the engineering team begins to design the system. The final design is reviewed by other organizations. The final operational system must satisfy the original requirements, though many verifications should be performed during the process. The verification methods that are used are test, inspection, analysis and demonstration. The plan for verification should be created once the system requirements are documented. The plan should include assurances that every requirement is formally verified, that the methods and the responsible organizations are specified, and that the plan is reviewed by all parties. The options of having the engineering team involved in all phases of the development as opposed to having some other organization continue the process once the design has been complete is discussed.

  16. Field test of short-notice random inspections for inventory-change verification at a low-enriched-uranium fuel-fabrication plant: Preliminary summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fishbone, L.G.; Moussalli, G.; Naegele, G.

    1994-04-01

    An approach of short-notice random inspections (SNRIs) for inventory-change verification can enhance the effectiveness and efficiency of international safeguards at natural or low-enriched uranium (LEU) fuel fabrication plants. According to this approach, the plant operator declares the contents of nuclear material items before knowing if an inspection will occur to verify them. Additionally, items about which declarations are newly made should remain available for verification for an agreed time. This report details a six-month field test of the feasibility of such SNRIs which took place at the Westinghouse Electric Corporation Commercial Nuclear Fuel Division. Westinghouse personnel made daily declarations aboutmore » both feed and product items, uranium hexafluoride cylinders and finished fuel assemblies, using a custom-designed computer ``mailbox``. Safeguards inspectors from the IAEA conducted eight SNRIs to verify these declarations. Items from both strata were verified during the SNRIs by means of nondestructive assay equipment. The field test demonstrated the feasibility and practicality of key elements of the SNRI approach for a large LEU fuel fabrication plant.« less

  17. Verification of consumers' experiences and perceptions of genetic discrimination and its impact on utilization of genetic testing.

    PubMed

    Barlow-Stewart, Kristine; Taylor, Sandra D; Treloar, Susan A; Stranger, Mark; Otlowski, Margaret

    2009-03-01

    To undertake a systematic process of verification of consumer accounts of alleged genetic discrimination. Verification of incidents reported in life insurance and other contexts that met the criteria of genetic discrimination, and the impact of fear of such treatment, was determined, with consent, through interview, document analysis and where appropriate, direct contact with the third party involved. The process comprised obtaining evidence that the alleged incident was accurately reported and determining whether the decision or action seemed to be justifiable and/or ethical. Reported incidents of genetic discrimination were verified in life insurance access, underwriting and coercion (9), applications for worker's compensation (1) and early release from prison (1) and in two cases of fear of discrimination impacting on access to genetic testing. Relevant conditions were inherited cancer susceptibility (8), Huntington disease (3), hereditary hemochromatosis (1), and polycystic kidney disease (1). In two cases, the reversal of an adverse underwriting decision to standard rate after intervention with insurers by genetics health professionals was verified. The mismatch between consumer and third party accounts in three life insurance incidents involved miscommunication or lack of information provision by financial advisers. These first cases of verified genetic discrimination make it essential for policies and guidelines to be developed and implemented to ensure appropriate use of genetic test results in insurance underwriting, to promote education and training in the financial industry, and to provide support for consumers and health professionals undertaking challenges of adverse decisions.

  18. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Performance Verification Reports: Final Comprehensive Performance Test Report, P/N: 1356006-1, S.N: 202/A2

    NASA Technical Reports Server (NTRS)

    Platt, R.

    1998-01-01

    This is the Performance Verification Report. the process specification establishes the requirements for the comprehensive performance test (CPT) and limited performance test (LPT) of the earth observing system advanced microwave sounding unit-A2 (EOS/AMSU-A2), referred to as the unit. The unit is defined on drawing 1356006.

  19. Certification and verification for Northrup model NSC-01-0732 fresnel lens concentrating solar collector

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Structural analysis and certification of the collector system is presented. System verification against the interim performance criteria is presented and indicated by matrices. The verification discussion, analysis, and test results are also given.

  20. Verification bias an underrecognized source of error in assessing the efficacy of medical imaging.

    PubMed

    Petscavage, Jonelle M; Richardson, Michael L; Carr, Robert B

    2011-03-01

    Diagnostic tests are validated by comparison against a "gold standard" reference test. When the reference test is invasive or expensive, it may not be applied to all patients. This can result in biased estimates of the sensitivity and specificity of the diagnostic test. This type of bias is called "verification bias," and is a common problem in imaging research. The purpose of our study is to estimate the prevalence of verification bias in the recent radiology literature. All issues of the American Journal of Roentgenology (AJR), Academic Radiology, Radiology, and European Journal of Radiology (EJR) between November 2006 and October 2009 were reviewed for original research articles mentioning sensitivity or specificity as endpoints. Articles were read to determine whether verification bias was present and searched for author recognition of verification bias in the design. During 3 years, these journals published 2969 original research articles. A total of 776 articles used sensitivity or specificity as an outcome. Of these, 211 articles demonstrated potential verification bias. The fraction of articles with potential bias was respectively 36.4%, 23.4%, 29.5%, and 13.4% for AJR, Academic Radiology, Radiology, and EJR. The total fraction of papers with potential bias in which the authors acknowledged this bias was 17.1%. Verification bias is a common and frequently unacknowledged source of error in efficacy studies of diagnostic imaging. Bias can often be eliminated by proper study design. When it cannot be eliminated, it should be estimated and acknowledged. Published by Elsevier Inc.