Sample records for safety waste disposal

  1. Safety aspects of nuclear waste disposal in space

    NASA Technical Reports Server (NTRS)

    Rice, E. E.; Edgecombe, D. S.; Compton, P. R.

    1981-01-01

    Safety issues involved in the disposal of nuclear wastes in space as a complement to mined geologic repositories are examined as part of an assessment of the feasibility of nuclear waste disposal in space. General safety guidelines for space disposal developed in the areas of radiation exposure and shielding, containment, accident environments, criticality, post-accident recovery, monitoring systems and isolation are presented for a nuclear waste disposal in space mission employing conventional space technology such as the Space Shuttle. The current reference concept under consideration by NASA and DOE is then examined in detail, with attention given to the waste source and mix, the waste form, waste processing and payload fabrication, shipping casks and ground transport vehicles, launch site operations and facilities, Shuttle-derived launch vehicle, orbit transfer vehicle, orbital operations and space destination, and the system safety aspects of the concept are discussed for each component. It is pointed out that future work remains in the development of an improved basis for the safety guidelines and the determination of the possible benefits and costs of the space disposal option for nuclear wastes.

  2. Development and application of a safety assessment methodology for waste disposals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Little, R.H.; Torres, C.; Schaller, K.H.

    1996-12-31

    As part of a European Commission funded research programme, QuantiSci (formerly the Environmental Division of Intera Information Technologies) and Instituto de Medio Ambiente of the Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (IMA/CIEMAT) have developed and applied a comprehensive, yet practicable, assessment methodology for post-disposal safety assessment of land-based disposal facilities. This Safety Assessment Comparison (SACO) Methodology employs a systematic approach to the collection, evaluation and use of waste and disposal system data. It can be used to assess engineered barrier performance, the attenuating properties of host geological formations, and the long term impacts of a facility on the environmentmore » and human health, as well as allowing the comparison of different disposal options for radioactive, mixed and non-radioactive wastes. This paper describes the development of the methodology and illustrates its use.« less

  3. Scenario for the safety assessment of near surface radioactive waste disposal in Serpong, Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purnomo, A.S.

    2007-07-01

    Near surface disposal has been practiced for some decades, with a wide variation in sites, types and amounts of wastes, and facility designs employed. Experience has shown that the effective and safe isolation of waste depends on the performance of the overall disposal system, which is formed by three major components or barriers: the site, the disposal facility and the waste form. The objective of radioactive waste disposal is to isolate waste so that it does not result in undue radiation exposure to humans and the environment. In near surface disposal, the disposal facility is located on or below themore » ground surface, where the protective covering is generally a few meters thick. These facilities are intended to contain low and intermediate level waste without appreciable quantities of long-lived radionuclides. Safety is the most important aspect in the applications of nuclear technology and the implementation of nuclear activities in Indonesia. This aspect is reflected by a statement in the Act Number 10 Year 1997, that 'The Development and use of nuclear energy in Indonesia has to be carried out in such away to assure the safety and health of workers, the public and the protection of the environment'. Serpong are one of the sites for a nuclear research center facility, it is the biggest one in Indonesia. In the future will be developed the first near surface disposal on site of the nuclear research facility in Serpong. The paper will mainly focus on scenario of the safety assessments of near-surface radioactive waste disposal is often important to evaluate the performance of the disposal system (disposal facility, geosphere and biosphere). It will give detail, how at the present and future conditions, including anticipated and less probable events in order to prevent radionuclide migration to human and environment. Refer to the geology characteristic and ground water table is enable to place something Near Surface Disposal on unsaturated zone in Serpong

  4. Lessons Learned from Radioactive Waste Storage and Disposal Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esh, David W.; Bradford, Anna H.

    2008-01-15

    The safety of radioactive waste disposal facilities and the decommissioning of complex sites may be predicated on the performance of engineered and natural barriers. For assessing the safety of a waste disposal facility or a decommissioned site, a performance assessment or similar analysis is often completed. The analysis is typically based on a site conceptual model that is developed from site characterization information, observations, and, in many cases, expert judgment. Because waste disposal facilities are sited, constructed, monitored, and maintained, a fair amount of data has been generated at a variety of sites in a variety of natural systems. Thismore » paper provides select examples of lessons learned from the observations developed from the monitoring of various radioactive waste facilities (storage and disposal), and discusses the implications for modeling of future waste disposal facilities that are yet to be constructed or for the development of dose assessments for the release of decommissioning sites. Monitoring has been and continues to be performed at a variety of different facilities for the disposal of radioactive waste. These include facilities for the disposal of commercial low-level waste (LLW), reprocessing wastes, and uranium mill tailings. Many of the lessons learned and problems encountered provide a unique opportunity to improve future designs of waste disposal facilities, to improve dose modeling for decommissioning sites, and to be proactive in identifying future problems. Typically, an initial conceptual model was developed and the siting and design of the disposal facility was based on the conceptual model. After facility construction and operation, monitoring data was collected and evaluated. In many cases the monitoring data did not comport with the original site conceptual model, leading to additional investigation and changes to the site conceptual model and modifications to the design of the facility. The following cases are

  5. Safety in the Chemical Laboratory: Contracts to Dispose of Laboratory Waste.

    ERIC Educational Resources Information Center

    Fischer, Kenneth E.

    1985-01-01

    Presents a sample contract for disposing of hazardous wastes in an environmentally sound, timely manner in accordance with all federal, state, and local requirements. Addresses situations where hazardous waste must be disposed of outside the laboratory and where alternate disposal methods are not feasible. (JN)

  6. The safety of non-incineration waste disposal devices in four hospitals of Tehran.

    PubMed

    Farshad, Aliasghar; Gholami, Hamid; Farzadkia, Mahdi; Mirkazemi, Roksana; Kermani, Majid

    2014-01-01

    The safe management of hospital waste is a challenge in many developing countries. The aim of this study was to compare volatile organic compounds (VOCs) emissions and the microbial disinfectant safety in non-incineration waste disposal devices. VOC emissions and microbial infections were measured in four non-incineration waste disposal devices including: autoclave with and without a shredder, dry heat system, and hydroclave. Using NIOSH and US EPA-TO14 guidelines, the concentration and potential risk of VOCs in emitted gases from four devices were assessed. ProSpore2 biological indicators were used to assess the microbial analysis of waste residue. There was a significant difference in the type and concentration of VOCs and microbial infection of residues in the four devices. Emissions from the autoclave with a shredder had the highest concentration of benzene, ethyl benzene, xylene, and BTEX, and emissions from the hydroclave had the highest concentration of toluene. The highest level of microbial infection was observed in the residues of the autoclave without a shredder. There is an increased need for proper regulation and control of non-incinerator devices and for monitoring and proper handling of these devices in developing countries.

  7. Granite disposal of U.S. high-level radioactive waste.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeze, Geoffrey A.; Mariner, Paul E.; Lee, Joon H.

    This report evaluates the feasibility of disposing U.S. high-level radioactive waste in granite several hundred meters below the surface of the earth. The U.S. has many granite formations with positive attributes for permanent disposal. Similar crystalline formations have been extensively studied by international programs, two of which, in Sweden and Finland, are the host rocks of submitted or imminent repository license applications. This report is enabled by the advanced work of the international community to establish functional and operational requirements for disposal of a range of waste forms in granite media. In this report we develop scoping performance analyses, basedmore » on the applicable features, events, and processes (FEPs) identified by international investigators, to support generic conclusions regarding post-closure safety. Unlike the safety analyses for disposal in salt, shale/clay, or deep boreholes, the safety analysis for a mined granite repository depends largely on waste package preservation. In crystalline rock, waste packages are preserved by the high mechanical stability of the excavations, the diffusive barrier of the buffer, and favorable chemical conditions. The buffer is preserved by low groundwater fluxes, favorable chemical conditions, backfill, and the rigid confines of the host rock. An added advantage of a mined granite repository is that waste packages would be fairly easy to retrieve, should retrievability be an important objective. The results of the safety analyses performed in this study are consistent with the results of comprehensive safety assessments performed for sites in Sweden, Finland, and Canada. They indicate that a granite repository would satisfy established safety criteria and suggest that a small number of FEPs would largely control the release and transport of radionuclides. In the event the U.S. decides to pursue a potential repository in granite, a detailed evaluation of these FEPs would be needed to

  8. The safety of non-incineration waste disposal devices in four hospitals of Tehran

    PubMed Central

    Farshad, Aliasghar; Gholami, Hamid; Farzadkia, Mahdi; Mirkazemi, Roksana; Kermani, Majid

    2014-01-01

    Background: The safe management of hospital waste is a challenge in many developing countries. Objectives: The aim of this study was to compare volatile organic compounds (VOCs) emissions and the microbial disinfectant safety in non-incineration waste disposal devices. Methods: VOC emissions and microbial infections were measured in four non-incineration waste disposal devices including: autoclave with and without a shredder, dry heat system, and hydroclave. Using NIOSH and US EPA-TO14 guidelines, the concentration and potential risk of VOCs in emitted gases from four devices were assessed. ProSpore2 biological indicators were used to assess the microbial analysis of waste residue. Results: There was a significant difference in the type and concentration of VOCs and microbial infection of residues in the four devices. Emissions from the autoclave with a shredder had the highest concentration of benzene, ethyl benzene, xylene, and BTEX, and emissions from the hydroclave had the highest concentration of toluene. The highest level of microbial infection was observed in the residues of the autoclave without a shredder. Conclusions: There is an increased need for proper regulation and control of non-incinerator devices and for monitoring and proper handling of these devices in developing countries. PMID:25000113

  9. Waste Disposal in the Laboratory: Teaching Responsibility and Safety.

    ERIC Educational Resources Information Center

    Allen, Ralph O.

    1983-01-01

    Discusses the generation, collection, and disposal of hazardous and other wastes in the chemistry laboratory. Offers suggestions related to these three areas to provide a safe teaching environment, including minimizing amounts of reagents used (and potentially wasted) by scaling down experiments. (JN)

  10. Summary of the study of disposal of nuclear waste into space

    NASA Technical Reports Server (NTRS)

    Rom, F. E.

    1973-01-01

    NASA, at the request of the AEC, is conducting a preliminary study to determine the feasibility of disposing of nuclear waste material into space. The study has indicated that the Space Shuttle together with expendable and nonexpendable orbital stages such as the Space Tug or Centaur can safety dispose of waste material by ejecting it from the solar system. The safety problems associated with all phases of launching and operation (normal, emergency and accident) of such a system are being examined. From the preliminary study it appears that solutions can be found that should make the risks acceptable when compared to the benefits to be obtained from the disposal of the nuclear waste.

  11. U.S. Space Station Freedom waste fluid disposal system with consideration of hydrazine waste gas injection thrusters

    NASA Technical Reports Server (NTRS)

    Winters, Brian A.

    1990-01-01

    The results are reported of a study of various methods for propulsively disposing of waste gases. The options considered include hydrazine waste gas injection, resistojets, and eutectic salt phase change heat beds. An overview is given of the waste gas disposal system and how hydrozine waste gas injector thruster is implemented within it. Thruster performance for various gases are given and comparisons with currently available thruster models are made. The impact of disposal on station propellant requirements and electrical power usage are addressed. Contamination effects, reliability and maintainability assessments, safety issues, and operational scenarios of the waste gas thruster and disposal system are considered.

  12. The University of Georgia Chemical Waste Disposal Program.

    ERIC Educational Resources Information Center

    Dreesen, David W.; Pohlman, Thomas J.

    1980-01-01

    Describes a university-wide program directed at reducing the improper storage and disposal of toxic chemical wastes from laboratories. Specific information is included on the implementation of a waste pick-up service, safety equipment, materials and methods for packaging, and costs of the program. (CS)

  13. Analysis of alternatives for immobilized low activity waste disposal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burbank, D.A.

    This report presents a study of alternative disposal system architectures and implementation strategies to provide onsite near-surface disposal capacity to receive the immobilized low-activity waste produced by the private vendors. The analysis shows that a flexible unit strategy that provides a suite of design solutions tailored to the characteristics of the immobilized low-activity waste will provide a disposal system that best meets the program goals of reducing the environmental, health, and safety impacts; meeting the schedule milestones; and minimizing the life-cycle cost of the program.

  14. The disposal of nuclear waste in space

    NASA Technical Reports Server (NTRS)

    Burns, R. E.

    1978-01-01

    The important problem of disposal of nuclear waste in space is addressed. A prior study proposed carrying only actinide wastes to space, but the present study assumes that all actinides and all fission products are to be carried to space. It is shown that nuclear waste in the calcine (oxide) form can be packaged in a container designed to provide thermal control, radiation shielding, mechanical containment, and an abort reentry thermal protection system. This package can be transported to orbit via the Space Shuttle. A second Space Shuttle delivers an oxygen-hydrogen orbit transfer vehicle to a rendezvous compatible orbit and the mated OTV and waste package are sent to the preferred destination. Preferred locations are either a lunar crater or a solar orbit. Shuttle traffic densities (which vary in time) are given and the safety of space disposal of wastes discussed.

  15. [Hospital and environment: waste disposal].

    PubMed

    Faure, P; Rizzo Padoin, N

    2003-11-01

    Like all production units, hospitals produce waste and are responsible for waste disposal. Hospital waste is particular due to the environmental risks involved, particularly concerning infection, effluents, and radionucleide contamination. Management plans are required to meet environmental, hygiene and regulatory obligations and to define reference waste products. The first step is to optimize waste sorting, with proper definition of the different categories, adequate containers (collection stations, color-coded sacks), waste circuits, intermediate then central storage areas, and finally transfer to an incineration unit. Volume and delay to elimination must be carefully controlled. Elimination of drugs and related products is a second aspect: packaging, perfusion pouches, tubing, radiopharmaceutic agents. These later products are managed with non-sealed sources whose elimination depends on the radioactive period, requiring selective sorting and specific holding areas while radioactivity declines. Elimination of urine and excreta containing anti-cancer drugs or intravesical drugs, particularly coming from protected rooms using radioactive iodine is another aspect. There is also a marginal flow of unused or expired drugs. For a health establishment, elimination of drugs is not included as part of waste disposal. This requires establishing a specific circuit with selective sorting and carefully applied safety regulations. Market orders for collecting and handling hospital wastes must be implemented in compliance with the rules of Public Health Tenders.

  16. Operational Strategies for Low-Level Radioactive Waste Disposal Site in Egypt - 13513

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed, Yasser T.

    The ultimate aims of treatment and conditioning is to prepare waste for disposal by ensuring that the waste will meet the waste acceptance criteria of a disposal facility. Hence the purpose of low-level waste disposal is to isolate the waste from both people and the environment. The radioactive particles in low-level waste emit the same types of radiation that everyone receives from nature. Most low-level waste fades away to natural background levels of radioactivity in months or years. Virtually all of it diminishes to natural levels in less than 300 years. In Egypt, The Hot Laboratories and Waste Management Centermore » has been established since 1983, as a waste management facility for LLW and ILW and the disposal site licensed for preoperational in 2005. The site accepts the low level waste generated on site and off site and unwanted radioactive sealed sources with half-life less than 30 years for disposal and all types of sources for interim storage prior to the final disposal. Operational requirements at the low-level (LLRW) disposal site are listed in the National Center for Nuclear Safety and Radiation Control NCNSRC guidelines. Additional procedures are listed in the Low-Level Radioactive Waste Disposal Facility Standards Manual. The following describes the current operations at the LLRW disposal site. (authors)« less

  17. Analysis of nuclear waste disposal in space, phase 3. Volume 2: Technical report

    NASA Technical Reports Server (NTRS)

    Rice, E. E.; Miller, N. E.; Yates, K. R.; Martin, W. E.; Friedlander, A. L.

    1980-01-01

    The options, reference definitions and/or requirements currently envisioned for the total nuclear waste disposal in space mission are summarized. The waste form evaluation and selection process is documented along with the physical characteristics of the iron nickel-base cermet matrix chosen for disposal of commercial and defense wastes. Safety aspects of radioisotope thermal generators, the general purpose heat source, and the Lewis Research Center concept for space disposal are assessed as well as the on-pad catastrophic accident environments for the uprated space shuttle and the heavy lift launch vehicle. The radionuclides that contribute most to long-term risk of terrestrial disposal were determined and the effects of resuspension of fallout particles from an accidental release of waste material were studied. Health effects are considered. Payload breakup and rescue technology are discussed as well as expected requirements for licensing, supporting research and technology, and safety testing.

  18. Analysis of nuclear waste disposal in space, phase 3. Volume 2: Technical report

    NASA Astrophysics Data System (ADS)

    Rice, E. E.; Miller, N. E.; Yates, K. R.; Martin, W. E.; Friedlander, A. L.

    1980-03-01

    The options, reference definitions and/or requirements currently envisioned for the total nuclear waste disposal in space mission are summarized. The waste form evaluation and selection process is documented along with the physical characteristics of the iron nickel-base cermet matrix chosen for disposal of commercial and defense wastes. Safety aspects of radioisotope thermal generators, the general purpose heat source, and the Lewis Research Center concept for space disposal are assessed as well as the on-pad catastrophic accident environments for the uprated space shuttle and the heavy lift launch vehicle. The radionuclides that contribute most to long-term risk of terrestrial disposal were determined and the effects of resuspension of fallout particles from an accidental release of waste material were studied. Health effects are considered. Payload breakup and rescue technology are discussed as well as expected requirements for licensing, supporting research and technology, and safety testing.

  19. Space disposal of nuclear wastes

    NASA Technical Reports Server (NTRS)

    Priest, C. C.; Nixon, R. F.; Rice, E. E.

    1980-01-01

    The DOE has been studying several options for nuclear waste disposal, among them space disposal, which NASA has been assessing. Attention is given to space disposal destinations noting that a circular heliocentric orbit about halfway between Earth and Venus is the reference option in space disposal studies. Discussion also covers the waste form, showing that parameters to be considered include high waste loading, high thermal conductivity, thermochemical stability, resistance to leaching, fabrication, resistance to oxidation and to thermal shock. Finally, the Space Shuttle nuclear waste disposal mission profile is presented.

  20. Discussions about safety criteria and guidelines for radioactive waste management.

    PubMed

    Yamamoto, Masafumi

    2011-07-01

    In Japan, the clearance levels for uranium-bearing waste have been established by the Nuclear Safety Commission (NSC). The criteria for uranium-bearing waste disposal are also necessary; however, the NSC has not concluded the discussion on this subject. Meanwhile, the General Administrative Group of the Radiation Council has concluded the revision of its former recommendation 'Regulatory exemption dose for radioactive solid waste disposal', the dose criteria after the institutional control period for a repository. The Standardization Committee on Radiation Protection in the Japan Health Physics Society (The Committee) also has developed the relevant safety criteria and guidelines for existing exposure situations, which are potentially applicable to uranium-bearing waste disposal. A new working group established by The Committee was initially aimed at developing criteria and guidelines specifically for uranium-bearing waste disposal; however, the aim has been shifted to broader criteria applicable to any radioactive wastes.

  1. U.S. Department of Energy Implementation of Chemical Evaluation Requirements for Transuranic Waste Disposal at the Waste Isolation Pilot Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Alison; Barkley, Michelle; Poppiti, James

    This report summarizes new controls designed to ensure that transuranic waste disposed at the Waste Isolation Pilot Plant (WIPP) does not contain incompatible chemicals. These new controls include a Chemical Compatibility Evaluation, an evaluation of oxidizing chemicals, and a waste container assessment to ensure that waste is safe for disposal. These controls are included in the Chapter 18 of the Documented Safety Analysis for WIPP (1).

  2. Nuclear criticality safety assessment of the low level radioactive waste disposal facility trenches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahook, S.D.

    1994-04-01

    Results of the analyses performed to evaluate the possibility of nuclear criticality in the Low Level Radioactive Waste Disposal Facility (LLRWDF) trenches are documented in this report. The studies presented in this document are limited to assessment of the possibility of criticality due to existing conditions in the LLRWDF. This document does not propose nor set limits for enriched uranium (EU) burial in the LLRWDF and is not a nuclear criticality safety evaluation nor analysis. The calculations presented in the report are Level 2 calculations as defined by the E7 Procedure 2.31, Engineering Calculations.

  3. MANAGING UNCERTAINTIES ASSOCIATED WITH RADIOACTIVE WASTE DISPOSAL: TASK GROUP 4 OF THE IAEA PRISM PROJECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seitz, R.

    2011-03-02

    It is widely recognized that the results of safety assessment calculations provide an important contribution to the safety arguments for a disposal facility, but cannot in themselves adequately demonstrate the safety of the disposal system. The safety assessment and a broader range of arguments and activities need to be considered holistically to justify radioactive waste disposal at any particular site. Many programs are therefore moving towards the production of what has become known as a Safety Case, which includes all of the different activities that are conducted to demonstrate the safety of a disposal concept. Recognizing the growing interest inmore » the concept of a Safety Case, the International Atomic Energy Agency (IAEA) is undertaking an intercomparison and harmonization project called PRISM (Practical Illustration and use of the Safety Case Concept in the Management of Near-surface Disposal). The PRISM project is organized into four Task Groups that address key aspects of the Safety Case concept: Task Group 1 - Understanding the Safety Case; Task Group 2 - Disposal facility design; Task Group 3 - Managing waste acceptance; and Task Group 4 - Managing uncertainty. This paper addresses the work of Task Group 4, which is investigating approaches for managing the uncertainties associated with near-surface disposal of radioactive waste and their consideration in the context of the Safety Case. Emphasis is placed on identifying a wide variety of approaches that can and have been used to manage different types of uncertainties, especially non-quantitative approaches that have not received as much attention in previous IAEA projects. This paper includes discussions of the current results of work on the task on managing uncertainty, including: the different circumstances being considered, the sources/types of uncertainties being addressed and some initial proposals for approaches that can be used to manage different types of uncertainties.« less

  4. 10 CFR 850.32 - Waste disposal.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Waste disposal. 850.32 Section 850.32 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.32 Waste disposal...-contaminated equipment and other items that are disposed of as waste, through the application of waste...

  5. Deep Borehole Disposal Safety Analysis.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeze, Geoffrey A.; Stein, Emily; Price, Laura L.

    This report presents a preliminary safety analysis for the deep borehole disposal (DBD) concept, using a safety case framework. A safety case is an integrated collection of qualitative and quantitative arguments, evidence, and analyses that substantiate the safety, and the level of confidence in the safety, of a geologic repository. This safety case framework for DBD follows the outline of the elements of a safety case, and identifies the types of information that will be required to satisfy these elements. At this very preliminary phase of development, the DBD safety case focuses on the generic feasibility of the DBD concept.more » It is based on potential system designs, waste forms, engineering, and geologic conditions; however, no specific site or regulatory framework exists. It will progress to a site-specific safety case as the DBD concept advances into a site-specific phase, progressing through consent-based site selection and site investigation and characterization.« less

  6. International Approaches for Nuclear Waste Disposal in Geological Formations: Report on Fifth Worldwide Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faybishenko, Boris; Birkholzer, Jens; Persoff, Peter

    2016-09-01

    The goal of the Fifth Worldwide Review is to document evolution in the state-of-the-art of approaches for nuclear waste disposal in geological formations since the Fourth Worldwide Review that was released in 2006. The last ten years since the previous Worldwide Review has seen major developments in a number of nations throughout the world pursuing geological disposal programs, both in preparing and reviewing safety cases for the operational and long-term safety of proposed and operating repositories. The countries that are approaching implementation of geological disposal will increasingly focus on the feasibility of safely constructing and operating their repositories in short-more » and long terms on the basis existing regulations. The WWR-5 will also address a number of specific technical issues in safety case development along with the interplay among stakeholder concerns, technical feasibility, engineering design issues, and operational and post-closure safety. Preparation and publication of the Fifth Worldwide Review on nuclear waste disposal facilitates assessing the lessons learned and developing future cooperation between the countries. The Report provides scientific and technical experiences on preparing for and developing scientific and technical bases for nuclear waste disposal in deep geologic repositories in terms of requirements, societal expectations and the adequacy of cases for long-term repository safety. The Chapters include potential issues that may arise as repository programs mature, and identify techniques that demonstrate the safety cases and aid in promoting and gaining societal confidence. The report will also be used to exchange experience with other fields of industry and technology, in which concepts similar to the design and safety cases are applied, as well to facilitate the public perception and understanding of the safety of the disposal approaches relative to risks that may increase over long times frames in the absence of a

  7. 36 CFR 13.1008 - Solid waste disposal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal. 13.1008... § 13.1008 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be...

  8. 36 CFR 13.1604 - Solid waste disposal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal. 13.1604... Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located within one...

  9. 36 CFR 13.1118 - Solid waste disposal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1118... Provisions § 13.1118 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may...

  10. 36 CFR 13.1604 - Solid waste disposal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1604... Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located within one...

  11. 36 CFR 13.1912 - Solid waste disposal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal. 13.1912....1912 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located...

  12. 36 CFR 13.1008 - Solid waste disposal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1008... § 13.1008 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be...

  13. 36 CFR 13.1118 - Solid waste disposal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal. 13.1118... Provisions § 13.1118 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may...

  14. 'Geo'chemical research: a key building block for nuclear waste disposal safety cases.

    PubMed

    Altmann, Scott

    2008-12-12

    Disposal of high level radioactive waste in deep underground repositories has been chosen as solution by several countries. Because of the special status this type waste has in the public mind, national implementation programs typically mobilize massive R&D efforts, last decades and are subject to extremely detailed and critical social-political scrutiny. The culminating argument of each program is a 'Safety Case' for a specific disposal concept containing, among other elements, the results of performance assessment simulations whose object is to model the release of radionuclides to the biosphere. Public and political confidence in performance assessment results (which generally show that radionuclide release will always be at acceptable levels) is based on their confidence in the quality of the scientific understanding in the processes included in the performance assessment model, in particular those governing radionuclide speciation and mass transport in the geological host formation. Geochemistry constitutes a core area of research in this regard. Clay-mineral rich formations are the subjects of advanced radwaste programs in several countries (France, Belgium, Switzerland...), principally because of their very low permeabilities and demonstrated capacities to retard by sorption most radionuclides. Among the key processes which must be represented in performance assessment models are (i) radioelement speciation (redox state, speciation, reactions determining radionuclide solid-solution partitioning) and (ii) diffusion-driven transport. The safety case must therefore demonstrate a detailed understanding of the physical-chemical phenomena governing the effects of these two aspects, for each radionuclide, within the geological barrier system. A wide range of coordinated (and internationally collaborated) research has been, and is being, carried out in order to gain the detailed scientific understanding needed for constructing those parts of the Safety Case

  15. [PRIORITY TECHNOLOGIES OF THE MEDICAL WASTE DISPOSAL SYSTEM].

    PubMed

    Samutin, N M; Butorina, N N; Starodubova, N Yu; Korneychuk, S S; Ustinov, A K

    2015-01-01

    The annual production of waste in health care institutions (HCI) tends to increase because of the growth of health care provision for population. Among the many criteria for selecting the optimal treatment technologies HCI is important to provide epidemiological and chemical safety of the final products. Environmentally friendly method of thermal disinfection of medical waste may be sterilizators of medical wastes intended for hospitals, medical centers, laboratories and other health care facilities that have small and medium volume of processing of all types of waste Class B and C. The most optimal method of centralized disposal of medical waste is a thermal processing method of the collected material.

  16. ESTIMATION OF EXPOSURE DOSES FOR THE SAFE MANAGEMENT OF NORM WASTE DISPOSAL.

    PubMed

    Jeong, Jongtae; Ko, Nak Yul; Cho, Dong-Keun; Baik, Min Hoon; Yoon, Ki-Hoon

    2018-03-16

    Naturally occurring radioactive materials (NORM) wastes with different radiological characteristics are generated in several industries. The appropriate options for NORM waste management including disposal options should be discussed and established based on the act and regulation guidelines. Several studies calculated the exposure dose and mass of NORM waste to be disposed in landfill site by considering the activity concentration level and exposure dose. In 2012, the Korean government promulgated an act on the safety control of NORM around living environments to protect human health and the environment. For the successful implementation of this act, we suggest a reference design for a landfill for the disposal of NORM waste. Based on this reference landfill, we estimate the maximum exposure doses and the relative impact of each pathway to exposure dose for three scenarios: a reference scenario, an ingestion pathway exclusion scenario, and a low leach rate scenario. Also, we estimate the possible quantity of NORM waste disposal into a landfill as a function of the activity concentration level of U series, Th series and 40K and two kinds of exposure dose levels, 1 and 0.3 mSv/y. The results of this study can be used to support the establishment of technical bases of the management strategy for the safe disposal of NORM waste.

  17. Preliminary risk assessment for nuclear waste disposal in space, volume 2

    NASA Technical Reports Server (NTRS)

    Rice, E. E.; Denning, R. S.; Friedlander, A. L.

    1982-01-01

    Safety guidelines are presented. Waste form, waste processing and payload fabrication facilities, shipping casks and ground transport vehicles, payload primary container/core, radiation shield, reentry systems, launch site facilities, uprooted space shuttle launch vehicle, Earth packing orbits, orbit transfer systems, and space destination are discussed. Disposed concepts and risks are then discussed.

  18. Nuclear waste disposal in space

    NASA Technical Reports Server (NTRS)

    Burns, R. E.; Causey, W. E.; Galloway, W. E.; Nelson, R. W.

    1978-01-01

    Work on nuclear waste disposal in space conducted by the George C. Marshall Space Flight Center, National Aeronautics and Space Administration, and contractors are reported. From the aggregate studies, it is concluded that space disposal of nuclear waste is technically feasible.

  19. Chemical Waste Management and Disposal.

    ERIC Educational Resources Information Center

    Armour, Margaret-Ann

    1988-01-01

    Describes simple, efficient techniques for treating hazardous chemicals so that nontoxic and nonhazardous residues are formed. Discusses general rules for management of waste chemicals from school laboratories and general techniques for the disposal of waste or surplus chemicals. Lists specific disposal reactions. (CW)

  20. Study of extraterrestrial disposal of radioactive wastes. Part 3: Preliminary feasibility screening study of space disposal of the actinide radioactive wastes with 1 percent and 0.1 percent fission product contamination

    NASA Technical Reports Server (NTRS)

    Hyland, R. E.; Wohl, M. L.; Finnegan, P. M.

    1973-01-01

    A preliminary study was conducted of the feasibility of space disposal of the actinide class of radioactive waste material. This waste was assumed to contain 1 and 0.1 percent residual fission products, since it may not be feasible to completely separate the actinides. The actinides are a small fraction of the total waste but they remain radioactive much longer than the other wastes and must be isolated from human encounter for tens of thousands of years. Results indicate that space disposal is promising but more study is required, particularly in the area of safety. The minimum cost of space transportation would increase the consumer electric utility bill by the order of 1 percent for earth escape and 3 percent for solar escape. The waste package in this phase of the study was designed for normal operating conditions only; the design of next phase of the study will include provisions for accident safety. The number of shuttle launches per year required to dispose of all U.S. generated actinide waste with 0.1 percent residual fission products varies between 3 and 15 in 1985 and between 25 and 110 by 2000. The lower values assume earth escape (solar orbit) and the higher values are for escape from the solar system.

  1. Systematic review of reusable versus disposable laparoscopic instruments: costs and safety.

    PubMed

    Siu, Joey; Hill, Andrew G; MacCormick, Andrew D

    2017-01-01

    The quality of instruments and surgical expertise in minimally invasive surgery has developed markedly in the last two decades. Attention is now being turned to ways to allow surgeons to adopt more cost-effective and environmental-friendly approaches. This review explores current evidence on the cost and environmental impact of reusable versus single-use instruments. In addition, we aim to compare their quality, functionality and associated clinical outcomes. The Medline and EMBASE databases were searched for relevant literature from January 2000 to May 2015. Subject headings were Equipment Reuse/, Disposable Equipment/, Cholecystectomy/, Laparoscopic/, Laparoscopy/, Surgical Instruments/, Medical Waste Disposal/, Waste Management/, Medical Waste/, Environmental Sustainability/ and Sterilization/. There are few objective comparative analyses between single-use versus reusable instruments. Current evidence suggests that limiting use of disposal instruments to necessity may hold both economical and environmental advantages. Theoretical advantages of single-use instruments in quality, safety, sterility, ease of use and importantly patient outcomes have rarely been examined. Cost-saving methods, environmental-friendly methods, global operative costs, hidden costs, sterilization methods and quality assurance systems vary greatly between studies making it difficult to gain an overview of the comparison between single-use and reusable instruments. Further examination of cost comparisons between disposable and reusable instruments is necessary while externalized environmental costs, instrument function and safety are also important to consider in future studies. © 2016 Royal Australasian College of Surgeons.

  2. Technical and design update in the AUBE French low-level radioactive waste disposal facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marque, Y.

    1989-01-01

    Long-term industrial management of radioactive waste in France is carried out by the Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA). ANDRA is in charge of design, siting, construction, and operation of disposal centers. The solution selected in France for the disposal of low- and medium-level, short-lived radioactive waste is near-surface disposal in the earth using the principle of multiple barriers, in accordance with national safety rules and regulations, and based on operating experience from the Centre de Stockage de la Manche. Since the center's start-up in 1969, 400,000 m{sup 3} of waste have been disposed of. The Frenchmore » national program for waste management is proceeding with the construction of a second near-surface disposal, which is expected to be operational in 1991. It is located in the department of AUBE (from which its name derives), 100 miles southeast of Paris. The paper describes the criteria for siting and design of the AUBE disposal facility, design of the AUBE facility disposal module, and comparison with North Carolina and Pennsylvania disposal facility designs.« less

  3. Ultimate disposal of scrubber wastes

    NASA Technical Reports Server (NTRS)

    Cohenour, B. C.

    1978-01-01

    Part of the initial concern with using the wet scrubbers on the hypergolic propellants was the subsequential disposal of the liquid wastes. To do this, consideration was given to all possible methods to reduce the volume of the wastes and stay within the guidelines established by the state and federal environmental protection agencies. One method that was proposed was the use of water hyacinths in disposal ponds to reduce the waste concentration in the effluent to less than EPA tolerable levels. This method was under consideration and even in use by private industry, municipal governments, and NASA for upgrading existing wastewater treatment facilities to a tertiary system. The use of water hyacinths in disposal ponds appears to be a very cost-effective method for reduction and disposal of hypergolic propellants.

  4. International Approaches for Nuclear Waste Disposal in Geological Formations: Geological Challenges in Radioactive Waste Isolation—Fifth Worldwide Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faybishenko, Boris; Birkholzer, Jens; Sassani, David

    The overall objective of the Fifth Worldwide Review (WWR-5) is to document the current state-of-the-art of major developments in a number of nations throughout the World pursuing geological disposal programs, and to summarize challenging problems and experience that have been obtained in siting, preparing and reviewing cases for the operational and long-term safety of proposed and operating nuclear waste repositories. The scope of the Review is to address current specific technical issues and challenges in safety case development along with the interplay of technical feasibility, siting, engineering design issues, and operational and post-closure safety. In particular, the chapters included inmore » the report present the following types of information: the current status of the deep geological repository programs for high level nuclear waste and low- and intermediate level nuclear waste in each country, concepts of siting and radioactive waste and spent nuclear fuel management in different countries (with the emphasis of nuclear waste disposal under different climatic conditions and different geological formations), progress in repository site selection and site characterization, technology development, buffer/backfill materials studies and testing, support activities, programs, and projects, international cooperation, and future plans, as well as regulatory issues and transboundary problems.« less

  5. Waste disposal package

    DOEpatents

    Smith, M.J.

    1985-06-19

    This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

  6. Summary of the study of disposal of nuclear waste into space

    NASA Technical Reports Server (NTRS)

    Rom, F. E.

    1973-01-01

    The space shuttle together with expendable and nonexpendable orbital stages such as the space tug or Centaur can safely dispose of waste material by ejecting it from the solar system. The safety problems associated with all phases of launching and operation (normal, emergency, and accident) of such a system are being examined. It appears that solutions can be found that should make the risks acceptable when compared to the benefits to be obtained from the disposal of the nuclear waste. The techniques proposed to make such a system acceptable need to be carefully verified by further study and experiment.

  7. Effects from past solid waste disposal practices.

    PubMed Central

    Johnson, L J; Daniel, D E; Abeele, W V; Ledbetter, J O; Hansen, W R

    1978-01-01

    This paper reviews documented environmental effects experience from the disposal of solid waste materials in the U.S. Selected case histories are discussed that illustrate waste migration and its actual or potential effects on human or environmental health. Principal conclusions resulting from this review were: solid waste materials do migrate beyond the geometric confines of the initial placement location; environmental effects have been experienced from disposal of municipal, agricultural, and toxic chemical wastes; and utilization of presently known science and engineering principles in sitting and operating solid waste disposal facilities would make a significant improvement in the containment capability of shallow land disposal facilities. PMID:367769

  8. 43 CFR 3596.2 - Disposal of waste.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Disposal of waste. 3596.2 Section 3596.2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT... OPERATIONS Waste From Mining or Milling § 3596.2 Disposal of waste. The operator/lessee shall dispose of all...

  9. 43 CFR 3596.2 - Disposal of waste.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Disposal of waste. 3596.2 Section 3596.2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT... OPERATIONS Waste From Mining or Milling § 3596.2 Disposal of waste. The operator/lessee shall dispose of all...

  10. Concept for Underground Disposal of Nuclear Waste

    NASA Technical Reports Server (NTRS)

    Bowyer, J. M.

    1987-01-01

    Packaged waste placed in empty oil-shale mines. Concept for disposal of nuclear waste economically synergistic with earlier proposal concerning backfilling of oil-shale mines. New disposal concept superior to earlier schemes for disposal in hard-rock and salt mines because less uncertainty about ability of oil-shale mine to contain waste safely for millenium.

  11. Pathways for Disposal of Commercially-Generated Tritiated Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halverson, Nancy V.

    From a waste disposal standpoint, tritium is a major challenge. Because it behaves like hydrogen, tritium exchanges readily with hydrogen in the ground water and moves easily through the ground. Land disposal sites must control the tritium activity and mobility of incoming wastes to protect human health and the environment. Consequently, disposal of tritiated low-level wastes is highly regulated and disposal options are limited. The United States has had eight operating commercial facilities licensed for low-level radioactive waste disposal, only four of which are currently receiving waste. Each of these is licensed and regulated by its state. Only two ofmore » these sites accept waste from states outside of their specified regional compact. For waste streams that cannot be disposed directly at one of the four active commercial low-level waste disposal facilities, processing facilities offer various forms of tritiated low-level waste processing and treatment, and then transport and dispose of the residuals at a disposal facility. These processing facilities may remove and recycle tritium, reduce waste volume, solidify liquid waste, remove hazardous constituents, or perform a number of additional treatments. Waste brokers also offer many low-level and mixed waste management and transportation services. These services can be especially helpful for small-quantity tritiated-waste generators, such as universities, research institutions, medical facilities, and some industries. The information contained in this report covers general capabilities and requirements for the various disposal/processing facilities and brokerage companies, but is not considered exhaustive. Typically, each facility has extensive waste acceptance criteria and will require a generator to thoroughly characterize their wastes. Then a contractual agreement between the waste generator and the disposal/processing/broker entity must be in place before waste is accepted. Costs for tritiated waste

  12. 10 CFR 20.2005 - Disposal of specific wastes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Disposal of specific wastes. 20.2005 Section 20.2005 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Waste Disposal § 20.2005 Disposal of specific wastes. (a) A licensee may dispose of the following licensed material as if it were...

  13. 10 CFR 20.2005 - Disposal of specific wastes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Disposal of specific wastes. 20.2005 Section 20.2005 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Waste Disposal § 20.2005 Disposal of specific wastes. (a) A licensee may dispose of the following licensed material as if it were...

  14. Feasibility of space disposal of radioactive nuclear waste. 2: Technical summary

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The feasibility of transporting radioactive waste produced in the process of generating electricity in nuclear powerplants into space for ultimate disposal was investigated at the request of the AEC as a NASA in-house effort. The investigation is part of a broad AEC study of methods for long-term storage or disposal of radioactive waste. The results of the study indicate that transporting specific radioactive wastes, particularly the actinides with very long half-lives, into space using the space shuttle/tug as the launch system, appears feasible from the engineering and safety viewpoints. The space transportation costs for ejecting the actinides out of the solar system would represent less than a 5-percent increase in the average consumer's electric bill.

  15. Considerations Related To Human Intrusion In The Context Of Disposal Of Radioactive Waste-The IAEA HIDRA Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seitz, Roger; Kumano, Yumiko; Bailey, Lucy

    2014-01-09

    The principal approaches for management of radioactive waste are commonly termed ‘delay and decay’, ‘concentrate and contain’ and ‘dilute and disperse’. Containing the waste and isolating it from the human environment, by burying it, is considered to increase safety and is generally accepted as the preferred approach for managing radioactive waste. However, this approach results in concentrated sources of radioactive waste contained in one location, which can pose hazards should the facility be disrupted by human action in the future. The International Commission on Radiological Protection (ICRP), International Atomic Energy Agency (IAEA), and Organization for Economic Cooperation and Development/Nuclear Energymore » Agency (OECD/NEA) agree that some form of inadvertent human intrusion (HI) needs to be considered to address the potential consequences in the case of loss of institutional control and loss of memory of the disposal facility. Requirements are reflected in national regulations governing radioactive waste disposal. However, in practice, these requirements are often different from country to country, which is then reflected in the actual implementation of HI as part of a safety case. The IAEA project on HI in the context of Disposal of RadioActive waste (HIDRA) has been started to identify potential areas for improved consistency in consideration of HI. The expected outcome is to provide recommendations on how to address human actions in the safety case in the future, and how the safety case may be used to demonstrate robustness and optimize siting, design and waste acceptance criteria within the context of a safety case.« less

  16. Radioactive waste disposal in the marine environment

    NASA Astrophysics Data System (ADS)

    Anderson, D. R.

    In order to find the optimal solution to waste disposal problems, it is necessary to make comparisons between disposal media. It has become obvious to many within the scientific community that the single medium approach leads to over protection of one medium at the expense of the others. Cross media comparisons are being conducted in the Department of Energy ocean disposal programs for several radioactive wastes. Investigations in three areas address model development, comparisons of laboratory tests with field results and predictions, and research needs in marine disposal of radioactive waste. Tabulated data are included on composition of liquid high level waste and concentration of some natural radionuclides in the sea.

  17. Up from the beach: medical waste disposal rules!

    PubMed

    Francisco, C J

    1989-07-01

    The recent incidents of floating debris, garbage, wood, and medical waste on our nation's beaches have focused public attention on waste management problems. The handling and disposal of solid waste remains a major unresolved national dilemma. Increased use of disposables by all consumers, including the medical profession, and the increasing costs of solid waste disposal options have aggravated the solid waste situation. Medical waste found on beaches in the summer of 1988 could have been generated by a number of sources, including illegal dumping; sewer overflow; storm water runoff; illegal drug users; and inadequate handling of solid waste at landfills and coastal transfer facilities, which receive waste from doctors' offices, laboratories, and even legitimate home users of syringes. As officials from New Jersey have determined, the beach garbage is no mystery. It's coming from you and me. In response to the perceived medical waste disposal problem, various state and federal agencies have adopted rules to regulate and control the disposal of medical waste. This article outlines the more significant rules that apply to medical waste.

  18. [Investigation of actual condition of management and disposal of medical radioactive waste in Korea].

    PubMed

    Watanabe, Hiroshi; Nagaoka, Hiroaki; Yamaguchi, Ichiro; Horiuchi, Shoji; Imoto, Atsushi

    2009-07-20

    In order to realize the rational management and disposal of radioactive waste like DIS or its clearance as performed in Europe, North America, and Japan, we investigated the situation of medical radioactive waste in Korea and its enforcement. We visited three major Korean facilities in May 2008 and confirmed details of the procedure being used by administering a questionnaire after our visit. From the results, we were able to verify that the governmental agency had established regulations for the clearance of radioactive waste as self-disposal based on the clearance level of IAEA in Korea and that the medical facilities performed suitable management and disposal of radioactive waste based on the regulations and superintendence of a radiation safety officer. The type of nuclear medicine was almost the same as that in Japan, and the half-life of all radiopharmaceuticals was 60 days or less. While performing regulatory adjustment concerning the rational management and disposal of radioactive waste in Korea for reference also in this country, it is important to provide an enforcement procedure with quality assurance in the regulations.

  19. The effect of food waste disposers on municipal waste and wastewater management.

    PubMed

    Marashlian, Natasha; El-Fadel, Mutasem

    2005-02-01

    This paper examines the feasibility of introducing food waste disposers as a waste minimization option within urban waste management schemes, taking the Greater Beirut Area (GBA) as a case study. For this purpose, the operational and economic impacts of food disposers on the solid waste and wastewater streams are assessed. The integration of food waste disposers can reduce the total solid waste to be managed by 12 to 43% under market penetration ranging between 25 and 75%, respectively. While the increase in domestic water consumption (for food grinding) and corresponding increase in wastewater flow rates are relatively insignificant, wastewater loadings increased by 17 to 62% (BOD) and 1.9 to 7.1% (SS). The net economic benefit of introducing food disposers into the waste and wastewater management systems constitutes 7.2 to 44.0% of the existing solid waste management cost under the various scenarios examined. Concerns about increased sludge generation persist and its potential environmental and economic implications may differ with location and therefore area-specific characteristics must be taken into consideration when contemplating the adoption of a strategy to integrate food waste disposers in the waste-wastewater management system.

  20. 41 CFR 50-204.29 - Waste disposal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Waste disposal. 50-204.29 Section 50-204.29 Public Contracts and Property Management Other Provisions Relating to Public Contracts... Radiation Standards § 50-204.29 Waste disposal. No employer shall dispose of radioactive material except by...

  1. 29 CFR 1926.252 - Disposal of waste materials.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... fire regulations. (e) All solvent waste, oily rags, and flammable liquids shall be kept in fire... 29 Labor 8 2014-07-01 2014-07-01 false Disposal of waste materials. 1926.252 Section 1926.252..., Use, and Disposal § 1926.252 Disposal of waste materials. (a) Whenever materials are dropped more than...

  2. Land Disposal Restrictions for Hazardous Waste

    EPA Pesticide Factsheets

    The land disposal restrictions prohibits the land disposal of untreated hazardous wastes. EPA has specified either concentration levels or methods of treatment for hazardous constituents to meet before land disposal.

  3. Radioactive waste disposal fees-Methodology for calculation

    NASA Astrophysics Data System (ADS)

    Bemš, Július; Králík, Tomáš; Kubančák, Ján; Vašíček, Jiří; Starý, Oldřich

    2014-11-01

    This paper summarizes the methodological approach used for calculation of fee for low- and intermediate-level radioactive waste disposal and for spent fuel disposal. The methodology itself is based on simulation of cash flows related to the operation of system for waste disposal. The paper includes demonstration of methodology application on the conditions of the Czech Republic.

  4. 50 CFR 27.94 - Disposal of waste.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... chemical wastes in, or otherwise polluting any waters, water holes, streams or other areas within any... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Disposal of waste. 27.94 Section 27.94... NATIONAL WILDLIFE REFUGE SYSTEM PROHIBITED ACTS Other Disturbing Violations § 27.94 Disposal of waste. (a...

  5. FFTF disposable solid waste cask

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomson, J. D.; Goetsch, S. D.

    1983-01-01

    Disposal of radioactive waste from the Fast Flux Test Facility (FFTF) will utilize a Disposable Solid Waste Cask (DSWC) for the transport and burial of irradiated stainless steel and inconel materials. Retrievability coupled with the desire for minimal facilities and labor costs at the disposal site identified the need for the DSWC. Design requirements for this system were patterned after Type B packages as outlined in 10 CFR 71 with a few exceptions based on site and payload requirements. A summary of the design basis, supporting analytical methods and fabrication practices developed to deploy the DSWC is provided in thismore » paper.« less

  6. DESIGN ANALYSIS FOR THE DEFENSE HIGH-LEVEL WASTE DISPOSAL CONTAINER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G. Radulesscu; J.S. Tang

    The purpose of ''Design Analysis for the Defense High-Level Waste Disposal Container'' analysis is to technically define the defense high-level waste (DHLW) disposal container/waste package using the Waste Package Department's (WPD) design methods, as documented in ''Waste Package Design Methodology Report'' (CRWMS M&O [Civilian Radioactive Waste Management System Management and Operating Contractor] 2000a). The DHLW disposal container is intended for disposal of commercial high-level waste (HLW) and DHLW (including immobilized plutonium waste forms), placed within disposable canisters. The U.S. Department of Energy (DOE)-managed spent nuclear fuel (SNF) in disposable canisters may also be placed in a DHLW disposal container alongmore » with HLW forms. The objective of this analysis is to demonstrate that the DHLW disposal container/waste package satisfies the project requirements, as embodied in Defense High Level Waste Disposal Container System Description Document (SDD) (CRWMS M&O 1999a), and additional criteria, as identified in Waste Package Design Sensitivity Report (CRWMS M&Q 2000b, Table 4). The analysis briefly describes the analytical methods appropriate for the design of the DHLW disposal contained waste package, and summarizes the results of the calculations that illustrate the analytical methods. However, the analysis is limited to the calculations selected for the DHLW disposal container in support of the Site Recommendation (SR) (CRWMS M&O 2000b, Section 7). The scope of this analysis is restricted to the design of the codisposal waste package of the Savannah River Site (SRS) DHLW glass canisters and the Training, Research, Isotopes General Atomics (TRIGA) SNF loaded in a short 18-in.-outer diameter (OD) DOE standardized SNF canister. This waste package is representative of the waste packages that consist of the DHLW disposal container, the DHLW/HLW glass canisters, and the DOE-managed SNF in disposable canisters. The intended use of this analysis

  7. Disposal of medical waste: a legal perspective.

    PubMed

    Du Toit, Karen; Bodenstein, Johannes

    2013-09-03

    The Constitution of the Republic of South Africa provides that everyone has the right to an environment that is not harmful to their health and well-being. The illegal dumping of hazardous waste poses a danger to the environment when pollutants migrate into water sources and ultimately cause widespread infection or toxicity, endangering the health of humans who might become exposed to infection and toxins. To give effect to the Constitution, the safe disposal of hazardous waste is governed by legislation in South Africa. Reports of the illegal disposal of waste suggest a general lack of awareness and training in regard to the safe disposal of medical waste

  8. Factors Influencing Attitude, Safety Behavior, and Knowledge regarding Household Waste Management in Guinea: A Cross-Sectional Study

    PubMed Central

    Mamady, Keita

    2016-01-01

    Waste indiscriminate disposal is recognized as an important cause of environmental pollution and is associated with health problems. Safe management and disposal of household waste are an important problem to the capital city of Guinea (Conakry). The objective of this study was to identify socioeconomic and demographic factors associated with practice, knowledge, and safety behavior of family members regarding household waste management and to produce a remedial action plan. I found that no education background, income, and female individuals were independently associated with indiscriminate waste disposal. Unplanned residential area was an additional factor associated with indiscriminate waste disposal. I also found that the community residents had poor knowledge and unsafe behavior in relation to waste management. The promotion of environmental information and public education and implementation of community action programs on disease prevention and health promotion will enhance environmental friendliness and safety of the community. PMID:27092183

  9. Factors Influencing Attitude, Safety Behavior, and Knowledge regarding Household Waste Management in Guinea: A Cross-Sectional Study.

    PubMed

    Mamady, Keita

    2016-01-01

    Waste indiscriminate disposal is recognized as an important cause of environmental pollution and is associated with health problems. Safe management and disposal of household waste are an important problem to the capital city of Guinea (Conakry). The objective of this study was to identify socioeconomic and demographic factors associated with practice, knowledge, and safety behavior of family members regarding household waste management and to produce a remedial action plan. I found that no education background, income, and female individuals were independently associated with indiscriminate waste disposal. Unplanned residential area was an additional factor associated with indiscriminate waste disposal. I also found that the community residents had poor knowledge and unsafe behavior in relation to waste management. The promotion of environmental information and public education and implementation of community action programs on disease prevention and health promotion will enhance environmental friendliness and safety of the community.

  10. Disposal of Chemotherapeutic Agent -- Contaminated Waste

    DTIC Science & Technology

    1989-03-01

    RESTRICTIVE MARKINGS 2a SECURITY CLASSIFICATION AUTHORITY 3 . DISTRIBUTION/AVAILABILITY OF REPORT 2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for Public...AIR .............. 22 INCINERATION SYSTEM 2 CHEMOTHERAPEUTIC WASTE THERMAL ...... 32 DESTRUCTION DISPOSAL SYSTEM 3 FRONT VIEW OF INCINERATION...The Environmental Protection Agency has published a manual (Reference 1) which provides guidelines on handling and 3 disposal of infectious waste from

  11. Roadmap for disposal of Electrorefiner Salt as Transuranic Waste.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rechard, Robert P.; Trone, Janis R.; Kalinina, Elena Arkadievna

    The experimental breeder reactor (EBR-II) used fuel with a layer of sodium surrounding the uranium-zirconium fuel to improve heat transfer. Disposing of EBR-II fuel in a geologic repository without treatment is not prudent because of the potentially energetic reaction of the sodium with water. In 2000, the US Department of Energy (DOE) decided to treat the sodium-bonded fuel with an electrorefiner (ER), which produces metallic uranium product, a metallic waste, mostly from the cladding, and the salt waste in the ER, which contains most of the actinides and fission products. Two waste forms were proposed for disposal in a minedmore » repository; the metallic waste, which was to be cast into ingots, and the ER salt waste, which was to be further treated to produce a ceramic waste form. However, alternative disposal pathways for metallic and salt waste streams may reduce the complexity. For example, performance assessments show that geologic repositories can easily accommodate the ER salt waste without treating it to form a ceramic waste form. Because EBR-II was used for atomic energy defense activities, the treated waste likely meets the definition of transuranic waste. Hence, disposal at the Waste Isolation Pilot Plant (WIPP) in southern New Mexico, may be feasible. This report reviews the direct disposal pathway for ER salt waste and describes eleven tasks necessary for implementing disposal at WIPP, provided space is available, DOE decides to use this alternative disposal pathway in an updated environmental impact statement, and the State of New Mexico grants permission.« less

  12. Dental solid and hazardous waste management and safety practices in developing countries: Nablus district, Palestine.

    PubMed

    Al-Khatib, Issam A; Monou, Maria; Mosleh, Salem A; Al-Subu, Mohammed M; Kassinos, Despo

    2010-05-01

    This study investigated the dental waste management practices and safety measures implemented by dentists in the Nablus district, Palestine. A comprehensive survey was conducted for 97 of the 134 dental clinics to assess the current situation. Focus was placed on hazardous waste produced by clinics and the handling, storage, treatment and disposal measures taken. Mercury, found in dental amalgam, is one of the most problematic hazardous waste. The findings revealed that there is no proper separation of dental waste by classification as demanded by the World Health Organization. Furthermore, medical waste is often mixed with general waste during production, collection and disposal. The final disposal of waste ends up in open dumping sites sometimes close to communities where the waste is burned. Correct management and safety procedures that could be effectively implemented in developing countries were examined. It was concluded that cooperation between dental associations, government-related ministries and authorities needs to be established, to enhance dental waste management and provide training and capacity building programs for all professionals in the medical waste management field.

  13. Safety monitoring of the FBG sensor in respect of radioactivity and deformation measurement of a silo structure for radioactive waste disposal

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Soo; Cho, Seong-Kyu

    2015-07-01

    The FBG sensor has globally been commercialized in various fields that is actively applied in Korea as well. Especially it is widely used as a structural monitoring sensor in civil engineering and construction structures due to its advantages including electrical stability, chemical stability and multiplexing. This report aims to introduce safety inspection of the FBG sensor in respect of radioactivity which has been applied to a silo structure for radioactive waste disposal as an example.

  14. 10 CFR 20.2108 - Records of waste disposal.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Records of waste disposal. 20.2108 Section 20.2108 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20.2108 Records of waste disposal. (a) Each licensee shall maintain records of the disposal of licensed materials made...

  15. 10 CFR 20.2108 - Records of waste disposal.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Records of waste disposal. 20.2108 Section 20.2108 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20.2108 Records of waste disposal. (a) Each licensee shall maintain records of the disposal of licensed materials made...

  16. 10 CFR 20.2108 - Records of waste disposal.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Records of waste disposal. 20.2108 Section 20.2108 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20.2108 Records of waste disposal. (a) Each licensee shall maintain records of the disposal of licensed materials made...

  17. 10 CFR 20.2108 - Records of waste disposal.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Records of waste disposal. 20.2108 Section 20.2108 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20.2108 Records of waste disposal. (a) Each licensee shall maintain records of the disposal of licensed materials made...

  18. 10 CFR 20.2108 - Records of waste disposal.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Records of waste disposal. 20.2108 Section 20.2108 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20.2108 Records of waste disposal. (a) Each licensee shall maintain records of the disposal of licensed materials made...

  19. Domestic waste disposal practice and perceptions of private sector waste management in urban Accra

    PubMed Central

    2014-01-01

    Background Waste poses a threat to public health and the environment if it is not stored, collected, and disposed of properly. The perception of waste as an unwanted material with no intrinsic value has dominated attitudes towards disposal. This study investigates the domestic waste practices, waste disposal, and perceptions about waste and health in an urban community. Methods The study utilised a mixed-method approach. A cross-sectional survey questionnaire and in-depth interview were used to collect data. A total of 364 household heads were interviewed in the survey and six key informants were interviewed with the in-depth interviews. Results The results of the study revealed that 93.1% of households disposed of food debris as waste and 77.8% disposed of plastic materials as waste. The study also showed that 61.0% of the households disposed of their waste at community bins or had waste picked up at their homes by private contractors. The remaining 39.0% disposed of their waste in gutters, streets, holes and nearby bushes. Of those who paid for the services of private contractors, 62.9% were not satisfied with the services because of their cost and irregular collection. About 83% of the respondents were aware that improper waste management contributes to disease causation; most of the respondents thought that improper waste management could lead to malaria and diarrhoea. There was a general perception that children should be responsible for transporting waste from the households to dumping sites. Conclusion Proper education of the public, the provision of more communal trash bins, and the collection of waste by private contractors could help prevent exposing the public in municipalities to diseases. PMID:25005728

  20. Domestic waste disposal practice and perceptions of private sector waste management in urban Accra.

    PubMed

    Yoada, Ramatta Massa; Chirawurah, Dennis; Adongo, Philip Baba

    2014-07-08

    Waste poses a threat to public health and the environment if it is not stored, collected, and disposed of properly. The perception of waste as an unwanted material with no intrinsic value has dominated attitudes towards disposal. This study investigates the domestic waste practices, waste disposal, and perceptions about waste and health in an urban community. The study utilised a mixed-method approach. A cross-sectional survey questionnaire and in-depth interview were used to collect data. A total of 364 household heads were interviewed in the survey and six key informants were interviewed with the in-depth interviews. The results of the study revealed that 93.1% of households disposed of food debris as waste and 77.8% disposed of plastic materials as waste. The study also showed that 61.0% of the households disposed of their waste at community bins or had waste picked up at their homes by private contractors. The remaining 39.0% disposed of their waste in gutters, streets, holes and nearby bushes. Of those who paid for the services of private contractors, 62.9% were not satisfied with the services because of their cost and irregular collection. About 83% of the respondents were aware that improper waste management contributes to disease causation; most of the respondents thought that improper waste management could lead to malaria and diarrhoea. There was a general perception that children should be responsible for transporting waste from the households to dumping sites. Proper education of the public, the provision of more communal trash bins, and the collection of waste by private contractors could help prevent exposing the public in municipalities to diseases.

  1. 21 CFR 1250.75 - Disposal of human wastes.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Disposal of human wastes. 1250.75 Section 1250.75... SANITATION Servicing Areas for Land and Air Conveyances § 1250.75 Disposal of human wastes. (a) At servicing... so conducted as to avoid contamination of such areas and stations by human wastes. (b) Toilet wastes...

  2. 21 CFR 1250.75 - Disposal of human wastes.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Disposal of human wastes. 1250.75 Section 1250.75... SANITATION Servicing Areas for Land and Air Conveyances § 1250.75 Disposal of human wastes. (a) At servicing... so conducted as to avoid contamination of such areas and stations by human wastes. (b) Toilet wastes...

  3. 21 CFR 1250.75 - Disposal of human wastes.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Disposal of human wastes. 1250.75 Section 1250.75... SANITATION Servicing Areas for Land and Air Conveyances § 1250.75 Disposal of human wastes. (a) At servicing... so conducted as to avoid contamination of such areas and stations by human wastes. (b) Toilet wastes...

  4. 21 CFR 1250.75 - Disposal of human wastes.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Disposal of human wastes. 1250.75 Section 1250.75... SANITATION Servicing Areas for Land and Air Conveyances § 1250.75 Disposal of human wastes. (a) At servicing... so conducted as to avoid contamination of such areas and stations by human wastes. (b) Toilet wastes...

  5. Disposal of Kitchen Waste from High Rise Apartment

    NASA Astrophysics Data System (ADS)

    Ori, Kirki; Bharti, Ajay; Kumar, Sunil

    2017-09-01

    The high rise building has numbers of floor and rooms having variety of users or tenants for residential purposes. The huge quantities of heterogenous mixtures of domestic food waste are generated from every floor of the high rise residential buildings. Disposal of wet and biodegradable domestic kitchen waste from high rise buildings are more expensive in regards of collection and vertical transportation. This work is intended to address the technique to dispose of the wet organic food waste from the high rise buildings or multistory building at generation point with the advantage of gravity and vermicomposting technique. This innovative effort for collection and disposal of wet organic solid waste from high rise apartment is more economical and hygienic in comparison with present system of disposal.

  6. 40 CFR 61.154 - Standard for active waste disposal sites.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Standard for active waste disposal... for Asbestos § 61.154 Standard for active waste disposal sites. Each owner or operator of an active... visible emissions to the outside air from any active waste disposal site where asbestos-containing waste...

  7. 40 CFR 61.154 - Standard for active waste disposal sites.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Standard for active waste disposal... for Asbestos § 61.154 Standard for active waste disposal sites. Each owner or operator of an active... visible emissions to the outside air from any active waste disposal site where asbestos-containing waste...

  8. 40 CFR 61.154 - Standard for active waste disposal sites.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Standard for active waste disposal... for Asbestos § 61.154 Standard for active waste disposal sites. Each owner or operator of an active... visible emissions to the outside air from any active waste disposal site where asbestos-containing waste...

  9. 40 CFR 61.154 - Standard for active waste disposal sites.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Standard for active waste disposal... for Asbestos § 61.154 Standard for active waste disposal sites. Each owner or operator of an active... visible emissions to the outside air from any active waste disposal site where asbestos-containing waste...

  10. 40 CFR 61.154 - Standard for active waste disposal sites.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Standard for active waste disposal... for Asbestos § 61.154 Standard for active waste disposal sites. Each owner or operator of an active... visible emissions to the outside air from any active waste disposal site where asbestos-containing waste...

  11. 36 CFR 13.1118 - Solid waste disposal.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Section 13.1118 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve General Provisions § 13.1118 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park...

  12. 36 CFR 13.1008 - Solid waste disposal.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Section 13.1008 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Gates of the Arctic National Park and Preserve § 13.1008 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service...

  13. 36 CFR 13.1118 - Solid waste disposal.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Section 13.1118 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve General Provisions § 13.1118 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park...

  14. Evaluation of Low-Level Waste Disposal Receipt Data for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    French, Sean B.; Shuman, Robert

    2012-04-17

    The Los Alamos National Laboratory (LANL or the Laboratory) generates radioactive waste as a result of various activities. Operational or institutional waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research. Environmental restoration (ER), and decontamination and decommissioning (D and D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requiresmore » that radioactive waste be managed in a manner that protects public health and safety, and the environment. To comply with this order, DOE field sites must prepare and maintain site-specific radiological performance assessments for LLW disposal facilities that accept waste after September 26, 1988. Furthermore, sites are required to conduct composite analyses that account for the cumulative impacts of all waste that has been (or will be) disposed of at the facilities and other sources of radioactive material that may interact with the facilities. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 (LANL, 2008). These analyses estimate rates of radionuclide release from the waste disposed of at the facility, simulate the movement of radionuclides through the environment, and project potential radiation doses to humans for several on-site and off-site exposure scenarios. The assessments are based on existing site and disposal facility data and on assumptions about future rates and methods of waste disposal. The accuracy of the performance assessment and composite analysis depends upon the validity of the data used and assumptions made in conducting the analyses. If changes in these data and assumptions are significant, they may invalidate

  15. 30 CFR 816.89 - Disposal of noncoal mine wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... underground water. Wastes shall be routinely compacted and covered to prevent combustion and wind-borne waste... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Disposal of noncoal mine wastes. 816.89 Section... ACTIVITIES § 816.89 Disposal of noncoal mine wastes. (a) Noncoal mine wastes including, but not limited to...

  16. 30 CFR 817.89 - Disposal of noncoal mine wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... underground water. Wastes shall be routinely compacted and covered to prevent combustion and wind-borne waste... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Disposal of noncoal mine wastes. 817.89 Section... ACTIVITIES § 817.89 Disposal of noncoal mine wastes. (a) Noncoal mine wastes including, but not limited to...

  17. Waste Management and Disposal for Artists and Schools.

    ERIC Educational Resources Information Center

    Babin, Angela; McCann, Michael

    Artists, art teachers, and students need to understand the problems associated with disposing of waste materials, some of which may be hazardous. The waste products of art projects, even if non-hazardous, also use up space in overloaded landfills. The Environmental Protection Agency (EPA) sets forth guidelines for disposing of hazardous wastes.…

  18. Health hazards associated with solid waste disposal.

    PubMed

    Gaby, W L

    1981-01-01

    The landfilling and disposal of domestic solid waste should be considered as great or greater a public health hazard as raw sewage. Solid waste is toxic and contains a greater variety of pathogenic microorganisms than does sewage sludge. Of all the procedures for solid waste disposal, landfills have and will continue to give rise to serious public health problems of land and water pollution. Although the general public is opposed to landfilling our inept health officials have offered small communities and cities no choice. Small communities do not have the technical knowledge or the funds to initiate alternative procedures. As the volume of solid waste increases each year the magnitude of the health hazards will eventually force public health agencies to implement correct disposal procedures ultimately resulting in recycling.

  19. Alternative disposal options for transuranic waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loomis, G.G.

    1994-12-31

    Three alternative concepts are proposed for the final disposal of stored and retrieved buried transuranic waste. These proposed options answer criticisms of the existing U.S. Department of Energy strategy of directly disposing of stored transuranic waste in deep, geological salt formations at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. The first option involves enhanced stabilization of stored waste by thermal treatment followed by convoy transportation and internment in the existing WIPP facility. This concept could also be extended to retrieved buried waste with proper permitting. The second option involves in-state, in situ internment using an encapsulating lensmore » around the waste. This concept applies only to previously buried transuranic waste. The third option involves sending stored and retrieved waste to the Nevada Test Site and configuring the waste around a thermonuclear device from the U.S. or Russian arsenal in a specially designed underground chamber. The thermonuclear explosion would transmute plutonium and disassociate hazardous materials while entombing the waste in a national sacrifice area.« less

  20. Radioactive waste disposal package

    DOEpatents

    Lampe, Robert F.

    1986-11-04

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  1. Radioactive waste disposal package

    DOEpatents

    Lampe, Robert F.

    1986-01-01

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  2. Development of Risk Insights for Regulatory Review of a Near-Surface Disposal Facility for Radioactive Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esh, D.W.; Ridge, A.C.; Thaggard, M.

    2006-07-01

    Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA) requires the Department of Energy (DOE) to consult with the Nuclear Regulatory Commission (NRC) about non-High Level Waste (HLW) determinations. In its consultative role, NRC performs technical reviews of DOE's waste determinations but does not have regulatory authority over DOE's waste disposal activities. The safety of disposal is evaluated by comparing predicted disposal facility performance to the performance objectives specified in NRC regulations for the disposal of low-level waste (10 CFR Part 61 Subpart C). The performance objectives contain criteria for protection of themore » public, protection of inadvertent intruders, protection of workers, and stability of the disposal site after closure. The potential radiological dose to receptors typically is evaluated with a performance assessment (PA) model that simulates the release of radionuclides from the disposal site, transport of radionuclides through the environment, and exposure of potential receptors to residual contamination for thousands of years. This paper describes NRC's development and use of independent performance assessment modeling to facilitate review of DOE's non-HLW determination for the Saltstone Disposal Facility (SDF) at the Savannah River Site. NRC's review of the safety of near-surface disposal of radioactive waste at the SDF was facilitated and focused by risk insights developed with an independent PA model. The main components of NRC's performance assessment model are presented. The development of risk insights that allow the staff to focus review efforts on those areas that are most important to satisfying the performance objectives is discussed. Uncertainty analysis was performed of the full stochastic model using genetic variable selection algorithms. The results of the uncertainty analysis were then used to guide the development of simulations of other scenarios to understand the

  3. Status report on the disposal of radioactive wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culler, F.L. Jr.; McLain, S.

    1957-06-25

    A comprehensive survey of waste disposal techniques, requirements, costs, hazards, and long-range considerations is presented. The nature of high level wastes from reactors and chemical processes, in the form of fission product gases, waste solutions, solid wastes, and particulate solids in gas phase, is described. Growth predictions for nuclear reactor capacity and the associated fission product and transplutonic waste problem are made and discussed on the basis of present knowledge. Biological hazards from accumulated wastes and potential hazards from reactor accidents, ore and feed material processing, chemical reprocessing plants, and handling of fissionable and fertile material after irradiation and decontaminationmore » are surveyed. The waste transportation problem is considered from the standpoints of magnitude of the problem, present regulations, costs, and cooling periods. The possibilities for ultimate waste management and/or disposal are reviewed and discussed. The costs of disposal, evaporation, storage tanks, and drum-drying are considered.« less

  4. Permanent Disposal of Nuclear Waste in Salt

    NASA Astrophysics Data System (ADS)

    Hansen, F. D.

    2016-12-01

    Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. Both nations are revisiting nuclear waste disposal options, accompanied by extensive collaboration on applied salt repository research, design, and operation. Salt formations provide isolation while geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Salt response over a range of stress and temperature has been characterized for decades. Research practices employ refined test techniques and controls, which improve parameter assessment for features of the constitutive models. Extraordinary computational capabilities require exacting understanding of laboratory measurements and objective interpretation of modeling results. A repository for heat-generative nuclear waste provides an engineering challenge beyond common experience. Long-term evolution of the underground setting is precluded from direct observation or measurement. Therefore, analogues and modeling predictions are necessary to establish enduring safety functions. A strong case for granular salt reconsolidation and a focused research agenda support salt repository concepts that include safety-by-design. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Author: F. D. Hansen, Sandia National Laboratories

  5. Bacterial Diversity in Bentonites, Engineered Barrier for Deep Geological Disposal of Radioactive Wastes.

    PubMed

    Lopez-Fernandez, Margarita; Cherkouk, Andrea; Vilchez-Vargas, Ramiro; Jauregui, Ruy; Pieper, Dietmar; Boon, Nico; Sanchez-Castro, Ivan; Merroun, Mohamed L

    2015-11-01

    The long-term disposal of radioactive wastes in a deep geological repository is the accepted international solution for the treatment and management of these special residues. The microbial community of the selected host rocks and engineered barriers for the deep geological repository may affect the performance and the safety of the radioactive waste disposal. In this work, the bacterial population of bentonite formations of Almeria (Spain), selected as a reference material for bentonite-engineered barriers in the disposal of radioactive wastes, was studied. 16S ribosomal RNA (rRNA) gene-based approaches were used to study the bacterial community of the bentonite samples by traditional clone libraries and Illumina sequencing. Using both techniques, the bacterial diversity analysis revealed similar results, with phylotypes belonging to 14 different bacterial phyla: Acidobacteria, Actinobacteria, Armatimonadetes, Bacteroidetes, Chloroflexi, Cyanobacteria, Deinococcus-Thermus, Firmicutes, Gemmatimonadetes, Planctomycetes, Proteobacteria, Nitrospirae, Verrucomicrobia and an unknown phylum. The dominant groups of the community were represented by Proteobacteria and Bacteroidetes. A high diversity was found in three of the studied samples. However, two samples were less diverse and dominated by Betaproteobacteria.

  6. WASTE ISOLATION PILOT PLANT (WIPP): THE NATIONS' SOLUTION TO NUCLEAR WASTE STORAGE AND DISPOSAL ISSUES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Tammy Ann

    2014-07-17

    In the southeastern portion of my home state of New Mexico lies the Chihuahauan desert, where a transuranic (TRU), underground disposal site known as the Waste Isolation Pilot Plant (WIPP) occupies 16 square miles. Full operation status began in March 1999, the year I graduated from Los Alamos High School, in Los Alamos, NM, the birthplace of the atomic bomb and one of the nation’s main TRU waste generator sites. During the time of its development and until recently, I did not have a full grasp on the role Los Alamos was playing in regards to WIPP. WIPP is usedmore » to store and dispose of TRU waste that has been generated since the 1940s because of nuclear weapons research and testing operations that have occurred in Los Alamos, NM and at other sites throughout the United States (U.S.). TRU waste consists of items that are contaminated with artificial, man-made radioactive elements that have atomic numbers greater than uranium, or are trans-uranic, on the periodic table of elements and it has longevity characteristics that may be hazardous to human health and the environment. Therefore, WIPP has underground rooms that have been carved out of 2,000 square foot thick salt formations approximately 2,150 feet underground so that the TRU waste can be isolated and disposed of. WIPP has operated safely and successfully until this year, when two unrelated events occurred in February 2014. With these events, the safety precautions and measures that have been operating at WIPP for the last 15 years are being revised and improved to ensure that other such events do not occur again.« less

  7. 40 CFR 761.63 - PCB household waste storage and disposal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false PCB household waste storage and..., AND USE PROHIBITIONS Storage and Disposal § 761.63 PCB household waste storage and disposal. PCB... to manage municipal or industrial solid waste, or in a facility with an approval to dispose of PCB...

  8. Vegetation cover and long-term conservation of radioactive waste packages: the case study of the CSM waste disposal facility (Manche District, France).

    PubMed

    Petit-Berghem, Yves; Lemperiere, Guy

    2012-03-01

    The CSM is the first French waste disposal facility for radioactive waste. Waste material is buried several meters deep and protected by a multi-layer cover, and equipped with a drainage system. On the surface, the plant cover is a grassland vegetation type. A scientific assessment has been carried out by the Géophen laboratory, University of Caen, in order to better characterize the plant cover (ecological groups and associated soils) and to observe its medium and long term evolution. Field assessments made on 10 plots were complemented by laboratory analyses carried out over a period of 1 year. The results indicate scenarios and alternative solutions which could arise, in order to passively ensure the long-term safety of the waste disposal system. Several proposals for a blanket solution are currently being studied and discussed, under the auspices of international research institutions in order to determine the most appropriate materials for the storage conditions. One proposal is an increased thickness of these materials associated with a geotechnical barrier since it is well adapted to the forest plants which are likely to colonize the site. The current experiments that are carried out will allow to select the best option and could provide feedback for other waste disposal facility sites already being operated in France (CSFMA waste disposal facility, Aube district) or in other countries.

  9. 77 FR 14307 - Water and Waste Disposal Loans and Grants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ... CFR 1777 RIN 0572-AC26 Water and Waste Disposal Loans and Grants AGENCY: Rural Utilities Service, USDA... pertaining to the Section 306C Water and Waste Disposal (WWD) Loans and Grants program, which provides water... to assist areas designated as colonias that lack access to water or waste disposal systems and/or...

  10. Conceptual waste packaging options for deep borehole disposal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Jiann -Cherng; Hardin, Ernest L.

    This report presents four concepts for packaging of radioactive waste for disposal in deep boreholes. Two of these are reference-size packages (11 inch outer diameter) and two are smaller (5 inch) for disposal of Cs/Sr capsules. All four have an assumed length of approximately 18.5 feet, which allows the internal length of the waste volume to be 16.4 feet. However, package length and volume can be scaled by changing the length of the middle, tubular section. The materials proposed for use are low-alloy steels, commonly used in the oil-and-gas industry. Threaded connections between packages, and internal threads used to sealmore » the waste cavity, are common oilfield types. Two types of fill ports are proposed: flask-type and internal-flush. All four package design concepts would withstand hydrostatic pressure of 9,600 psi, with factor safety 2.0. The combined loading condition includes axial tension and compression from the weight of a string or stack of packages in the disposal borehole, either during lower and emplacement of a string, or after stacking of multiple packages emplaced singly. Combined loading also includes bending that may occur during emplacement, particularly for a string of packages threaded together. Flask-type packages would be fabricated and heat-treated, if necessary, before loading waste. The fill port would be narrower than the waste cavity inner diameter, so the flask type is suitable for directly loading bulk granular waste, or loading slim waste canisters (e.g., containing Cs/Sr capsules) that fit through the port. The fill port would be sealed with a tapered, threaded plug, with a welded cover plate (welded after loading). Threaded connections between packages and between packages and a drill string, would be standard drill pipe threads. The internal flush packaging concepts would use semi-flush oilfield tubing, which is internally flush but has a slight external upset at the joints. This type of tubing can be obtained with premium

  11. International Approaches for Nuclear Waste Disposal in Geological Formations: Report on Fifth Worldwide Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faybishenko, Boris; Birkholzer, Jens; Persoff, Peter

    2016-08-01

    An important issue for present and future generations is the final disposal of spent nuclear fuel. Over the past over forty years, the development of technologies to isolate both spent nuclear fuel (SNF) and other high-level nuclear waste (HLW) generated at nuclear power plants and from production of defense materials, and low- and intermediate-level nuclear waste (LILW) in underground rock and sediments has been found to be a challenging undertaking. Finding an appropriate solution for the disposal of nuclear waste is an important issue for protection of the environment and public health, and it is a prerequisite for the futuremore » of nuclear power. The purpose of a deep geological repository for nuclear waste is to provide to future generations, protection against any harmful release of radioactive material, even after the memory of the repository may have been lost, and regardless of the technical knowledge of future generations. The results of a wide variety of investigations on the development of technology for radioactive waste isolation from 19 countries were published in the First Worldwide Review in 1991 (Witherspoon, 1991). The results of investigations from 26 countries were published in the Second Worldwide Review in 1996 (Witherspoon, 1996). The results from 32 countries were summarized in the Third Worldwide Review in 2001 (Witherspoon and Bodvarsson, 2001). The last compilation had results from 24 countries assembled in the Fourth Worldwide Review (WWR) on radioactive waste isolation (Witherspoon and Bodvarsson, 2006). Since publication of the last report in 2006, radioactive waste disposal approaches have continued to evolve, and there have been major developments in a number of national geological disposal programs. Significant experience has been obtained both in preparing and reviewing cases for the operational and long-term safety of proposed and operating repositories. Disposal of radioactive waste is a complex issue, not only because of

  12. Geotechnical engineering for ocean waste disposal. An introduction

    USGS Publications Warehouse

    Lee, Homa J.; Demars, Kenneth R.; Chaney, Ronald C.; ,

    1990-01-01

    As members of multidisciplinary teams, geotechnical engineers apply quantitative knowledge about the behavior of earth materials toward designing systems for disposing of wastes in the oceans and monitoring waste disposal sites. In dredge material disposal, geotechnical engineers assist in selecting disposal equipment, predict stable characteristics of dredge mounds, design mound caps, and predict erodibility of the material. In canister disposal, geotechnical engineers assist in specifying canister configurations, predict penetration depths into the seafloor, and predict and monitor canister performance following emplacement. With sewage outfalls, geotechnical engineers design foundation and anchor elements, estimate scour potential around the outfalls, and determine the stability of deposits made up of discharged material. With landfills, geotechnical engineers evaluate the stability and erodibility of margins and estimate settlement and cracking of the landfill mass. Geotechnical engineers also consider the influence that pollutants have on the engineering behavior of marine sediment and the extent to which changes in behavior affect the performance of structures founded on the sediment. In each of these roles, careful application of geotechnical engineering principles can contribute toward more efficient and environmentally safe waste disposal operations.

  13. Knowledge, Attitude and Practice of Healthcare Managers to Medical Waste Management and Occupational Safety Practices: Findings from Southeast Nigeria.

    PubMed

    Anozie, Okechukwu Bonaventure; Lawani, Lucky Osaheni; Eze, Justus Ndulue; Mamah, Emmanuel Johnbosco; Onoh, Robinson Chukwudi; Ogah, Emeka Onwe; Umezurike, Daniel Akuma; Anozie, Rita Onyinyechi

    2017-03-01

    Awareness of appropriate waste management procedures and occupational safety measures is fundamental to achieving a safe work environment, and ensuring patient and staff safety. This study was conducted to assess the attitude of healthcare managers to medical waste management and occupational safety practices. This was a cross-sectional study conducted among 54 hospital administrators in Ebonyi state. Semi-structured questionnaires were used for qualitative data collection and analyzed with SPSS statistics for windows (2011), version 20.0 statistical software (Armonk, NY: IBM Corp). Two-fifth (40%) of healthcare managers had received training on medical waste management and occupational safety. Standard operating procedure of waste disposal was practiced by only one hospital (1.9%), while 98.1% (53/54) practiced indiscriminate waste disposal. Injection safety boxes were widely available in all health facilities, nevertheless, the use of incinerators and waste treatment was practiced by 1.9% (1/54) facility. However, 40.7% (22/54) and 59.3% (32/54) of respondents trained their staff and organize safety orientation courses respectively. Staff insurance cover was offered by just one hospital (1.9%), while none of the hospitals had compensation package for occupational hazard victims. Over half (55.6%; 30/54) of the respondents provided both personal protective equipment and post exposure prophylaxis for HIV. There was high level of non-compliance to standard medical waste management procedures, and lack of training on occupational safety measures. Relevant regulating agencies should step up efforts at monitoring and regulation of healthcare activities and ensure staff training on safe handling and disposal of hospital waste.

  14. Space disposal of nuclear wastes. Volume 1: Socio-political aspects

    NASA Technical Reports Server (NTRS)

    Laporte, T.; Rochlin, G. I.; Metlay, D.; Windham, P.

    1976-01-01

    The history and interpretation of radioactive waste management in the U.S., criteria for choosing from various options for waste disposal, and the impact of nuclear power growth from 1975 to 2000 are discussed. Preconditions for the existence of high level wastes in a form suitable for space disposal are explored. The role of the NASA space shuttle program in the space disposal of nuclear wastes, and the impact on program management, resources and regulation are examined.

  15. Radioactive waste material disposal

    DOEpatents

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1995-10-24

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

  16. Radioactive waste material disposal

    DOEpatents

    Forsberg, Charles W.; Beahm, Edward C.; Parker, George W.

    1995-01-01

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

  17. 50 CFR 27.94 - Disposal of waste.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... NATIONAL WILDLIFE REFUGE SYSTEM PROHIBITED ACTS Other Disturbing Violations § 27.94 Disposal of waste. (a) The littering, disposing, or dumping in any manner of garbage, refuse sewage, sludge, earth, rocks, or...

  18. 50 CFR 27.94 - Disposal of waste.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... NATIONAL WILDLIFE REFUGE SYSTEM PROHIBITED ACTS Other Disturbing Violations § 27.94 Disposal of waste. (a) The littering, disposing, or dumping in any manner of garbage, refuse sewage, sludge, earth, rocks, or...

  19. 50 CFR 27.94 - Disposal of waste.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... NATIONAL WILDLIFE REFUGE SYSTEM PROHIBITED ACTS Other Disturbing Violations § 27.94 Disposal of waste. (a) The littering, disposing, or dumping in any manner of garbage, refuse sewage, sludge, earth, rocks, or...

  20. 50 CFR 27.94 - Disposal of waste.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... NATIONAL WILDLIFE REFUGE SYSTEM PROHIBITED ACTS Other Disturbing Violations § 27.94 Disposal of waste. (a) The littering, disposing, or dumping in any manner of garbage, refuse sewage, sludge, earth, rocks, or...

  1. Safe disposal of cytotoxic waste: an evaluation of an air-tight system.

    PubMed

    Craig, Gemma; Wadey, Charlotte

    2017-09-07

    A 3-month evaluation was undertaken at the Kent Oncology Centre's chemotherapy day unit (CDU) to trial an air-tight sealing disposal system for cytotoxic waste management. Research has identified the potential risk to staff who handle waste products that are hazardous to health. Staff safety was a driving force behind a trial of a new way of working. This article provides an overview of the evaluation of the Pactosafe system in one clinical area, examining reviews by oncology healthcare workers, the practicalities in the clinical setting, training, cost effectiveness and the environmental benefits.

  2. The safe disposal of radioactive wastes

    PubMed Central

    Kenny, A. W.

    1956-01-01

    A comprehensive review is given of the principles and problems involved in the safe disposal of radioactive wastes. The first part is devoted to a study of the basic facts of radioactivity and of nuclear fission, the characteristics of radioisotopes, the effects of ionizing radiations, and the maximum permissible levels of radioactivity for workers and for the general public. In the second part, the author describes the different types of radioactive waste—reactor wastes and wastes arising from the use of radioisotopes in hospitals and in industry—and discusses the application of the maximum permissible levels of radioactivity to their disposal and treatment, illustrating his discussion with an account of the methods practised at the principal atomic energy establishments. PMID:13374534

  3. Decision Support System For Management Of Low-Level Radioactive Waste Disposal At The Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shott, G.; Yucel, V.; Desotell, L.

    2006-07-01

    The long-term safety of U.S. Department of Energy (DOE) low-level radioactive disposal facilities is assessed by conducting a performance assessment -- a systematic analysis that compares estimated risks to the public and the environment with performance objectives contained in DOE Manual 435.1-1, Radioactive Waste Management Manual. Before site operations, facilities design features such as final inventory, waste form characteristics, and closure cover design may be uncertain. Site operators need a modeling tool that can be used throughout the operational life of the disposal site to guide decisions regarding the acceptance of problematic waste streams, new disposal cell design, environmental monitoringmore » program design, and final site closure. In response to these needs the National Nuclear Security Administration Nevada Site Office (NNSA/NSO) has developed a decision support system for the Area 5 Radioactive Waste Management Site in Frenchman Flat on the Nevada Test Site. The core of the system is a probabilistic inventory and performance assessment model implemented in the GoldSim{sup R} simulation platform. The modeling platform supports multiple graphic capabilities that allow clear documentation of the model data sources, conceptual model, mathematical implementation, and results. The combined models have the capability to estimate disposal site inventory, contaminant concentrations in environmental media, and radiological doses to members of the public engaged in various activities at multiple locations. The model allows rapid assessment and documentation of the consequences of waste management decisions using the most current site characterization information, radionuclide inventory, and conceptual model. The model is routinely used to provide annual updates of site performance, evaluate the consequences of disposal of new waste streams, develop waste concentration limits, optimize the design of new disposal cells, and assess the adequacy of

  4. Developments in management and technology of waste reduction and disposal.

    PubMed

    Rushbrook, Philip

    2006-09-01

    Scandals and public dangers from the mismanagement and poor disposal of hazardous wastes during the 1960s and 1970s awakened the modern-day environmental movement. Influential publications such as "Silent Spring" and high-profile disposal failures, for example, Love Canal and Lekkerkerk, focused attention on the use of chemicals in everyday life and the potential dangers from inappropriate disposal. This attention has not abated and developments, invariably increasing expectations and tightening requirements, continue to be implemented. Waste, as a surrogate for environmental improvement, is a topic where elected representatives and administrations continually want to do more. This article will chart the recent changes in hazardous waste management emanating from the European Union legislation, now being implemented in Member States across the continent. These developments widen the range of discarded materials regarded as "hazardous," prohibit the use of specific chemicals, prohibit the use of waste management options, shift the emphasis from risk-based treatment and disposal to inclusive lists, and incorporate waste producers into more stringent regulatory regimes. The impact of the changes is also intended to provide renewed impetus for waste reduction. Under an environmental control system where only certainty is tolerated, the opportunities for innovation within the industry and the waste treatment and disposal sector will be explored. A challenging analysis will be offered on the impact of this regulation-led approach to the nature and sustainability of hazardous waste treatment and disposal in the future.

  5. [Problems of safety regulation under radioactive waste management in Russia].

    PubMed

    Monastyrskaia, S G; Kochetkov, O A; Barchukov, V G; Kuznetsova, L I

    2012-01-01

    Analysis of the requirements of Federal Law N 190 "About radioactive waste management and incorporation of changes into some legislative acts of the Russian Federation", as well as normative-legislative documents actual and planned to be published related to provision of radiation protection of the workers and the public have been done. Problems of safety regulation raised due to different approaches of Rospotrebnadzor, FMBA of Russia, Rostekhnadzor and Minprirody with respect to classification and categorization of the radioactive wastes, disposal, exemption from regulatory control, etc. have been discussed in the paper. Proposals regarding improvement of the system of safety regulation under radioactive waste management and of cooperation of various regulatory bodies have been formulated.

  6. Final closure of a low level waste disposal facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potier, J.M.

    1995-12-31

    The low-level radioactive waste disposal facility operated by the Agence Nationale pour la Gestion des Dechets Radioactifs near La Hague, France was opened in 1969 and is scheduled for final closure in 1996. The last waste package was received in June 1994. The total volume of disposed waste is approximately 525,000 m{sup 3}. The site closure consists of covering the disposal structures with a multi-layer impervious cap system to prevent rainwater from infiltrating the waste isolation system. A monitoring system has been set up to verify the compliance of infiltration rates with hydraulic performance objectives (less than 10 liters permore » square meter and per year).« less

  7. Progress and future direction for the interim safe storage and disposal of Hanford high-level waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinzer, J.E.; Wodrich, D.D.; Bacon, R.F.

    This paper describes the progress made at the largest environmental cleanup program in the United States. Substantial advances in methods to start interim safe storage of Hanford Site high-level wastes, waste characterization to support both safety- and disposal-related information needs, and proceeding with cost-effective disposal by the U.S. Department of Energy (DOE) and its Hanford Site contractors, have been realized. Challenges facing the Tank Waste Remediation System (TWRS) Program, which is charged with the dual and parallel missions of interim safe storage and disposal of the high-level tank waste stored at the Hanford Site, are described. In these times ofmore » budget austerity, implementing an ongoing program that combines technical excellence and cost effectiveness is the near-term challenge. The technical initiatives and progress described in this paper are made more cost effective by DOE`s focus on work force productivity improvement, reduction of overhead costs, and reduction, integration and simplification of DOE regulations and operations requirements to more closely model those used in the private sector.« less

  8. Regulating the disposal of cigarette butts as toxic hazardous waste.

    PubMed

    Barnes, Richard L

    2011-05-01

    The trillions of cigarette butts generated each year throughout the world pose a significant challenge for disposal regulations, primarily because there are millions of points of disposal, along with the necessity to segregate, collect and dispose of the butts in a safe manner, and cigarette butts are toxic, hazardous waste. There are some hazardous waste laws, such as those covering used tyres and automobile batteries, in which the retailer is responsible for the proper disposal of the waste, but most post-consumer waste disposal is the responsibility of the consumer. Concepts such as extended producer responsibility (EPR) are being used for some post-consumer waste to pass the responsibility and cost for recycling or disposal to the manufacturer of the product. In total, 32 states in the US have passed EPR laws covering auto switches, batteries, carpet, cell phones, electronics, fluorescent lighting, mercury thermostats, paint and pesticide containers, and these could be models for cigarette waste legislation. A broader concept of producer stewardship includes EPR, but adds the consumer and the retailer into the regulation. The State of Maine considered a comprehensive product stewardship law in 2010 that is a much better model than EPR. By using either EPR or the Maine model, the tobacco industry will be required to cover the cost of collecting and disposing of cigarette butt waste. Additional requirements included in the Maine model are needed for consumers and businesses to complete the network that will be necessary to maximise the segregation and collection of cigarette butts to protect the environment.

  9. Regulating the disposal of cigarette butts as toxic hazardous waste

    PubMed Central

    2011-01-01

    The trillions of cigarette butts generated each year throughout the world pose a significant challenge for disposal regulations, primarily because there are millions of points of disposal, along with the necessity to segregate, collect and dispose of the butts in a safe manner, and cigarette butts are toxic, hazardous waste. There are some hazardous waste laws, such as those covering used tyres and automobile batteries, in which the retailer is responsible for the proper disposal of the waste, but most post-consumer waste disposal is the responsibility of the consumer. Concepts such as extended producer responsibility (EPR) are being used for some post-consumer waste to pass the responsibility and cost for recycling or disposal to the manufacturer of the product. In total, 32 states in the US have passed EPR laws covering auto switches, batteries, carpet, cell phones, electronics, fluorescent lighting, mercury thermostats, paint and pesticide containers, and these could be models for cigarette waste legislation. A broader concept of producer stewardship includes EPR, but adds the consumer and the retailer into the regulation. The State of Maine considered a comprehensive product stewardship law in 2010 that is a much better model than EPR. By using either EPR or the Maine model, the tobacco industry will be required to cover the cost of collecting and disposing of cigarette butt waste. Additional requirements included in the Maine model are needed for consumers and businesses to complete the network that will be necessary to maximise the segregation and collection of cigarette butts to protect the environment. PMID:21504925

  10. 40 CFR 257.3 - Criteria for classification of solid waste disposal facilities and practices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES Classification of Solid Waste Disposal Facilities and Practices § 257.3 Criteria for classification of solid waste disposal facilities and practices. Solid waste disposal facilities or practices...

  11. 40 CFR 257.3 - Criteria for classification of solid waste disposal facilities and practices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES Classification of Solid Waste Disposal Facilities and Practices § 257.3 Criteria for classification of solid waste disposal facilities and practices. Solid waste disposal facilities or practices...

  12. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Programs

    The NTS solid waste disposal sites must be permitted by the state of Nevada Solid Waste Management Authority (SWMA). The SWMA for the NTS is the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). The U.S. Department of Energy's National Nuclear Security Administration Nevada Site Office (NNSA/NSO) as land manager (owner), and National Security Technologies (NSTec), as operator, will store, collect, process, and dispose all solid waste by means that do not create a health hazard, a public nuisance, or cause impairment of the environment. NTS disposal sites will not be included in the Nye County Solid Wastemore » Management Plan. The NTS is located approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada (Figure 1). The U.S. Department of Energy (DOE) is the federal lands management authority for the NTS, and NSTec is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS has signs posted along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The Area 5 RWMS is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NTS (Figure 2), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. A Notice of Intent to operate the disposal site as a Class III site was submitted to the state of Nevada on January 28, 1994, and was acknowledged as being received in a letter to the NNSA/NSO on August 30, 1994. Interim approval to operate a Class III SWDS for regulated asbestiform low-level waste (ALLW) was authorized on August 12, 1996 (in letter from Paul Liebendorfer to Runore Wycoff), with operations to be conducted in accordance with the

  13. COMPILATION OF DISPOSABLE SOLID WASTE CASK EVALUATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    THIELGES, J.R.; CHASTAIN, S.A.

    The Disposable Solid Waste Cask (DSWC) is a shielded cask capable of transporting, storing, and disposing of six non-fuel core components or approximately 27 cubic feet of radioactive solid waste. Five existing DSWCs are candidates for use in storing and disposing of non-fuel core components and radioactive solid waste from the Interim Examination and Maintenance Cell, ultimately shipping them to the 200 West Area disposal site for burial. A series of inspections, studies, analyses, and modifications were performed to ensure that these casks can be used to safely ship solid waste. These inspections, studies, analyses, and modifications are summarized andmore » attached in this report. Visual inspection of the casks interiors provided information with respect to condition of the casks inner liners. Because water was allowed to enter the casks for varying lengths of time, condition of the cask liner pipe to bottom plate weld was of concern. Based on the visual inspection and a corrosion study, it was concluded that four of the five casks can be used from a corrosion standpoint. Only DSWC S/N-004 would need additional inspection and analysis to determine its usefulness. The five remaining DSWCs underwent some modification to prepare them for use. The existing cask lifting inserts were found to be corroded and deemed unusable. New lifting anchor bolts were installed to replace the existing anchors. Alternate lift lugs were fabricated for use with the new lifting anchor bolts. The cask tiedown frame was modified to facilitate adjustment of the cask tiedowns. As a result of the above mentioned inspections, studies, analysis, and modifications, four of the five existing casks can be used to store and transport waste from the Interim Examination and Maintenance Cell to the disposal site for burial. The fifth cask, DSWC S/N-004, would require further inspections before it could be used.« less

  14. Performance assessment for low-level waste disposal in the UK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashworth, A.B.

    1995-12-31

    British Nuclear Fuels plc (BNFL) operate a site for the disposal of Low Level Radioactive Waste at Drigg in West Cumbria, in North-West England. HMIP are responsible for the regulation of the site with regard to environmental discharges of radioactive materials, both operational and post-closure. This paper is concerned with post-closure matters only. Two post-closure performance assessments have been carried out for this site: one by the National Radiological Protection Board (NRPB) in 1987; and a subsequent one carried out on behalf of HMIP, completed in 1991. Currently, BNFL are preparing a Safety Case for continued operation of the Driggmore » site, and it expected that the core of this Case will comprise BNFL`s own analysis of post-closure performance. HMIP has developed procedures for the assessment of this Case, based upon experience of the previous Drigg assessments, and also upon the experience of similar work carried out in the assessment of Intermediate Level Waste (ILW) disposal at both deep and shallow potential sites. This paper describes the more important features of these procedures.« less

  15. Toxic Overload: The Waste Disposal Dilemma.

    ERIC Educational Resources Information Center

    Knox, Robert J.

    1991-01-01

    The role of the Environmental Protection Agency as ombudsman concerning waste disposal is examined with respect to both the current options of source reduction and recycling as pollution prevention, and alternative approaches that expand upon these current options, particularly with respect to toxic and medical waste. (JJK)

  16. Radiological risk assessment and biosphere modelling for radioactive waste disposal in Switzerland.

    PubMed

    Brennwald, M S; van Dorp, F

    2009-12-01

    Long-term safety assessments for geological disposal of radioactive waste in Switzerland involve the demonstration that the annual radiation dose to humans due to the potential release of radionuclides from the waste repository into the biosphere will not exceed the regulatory limit of 0.1 mSv. Here, we describe the simple but robust approach used by Nagra (Swiss National Cooperative for the Disposal of Radioactive Waste) to quantify the dose to humans as a result to time-dependent release of radionuclides from the geosphere into the biosphere. The model calculates the concentrations of radionuclides in different terrestrial and aquatic compartments of the surface environment. The fluxes of water and solids within the environment are the drivers for the exchange of radionuclides between these compartments. The calculated radionuclide concentrations in the biosphere are then used to estimate the radiation doses to humans due to various exposure paths (e.g. ingestion of radionuclides via drinking water and food, inhalation of radionuclides, external irradiation from radionuclides in soils). In this paper we also discuss recent new achievements and planned future work.

  17. 77 FR 64361 - Report on Waste Burial Charges: Changes in Decommissioning Waste Disposal Costs at Low-Level...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-19

    ... Decommissioning Waste Disposal Costs at Low-Level Waste Burial Facilities AGENCY: Nuclear Regulatory Commission... 15, ``Report on Waste Burial Charges: Changes in Decommissioning Waste Disposal Costs at Low-Level... for low-level waste. DATES: Submit comments by November 15, 2012. Comments received after this date...

  18. 77 FR 72997 - Low-Level Waste Disposal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-07

    ...-2011-0012] RIN 3150-AI92 Low-Level Waste Disposal AGENCY: Nuclear Regulatory Commission. ACTION... Regulatory Commission (NRC) is proposing to amend its regulations that govern low-level radioactive waste... development of criteria for waste acceptance based on the results of these analyses. These amendments will...

  19. 78 FR 1155 - Low-Level Waste Disposal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-08

    ... NUCLEAR REGULATORY COMMISSION 10 CFR Part 61 [NRC-2011-0012] RIN 3150-AI92 Low-Level Waste... correcting a document appearing in the Federal Register on December 7, 2012 entitled, ``Low-Level Waste... and Submitting Comments, ``Regulatory Analysis for Proposed Revisions to Low-Level Waste Disposal...

  20. Ageing management program for the Spanish low and intermediate level waste disposal and spent fuel and high-level waste centralised storage facilities

    NASA Astrophysics Data System (ADS)

    Zuloaga, P.; Ordoñez, M.; Andrade, C.; Castellote, M.

    2011-04-01

    The generic design of the centralised spent fuel storage facility was approved by the Spanish Safety Authority in 2006. The planned operational life is 60 years, while the design service life is 100 years. Durability studies and surveillance of the behaviour have been considered from the initial design steps, taking into account the accessibility limitations and temperatures involved. The paper presents an overview of the ageing management program set in support of the Performance Assessment and Safety Review of El Cabril low and intermediate level waste (LILW) disposal facility. Based on the experience gained for LILW, ENRESA has developed a preliminary definition of the Ageing Management Plan for the Centralised Interim Storage Facility of spent Fuel and High Level Waste (HLW), which addresses the behaviour of spent fuel, its retrievability, the confinement system and the reinforced concrete structure. It includes tests plans and surveillance design considerations, based on the El Cabril LILW disposal facility.

  1. 77 FR 43149 - Water and Waste Disposal Loans and Grants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-24

    ..., purification, or distribution of water; and for the collection, treatment, or disposal of waste in rural areas... requirements, Rural areas, Waste treatment and disposal, Water supply, Watersheds. For the reasons discussed in...

  2. Toxic-Waste Disposal by Combustion in Containers

    NASA Technical Reports Server (NTRS)

    Houseman, J.; Stephens, J. B.; Moynihan, P. I.; Compton, L. E.; Kalvinskas, J. J.

    1986-01-01

    Chemical wastes burned with minimal handling in storage containers. Technique for disposing of chemical munitions by burning them inside shells applies to disposal of toxic materials stored in drums. Fast, economical procedure overcomes heat-transfer limitations of conventional furnace designs by providing direct contact of oxygenrich combustion gases with toxic agent. No need to handle waste material, and container also decontaminated in process. Oxygen-rich torch flame cuts burster well and causes vaporization and combustion of toxic agent contained in shell.

  3. High-Level Radioactive Waste: Safe Storage and Ultimate Disposal.

    ERIC Educational Resources Information Center

    Dukert, Joseph M.

    Described are problems and techniques for safe disposal of radioactive waste. Degrees of radioactivity, temporary storage, and long-term permanent storage are discussed. Included are diagrams of estimated waste volumes to the year 2000 and of an artist's conception of a permanent underground disposal facility. (SL)

  4. Quantification of Food Waste Disposal in the United States: A Meta-Analysis.

    PubMed

    Thyberg, Krista L; Tonjes, David J; Gurevitch, Jessica

    2015-12-15

    Food waste has major consequences for social, nutritional, economic, and environmental issues, and yet the amount of food waste disposed in the U.S. has not been accurately quantified. We introduce the transparent and repeatable methods of meta-analysis and systematic reviewing to determine how much food is discarded in the U.S., and to determine if specific factors drive increased disposal. The aggregate proportion of food waste in U.S. municipal solid waste from 1995 to 2013 was found to be 0.147 (95% CI 0.137-0.157) of total disposed waste, which is lower than that estimated by U.S. Environmental Protection Agency for the same period (0.176). The proportion of food waste increased significantly with time, with the western U.S. region having consistently and significantly higher proportions of food waste than other regions. There were no significant differences in food waste between rural and urban samples, or between commercial/institutional and residential samples. The aggregate disposal rate for food waste was 0.615 pounds (0.279 kg) (95% CI 0.565-0.664) of food waste disposed per person per day, which equates to over 35.5 million tons (32.2 million tonnes) of food waste disposed annually in the U.S.

  5. Operating room waste: disposable supply utilization in neurointerventional procedures.

    PubMed

    Rigante, Luigi; Moudrous, Walid; de Vries, Joost; Grotenhuis, André J; Boogaarts, Hieronymus D

    2017-12-01

    Operating rooms account for 70% of hospital waste, increasing healthcare costs and creating environmental hazards. Endovascular treatment of cerebrovascular pathologies has become prominent, and associated products highly impact the total cost of care. We investigated the costs of endovascular surgical waste at our institution. Data from 53 consecutive endovascular procedures at the Radboud UMC Nijmegen from May to December 2016 were collected. "Unused disposable supply" was defined as one-time use items opened but not used during the procedure. Two observers cataloged the unused disposable supply for each case. The cost of each item was determined from the center supply catalog, and these costs were summed to determine the total cost of unused supply per case. Thirteen diagnostic cerebral digital subtraction angiographies (DSA) (24.5%) and 40 endovascular procedures (75.5%) were analyzed. Total interventional waste was 27,299.53 € (mean 515.09 € per procedure). While total costs of unused disposable supply were almost irrelevant for DSAs, they were consistent for interventional procedures (mean 676.49 € per case). Aneurysm standard coiling had the highest impact on total interventional waste (mean 1061.55 €). Disposable interventional products had a very high impact on the surgical waste costs in the series of the neurointerventional procedures (95% of total waste). This study shows the impact of neurointerventional waste on the total care costs for cerebrovascular patients. This might reflect the tendency to anticipate needs and emergencies in neurointervention. Responsible use of disposable material can be achieved by educating operators and nurses and creating operator preference cards.

  6. Characterization of 618-11 solid waste burial ground, disposed waste, and description of the waste generating facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hladek, K.L.

    1997-10-07

    The 618-11 (Wye or 318-11) burial ground received transuranic (TRTJ) and mixed fission solid waste from March 9, 1962, through October 2, 1962. It was then closed for 11 months so additional burial facilities could be added. The burial ground was reopened on September 16, 1963, and continued operating until it was closed permanently on December 31, 1967. The burial ground received wastes from all of the 300 Area radioactive material handling facilities. The purpose of this document is to characterize the 618-11 solid waste burial ground by describing the site, burial practices, the disposed wastes, and the waste generatingmore » facilities. This document provides information showing that kilogram quantities of plutonium were disposed to the drum storage units and caissons, making them transuranic (TRU). Also, kilogram quantities of plutonium and other TRU wastes were disposed to the three trenches, which were previously thought to contain non-TRU wastes. The site burial facilities (trenches, caissons, and drum storage units) should be classified as TRU and the site plutonium inventory maintained at five kilograms. Other fissile wastes were also disposed to the site. Additionally, thousands of curies of mixed fission products were also disposed to the trenches, caissons, and drum storage units. Most of the fission products have decayed over several half-lives, and are at more tolerable levels. Of greater concern, because of their release potential, are TRU radionuclides, Pu-238, Pu-240, and Np-237. TRU radionuclides also included slightly enriched 0.95 and 1.25% U-231 from N-Reactor fuel, which add to the fissile content. The 618-11 burial ground is located approximately 100 meters due west of Washington Nuclear Plant No. 2. The burial ground consists of three trenches, approximately 900 feet long, 25 feet deep, and 50 feet wide, running east-west. The trenches constitute 75% of the site area. There are 50 drum storage units (five 55-gallon steel drums welded

  7. An industry perspective on commercial radioactive waste disposal conditions and trends.

    PubMed

    Romano, Stephen A

    2006-11-01

    The United States is presently served by Class-A, -B and -C low-level radioactive waste and naturally-occurring and accelerator-produced radioactive material disposal sites in Washington and South Carolina; a Class-A and mixed waste disposal site in Utah that also accepts naturally-occurring radioactive material; and hazardous and solid waste facilities and uranium mill tailings sites that accept certain radioactive materials on a site-specific basis. The Washington site only accepts low-level radioactive waste from 11 western states due to interstate Compact restrictions on waste importation. The South Carolina site will be subject to geographic service area restrictions beginning 1 July 2008, after which only three states will have continued access. The Utah site dominates the commercial Class-A and mixed waste disposal market due to generally lower state fees than apply in South Carolina. To expand existing commercial services, an existing hazardous waste site in western Texas is seeking a Class-A, -B and -C and mixed waste disposal license. With that exception, no new Compact facilities are proposed. This fluid, uncertain situation has inspired national level rulemaking initiatives and policy studies, as well as alternative disposal practices for certain low-activity materials.

  8. Status of the waste assay for nonradioactive disposal (WAND) project

    NASA Astrophysics Data System (ADS)

    Arnone, Gaetano L.; Foster, Lynn A.; Foxx, Charles L.; Hagan, Roland C.; Martin, E. R.; Myers, Steven C.; Parker, Jack L.

    1999-01-01

    The WAND (Waste Assay for Nonradioactive Disposal) system scans thought-to-be-clean, low-density waste (mostly paper and plastics) to verify the absence of radioactive contaminants at very low-levels. Much of the low-density waste generated in radiologically controlled areas, formally considered `suspect' radioactive, is now disposed more cheaply at the Los Alamos County Landfill as opposed to the LANL Radioactive Waste Landfill.

  9. 40 CFR 761.63 - PCB household waste storage and disposal.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false PCB household waste storage and..., AND USE PROHIBITIONS Storage and Disposal § 761.63 PCB household waste storage and disposal. PCB household waste, as defined at § 761.3, managed in a facility permitted, licensed, or registered by a State...

  10. 40 CFR 761.63 - PCB household waste storage and disposal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false PCB household waste storage and..., AND USE PROHIBITIONS Storage and Disposal § 761.63 PCB household waste storage and disposal. PCB household waste, as defined at § 761.3, managed in a facility permitted, licensed, or registered by a State...

  11. 40 CFR 761.63 - PCB household waste storage and disposal.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false PCB household waste storage and..., AND USE PROHIBITIONS Storage and Disposal § 761.63 PCB household waste storage and disposal. PCB household waste, as defined at § 761.3, managed in a facility permitted, licensed, or registered by a State...

  12. 40 CFR 761.63 - PCB household waste storage and disposal.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false PCB household waste storage and..., AND USE PROHIBITIONS Storage and Disposal § 761.63 PCB household waste storage and disposal. PCB household waste, as defined at § 761.3, managed in a facility permitted, licensed, or registered by a State...

  13. Household medical waste disposal policy in Israel.

    PubMed

    Barnett-Itzhaki, Zohar; Berman, Tamar; Grotto, Itamar; Schwartzberg, Eyal

    2016-01-01

    Large amounts of expired and unused medications accumulate in households. This potentially exposes the public to hazards due to uncontrolled use of medications. Most of the expired or unused medications that accumulate in households (household medical waste) is thrown to the garbage or flushed down to the sewage, potentially contaminating waste-water, water resources and even drinking water. There is evidence that pharmaceutical active ingredients reach the environment, including food, however the risk to public health from low level exposure to pharmaceuticals in the environment is currently unknown. In Israel, there is no legislation regarding household medical waste collection and disposal. Furthermore, only less than 14 % of Israelis return unused medications to Health Maintenance Organization (HMO) pharmacies. In this study, we investigated world-wide approaches and programs for household medical waste collection and disposal. In many countries around the world there are programs for household medical waste collection. In many countries there is legislation to address the issue of household medical waste, and this waste is collected in hospitals, clinics, law enforcement agencies and pharmacies. Furthermore, in many countries, medication producers and pharmacies pay for the collection and destruction of household medical waste, following the "polluter pays" principle. Several approaches and methods should be considered in Israel: (a) legislation and regulation to enable a variety of institutes to collect household medical waste (b) implementing the "polluter pays" principle and enforcing medical products manufactures to pay for the collection and destruction of household medical waste. (c) Raising awareness of patients, pharmacists, and other medical health providers regarding the health and environmental risks in accumulation of drugs and throwing them to the garbage, sink or toilet. (d) Adding specific instructions regarding disposal of the drug, in the

  14. Deep rock nuclear waste disposal test: design and operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klett, Robert D.

    1974-09-01

    An electrically heated test of nuclear waste simulants in granitic rock was conducted to demonstrate the feasibility of the concept of deep rock nuclear waste disposal and to obtain design data. This report describes the deep rock disposal sytstems study and the design and operation of the first concept feasibility test.

  15. 45 CFR 671.12 - Waste disposal.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... chloride (PVC), polyurethane foam, polystyrene foam, rubber and lubricating oils, treated timbers and other... onto ice-free areas or into any fresh water system. (h) Open burning of wastes is prohibited at all... dispose of waste by open burning prior to March 1, 1994, allowance shall be made for the wind direction...

  16. 45 CFR 671.12 - Waste disposal.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... chloride (PVC), polyurethane foam, polystyrene foam, rubber and lubricating oils, treated timbers and other... onto ice-free areas or into any fresh water system. (h) Open burning of wastes is prohibited at all... dispose of waste by open burning prior to March 1, 1994, allowance shall be made for the wind direction...

  17. 45 CFR 671.12 - Waste disposal.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... chloride (PVC), polyurethane foam, polystyrene foam, rubber and lubricating oils, treated timbers and other... onto ice-free areas or into any fresh water system. (h) Open burning of wastes is prohibited at all... dispose of waste by open burning prior to March 1, 1994, allowance shall be made for the wind direction...

  18. 45 CFR 671.12 - Waste disposal.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... chloride (PVC), polyurethane foam, polystyrene foam, rubber and lubricating oils, treated timbers and other... onto ice-free areas or into any fresh water system. (h) Open burning of wastes is prohibited at all... dispose of waste by open burning prior to March 1, 1994, allowance shall be made for the wind direction...

  19. 45 CFR 671.12 - Waste disposal.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... chloride (PVC), polyurethane foam, polystyrene foam, rubber and lubricating oils, treated timbers and other... onto ice-free areas or into any fresh water system. (h) Open burning of wastes is prohibited at all... dispose of waste by open burning prior to March 1, 1994, allowance shall be made for the wind direction...

  20. Safety Tips: Academic Laboratory Waste Disposal: Yes, You Can Get Rid of that Stuff Legally!

    ERIC Educational Resources Information Center

    Young, Jay A.

    1983-01-01

    Discusses three methods for removing wastes from educational laboratories. These include paying someone with Environmental Protection Agency (EPA) permits, doing part of the work before an EPA contractor carries out final steps, or reducing magnitude of future disposal problems by changing present laboratory procedures. Includes comments on…

  1. Cytotoxic Drug Dispersal, Cytotoxic Safety, and Cytotoxic Waste Management: Practices and Proposed India-specific Guidelines

    PubMed Central

    Capoor, Malini R; Bhowmik, Kumar Tapas

    2017-01-01

    This article deals with practices related to cytotoxic drug dispersal, cytotoxic safety, and cytotoxic waste management and attempts at India-specific guidelines for their dispersal and disposal. The articles related to cytotoxic drug dispersal, cytotoxic safety, and cytotoxic waste management were reviewed from PubMed and their applicability in Indian health-care facilities (HCFs) was also reviewed. All HCFs dealing with cytotoxic drugs should consider cytotoxic policy, patient safety and health-care worker safety, and environmental monitoring program as per the available international guidelines customized as per Indian conditions. Utmost care in handling cytotoxic waste is quintessential. The formation of India-specific cytotoxic guidelines requires the inputs from all stakeholders. Cytotoxic waste, cytotoxic safety, and cytotoxic waste management should be the subject of a national strategy with an infrastructure, cradle-to-grave legislation, competent regulatory authority, and trained personnel. PMID:28900329

  2. An eco friendly solution to the food waste disposal

    NASA Astrophysics Data System (ADS)

    Babu, G. Reddy; Kumar, G. Madhav

    2017-07-01

    In recent years, waste disposal at workmen camp is one of the major problems being faced by many nations across the world. In the workmen colony at Chittapur, a series of kitchens were built for cooking purpose and a number of small canteens are also functioning. Considerable quantity of food waste is collected daily from these eateries and disposed at a faraway place. Food waste is highly degradable in nature, if not disposed properly it causes problems related to environmental pollution. Hence, it is very important to identify an environment friendly process rather than opt for land filling or any disposal method. We worked together to find a suitable eco-friendly solution for the food waste disposal at Chittapur site and suggested that biogas production through anaerobic digestion is a solution for the disposal and utilization of food waste for better purpose. This resulted in setting up a 500 kg per day food waste treatment biogas plant at Chittapur. This establishment is the first time in the construction industry at workmen camp in India. Anaerobic Digestion has been recognized as one of the best options that is available for treating food waste, as it generates two valuable end products, biogas and compost. Biogas is a mixture of CH4 and CO2 about (55:45). Biogas generated can be used for thermal applications such as cooking or for generating electricity. The digested slurry is a well stabilized organic manure and can be used as soil fertilizer. Plant design is to handle 500 kg of food waste /day. 27 kg LPG is obtained from 500kg of kitchen waste. The Value of 27 kg of LPG is Rs.2700/day. Daily 1000 litres of digested effluent was obtained. It is good organic manure with plant micro nutrients and macro nutrients. This can be used for growing plants and in agriculture. The value of manure per day is Rs.250/-. The annual revenue is Rs.10.62 lakhs and the annual expenditure is 1.8 lakhs. The net benefit is 8.82 lakhs. Payback period is 2.1 years. This process

  3. E-waste bans and U.S. households' preferences for disposing of their e-waste.

    PubMed

    Milovantseva, Natalia; Saphores, Jean-Daniel

    2013-07-30

    To deal with the inadequate disposal of e-waste, many states have instituted bans on its disposal in municipal landfills. However, the effectiveness of e-waste bans does not seem to have been analyzed yet. This paper starts addressing this gap. Using data from a survey of U.S. households, we estimate multivariate logit models to explain past disposal behavior by households of broken/obsolete ("junk") cell phones and disposal intentions for "junk" TVs. Our explanatory variables include factors summarizing general awareness of environmental issues, pro-environmental behavior in the past year, attitudes toward recycling small electronics (for the cell phones model only), socio-economic and demographic characteristics, and the presence of state e-waste bans. We find that California's Cell Phone Recycling Act had a significant and positive impact on the recycling of junk cell phones; however, state disposal bans for junk TVs seem to have been mostly ineffective, probably because they were poorly publicized and enforced. Their effectiveness could be enhanced by providing more information about e-waste recycling to women, and more generally to adults under 60. Given the disappointing performance of policies implemented to-date to enhance the collection of e-waste, it may be time to explore economic instruments such as deposit-refund systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. U.S. program assessing nuclear waste disposal in space - A 1981 status report

    NASA Technical Reports Server (NTRS)

    Rice, E. E.; Edgecombe, D. S.; Best, R. E.; Compton, P. R.

    1982-01-01

    Concepts, current studies, and technology and equipment requirements for using the STS for space disposal of selected nuclear wastes as a complement to geological storage are reviewed. An orbital transfer vehicle carried by the Shuttle would kick the waste cannister into a 0.85 AU heliocentric orbit. One flight per week is regarded as sufficient to dispose of all high level wastes chemically separated from reactor fuel rods from 200 GWe nuclear power capacity. Studies are proceeding for candidate wastes, the STS system suited to each waste, and the risk/benefits of a space disposal system. Risk assessments are being extended to total waste disposal risks for various disposal programs with and without a space segment, and including side waste streams produced as a result of separating substances for launch.

  5. Preliminary risk benefit assessment for nuclear waste disposal in space

    NASA Technical Reports Server (NTRS)

    Rice, E. E.; Denning, R. S.; Friedlander, A. L.; Priest, C. C.

    1982-01-01

    This paper describes the recent work of the authors on the evaluation of health risk benefits of space disposal of nuclear waste. The paper describes a risk model approach that has been developed to estimate the non-recoverable, cumulative, expected radionuclide release to the earth's biosphere for different options of nuclear waste disposal in space. Risk estimates for the disposal of nuclear waste in a mined geologic repository and the short- and long-term risk estimates for space disposal were developed. The results showed that the preliminary estimates of space disposal risks are low, even with the estimated uncertainty bounds. If calculated release risks for mined geologic repositories remain as low as given by the U.S. DOE, and U.S. EPA requirements continue to be met, then no additional space disposal study effort in the U.S. is warranted at this time. If risks perceived by the public are significant in the acceptance of mined geologic repositories, then consideration of space disposal as a complement to the mined geologic repository is warranted.

  6. Prospective implementation of a software application for pre-disposal L/ILW waste management activities in Romania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fako, Raluca; Sociu, Florin; Stan, Camelia

    Romania is actively engaged to update the Medium and Long Term National Strategy for Safe Management of Radioactive Waste and to approve the Road Map for Geological Repository Development. Considering relevant documents to be further updated, about 122,000 m{sup 3} SL-LILW are to be disposed in a near surface facility that will have room, also, for quantities of VLLW. Planned date for commissioning is under revision. Taking into account that in this moment there are initiated several actions for the improvement of the technical capability for LILW treatment and conditioning, several steps for the possible use of SAFRAN software weremore » considered. In view of specific data for Romanian radioactive waste inventory, authors are trying to highlight the expected limitations and unknown data related with the implementation of SAFRAN software for the foreseen pre-disposal waste management activities. There are challenges that have to be faced in the near future related with clear definition of the properties of each room, area and waste management activity. This work has the aim to address several LILW management issues in accordance with national and international regulatory framework for the assurance of nuclear safety. Also, authors intend to develop their institutional capability for the safety demonstration of the existent and future radioactive waste management facilities and activities. (authors)« less

  7. Preliminary safety analysis of the Baita Bihor radioactive waste repository, Romania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Little, Richard; Bond, Alex; Watson, Sarah

    2007-07-01

    A project funded under the European Commission's Phare Programme 2002 has undertaken an in-depth analysis of the operational and post-closure safety of the Baita Bihor repository. The repository has accepted low- and some intermediate-level radioactive waste from industry, medical establishments and research activities since 1985 and the current estimate is that disposals might continue for around another 20 to 35 years. The analysis of the operational and post-closure safety of the Baita Bihor repository was carried out in two iterations, with the second iteration resulting in reduced uncertainties, largely as a result taking into account new information on the hydrologymore » and hydrogeology of the area, collected as part of the project. Impacts were evaluated for the maximum potential inventory that might be available for disposal to Baita Bihor for a number of operational and postclosure scenarios and associated conceptual models. The results showed that calculated impacts were below the relevant regulatory criteria. In light of the assessment, a number of recommendations relating to repository operation, optimisation of repository engineering and waste disposals, and environmental monitoring were made. (authors)« less

  8. Landfill area estimation based on integrated waste disposal options and solid waste forecasting using modified ANFIS model.

    PubMed

    Younes, Mohammad K; Nopiah, Z M; Basri, N E Ahmad; Basri, H; Abushammala, Mohammed F M; Younes, Mohammed Y

    2016-09-01

    Solid waste prediction is crucial for sustainable solid waste management. The collection of accurate waste data records is challenging in developing countries. Solid waste generation is usually correlated with economic, demographic and social factors. However, these factors are not constant due to population and economic growth. The objective of this research is to minimize the land requirements for solid waste disposal for implementation of the Malaysian vision of waste disposal options. This goal has been previously achieved by integrating the solid waste forecasting model, waste composition and the Malaysian vision. The modified adaptive neural fuzzy inference system (MANFIS) was employed to develop a solid waste prediction model and search for the optimum input factors. The performance of the model was evaluated using the root mean square error (RMSE) and the coefficient of determination (R(2)). The model validation results are as follows: RMSE for training=0.2678, RMSE for testing=3.9860 and R(2)=0.99. Implementation of the Malaysian vision for waste disposal options can minimize the land requirements for waste disposal by up to 43%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada National Security Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Programs

    2010-10-04

    The Nevada National Security Site (NNSS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. The U.S. Department of Energy National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NNSS and National Security Technologies, LLC (NSTec) is the Management and Operations contractor. Access on and off the NNSS is tightly controlled, restricted, and guarded on a 24-hour basis. The NNSS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NNSS. The Area 5 Radioactive Waste Management Site (RWMS) ismore » the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NNSS (Figure 1), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. The site will be used for the disposal of regulated Asbestiform Low-Level Waste (ALLW), small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains Polychlorinated Biphenyl (PCB) Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. Waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM) and PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water. The term

  10. 36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site in...

  11. 36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site in...

  12. 36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site in...

  13. 36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site in...

  14. 36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site in...

  15. Managing previously disposed waste to today's standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-01-01

    A Radioactive Waste Management Complex (RWMC) was established at the Idaho National Engineering Laboratory (INEL) in 1952 for controlled disposal of radioactive waste generated at the INEL. Between 1954 and 1970 waste characterized by long lived, alpha emitting radionuclides from the Rocky Flats Plant was also buried at this site. Migration of radionuclides and other hazardous substances from the buried Migration of radionuclides and other hazardous substances from the buried waste has recently been detected. A Buried Waste Program (BWP) was established to manage cleanup of the buried waste. This program has four objectives: (1) determine contaminant sources, (2) determinemore » extent of contamination, (3) mitigate migration, and (4) recommend an alternative for long term management of the waste. Activities designed to meet these objectives have been under way since the inception of the program. The regulatory environment governing these activities is evolving. Pursuant to permitting activities under the Resource Conservation and Recovery Act (RCRA), the Department of Energy (DOE) and the Environmental Protection Agency (EPA) entered into a Consent Order Compliance Agreement (COCA) for cleanup of past practice disposal units at the INEL. Subsequent to identification of the RWMC as a release site, cleanup activities proceeded under dual regulatory coverage of RCRA and the Atomic Energy Act. DOE, EPA, and the State of Idaho are negotiating a RCRA/Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Interagency Agreement (IAG) for management of waste disposal sites at the INEL as a result of the November 1989 listing of the INEL on the National Priority List (NPL). Decision making for selection of cleanup technology will be conducted under the CERCLA process supplemented as required to meet the requirements of the National Environmental Policy Act (NEPA). 7 figs.« less

  16. A quantitative analysis of municipal solid waste disposal charges in China.

    PubMed

    Wu, Jian; Zhang, Weiqian; Xu, Jiaxuan; Che, Yue

    2015-03-01

    Rapid industrialization and economic development have caused a tremendous increase in municipal solid waste (MSW) generation in China. China began implementing a policy of MSW disposal fees for household waste management at the end of last century. Three charging methods were implemented throughout the country: a fixed disposal fee, a potable water-based disposal fee, and a plastic bag-based disposal fee. To date, there has been little qualitative or quantitative analysis on the effectiveness of this relatively new policy. This paper provides a general overview of MSW fee policy in China, attempts to verify whether the policy is successful in reducing general waste collected, and proposes an improved charging system to address current problems. The paper presents an empirical statistical analysis of policy effectiveness derived from an environmental Kuznets curve (EKC) test on panel data of China. EKC tests on different kinds of MSW charge systems were then examined for individual provinces or cities. A comparison of existing charging systems was conducted using environmental and economic criteria. The results indicate the following: (1) the MSW policies implemented over the study period were effective in the reduction of waste generation, (2) the household waste discharge fee policy did not act as a strong driver in terms of waste prevention and reduction, and (3) the plastic bag-based disposal fee appeared to be performing well according to qualitative and quantitative analysis. Based on current situation of waste discharging management in China, a three-stage transitional charging scheme is proposed and both advantages and drawbacks discussed. Evidence suggests that a transition from a fixed disposal fee to a plastic bag-based disposal fee involving various stakeholders should be the next objective of waste reduction efforts.

  17. Site Selection and Geological Research Connected with High Level Waste Disposal Programme in the Czech Republic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomas, J.

    2003-02-25

    Attempts to solve the problem of high-level waste disposal including the spent fuel from nuclear power plants have been made in the Czech Republic for over the 10 years. Already in 1991 the Ministry of Environment entitled The Czech Geological Survey to deal with the siting of the locality for HLW disposal and the project No. 3308 ''The geological research of the safe disposal of high level waste'' had started. Within this project a sub-project ''A selection of perspective HLW disposal sites in the Bohemian Massif'' has been elaborated and 27 prospective areas were identified in the Czech Republic. Thismore » selection has been later narrowed to 8 areas which are recently studied in more detail. As a parallel research activity with siting a granitic body Melechov Massif in Central Moldanubian Pluton has been chosen as a test site and the 1st stage of research i.e. evaluation and study of its geological, hydrogeological, geophysical, tectonic and structural properties has been already completed. The Melechov Massif was selected as a test site after the recommendation of WATRP (Waste Management Assessment and Technical Review Programme) mission of IAEA (1993) because it represents an area analogous with the host geological environment for the future HLW and spent fuel disposal in the Czech Republic, i.e. variscan granitoids. It is necessary to say that this site would not be in a locality where the deep repository will be built, although it is a site suitable for oriented research for the sampling and collection of descriptive data using up to date and advanced scientific methods. The Czech Republic HLW and spent fuel disposal programme is now based on The Concept of Radioactive Waste and Spent Nuclear Fuel Management (''Concept'' hereinafter) which has been prepared in compliance with energy policy approved by Government Decree No. 50 of 12th January 2000 and approved by the Government in May 2002. Preparation of the Concept was required, amongst other reasons in

  18. Risk management for outsourcing biomedical waste disposal - using the failure mode and effects analysis.

    PubMed

    Liao, Ching-Jong; Ho, Chao Chung

    2014-07-01

    Using the failure mode and effects analysis, this study examined biomedical waste companies through risk assessment. Moreover, it evaluated the supervisors of biomedical waste units in hospitals, and factors relating to the outsourcing risk assessment of biomedical waste in hospitals by referring to waste disposal acts. An expert questionnaire survey was conducted on the personnel involved in waste disposal units in hospitals, in order to identify important factors relating to the outsourcing risk of biomedical waste in hospitals. This study calculated the risk priority number (RPN) and selected items with an RPN value higher than 80 for improvement. These items included "availability of freezing devices", "availability of containers for sharp items", "disposal frequency", "disposal volume", "disposal method", "vehicles meeting the regulations", and "declaration of three lists". This study also aimed to identify important selection factors of biomedical waste disposal companies by hospitals in terms of risk. These findings can serve as references for hospitals in the selection of outsourcing companies for biomedical waste disposal. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Potential migration of buoyant LNAPL from intermediate level waste (ILW) emplaced in a geological disposal facility (GDF) for U.K. radioactive waste.

    PubMed

    Benbow, Steven J; Rivett, Michael O; Chittenden, Neil; Herbert, Alan W; Watson, Sarah; Williams, Steve J; Norris, Simon

    2014-10-15

    A safety case for the disposal of Intermediate Level (radioactive) Waste (ILW) in a deep geological disposal facility (GDF) requires consideration of the potential for waste-derived light non-aqueous phase liquid (LNAPL) to migrate under positive buoyancy from disposed waste packages. Were entrainment of waste-derived radionuclides in LNAPL to occur, such migration could result in a shorter overall travel time to environmental or human receptors than radionuclide migration solely associated with the movement of groundwater. This paper provides a contribution to the assessment of this issue through multiphase-flow numerical modelling underpinned by a review of the UK's ILW inventory and literature to define the nature of the associated ILW LNAPL source term. Examination has been at the waste package-local GDF environment scale to determine whether proposed disposal of ILW would lead to significant likelihood of LNAPL migration, both from waste packages and from a GDF vault into the local host rock. Our review and numerical modelling support the proposition that the release of a discrete free phase LNAPL from ILW would not present a significant challenge to the safety case even with conservative approximations. 'As-disposed' LNAPL emplaced with the waste is not expected to pose a significant issue. 'Secondary LNAPL' generated in situ within the disposed ILW, arising from the decomposition of plastics, in particular PVC (polyvinyl chloride), could form the predominant LNAPL source term. Released high molecular weight phthalate plasticizers are judged to be the primary LNAPL potentially generated. These are expected to have low buoyancy-based mobility due to their very low density contrast with water and high viscosity. Due to the inherent uncertainties, significant conservatisms were adopted within the numerical modelling approach, including: the simulation of a deliberately high organic material--PVC content wastestream (2D03) within an annular grouted waste package

  20. Guidelines on disposing of medical waste in the dialysis clinic.

    PubMed

    Park, Lawrence K

    2002-02-01

    The term "medical waste" varies from state to state as to its name, definition, and scope of coverage. In this article, we will focus on the process of how a dialysis clinic ensures proper classification, labeling, packaging, tracking, and disposal of medical waste. In addition, we will reference: OSHA regulations (29CFR1910), state specific regulations, DOT regulations (49CFR) and FDA regulations that impact the disposal of medical waste.

  1. Waste disposal technology transfer matching requirement clusters for waste disposal facilities in China.

    PubMed

    Dorn, Thomas; Nelles, Michael; Flamme, Sabine; Jinming, Cai

    2012-11-01

    Even though technology transfer has been part of development aid programmes for many decades, it has more often than not failed to come to fruition. One reason is the absence of simple guidelines or decision making tools that help operators or plant owners to decide on the most suitable technology to adopt. Practical suggestions for choosing the most suitable technology to combat a specific problem are hard to get and technology drawbacks are not sufficiently highlighted. Western counterparts in technology transfer or development projects often underestimate or don't sufficiently account for the high investment costs for the imported incineration plant; the differing nature of Chinese MSW; the need for trained manpower; and the need to treat flue gas, bunker leakage water, and ash, all of which contain highly toxic elements. This article sets out requirements for municipal solid waste disposal plant owner/operators in China as well as giving an attribute assessment for the prevalent waste disposal plant types in order to assist individual decision makers in their evaluation process for what plant type might be most suitable in a given situation. There is no 'best' plant for all needs and purposes, and requirement constellations rely on generalisations meaning they cannot be blindly applied, but an alignment of a type of plant to a type of owner or operator can realistically be achieved. To this end, a four-step approach is suggested and a technology matrix is set out to ease the choice of technology to transfer and avoid past errors. The four steps are (1) Identification of plant owner/operator requirement clusters; (2) Determination of different municipal solid waste (MSW) treatment plant attributes; (3) Development of a matrix matching requirement clusters to plant attributes; (4) Application of Quality Function Deployment Method to aid in technology localisation. The technology transfer matrices thus derived show significant performance differences between the

  2. Space augmentation of military high-level waste disposal

    NASA Technical Reports Server (NTRS)

    English, T.; Lees, L.; Divita, E.

    1979-01-01

    Space disposal of selected components of military high-level waste (HLW) is considered. This disposal option offers the promise of eliminating the long-lived radionuclides in military HLW from the earth. A space mission which meets the dual requirements of long-term orbital stability and a maximum of one space shuttle launch per week over a period of 20-40 years, is a heliocentric orbit about halfway between the orbits of earth and Venus. Space disposal of high-level radioactive waste is characterized by long-term predictability and short-term uncertainties which must be reduced to acceptably low levels. For example, failure of either the Orbit Transfer Vehicle after leaving low earth orbit, or the storable propellant stage failure at perihelion would leave the nuclear waste package in an unplanned and potentially unstable orbit. Since potential earth reencounter and subsequent burn-up in the earth's atmosphere is unacceptable, a deep space rendezvous, docking, and retrieval capability must be developed.

  3. Optimal evaluation of infectious medical waste disposal companies using the fuzzy analytic hierarchy process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Chao Chung, E-mail: ho919@pchome.com.tw

    Ever since Taiwan's National Health Insurance implemented the diagnosis-related groups payment system in January 2010, hospital income has declined. Therefore, to meet their medical waste disposal needs, hospitals seek suppliers that provide high-quality services at a low cost. The enactment of the Waste Disposal Act in 1974 had facilitated some improvement in the management of waste disposal. However, since the implementation of the National Health Insurance program, the amount of medical waste from disposable medical products has been increasing. Further, of all the hazardous waste types, the amount of infectious medical waste has increased at the fastest rate. This ismore » because of the increase in the number of items considered as infectious waste by the Environmental Protection Administration. The present study used two important findings from previous studies to determine the critical evaluation criteria for selecting infectious medical waste disposal firms. It employed the fuzzy analytic hierarchy process to set the objective weights of the evaluation criteria and select the optimal infectious medical waste disposal firm through calculation and sorting. The aim was to propose a method of evaluation with which medical and health care institutions could objectively and systematically choose appropriate infectious medical waste disposal firms.« less

  4. Optimal evaluation of infectious medical waste disposal companies using the fuzzy analytic hierarchy process.

    PubMed

    Ho, Chao Chung

    2011-07-01

    Ever since Taiwan's National Health Insurance implemented the diagnosis-related groups payment system in January 2010, hospital income has declined. Therefore, to meet their medical waste disposal needs, hospitals seek suppliers that provide high-quality services at a low cost. The enactment of the Waste Disposal Act in 1974 had facilitated some improvement in the management of waste disposal. However, since the implementation of the National Health Insurance program, the amount of medical waste from disposable medical products has been increasing. Further, of all the hazardous waste types, the amount of infectious medical waste has increased at the fastest rate. This is because of the increase in the number of items considered as infectious waste by the Environmental Protection Administration. The present study used two important findings from previous studies to determine the critical evaluation criteria for selecting infectious medical waste disposal firms. It employed the fuzzy analytic hierarchy process to set the objective weights of the evaluation criteria and select the optimal infectious medical waste disposal firm through calculation and sorting. The aim was to propose a method of evaluation with which medical and health care institutions could objectively and systematically choose appropriate infectious medical waste disposal firms. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Respiratory Health in Waste Collection and Disposal Workers.

    PubMed

    Vimercati, Luigi; Baldassarre, Antonio; Gatti, Maria Franca; De Maria, Luigi; Caputi, Antonio; Dirodi, Angelica A; Cuccaro, Francesco; Bellino, Raffaello Maria

    2016-06-24

    Waste management, namely, collection, transport, sorting and processing, and disposal, is an issue of social concern owing to its environmental impact and effects on public health. In fact, waste management activities are carried out according to procedures that can have various negative effects on the environment and, potentially, on human health. The aim of our study was to assess the potential effects on respiratory health of this exposure in workers in the waste management and disposal field, as compared with a group of workers with no occupational exposure to outdoor pollutants. The sample consisted of a total of 124 subjects, 63 waste collectors, and 61 office clerks. Informed consent was obtained from all subjects before inclusion in the study. The entire study population underwent pulmonary function assessments with spirometry and completed two validated questionnaires for the diagnosis of rhinitis and chronic bronchitis. Statistical analyses were performed using STATA 13. Spirometry showed a statistically significant reduction in the mean Tiffenau Index values in the exposed workers, as compared with the controls, after adjusting for the confounding factors of age, BMI, and smoking habit. Similarly, the mean FEV1 values were lower in the exposed workers than in the controls, this difference being again statistically significant. The FVC differences measured in the two groups were not found to be statistically significant. We ran a cross-sectional study to investigate the respiratory health of a group of workers in the solid waste collection and disposal field as compared with a group of office workers. In agreement with most of the data in the literature, our findings support the existence of a prevalence of respiratory deficits in waste disposal workers. Our data suggest the importance of adopting preventive measures, such as wearing specific individual protection devices, to protect this particular category of workers from adverse effects on respiratory

  6. Respiratory Health in Waste Collection and Disposal Workers

    PubMed Central

    Vimercati, Luigi; Baldassarre, Antonio; Gatti, Maria Franca; De Maria, Luigi; Caputi, Antonio; Dirodi, Angelica A.; Cuccaro, Francesco; Bellino, Raffaello Maria

    2016-01-01

    Waste management, namely, collection, transport, sorting and processing, and disposal, is an issue of social concern owing to its environmental impact and effects on public health. In fact, waste management activities are carried out according to procedures that can have various negative effects on the environment and, potentially, on human health. The aim of our study was to assess the potential effects on respiratory health of this exposure in workers in the waste management and disposal field, as compared with a group of workers with no occupational exposure to outdoor pollutants. The sample consisted of a total of 124 subjects, 63 waste collectors, and 61 office clerks. Informed consent was obtained from all subjects before inclusion in the study. The entire study population underwent pulmonary function assessments with spirometry and completed two validated questionnaires for the diagnosis of rhinitis and chronic bronchitis. Statistical analyses were performed using STATA 13. Spirometry showed a statistically significant reduction in the mean Tiffenau Index values in the exposed workers, as compared with the controls, after adjusting for the confounding factors of age, BMI, and smoking habit. Similarly, the mean FEV1 values were lower in the exposed workers than in the controls, this difference being again statistically significant. The FVC differences measured in the two groups were not found to be statistically significant. We ran a cross-sectional study to investigate the respiratory health of a group of workers in the solid waste collection and disposal field as compared with a group of office workers. In agreement with most of the data in the literature, our findings support the existence of a prevalence of respiratory deficits in waste disposal workers. Our data suggest the importance of adopting preventive measures, such as wearing specific individual protection devices, to protect this particular category of workers from adverse effects on respiratory

  7. Technical and economic evaluation of controlled disposal options for very low level radioactive wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, P.J.; Vance, J.N.

    1990-08-01

    Over the past several years, there has been considerable interest by the nuclear industry in the Nuclear Regulatory Commission (NRC) explicitly defined an activity level in plant waste materials at which the radiological impacts would be so low as to be considered Below Regulatory Concern (BRC). In January 1989, Electric Power Research Institute (EPRI) completed an extensive industry research effort to develop the technical bases for establishing criteria for the disposal of very low activity wastes in ordinary disposal facilities. The Nuclear Management and Resources Council (NUMARC), with assistance from the Edison Electric Institute (EEI) and the Electric Power Researchmore » Institute (EPRI), drafted a petition titled: Petition for Rulemaking Regarding Disposal of Below Regulatory Concern Radioactive Wastes from Commercial Nuclear Power Plants.'' Subsequent to the industry making a final decision for submittal of the drafted BRC petition, EPRI was requested to evaluate the technical and economic impact of six BRC options. These options are: take no action in pursuing a BRC waste exemption, petition the NRC for authorization to disposal of any BRC waste in any ordinary disposal facility, limit disposal of BRC waste to the nuclear power plant site, limit disposal of BRC waste to the nuclear power plant site and other utility owned property, petition for a mixed waste exemption, and petition for single waste stream exemptions in sequence (i.e. soil, followed by sewage sludge, etc.). The petition and technical bases were written to support the disposal of any BRC waste type in any ordinary disposal facility. These documents do not provide all of the technical and economic information needed to completely assessment the BRC options. This report provides the technical and economic basis for a range of options concerning disposal of very low activity wastes. 3 figs., 20 tabs.« less

  8. Analysis of nuclear waste disposal in space, phase 3. Volume 1: Executive summary of technical report

    NASA Technical Reports Server (NTRS)

    Rice, E. E.; Miller, N. E.; Yates, K. R.; Martin, W. E.; Friedlander, A. L.

    1980-01-01

    The objectives, approach, assumptions, and limitations of a study of nuclear waste disposal in space are discussed with emphasis on the following: (1) payload characterization; (2) safety assessment; (3) health effects assessment; (4) long-term risk assessment; and (5) program planning support to NASA and DOE. Conclusions are presented for each task.

  9. Control technology assessment of hazardous waste disposal operations in chemicals manufacturing: walk-through survey report of Olin Chemicals Group, Charleston, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crandall, M.S.

    1983-08-01

    A walk through survey was conducted to assess control technology for hazardous wastes disposal operations at Olin Chemicals Group (SIC-2800, SIC-2812, SIC-2819), Charleston, Tennessee in May 1982. Hazardous wastes generated at the facility included brine sludge, thick mercury (7439954) (Hg) butter, and calcium-hypochlorite (7778543). An estimated 8500 tons of waste were disposed of annually. The Hg waste underwent a retorting process that recycled the Hg. The final detoxified waste was land filled. Brine sludge and calcium-hypochlorite were also land filled. No controls beyond those normally used at such sites were found at the landfills. Periodic monitoring of Hg vapor concentrationsmore » was conducted by the company. Medical monitoring of urine for Hg exposure was conducted. Specific limits were set for urinary Hg concentrations. When these limits were exceeded the workers were removed from exposure. Personal protective equipment consisted of hard hats, safety glasses, and spirators specially designed for Hg exposure. The author concludes that the hazardous waste disposal and treatment operations at the facility are well controlled.« less

  10. WASTE AND WATER MANAGEMENT FOR CONVENTIONAL COAL COMBUSTION: ASSESSMENT REPORT - 1979. VOLUME V. DISPOSAL OF FGC (FLUE GAS CLEANING) WASTES

    EPA Science Inventory

    The report, the fifth of five volumes, focuses on disposal of coal ash and FGD wastes which (together) comprise FGC wastes. The report assesses the various options for the disposal of FGC wastes with emphasis on disposal on land. A number of technical, economic, and regulatory fa...

  11. Crushing leads to waste disposal savings for FUSRAP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darby, J.

    1997-02-01

    In this article the author discusses the application of a rock crusher as a means of implementing cost savings in the remediation of FUSRAP sites. Transportation and offsite disposal costs are at present the biggest cost items in the remediation of FUSRAP sites. If these debris disposal problems can be handled in different manners, then remediation savings are available. Crushing can result in the ability to handle some wastes as soil disposal problems, which have different disposal regulations, thereby permitting cost savings.

  12. Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Restoration

    2009-07-31

    Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) andmore » the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed, and a UR was

  13. 76 FR 34200 - Land Disposal Restrictions: Revision of the Treatment Standards for Carbamate Wastes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-13

    ... 2050-AG65 Land Disposal Restrictions: Revision of the Treatment Standards for Carbamate Wastes AGENCY... concentration limits before the wastes can be land disposed. The lack of readily available analytical standards.... List of Subjects 40 CFR Part 268 Environmental protection, Hazardous waste, Land disposal restrictions...

  14. Combination gas producing and waste-water disposal well

    DOEpatents

    Malinchak, Raymond M.

    1984-01-01

    The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.

  15. U.S. Geological Survey research in radioactive waste disposal - Fiscal years 1986-1990

    USGS Publications Warehouse

    Trask, N.J.; Stevens, P.R.

    1991-01-01

    The report summarizes progress on geologic and hydrologic research related to the disposal of radioactive wastes. The research efforts are categorized according to whether they are related most directly to: (1) high-level wastes, (2) transuranic wastes, (3) low-level and mixed low-level and hazardous wastes, or (4) uranium mill tailings. Included is research applicable to the identification and geohydrologic characterization of waste-disposal sites, to investigations of specific sites where wastes have been stored, to development of techniques and methods for characterizing disposal sites, and to studies of geologic and hydrologic processes related to the transport and/or retention of waste radionuclides.

  16. System for Odorless Disposal of Human Waste

    NASA Technical Reports Server (NTRS)

    Jennings, Dave; Lewis, Tod

    1987-01-01

    Conceptual system provides clean, hygienic storage. Disposal system stores human wastes compactly. Releases no odor or bacteria and requires no dangerous chemicals or unpleasant handling. Stabilizes waste by natural process of biodegradation in which microbial activity eventually ceases and ordors and bacteria reduced to easily contained levels. Simple and reliable and needs little maintenance.

  17. 40 CFR 266.206 - Standards applicable to the treatment and disposal of waste military munitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and disposal of waste military munitions. 266.206 Section 266.206 Protection of Environment... HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Military Munitions § 266.206 Standards applicable to the treatment and disposal of waste military munitions. The treatment and disposal...

  18. 40 CFR 266.206 - Standards applicable to the treatment and disposal of waste military munitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and disposal of waste military munitions. 266.206 Section 266.206 Protection of Environment... HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Military Munitions § 266.206 Standards applicable to the treatment and disposal of waste military munitions. The treatment and disposal...

  19. 40 CFR 266.206 - Standards applicable to the treatment and disposal of waste military munitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and disposal of waste military munitions. 266.206 Section 266.206 Protection of Environment... HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Military Munitions § 266.206 Standards applicable to the treatment and disposal of waste military munitions. The treatment and disposal...

  20. 40 CFR 266.206 - Standards applicable to the treatment and disposal of waste military munitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and disposal of waste military munitions. 266.206 Section 266.206 Protection of Environment... HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Military Munitions § 266.206 Standards applicable to the treatment and disposal of waste military munitions. The treatment and disposal...

  1. 40 CFR 266.206 - Standards applicable to the treatment and disposal of waste military munitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and disposal of waste military munitions. 266.206 Section 266.206 Protection of Environment... HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Military Munitions § 266.206 Standards applicable to the treatment and disposal of waste military munitions. The treatment and disposal...

  2. Issues around household pharmaceutical waste disposal through community pharmacies in Croatia.

    PubMed

    Jonjić, Danijela; Vitale, Ksenija

    2014-06-01

    Croatian regulations mandate pharmacies to receive unused medicines from households. Pharmacies are considered as producers and holders of pharmaceutical waste and are obliged to finance this service. Model where pharmacies are responsible for financing disposal of unused medicines without reimbursement is not common in Europe. Present service was not tested before implementation. To investigate the elements of the pharmaceutical waste disposal service provided by pharmacies, and to gain insight into the factors that might influence the effectiveness of the service. Setting All pharmacies in the city of Zagreb. Each pharmacy was asked to weigh the collected waste from the public during a period of 30 days, between June 1st and July 10th of 2011, absent from any media advertisement and answer a specifically designed questionnaire that was exploring possible connections between the amount of collected waste, type of pharmacy ownership, discretion while disposing, location of the container, appropriate labeling and to compare the amount of collected waste between neighborhoods. Quantity of collected unused medicines from the public. Of 210 pharmacies, 91 participated completing the questionnaire (43 % response rate). The total amount of collected waste was 505 kg. Pharmacies owned by the city of Zagreb had higher response rate (74 %) than privately owned pharmacies (36 %), and collected significantly higher amount of waste. Anonymity when disposing influenced collected quantity, while labelling and location of the container did not. There were differences in the amount of collected waste between neighborhoods due to the demographic characteristics and number of pharmacies per capita. The effectiveness of the pharmacy service of collecting unused medicines in Croatia shows a number of weaknesses. The amount of collected medicines is below the European average. Functioning of the service seems to be negatively influenced by the type of pharmacy ownership, distribution

  3. Environmental Management of Human Waste Disposal for Recreational Boating Activities

    PubMed

    Shafer; Yoon

    1998-01-01

    / A methodology to estimate the number of pump-out facilities and dump stations required to service human waste disposal for recreational power boating activities in Pennsylvania during the 1994 boating season is described. Study results suggest that a total of 39 additional pump-out stations and 13 dump stations may be required on seven major waterbodies: The Three Rivers Area, Lake Erie/Presque Isle Bay, Raystown Lake, the Susquehanna River, the Delaware River, Lake Wallenpaupack, and the Kinzua Reservoir. Suggestions for improving the methodology are provided. KEY WORDS: Human waste; Recreation; Power boating; Waste facilities; Waste disposal; Pennsylvania

  4. Nuclear waste disposal in subseabed geologic formatons: the Seabed Disposal Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, D.R.

    1979-05-01

    The goal of the Seabed Disposal Program is to assess the technical and environmental feasibility of using geologic formations under the sea floor for the disposal of processed high-level radioactive wastes or repackaged spent reactor fuel. Studies are focused on the abyssal hill regions of the sea floors in the middle of tectonic plates and under massive surface current gyres. The red-clay sediments here are from 50 to 100 meters thick, are continuously depositional (without periods of erosion), and have been geologically and climatologically stable for millions of years. Mineral deposits and biological activity are minimal, and bottom currents aremore » weak and variable. Five years of research have revealed no technological reason why nuclear waste disposal in these areas would be impractical. However, scientific assessment is not complete. Also, legal political, and sociological factors may well become the governing elements in such use of international waters. These factors are being examined as part of the work of the Seabed Working Group, an international adjunct of the Seabed Program, with members from France, England, Japan, Canada, and the United States.« less

  5. Underground Architecture and Layout for the Belgian High-Level and Long-Lived Intermediate-Level Radioactive Waste Disposal Facility- 12116

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Cotthem, Alain; Van Humbeeck, Hughes; Biurrun, Enrique

    The underground architecture and layout of the proposed Belgian high-level (HLW) and long-lived, intermediate-level radioactive wastes (ILW-LL) disposal system (repository) is mainly based on lessons learned during the development and 30-year-long operation of an underground research laboratory (URL) ('HADES') located adjacent to the city of Mol at a depth of 225 m in a 100-m-thick, Tertiary clay formation; the Boom clay. The following main operational and safety challenges are addressed in the proposed architecture and layout: 1. Following excavation, the underground openings needed to be promptly supported to minimize the extent of the excavation damaged zone (EDZ). 2. The sizemore » and unsupported stand-up time at tunnel crossings/intersections also needed to be minimized to minimize the extent of the related EDZ. 3. Steel components had to be minimized to limit the related long-term (post-closure) corrosion and hydrogen production. 4. The shafts and all equipment had to go down through a 180-m-thick aquifer and handle up to 65-Ton payloads. 5. The shaft seals had to be placed in the underlying clay layer. The currently proposed layout minimizes the excavated volume based on strict long-term-safety criteria and optimizes operational safety. Operational safety is further enhanced by a remote-controlled waste-package-handling system transporting the waste packages from their respective surface location down to their respective disposal location with no intermediate operation. The related on-site preparation and thenceforth use of cement-based, waste package- transportation containers are integral operational-safety components. In addition to strengthening the waste packages and providing radiation protection, these containers also provide long-term corrosion protection of the internal 'primary' steel packages. (authors)« less

  6. A primer for health care managers: data sanitization, equipment disposal, and electronic waste.

    PubMed

    Andersen, Cathy M

    2011-01-01

    In this article, security regulations under the Health Insurance Portability and Accountability Act concerning data sanitization and the disposal of media containing stored electronic protected health information are discussed, and methods for effective sanitization and media disposal are presented. When disposing of electronic media, electronic waste-or e-waste-is produced. Electronic waste can harm human health and the environment. Responsible equipment disposal methods can minimize the impact of e-waste. Examples of how health care organizations can meet the Health Insurance Portability and Accountability Act regulations while also behaving responsibly toward the environment are provided. Examples include the environmental stewardship activities of reduce, reuse, reeducate, recover, and recycle.

  7. Subsurface waste disposal by means of wells - A selective annotated bibliography

    USGS Publications Warehouse

    Rima, Donald Robert; Chase, Edith B.; Myers, Beverly M.

    1971-01-01

    Subsurface waste disposal by means of wells is the practice of using drilled wells to inject unwanted substances into underground rock formations. The use of wells for this purpose is not a new idea. As long ago as the end of the last century, it was common practice to drill wells for the express purpose of draining swamps and small lakes to reclaim the land for agricultural purposes. A few decades later in the 1920's and 1930's many oil companies began using injection wells to dispose of oil-field brines and to repressurize oil reservoirs. During World War II, the Atomic Energy Commission began using injection wells to dispose of certain types of radioactive wastes. More recently, injection wells have been drilled to dispose of a variety of byproducts of industrial processes. The number of such wells has increased rapidly since Congress passed the Clean Streams Act of 1966, which restricted the discharge of waste into surface waters.Many scientists and public officials question the propriety of using the term "disposal" when referring to the underground injection of wastes. Their reasons are that underground injection is not, as many advocates claim, "a complete and final answer" to the waste-disposal problem. Rather, it is merely a process wherein the injected wastes are committed to the subsurface with uncertainty as to their ultimate fate or limits of confinement. In effect, the wastes, undiminished and unchanged, are removed from the custody of man and placed in the custody of nature.Although the concept of waste-injection wells is relatively simple, the effects of waste injection can be very complex, particularly when dealing with the exotic and complex components of some industrial wastes. Besides the physical forces of injection, there are many varied interactions between the injected wastes and the materials within the injection zone. Because these changes occur out of sight in the subsurface, they are difficult to assess and not generally understood. In

  8. Radioactive waste management in France: safety demonstration fundamentals.

    PubMed

    Ouzounian, G; Voinis, S; Boissier, F

    2012-01-01

    The main challenge in development of the safety case for deep geological disposal is associated with the long periods of time over which high- and intermediate-level long-lived wastes remain hazardous. A wide range of events and processes may occur over hundreds of thousands of years. These events and processes are characterised by specific timescales. For example, the timescale for heat generation is much shorter than any geological timescale. Therefore, to reach a high level of reliability in the safety case, it is essential to have a thorough understanding of the sequence of events and processes likely to occur over the lifetime of the repository. It then becomes possible to assess the capability of the repository to fulfil its safety functions. However, due to the long periods of time and the complexity of the events and processes likely to occur, uncertainties related to all processes, data, and models need to be understood and addressed. Assessment is required over the lifetime of the radionuclides contained in the radioactive waste. Copyright © 2012. Published by Elsevier Ltd.

  9. Preliminary post-emplacement safety analysis of the subseabed disposal of high-level nuclear waste

    NASA Astrophysics Data System (ADS)

    Kaplan, M. F.; Koplik, C. M.; Klett, R. D.

    1984-09-01

    The radiological hazard from the disposal of high-level nuclear waste within the deep ocean sediments is evaluated, on a preliminary basis, for locations in the central North Pacific and in the northwestern Atlantic. Radio-nuclide transport in the sediment and water column and by marine organisms is considered. Peak doses to an individual are approximately five orders of magnitude below background levels for both sites. Sensitivity analyses for most aspects of the post-emplacement systems models are included.

  10. Disposal of low-level radioactive waste. Impact on the medical profession

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brill, D.R.; Allen, E.W.; Lutzker, L.G.

    1985-11-01

    During 1985, low-level radioactive waste disposal has become a critical concern. The issue has been forced by the threatened closure of the three commercial disposal sites. The medical community has used radioactive isotopes for decades in nuclear medicine, radiation therapy, radioimmunoassay, and biomedical research. Loss of disposal capacity for radioactive wastes generated by these activities, by the suppliers of radioisotopes, and by pharmaceutical companies will have a profound impact on the medical profession.

  11. Land suitability for waste disposal in metropolitan areas.

    PubMed

    Baiocchi, Valerio; Lelo, Keti; Polettini, Alessandra; Pomi, Raffaella

    2014-08-01

    Site selection for waste disposal is a complex task that should meet the requirements of communities and stakeholders. In this article, three decision support methods (Boolean logic, index overlay and fuzzy gamma) are used to perform land suitability analysis for landfill siting. The study was carried out in one of the biggest metropolitan regions of Italy, with the objective of locating suitable areas for waste disposal. Physical and socio-economic information criteria for site selection were decided by a multidisciplinary group of experts, according to state-of-the-art guidelines, national legislation and local normative on waste management. The geographic information systems (GIS) based models used in this study are easy to apply but require adequate selection of criteria and weights and a careful evaluation of the results. The methodology is arranged in three steps, reflecting the criteria defined by national legislation on waste management: definition of factors that exclude location of landfills or waste treatment plants; classification of the remaining areas in terms of suitability for landfilling; and evaluation of suitable sites in relation to preferential siting factors (such as the presence of quarries or dismissed plants). The results showed that more than 80% of the provincial territory falls within constraint areas and the remaining territory is suitable for waste disposal for 0.72% or 1.93%, according to the model. The larger and most suitable sites are located in peripheral areas of the metropolitan system. The proposed approach represents a low-cost and expeditious alternative to support the spatial decision-making process. © The Author(s) 2014.

  12. Deep Geologic Nuclear Waste Disposal - No New Taxes - 12469

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conca, James; Wright, Judith

    2012-07-01

    To some, the perceived inability of the United States to dispose of high-level nuclear waste justifies a moratorium on expansion of nuclear power in this country. Instead, it is more an example of how science yields to social pressure, even on a subject as technical as nuclear waste. Most of the problems, however, stem from confusion on the part of the public and their elected officials, not from a lack of scientific knowledge. We know where to put nuclear waste, how to put it there, how much it will cost, and how well it will work. And it's all aboutmore » the geology. The President's Blue Ribbon Commission on America's Nuclear Future has drafted a number of recommendations addressing nuclear energy and waste issues (BRC 2011) and three recommendations, in particular, have set the stage for a new strategy to dispose of high-level nuclear waste and to manage spent nuclear fuel in the United States: 1) interim storage for spent nuclear fuel, 2) resumption of the site selection process for a second repository, and 3) a quasi-government entity to execute the program and take control of the Nuclear Waste Fund in order to do so. The first two recommendations allow removal and storage of spent fuel from reactor sites to be used in the future, and allows permanent disposal of actual waste, while the third controls cost and administration. The Nuclear Waste Policy Act of 1982 (NPWA 1982) provides the second repository different waste criteria, retrievability, and schedule, so massive salt returns as the candidate formation of choice. The cost (in 2007 dollars) of disposing of 83,000 metric tons of heavy metal (MTHM) high-level waste (HLW) is about $ 83 billion (b) in volcanic tuff, $ 29 b in massive salt, and $ 77 b in crystalline rock. Only in salt is the annual revenue stream from the Nuclear Waste Fund more than sufficient to accomplish this program without additional taxes or rate hikes. The cost is determined primarily by the suitability of the geologic formation, i

  13. 30 CFR 817.89 - Disposal of noncoal mine wastes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Disposal of noncoal mine wastes. 817.89 Section 817.89 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... underground water. Wastes shall be routinely compacted and covered to prevent combustion and wind-borne waste...

  14. 30 CFR 816.89 - Disposal of noncoal mine wastes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Disposal of noncoal mine wastes. 816.89 Section 816.89 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... underground water. Wastes shall be routinely compacted and covered to prevent combustion and wind-borne waste...

  15. 30 CFR 817.89 - Disposal of noncoal mine wastes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Disposal of noncoal mine wastes. 817.89 Section 817.89 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... underground water. Wastes shall be routinely compacted and covered to prevent combustion and wind-borne waste...

  16. 30 CFR 816.89 - Disposal of noncoal mine wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Disposal of noncoal mine wastes. 816.89 Section 816.89 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... underground water. Wastes shall be routinely compacted and covered to prevent combustion and wind-borne waste...

  17. 30 CFR 817.89 - Disposal of noncoal mine wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Disposal of noncoal mine wastes. 817.89 Section 817.89 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... underground water. Wastes shall be routinely compacted and covered to prevent combustion and wind-borne waste...

  18. 30 CFR 816.89 - Disposal of noncoal mine wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Disposal of noncoal mine wastes. 816.89 Section 816.89 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... underground water. Wastes shall be routinely compacted and covered to prevent combustion and wind-borne waste...

  19. 30 CFR 817.89 - Disposal of noncoal mine wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Disposal of noncoal mine wastes. 817.89 Section 817.89 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... underground water. Wastes shall be routinely compacted and covered to prevent combustion and wind-borne waste...

  20. 30 CFR 816.89 - Disposal of noncoal mine wastes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Disposal of noncoal mine wastes. 816.89 Section 816.89 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... underground water. Wastes shall be routinely compacted and covered to prevent combustion and wind-borne waste...

  1. Project Execution Plan for the Remote Handled Low-Level Waste Disposal Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danny Anderson

    2014-07-01

    As part of ongoing cleanup activities at the Idaho National Laboratory (INL), closure of the Radioactive Waste Management Complex (RWMC) is proceeding under the Comprehensive Environmental Response, Compensation, and Liability Act (42 USC 9601 et seq. 1980). INL-generated radioactive waste has been disposed of at RWMC since 1952. The Subsurface Disposal Area (SDA) at RWMC accepted the bulk of INL’s contact and remote-handled low-level waste (LLW) for disposal. Disposal of contact-handled LLW and remote-handled LLW ion-exchange resins from the Advanced Test Reactor in the open pit of the SDA ceased September 30, 2008. Disposal of remote-handled LLW in concrete disposalmore » vaults at RWMC will continue until the facility is full or until it must be closed in preparation for final remediation of the SDA (approximately at the end of fiscal year FY 2017). The continuing nuclear mission of INL, associated ongoing and planned operations, and Naval spent fuel activities at the Naval Reactors Facility (NRF) require continued capability to appropriately dispose of contact and remote handled LLW. A programmatic analysis of disposal alternatives for contact and remote-handled LLW generated at INL was conducted by the INL contractor in Fiscal Year 2006; subsequent evaluations were completed in Fiscal Year 2007. The result of these analyses was a recommendation to the Department of Energy (DOE) that all contact-handled LLW generated after September 30, 2008, be disposed offsite, and that DOE proceed with a capital project to establish replacement remote-handled LLW disposal capability. An analysis of the alternatives for providing replacement remote-handled LLW disposal capability has been performed to support Critical Decision-1. The highest ranked alternative to provide this required capability has been determined to be the development of a new onsite remote-handled LLW disposal facility to replace the existing remote-handled LLW disposal vaults at the SDA. Several

  2. U.S. Geological Survey research in radioactive waste disposal - Fiscal years 1983, 1984, and 1985

    USGS Publications Warehouse

    Dinwiddie, G.A.; Trask, N.J.

    1986-01-01

    The report summarizes progress on geologic and hydrologic research related to the disposal of radioactive wastes. The research is described according to whether it is related most directly to: (1) high-level and transuranic wastes, (2) low-level wastes, or (3) uranium mill tailings. Included is research applicable to the identification and geohydrologic characterization of waste-disposal sites, to investigations of specific sites where wastes have been stored, and to studies of regions or environments where waste-disposal sites might be located. A significant part of the activity is concerned with techniques and methods for characterizing disposal sites and studies of geologic and hydrologic processes related to the transport and (or) retention of waste radionuclides.

  3. Toxic-Waste Disposal by Drain-in-Furnace Technique

    NASA Technical Reports Server (NTRS)

    Compton, L. E.; Stephens, J. B.; Moynihan, P. I.; Houseman, J.; Kalvinskas, J. J.

    1986-01-01

    Compact furnace moved from site to site. Toxic industrial waste destroyed using furnace concept developed for disposal of toxic munitions. Toxic waste drained into furnace where incinerated immediately. In furnace toxic agent rapidly drained and destroyed in small combustion chamber between upper and lower layers of hot ceramic balls

  4. The effectiveness of Hong Kong's Construction Waste Disposal Charging Scheme.

    PubMed

    Hao, Jane L; Hills, Martin J; Tam, Vivian W Y

    2008-12-01

    The Hong Kong Government introduced the Construction Waste Disposal Charging Scheme in December 2005 to ensure that disposal of construction and demolition (C&D) waste is properly priced to reduce such waste. The charging scheme is not only intended to provide an economic incentive for contractors and developers to reduce waste but also to encourage reuse and recycling of waste material thereby slowing down the depletion of limited landfill and public filling capacities. This paper examines the effectiveness of the charging scheme 1 year after implementation. A survey was conducted at Tseung Kwan O Area 137 and Tuen Mun Area 38, and daily C&D waste records were collected from landfills and public filling facilities between January 2006 and December 2006. The results of the survey show that waste has been reduced by approximately 60% in landfills, by approximately 23% in public fills, and by approximately 65% in total waste between 2005 and 2006. Suggestions for improving the scheme are provided.

  5. 76 FR 55255 - Definition of Solid Waste Disposal Facilities for Tax-Exempt Bond Purposes; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-07

    ... Definition of Solid Waste Disposal Facilities for Tax-Exempt Bond Purposes; Correction AGENCY: Internal..., on the definition of solid waste disposal facilities for purposes of the rules applicable to tax... governments that issue tax-exempt bonds to finance solid waste disposal facilities and to taxpayers that use...

  6. Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultz, Peter Andrew

    The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. Achieving the objective of modeling the performance of a disposal scenario requires describing processes involved in waste form degradation and radionuclide release at the subcontinuum scale, beginning with mechanistic descriptions of chemical reactions and chemical kinetics at the atomicmore » scale, and upscaling into effective, validated constitutive models for input to high-fidelity continuum scale codes for coupled multiphysics simulations of release and transport. Verification and validation (V&V) is required throughout the system to establish evidence-based metrics for the level of confidence in M&S codes and capabilities, including at the subcontiunuum scale and the constitutive models they inform or generate. This Report outlines the nature of the V&V challenge at the subcontinuum scale, an approach to incorporate V&V concepts into subcontinuum scale modeling and simulation (M&S), and a plan to incrementally incorporate effective V&V into subcontinuum scale M&S destined for use in the NEAMS Waste IPSC work flow to meet requirements of quantitative confidence in the constitutive models informed by subcontinuum scale phenomena.« less

  7. Nuclear Waste Disposal: Alternatives to Yucca Mountain

    DTIC Science & Technology

    2009-02-06

    metric tons of spent fuel at the nine decommissioned sites could be shipped to a federal central storage facility by 2018 , but that DOE had no...Disposal of High- Level Radioactive Waste into the Seabed, Overview of Research and Conclusions, Volume 1, Paris , 1988, p. 60. 63 1996 Protocol to...Convention on Prevention of Marine Pollution by Dumping of Wastes, Treaty Doc. 110-5, September 4, 2007

  8. Risk management for outsourcing biomedical waste disposal – Using the failure mode and effects analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Ching-Jong; Ho, Chao Chung, E-mail: ho919@pchome.com.tw

    Highlights: • This study is based on a real case in hospital in Taiwan. • We use Failure Mode and Effects Analysis (FMEA) as the evaluation method. • We successfully identify the evaluation factors of bio-medical waste disposal risk. - Abstract: Using the failure mode and effects analysis, this study examined biomedical waste companies through risk assessment. Moreover, it evaluated the supervisors of biomedical waste units in hospitals, and factors relating to the outsourcing risk assessment of biomedical waste in hospitals by referring to waste disposal acts. An expert questionnaire survey was conducted on the personnel involved in waste disposalmore » units in hospitals, in order to identify important factors relating to the outsourcing risk of biomedical waste in hospitals. This study calculated the risk priority number (RPN) and selected items with an RPN value higher than 80 for improvement. These items included “availability of freezing devices”, “availability of containers for sharp items”, “disposal frequency”, “disposal volume”, “disposal method”, “vehicles meeting the regulations”, and “declaration of three lists”. This study also aimed to identify important selection factors of biomedical waste disposal companies by hospitals in terms of risk. These findings can serve as references for hospitals in the selection of outsourcing companies for biomedical waste disposal.« less

  9. 7 CFR 1951.232 - Water and waste disposal systems which have become part of an urban area.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 14 2010-01-01 2009-01-01 true Water and waste disposal systems which have become... Water and waste disposal systems which have become part of an urban area. A water and/or waste disposal.... The following will be forwarded to the Administrator, Attention: Water and Waste Disposal Division...

  10. The Storage, Transportation, and Disposal of Nuclear Waste

    NASA Astrophysics Data System (ADS)

    Younker, J. L.

    2002-12-01

    The U.S. Congress established a comprehensive federal policy to dispose of wastes from nuclear reactors and defense facilities, centered on deep geologic disposal of high-level radioactive waste. Site screening led to selection of three potential sites and in 1987, Congress directed the Secretary of Energy to characterize only one site: Yucca Mountain in Nevada. For more than 20 years, teams of scientists and engineers have been evaluating the potential suitability of the site. On the basis of their work, the U.S. Secretary of Energy, Spencer Abraham, concluded in February 2002 that a safe repository can be sited at Yucca Mountain. On July 23, 2002, President Bush signed Joint Resolution 87 approving the site at Yucca Mountain for development of a repository, which allows the U.S. Department of Energy (DOE) to prepare and submit a license application to the U.S. Nuclear Regulatory Commission (NRC). Concerns have been raised relative to the safe transportation of nuclear materials. The U.S. history of transportation of nuclear materials demonstrates that high-level nuclear materials can be safely transported. Since the 1960s, over 1.6 million miles have been traveled by more than 2,700 spent nuclear fuel shipments, and there has never been an accident severe enough to cause a release of radioactive materials. The DOE will use NRC-certified casks that must be able to withstand very stringent tests. The same design features that allow the casks to survive severe accidents also limit their vulnerability to sabotage. In addition, the NRC will approve all shipping routes and security plans. With regard to long-term safety, the Yucca Mountain disposal system has five key attributes. First, the arid climate and geology of Yucca Mountain combine to ensure that limited water will enter the emplacement tunnels. Second, the DOE has designed a waste package and drip shield that are expected to have very long lifetimes in the repository environment. Third, waste form

  11. DISPOSAL OF FLUE-GAS-CLEANING WASTES

    EPA Science Inventory

    The article describes current commercial and emerging technology for disposal of wastes from flue gas cleaning (FGC) systems for coal-fired power plants. Over 80 million metric tons/yr (dry) of coal ash and desulfurization solids are expected to be produced by the 1980's. Althoug...

  12. 76 FR 55256 - Definition of Solid Waste Disposal Facilities for Tax-Exempt Bond Purposes; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-07

    ... Definition of Solid Waste Disposal Facilities for Tax-Exempt Bond Purposes; Correction AGENCY: Internal..., 2011, on the definition of solid waste disposal facilities for purposes of the rules applicable to tax... governments that issue tax-exempt bonds to finance solid waste disposal facilities and to taxpayers that use...

  13. Nuclear energy and radioactive waste disposal in the age of recycling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conca, James L.; Apted, Michael

    2007-07-01

    The magnitude of humanity's energy needs requires that we embrace a multitude of various energy sources and applications. For a variety of reasons, nuclear energy must be a major portion of the distribution, at least one third. The often-cited strategic hurdle to this approach is nuclear waste disposal. Present strategies concerning disposal of nuclear waste need to be changed if the world is to achieve both a sustainable energy distribution by 2040 and solve the largest environmental issue of the 21. century - global warming. It is hoped that ambitious proposals to replace fossil fuel power generation by alternatives willmore » drop the percentage of fossil fuel use substantially, but the absolute amount of fossil fuel produced electricity must be kept at or below its present 10 trillion kW-hrs/year. Unfortunately, the rapid growth in consumption to over 30 trillion kW-hrs/year by 2040, means that 20 trillion kW-hrs/yr of non-fossil fuel generated power has to come from other sources. If half of that comes from alternative non-nuclear, non-hydroelectric sources (an increase of 3000%), then nuclear still needs to increase by a factor of four worldwide to compensate. Many of the reasons nuclear energy did not expand after 1970 in North America (proliferation, capital costs, operational risks, waste disposal, and public fear) are no longer a problem. The WIPP site in New Mexico, an example of a solution to the nuclear waste disposal issue, and also to public fear, is an operating deep geologic nuclear waste repository in the massive bedded salt of the Salado Formation. WIPP has been operating for eight years, and as of this writing, has disposed of over 50,000 m{sup 3} of transuranic waste (>100 nCi/g but <23 Curie/liter) including high activity waste. The Salado Formation is an ideal host for any type of nuclear waste, especially waste from recycled spent fuel. (authors)« less

  14. MUNICIPAL SOLID WASTE DISPOSAL IN ESTUARIES AND COASTAL MARSHLANDS

    EPA Science Inventory

    This report is a survey of the existing situation with regards to municipal solid waste disposal in the coastal zone. Both the scientific literature and the regulatory community were surveyed to determine the state-of-knowledge of the impact of such disposal on the environment, p...

  15. Future trends which will influence waste disposal.

    PubMed Central

    Wolman, A

    1978-01-01

    The disposal and management of solid wastes are ancient problems. The evolution of practices naturally changed as populations grew and sites for disposal became less acceptable. The central search was for easy disposal at minimum costs. The methods changed from indiscriminate dumping to sanitary landfill, feeding to swine, reduction, incineration, and various forms of re-use and recycling. Virtually all procedures have disabilities and rising costs. Many methods once abandoned are being rediscovered. Promises for so-called innovations outstrip accomplishments. Markets for salvage vary widely or disappear completely. The search for conserving materials and energy at minimum cost must go on forever. PMID:570105

  16. The French Radioactive Waste Disposal System: Which Discussions for Which Decisions?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baillet, J.P.; Ouzounian, G.

    2008-07-01

    Over the last 20 years or so, radioactive-waste management has undergone remarkable developments in France. The Law of 30 December 1991 prescribed that Parliament would convene once again at the end of a 15-year research period. In 2005, the government asked the National Commission on Public Debate to organise a public debate on radioactive-waste management. Hence, for the first time, such an event was held in accordance with a national policy and not on a specific project. The debate took place between 12 September 2005 and 13 January 2006. Although the debate remained mostly a discussion among experts and opposedmore » most frequently pro-nuclear and anti-nuclear activists, it still provided an opportunity to define and clarify challenges. Following the public debate and in the light of the assessment of investigation results, Parliament adopted on 28 June 2006 a new Planning Act on the Management of Radioactive Waste, which applies to all radioactive residues, irrespective of their activity level, and prescribes specific procedures and deadlines, such as the commissioning of a disposal facility for radium-bearing and graphite waste by 2013 and of a deep geological repository for high-level and intermediate-level long-lived waste by 2025. In the latter case, the Planning Act renews the assessment system for Andra's studies and investigations by a committee of experts and by the OPECST over and above the review of the future licence application by the Nuclear Safety Authority. In addition, a new law will set up the reversibility conditions of the repository before the government may grant any authorisation. At the local level, the act reinforces the prerogatives of the Local Information and Oversight Committee, which is responsible for public information and consultation issues; furthermore, it prescribes that a public debate and a public inquiry be held as a prerequisite to the delivery of any authorisation. Hence, ANDRA is taking all necessary means in order

  17. Notifications Dated October 2, 2014 Submitted by We Energies to Dispose of Polychlorinated Biphenyl Remediation Waste

    EPA Pesticide Factsheets

    Disposal Notifications Dated October 2, 2014 for We Energies and the Utility Solid Waste Group Members’ Risk-Based Approvals to Dispose of Polychlorinated Biphenyl Remediation Waste at the Waste Management Disposal Sites in Menomonee Falls and Franklin, WI

  18. Health care: a leader or a follower? Reducing disposable waste.

    PubMed

    Whitaker, M W

    1992-08-01

    We clearly have the means to examine and reduce the amounts and types of disposable medical waste that health care institutions are creating. Although there may be special circumstances that prevent specific hospitals, or specific departments within a hospital, from converting to alternative products, much improvement can still be made. There are several strong examples of hospitals across the United States with programs that have drastically cut the amount of waste they are generating. They have eliminated disposable cups and eating utensils from the cafeterias, shifted to reusable underpads and surgical linens, and established recycling programs for paper and cardboard. These few cases are not enough. We cannot be lulled into believing that these exceptional efforts on the part of a few institutions are all that is needed. We should remember that if Mother Nature had intended for us to pat ourselves on the back, our hinges would be different. What is needed is a clear statement from the health care industry of its responsibility to society with regard to managing its waste. Leadership begins with action. If the health care industry does not take steps to regulate its disposable waste, the government undoubtedly will. We do not need to wait for our supervisors or administrators to fashion credos for us. All staff members know there are numerous ways that they can affect the amount of waste produced at their hospitals. They can also begin to affect the attitudes of those working around them. The consequences of inaction are simply too great. As fictional as half-empty grocery stores may have sounded at the beginning of this article, the problems that we face with waste disposal are certainly as grim. If we wait for our state and federal governments to solve the problems, it may be too late; and if it is too late, the solutions that they develop will certainly be extreme. We have the technology and the ability to cut dramatically the amount of disposable waste that

  19. Arsenic waste management: a critical review of testing and disposal of arsenic-bearing solid wastes generated during arsenic removal from drinking water.

    PubMed

    Clancy, Tara M; Hayes, Kim F; Raskin, Lutgarde

    2013-10-01

    Water treatment technologies for arsenic removal from groundwater have been extensively studied due to widespread arsenic contamination of drinking water sources. Central to the successful application of arsenic water treatment systems is the consideration of appropriate disposal methods for arsenic-bearing wastes generated during treatment. However, specific recommendations for arsenic waste disposal are often lacking or mentioned as an area for future research and the proper disposal and stabilization of arsenic-bearing waste remains a barrier to the successful implementation of arsenic removal technologies. This review summarizes current disposal options for arsenic-bearing wastes, including landfilling, stabilization, cow dung mixing, passive aeration, pond disposal, and soil disposal. The findings from studies that simulate these disposal conditions are included and compared to results from shorter, regulatory tests. In many instances, short-term leaching tests do not adequately address the range of conditions encountered in disposal environments. Future research directions are highlighted and include establishing regulatory test conditions that align with actual disposal conditions and evaluating nonlandfill disposal options for developing countries.

  20. Nuclear waste disposal: Gambling on Yucca Mountain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginsburg, S.

    1995-05-01

    This document describes the historical aspects of nuclear energy ,nuclear weapons usage, and development of the nuclear bureaucracy in the United States, and discusses the selection and siting of Yucca Mountain, Nevada for a federal nuclear waste repository. Litigation regarding the site selection and resulting battles in the political arena and in the Nevada State Legislature are also presented. Alternative radioactive waste disposal options, risk assessments of the Yucca Mountain site, and logistics regarding the transportation and storage of nuclear waste are also presented. This document also contains an extensive bibliography.

  1. Uranium-233 waste definition: Disposal options, safeguards, criticality control, and arms control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forsberg, C.W.; Storch, S.N.; Lewis, L.C.

    1998-07-07

    The US investigated the use of {sup 233}U for weapons, reactors, and other purposes from the 1950s into the 1970s. Based on the results of these investigations, it was decided not to use {sup 233}U on a large scale. Most of the {sup 233}U-containing materials were placed in long-term storage. At the end of the cold war, the US initiated, as part of its arms control policies, a disposition program for excess fissile materials. Other programs were accelerated for disposal of radioactive wastes placed in storage during the cold war. Last, potential safety issues were identified related to the storagemore » of some {sup 233}U-containing materials. Because of these changes, significant activities associated with {sup 233}U-containing materials are expected. This report is one of a series of reports to provide the technical bases for future decisions on how to manage this material. A basis for defining when {sup 233}U-containing materials can be managed as waste and when they must be managed as concentrated fissile materials has been developed. The requirements for storage, transport, and disposal of radioactive wastes are significantly different than those for fissile materials. Because of these differences, it is important to classify material in its appropriate category. The establishment of a definition of what is waste and what is fissile material will provide the guidance for appropriate management of these materials. Wastes are defined in this report as materials containing sufficiently small masses or low concentrations of fissile materials such that they can be managed as typical radioactive waste. Concentrated fissile materials are defined herein as materials containing sufficient fissile content such as to warrant special handling to address nuclear criticality, safeguards, and arms control concerns.« less

  2. 40 CFR 22.37 - Supplemental rules governing administrative proceedings under the Solid Waste Disposal Act.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... administrative proceedings under the Solid Waste Disposal Act. 22.37 Section 22.37 Protection of Environment... Supplemental rules governing administrative proceedings under the Solid Waste Disposal Act. (a) Scope. This... sections 3005(d) and (e), 3008, 9003 and 9006 of the Solid Waste Disposal Act (42 U.S.C. 6925(d) and (e...

  3. 40 CFR 22.37 - Supplemental rules governing administrative proceedings under the Solid Waste Disposal Act.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... administrative proceedings under the Solid Waste Disposal Act. 22.37 Section 22.37 Protection of Environment... Supplemental rules governing administrative proceedings under the Solid Waste Disposal Act. (a) Scope. This... sections 3005(d) and (e), 3008, 9003 and 9006 of the Solid Waste Disposal Act (42 U.S.C. 6925(d) and (e...

  4. Pyramiding tumuli waste disposal site and method of construction thereof

    DOEpatents

    Golden, Martin P.

    1989-01-01

    An improved waste disposal site for the above-ground disposal of low-level nuclear waste as disclosed herein. The disposal site is formed from at least three individual waste-containing tumuli, wherein each tumuli includes a central raised portion bordered by a sloping side portion. Two of the tumuli are constructed at ground level with adjoining side portions, and a third above-ground tumulus is constructed over the mutually adjoining side portions of the ground-level tumuli. Both the floor and the roof of each tumulus includes a layer of water-shedding material such as compacted clay, and the clay layer in the roofs of the two ground-level tumuli form the compacted clay layer of the floor of the third above-ground tumulus. Each tumulus further includes a shield wall, preferably formed from a solid array of low-level handleable nuclear wate packages. The provision of such a shield wall protects workers from potentially harmful radiation when higher-level, non-handleable packages of nuclear waste are stacked in the center of the tumulus.

  5. 20 CFR 654.406 - Excreta and liquid waste disposal.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... subsurface septic tank-seepage system or other type of liquid waste treatment and disposal system, privies or... RESPONSIBILITIES OF THE EMPLOYMENT SERVICE SYSTEM Housing for Agricultural Workers Housing Standards § 654.406... accumulate on the ground surface. (b) Where public sewer systems are available, all facilities for disposal...

  6. 20 CFR 654.406 - Excreta and liquid waste disposal.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... subsurface septic tank-seepage system or other type of liquid waste treatment and disposal system, privies or... RESPONSIBILITIES OF THE EMPLOYMENT SERVICE SYSTEM Housing for Agricultural Workers Housing Standards § 654.406... accumulate on the ground surface. (b) Where public sewer systems are available, all facilities for disposal...

  7. 20 CFR 654.406 - Excreta and liquid waste disposal.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... subsurface septic tank-seepage system or other type of liquid waste treatment and disposal system, privies or... RESPONSIBILITIES OF THE EMPLOYMENT SERVICE SYSTEM Housing for Agricultural Workers Housing Standards § 654.406... accumulate on the ground surface. (b) Where public sewer systems are available, all facilities for disposal...

  8. 20 CFR 654.406 - Excreta and liquid waste disposal.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... subsurface septic tank-seepage system or other type of liquid waste treatment and disposal system, privies or... RESPONSIBILITIES OF THE EMPLOYMENT SERVICE SYSTEM Housing for Agricultural Workers Housing Standards § 654.406... accumulate on the ground surface. (b) Where public sewer systems are available, all facilities for disposal...

  9. 20 CFR 654.406 - Excreta and liquid waste disposal.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... subsurface septic tank-seepage system or other type of liquid waste treatment and disposal system, privies or... RESPONSIBILITIES OF THE EMPLOYMENT SERVICE SYSTEM Housing for Agricultural Workers Housing Standards § 654.406... accumulate on the ground surface. (b) Where public sewer systems are available, all facilities for disposal...

  10. Geological Disposal of Nuclear Waste: Investigating the Thermo-Hygro-Mechanical-Chemical (THMC) Coupled Processes at the Waste Canister- Bentonite Barrier Interface

    NASA Astrophysics Data System (ADS)

    Davies, C. W.; Davie, D. C.; Charles, D. A.

    2015-12-01

    Geological disposal of nuclear waste is being increasingly considered to deal with the growing volume of waste resulting from the nuclear legacy of numerous nations. Within the UK there is 650,000 cubic meters of waste safely stored and managed in near-surface interim facilities but with no conclusive permanent disposal route. A Geological Disposal Facility with incorporated Engineered Barrier Systems are currently being considered as a permanent waste management solution (Fig.1). This research focuses on the EBS bentonite buffer/waste canister interface, and experimentally replicates key environmental phases that would occur after canister emplacement. This progresses understanding of the temporal evolution of the EBS and the associated impact on its engineering, mineralogical and physicochemical state and considers any consequences for the EBS safety functions of containment and isolation. Correlation of engineering properties to the physicochemical state is the focus of this research. Changes to geotechnical properties such as Atterberg limits, swelling pressure and swelling kinetics are measured after laboratory exposure to THMC variables from interface and batch experiments. Factors affecting the barrier, post closure, include corrosion product interaction, precipitation of silica, near-field chemical environment, groundwater salinity and temperature. Results show that increasing groundwater salinity has a direct impact on the buffer, reducing swelling capacity and plasticity index by up to 80%. Similarly, thermal loading reduces swelling capacity by 23% and plasticity index by 5%. Bentonite/steel interaction studies show corrosion precipitates diffusing into compacted bentonite up to 3mm from the interface over a 4 month exposure (increasing with temperature), with reduction in swelling capacity in the affected zone, probably due to the development of poorly crystalline iron oxides. These results indicate that groundwater conditions, temperature and corrosion

  11. Impact of microbial activity on the radioactive waste disposal: long term prediction of biocorrosion processes.

    PubMed

    Libert, Marie; Schütz, Marta Kerber; Esnault, Loïc; Féron, Damien; Bildstein, Olivier

    2014-06-01

    This study emphasizes different experimental approaches and provides perspectives to apprehend biocorrosion phenomena in the specific disposal environment by investigating microbial activity with regard to the modification of corrosion rate, which in turn can have an impact on the safety of radioactive waste geological disposal. It is found that iron-reducing bacteria are able to use corrosion products such as iron oxides and "dihydrogen" as new energy sources, especially in the disposal environment which contains low amounts of organic matter. Moreover, in the case of sulphate-reducing bacteria, the results show that mixed aerobic and anaerobic conditions are the most hazardous for stainless steel materials, a situation which is likely to occur in the early stage of a geological disposal. Finally, an integrated methodological approach is applied to validate the understanding of the complex processes and to design experiments aiming at the acquisition of kinetic data used in long term predictive modelling of biocorrosion processes. © 2013.

  12. Healthcare waste management practices and safety indicators in Nigeria.

    PubMed

    Oyekale, Abayomi Samuel; Oyekale, Tolulope Olayemi

    2017-09-25

    risky/safe medical waste disposal (p < 0.05). The study concluded that there was low compliance with standard HCW management. It was recommended that possession of HCW management guidelines, staff training on HCW disposal and provision of requisite equipment for proper treatment of HCW would promote environmental safety in HCW disposal.

  13. 36 CFR 6.4 - Solid waste disposal sites not in operation on September 1, 1984.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal sites... PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.4 Solid waste disposal sites not in operation on September 1, 1984. (a) No person may operate...

  14. 36 CFR 6.4 - Solid waste disposal sites not in operation on September 1, 1984.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal sites... PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.4 Solid waste disposal sites not in operation on September 1, 1984. (a) No person may operate...

  15. 36 CFR 6.4 - Solid waste disposal sites not in operation on September 1, 1984.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Solid waste disposal sites... PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.4 Solid waste disposal sites not in operation on September 1, 1984. (a) No person may operate...

  16. 36 CFR 6.4 - Solid waste disposal sites not in operation on September 1, 1984.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Solid waste disposal sites... PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.4 Solid waste disposal sites not in operation on September 1, 1984. (a) No person may operate...

  17. 36 CFR 6.4 - Solid waste disposal sites not in operation on September 1, 1984.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Solid waste disposal sites... PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.4 Solid waste disposal sites not in operation on September 1, 1984. (a) No person may operate...

  18. Laboratory Waste Disposal Manual. Revised Edition.

    ERIC Educational Resources Information Center

    Stephenson, F. G., Ed.

    This manual is designed to provide laboratory personnel with information about chemical hazards and ways of disposing of chemical wastes with minimum contamination of the environment. The manual contains a reference chart section which has alphabetical listings of some 1200 chemical substances with information on the health, fire and reactivity…

  19. Radioactive Waste Management in A Hospital

    PubMed Central

    Khan, Shoukat; Syed, AT; Ahmad, Reyaz; Rather, Tanveer A.; Ajaz, M; Jan, FA

    2010-01-01

    Most of the tertiary care hospitals use radioisotopes for diagnostic and therapeutic applications. Safe disposal of the radioactive waste is a vital component of the overall management of the hospital waste. An important objective in radioactive waste management is to ensure that the radiation exposure to an individual (Public, Radiation worker, Patient) and the environment does not exceed the prescribed safe limits. Disposal of Radioactive waste in public domain is undertaken in accordance with the Atomic Energy (Safe disposal of radioactive waste) rules of 1987 promulgated by the Indian Central Government Atomic Energy Act 1962. Any prospective plan of a hospital that intends using radioisotopes for diagnostic and therapeutic procedures needs to have sufficient infrastructural and manpower resources to keep its ambient radiation levels within specified safe limits. Regular monitoring of hospital area and radiation workers is mandatory to assess the quality of radiation safety. Records should be maintained to identify the quality and quantity of radioactive waste generated and the mode of its disposal. Radiation Safety officer plays a key role in the waste disposal operations. PMID:21475524

  20. Radioactive waste management in a hospital.

    PubMed

    Khan, Shoukat; Syed, At; Ahmad, Reyaz; Rather, Tanveer A; Ajaz, M; Jan, Fa

    2010-01-01

    Most of the tertiary care hospitals use radioisotopes for diagnostic and therapeutic applications. Safe disposal of the radioactive waste is a vital component of the overall management of the hospital waste. An important objective in radioactive waste management is to ensure that the radiation exposure to an individual (Public, Radiation worker, Patient) and the environment does not exceed the prescribed safe limits. Disposal of Radioactive waste in public domain is undertaken in accordance with the Atomic Energy (Safe disposal of radioactive waste) rules of 1987 promulgated by the Indian Central Government Atomic Energy Act 1962. Any prospective plan of a hospital that intends using radioisotopes for diagnostic and therapeutic procedures needs to have sufficient infrastructural and manpower resources to keep its ambient radiation levels within specified safe limits. Regular monitoring of hospital area and radiation workers is mandatory to assess the quality of radiation safety. Records should be maintained to identify the quality and quantity of radioactive waste generated and the mode of its disposal. Radiation Safety officer plays a key role in the waste disposal operations.

  1. Municipal solid waste management in India: From waste disposal to recovery of resources?

    PubMed

    Narayana, Tapan

    2009-03-01

    Unlike that of western countries, the solid waste of Asian cities is often comprised of 70-80% organic matter, dirt and dust. Composting is considered to be the best option to deal with the waste generated. Composting helps reduce the waste transported to and disposed of in landfills. During the course of the research, the author learned that several developing countries established large-scale composting plants that eventually failed for various reasons. The main flaw that led to the unsuccessful establishment of the plants was the lack of application of simple scientific methods to select the material to be composted. Landfills have also been widely unsuccessful in countries like India because the landfill sites have a very limited time frame of usage. The population of the developing countries is another factor that detrimentally impacts the function of landfill sites. As the population keeps increasing, the garbage quantity also increases, which, in turn, exhausts the landfill sites. Landfills are also becoming increasingly expensive because of the rising costs of construction and operation. Incineration, which can greatly reduce the amount of incoming municipal solid waste, is the second most common method for disposal in developed countries. However, incinerator ash may contain hazardous materials including heavy metals and organic compounds such as dioxins, etc. Recycling plays a large role in solid waste management, especially in cities in developing countries. None of the three methods mentioned here are free from problems. The aim of this study is thus to compare the three methods, keeping in mind the costs that would be incurred by the respective governments, and identify the most economical and best option possible to combat the waste disposal problem.

  2. Solid rocket propellant waste disposal/ingredient recovery study

    NASA Technical Reports Server (NTRS)

    Mcintosh, M. J.

    1976-01-01

    A comparison of facility and operating costs of alternate methods shows open burning to be the lowest cost incineration method of waste propellant disposal. The selection, development, and implementation of an acceptable alternate is recommended. The recovery of ingredients from waste propellant has the probability of being able to pay its way, and even show a profit, when large consistent quantities of composite propellant are available. Ingredients recovered from space shuttle waste propellant would be worth over $1.5 million. Open and controlled burning are both energy wasteful.

  3. Canister Design for Deep Borehole Disposal of Nuclear Waste

    DTIC Science & Technology

    2006-05-01

    radioactive waste disposal (not yet released) Fortunately, transportation casks for spent fuel have already been approved, built, and used as...would allow use of the current designs for transportation casks ; or, place the fuel assemblies into the final disposal canisters 21 prior to transport ...16 Figure 1-5. Typical Spent Fuel Transportation Casks

  4. Low-level radioactive waste disposal. Study of a conceptual nuclear energy center at Green River, Utah

    NASA Astrophysics Data System (ADS)

    Card, D. H.; Hunter, P. H.; Barg, D.; Desouza, F.; Felthauser, K.; Winkler, V.; White, R.

    1982-02-01

    The ramifications of constructing a nuclear energy center in an arid western region were studied. The alternatives for disposing of the low level waste on the site are compared with the alternative of transporting the waste to the nearest commercial waste disposal site for permanent disposal. Both radiological and nonradiological impacts on the local socioeconomic infrastructure and the environment are considered. Disposal on the site was found to cost considerably less than off site disposal with only negligible impacts associated with the disposal option on either mankind or the environment.

  5. 75 FR 39041 - Notice of Lodging of Proposed Consent Decree Under the Solid Waste Disposal Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-07

    ... DEPARTMENT OF JUSTICE Notice of Lodging of Proposed Consent Decree Under the Solid Waste Disposal... the Solid Waste Disposal Act (as amended by the Resource Conservation and Recovery Act), 42 U.S.C... to wildlife, at its commercial oilfield waste disposal facility, located in Campbell County, Wyoming...

  6. Preliminary safety concept for disposal of the very low level radioactive waste in Romania.

    PubMed

    Niculae, O; Andrei, V; Ionita, G; Duliu, O G

    2009-05-01

    In Romania, there are certain nuclear installations in operation or under decommissioning, all of them representing an important source of very low level waste (VLLW). This paper presents an overview on the approach of the VLLW management in Romania, focused on those resulted from the nuclear power plants decommissioning. At the same time, the basic elements of safety concept, together with some safety evaluations concerning VLLW repository are presented and discussed too.

  7. NRC Monitoring of Salt Waste Disposal at the Savannah River Site - 13147

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinkston, Karen E.; Ridge, A. Christianne; Alexander, George W.

    2013-07-01

    As part of monitoring required under Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA), the NRC staff reviewed an updated DOE performance assessment (PA) for salt waste disposal at the Saltstone Disposal Facility (SDF). The NRC staff concluded that it has reasonable assurance that waste disposal at the SDF meets the 10 CFR 61 performance objectives for protection of individuals against intrusion (chap.61.42), protection of individuals during operations (chap.61.43), and site stability (chap.61.44). However, based on its evaluation of DOE's results and independent sensitivity analyses conducted with DOE's models, the NRC staffmore » concluded that it did not have reasonable assurance that DOE's disposal activities at the SDF meet the performance objective for protection of the general population from releases of radioactivity (chap.61.41) evaluated at a dose limit of 0.25 mSv/yr (25 mrem/yr) total effective dose equivalent (TEDE). NRC staff also concluded that the potential dose to a member of the public is expected to be limited (i.e., is expected to be similar to or less than the public dose limit in chap.20.1301 of 1 mSv/yr [100 mrem/yr] TEDE) and is expected to occur many years after site closure. The NRC staff used risk insights gained from review of the SDF PA, its experience monitoring DOE disposal actions at the SDF over the last 5 years, as well as independent analysis and modeling to identify factors that are important to assessing whether DOE's disposal actions meet the performance objectives. Many of these factors are similar to factors identified in the NRC staff's 2005 review of salt waste disposal at the SDF. Key areas of interest continue to be waste form and disposal unit degradation, the effectiveness of infiltration and erosion controls, and estimation of the radiological inventory. Based on these factors, NRC is revising its plan for monitoring salt waste disposal at the SDF in coordination with

  8. Gas generation behavior of transuranic waste under disposal conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujisawa, Ryutaro; Kurashige, Tetsunari; Inagaki, Yusuke

    1999-07-01

    The generation of hydrogen-gas from metallic waste is an important issue for the safety analysis of geological disposal facilities for transuranic (TRU) radioactive waste in Japan. The objective of this study is to clarify the gas-generation behavior of stainless steel and carbon steel in non-oxidizing alkaline synthetic groundwater (pH 12.8 and 10.5) at 30 C simulating geological disposal environments. At pH 12.8, the observed gas-generation rate from stainless steel in the initial period of immersion was 1.0 x 10{sup 2} Nml/m{sup 2}/y and 1.0 x 10 Nml/m{sup 2}/y after 200 days (N represents the standard state of gas at 0more » C and 1 atm). At pH 10.5, gas generation was not observed for 60 days in the initial period. At 60 days, the gas-generation observed was 5.0 x 10 NMl/m{sup 2}/y. After 250 days, the gas-generation rate approaches zero. At pH 12.8, the observed gas generation rate of carbon steel in the initial period of immersion was 1.5 x 10{sup 2} Nml/m{sup 2}/y and the gas generation rate began to decrease after 200 days. After 300 days, it was 25 Nml/m{sup 2}/y. At pH 10.5, the gas generation rate in the initial period was 5.0 x 10{sup 2} Nml/m{sup 2}/y and was 1.0 x 10 Nml/m{sup 2}/y after 200 days.« less

  9. Preliminary risk assessment for nuclear waste disposal in space, volume 1

    NASA Technical Reports Server (NTRS)

    Rice, E. E.; Denning, R. S.; Friedlander, A. L.

    1982-01-01

    The feasibility, desirability and preferred approaches for disposal of selected high-level nuclear wastes in space were analyzed. Preliminary space disposal risk estimates and estimates of risk uncertainty are provided.

  10. Audits of hazardous waste TSDFs let generators sleep easy. [Hazardous waste treatment, storage and disposal facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, F.H.

    1990-02-01

    Because of the increasingly strict enforcement of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and the Resource Conservation and Recovery Act (RCRA), generators of hazardous waste are compelled to investigate the hazardous waste treatment, storage and disposal facility (TSDF) they use. This investigation must include an environmental and a financial audit. Simple audits may be performed by the hazardous waste generator, while more thorough ones such as those performed for groups of generators are more likely to be conducted by environmental consultants familiar with treatment, storage, and disposal techniques and the regulatory framework that guides them.

  11. Monitoring technologies for ocean disposal of radioactive waste

    NASA Astrophysics Data System (ADS)

    Triplett, M. B.; Solomon, K. A.; Bishop, C. B.; Tyce, R. C.

    1982-01-01

    The feasibility of using carefully selected subseabed locations to permanently isolate high level radioactive wastes at ocean depths greater than 4000 meters is discussed. Disposal at several candidate subseabed areas is being studied because of the long term geologic stability of the sediments, remoteness from human activity, and lack of useful natural resources. While the deep sea environment is remote, it also poses some significant challenges for the technology required to survey and monitor these sites, to identify and pinpoint container leakage should it occur, and to provide the environmental information and data base essential to determining the probable impacts of any such occurrence. Objectives and technical approaches to aid in the selective development of advanced technologies for the future monitoring of nuclear low level and high level waste disposal in the deep seabed are presented. Detailed recommendations for measurement and sampling technology development needed for deep seabed nuclear waste monitoring are also presented.

  12. Implementing Geological Disposal of Radioactive Waste Technology Platform From the Strategic Research Agenda to its Deployment - 12015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouzounian, P.; Palmu, Marjatta; Eng, Torsten

    2012-07-01

    Several European waste management organizations (WMOs) have initiated a technology platform for accelerating the implementation of deep geological disposal of radioactive waste in Europe. The most advanced waste management programmes in Europe (i.e. Finland, Sweden, and France) have already started or are prepared to start the licensing process of deep geological disposal facilities within the next decade. A technology platform called Implementing Geological Disposal of Radioactive Waste Technology Platform (IGD-TP) was launched in November 2009. A shared vision report for the platform was published stating that: 'Our vision is that by 2025, the first geological disposal facilities for spent fuel,more » high-level waste, and other long-lived radioactive waste will be operating safely in Europe'. In 2011, the IGD-TP had eleven WMO members and about 70 participants from academia, research, and the industry committed to its vision. The IGD-TP has started to become a tool for reducing overlapping work, to produce savings in total costs of research and implementation and to make better use of existing competence and research infrastructures. The main contributor to this is the deployment of the IGD-TP's newly published Strategic Research Agenda (SRA). The work undertaken for the SRA defined the pending research, development and demonstration (RD and D) issues and needs. The SRA document describing the identified issues that could be worked on collaboratively was published in July 2011. It is available on the project's public web site (www.igdtp.eu). The SRA was organized around 7 Key Topics covering the Safety Case, Waste forms and their behaviour, Technical feasibility and long-term performance of repository components, Development strategy of the repository, Safety of construction and operations, Monitoring, and Governance and stakeholder involvement. Individual Topics were prioritized within the Key Topics. Cross-cutting activities like Education and Training or

  13. A Safety Case Approach for Deep Geologic Disposal of DOE HLW and DOE SNF in Bedded Salt - 13350

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sevougian, S. David; MacKinnon, Robert J.; Leigh, Christi D.

    2013-07-01

    The primary objective of this study is to investigate the feasibility and utility of developing a defensible safety case for disposal of United States Department of Energy (U.S. DOE) high-level waste (HLW) and DOE spent nuclear fuel (SNF) in a conceptual deep geologic repository that is assumed to be located in a bedded salt formation of the Delaware Basin [1]. A safety case is a formal compilation of evidence, analyses, and arguments that substantiate and demonstrate the safety of a proposed or conceptual repository. We conclude that a strong initial safety case for potential licensing can be readily compiled bymore » capitalizing on the extensive technical basis that exists from prior work on the Waste Isolation Pilot Plant (WIPP), other U.S. repository development programs, and the work published through international efforts in salt repository programs such as in Germany. The potential benefits of developing a safety case include leveraging previous investments in WIPP to reduce future new repository costs, enhancing the ability to effectively plan for a repository and its licensing, and possibly expediting a schedule for a repository. A safety case will provide the necessary structure for organizing and synthesizing existing salt repository science and identifying any issues and gaps pertaining to safe disposal of DOE HLW and DOE SNF in bedded salt. The safety case synthesis will help DOE to plan its future R and D activities for investigating salt disposal using a risk-informed approach that prioritizes test activities that include laboratory, field, and underground investigations. It should be emphasized that the DOE has not made any decisions regarding the disposition of DOE HLW and DOE SNF. Furthermore, the safety case discussed herein is not intended to either site a repository in the Delaware Basin or preclude siting in other media at other locations. Rather, this study simply presents an approach for accelerated development of a safety case for a

  14. Evaluating pharmaceutical waste disposal in pediatric units.

    PubMed

    Almeida, Maria Angélica Randoli de; Wilson, Ana Maria Miranda Martins; Peterlini, Maria Angélica Sorgini

    2016-01-01

    To verify the disposal of pharmaceutical waste performed in pediatric units. A descriptive and observational study conducted in a university hospital. The convenience sample consisted of pharmaceuticals discarded during the study period. Handling and disposal during preparation and administration were observed. Data collection took place at pre-established times and was performed using a pre-validated instrument. 356 drugs disposals were identified (35.1% in the clinic, 31.8% in the intensive care unit, 23.8% in the surgical unit and 9.3% in the infectious diseases unit). The most discarded pharmacological classes were: 22.7% antimicrobials, 14.8% electrolytes, 14.6% analgesics/pain killers, 9.5% diuretics and 6.7% antiulcer agents. The most used means for disposal were: sharps' disposable box with a yellow bag (30.8%), sink drain (28.9%), sharps' box with orange bag (14.3%), and infectious waste/bin with a white bag (10.1%). No disposal was identified after drug administration. A discussion of measures that can contribute to reducing (healthcare) waste volume with the intention of engaging reflective team performance and proper disposal is necessary. Verificar o descarte dos resíduos de medicamentos realizado em unidades pediátricas. Estudo descritivo e observacional, realizado em um hospital universitário. A amostra de conveniência foi constituída pelos medicamentos descartados durante o período de estudo. Observaram-se a manipulação e o descarte durante o preparo e a administração. A coleta dos dados ocorreu em horários preestabelecidos e realizada por meio de instrumento pré-validado. Identificaram-se 356 descartes de medicamentos (35,1% na clínica, 31,8% na unidade de cuidados intensivos, 23,8% na cirúrgica e 9,3% na infectologia). As classes farmacológicas mais descartadas foram: 22,7% antimicrobianos, 14,8% eletrólitos, 14,6% analgésicos, 9,5% diuréticos e 6,7% antiulcerosos. Vias mais utilizadas: caixa descartável para perfurocortante com

  15. Radioactive waste storage issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunz, Daniel E.

    1994-08-15

    In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal)more » of wastes generated solely within a state`s boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected.« less

  16. 77 FR 58591 - Report on Waste Burial Charges: Changes in Decommissioning Waste Disposal Costs at Low-Level...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-21

    ... NUCLEAR REGULATORY COMMISSION [NRC-2010-0362] Report on Waste Burial Charges: Changes in Decommissioning Waste Disposal Costs at Low-Level Waste Burial Facilities AGENCY: Nuclear Regulatory Commission... Commission) has issued for public comment a document entitled: NUREG-1307 Revision 15, ``Report on Waste...

  17. U.S. program assessing nuclear waste disposal in space - A status report

    NASA Technical Reports Server (NTRS)

    Rice, E. E.; Priest, C. C.; Friedlander, A. L.

    1980-01-01

    Various concepts for the space disposal of nuclear waste are discussed, with attention given to the destinations now being considered (high earth orbit, lunar orbit, lunar surface, solar orbit, solar system escape, sun). Waste mixes are considered in the context of the 'Purex' (Plutonium and Uranium extraction) process and the potential forms for nuclear waste disposal (ORNL cermet, Boro-silicate glass, Metal matrix, Hot-pressed supercalcine) are described. Preliminary estimates of the energy required and the cost surcharge needed to support the space disposal of nuclear waste are presented (8 metric tons/year, requiring three Shuttle launches). When Purex is employed, the generated electrical energy needed to support the Shuttle launches is shown to be less than 1%, and the projected surcharge to electrical users is shown to be slightly more than two mills/kW-hour.

  18. Evaluation of the effectiveness and safety of the thermo-treatment process to dispose of recombinant DNA waste from biological research laboratories.

    PubMed

    Li, Meng-Nan; Zheng, Guang-Hong; Wang, Lei; Xiao, Wei; Fu, Xiao-Hua; Le, Yi-Quan; Ren, Da-Ming

    2009-01-01

    The discharge of recombinant DNA waste from biological laboratories into the eco-system may be one of the pathways resulting in horizontal gene transfer or "gene pollution". Heating at 100 degrees C for 5-10 min is a common method for treating recombinant DNA waste in biological research laboratories in China. In this study, we evaluated the effectiveness and the safety of the thermo-treatment method in the disposal of recombinant DNA waste. Quantitative PCR, plasmid transformation and electrophoresis technology were used to evaluate the decay/denaturation efficiency during the thermo-treatment process of recombinant plasmid, pET-28b. Results showed that prolonging thermo-treatment time could improve decay efficiency of the plasmid, and its decay half-life was 2.7-4.0 min during the thermo-treatment at 100 degrees C. However, after 30 min of thermo-treatment some transforming activity remained. Higher ionic strength could protect recombinant plasmid from decay during the treatment process. These results indicate that thermo-treatment at 100 degrees C cannot decay and inactivate pET-28b completely. In addition, preliminary results showed that thermo-treated recombinant plasmids were not degraded completely in a short period when they were discharged into an aquatic environment. This implies that when thermo-treated recombinant DNAs are discharged into the eco-system, they may have enough time to re-nature and transform, thus resulting in gene diffusion.

  19. 26 CFR 17.1 - Industrial development bonds used to provide solid waste disposal facilities; temporary rules.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... solid waste disposal facilities; temporary rules. 17.1 Section 17.1 Internal Revenue INTERNAL REVENUE... UNDER 26 U.S.C. 103(c) § 17.1 Industrial development bonds used to provide solid waste disposal... substantially all the proceeds of which are used to provide solid waste disposal facilities. Section 1.103-8(f...

  20. 26 CFR 17.1 - Industrial development bonds used to provide solid waste disposal facilities; temporary rules.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... solid waste disposal facilities; temporary rules. 17.1 Section 17.1 Internal Revenue INTERNAL REVENUE... UNDER 26 U.S.C. 103(c) § 17.1 Industrial development bonds used to provide solid waste disposal... substantially all the proceeds of which are used to provide solid waste disposal facilities. Section 1.103-8(f...

  1. Carbon footprint associated with four disposal scenarios for urban pruning waste.

    PubMed

    Araújo, Yuri Rommel Vieira; de Góis, Monijany Lins; Junior, Luiz Moreira Coelho; Carvalho, Monica

    2018-01-01

    The inadequate disposal of urban pruning residues can cause significant environmental impacts. The objective of the study presented herein was to quantify the carbon footprint and analyze four disposal scenarios for the urban pruning waste of the city of Joao Pessoa (Northeast Brazil). Software SimaPro was utilized for the quantification of the carbon footprint, with the IPCC 2013 GWP 100y impact evaluation method. The end-of-life treatments considered were sanitary landfilling (with and without collection of methane), simple municipal incineration, and reutilization of wood (transformation into briquettes). The results indicated that simple disposal in sanitary landfill generated 136.34 kg CO 2 /t urban pruning waste collected (highest carbon footprint), sanitary landfill with methane collection emitted 113.43 kg CO 2 /t waste, municipal incineration generated 71.31 kg CO 2 /t waste, and reutilization of woody residues was the scenario with the lowest carbon footprint, with 27.82 kg CO 2 /t waste. This study demonstrated that reutilization of biomass, besides being environmentally viable, presents the potential to contribute to the city's environmental quality, including the possibility of being used to obtain carbon credits.

  2. 36 CFR 6.6 - Solid waste disposal sites within new additions to the National Park System.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal sites... NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.6 Solid waste disposal sites within new additions to the National Park System. (a) An operator...

  3. 36 CFR 6.6 - Solid waste disposal sites within new additions to the National Park System.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal sites... NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.6 Solid waste disposal sites within new additions to the National Park System. (a) An operator...

  4. High-level waste disposal, ethics and thermodynamics

    NASA Astrophysics Data System (ADS)

    Schwartz, Michael O.

    2008-06-01

    Moral philosophy applied to nuclear waste disposal can be linked to paradigmatic science. Simple thermodynamic principles tell us something about rightness or wrongness of our action. Ethical judgement can be orientated towards the chemical compatibility between waste container and geological repository. A container-repository system as close as possible to thermodynamic equilibrium is ethically acceptable. It aims at unlimited stability, similar to the stability of natural metal deposits within the Earth’s crust. The practicability of the guideline can be demonstrated.

  5. 40 CFR 257.5 - Disposal standards for owners/operators of non-municipal non-hazardous waste disposal units that...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... compliance with §§ 257.7 through 257.30 prior to the receipt of CESQG hazardous waste. (b) Definitions.... Waste management unit boundary means a vertical surface located at the hydraulically downgradient limit.../operators of non-municipal non-hazardous waste disposal units that receive Conditionally Exempt Small...

  6. The factors that have correlation with student behavior to dispose liquid waste

    NASA Astrophysics Data System (ADS)

    Kusmawaningtyas, Rieneke; Darmajanti, Linda; Soesilo, Tri Edhi Budhi

    2017-03-01

    Students majoring in chemistry could produce toxic liquid waste in their laboratory practices. They are not allowed to dispose of hazardous laboratory liquid into the environment. The formulation of problem in this study is that not all students have good behavior to dispose liquid waste properly according to their type and chemical properties while it is expected that all students have good behavior to dispose liquid waste with the type and chemical properties in container vessel, even though all students are expected to have behavior to dispose waste in the container vessel with the support of the predisposing factors, enabling factors, and driving factors. The aim of this study is to analyze the type and chemical properties of liquid waste and the relationship between three factors forming behavior with student behavior. The relationship between three factors forming behavior with student behavior was analyzed by correlative analysis. Type and chemical properties known through observation and qualitative analysis. The results of this research is found that enabling factors and driving behavior have a weak relation with student behavior. Nevertheless, predisposing factors has no relation with student behavior. The result of analysis of waste laboratory are known that laboratory liquid waste contains Cu, Fe, and methylene blue which potentially pollute the environment. The findings show that although generally the laboratory use chemicals in small quantities, but the total quantity of laboratory liquid waste produced from all laboratories in some regions must be considered. Moreover, the impact of the big quantity of liquid waste to environment must be taken into account. Thus, it is recommended that students should raise awareness of the risks associated with laboratory liquid waste and, we should provide proper management for a laboratory and policy makers.

  7. Thermal-Hydrology Simulations of Disposal of High-Level Radioactive Waste in a Single Deep Borehole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadgu, Teklu; Stein, Emily; Hardin, Ernest

    2015-11-01

    Simulations of thermal-hydrology were carried out for the emplacement of spent nuclear fuel canisters and cesium and strontium capsules using the PFLOTRAN simulator. For the cesium and strontium capsules the analysis looked at disposal options such as different disposal configurations and surface aging of waste to reduce thermal effects. The simulations studied temperature and fluid flux in the vicinity of the borehole. Simulation results include temperature and vertical flux profiles around the borehole at selected depths. Of particular importance are peak temperature increases, and fluxes at the top of the disposal zone. Simulations of cesium and strontium capsule disposal predictmore » that surface aging and/or emplacement of the waste at the top of the disposal zone reduces thermal effects and vertical fluid fluxes. Smaller waste canisters emplaced over a longer disposal zone create the smallest thermal effect and vertical fluid fluxes no matter the age of the waste or depth of emplacement.« less

  8. Special Analysis for Disposal of High-Concentration I-129 Waste in the Intermediate-Level Vaults at the E-Area Low-Level Waste Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collard, L.B.

    2000-09-26

    This revision was prepared to address comments from DOE-SR that arose following publication of revision 0. This Special Analysis (SA) addresses disposal of wastes with high concentrations of I-129 in the Intermediate-Level (IL) Vaults at the operating, low-level radioactive waste disposal facility (the E-Area Low-Level Waste Facility or LLWF) on the Savannah River Site (SRS). This SA provides limits for disposal in the IL Vaults of high-concentration I-129 wastes, including activated carbon beds from the Effluent Treatment Facility (ETF), based on their measured, waste-specific Kds.

  9. Rethink Disposable: Packaging Waste Source Reduction Pilot Project

    EPA Pesticide Factsheets

    Information about the SFBWQP Rethink Disposable: Packaging Waste Source Reduction Pilot Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  10. Selection of infectious medical waste disposal firms by using the analytic hierarchy process and sensitivity analysis.

    PubMed

    Hsu, Pi-Fang; Wu, Cheng-Ru; Li, Ya-Ting

    2008-01-01

    While Taiwanese hospitals dispose of large amounts of medical waste to ensure sanitation and personal hygiene, doing so inefficiently creates potential environmental hazards and increases operational expenses. However, hospitals lack objective criteria to select the most appropriate waste disposal firm and evaluate its performance, instead relying on their own subjective judgment and previous experiences. Therefore, this work presents an analytic hierarchy process (AHP) method to objectively select medical waste disposal firms based on the results of interviews with experts in the field, thus reducing overhead costs and enhancing medical waste management. An appropriate weight criterion based on AHP is derived to assess the effectiveness of medical waste disposal firms. The proposed AHP-based method offers a more efficient and precise means of selecting medical waste firms than subjective assessment methods do, thus reducing the potential risks for hospitals. Analysis results indicate that the medical sector selects the most appropriate infectious medical waste disposal firm based on the following rank: matching degree, contractor's qualifications, contractor's service capability, contractor's equipment and economic factors. By providing hospitals with an effective means of evaluating medical waste disposal firms, the proposed AHP method can reduce overhead costs and enable medical waste management to understand the market demand in the health sector. Moreover, performed through use of Expert Choice software, sensitivity analysis can survey the criterion weight of the degree of influence with an alternative hierarchy.

  11. Stabilization and disposal of Argonne-West low-level mixed wastes in ceramicrete waste forms.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barber, D. B.; Singh, D.; Strain, R. V.

    1998-02-17

    The technology of room-temperature-setting phosphate ceramics or Ceramicrete{trademark} technology, developed at Argonne National Laboratory (ANL)-East is being used to treat and dispose of low-level mixed wastes through the Department of Energy complex. During the past year, Ceramicrete{trademark} technology was implemented for field application at ANL-West. Debris wastes were treated and stabilized: (a) Hg-contaminated low-level radioactive crushed light bulbs and (b) low-level radioactive Pb-lined gloves (part of the MWIR {number_sign} AW-W002 waste stream). In addition to hazardous metals, these wastes are contaminated with low-level fission products. Initially, bench-scale waste forms with simulated and actual waste streams were fabricated by acid-base reactionsmore » between mixtures of magnesium oxide powders and an acid phosphate solution, and the wastes. Size reduction of Pb-lined plastic glove waste was accomplished by cryofractionation. The Ceramicrete{trademark} process produces dense, hard ceramic waste forms. Toxicity Characteristic Leaching Procedure (TCLP) results showed excellent stabilization of both Hg and Pb in the waste forms. The principal advantage of this technology is that immobilization of contaminants is the result of both chemical stabilization and subsequent microencapsulation of the reaction products. Based on bench-scale studies, Ceramicrete{trademark} technology has been implemented in the fabrication of 5-gal waste forms at ANL-West. Approximately 35 kg of real waste has been treated. The TCLP is being conducted on the samples from the 5-gal waste forms. It is expected that because the waste forms pass the limits set by the EPAs Universal Treatment Standard, they will be sent to a radioactive-waste disposal facility.« less

  12. Importance of patient education on home medical care waste disposal in Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikeda, Yukihiro, E-mail: yuyu@med.kindai.ac.jp

    Highlights: • Attached office nurses more recovered medical waste from patients’ homes. • Most nurses educated their patients on how to store home medical care waste in their homes and on how to separate them. • Around half of nurses educated their patients on where to dispose of their home medical care waste. - Abstract: To determine current practices in the disposal and handling of home medical care (HMC) waste, a questionnaire was mailed to 1965 offices nationwide. Of the office that responded, 1283 offices were analyzed. Offices were classified by management configuration: those attached to hospitals were classified asmore » ”attached offices” and others as “independent offices”. More nurses from attached offices recovered medical waste from patients’ homes than those from independent offices. Most nurses educated their patients on how to store HMC waste in their homes (79.3% of total) and on how to separate HMC waste (76.5% of total). On the other hand, only around half of nurses (47.3% from attached offices and 53.2% from independent offices) educated their patients on where to dispose of their HMC waste. 66.0% of offices replied that patients had separated their waste appropriately. The need for patient education has emerged in recent years, with education for nurses under the diverse conditions of HMC being a key factor in patient education.« less

  13. 40 CFR 265.316 - Disposal of small containers of hazardous waste in overpacked drums (lab packs).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Landfills § 265.316 Disposal of small containers of hazardous waste in overpacked drums (lab packs). Small containers of hazardous waste... hazardous waste in overpacked drums (lab packs). 265.316 Section 265.316 Protection of Environment...

  14. 40 CFR 264.316 - Disposal of small containers of hazardous waste in overpacked drums (lab packs).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Landfills § 264.316 Disposal of small containers of hazardous waste in overpacked drums (lab packs). Small containers of hazardous waste in overpacked... hazardous waste in overpacked drums (lab packs). 264.316 Section 264.316 Protection of Environment...

  15. 40 CFR 761.64 - Disposal of wastes generated as a result of research and development activities authorized under...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Disposal of wastes generated as a..., AND USE PROHIBITIONS Storage and Disposal § 761.64 Disposal of wastes generated as a result of... section provides disposal requirements for wastes generated during and as a result of research and...

  16. 40 CFR 761.64 - Disposal of wastes generated as a result of research and development activities authorized under...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Disposal of wastes generated as a..., AND USE PROHIBITIONS Storage and Disposal § 761.64 Disposal of wastes generated as a result of... section provides disposal requirements for wastes generated during and as a result of research and...

  17. 40 CFR 761.64 - Disposal of wastes generated as a result of research and development activities authorized under...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Disposal of wastes generated as a..., AND USE PROHIBITIONS Storage and Disposal § 761.64 Disposal of wastes generated as a result of... section provides disposal requirements for wastes generated during and as a result of research and...

  18. 40 CFR 761.64 - Disposal of wastes generated as a result of research and development activities authorized under...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Disposal of wastes generated as a..., AND USE PROHIBITIONS Storage and Disposal § 761.64 Disposal of wastes generated as a result of... section provides disposal requirements for wastes generated during and as a result of research and...

  19. Food waste disposal units in UK households: the need for policy intervention.

    PubMed

    Iacovidou, Eleni; Ohandja, Dieudonne-Guy; Voulvoulis, Nikolaos

    2012-04-15

    The EU Landfill Directive requires Member States to reduce the amount of biodegradable waste disposed of to landfill. This has been a key driver for the establishment of new waste management options, particularly in the UK, which in the past relied heavily on landfill for the disposal of municipal solid waste (MSW). MSW in the UK is managed by Local Authorities, some of which in a less conventional way have been encouraging the installation and use of household food waste disposal units (FWDs) as an option to divert food waste from landfill. This study aimed to evaluate the additional burden to water industry operations in the UK associated with this option, compared with the benefits and related savings from the subsequent reductions in MSW collection and disposal. A simple economic analysis was undertaken for different FWD uptake scenarios, using the Anglian Region as a case study. Results demonstrated that the significant savings from waste collection arising from a large-scale uptake of FWDs would outweigh the costs associated with the impacts to the water industry. However, in the case of a low uptake, such savings would not be enough to cover the increased costs associated with the wastewater provision. As a result, this study highlights the need for policy intervention in terms of regulating the use of FWDs, either promoting them as an alternative to landfill to increase savings from waste management, or banning them as a threat to wastewater operations to reduce potential costs to the water industry. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Operating room waste: disposable supply utilization in neurosurgical procedures.

    PubMed

    Zygourakis, Corinna C; Yoon, Seungwon; Valencia, Victoria; Boscardin, Christy; Moriates, Christopher; Gonzales, Ralph; Lawton, Michael T

    2017-02-01

    OBJECTIVE Disposable supplies constitute a large portion of operating room (OR) costs and are often left over at the end of a surgical case. Despite financial and environmental implications of such waste, there has been little evaluation of OR supply utilization. The goal of this study was to quantify the utilization of disposable supplies and the costs associated with opened but unused items (i.e., "waste") in neurosurgical procedures. METHODS Every disposable supply that was unused at the end of surgery was quantified through direct observation of 58 neurosurgical cases at the University of California, San Francisco, in August 2015. Item costs (in US dollars) were determined from the authors' supply catalog, and statistical analyses were performed. RESULTS Across 58 procedures (36 cranial, 22 spinal), the average cost of unused supplies was $653 (range $89-$3640, median $448, interquartile range $230-$810), or 13.1% of total surgical supply cost. Univariate analyses revealed that case type (cranial versus spinal), case category (vascular, tumor, functional, instrumented, and noninstrumented spine), and surgeon were important predictors of the percentage of unused surgical supply cost. Case length and years of surgical training did not affect the percentage of unused supply cost. Accounting for the different case distribution in the 58 selected cases, the authors estimate approximately $968 of OR waste per case, $242,968 per month, and $2.9 million per year, for their neurosurgical department. CONCLUSIONS This study shows a large variation and significant magnitude of OR waste in neurosurgical procedures. At the authors' institution, they recommend price transparency, education about OR waste to surgeons and nurses, preference card reviews, and clarification of supplies that should be opened versus available as needed to reduce waste.

  1. Impact of iron redox chemistry on nuclear waste disposal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pearce, Carolyn I.; Rosso, Kevin M.; Pattrick, Richard

    For the safe disposal of nuclear waste, the ability to predict the changes in oxidation states of redox active actinide elements and fission products, such as U, Pu, Tc and Np is a key factor in determining their long term mobility. Both in the Geological Disposal Facility (GDF) near-field and in the far-field subsurface environment, the oxidation states of radionuclides are closely tied to changes in the redox condition of other elements in the subsurface such as iron. Iron pervades all aspects of the waste package environment, from the steel in the waste containers, through corrosion products, to the ironmore » minerals present in the host rock. Over the long period required for nuclear waste disposal, the chemical conditions of the subsurface waste package will vary along the entire continuum from oxidizing to reducing conditions. This variability leads to the expectation that redox-active components such as Fe oxides can undergo phase transformations or dissolution; to understand and quantify such a system with respect to potential impacts on waste package integrity and radionuclide fate is clearly a serious challenge. Traditional GDF performance assessment models currently rely upon surface adsorption or single phase solubility experiments and do not deal with the incorporation of radionuclides into specific crystallographic sites within the evolving Fe phases. In this chapter, we focus on the iron-bearing phases that are likely to be present in both the near and far-field of a GDF, examining their potential for redox activity and interaction with radionuclides. To support this, thermodynamic and molecular modelling is particularly important in predicting radionuclide behaviour in the presence of Fe-phases. Examination of radionuclide contamination of the natural environment provides further evidence of the importance of Fe-phases in far-field processes; these can be augmented by experimental and analogue studies.« less

  2. 36 CFR 13.1118 - Solid waste disposal.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Solid waste disposal. 13.1118 Section 13.1118 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve General...

  3. Development of a Universal Canister for Disposal of High-Level Waste in Deep Boreholes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, Laura L.; Gomberg, Steve

    2015-11-01

    The mission of the United States Department of Energy’s Office of Environmental Management is to complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and government-sponsored nuclear energy research. Some of the wastes that must be managed have been identified as good candidates for disposal in a deep borehole in crystalline rock. In particular, wastes that can be disposed of in a small package are good candidates for this disposal concept. A canister-based system that can be used for handling these wastes during the disposition process (i.e., storage, transfer, transportation, and disposal)more » could facilitate the eventual disposal of these wastes. Development of specifications for the universal canister system will consider the regulatory requirements that apply to storage, transportation, and disposal of the capsules, as well as operational requirements and limits that could affect the design of the canister (e.g., deep borehole diameter). In addition, there are risks and technical challenges that need to be recognized and addressed as Universal Canister system specifications are developed. This paper provides an approach to developing specifications for such a canister system that is integrated with the overall efforts of the DOE’s Used Fuel Disposition Campaign's Deep Borehole Field Test and compatible with planned storage of potential borehole-candidate wastes.« less

  4. Modeling Coupled Processes in Clay Formations for Radioactive Waste Disposal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hui-Hai; Rutqvist, Jonny; Zheng, Liange

    As a result of the termination of the Yucca Mountain Project, the United States Department of Energy (DOE) has started to explore various alternative avenues for the disposition of used nuclear fuel and nuclear waste. The overall scope of the investigation includes temporary storage, transportation issues, permanent disposal, various nuclear fuel types, processing alternatives, and resulting waste streams. Although geologic disposal is not the only alternative, it is still the leading candidate for permanent disposal. The realm of geologic disposal also offers a range of geologic environments that may be considered, among those clay shale formations. Figure 1-1 presents themore » distribution of clay/shale formations within the USA. Clay rock/shale has been considered as potential host rock for geological disposal of high-level nuclear waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures induced by tunnel excavation. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at Mol site, Belgium (Barnichon et al., 2005) have all been under intensive scientific investigations (at both field and laboratory scales) for understanding a variety of rock properties and their relations with flow and transport processes associated with geological disposal of nuclear waste. Clay/shale formations may be generally classified as indurated and plastic clays (Tsang et al., 2005). The latter (including Boom clay) is a softer material without high cohesion; its deformation is dominantly plastic. For both clay rocks, coupled thermal, hydrological, mechanical and chemical (THMC) processes are expected to have a significant impact on the long-term safety of a clay repository

  5. Treatment of waste printed wire boards in electronic waste for safe disposal.

    PubMed

    Niu, Xiaojun; Li, Yadong

    2007-07-16

    The printed wire boards (PWBs) in electronic waste (E-waste) have been found to contain large amounts of toxic substances. Studies have concluded that the waste PWBs are hazardous wastes because they fails the toxicity characteristic leaching procedure (TCLP) test with high level of lead (Pb) leaching out. In this study, two treatment methods - high-pressure compaction and cement solidification - were explored for rendering the PWBs into non-hazardous forms so that they may be safely disposed or used. The high-pressure compaction method could turn the PWBs into high-density compacts with significant volume reduction, but the impact resistance of the compacts was too low to keep them intact in the environment for a long run. In contrast, the cement solidification could turn the PWBs into strong monoliths with high impact resistance and relatively high compressive strength. The leaching of the toxic heavy metal Pb from the solidified samples was evaluated by both a dynamic leaching test and the TCLP test. The dynamic leaching results revealed that Pb could be effectively confined in the solidified products under very harsh environmental conditions. The TCLP test results showed that the leaching level of Pb was far below the regulatory level of 5mg/L, suggesting that the solidified PWBs are no longer hazardous. It was concluded that the cement solidification is an effective way to render the waste PWBs into environmentally benign forms so that they can be disposed of as ordinary solid wastes or beneficially used in the place of concrete in some applications.

  6. 10 CFR 51.62 - Environmental report-land disposal of radioactive waste licensed under 10 CFR part 61.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Environmental report-land disposal of radioactive waste....62 Environmental report—land disposal of radioactive waste licensed under 10 CFR part 61. (a) Each applicant for issuance of a license for land disposal of radioactive waste pursuant to part 61 of this...

  7. 10 CFR 51.62 - Environmental report-land disposal of radioactive waste licensed under 10 CFR part 61.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Environmental report-land disposal of radioactive waste....62 Environmental report—land disposal of radioactive waste licensed under 10 CFR part 61. (a) Each applicant for issuance of a license for land disposal of radioactive waste pursuant to part 61 of this...

  8. 10 CFR 51.62 - Environmental report-land disposal of radioactive waste licensed under 10 CFR part 61.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Environmental report-land disposal of radioactive waste....62 Environmental report—land disposal of radioactive waste licensed under 10 CFR part 61. (a) Each applicant for issuance of a license for land disposal of radioactive waste pursuant to part 61 of this...

  9. 10 CFR 51.62 - Environmental report-land disposal of radioactive waste licensed under 10 CFR part 61.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Environmental report-land disposal of radioactive waste....62 Environmental report—land disposal of radioactive waste licensed under 10 CFR part 61. (a) Each applicant for issuance of a license for land disposal of radioactive waste pursuant to part 61 of this...

  10. 10 CFR 51.62 - Environmental report-land disposal of radioactive waste licensed under 10 CFR part 61.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Environmental report-land disposal of radioactive waste....62 Environmental report—land disposal of radioactive waste licensed under 10 CFR part 61. (a) Each applicant for issuance of a license for land disposal of radioactive waste pursuant to part 61 of this...

  11. Solid medical waste: a cross sectional study of household disposal practices and reported harm in Southern Ghana.

    PubMed

    Udofia, Emilia Asuquo; Gulis, Gabriel; Fobil, Julius

    2017-05-18

    Solid medical waste (SMW) in households is perceived to pose minimal risks to the public compared to SMW generated from healthcare facilities. While waste from healthcare facilities is subject to recommended safety measures to minimize risks to human health and the environment, similar waste in households is often untreated and co-mingled with household waste which ends up in landfills and open dumps in many African countries. In Ghana, the management of this potentially hazardous waste stream at household and community level has not been widely reported. The objective of this study was to investigate household disposal practices and harm resulting from SMW generated in households and the community. A cross-sectional questionnaire survey of 600 households was undertaken in Ga South Municipal Assembly in Accra, Ghana from mid-April to June, 2014. Factors investigated included socio-demographic characteristics, medication related practices, the belief that one is at risk of diseases associated with SMW, SMW disposal practices and reported harm associated with SMW at home and in the community. Eighty percent and 89% of respondents discarded unwanted medicines and sharps in household refuse bins respectively. A corresponding 23% and 35% of respondents discarded these items without a container. Harm from SMW in the household and in the community was reported by 5% and 3% of respondents respectively. Persons who believed they were at risk of diseases associated with SMW were nearly three times more likely to report harm in the household (OR 2.75, 95%CI 1.15-6.54). The belief that one can be harmed by diseases associated with SMW influenced reporting rates in the study area. Disposal practices suggest the presence of unwanted medicines and sharps in the household waste stream conferring on it hazardous properties. Given the low rates of harm reported, elimination of preventable harm might justify community intervention.

  12. Selection of infectious medical waste disposal firms by using the analytic hierarchy process and sensitivity analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, P.-F.; Wu, C.-R.; Li, Y.-T.

    2008-07-01

    While Taiwanese hospitals dispose of large amounts of medical waste to ensure sanitation and personal hygiene, doing so inefficiently creates potential environmental hazards and increases operational expenses. However, hospitals lack objective criteria to select the most appropriate waste disposal firm and evaluate its performance, instead relying on their own subjective judgment and previous experiences. Therefore, this work presents an analytic hierarchy process (AHP) method to objectively select medical waste disposal firms based on the results of interviews with experts in the field, thus reducing overhead costs and enhancing medical waste management. An appropriate weight criterion based on AHP is derivedmore » to assess the effectiveness of medical waste disposal firms. The proposed AHP-based method offers a more efficient and precise means of selecting medical waste firms than subjective assessment methods do, thus reducing the potential risks for hospitals. Analysis results indicate that the medical sector selects the most appropriate infectious medical waste disposal firm based on the following rank: matching degree, contractor's qualifications, contractor's service capability, contractor's equipment and economic factors. By providing hospitals with an effective means of evaluating medical waste disposal firms, the proposed AHP method can reduce overhead costs and enable medical waste management to understand the market demand in the health sector. Moreover, performed through use of Expert Choice software, sensitivity analysis can survey the criterion weight of the degree of influence with an alternative hierarchy.« less

  13. Safety Assessment for the Kozloduy National Disposal Facility in Bulgaria - 13507

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biurrun, E.; Haverkamp, B.; Lazaro, A.

    2013-07-01

    Due to the early decommissioning of four Water-Water Energy Reactors (WWER) 440-V230 reactors at the Nuclear Power Plant (NPP) near the city of Kozloduy in Bulgaria, large amounts of low and intermediate radioactive waste will arise much earlier than initially scheduled. In or-der to manage the radioactive waste from the early decommissioning, Bulgaria has intensified its efforts to provide a near surface disposal facility at Radiana with the required capacity. To this end, a project was launched and assigned in international competition to a German-Spanish consortium to provide the complete technical planning including the preparation of the Intermediate Safety Assessmentmore » Report. Preliminary results of operational and long-term safety show compliance with the Bulgarian regulatory requirements. The long-term calculations carried out for the Radiana site are also a good example of how analysis of safety assessment results can be used for iterative improvements of the assessment by pointing out uncertainties and areas of future investigations to reduce such uncertainties in regard to the potential radiological impact. The computer model used to estimate the long-term evolution of the future repository at Radiana predicted a maximum total annual dose for members of the critical group, which is carried to approximately 80 % by C-14 for a specific ingestion pathway. Based on this result and the outcome of the sensitivity analysis, existing uncertainties were evaluated and areas for reasonable future investigations to reduce these uncertainties were identified. (authors)« less

  14. Ground-water quality beneath solid-waste disposal sites at anchorage, Alaska

    USGS Publications Warehouse

    Zenone, Chester; Donaldson, D.E.; Grunwaldt, J.J.

    1975-01-01

    Studies at three solid-waste disposal sites in the Anchorage area suggest that differences in local geohydrologic conditions influence ground-water quality. A leachate was detected in ground water within and beneath two sites where the water table is very near land surface and refuse is deposited either at or below the water table in some parts of the filled areas. No leachate was detected in ground water beneath a third site where waste disposal is well above the local water table.

  15. 75 FR 30392 - Approval of a Petition for Exemption from Hazardous Waste Disposal Injection Restrictions to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-01

    ... petition for renewal of an existing exemption from the land disposal restrictions of hazardous waste on... Waste Disposal Injection Restrictions to Cabot Corporation Tuscola, Tuscola, IL AGENCY: Environmental... United States Environmental Protection Agency (EPA) that an exemption to the land disposal restrictions...

  16. Testing of Lithium-Sulfur Dioxide Cells for Waste Disposal Hazards.

    DTIC Science & Technology

    1980-10-01

    r AD-AO90 785 WAPORA INC CHEVY CHASE NO F/G 10/3 TESTING OF LITHIUM-SULFUR DIOXIDE CELLS FOR WASTE DISPOSAL HAZA-ETC(U) OCT 80 D B BOIES OAAK20-79-C... TESTING ION T HUM -SUFU DIXD-EL ORWSEDSOA Daved B. pBli else 69stributonsi nlmied.e OCTOBELE198 Fia PRepr for Peio OCT 23198008 STRYUIO AELETOISRSA...34 cell Toxic waste Sulfur dioxide vapor pressure Structural Integrity Test Ignitable waste Extraction procedure results Corrosive waste ftactive waste

  17. Report on Waste Disposal Workshops for a Radiological ...

    EPA Pesticide Factsheets

    Symposium Paper EPA organized a series of workshops to specifically address waste disposal demands resulting from an RDD incident. These workshops leveraged planning efforts for EPA’s Liberty RadEx exercise held in April 2010 in Philadelphia, PA.

  18. Recommended methods for the disposal of sanitary wastes from temporary field medical facilities.

    PubMed

    Reed, R A; Dean, P T

    1994-12-01

    Emergency field medical facilities constructed after a disaster are frequently managed by medical staff even though many of the day-to-day problems of hospital management are unrelated to medicine. In this paper we discuss the short-term management of one of these problems, namely the control and disposal of sanitary wastes. It is aimed at persons in the medical profession who may find themselves responsible for a temporary hospital and have little or no previous experience of managing such situations. The wastes commonly generated are excreta, sullage and refuse. In addition, surface water must also be considered because its inadequate disposal is a potential health hazard. The paper concentrates on short-term measures appropriate for the first six months of the hospital or clinic's existence. Facilities expected to last longer are recommended to install conventional waste management systems appropriate to the local community and conditions. In most situations, wastes should be disposed of underground either by burial (for solids) or infiltration (for liquids). The design, construction and management of appropriate disposal systems are described.

  19. Status of chemistry lab safety in Nepal.

    PubMed

    Kandel, Krishna Prasad; Neupane, Bhanu Bhakta; Giri, Basant

    2017-01-01

    Chemistry labs can become a dangerous environment for students as the lab exercises involve hazardous chemicals, glassware, and equipment. Approximately one hundred thousand students take chemistry laboratory classes annually in Nepal. We conducted a survey on chemical lab safety issues across Nepal. In this paper, we assess the safety policy and equipment, protocols and procedures followed, and waste disposal in chemistry teaching labs. Significant population of the respondents believed that there is no monitoring of the lab safety in their lab (p<0.001). Even though many labs do not allow food and beverages inside lab and have first aid kits, they lack some basic safety equipment. There is no institutional mechanism to dispose lab waste and chemical waste is disposed haphazardly. Majority of the respondents believed that the safety training should be a part of educational training (p = 0.001) and they would benefit from short course and/or workshop on lab safety (p<0.001).

  20. Status of chemistry lab safety in Nepal

    PubMed Central

    Kandel, Krishna Prasad; Neupane, Bhanu Bhakta

    2017-01-01

    Chemistry labs can become a dangerous environment for students as the lab exercises involve hazardous chemicals, glassware, and equipment. Approximately one hundred thousand students take chemistry laboratory classes annually in Nepal. We conducted a survey on chemical lab safety issues across Nepal. In this paper, we assess the safety policy and equipment, protocols and procedures followed, and waste disposal in chemistry teaching labs. Significant population of the respondents believed that there is no monitoring of the lab safety in their lab (p<0.001). Even though many labs do not allow food and beverages inside lab and have first aid kits, they lack some basic safety equipment. There is no institutional mechanism to dispose lab waste and chemical waste is disposed haphazardly. Majority of the respondents believed that the safety training should be a part of educational training (p = 0.001) and they would benefit from short course and/or workshop on lab safety (p<0.001). PMID:28644869

  1. Study of extraterrestrial disposal of radioactive wastes. Part 1: Space transportation and destination considerations for extraterrestrial disposal of radioactive wastes. [feasibility of using space shuttle

    NASA Technical Reports Server (NTRS)

    Thompson, R. L.; Ramler, J. R.; Stevenson, S. M.

    1974-01-01

    A feasibility study of extraterrestrial disposal of radioactive waste is reported. This report covers the initial work done on only one part of the NASA study, that evaluates and compares possible space destinations and space transportation systems. The currently planned space shuttle was found to be more cost effective than current expendable launch vehicles by about a factor of 2. The space shuttle requires a third stage to perform the waste disposal missions. Depending on the particular mission, this third stage could be either a reusable space tug or an expendable stage such as a Centaur.

  2. Container Approval for the Disposal of Radioactive Waste with Negligible Heat Generation in the German Konrad Repository - 12148

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voelzke, Holger; Nieslony, Gregor; Ellouz, Manel

    Since the license for the Konrad repository was finally confirmed by legal decision in 2007, the Federal Institute for Radiation Protection (BfS) has been performing further planning and preparation work to prepare the repository for operation. Waste conditioning and packaging has been continued by different waste producers as the nuclear industry and federal research institutes on the basis of the official disposal requirements. The necessary prerequisites for this are approved containers as well as certified waste conditioning and packaging procedures. The Federal Institute for Materials Research and Testing (BAM) is responsible for container design testing and evaluation of quality assurancemore » measures on behalf of BfS under consideration of the Konrad disposal requirements. Besides assessing the container handling stability (stacking tests, handling loads), design testing procedures are performed that include fire tests (800 deg. C, 1 hour) and drop tests from different heights and drop orientations. This paper presents the current state of BAM design testing experiences about relevant container types (box shaped, cylindrical) made of steel sheets, ductile cast iron or concrete. It explains usual testing and evaluation methods which range from experimental testing to analytical and numerical calculations. Another focus has been laid on already existing containers and packages. The question arises as to how they can be evaluated properly especially with respect to lack of completeness of safety assessment and fabrication documentation. At present BAM works on numerous applications for container design testing for the Konrad repository. Some licensing procedures were successfully finished in the past and BfS certified several container types like steel sheet, concrete until cast iron containers which are now available for waste packaging for final disposal. However, large quantities of radioactive wastes had been placed into interim storage using containers

  3. Low-level radioactive waste management: transitioning to off-site disposal at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorries, Alison M

    2010-11-09

    Facing the closure of nearly all on-site management and disposal capability for low-level radioactive waste (LLW), Los Alamos National Laboratory (LANL) is making ready to ship the majority of LLW off-site. In order to ship off-site, waste must meet the Treatment, Storage, and Disposal Facility's (TSDF) Waste Acceptance Criteria (WAC). In preparation, LANL's waste management organization must ensure LANL waste generators characterize and package waste compliantly and waste characterization documentation is complete and accurate. Key challenges that must be addressed to successfully make the shift to off-site disposal of LLW include improving the detail, accuracy, and quality of process knowledgemore » (PK) and acceptable knowledge (AK) documentation, training waste generators and waste management staff on the higher standard of data quality and expectations, improved WAC compliance for off-site facilities, and enhanced quality assurance throughout the process. Certification of LANL generators will allow direct off-site shipping of LLW from their facilities.« less

  4. An evaluation of some special techniques for nuclear waste disposal in space

    NASA Technical Reports Server (NTRS)

    Mackay, J. S.

    1973-01-01

    A preliminary examination is reported of several special ways for space disposal of nuclear waste material which utilize the radioactive heat in the waste to assist in the propulsion for deep space trajectories. These include use of the wastes in a thermoelectric generator (RTG) which operates an electric propulsion device and a radioisotope - thermal thruster which uses hydrogen or ammonia as the propellant. These propulsive devices are compared to the space tug and the space tug/solar electric propulsion combination for disposal of waste on a solar system escape trajectory. Such comparisons indicate that the waste-RTG approach has considerable potential provided the combined specific mass of the waste container - RTG system does not exceed approximately 150 kg/kw sub e. Several exploratory numerical calculations have been made for high earth orbit and Earth escape destinations.

  5. Perspectives on Past and Present Waste Disposal Practices: A Community-Based Participatory Research Project in Three Saskatchewan First Nations Communities

    PubMed Central

    Zagozewski, Rebecca; Judd-Henrey, Ian; Nilson, Suzie; Bharadwaj, Lalita

    2011-01-01

    The impact of current and historical waste disposal practices on the environment and human health of Indigenous people in First Nations communities has yet to be adequately addressed. Solid waste disposal has been identified as a major environmental threat to First Nations Communities. A community-based participatory research project (CBPR) was initiated by the Saskatoon Tribal Council Health and Family Services Incorporated to investigate concerns related to waste disposal in three Saskatchewan First Nations Communities. Utilizing a qualitative approach, we aimed to gain an understanding of past and present waste disposal practices and to identify any human and environmental health concerns related to these practices. One to one interviews and sharing circles were conducted with Elders. Elders were asked to share their perspectives on past and present waste disposal practices and to comment on the possible impacts these practices may have on the environment and community health. Historically waste disposal practices were similar among communities. The homeowner generated small volumes of waste, was exclusively responsible for disposal and utilized a backyard pit. Overtime waste disposal evolved to weekly pick-up of un-segregated garbage with waste disposal and open trash burning in a community dump site. Dump site locations and open trash burning were identified as significant health issues related to waste disposal practices in these communities. This research raises issues of inequity in the management of waste in First Nations Communities. It highlights the need for long-term sustainable funding to support community-based waste disposal and management strategies and the development of First Nations centered and delivered educational programs to encourage the adoption and implementation of waste reduction, reutilization and recycling activities in these communities. PMID:21573032

  6. Field Test to Evaluate Deep Borehole Disposal.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardin, Ernest; Brady, Patrick Vane.; Clark, Andrew Jordan

    The U.S. Department of Energy (DOE) has embarked on the Deep Borehole Field Test (DBFT), which will investigate whether conditions suitable for disposal of radioactive waste can be found at a depth of up to 5 km in the earth’s crust. As planned, the DBFT will demonstrate drilling and construction of two boreholes, one for initial scientific characterization, and the other at a larger diameter such as could be appropriate for waste disposal (the DBFT will not involve radioactive waste). A wide range of geoscience activities is planned for the Characterization Borehole, and an engineering demonstration of test package emplacementmore » and retrieval is planned for the larger Field Test Borehole. Characterization activities will focus on measurements and samples that are important for evaluating the long-term isolation capability of the Deep Borehole Disposal (DBD) concept. Engineering demonstration activities will focus on providing data to evaluate the concept’s operational safety and practicality. Procurement of a scientifically acceptable DBFT site and a site management contractor is now underway. The concept of deep borehole disposal (DBD) for radioactive wastes is not new. It was considered by the National Academy of Science (NAS 1957) for liquid waste, studied in the 1980’s in the U.S. (Woodward–Clyde 1983), and has been evaluated by European waste disposal R&D programs in the past few decades (for example, Grundfelt and Crawford 2014; Grundfelt 2010). Deep injection of wastewater including hazardous wastes is ongoing in the U.S. and regulated by the Environmental Protection Agency (EPA 2001). The DBFT is being conducted with a view to use the DBD concept for future disposal of smaller-quantity, DOE-managed wastes from nuclear weapons production (i.e., Cs/Sr capsules and granular solid wastes). However, the concept may also have broader applicability for nations that have a need to dispose of limited amounts of spent fuel from nuclear power reactors

  7. Disposal of spent fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blomeke, J O; Ferguson, D E; Croff, A G

    1978-01-01

    Based on preliminary analyses, spent fuel assemblies are an acceptable form for waste disposal. The following studies appear necessary to bring our knowledge of spent fuel as a final disposal form to a level comparable with that of the solidified wastes from reprocessing: 1. A complete systems analysis is needed of spent fuel disposition from reactor discharge to final isolation in a repository. 2. Since it appears desirable to encase the spent fuel assembly in a metal canister, candidate materials for this container need to be studied. 3. It is highly likely that some ''filler'' material will be needed betweenmore » the fuel elements and the can. 4. Leachability, stability, and waste-rock interaction studies should be carried out on the fuels. The major disadvantages of spent fuel as a disposal form are the lower maximum heat loading, 60 kW/acre versus 150 kW/acre for high-level waste from a reprocessing plant; the greater long-term potential hazard due to the larger quantities of plutonium and uranium introduced into a repository; and the possibility of criticality in case the repository is breached. The major advantages are the lower cost and increased near-term safety resulting from eliminating reprocessing and the treatment and handling of the wastes therefrom.« less

  8. Radioactive Wastes.

    PubMed

    Choudri, B S; Charabi, Yassine; Baawain, Mahad; Ahmed, Mushtaque

    2017-10-01

    Papers reviewed herein present a general overview of radioactive waste related activities around the world in 2016. The current reveiw include studies related to safety assessments, decommission and decontamination of nuclear facilities, fusion facilities, transportation. Further, the review highlights on management solutions for the final disposal of low and high level radioactive wastes (LLW and HLW), interim storage and final disposal options for spent fuel (SF), and tritiated wastes, with a focus on environmental impacts due to the mobility of radionuclides in ecosystem, water and soil alongwith other progress made in the management of radioactive wastes.

  9. The composting option for human waste disposal in the backcountry

    Treesearch

    S. C. Fay; R. H. Walke

    1977-01-01

    The disposal of human waste by composting at backcountry recreation areas is a possible alternative to methods that are considered unsafe. The literature indicates that aerobic, thermophilic composting is a reliable disposal method that can be low in cost and in maintenance. A bark-sewage mixture can be composted to produce a pathogen-free substance that might be used...

  10. 40 CFR 268.6 - Petitions to allow land disposal of a waste prohibited under subpart C of part 268.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS General § 268.6 Petitions to allow land disposal of a waste prohibited under subpart C of part 268. (a) Any person seeking... operator of a land disposal unit receiving restricted waste(s) will comply with other applicable Federal...

  11. 40 CFR 268.6 - Petitions to allow land disposal of a waste prohibited under subpart C of part 268.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS General § 268.6 Petitions to allow land disposal of a waste prohibited under subpart C of part 268. (a) Any person seeking... operator of a land disposal unit receiving restricted waste(s) will comply with other applicable Federal...

  12. 40 CFR 268.6 - Petitions to allow land disposal of a waste prohibited under subpart C of part 268.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS General § 268.6 Petitions to allow land disposal of a waste prohibited under subpart C of part 268. (a) Any person seeking... operator of a land disposal unit receiving restricted waste(s) will comply with other applicable Federal...

  13. 40 CFR 268.6 - Petitions to allow land disposal of a waste prohibited under subpart C of part 268.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS General § 268.6 Petitions to allow land disposal of a waste prohibited under subpart C of part 268. (a) Any person seeking... operator of a land disposal unit receiving restricted waste(s) will comply with other applicable Federal...

  14. 40 CFR 268.6 - Petitions to allow land disposal of a waste prohibited under subpart C of part 268.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS General § 268.6 Petitions to allow land disposal of a waste prohibited under subpart C of part 268. (a) Any person seeking... operator of a land disposal unit receiving restricted waste(s) will comply with other applicable Federal...

  15. Decontamination and disposal of PCB wastes.

    PubMed Central

    Johnston, L E

    1985-01-01

    Decontamination and disposal processes for PCB wastes are reviewed. Processes are classed as incineration, chemical reaction or decontamination. Incineration technologies are not limited to the rigorous high temperature but include those where innovations in use of oxident, heat transfer and residue recycle are made. Chemical processes include the sodium processes, radiant energy processes and low temperature oxidations. Typical processing rates and associated costs are provided where possible. PMID:3928363

  16. Municipal solid waste generation and disposal in Robe town, Ethiopia.

    PubMed

    Erasu, Duguma; Faye, Tesfaye; Kiros, Amaha; Balew, Abel

    2018-04-20

    The amount of solid waste generated in developing countries is rising from time to time due to economic growth, change in consumer behavior and lifestyles of people. But it is hard to manage and handle the increase of solid waste with existing waste management infrastructure. Thus, the management system of solid waste is very poor and become a serious problem. The main purpose of this study is to quantify the volume of solid waste generated and investigate factors affecting generation and disposal of wastes in the study area. The result of this study indicated that total waste generated from households was about 97.092kg/day.Furthermore, the study reveals that the solid waste generation rate of the town is 0.261kg/person/day.About 57.5% of solid waste is properly disposed of to landfill site whereas the remaining 42.5% is illegally dumped at the roadsides and open fields. Implication Statement Nowadays, in developing countries there is high concentration of people in urban areas and cause for the generation of enormous concentration of municipal waste in urban areas. Therefore this finding will be important for various policy makers and town planners. It may also serve as a benchmark for the municipal authorities of the town for whom the problem is still invisible and negligible and can push environmental protection authorities to reexamine the implementation of their policies and strategies with regard to the broader issues of human and environmental health condition of town dwellers.

  17. Mission impossible? - Government Agencies And Public Relations For Nuclear Waste Disposal In Germany

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landsmann, B.; Brauer, V.

    2007-07-01

    Analyzing the opinion of European Union citizens on the management of radioactive waste a survey of 2005 shows that European citizens are almost unanimous in the need to set up a national strategy for high-level radioactive waste disposal without any delay. While 45% of respondents consider that deep underground disposal represents the most appropriate solution for long-term management of highly radioactive waste, 38% disagree. In Germany, the divergence of opinion in this respect is very distinctive and it shows that, although experts believe that selected sites represent the best solution, this information does not yet seem to have reached themore » public. The reason therefore is both the lack of interesting and comprehensible information of issues related to nuclear waste disposal and negative media reporting always coupled with the negative public opinion about atomic energy in Germany. In Germany the siting, construction, and operation of a repository for radioactive waste is a national task. The Federal Institute for Geosciences and Natural Resources (BGR) as a government agency is a praxis oriented science institution and works on all geo-scientific and geotechnical issues in the German repository projects. According to its guidance BGR feels responsible for the future generations and is acting as a neutral and anticipatory partner for ministries and public authorities as well as a partner for industry, society and scientific bodies. BGR therefore is able to accomplish an essential contribution for the creation of public confidence for radioactive waste disposal due to precise public relations strategies. Sending the following messages is BGR's communication goal: - Radioactive waste can safely be disposed of in deep geological formations; - BGR is capable to handle this duty and delivers reliable results. Thereby, the BGR is in particular interested in passing on the information about nuclear waste disposal in a current and comprehensible way as well as

  18. Protocol for the E-Area Low Level Waste Facility Disposal Limits Database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swingle, R

    2006-01-31

    A database has been developed to contain the disposal limits for the E-Area Low Level Waste Facility (ELLWF). This database originates in the form of an EXCEL{copyright} workbook. The pertinent sheets are translated to PDF format using Adobe ACROBAT{copyright}. The PDF version of the database is accessible from the Solid Waste Division web page on SHRINE. In addition to containing the various disposal unit limits, the database also contains hyperlinks to the original references for all limits. It is anticipated that database will be revised each time there is an addition, deletion or revision of any of the ELLWF radionuclidemore » disposal limits.« less

  19. Remediation System Evaluation, Elmore Waste Disposal Superfund Site

    EPA Pesticide Factsheets

    The Elmore Waste Disposal, Inc. Superfund site is located in Greer, South Carolina. The originalElmore Site occupies approximately half an acre between South Carolina Route 290 on the south, a CSXrail line on the north and is bounded on the west by...

  20. Disposal Notifications and Quarterly Membership Updates for the Utility Solid Waste Group Members’ Risk-Based Approvals to Dispose of PCB Remediation Waste Under Title 40 of the Code of Federal Regulations Section 761.61(c)

    EPA Pesticide Factsheets

    Disposal Notifications and Quarterly Membership Updates for the Utility Solid Waste Group Members’ Risk-Based Approvals to Dispose of Polychlorinated Biphenyl (PCB) Remediation Waste Under Title 40 of the Code of Federal Regulations Section 761.61(c)

  1. Thermal disposal of waste containing nanomaterials: first investigations on a methodology for risk management

    NASA Astrophysics Data System (ADS)

    Ounoughene, G.; LeBihan, O.; Debray, B.; Chivas-Joly, C.; Longuet, C.; Joubert, A.; Lopez-Cuesta, J.-M.; Le Coq, L.

    2017-06-01

    available thermal disposal plants to safely manage WCNMs including CeO2 and ZrO2. Finally, a decision tree has been designed. TND is used as criteria to assess if a waste can be managed safely or not by a specific thermal disposal and which safety measures have to be taken.

  2. Siting process for disposal site of low level radiactive waste in Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamkate, P.; Sriyotha, P.; Thiengtrongjit, S.

    The radioactive waste in Thailand is composed of low level waste from the application of radioisotopes in medical treatment and industry, the operation of the 2 MW TRIGA Mark III Research Reactor and the production of radioisotopes at OAEP. In addition, the high activity of sealed radiation sources i.e. Cs-137 Co-60 and Ra-226 are also accumulated. Since the volume of treated waste has been gradually increased, the general needs for a repository become apparent. The near surface disposal method has been chosen for this aspect. The feasibility study on the underground disposal site has been done since 1982. The sitemore » selection criteria have been established, consisting of the rejection criteria, the technical performance criteria and the economic criteria. About 50 locations have been picked for consideration and 5 candidate sites have been selected and subsequent investigated. After thoroughly investigation, a definite location in Ratchburi Province, about 180 kilometers southwest of Bangkok, has been selected as the most suitable place for the near surface disposal of radioactive waste in Thailand.« less

  3. Biodegradation of the alkaline cellulose degradation products generated during radioactive waste disposal.

    PubMed

    Rout, Simon P; Radford, Jessica; Laws, Andrew P; Sweeney, Francis; Elmekawy, Ahmed; Gillie, Lisa J; Humphreys, Paul N

    2014-01-01

    The anoxic, alkaline hydrolysis of cellulosic materials generates a range of cellulose degradation products (CDP) including α and β forms of isosaccharinic acid (ISA) and is expected to occur in radioactive waste disposal sites receiving intermediate level radioactive wastes. The generation of ISA's is of particular relevance to the disposal of these wastes since they are able to form complexes with radioelements such as Pu enhancing their migration. This study demonstrates that microbial communities present in near-surface anoxic sediments are able to degrade CDP including both forms of ISA via iron reduction, sulphate reduction and methanogenesis, without any prior exposure to these substrates. No significant difference (n = 6, p = 0.118) in α and β ISA degradation rates were seen under either iron reducing, sulphate reducing or methanogenic conditions, giving an overall mean degradation rate of 4.7 × 10(-2) hr(-1) (SE ± 2.9 × 10(-3)). These results suggest that a radioactive waste disposal site is likely to be colonised by organisms able to degrade CDP and associated ISA's during the construction and operational phase of the facility.

  4. Combination gas-producing and waste-water disposal well. [DOE patent application

    DOEpatents

    Malinchak, R.M.

    1981-09-03

    The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.

  5. Remote-Handled Low-Level Waste Disposal Project Code of Record

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Austad, S. L.; Guillen, L. E.; McKnight, C. W.

    2015-04-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by themore » Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.« less

  6. 40 CFR 2.305 - Special rules governing certain information obtained under the Solid Waste Disposal Act, as amended.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... information obtained under the Solid Waste Disposal Act, as amended. 2.305 Section 2.305 Protection of... § 2.305 Special rules governing certain information obtained under the Solid Waste Disposal Act, as amended. (a) Definitions. For purposes of this section: (1) Act means the Solid Waste Disposal Act, as...

  7. 40 CFR 2.305 - Special rules governing certain information obtained under the Solid Waste Disposal Act, as amended.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... information obtained under the Solid Waste Disposal Act, as amended. 2.305 Section 2.305 Protection of... § 2.305 Special rules governing certain information obtained under the Solid Waste Disposal Act, as amended. (a) Definitions. For purposes of this section: (1) Act means the Solid Waste Disposal Act, as...

  8. Preliminary Comparison of Radioactive Waste Disposal Cost for Fusion and Fission Reactors

    NASA Astrophysics Data System (ADS)

    Seki, Yasushi; Aoki, Isao; Yamano, Naoki; Tabara, Takashi

    1997-09-01

    The environmental and economic impact of radioactive waste (radwaste) generated from fusion power reactors using five types of structural materials and a fission reactor has been evaluated and compared. Possible radwaste disposal scenario of fusion radwaste in Japan is considered. The exposure doses were evaluated for the skyshine of gamma-ray during the disposal operation, groundwater migration scenario during the institutional control period of 300 years and future site use scenario after the institutional period. The radwaste generated from a typical light water fission reactor was evaluated using the same methodology as for the fusion reactors. It is found that radwaste from the fusion reactors using F82H and SiC/SiC composites without impurities could be disposed by the shallow land disposal presently applied to the low level waste in Japan. The disposal cost of radwaste from five fusion power reactors and a typical light water reactor were roughly evaluated and compared.

  9. Radioactive waste disposal implications of extending Part IIA of the Environmental Protection Act to cover radioactively contaminated land.

    PubMed

    Nancarrow, D J; White, M M

    2004-03-01

    A short study has been carried out of the potential radioactive waste disposal issues associated with the proposed extension of Part IIA of the Environmental Protection Act 1990 to include radioactively contaminated land, where there is no other suitable existing legislation. It was found that there is likely to be an availability problem with respect to disposal at landfills of the radioactive wastes arising from remediation. This is expected to be principally wastes of high volume and low activity (categorised as low level waste (LLW) and very low level waste (VLLW)). The availability problem results from a lack of applications by landfill operators for authorisation to accept LLW wastes for disposal. This is apparently due to perceived adverse publicity associated with the consultation process for authorisation coupled with uncertainty over future liabilities. Disposal of waste as VLLW is limited both by questions over volumes that may be acceptable and, more fundamentally, by the likely alpha activity of wastes (originating from radium and thorium operations). Authorised on-site disposal has had little attention in policy and guidance in recent years, but may have a part to play, especially if considered commercially attractive. Disposal at BNFL's near surface disposal facility for LLW at Drigg is limited to wastes for which there are no practical alternative disposal options (and preference has been given to operational type wastes). Therefore, wastes from the radioactively contaminated land (RCL) regime are not obviously attractive for disposal to Drigg. Illustrative calculations have been performed based on possible volumes and activities of RCL arisings (and assuming Drigg's future volumetric disposal capacity is 950,000 m3). These suggest that wastes arising from implementing the RCL regime, if all disposed to Drigg, would not represent a significant fraction of the volumetric capacity of Drigg, but could have a significant impact on the radiological

  10. Household disposables as breeding habitats of dengue vectors: Linking wastes and public health

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Soumyajit, E-mail: soumyajitb@gmail.com; Aditya, Gautam, E-mail: gautamaditya2001@gmail.com; Department of Zoology, The University of Burdwan, Golapbag, Burdwan 713 104

    Highlights: Black-Right-Pointing-Pointer An assessment of different household wastes as larval habitats of dengue vectors Aedes aegypti and Aedes albopictus was made using Kolkata, India as a model geographical area. Black-Right-Pointing-Pointer Household wastes of four major categories namely earthen, porcelain, plastic and coconut shells varied significantly for Aedes immature depending on species, month and location. Black-Right-Pointing-Pointer Based on the relative density of Aedes immature, cluster analyses allowed segregation and classification of the waste containers and relative importance as mosquito larval habitats. Black-Right-Pointing-Pointer Conversion of disposed wastes into larval habitats cautions for continuance of Aedes population in Kolkata and similar cities ofmore » tropics lacking suitable waste management practices. - Abstract: An assessment of the household wastes as larval habitats of the dengue vectors was made considering Kolkata, India, as geographical area. Wastes of four major categories, namely, earthen, porcelain, plastic and coconut shells were monitored for positive with immature of either Aedes aegypti or Aedes albopictus. Twenty six types of wastes with varying size and shape, resembling containers, were identified that hosted mosquito immature. The number of waste containers positive for Aedes immature varied significantly (P < 0.05) with respect to location, type and month. The relative density of Aedes immature in the waste containers varied significantly (P < 0.05) with the types and months. The significant interaction between the month, waste container types and density of Aedes immature suggest that the household wastes are important contributors to the maintenance of the population of Aedes mosquito in the city. Based on the relative density of mosquito immature in the wastes, cluster analysis allowed segregation and classification of the wastes and their importance as mosquito larval habitats. Apparently, the

  11. Performance assessment methodology and preliminary results for low-level radioactive waste disposal in Taiwan.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnold, Bill Walter; Chang, Fu-lin; Mattie, Patrick D.

    2006-02-01

    Sandia National Laboratories (SNL) and Taiwan's Institute for Nuclear Energy Research (INER) have teamed together to evaluate several candidate sites for Low-Level Radioactive Waste (LLW) disposal in Taiwan. Taiwan currently has three nuclear power plants, with another under construction. Taiwan also has a research reactor, as well as medical and industrial wastes to contend with. Eventually the reactors will be decomissioned. Operational and decommissioning wastes will need to be disposed in a licensed disposal facility starting in 2014. Taiwan has adopted regulations similar to the US Nuclear Regulatory Commission's (NRC's) low-level radioactive waste rules (10 CFR 61) to govern themore » disposal of LLW. Taiwan has proposed several potential sites for the final disposal of LLW that is now in temporary storage on Lanyu Island and on-site at operating nuclear power plants, and for waste generated in the future through 2045. The planned final disposal facility will have a capacity of approximately 966,000 55-gallon drums. Taiwan is in the process of evaluating the best candidate site to pursue for licensing. Among these proposed sites there are basically two disposal concepts: shallow land burial and cavern disposal. A representative potential site for shallow land burial is located on a small island in the Taiwan Strait with basalt bedrock and interbedded sedimentary rocks. An engineered cover system would be constructed to limit infiltration for shallow land burial. A representative potential site for cavern disposal is located along the southeastern coast of Taiwan in a tunnel system that would be about 500 to 800 m below the surface. Bedrock at this site consists of argillite and meta-sedimentary rocks. Performance assessment analyses will be performed to evaluate future performance of the facility and the potential dose/risk to exposed populations. Preliminary performance assessment analyses will be used in the site-selection process and to aid in design of

  12. Case for retrievable high-level nuclear waste disposal

    USGS Publications Warehouse

    Roseboom, Eugene H.

    1994-01-01

    Plans for the nation's first high-level nuclear waste repository have called for permanently closing and sealing the repository soon after it is filled. However, the hydrologic environment of the proposed site at Yucca Mountain, Nevada, should allow the repository to be kept open and the waste retrievable indefinitely. This would allow direct monitoring of the repository and maintain the options for future generations to improve upon the disposal methods or use the uranium in the spent fuel as an energy resource.

  13. Hardened, environmentally disposable composite granules of coal cleaning refuse, coal combustion waste, and other wastes, and method preparing the same

    DOEpatents

    Burnet, George; Gokhale, Ashok J.

    1990-07-10

    A hardened, environmentally inert and disposable composite granule of coal cleaning refuse and coal combustion waste, and method for producing the same, wherein the coal combustion waste is first granulated. The coal cleaning refuse is pulverized into fine particles and is then bound, as an outer layer, to the granulated coal combustion waste granules. This combination is then combusted and sintered. After cooling, the combination results in hardened, environmentally inert and disposable composite granules having cores of coal combustion waste, and outer shells of coal cleaning refuse. The composite particles are durable and extremely resistant to environmental and chemical forces.

  14. The safety improvement of Romanian radioactive waste facilities as an example for human and environmental protection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barariu, Gheorghe

    2013-07-01

    According to IAEA classification, Romania with two nuclear research centres, with 2 Nuclear Power Units in operation at Cernavoda Town and with 2 new Units envisaged to be in operation soon, can be considered as a country with an average nuclear activity. In Romania there was an extensive interest in management of radioactive wastes generated by the use of nuclear technology in industry and research. Using the most advanced technologies in the mentioned time periods, Romania successfully accomplished to solve all management issues related to radioactive wastes being addressed all safety concerns. Every step of nuclear activity development was accompaniedmore » by the suitable waste management facilities. So that, in order to improve the existing treatment and disposal capacities for institutional waste, the existing Radioactive Waste Treatment Facility (STDR) and the National Repository Radioactive Wastes (DNDR) at Baita, Bihor, will be improved to actual requirements on the occasion of VVR-S Research Reactor decommissioning. This activity is in development into the frame of a National funded project related to disposal galleries filling improvement and repository closure for DNDR Baita, Bihor. All improvements will be approved by Environmental Protection Authority and Regulatory Body, being a guaranty of human and environmental protection. Also, in accordance with national specific and international policies and taking into account decommissioning activities related to the present operating NPPs, all necessary measures were considered in order to avoid unnecessary generation of radioactive wastes, to minimize, as much as possible, waste production and accumulation and the necessity to develop optimum solutions for a new repository with the assurance of improved nuclear safety. (authors)« less

  15. Site characterization for LIL radioactive waste disposal in Romania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaconu, D. R.; Birdsell, K. H.; Witkowski, M. S.

    2001-01-01

    Recent studies in radioactive waste management in Romania have focussed mainly on the disposal of low and intermediate level waste from the operation of the new nuclear power plant at Cernavoda. Following extensive geological, hydrological, seismological, physical and chemical investigations, a disposal site at Saligny has been selected. This paper presents description of the site at Saligny as well as the most important results of the site characterisation. These are reflected in the three-dimensional, stratigraphical representation of the loess and clay layers and in representative parameter values for the main layers. Based on these data, the simulation of the background,more » unsaturated-zone water flow at the Saligny site, calculated by the FEHM code, is in a good agreement with the measured moisture profile.« less

  16. ECONOMICS OF DISPOSAL OF LIME/LIMESTONE SCRUBBING WASTES: UNTREATED AND CHEMICALLY TREATED WASTES

    EPA Science Inventory

    The report gives results of a detailed, comparative economic evaluation of four alternatives available to the utility industry for the disposal of wastes from flue gas desulfurization using limestone or lime slurry scrubbing. The alternatives are untreated sludge (pond or landfil...

  17. DISPOSE OF WASTES, AN AID TO EXTENSION AND VILLAGE WORKERS IN MANY COUNTRIES.

    ERIC Educational Resources Information Center

    HUGHES, KATHRYNE S.

    THE BOOKLET DESCRIBES IN DETAIL THE CORRECT METHODS OF DISPOSING OF WASTE MATERIALS, INCLUDING TRASH, GARBAGE, WASTE WATER, HUMAN EXCRETA, AND ANIMAL WASTES. COMPLETE INSTRUCTIONS FOR DIGGING, BUILDING, AND CLEANING ARE GIVEN UNDER EACH TOPIC. (CL)

  18. Co-disposal of electronic waste with municipal solid waste in bioreactor landfills.

    PubMed

    Visvanathan, C; Visvanthan, C; Yin, Nang Htay; Karthikeyan, Obuli P

    2010-12-01

    Three pilot scale lysimeters were adopted to evaluate the stability pattern and leaching potential of heavy metals from MSW landfills under the E-waste co-disposed condition. One lysimeter served as control and solely filled with MSW, whereas the other two lysimeters were provided with 10% and 25% of E-waste scraps (% by weight), respectively. The reactors were monitored over a period of 280 days at ambient settings with continuous leachate recirculation. Stabilization pattern of carbon appears to be more than 50% in all the three lysimeters with irrespective of their operating conditions. Iron and zinc concentrations were high in leachate during bioreactor landfill operation and correlating with the TCLP leachability test results. In contrast, Pb concentration was around <0.6 mg/L, but which showed maximum leaching potential under TCLP test conditions. But, no heavy metal accumulation was found with leachate recirculation practices in lysimeters. Mobility of the metal content from the E-waste was found to be amplified with the long term disposal or stabilization within landfills. The results showed that the TCLP test cannot be completely reliable tool for measuring long-term leachability of toxic substances under landfill condition; rather landfill lysimeter studies are necessary to get the real scenario. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Chemical Handling and Waste Disposal Issues at Liberal Arts.

    ERIC Educational Resources Information Center

    Gannaway, Susan P.

    1990-01-01

    Findings from a survey of 20 liberal arts colleges which did not have graduate programs in chemistry are presented. Discussed are regulations, actions taken and costs of academic laboratories regarding the disposal of hazardous waste. (CW)

  20. Quantitative study of controlled substance bedside wasting, disposal and evaluation of potential ecologic effects.

    PubMed

    Mankes, Russell F; Silver, Charles D

    2013-02-01

    Drugs in wastewater arise from many sources. For health care, these include excretion and direct disposal (bedside wasting). The present study reports on the dispensing and wasting of 15 controlled substances (CS) at two health care facilities in Albany, NY over a nearly two year period. The study considered measures of ecotoxicity, drug metabolism, excretion and disposal of these CS. Potential alternatives to flushing of CS into wastewaters from healthcare facilities are discussed. Drug medication and waste collection records (12,345) included: numbers of drugs dispensed, returned and wasted. Overall, 8528 g of 15 CS were wasted. Three (midazolam, acetaminophen-codeine and fentanyl) accounted for 87.5% of the total wasted. Wasting varied by hospital, 14 CS at the academic medical center hospital and 8 at the surgical care center were wasted. Liquids were more frequently wasted than tablets or pills. Some combination drugs (acetaminophen (APAP)-codeine) were frequently (50% of drug dispensed) wasted while others were less wasted (APAP-hydrocodone-6.3%; APAP-oxycodone-1.3%). The 8 CS judged more hazardous to aquatic life were: APAP-codeine, APAP-hydrocodone, APAP-oxycodone, alprazolam, diazepam, fentanyl, midazolam, and testosterone. Ketamine, morphine, oxycodone and zolpidem were of lesser acute toxicity based on available LC50 values. These CS might provide a therapeutically equivalent alternative to the more environmentally harmful drugs. In health care facilities, professionals dispose of CS by bedside wasting into water or other receptacles. This can be avoided by returning CS to the hospital's pharmacy department, thence to a licensed distributor. Study of this process of drug wasting can identify opportunities for process improvements. We found 3 CS (APAP-codeine, midazolam and testosterone) where ½ to 1/3 of the drug was wasted and 5 others with 30 to 13% wasted. Knowledge of the adverse impacts from the release of highly toxic drugs into the environment

  1. DISPOSAL OF LIQUID WASTE IN THE DURANGO-TYPE URANIUM MILLING FLOWSHEET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tame, K.E.; Valdez, E.G.; Rosenbaum, J.B.

    1961-01-01

    Possible modifications were studied in conventional uraniuum ore- processing steps to confine and permit controlled disposal of radioactive wastes. Surveys of Ra/sup 226/ contamination of liquid wastes from uranium mills indicated that the Vanadium Corporation of America plant at Durango, Colo., had one of the more urgent problems. A possible procedure for minimizing the waste disposal problem was to reuse the waste solution in the mill-in effect, erasing the need for disposal of liquid waste. In examining this possibility, interlocked bench-scale leaching and solvent extraction tests simulating the Durango fiowsheet were made. The simulated reuse of barren raffinate for leachingmore » and washing was carried through three separate campaigns of 9, 12, and 35 cycles each. An attempt to expedite the test work by using agitation leaching during the first campaign resulted in pregnant solutions of varying turbidity, giving a discordant pattern of radioactivity analyses. Percolation leaching and washing patterned more nearly after the Durango flowsheet was used in the second and third campaigns and consistently gave solutions of satisfactory clarity. The radioactivity was somewhat variable but did not build up with prolonged recycling of the raffinate. The buildup of other impurities in the pregnant solution had little noticeabIe effect on the operation of the percolation leach column. Operational difficulties from slow phase disengagement and entrainment in the solvent extraction stripping and scrubbing units occurred during the first two campaigns. In the third campaign slow phase disengagement and aqueous entrainment in the strippers were practically eliminated by heating the last stage to about 40 deg C and operating with the aqueous phase continuous. Increased mixing time in the scrubbing section was successful in reducing entrainment of aqueous in the organic from the settlers. Also, the concentrations of active reagents in the solvent extraction system were

  2. Geochemical Aspects of Radioactive Waste Disposal

    NASA Astrophysics Data System (ADS)

    Moody, Judith B.

    1984-04-01

    The author's stated purpose in writing this book is to summarize the large number of government-sponsored research reports on the geochemical aspects of high-level nuclear waste isolation. Although this book has a 1984 publication date, the majority of the cited documents were published before 1982. Unfortunately, passage of the Nuclear Waste Policy Act (NWPA) of 1982 and its signing into law by President Reagan (January 1983) [U.S. Congress, 1983] has significantly altered the U.S. Department of Energy (DOE) Civilian Radioactive Waste Management (CRWM) Program. Therefore this book does not accurately reflect the present U.S. program in geologic disposal of high-level nuclear waste. For example, chapter 2, “Radioactive Waste Management,” is almost 3 years out of date in a field that is changing rapidly (see U.S. DOE [1984a] for the current status of the CRWM Program). Additionally, the source material, which forms the input for this book, is chiefly grey literature, i.e., the referenced documents may or may not have undergone peer review and therefore do not represent the technical judgment of the scientific community. Also, this book only presents a selective sampling of information because the literature cited does not include a representative selection of the widespread available literature on this topic.

  3. 40 CFR Table Hh-2 to Subpart Hh of... - U.S. Per Capita Waste Disposal Rates

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Municipal Solid Waste Landfills Pt. 98, Subpt. HH, Table HH-2 Table HH-2 to Subpart HH of Part 98—U.S. Per Capita Waste Disposal Rates... 40 Protection of Environment 21 2011-07-01 2011-07-01 false U.S. Per Capita Waste Disposal Rates...

  4. 21 CFR 1250.75 - Disposal of human wastes.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Disposal of human wastes. 1250.75 Section 1250.75 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) REGULATIONS UNDER CERTAIN OTHER ACTS ADMINISTERED BY THE FOOD AND DRUG ADMINISTRATION INTERSTATE CONVEYANCE...

  5. CCA-treated wood disposed in landfills and life-cycle trade-offs with waste-to-energy and MSW landfill disposal.

    PubMed

    Jambeck, Jenna; Weitz, Keith; Solo-Gabriele, Helena; Townsend, Timothy; Thorneloe, Susan

    2007-01-01

    Chromated copper arsenate (CCA)-treated wood is a preservative treated wood construction product that grew in use in the 1970s for both residential and industrial applications. Although some countries have banned the use of the product for some applications, others have not, and the product continues to enter the waste stream from construction, demolition and remodeling projects. CCA-treated wood as a solid waste is managed in various ways throughout the world. In the US, CCA-treated wood is disposed primarily within landfills; however some of the wood is combusted in waste-to-energy (WTE) facilities. In other countries, the predominant disposal option for wood, sometimes including CCA-treated wood, is combustion for the production of energy. This paper presents an estimate of the quantity of CCA-treated wood entering the disposal stream in the US, as well as an examination of the trade-offs between landfilling and WTE combustion of CCA-treated wood through a life-cycle assessment and decision support tool (MSW DST). Based upon production statistics, the estimated life span and the phaseout of CCA-treated wood, recent disposal projections estimate the peak US disposal rate to occur in 2008, at 9.7 million m(3). CCA-treated wood, when disposed with construction and demolition (C&D) debris and municipal solid waste (MSW), has been found to increase arsenic and chromium concentrations in leachate. For this reason, and because MSW landfills are lined, MSW landfills have been recommended as a preferred disposal option over unlined C&D debris landfills. Between landfilling and WTE for the same mass of CCA-treated wood, WTE is more expensive (nearly twice the cost), but when operated in accordance with US Environmental Protection Agency (US EPA) regulations, it produces energy and does not emit fossil carbon emissions. If the wood is managed via WTE, less landfill area is required, which could be an influential trade-off in some countries. Although metals are concentrated

  6. Ground Water Monitoring Requirements for Hazardous Waste Treatment, Storage and Disposal Facilities

    EPA Pesticide Factsheets

    The groundwater monitoring requirements for hazardous waste treatment, storage and disposal facilities (TSDFs) are just one aspect of the Resource Conservation and Recovery Act (RCRA) hazardous waste management strategy for protecting human health and the

  7. Is Yucca Mountain a long-term solution for disposing of US spent nuclear fuel and high-level radioactive waste?

    PubMed

    Thorne, M C

    2012-06-01

    On 26 January 2012, the Blue Ribbon Commission on America's Nuclear Future released a report addressing, amongst other matters, options for the managing and disposal of high-level waste and spent fuel. The Blue Ribbon Commission was not chartered as a siting commission. Accordingly, it did not evaluate Yucca Mountain or any other location as a potential site for the storage or disposal of spent nuclear fuel and high-level waste. Nevertheless, if the Commission's recommendations are followed, it is clear that any future proposals to develop a repository at Yucca Mountain would require an extended period of consultation with local communities, tribes and the State of Nevada. Furthermore, there would be a need to develop generally applicable regulations for disposal of spent fuel and high-level radioactive waste, so that the Yucca Mountain site could be properly compared with alternative sites that would be expected to be identified in the initial phase of the site-selection process. Based on what is now known of the conditions existing at Yucca Mountain and the large number of safety, environmental and legal issues that have been raised in relation to the DOE Licence Application, it is suggested that it would be imprudent to include Yucca Mountain in a list of candidate sites for future evaluation in a consent-based process for site selection. Even if there were a desire at the local, tribal and state levels to act as hosts for such a repository, there would be enormous difficulties in attempting to develop an adequate post-closure safety case for such a facility, and in showing why this unsaturated environment should be preferred over other geological contexts that exist in the USA and that are more akin to those being studied and developed in other countries.

  8. 40 CFR 227.8 - Limitations on the disposal rates of toxic wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) OCEAN DUMPING CRITERIA FOR THE EVALUATION OF PERMIT APPLICATIONS FOR OCEAN DUMPING OF MATERIALS Environmental Impact § 227.8 Limitations on the disposal rates of toxic wastes. No wastes will be deemed acceptable for ocean dumping unless such wastes can be dumped so as not to exceed the limiting permissible...

  9. 40 CFR 227.8 - Limitations on the disposal rates of toxic wastes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) OCEAN DUMPING CRITERIA FOR THE EVALUATION OF PERMIT APPLICATIONS FOR OCEAN DUMPING OF MATERIALS Environmental Impact § 227.8 Limitations on the disposal rates of toxic wastes. No wastes will be deemed acceptable for ocean dumping unless such wastes can be dumped so as not to exceed the limiting permissible...

  10. 40 CFR 227.8 - Limitations on the disposal rates of toxic wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) OCEAN DUMPING CRITERIA FOR THE EVALUATION OF PERMIT APPLICATIONS FOR OCEAN DUMPING OF MATERIALS Environmental Impact § 227.8 Limitations on the disposal rates of toxic wastes. No wastes will be deemed acceptable for ocean dumping unless such wastes can be dumped so as not to exceed the limiting permissible...

  11. 40 CFR 227.8 - Limitations on the disposal rates of toxic wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) OCEAN DUMPING CRITERIA FOR THE EVALUATION OF PERMIT APPLICATIONS FOR OCEAN DUMPING OF MATERIALS Environmental Impact § 227.8 Limitations on the disposal rates of toxic wastes. No wastes will be deemed acceptable for ocean dumping unless such wastes can be dumped so as not to exceed the limiting permissible...

  12. 40 CFR 227.8 - Limitations on the disposal rates of toxic wastes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) OCEAN DUMPING CRITERIA FOR THE EVALUATION OF PERMIT APPLICATIONS FOR OCEAN DUMPING OF MATERIALS Environmental Impact § 227.8 Limitations on the disposal rates of toxic wastes. No wastes will be deemed acceptable for ocean dumping unless such wastes can be dumped so as not to exceed the limiting permissible...

  13. Hardened, environmentally disposable composite granules of coal cleaning refuse, coal combustion waste, and other wastes, and method preparing the same

    DOEpatents

    Burnet, G.; Gokhale, A.J.

    1990-07-10

    A hardened, environmentally inert and disposable composite granule of coal cleaning refuse and coal combustion waste and method for producing the same are disclosed, wherein the coal combustion waste is first granulated. The coal cleaning refuse is pulverized into fine particles and is then bound, as an outer layer, to the granulated coal combustion waste granules. This combination is then combusted and sintered. After cooling, the combination results in hardened, environmentally inert and disposable composite granules having cores of coal combustion waste, and outer shells of coal cleaning refuse. The composite particles are durable and extremely resistant to environmental and chemical forces. 3 figs.

  14. 77 FR 23751 - Certain Food Waste Disposers and Components and Packaging Thereof; Institution of Investigation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-20

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-838] Certain Food Waste Disposers and Components... States after importation of certain food waste disposers and components and packaging thereof by reason... an industry in the United States exists as required by subsections (a)(1)(A) and (a)(2) of section...

  15. Production and disposal of waste materials from gas and oil extraction from the Marcellus Shale Play in Pennsylvania

    USGS Publications Warehouse

    Maloney, Kelly O.; Yoxtheimer, David A.

    2012-01-01

    The increasing world demand for energy has led to an increase in the exploration and extraction of natural gas, condensate, and oil from unconventional organic-rich shale plays. However, little is known about the quantity, transport, and disposal method of wastes produced during the extraction process. We examined the quantity of waste produced by gas extraction activities from the Marcellus Shale play in Pennsylvania for 2011. The main types of wastes included drilling cuttings and fluids from vertical and horizontal drilling and fluids generated from hydraulic fracturing [i.e., flowback and brine (formation) water]. Most reported drill cuttings (98.4%) were disposed of in landfills, and there was a high amount of interstate (49.2%) and interbasin (36.7%) transport. Drilling fluids were largely reused (70.7%), with little interstate (8.5%) and interbasin (5.8%) transport. Reported flowback water was mostly reused (89.8%) or disposed of in brine or industrial waste treatment plants (8.0%) and largely remained within Pennsylvania (interstate transport was 3.1%) with little interbasin transport (2.9%). Brine water was most often reused (55.7%), followed by disposal in injection wells (26.6%), and then disposed of in brine or industrial waste treatment plants (13.8%). Of the major types of fluid waste, brine water was most often transported to other states (28.2%) and to other basins (9.8%). In 2011, 71.5% of the reported brine water, drilling fluids, and flowback was recycled: 73.1% in the first half and 69.7% in the second half of 2011. Disposal of waste to municipal sewage treatment plants decreased nearly 100% from the first half to second half of 2011. When standardized against the total amount of gas produced, all reported wastes, except flowback sands, were less in the second half than the first half of 2011. Disposal of wastes into injection disposal wells increased 129.2% from the first half to the second half of 2011; other disposal methods decreased. Some

  16. RESULTS OF THE ENVIRONMENTAL MANAGEMENT (EM) CORPORATE PROJECT TEAM DISPOSING WASTE & REDUCING RISK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SHRADER, T.A.; KNERR, R.

    2005-01-31

    In 2002, the US Department of Energy's (DOE) Office of Environmental Management (EM) released the Top-To-Bottom Review of cognizant clean-up activities around the DOE Complex. The review contained a number of recommendations for changing the way EM operates in order to reduce environmental risk by significantly accelerating clean-up at the DOE-EM sites. In order to develop and implement these recommendations, a number of corporate project teams were formed to identify, evaluate, and initiate implementation of alternatives for the different aspects of clean-up. In August 2002, a corporate team was formed to review all aspects of the management, treatment, and disposalmore » of low level radioactive waste (LLW), mixed low level radioactive waste (MLLW), transuranic waste (TRU), and hazardous waste (HW). Over the next 21 months, the Corporate Project Team: Disposing Waste, Reducing Risk, developed a number of alternatives for implementing the recommendations of the Top-To-Bottom Review based on information developed during numerous site visits and interviews with complex and industry personnel. With input from over a dozen EM sites at various stages of clean-up, the team identified the barriers to the treatment and disposal of low level waste, mixed low level waste, and transuranic waste. Once identified, preliminary design alternatives were developed and presented to the Acquisition Authority (for this project, the Assistant Secretary for Environmental Management) for review and approval. Once the preliminary design was approved, the team down selected to seven key alternatives which were subsequently fully developed in the Project Execution Plan. The seven most viable alternatives were: (1) creation of an Executive Waste Disposal Board; (2) projectizing the disposal of low level waste and mixed low level waste; (3) creation of a National Consolidation and Acceleration Facility for waste; (4) improvements to the Broad Spectrum contract; (5) improvements to the

  17. Alternative methods of salt disposal at the seven salt sites for a nuclear waste repository

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-02-01

    This study discusses the various alternative salt management techniques for the disposal of excess mined salt at seven potentially acceptable nuclear waste repository sites: Deaf Smith and Swisher Counties, Texas; Richton and Cypress Creek Domes, Mississippi; Vacherie Dome, Louisiana; and Davis and Lavender Canyons, Utah. Because the repository development involves the underground excavation of corridors and waste emplacement rooms, in either bedded or domed salt formations, excess salt will be mined and must be disposed of offsite. The salt disposal alternatives examined for all the sites include commercial use, ocean disposal, deep well injection, landfill disposal, and underground mine disposal.more » These alternatives (and other site-specific disposal methods) are reviewed, using estimated amounts of excavated, backfilled, and excess salt. Methods of transporting the excess salt are discussed, along with possible impacts of each disposal method and potential regulatory requirements. A preferred method of disposal is recommended for each potentially acceptable repository site. 14 refs., 5 tabs.« less

  18. Biomedical waste disposal: A systems analysis

    PubMed Central

    Jindal, A.K.; Gupta, Arun; Grewal, V.S.; Mahen, Ajoy

    2012-01-01

    Background In view of the contemporary relevance of BMW Management, a system analysis of BMW management was conducted to ascertain the views of Service hospitals/HCE's on the current system in BMW management in-vogue; to know the composition and quantity of waste generated; to get information on equipment held & equipment required and to explore the possibility of outsourcing, its relevance and feasibility. Methods A qualitative study in which various stake holders in BMW management were studied using both primary (Observation, In-depth Interview of Key Personnel, Group Discussions: and user perspective survey) and secondary data. Results All the stake holders were of the opinion that where ever possible outsourcing should be explored as a viable method of BMW disposal. Waste generated in Colour code Yellow (Cat 1,2,3,5,6) ranged from 64.25 to 27.345 g/day/bed; in Colour code Red (Cat 7) from 19.37 to 10.97 g/day/bed and in Colour code Blue (Cat 4) from 3.295 to 3.82 g/day/bed in type 1 hospitals to type 5 hospitals respectively. Conclusion Outsourcing should be explored as a viable method of BMW disposal, were there are government approved local agencies. Facilities authorized by the Prescribed Authority should be continued and maintained where outsourcing is not feasible. PMID:24600142

  19. Aerosol can waste disposal device

    DOEpatents

    O'Brien, M.D.; Klapperick, R.L.; Bell, C.

    1993-12-21

    Disclosed is a device for removing gases and liquid from containers. The device punctures the bottom of a container for purposes of exhausting gases and liquid from the container without their escaping into the atmosphere. The device includes an inner cup or cylinder having a top portion with an open end for receiving a container and a bottom portion which may be fastened to a disposal or waste container in a substantially leak-proof manner. A piercing device is mounted in the lower portion of the inner cylinder for puncturing the can bottom placed in the inner cylinder. An outer cylinder having an open end and a closed end fits over the top portion of the inner cylinder in telescoping engagement. A force exerted on the closed end of the outer cylinder urges the bottom of a can in the inner cylinder into engagement with the piercing device in the bottom of the inner cylinder to form an opening in the can bottom, thereby permitting the contents of the can to enter the disposal container. 7 figures.

  20. Aerosol can waste disposal device

    DOEpatents

    O'Brien, Michael D.; Klapperick, Robert L.; Bell, Chris

    1993-01-01

    Disclosed is a device for removing gases and liquid from containers. The ice punctures the bottom of a container for purposes of exhausting gases and liquid from the container without their escaping into the atmosphere. The device includes an inner cup or cylinder having a top portion with an open end for receiving a container and a bottom portion which may be fastened to a disposal or waste container in a substantially leak-proof manner. A piercing device is mounted in the lower portion of the inner cylinder for puncturing the can bottom placed in the inner cylinder. An outer cylinder having an open end and a closed end fits over the top portion of the inner cylinder in telescoping engagement. A force exerted on the closed end of the outer cylinder urges the bottom of a can in the inner cylinder into engagement with the piercing device in the bottom of the inner cylinder to form an opening in the can bottom, thereby permitting the contents of the can to enter the disposal container.

  1. 40 CFR 61.149 - Standard for waste disposal for asbestos mills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... asbestos mills. 61.149 Section 61.149 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Standard for Asbestos § 61.149 Standard for waste disposal for asbestos mills. Each owner or operator of any source covered under the provisions of § 61.142 shall: (a) Deposit all asbestos-containing waste...

  2. 40 CFR 61.149 - Standard for waste disposal for asbestos mills.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... asbestos mills. 61.149 Section 61.149 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Standard for Asbestos § 61.149 Standard for waste disposal for asbestos mills. Each owner or operator of any source covered under the provisions of § 61.142 shall: (a) Deposit all asbestos-containing waste...

  3. 40 CFR 61.149 - Standard for waste disposal for asbestos mills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... asbestos mills. 61.149 Section 61.149 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Standard for Asbestos § 61.149 Standard for waste disposal for asbestos mills. Each owner or operator of any source covered under the provisions of § 61.142 shall: (a) Deposit all asbestos-containing waste...

  4. 40 CFR 61.149 - Standard for waste disposal for asbestos mills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... asbestos mills. 61.149 Section 61.149 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Standard for Asbestos § 61.149 Standard for waste disposal for asbestos mills. Each owner or operator of any source covered under the provisions of § 61.142 shall: (a) Deposit all asbestos-containing waste...

  5. 40 CFR 61.149 - Standard for waste disposal for asbestos mills.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... asbestos mills. 61.149 Section 61.149 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Standard for Asbestos § 61.149 Standard for waste disposal for asbestos mills. Each owner or operator of any source covered under the provisions of § 61.142 shall: (a) Deposit all asbestos-containing waste...

  6. Recycling/Disposal Alternatives for Depleted Uranium Wastes

    DTIC Science & Technology

    1981-01-01

    could pass before new sites are available. Recent experi- ence with attempts to dispose of wastes generated by cleanup of the Three Mile Island...commercial sector. Nonordnance uses include counterweights, Lallast, shielding , and special appli- cations machinery. Although the purity requirements...Refer- ence 11). Since the activity of the tailings is higher than allow- able for unrestricted access, large earth -dam retention systems, known as

  7. Vermi composting--organic waste management and disposal.

    PubMed

    Kumar, J Sudhir; Subbaiah, K Venkata; Rao, P V V Prasada

    2012-01-01

    Solid waste is an unwanted byproduct of modern civilization. Landfills are the most common means of solid waste disposal. But the increasing amount of solid waste is rapidly filling existing landfills, and new sites are difficult to establish. Alternatives to landfills include the use of source reduction, recycling, composting and incineration, as well as use of landfills. Incineration is most economical if it includes energy recovery from the waste. Energy can be recovered directly from waste by incineration or the waste can be processed to produce storable refuse derived fuel (RDF). Information on the composition of solid wastes is important in evaluating alternative equipment needs, systems, management programs and plans. Pulverization of municipal solid waste is done and the pulverized solid waste is dressed to form a bed and the bed is fed by earthworms which convert the bed into vermi compost. The obtained vermi compost is sent to Ministry of Environment & Forests (MoEF) recognized lab for estimating the major nutrients, i.e. Potassium (K), Phosphorous (P), Nitrogen (N) and Micro-nutrient values. It is estimated that 59 - 65 tons of wet waste can be collected in a town per day and if this wet waste is converted to quality compost, around 12.30 tons of vermi compost can be generated. If a Municipal Corporation manages this wet waste an income of over (see text symbol) for 0.8 9 crore per anum can be earned which is a considerable amount for providing of better services to public.

  8. MOVING FROM SOLID WASTE DISPOSAL TO MATERIALS MANAGEMENT IN THE UNITED STATES

    EPA Science Inventory

    The desire for less waste and more sustainable use of resources has resulted in the U.S. EPA's Resource Conservation Challenge. This initiative is directed towards helping the U.S. transition from waste disposal towards materials management. Understanding the potential environmen...

  9. 75 FR 65482 - Approval of a Petition for Exemption From Hazardous Waste Disposal Injection Restrictions to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-25

    ... Waste Disposal Injection Restrictions to ArcelorMittal Burns Harbor, LLC, Burns Harbor, IN AGENCY... by the United States Environmental Protection Agency (EPA) that an exemption to the land disposal restrictions under the 1984 Hazardous and Solid Waste Amendments (HSWA) to the Resource Conservation and...

  10. Determining the Area of Review for Industrial Waste Disposal Wells.

    DTIC Science & Technology

    1981-12-01

    pressure increases sufficiently to force formation fluids and/or injected wastes up abandoned well bores to contaminate underground sources of drinking...Drilling Mud Circulating System . . 72 9. Increase in Gel Strength of Various Mud Types With Time . . . . . . . . . . . . . . . . . . 96 10. Gel... increased fluid pressure in a disposal zone which results from a waste injection operation may force injected and/or formation fluid to migrate up an

  11. Formation of stable uranium(VI) colloidal nanoparticles in conditions relevant to radioactive waste disposal.

    PubMed

    Bots, Pieter; Morris, Katherine; Hibberd, Rosemary; Law, Gareth T W; Mosselmans, J Frederick W; Brown, Andy P; Doutch, James; Smith, Andrew J; Shaw, Samuel

    2014-12-09

    The favored pathway for disposal of higher activity radioactive wastes is via deep geological disposal. Many geological disposal facility designs include cement in their engineering design. Over the long term, interaction of groundwater with the cement and waste will form a plume of a hyperalkaline leachate (pH 10-13), and the behavior of radionuclides needs to be constrained under these extreme conditions to minimize the environmental hazard from the wastes. For uranium, a key component of many radioactive wastes, thermodynamic modeling predicts that, at high pH, U(VI) solubility will be very low (nM or lower) and controlled by equilibrium with solid phase alkali and alkaline-earth uranates. However, the formation of U(VI) colloids could potentially enhance the mobility of U(VI) under these conditions, and characterizing the potential for formation and medium-term stability of U(VI) colloids is important in underpinning our understanding of U behavior in waste disposal. Reflecting this, we applied conventional geochemical and microscopy techniques combined with synchrotron based in situ and ex situ X-ray techniques (small-angle X-ray scattering and X-ray adsorption spectroscopy (XAS)) to characterize colloidal U(VI) nanoparticles in a synthetic cement leachate (pH > 13) containing 4.2-252 μM U(VI). The results show that in cement leachates with 42 μM U(VI), colloids formed within hours and remained stable for several years. The colloids consisted of 1.5-1.8 nm nanoparticles with a proportion forming 20-60 nm aggregates. Using XAS and electron microscopy, we were able to determine that the colloidal nanoparticles had a clarkeite (sodium-uranate)-type crystallographic structure. The presented results have clear and hitherto unrecognized implications for the mobility of U(VI) in cementitious environments, in particular those associated with the geological disposal of nuclear waste.

  12. Workshop on the role of natural analogs in geologic disposal of high-level nuclear waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, W.M.

    1995-09-01

    A workshop on the Role of Natural Analogs in Geologic Disposal of High-Level Nuclear Waste (HLW) was held in San Antonio, Texas, on July 22-25, 1991. It was sponsored by the US Nuclear Regulatory Commission (NRC) and the Center for Nuclear Waste Regulatory Analyses (CNWRA). Invitations to the workshop were extended to a large number of individuals with a variety of technical and professional interests related to geologic disposal of nuclear waste and natural analog studies. The objective of the workshop was to examine the role of natural analog studies in performance assessment, site characterization, and prioritization of research relatedmore » to geologic disposal of HLW.« less

  13. Treatment and disposal alternatives for health-care waste in developing countries--a case study in Istanbul, Turkey.

    PubMed

    Alagöz, B Aylin Zeren; Kocasoy, Günay

    2007-02-01

    Efficient health-care waste management is crucial for the prevention of the exposure of health-care workers, patients, and the community to infections, toxic wastes and injuries as well as the protection of the environment (Safe Management of Wastes from Health-care Activities. World Health Organization, Geneva). The amount of health-care waste produced in the Istanbul Metropolitan City in Turkey is 30 ton day(-1) in total. The method used for the final disposal of most of the health-care waste of Istanbul is incineration. However, a great portion of the infectious waste is disposed of with the domestic waste into the sanitary landfill because of improper segregation practices applied in the health-care institutions. Therefore the alternatives for the treatment and disposal of health-care waste were evaluated. The technical information related to the available treatment technologies including incineration, microwave irradiation, mobile or stationary sterilization, etc. were also investigated. The capital investment cost, transportation/operational costs for each alternative method and the different locations for installation were compared. When the data collected were evaluated, it was found that separate handling and disposal of health-care waste generated on the European and the Asian sides of the city was the most economic and practicable solution. As a result, it was concluded that the capacity of the Kemerburgaz-Odayeri incineration plant is enough to incinerate the health-care waste generated on the European side of Istanbul, the construction of a new incineration plant or a stationary sterilization unit for the disposal of health-care waste generated on the Asian side was the most effective alternative.

  14. Tectonic and climatic considerations for deep geological disposal of radioactive waste: A UK perspective.

    PubMed

    McEvoy, F M; Schofield, D I; Shaw, R P; Norris, S

    2016-11-15

    Identifying and evaluating the factors that might impact on the long-term integrity of a deep Geological Disposal Facility (GDF) and its surrounding geological and surface environment is central to developing a safety case for underground disposal of radioactive waste. The geological environment should be relatively stable and its behaviour adequately predictable so that scientifically sound evaluations of the long-term radiological safety of a GDF can be made. In considering this, it is necessary to take into account natural processes that could affect a GDF or modify its geological environment up to 1millionyears into the future. Key processes considered in this paper include those which result from plate tectonics, such as seismicity and volcanism, as well as climate-related processes, such as erosion, uplift and the effects of glaciation. Understanding the inherent variability of process rates, critical thresholds and likely potential influence of unpredictable perturbations represent significant challenges to predicting the natural environment. From a plate-tectonic perspective, a one million year time frame represents a very short segment of geological time and is largely below the current resolution of observation of past processes. Similarly, predicting climate system evolution on such time-scales, particularly beyond 200ka AP is highly uncertain, relying on estimating the extremes within which climate and related processes may vary with reasonable confidence. The paper highlights some of the challenges facing a deep geological disposal program in the UK to review understanding of the natural changes that may affect siting and design of a GDF. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  15. Secondary Waste Cementitious Waste Form Data Package for the Integrated Disposal Facility Performance Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cantrell, Kirk J.; Westsik, Joseph H.; Serne, R Jeffrey

    A review of the most up-to-date and relevant data currently available was conducted to develop a set of recommended values for use in the Integrated Disposal Facility (IDF) performance assessment (PA) to model contaminant release from a cementitious waste form for aqueous wastes treated at the Hanford Effluent Treatment Facility (ETF). This data package relies primarily upon recent data collected on Cast Stone formulations fabricated with simulants of low-activity waste (LAW) and liquid secondary wastes expected to be produced at Hanford. These data were supplemented, when necessary, with data developed for saltstone (a similar grout waste form used at themore » Savannah River Site). Work is currently underway to collect data on cementitious waste forms that are similar to Cast Stone and saltstone but are tailored to the characteristics of ETF-treated liquid secondary wastes. Recommended values for key parameters to conduct PA modeling of contaminant release from ETF-treated liquid waste are provided.« less

  16. Environmental hazards of waste disposal patterns--a multimethod study in an unrecognized Bedouin village in the Negev area of Israel.

    PubMed

    Meallem, Ilana; Garb, Yaakov; Cwikel, Julie

    2010-01-01

    The Bedouin of the Negev region of Israel are a formerly nomadic, indigenous, ethnic minority, of which 40% currently live in unrecognized villages without organized, solid waste disposal. This study, using both quantitative and qualitative methods, explored the transition from traditional rubbish production and disposal to current uses, the current composition of rubbish, methods of waste disposal, and the extent of exposure to waste-related environmental hazards in the village of Um Batim. The modern, consumer lifestyle produced both residential and construction waste that was dumped very close to households. Waste was tended to by women who predominantly used backyard burning for disposal, exposing villagers to corrosive, poisonous, and dangerously flammable items at these burn sites. Village residents expressed a high level of concern over environmental hazards, yet no organized waste disposal or environmental hazards reduction was implemented.

  17. Safety in the Chemical Laboratory: Chemical Wastes in Academic Labs.

    ERIC Educational Resources Information Center

    Walton, Wendy A.

    1987-01-01

    Encourages instruction about disposal of hazardous wastes in college chemistry laboratories as an integral part of experiments done by students. Discusses methods such as down-the-drain disposal, lab-pack disposal, precipitation and disposal, and precipitation and recovery. Suggests that faculty and students take more responsibility for waste…

  18. Reversed mining and reversed-reversed mining: the irrational context of geological disposal of nuclear waste

    NASA Astrophysics Data System (ADS)

    van Loon, A. J.

    2000-06-01

    Man does not only extract material from the Earth but increasingly uses the underground for storage and disposal purposes. One of the materials that might be disposed of this way is high-level nuclear waste. The development of safe disposal procedures, the choice of suitable host rocks, and the design of underground facilities have taken much time and money, but commissions in several countries have presented reports showing that — and how — safe geological disposal will be possible in such a way that definite isolation from the biosphere is achieved. Political views have changed in the past few years, however, and there is a strong tendency now to require that the high-level waste disposed of will be retrievable. Considering the underlying arguments for isolation from the biosphere, and also considering waste policy in general, this provides an irrational context. The development of new procedures and the design of new disposal facilities that allow retrieval will take much time again. A consequence may be that the high-active, heat-generating nuclear waste will be stored temporarily for a much longer time than objectively desirable. The delay in disposal and the counterproductive requirement of retrievability are partly due to the fact that earth-science organisations have failed to communicate in the way they should, possibly fearing public (and financial) reactions if taking a position that is (was?) considered as politically incorrect. Such an attitude should not be maintained in modern society, which has the right to be informed reliably by the scientific community.

  19. Continuous Improvement and the Safety Case for the Waste Isolation Pilot Plant Geologic Repository - 13467

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Luik, Abraham; Patterson, Russell; Nelson, Roger

    2013-07-01

    The Waste Isolation Pilot Plant (WIPP) is a geologic repository 2150 feet (650 m) below the surface of the Chihuahuan desert near Carlsbad, New Mexico. WIPP permanently disposes of transuranic waste from national defense programs. Every five years, the U.S. Department of Energy (DOE) submits an application to the U.S. Environmental Protection Agency (EPA) to request regulatory-compliance re-certification of the facility for another five years. Every ten years, DOE submits an application to the New Mexico Environment Department (NMED) for the renewal of its hazardous waste disposal permit. The content of the applications made by DOE to the EPA formore » re-certification, and to the NMED for permit-renewal, reflect any optimization changes made to the facility, with regulatory concurrence if warranted by the nature of the change. DOE points to such changes as evidence for its having taken seriously its 'continuous improvement' operations and management philosophy. Another opportunity for continuous improvement is to look at any delta that may exist between the re-certification and re-permitting cases for system safety and the consensus advice on the nature and content of a safety case as being developed and published by the Nuclear Energy Agency's Integration Group for the Safety Case (IGSC) expert group. DOE at WIPP, with the aid of its Science Advisor and teammate, Sandia National Laboratories, is in the process of discerning what can be done, in a reasonably paced and cost-conscious manner, to continually improve the case for repository safety that is being made to the two primary regulators on a recurring basis. This paper will discuss some aspects of that delta and potential paths forward to addressing them. (authors)« less

  20. Alternative Radiological Characterization of Sealed Source TRU Waste for WIPP Disposal (LAUR-05-8776)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitworth, J.; Pearson, M.; Feldman, A.

    2006-07-01

    The Offsite Source Recovery (OSR) Project at Los Alamos National Laboratory is now shipping transuranic (TRU) waste containers to the Waste Isolation Pilot Plant (WIPP) in New Mexico for disposal. Sealed source waste disposal has become possible in part because OSR personnel were able to obtain Environmental Protection Agency (EPA) and DOE-CBFO approval for an alternative radiological characterization procedure relying on acceptable knowledge (AK) and modeling, rather than on non-destructive assay (NDA) of each container. This is the first successful qualification of an 'alternate methodology' under the radiological characterization requirements of the WIPP Waste Acceptance Criteria (WAC) by any TRUmore » waste generator site. This paper describes the approach OSR uses to radiologically characterize its sealed source waste and the process by which it obtained certification of this approach. (authors)« less

  1. Safety assessment guidance in the International Atomic Energy Agency RADWASS Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vovk, I.F.; Seitz, R.R.

    1995-12-31

    The IAEA RADWASS programme is aimed at establishing a coherent and comprehensive set of principles and standards for the safe management of waste and formulating the guidelines necessary for their application. A large portion of this programme has been devoted to safety assessments for various waste management activities. Five Safety Guides are planned to be developed to provide general guidance to enable operators and regulators to develop necessary framework for safety assessment process in accordance with international recommendations. They cover predisposal, near surface disposal, geological disposal, uranium/thorium mining and milling waste, and decommissioning and environmental restoration. The Guide on safetymore » assessment for near surface disposal is at the most advanced stage of preparation. This draft Safety Guide contains guidance on description of the disposal system, development of a conceptual model, identification and description of relevant scenarios and pathways, consequence analysis, presentation of results and confidence building. The set of RADWASS publications is currently undergoing in-depth review to ensure a harmonized approach throughout the Safety Series.« less

  2. Going green by reducing red. New alternative medical waste treatment technologies.

    PubMed

    Zanoni, P

    1998-01-01

    The field of medical waste disposal is changing rapidly. Over the past decade, there has been increasing public health concern over health care's red bag waste. The health care industry must routinely contend with a complex set of regulations covering occupational safety, transportation and packaging, medical waste disposal management, and now environmental regulations for medical waste incinerators.

  3. Optimizing Anesthesia-Related Waste Disposal in the Operating Room: A Brief Report.

    PubMed

    Hubbard, Richard M; Hayanga, Jeremiah A; Quinlan, Joseph J; Soltez, Anita K; Hayanga, Heather K

    2017-10-01

    Misappropriation of noncontaminated waste into regulated medical waste (RMW) containers is a source of added expense to health care facilities. The operating room is a significant contributor to RMW waste production. This study sought to determine whether disposing of anesthesia-related waste in standard waste receptacles before patient entry into the operating room would produce a reduction in RMW. A median of 0.35 kg of waste was collected from 51 cases sampled, with a potential annual reduction of 13,800 kg of RMW to the host institution, and a cost savings of $2200.

  4. Waste Management, Treatment, and Disposal for the Food Processing Industry. Special Circular 113.

    ERIC Educational Resources Information Center

    Wooding, N. Henry

    This publication contains information relating to waste prevention, treatment and disposal, and waste product utilization. Its primary purpose is to provide information that will help the food industry executive recognize waste problems and make wise management decisions. The discussion of the methods, techniques, and the state-of-the-art is…

  5. Assessing and monitoring soil quality at agricultural waste disposal areas-Soil Indicators

    NASA Astrophysics Data System (ADS)

    Doula, Maria; Kavvadias, Victor; Sarris, Apostolos; Lolos, Polykarpos; Liakopoulou, Nektaria; Hliaoutakis, Aggelos; Kydonakis, Aris

    2014-05-01

    The necessity of elaborating indicators is one of the priorities identified by the United Nations Convention to Combat Desertification (UNCCD). The establishment of an indicator monitoring system for environmental purposes is dependent on the geographical scale. Some indicators such as rain seasonality or drainage density are useful over large areas, but others such as soil depth, vegetation cover type, and land ownership are only applicable locally. In order to practically enhance the sustainability of land management, research on using indicators for assessing land degradation risk must initially focus at local level because management decisions by individual land users are taken at this level. Soils that accept wastes disposal, apart from progressive degradation, may cause serious problems to the surrounding environment (humans, animals, plants, water systems, etc.), and thus, soil quality should be necessarily monitored. Therefore, quality indicators, representative of the specific waste type, should be established and monitored periodically. Since waste composition is dependent on their origin, specific indicators for each waste type should be established. Considering agricultural wastes, such a specification, however, could be difficult, since almost all agricultural wastes are characterized by increased concentrations of the same elements, namely, phosphorous, nitrogen, potassium, sulfur, etc.; contain large amounts of organic matter; and have very high values of chemical oxygen demand (COD), biochemical oxygen demand (BOD), and electrical conductivity. Two LIFE projects, namely AgroStrat and PROSODOL are focused on the identification of soil indicators for the assessment of soil quality at areas where pistachio wastes and olive mill wastes are disposed, respectively. Many soil samples were collected periodically for 2 years during PROSODOL and one year during AgroStrat (this project is in progress) from waste disposal areas and analyzed for 23 parameters

  6. Waste Handling and Emplacement Options for Disposal of Radioactive Waste in Deep Boreholes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochran, John R.; Hardin, Ernest

    2015-11-01

    Traditional methods cannot be used to handle and emplace radioactive wastes in boreholes up to 16,400 feet (5 km) deep for disposal. This paper describes three systems that can be used for handling and emplacing waste packages in deep borehole: (1) a 2011 reference design that is based on a previous study by Woodward–Clyde in 1983 in which waste packages are assembled into “strings” and lowered using drill pipe; (2) an updated version of the 2011 reference design; and (3) a new concept in which individual waste packages would be lowered to depth using a wireline. Emplacement on coiled tubingmore » was also considered, but not developed in detail. The systems described here are currently designed for U.S. Department of Energy-owned high-level waste (HLW) including the Cesium- 137/Strontium-90 capsules from the Hanford Facility and bulk granular HLW from fuel processing in Idaho.« less

  7. Analysis of local acceptance of a radioactive waste disposal facility.

    PubMed

    Chung, Ji Bum; Kim, Hong-Kew; Rho, Sam Kew

    2008-08-01

    Like many other countries in the world, Korea has struggled to site a facility for radioactive waste for almost 30 years because of the strong opposition from local residents. Finally, in 2005, Gyeongju was established as the first Korean site for a radioactive waste facility. The objectives of this research are to verify Gyeongju citizens' average level of risk perception of a radioactive waste disposal facility as compared to other risks, and to explore the best model for predicting respondents' acceptance level using variables related to cost-benefit, risk perception, and political process. For this purpose, a survey is conducted among Gyeongju residents, the results of which are as follows. First, the local residents' risk perception of an accident in a radioactive waste disposal facility is ranked seventh among a total of 13 risks, which implies that nuclear-related risk is not perceived very highly by Gyeongju residents; however, its characteristics are still somewhat negative. Second, the comparative regression analyses show that the cost-benefit and political process models are more suitable for explaining the respondents' level of acceptance than the risk perception model. This may be the result of the current economic depression in Gyeongju, residents' familiarity with the nuclear industry, or cultural characteristics of risk tolerance.

  8. Health effects of a thorium waste disposal site.

    PubMed Central

    Najem, G R; Voyce, L K

    1990-01-01

    A case-control study of 112 households residing in the vicinity of a thorium waste disposal site found a higher prevalence of birth defects (RR 2.1) and liver diseases (RR 2.3) among exposed than the unexposed group. The numbers were quite small and the confidence intervals wide, however, so that no definite conclusions can be drawn from these data. PMID:2316775

  9. Deep Borehole Disposal Concept: Development of Universal Canister Concept of Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rigali, Mark J.; Price, Laura L.

    This report documents key elements of the conceptual design for deep borehole disposal of radioactive waste to support the development of a universal canister concept of operations. A universal canister is a canister that is designed to be able to store, transport, and dispose of radioactive waste without the canister having to be reopened to treat or repackage the waste. This report focuses on the conceptual design for disposal of radioactive waste contained in a universal canister in a deep borehole. The general deep borehole disposal concept consists of drilling a borehole into crystalline basement rock to a depth ofmore » about 5 km, emplacing WPs in the lower 2 km of the borehole, and sealing and plugging the upper 3 km. Research and development programs for deep borehole disposal have been ongoing for several years in the United States and the United Kingdom; these studies have shown that deep borehole disposal of radioactive waste could be safe, cost effective, and technically feasible. The design concepts described in this report are workable solutions based on expert judgment, and are intended to guide follow-on design activities. Both preclosure and postclosure safety were considered in the development of the reference design concept. The requirements and assumptions that form the basis for the deep borehole disposal concept include WP performance requirements, radiological protection requirements, surface handling and transport requirements, and emplacement requirements. The key features of the reference disposal concept include borehole drilling and construction concepts, WP designs, and waste handling and emplacement concepts. These features are supported by engineering analyses.« less

  10. Challenges in disposing of anthrax waste.

    PubMed

    Lesperance, Ann M; Stein, Steve; Upton, Jaki F; Toomey, Chris

    2011-09-01

    Disasters often create large amounts of waste that must be managed as part of both immediate response and long-term recovery. While many federal, state, and local agencies have debris management plans, these plans often do not address chemical, biological, and radiological contamination. The Interagency Biological Restoration Demonstration's (IBRD) purpose was to holistically assess all aspects of an anthrax incident and assist in the development of a plan for long-term recovery. In the case of wide-area anthrax contamination and the follow-on response and recovery activities, a significant amount of material would require decontamination and disposal. Accordingly, IBRD facilitated the development of debris management plans to address contaminated waste through a series of interviews and workshops with local, state, and federal representatives. The outcome of these discussions was the identification of 3 primary topical areas that must be addressed: planning, unresolved research questions, and resolving regulatory issues.

  11. Investigative studies for the use of an inactive asbestos mine as a disposal site for asbestos wastes.

    PubMed

    Gidarakos, Evangelos; Anastasiadou, Kalliopi; Koumantakis, Emmanuil; Nikolaos, Stappas

    2008-05-30

    Although, according to European legislation the use of Asbestos Containing Materials is forbidden, many buildings in Greece still contain asbestos products, which must be removed at some point in the near future. Therefore, suitable disposal sites must be found within Greece, so that the unverified disposal of asbestos waste in municipal waste Landfills is brought to an end. In the present work, an innovative approach to the disposal problem of asbestos wastes in Greece has been examined, through a risk assessment analysis of the inactive asbestos mine of Northern Greece and an evaluation of its suitability as a disposal site for asbestos wastes in the future. According to the research carried out, two areas (Site 1 and Site 2) inside the mine area are suitable for the construction of a disposal site for asbestos wastes. The geological investigations showed that in Site 1 and Site 2 ultrabasic rocks of ophiolite complex were prevalent, which have been intensely serpentinized and converted into the fibrous shape of serpentine (asbestos). Concentrations of hazardous substances such as heavy metals in the soil of Site 1 and Site 2 oscillate at low levels, with the exception of the concentrations of nickel and chrome which are high. The investigative work also included the collection of meteorological data and the monitoring of the water level of the artificial lake, which has developed inside the open mine. The main aim is to safely dispose asbestos wastes inside the mine, to minimize any pollution of the wider vicinity of the mine, as well as to engage in restoration activities.

  12. Anaerobic digestion as a waste disposal option for American Samoa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivard, C

    1993-01-01

    Tuna sludge and municipal solid waste (MSW) generated on Tutuila Island, American Samoa, represent an ongoing disposal problem as well as an emerging opportunity for use in renewable fuel production. This research project focuses on the biological conversion of the organic fraction of these wastes to useful products including methane and fertilizer-grade residue through anaerobic high solids digestion. In this preliminary study, the anaerobic bioconversion of tuna sludge with MSW appears promising.

  13. 77 FR 17093 - Certain Food Waste Disposers and Components and Packaging Thereof: Notice of Receipt of Complaint...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-23

    ... INTERNATIONAL TRADE COMMISSION [DN 2886] Certain Food Waste Disposers and Components and Packaging...: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International Trade Commission has received a complaint entitled Certain Food Waste Disposers and Components and...

  14. 36 CFR 6.6 - Solid waste disposal sites within new additions to the National Park System.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... within new additions to the National Park System. 6.6 Section 6.6 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.6 Solid waste disposal sites within new additions to the National Park System. (a) An operator...

  15. 36 CFR 6.6 - Solid waste disposal sites within new additions to the National Park System.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... within new additions to the National Park System. 6.6 Section 6.6 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.6 Solid waste disposal sites within new additions to the National Park System. (a) An operator...

  16. 36 CFR 6.6 - Solid waste disposal sites within new additions to the National Park System.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... within new additions to the National Park System. 6.6 Section 6.6 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.6 Solid waste disposal sites within new additions to the National Park System. (a) An operator...

  17. Inadvertent Intruder Analysis For The Portsmouth On-Site Waste Disposal Facility (OSWDF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Frank G.; Phifer, Mark A.

    2014-01-22

    The inadvertent intruder analysis considers the radiological impacts to hypothetical persons who are assumed to inadvertently intrude on the Portsmouth OSWDF site after institutional control ceases 100 years after site closure. For the purposes of this analysis, we assume that the waste disposal in the OSWDF occurs at time zero, the site is under institutional control for the next 100 years, and inadvertent intrusion can occur over the following 1,000 year time period. Disposal of low-level radioactive waste in the OSWDF must meet a requirement to assess impacts on such individuals, and demonstrate that the effective dose equivalent to anmore » intruder would not likely exceed 100 mrem per year for scenarios involving continuous exposure (i.e. chronic) or 500 mrem for scenarios involving a single acute exposure. The focus in development of exposure scenarios for inadvertent intruders was on selecting reasonable events that may occur, giving consideration to regional customs and construction practices. An important assumption in all scenarios is that an intruder has no prior knowledge of the existence of a waste disposal facility at the site. Results of the analysis show that a hypothetical inadvertent intruder at the OSWDF who, in the worst case scenario, resides on the site and consumes vegetables from a garden established on the site using contaminated soil (chronic agriculture scenario) would receive a maximum chronic dose of approximately 7.0 mrem/yr during the 1000 year period of assessment. This dose falls well below the DOE chronic dose limit of 100 mrem/yr. Results of the analysis also showed that a hypothetical inadvertent intruder at the OSWDF who, in the worst case scenario, excavates a basement in the soil that reaches the waste (acute basement construction scenario) would receive a maximum acute dose of approximately 0.25 mrem/yr during the 1000 year period of assessment. This dose falls well below the DOE acute dose limit of 500 mrem/yr. Disposal

  18. Considerations of the Differences between Bedded and Domal Salt Pertaining to Disposal of Heat-Generating Nuclear Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Francis D.; Kuhlman, Kristopher L.; Sobolik, Steven R.

    Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. As both nations revisit nuclear waste disposal options, the choice between bedded, domal, or intermediate pillow formations is once again a contemporary issue. For decades, favorable attributes of salt as a disposal medium have been extoled and evaluated, carefully and thoroughly. Yet, a sense of discovery continues as science and engineering interrogate naturally heterogeneous systems. Salt formations are impermeable to fluids. Excavation-induced fractures heal as sealmore » systems are placed or natural closure progresses toward equilibrium. Engineering required for nuclear waste disposal gains from mining and storage industries, as humans have been mining salt for millennia. This great intellectual warehouse has been honed and distilled, but not perfected, for all nuances of nuclear waste disposal. Nonetheless, nations are able and have already produced suitable license applications for radioactive waste disposal in salt. A remaining conundrum is site location. Salt formations provide isolation and geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Positive attributes for isolation in salt have many commonalities independent of the geologic setting. In some cases, specific details of the environment will affect the disposal concept and thereby define interaction of features, events and processes, while simultaneously influencing scenario development. Here we identify and discuss high-level differences and similarities of bedded and domal salt formations. Positive geologic and engineering attributes for disposal purposes are more common among salt formations than are significant

  19. Considerations of the Differences between Bedded and Domal Salt Pertaining to Disposal of Heat-Generating Nuclear Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Francis D.; Kuhlman, Kristopher L.; Sobolik, Steven R.

    Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. As both nations revisit nuclear waste disposal options, the choice between bedded, domal, or intermediate pillow formations is once again a contemporary issue. For decades, favorable attributes of salt as a disposal medium have been extoled and evaluated, carefully and thoroughly. Yet, a sense of discovery continues as science and engineering interrogate naturally heterogeneous systems. Salt formations are impermeable to fluids. Excavation-induced fractures heal as sealmore » systems are placed or natural closure progresses toward equilibrium. Engineering required for nuclear waste disposal gains from mining and storage industries, as humans have been mining salt for millennia. This great intellectual warehouse has been honed and distilled, but not perfected, for all nuances of nuclear waste disposal. Nonetheless, nations are able and have already produced suitable license applications for radioactive waste disposal in salt. A remaining conundrum is site location. Salt formations provide isolation, and geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Positive attributes for isolation in salt have many commonalities independent of the geologic setting. In some cases, specific details of the environment will affect the disposal concept and thereby define interaction of features, events and processes, while simultaneously influencing scenario development. Here we identify and discuss high-level differences and similarities of bedded and domal salt formations. Positive geologic and engineering attributes for disposal purposes are more common among salt formations than are significant

  20. Willingness to Pay for Improving the Residential Waste Disposal System in Korea: A Choice Experiment Study

    NASA Astrophysics Data System (ADS)

    Ku, Se-Ju; Yoo, Seung-Hoon; Kwak, Seung-Jun

    2009-08-01

    This study attempts to apply choice experiments with regard to the residential waste disposal system (RWDS) in Korea by considering various attributes that are related to RWDS. Using data from a survey conducted on 492 households, the empirical analysis yields estimates of the willingness to pay for a clean food-waste collection facility, the collection of small items (such as obsolete mobile phones and add-ons for personal computers), and a more convenient large waste disposal system. The estimation results of multinomial logit models are quite similar to those of nested logit models. The results reveal that residents have preferences for the cleanliness of facilities and the collection of small items. In Korea, residents are required to purchase and attach stickers for the disposal of large items; they want to be able to obtain stickers at not only village offices but also supermarkets. On the other hand, the frequency of waste collection is not a significant factor in the choice of the improved waste management program.

  1. Willingness to pay for improving the residential waste disposal system in Korea: a choice experiment study.

    PubMed

    Ku, Se-Ju; Yoo, Seung-Hoon; Kwak, Seung-Jun

    2009-08-01

    This study attempts to apply choice experiments with regard to the residential waste disposal system (RWDS) in Korea by considering various attributes that are related to RWDS. Using data from a survey conducted on 492 households, the empirical analysis yields estimates of the willingness to pay for a clean food-waste collection facility, the collection of small items (such as obsolete mobile phones and add-ons for personal computers), and a more convenient large waste disposal system. The estimation results of multinomial logit models are quite similar to those of nested logit models. The results reveal that residents have preferences for the cleanliness of facilities and the collection of small items. In Korea, residents are required to purchase and attach stickers for the disposal of large items; they want to be able to obtain stickers at not only village offices but also supermarkets. On the other hand, the frequency of waste collection is not a significant factor in the choice of the improved waste management program.

  2. A material flow analysis on current electrical and electronic waste disposal from Hong Kong households

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, Winifred Ka-Yan; Chung, Shan-Shan, E-mail: sschung@hkbu.edu.hk; Zhang, Chan

    2013-03-15

    Highlights: ► Most household TWARC waste is sold directly to private e-waste collectors in HK. ► The current e-waste recycling network is popular with HK households. ► About 80% of household generated TWARC is exported overseas each year. ► Over 7000 tonnes/yr of household generated TWARC reach landfills. ► It is necessary to upgrade safety and awareness in HK’s e-waste recycling industry. - Abstract: A material flow study on five types of household electrical and electronic equipment, namely television, washing machine, air conditioner, refrigerator and personal computer (TWARC) was conducted to assist the Government of Hong Kong to establish anmore » e-waste take-back system. This study is the first systematic attempt on identifying key TWARC waste disposal outlets and trade practices of key parties involved in Hong Kong. Results from two questionnaire surveys, on local households and private e-waste traders, were used to establish the material flow of household TWARC waste. The study revealed that the majority of obsolete TWARC were sold by households to private e-waste collectors and that the current e-waste collection network is efficient and popular with local households. However, about 65,000 tonnes/yr or 80% of household generated TWARC waste are being exported overseas by private e-waste traders, with some believed to be imported into developing countries where crude recycling methods are practiced. Should Hong Kong establish a formal recycling network with tight regulatory control on imports and exports, the potential risks of current e-waste recycling practices on e-waste recycling workers, local residents and the environment can be greatly reduced.« less

  3. Manufacturing waste disposal practices of the chemical propulsion industry

    NASA Technical Reports Server (NTRS)

    Goldberg, Benjamin E.; Adams, Daniel E.; Schutzenhofer, Scott A.

    1995-01-01

    The waste production, mitigation and disposal practices of the United States chemical propulsion industry have been investigated, delineated, and comparatively assessed to the U.S. industrial base. Special emphasis has been placed on examination of ozone depleting chemicals (ODC's). The research examines present and anticipated future practices and problems encountered in the manufacture of solid and liquid propulsion systems. Information collected includes current environmental laws and regulations that guide the industry practices, processes in which ODC's are or have been used, quantities of waste produced, funding required to maintain environmentally compliant practices, and preventive efforts.

  4. Taiwan industrial cooperation program technology transfer for low-level radioactive waste final disposal - phase I.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knowlton, Robert G.; Cochran, John Russell; Arnold, Bill Walter

    2007-01-01

    Sandia National Laboratories and the Institute of Nuclear Energy Research, Taiwan have collaborated in a technology transfer program related to low-level radioactive waste (LLW) disposal in Taiwan. Phase I of this program included regulatory analysis of LLW final disposal, development of LLW disposal performance assessment capabilities, and preliminary performance assessments of two potential disposal sites. Performance objectives were based on regulations in Taiwan and comparisons to those in the United States. Probabilistic performance assessment models were constructed based on limited site data using software including GoldSim, BLT-MS, FEHM, and HELP. These software codes provided the probabilistic framework, container degradation, waste-formmore » leaching, groundwater flow, radionuclide transport, and cover infiltration simulation capabilities in the performance assessment. Preliminary performance assessment analyses were conducted for a near-surface disposal system and a mined cavern disposal system at two representative sites in Taiwan. Results of example calculations indicate peak simulated concentrations to a receptor within a few hundred years of LLW disposal, primarily from highly soluble, non-sorbing radionuclides.« less

  5. Norfolk Southern boxcar blocking/bracing plan for the mixed waste disposal initiative project. Environmental Restoration Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seigler, R.S.

    The US Department of Energy`s (DOE) Environmental Restoration and Waste Management programs will dispose of mixed waste no longer deemed useful. This project is one of the initial activities used to help meet this goal. The project will transport the {approximately}46,000 drums of existing stabilized mixed waste located at the Oak Ridge K-25 Site and presently stored in the K-31 and K-33 buildings to an off-site commercially licensed and permitted mixed waste disposal facility. Shipping and disposal of all {approximately}46,000 pond waste drums ({approximately}1,000,000 ft{sup 3} or 55,000 tons) is scheduled to occur over a period of {approximately}5--10 years. Themore » first shipment of stabilized pond waste should transpire some time during the second quarter of FY 1994. Martin Marietta Energy Systems, Inc., proposes to line each of the Norfolk Southem boxcars with a prefabricated, white, 15-mm low-density polyethylene (LDPE) liner material. To avoid damaging the bottom of the polyethylene floor liner, a minimum .5 in. plywood will be nailed to the boxcars` nailable metal floor. At the end of the Mixed Waste Disposal Initiative (MWDI) Project workers at the Envirocare facility will dismantle and dispose of all the polyethylene liner and plywood materials. Envirocare of Utah, Inc., located in Clive, Utah, will perform a health physic survey and chemically and radiologically decontaminate, if necessary, each of the rail boxcars prior to them being released back to Energy Systems. Energy Systems will also perform a health physic survey and chemically and radiologically decontaminate, if necessary, each of the rail boxcars prior to them being released back to Norfolk Southem Railroad.« less

  6. Challenges in Disposing of Anthrax Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lesperance, Ann M.; Stein, Steven L.; Upton, Jaki F.

    2011-09-01

    Disasters often create large amounts of waste that must be managed as part of both immediate response and long-term recovery. While many federal, state, and local agencies have debris management plans, these plans often do not address chemical, biological, and radiological contamination. The Interagency Biological Restoration Demonstration’s (IBRD) purpose was to holistically assess all aspects of an anthrax incident and assist the development of a plan for long-term recovery. In the case of wide-area anthrax contamination and the follow-on response and recovery activities, a significant amount of material will require decontamination and disposal. Accordingly, IBRD facilitated the development of debrismore » management plans to address contaminated waste through a series of interviews and workshops with local, state, and federal representatives. The outcome of these discussion was the identification of three primary topical areas that must be addressed: 1) Planning; 2) Unresolved research questions, and resolving regulatory issues.« less

  7. Safe disposal of surplus plutonium

    NASA Astrophysics Data System (ADS)

    Gong, W. L.; Naz, S.; Lutze, W.; Busch, R.; Prinja, A.; Stoll, W.

    2001-06-01

    About 150 tons of weapons grade and weapons usable plutonium (metal, oxide, and in residues) have been declared surplus in the USA and Russia. Both countries plan to convert the metal and oxide into mixed oxide fuel for nuclear power reactors. Russia has not yet decided what to do with the residues. The US will convert residues into a ceramic, which will then be over-poured with highly radioactive borosilicate glass. The radioactive glass is meant to provide a deterrent to recovery of plutonium, as required by a US standard. Here we show a waste form for plutonium residues, zirconia/boron carbide (ZrO 2/B 4C), with an unprecedented combination of properties: a single, radiation-resistant, and chemically durable phase contains the residues; billion-year-old natural analogs are available; and criticality safety is given under all conceivable disposal conditions. ZrO 2/B 4C can be disposed of directly, without further processing, making it attractive to all countries facing the task of plutonium disposal. The US standard for protection against recovery can be met by disposal of the waste form together with used reactor fuel.

  8. Report of ICRP Task Group 80: 'radiological protection in geological disposal of long-lived solid radioactive waste'.

    PubMed

    Weiss, W

    2012-01-01

    The report of International Commission on Radiological Protection (ICRP) Task Group 80 entitled 'Radiological protection in geological disposal of long-lived solid radioactive waste' updates and consolidates previous ICRP recommendations related to solid waste disposal (ICRP Publications 46, 77, and 81). The recommendations given in this report apply specifically to geological disposal of long-lived solid radioactive waste. The report explains how the 2007 system of radiological protection, described in ICRP Publication 103, can be applied in the context of the geological disposal of long-lived solid radioactive waste. The report is written as a self-standing document. It describes the different stages in the lifetime of a geological disposal facility, and addresses the application of relevant radiological protection principles for each stage depending on the various exposure situations that can be encountered. In particular, the crucial factor that influences application of the protection system over the different phases in the lifetime of a disposal facility is the level of oversight that is present. The level of oversight affects the capability to reduce or avoid exposures. Three main time frames have to be considered for the purpose of radiological protection: time of direct oversight when the disposal facility is being implemented and active oversight is taking place; time of indirect oversight when the disposal facility is sealed and indirect oversight is being exercised to provide additional assurance on behalf of the population; and time of no oversight when oversight is no longer exercised because memory is lost. Copyright © 2012. Published by Elsevier Ltd.

  9. (Low-level waste disposal facility siting and site characterization)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mezga, L.J.; Ketelle, R.H.; Pin, F.G.

    A US team consisting of representatives of Oak Ridge National Laboratory (ORNL), Savannah River Plant (SRP), Savannah river Laboratory (SRL), and the Department of Energy Office of Defense Waste and Byproducts Management participated in the fourth meeting held under the US/French Radioactive Waste Management Agreement between the US Department of Energy and the Commissariat a l'Energie Atomique. This meeting, held at Agence Nationale pour les Gestion des Dechets Radioactifs' (ANDRA's) Headquarters in Paris, was a detailed, technical topical workshop focusing on Low-Level Waste Disposal Facility Siting and Site Characterization.'' The meeting also included a visit to the Centre de lamore » Manche waste management facility operated by ANDRA to discuss and observe the French approach to low-level waste management. The final day of the meeting was spent at the offices of Societe Generale pour les Techniques Nouvelles (SGN) discussing potential areas of future cooperation and exchange. 20 figs.« less

  10. An Operational Safety and Health Program.

    ERIC Educational Resources Information Center

    Uhorchak, Robert E.

    1983-01-01

    Describes safety/health program activities at Research Triangle Institute (North Carolina). These include: radioisotope/radiation and hazardous chemical/carcinogen use, training, monitoring, disposal; chemical waste management; air monitoring and analysis; medical program; fire safety/training, including emergency planning; Occupational Safety and…

  11. Medical waste treatment and disposal methods used by hospitals in Oregon, Washington, and Idaho.

    PubMed

    Klangsin, P; Harding, A K

    1998-06-01

    This study investigated medical waste practices used by hospitals in Oregon, Washington, and Idaho, which includes the majority of hospitals in the U.S. Environmental Protection Agency's (EPA) Region 10. During the fall of 1993, 225 hospitals were surveyed with a response rate of 72.5%. The results reported here focus on infectious waste segregation practices, medical waste treatment and disposal practices, and the operating status of hospital incinerators in these three states. Hospitals were provided a definition of medical waste in the survey, but were queried about how they define infectious waste. The results implied that there was no consensus about which agency or organization's definition of infectious waste should be used in their waste management programs. Confusion around the definition of infectious waste may also have contributed to the finding that almost half of the hospitals are not segregating infectious waste from other medical waste. The most frequently used practice of treating and disposing of medical waste was the use of private haulers that transport medical waste to treatment facilities (61.5%). The next most frequently reported techniques were pouring into municipal sewage (46.6%), depositing in landfills (41.6%), and autoclaving (32.3%). Other methods adopted by hospitals included Electro-Thermal-Deactivation (ETD), hydropulping, microwaving, and grinding before pouring into the municipal sewer. Hospitals were asked to identify all methods they used in the treatment and disposal of medical waste. Percentages, therefore, add up to greater than 100% because the majority chose more than one method. Hospitals in Oregon and Washington used microwaving and ETD methods to treat medical waste, while those in Idaho did not. No hospitals in any of the states reported using irradiation as a treatment technique. Most hospitals in Oregon and Washington no longer operate their incinerators due to more stringent regulations regarding air pollution

  12. Dealing with electronic waste: modeling the costs and environmental benefits of computer monitor disposal.

    PubMed

    Macauley, Molly; Palmer, Karen; Shih, Jhih-Shyang

    2003-05-01

    The importance of information technology to the world economy has brought about a surge in demand for electronic equipment. With rapid technological change, a growing fraction of the increasing stock of many types of electronics becomes obsolete each year. We model the costs and benefits of policies to manage 'e-waste' by focusing on a large component of the electronic waste stream-computer monitors-and the environmental concerns associated with disposal of the lead embodied in cathode ray tubes (CRTs) used in most monitors. We find that the benefits of avoiding health effects associated with CRT disposal appear far outweighed by the costs for a wide range of policies. For the stock of monitors disposed of in the United States in 1998, we find that policies restricting or banning some popular disposal options would increase disposal costs from about US dollar 1 per monitor to between US dollars 3 and US dollars 20 per monitor. Policies to promote a modest amount of recycling of monitor parts, including lead, can be less expensive. In all cases, however, the costs of the policies exceed the value of the avoided health effects of CRT disposal.

  13. Alternatives to Waste Disposal. Rural Information Center Publication Series, No. 43. Revised Edition.

    ERIC Educational Resources Information Center

    Moberly, Heather K., Comp.

    Solid waste disposal has become a major concern in rural areas, threatening public health, ruining the environment, and hindering economic development due to an overall poor impression of areas. This bibliography serves as a starting point for small communities to examine the issues and begin planning for feasible programs for disposing or…

  14. 1995 Report on Hanford site land disposal restrictions for mixed waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, D.G.

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order Milestone M-26-01E. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of land disposal restricted mixed waste at the Hanford Site. The U.S. Department of Energy, its predecessors, and contractors at the Hanford Site were involved in the production and purification of nuclear defense materials from the early 1940s to the late 1980s. These production activities have generated large quantities of liquid and solid radioactive mixed waste. This waste is subject to regulation under authoritymore » of both the Resource Conservation and Recovery Act of 1976 and Atomic Energy Act of 1954. This report covers mixed waste only. The Washington State Department of Ecology, U.S. Environmental Protection Agency, and U.S. Department of Energy have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order (commonly referred to as the Tri-Party Agreement) to bring the Hanford Site operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDRs) plan and its annual updates to comply with LDR requirements for radioactive mixed waste. This report is the fifth update of the plan first issued in 1990. Tri-Party Agreement negotiations completed in 1993 and approved in January 1994 changed and added many new milestones. Most of the changes were related to the Tank Waste Remediation System and these changes are incorporated into this report.« less

  15. Assessment of the disposal of radioactive petroleum industry waste in nonhazardous landfills using risk-based modeling.

    PubMed

    Smith, Karen P; Arnish, John J; Williams, Gustavious P; Blunt, Deborah L

    2003-05-15

    Certain petroleum production activities cause naturally occurring radioactive materials (NORM) to accumulate in concentrations above natural background levels, making safe and cost-effective management of such technologically enhanced NORM (TENORM) a key issue for the petroleum industry. As a result, both industry and regulators are interested in identifying cost-effective disposal alternatives that provide adequate protection of human health and the environment One such alternative, currently allowed in Michigan with restrictions, is the disposal of TENORM wastes in nonhazardous waste landfills. The disposal of petroleum industry wastes containing radium-226 (Ra-226) in nonhazardous landfills was modeled to evaluate the potential radiological doses and health risks to workers and the public. Multiple scenarios were considered in evaluating the potential risks associated with landfill operations and the future use of the property. The scenarios were defined, in part, to evaluate the Michigan policy; sensitivity analyses were conducted to evaluate the impact of key parameters on potential risks. The results indicate that the disposal of petroleum industry TENORM wastes in nonhazardous landfills in accordance with the Michigan policy and existing landfill regulations presents a negligible risk to most of the potential receptors considered in this study.

  16. A conflict model for the international hazardous waste disposal dispute.

    PubMed

    Hu, Kaixian; Hipel, Keith W; Fang, Liping

    2009-12-15

    A multi-stage conflict model is developed to analyze international hazardous waste disposal disputes. More specifically, the ongoing toxic waste conflicts are divided into two stages consisting of the dumping prevention and dispute resolution stages. The modeling and analyses, based on the methodology of graph model for conflict resolution (GMCR), are used in both stages in order to grasp the structure and implications of a given conflict from a strategic viewpoint. Furthermore, a specific case study is investigated for the Ivory Coast hazardous waste conflict. In addition to the stability analysis, sensitivity and attitude analyses are conducted to capture various strategic features of this type of complicated dispute.

  17. Toward Hazardless Waste: A Guide for Safe Use and Disposal of Hazardous Household Products.

    ERIC Educational Resources Information Center

    Toteff, Sally; Zehner, Cheri

    This guide is designed to help individuals make responsible decisions about safe use and disposal of household products. It consists of eight sections dealing with: (1) hazardous chemicals in the home, how hazaradous products become hazardous waste, and whether a hazardous waste problem exists in Puget Sound; (2) which household wastes are…

  18. Disposal methods

    NASA Technical Reports Server (NTRS)

    Friedlander, Alan

    1991-01-01

    A number of disposal options for space nuclear reactors and the associated risks, mostly in the long term, based on probabilities of Earth reentry are discussed. The results are based on a five year study that was conducted between 1978 and 1983 on the space disposal of high level nuclear waste. The study provided assessment of disposal options, stability of disposal or storage orbits, and assessment of the long term risks of Earth reentry of the nuclear waste.

  19. Impact of Construction Waste Disposal Charging Scheme on work practices at construction sites in Hong Kong.

    PubMed

    Yu, Ann T W; Poon, C S; Wong, Agnes; Yip, Robin; Jaillon, Lara

    2013-01-01

    Waste management in the building industry in Hong Kong has become an important environmental issue. Particularly, an increasing amount of construction and demolition (C&D) waste is being disposed at landfill sites. In order to reduce waste generation and encourage reuse and recycling, the Hong Kong Government has implemented the Construction Waste Disposal Charging Scheme (CWDCS) to levy charges on C&D waste disposal to landfills. In order to provide information on the changes in reducing waste generation practice among construction participants in various work trades, a study was conducted after 3 years of implementation of the CWDCS via a structured questionnaire survey in the building industry in Hong Kong. The study result has revealed changes with work flows of the major trades as well as differentiating the levels of waste reduced. Three building projects in the public and private sectors were selected as case studies to demonstrate the changes in work flows and the reduction of waste achieved. The research findings reveal that a significant reduction of construction waste was achieved at the first 3 years (2006-2008) of CWDCS implementation. However, the reduction cannot be sustained. The major trades have been influenced to a certain extent by the implementation of the CWDCS. Slight improvement in waste management practices was observed, but reduction of construction waste in the wet-finishing and dry-finishing trades has undergone little improvement. Implementation of the CWDCS has not yet motivated subcontractors to change their methods of construction so as to reduce C&D waste. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Cost and efficiency of disaster waste disposal: A case study of the Great East Japan Earthquake.

    PubMed

    Sasao, Toshiaki

    2016-12-01

    This paper analyzes the cost and efficiency of waste disposal associated with the Great East Japan Earthquake. The following two analyses were performed: (1) a popular parametric approach, which is an ordinary least squares (OLS) method to estimate the factors that affect the disposal costs; (2) a non-parametric approach, which is a two-stage data envelopment analysis (DEA) to analyze the efficiency of each municipality and clarify the best performance of the disaster waste management. Our results indicate that a higher recycling rate of disaster waste and a larger amount of tsunami sediments decrease the average disposal costs. Our results also indicate that area-wide management increases the average cost. In addition, the efficiency scores were observed to vary widely by municipality, and more temporary incinerators and secondary waste stocks improve the efficiency scores. However, it is likely that the radioactive contamination from the Fukushima Daiichi nuclear power station influenced the results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. 40 CFR 61.150 - Standard for waste disposal for manufacturing, fabricating, demolition, renovation, and spraying...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Standard for waste disposal for... FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Asbestos § 61.150 Standard for waste... collection, processing (including incineration), packaging, or transporting of any asbestos-containing waste...

  2. 40 CFR 61.150 - Standard for waste disposal for manufacturing, fabricating, demolition, renovation, and spraying...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Standard for waste disposal for... FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Asbestos § 61.150 Standard for waste... collection, processing (including incineration), packaging, or transporting of any asbestos-containing waste...

  3. Twenty-Second National Conference on Campus Safety. Safety Monographs for Schools and Colleges. Monograph No. 35.

    ERIC Educational Resources Information Center

    Green, Jack N., Ed.

    The papers include discussions on: (1) training techniques for safety administrators; (2) materials and services from the National Safety Council; (3) fire safety measures; (4) high-rise buildings; (5) the role of the industrial hygienist in environmental health and safety; (6) chemical waste disposal facilities; (7) a chemistry department safety…

  4. Safety in the Chemical Laboratory

    ERIC Educational Resources Information Center

    Steere, Norman V.

    1969-01-01

    Presents the Safety Guide used in the Research Center at Monsanto Chemical Company (St. Louis). Topics include: general safety practices, safety glasses and shoes, respiratory protection, electrical wiring, solvent handling and waste disposal. Procedures are given for evacuating, "tagging out, and "locking out. Special mention is given to…

  5. SLEUTH (Strategies and Lessons to Eliminate Unused Toxicants: Help!). Educational Activities on the Disposal of Household Hazardous Waste. Household Hazardous Waste Disposal Project. Metro Toxicant Program Report No. 1D.

    ERIC Educational Resources Information Center

    Dyckman, Claire; And Others

    This teaching unit is part of the final report of the Household Hazardous Waste Disposal Project. It consists of activities presented in an introduction and three sections. The introduction contains an activity for students in grades 4-12 which defines terms and concepts for understanding household hazardous wastes. Section I provides activities…

  6. Fuzzy multicriteria disposal method and site selection for municipal solid waste.

    PubMed

    Ekmekçioğlu, Mehmet; Kaya, Tolga; Kahraman, Cengiz

    2010-01-01

    The use of fuzzy multiple criteria analysis (MCA) in solid waste management has the advantage of rendering subjective and implicit decision making more objective and analytical, with its ability to accommodate both quantitative and qualitative data. In this paper a modified fuzzy TOPSIS methodology is proposed for the selection of appropriate disposal method and site for municipal solid waste (MSW). Our method is superior to existing methods since it has capability of representing vague qualitative data and presenting all possible results with different degrees of membership. In the first stage of the proposed methodology, a set of criteria of cost, reliability, feasibility, pollution and emission levels, waste and energy recovery is optimized to determine the best MSW disposal method. Landfilling, composting, conventional incineration, and refuse-derived fuel (RDF) combustion are the alternatives considered. The weights of the selection criteria are determined by fuzzy pairwise comparison matrices of Analytic Hierarchy Process (AHP). It is found that RDF combustion is the best disposal method alternative for Istanbul. In the second stage, the same methodology is used to determine the optimum RDF combustion plant location using adjacent land use, climate, road access and cost as the criteria. The results of this study illustrate the importance of the weights on the various factors in deciding the optimized location, with the best site located in Catalca. A sensitivity analysis is also conducted to monitor how sensitive our model is to changes in the various criteria weights. 2010 Elsevier Ltd. All rights reserved.

  7. LINERS FOR SANITARY LANDFILLS AND CHEMICAL AND HAZARDOUS WASTE DISPOSAL SITES

    EPA Science Inventory

    This report lists addresses of sanitary landfills and chemical and hazardous waste disposal sites and holding ponds with some form of impermeable lining. Liners included are polyethylene, polyvinyl chloride, Hypalon R, ethylene propylene diene monomer, butyl rubber, conventional ...

  8. Engineering assessment of low-level liquid waste disposal caisson locations at the 618-11 Burial Grounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, S.J.; Fischer, D.D.; Crawford, R.C.

    1982-06-01

    Rockwell Hanford Operations is currently involved in an extensive effort to perform interim ground surface stabilization activities at retired low-level waste burial grounds located at the Hanford Site, Richland, Washington. The principal objective of these activities is to promote increased occupational and radiological safety at burial grounds. Interim stabilization activities include: (1) load testing (traversing burial ground surfaces with heavy equipment to promote incipient collapse of void spaces within the disposal structure and overburden), (2) barrier placement (placement of a {ge} 0.6 m soil barrier over existing overburden), and (3) revegetation (establishment of shallow rooted vegetation on the barrier tomore » mitigate deep rooted plant growth and to reduce erosion). Low-level waste disposal caissons were used in 300 Area Burial Grounds as internment structures for containerized liquid wastes. These caissons, by virtue of their contents, design and methods of closure, require long-term performance evaluation. As an initial activity to evaluate long-term performance, the accurate location of these structures is required. This topical report summarizes engineering activities used to locate caissons in the subsurface environment at the Burial Ground. Activities were conducted to locate caissons during surface stabilization activities. The surface locations were marked, photographed, and recorded on an as built engineering drawing. The recorded location of these caissons will augment long-term observations of confinement structure and engineered surface barrier performance. In addition, accurate caisson location will minimize occupational risk during monitoring and observation activities periodically conducted at the burial ground.« less

  9. Radiologic safety assessment for low level waste storage on TRU pads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, J.P.

    1986-03-17

    The reference document (TA 2-1118) proposes to store Low Level Radioactive Solid Waste in B-25 boxes on concrete pads at the 643-G burial ground site, pending resolution of policy concernig its ultimate disposal. This analysis verifies that the reference proposal is safe, as long as it is applied to a limited material quantity of low specific activity, as described in the reference document. The predominant concern in the safety analysis is the emission of airborne activity as a result of tornados and fires. However, containment provided by B-25 boxes is sufficient to mitigate the consequences of these events sufficiently. Nevertheless,more » it is strongly recommended that any above-ground storage procedures include provisions for covering the waste containment boxes to prevent exposure to rainwater and subsequent corrosion if the storage period is to extend beyond one year.« less

  10. 1998 report on Hanford Site land disposal restrictions for mixed waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, D.G.

    1998-04-10

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-26-01H. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of managing land-disposal-restricted mixed waste at the Hanford Facility. The US Department of Energy, its predecessors, and contractors on the Hanford Facility were involved in the production and purification of nuclear defense materials from the early 1940s to the late 1980s. These production activities have generated large quantities of liquid and solid mixed waste. This waste is regulated under authority of bothmore » the Resource Conservation and Recovery Act of l976 and the Atomic Energy Act of 1954. This report covers only mixed waste. The Washington State Department of Ecology, US Environmental Protection Agency, and US Department of Energy have entered into the Tri-Party Agreement to bring the Hanford Facility operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDR) plan and its annual updates to comply with LDR requirements for mixed waste. This report is the eighth update of the plan first issued in 1990. The Tri-Party Agreement requires and the baseline plan and annual update reports provide the following information: (1) Waste Characterization Information -- Provides information about characterizing each LDR mixed waste stream. The sampling and analysis methods and protocols, past characterization results, and, where available, a schedule for providing the characterization information are discussed. (2) Storage Data -- Identifies and describes the mixed waste on the Hanford Facility. Storage data include the Resource Conservation and Recovery Act of 1976 dangerous waste codes, generator process knowledge needed to identify the waste and to make LDR determinations

  11. Sustainable disposal of municipal solid waste: post bioreactor landfill polishing.

    PubMed

    Batarseh, Eyad S; Reinhart, Debra R; Berge, Nicole D

    2010-11-01

    Sustainable disposal of municipal solid waste (MSW) requires assurance that contaminant release will be minimized or prevented within a reasonable time frame before the landfill is abandoned so that the risk of contamination release is not passed to future generations. This could be accomplished through waste acceptance criteria such as those established by the European Union (EU) that prohibit land disposal of untreated organic matter. In the EU, mechanical, biological and/or thermal pretreatment of MSW is therefore necessary prior to landfilling which is complicated and costly. In other parts of the world, treatment within highly engineered landfills is under development, known as bioreactor landfills. However, the completed bioreactor landfill still contains material, largely nonbiodegradable carbon and ammonia that may be released to the environment over the long-term. This paper provides a conceptual analysis of an approach to ensure landfill sustainability by the rapid removal of these remaining materials, leachate treatment and recirculation combined with aeration. The analysis in this paper includes a preliminary experimental evaluation using real mature leachate and waste samples, a modeling effort using a simplified mass balance approach and input parameters from real typical bioreactor cases, and a cost estimate for the suggested treatment method. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Analysis of space systems for the space disposal of nuclear waste follow-on study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The impact on space systems of three alternative waste mixes was evaluated as part of an effort to investigate the disposal of certain high-level nuclear wastes in space as a complement to mined geologic repositories. A brief overview of the study background, objectives, scope, approach and guidelines, and limitations is presented. The effects of variations in waste mixes on space system concepts were studied in order to provide data for determining relative total system risk benefits resulting from space disposal of the alternative waste mixes. Overall objectives of the NASA-DOE sustaining-level study program are to investigate space disposal concepts which can provide information to support future nuclear waste terminal storage programmatic decisions and to maintain a low level of research activity in this area to provide a baseline for future development should a decision be made to increase the emphasis on this option.

  13. Laboratory Safety and Chemical Hazards.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 1983

    1983-01-01

    Toxicology/chemical hazards, safety policy, legal responsibilities, adequacy of ventilation, chemical storage, evaluating experimental hazards, waste disposal, and laws governing chemical safety were among topics discussed in 10 papers presented at the Seventh Biennial Conference on Chemical Education (Stillwater, Oklahoma 1982). Several topics…

  14. Impact of Construction Waste Disposal Charging Scheme on work practices at construction sites in Hong Kong

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Ann T.W., E-mail: bsannyu@polyu.edu.hk; Poon, C.S.; Wong, Agnes

    Highlights: Black-Right-Pointing-Pointer A significant reduction of construction waste was achieved at the first 3 years of CWDCS implementation. Black-Right-Pointing-Pointer However, the reduction cannot be sustained. Black-Right-Pointing-Pointer Implementation of the CWDCS has generated positive effects in waste reduction by all main trades. - Abstract: Waste management in the building industry in Hong Kong has become an important environmental issue. Particularly, an increasing amount of construction and demolition (C and D) waste is being disposed at landfill sites. In order to reduce waste generation and encourage reuse and recycling, the Hong Kong Government has implemented the Construction Waste Disposal Charging Scheme (CWDCS)more » to levy charges on C and D waste disposal to landfills. In order to provide information on the changes in reducing waste generation practice among construction participants in various work trades, a study was conducted after 3 years of implementation of the CWDCS via a structured questionnaire survey in the building industry in Hong Kong. The study result has revealed changes with work flows of the major trades as well as differentiating the levels of waste reduced. Three building projects in the public and private sectors were selected as case studies to demonstrate the changes in work flows and the reduction of waste achieved. The research findings reveal that a significant reduction of construction waste was achieved at the first 3 years (2006-2008) of CWDCS implementation. However, the reduction cannot be sustained. The major trades have been influenced to a certain extent by the implementation of the CWDCS. Slight improvement in waste management practices was observed, but reduction of construction waste in the wet-finishing and dry-finishing trades has undergone little improvement. Implementation of the CWDCS has not yet motivated subcontractors to change their methods of construction so as to reduce C and D waste.« less

  15. Nuclear Energy Advanced Modeling and Simulation (NEAMS) Waste Integrated Performance and Safety Codes (IPSC) : FY10 development and integration.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Criscenti, Louise Jacqueline; Sassani, David Carl; Arguello, Jose Guadalupe, Jr.

    2011-02-01

    This report describes the progress in fiscal year 2010 in developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs,more » and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with robust verification, validation, and software quality requirements. Waste IPSC activities in fiscal year 2010 focused on specifying a challenge problem to demonstrate proof of concept, developing a verification and validation plan, and performing an initial gap analyses to identify candidate codes and tools to support the development and integration of the Waste IPSC. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. This year-end progress report documents the FY10 status of acquisition, development, and integration of thermal-hydrologic-chemical-mechanical (THCM) code capabilities, frameworks, and enabling tools and infrastructure.« less

  16. E-waste disposal effects on the aquatic environment: Accra, Ghana.

    PubMed

    Huang, Jingyu; Nkrumah, Philip Nti; Anim, Desmond Ofosu; Mensah, Ebenezer

    2014-01-01

    The volume of e-waste is growing around the world, and, increasingly, it is being disposed of by export from developed to developing countries. This is the situation in Ghana, and, in this paper we address the potential consequences of such e-waste disposal. Herein, we describe how e-waste is processed in Ghana, and what the fate is of e-waste-chemical contaminants during recycling and storage. Finally, to the extent it is known, we address the prospective adverse effects of e-waste-related contaminants on health and aquatic life downstream from a large e-waste disposal facility in Accra, Ghana.In developing countries, including Ghana, e-waste is routinely disassembled by unprotected workers that utilize rudimentary methods and tools. Once disassembled,e-waste components are often stored in large piles outdoors. These processing and storage methods expose workers and local residents to several heavy metals and organic chemicals that exist in e-waste components. The amount of e-waste dumped in Ghana is increasing annually by about 20,000 t. The local aquatic environment is at a potential high risk, because the piles of e-waste components stored outside are routinely drenched or flooded by rainfall, producing run-off from storage sites to local waterways. Both water and sediment samples show that e-waste-related contaminant shave entered Ghana's water ways.The extent of pollution produced in key water bodies of Ghana (Odaw River and the Korle Lagoon) underscores the need for aquatic risk assessments of the many contaminants released during e-waste processing. Notwithstanding the fact that pollutants from other sources reach the water bodies, it is clear that these water bodies are also heavily impacted by contaminants that are found in e-waste. Our concern is that such exposures have limited and will continue to limit the diversity of aquatic organisms.There have also been changes in the abundance and biomass of surviving species and changes in food chains. Therefore

  17. Medical Waste Disposal Method Selection Based on a Hierarchical Decision Model with Intuitionistic Fuzzy Relations

    PubMed Central

    Qian, Wuyong; Wang, Zhou-Jing; Li, Kevin W.

    2016-01-01

    Although medical waste usually accounts for a small fraction of urban municipal waste, its proper disposal has been a challenging issue as it often contains infectious, radioactive, or hazardous waste. This article proposes a two-level hierarchical multicriteria decision model to address medical waste disposal method selection (MWDMS), where disposal methods are assessed against different criteria as intuitionistic fuzzy preference relations and criteria weights are furnished as real values. This paper first introduces new operations for a special class of intuitionistic fuzzy values, whose membership and non-membership information is cross ratio based ]0, 1[-values. New score and accuracy functions are defined in order to develop a comparison approach for ]0, 1[-valued intuitionistic fuzzy numbers. A weighted geometric operator is then put forward to aggregate a collection of ]0, 1[-valued intuitionistic fuzzy values. Similar to Saaty’s 1–9 scale, this paper proposes a cross-ratio-based bipolar 0.1–0.9 scale to characterize pairwise comparison results. Subsequently, a two-level hierarchical structure is formulated to handle multicriteria decision problems with intuitionistic preference relations. Finally, the proposed decision framework is applied to MWDMS to illustrate its feasibility and effectiveness. PMID:27618082

  18. Medical Waste Disposal Method Selection Based on a Hierarchical Decision Model with Intuitionistic Fuzzy Relations.

    PubMed

    Qian, Wuyong; Wang, Zhou-Jing; Li, Kevin W

    2016-09-09

    Although medical waste usually accounts for a small fraction of urban municipal waste, its proper disposal has been a challenging issue as it often contains infectious, radioactive, or hazardous waste. This article proposes a two-level hierarchical multicriteria decision model to address medical waste disposal method selection (MWDMS), where disposal methods are assessed against different criteria as intuitionistic fuzzy preference relations and criteria weights are furnished as real values. This paper first introduces new operations for a special class of intuitionistic fuzzy values, whose membership and non-membership information is cross ratio based ]0, 1[-values. New score and accuracy functions are defined in order to develop a comparison approach for ]0, 1[-valued intuitionistic fuzzy numbers. A weighted geometric operator is then put forward to aggregate a collection of ]0, 1[-valued intuitionistic fuzzy values. Similar to Saaty's 1-9 scale, this paper proposes a cross-ratio-based bipolar 0.1-0.9 scale to characterize pairwise comparison results. Subsequently, a two-level hierarchical structure is formulated to handle multicriteria decision problems with intuitionistic preference relations. Finally, the proposed decision framework is applied to MWDMS to illustrate its feasibility and effectiveness.

  19. Regional hydrogeological screening characteristics used for siting near-surface waste-disposal facilities in Oklahoma, U.S.A.

    USGS Publications Warehouse

    Johnson, K.S.

    1991-01-01

    The Oklahoma Geological Survey has developed several maps and reports for preliminary screening of the state of Oklahoma to identify areas that are generally acceptable or unacceptable for disposal of a wide variety of waste materials. These maps and reports focus on the geologic and hydrogeologic parameters that must be evaluated in the screening process. One map (and report) shows the outcrop distribution of 35 thick shale or clay units that are generally suitable for use as host rocks for surface disposal of wastes. A second map shows the distribution of unconsolidated alluvial and terrace-deposit aquifers, and a third map shows the distribution and hydrologic character of bedrock aquifers and their recharge areas. These latter two maps show the areas in the state where special attention must be exercised in permitting storage or disposal of waste materials that could degrade the quality of groundwater. State regulatory agencies and industry are using these maps and reports in preliminary screening of the state to identify potential disposal sites. These maps in no way replace the need for site-specific investigations to prove (or disprove) the adequacy of a site to safely contain waste materials. ?? 1991 Springer-Verlag New York Inc.

  20. Research on Geo-information Data Model for Preselected Areas of Geological Disposal of High-level Radioactive Waste

    NASA Astrophysics Data System (ADS)

    Gao, M.; Huang, S. T.; Wang, P.; Zhao, Y. A.; Wang, H. B.

    2016-11-01

    The geological disposal of high-level radioactive waste (hereinafter referred to "geological disposal") is a long-term, complex, and systematic scientific project, whose data and information resources in the research and development ((hereinafter referred to ”R&D”) process provide the significant support for R&D of geological disposal system, and lay a foundation for the long-term stability and safety assessment of repository site. However, the data related to the research and engineering in the sitting of the geological disposal repositories is more complicated (including multi-source, multi-dimension and changeable), the requirements for the data accuracy and comprehensive application has become much higher than before, which lead to the fact that the data model design of geo-information database for the disposal repository are facing more serious challenges. In the essay, data resources of the pre-selected areas of the repository has been comprehensive controlled and systematic analyzed. According to deeply understanding of the application requirements, the research work has made a solution for the key technical problems including reasonable classification system of multi-source data entity, complex logic relations and effective physical storage structures. The new solution has broken through data classification and conventional spatial data the organization model applied in the traditional industry, realized the data organization and integration with the unit of data entities and spatial relationship, which were independent, holonomic and with application significant features in HLW geological disposal. The reasonable, feasible and flexible data conceptual models, logical models and physical models have been established so as to ensure the effective integration and facilitate application development of multi-source data in pre-selected areas for geological disposal.

  1. 40 CFR Appendix D to Subpart E of... - Transport and Disposal of Asbestos Waste

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Transport and Disposal of Asbestos... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT ASBESTOS Asbestos-Containing Materials in Schools Pt. 763, Subpt. E, App. D Appendix D to Subpart E of Part 763—Transport and Disposal of Asbestos Waste For the purposes...

  2. 40 CFR Appendix D to Subpart E of... - Transport and Disposal of Asbestos Waste

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Transport and Disposal of Asbestos... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT ASBESTOS Asbestos-Containing Materials in Schools Pt. 763, Subpt. E, App. D Appendix D to Subpart E of Part 763—Transport and Disposal of Asbestos Waste For the purposes...

  3. 40 CFR Appendix D to Subpart E of... - Transport and Disposal of Asbestos Waste

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Transport and Disposal of Asbestos... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT ASBESTOS Asbestos-Containing Materials in Schools Pt. 763, Subpt. E, App. D Appendix D to Subpart E of Part 763—Transport and Disposal of Asbestos Waste For the purposes...

  4. 40 CFR Appendix D to Subpart E of... - Transport and Disposal of Asbestos Waste

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Transport and Disposal of Asbestos... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT ASBESTOS Asbestos-Containing Materials in Schools Pt. 763, Subpt. E, App. D Appendix D to Subpart E of Part 763—Transport and Disposal of Asbestos Waste For the purposes...

  5. Waste disposal technologies for polychlorinated biphenyls.

    PubMed Central

    Piver, W T; Lindstrom, F T

    1985-01-01

    Improper practices in the disposal of polychlorinated biphenyl (PCB) wastes by land burial, chemical means and incineration distribute these chemicals and related compounds such as polychlorinated dibenzofurans (PCDFs) and polychlorinated dibenzodioxins (PCDDs) throughout the environment. The complete range of methods for disposal that have been proposed and are in use are examined and analyzed, with emphasis given to the two most commonly used methods: land burial and incineration. The understanding of aquifer contamination caused by migration of PCBs from subsurface burial sites requires a description of the physical, chemical and biological processes governing transport in unsaturated and saturated soils. For this purpose, a model is developed and solved for different soil conditions and external driving functions. The model couples together the fundamental transport phenomena for heat, mass, and moisture flow within the soil. To rehabilitate a contaminated aquifer, contaminated groundwaters are withdrawn through drainage wells, PCBs are extracted with solvents or activated carbon and treated by chemical, photochemical or thermal methods. The chemical and photochemical methods are reviewed, but primary emphasis is devoted to the use of incineration as the preferred method of disposal. After discussing the formation of PCDFs and PCDDs during combustion from chloroaromatic, chloroaliphatic, as well as organic and inorganic chloride precursors, performance characteristics of different thermal destructors are presented and analyzed. To understand how this information can be used, basic design equations are developed from governing heat and mass balances that can be applied to the construction of incinerators capable of more than 99.99% destruction with minimal to nondetectable levels of PCDFs and PCDDs. PMID:3921358

  6. Tritium migration from a low-level radioactive-waste disposal site near Chicago, Illinois

    USGS Publications Warehouse

    Nicholas, J.R.; Healy, R.W.

    1988-01-01

    This paper describes the results of a study to determine the geologic and hydrologic factors that control migration of tritium from a closed, low-level radioactive-waste disposal site. The disposal site, which operated from 1943 to mid1949, contains waste generated by research activities at the world's first nuclear reactors. Tritium has migrated horizontally at least 1,300 feet northward in glacial drift and more than 650 feet in the underlying dolomite. Thin, gently sloping sand layers in an otherwise clayey glacial drift are major conduits for ground-water flow and tritium migration in a perched zone beneath the disposal site. Tritium concentrations in the drift beneath the disposal site exceed 100,000 nanocuries per liter. Regional horizontal joints in the dolomite are enlarged by solution and are the major conduits for ground-water flow and tritium migration in the dolomite. A weathered zone at the top of the dolomite also is a pathway for tritium migration. The maximum measured tritium concentration in the dolomite is 29.4 nanocuries per liter. Fluctuations of tritium concentration in the dolomite are the result of dilution by seasonal recharge from the drift.

  7. Quantitative risk assessment of the New York State operated West Valley Radioactive Waste Disposal Area.

    PubMed

    Garrick, B John; Stetkar, John W; Bembia, Paul J

    2010-08-01

    This article is based on a quantitative risk assessment (QRA) that was performed on a radioactive waste disposal area within the Western New York Nuclear Service Center in western New York State. The QRA results were instrumental in the decision by the New York State Energy Research and Development Authority to support a strategy of in-place management of the disposal area for another decade. The QRA methodology adopted for this first of a kind application was a scenario-based approach in the framework of the triplet definition of risk (scenarios, likelihoods, consequences). The measure of risk is the frequency of occurrence of different levels of radiation dose to humans at prescribed locations. The risk from each scenario is determined by (1) the frequency of disruptive events or natural processes that cause a release of radioactive materials from the disposal area; (2) the physical form, quantity, and radionuclide content of the material that is released during each scenario; (3) distribution, dilution, and deposition of the released materials throughout the environment surrounding the disposal area; and (4) public exposure to the distributed material and the accumulated radiation dose from that exposure. The risks of the individual scenarios are assembled into a representation of the risk from the disposal area. In addition to quantifying the total risk to the public, the analysis ranks the importance of each contributing scenario, which facilitates taking corrective actions and implementing effective risk management. Perhaps most importantly, quantification of the uncertainties is an intrinsic part of the risk results. This approach to safety analysis has demonstrated many advantages of applying QRA principles to assessing the risk of facilities involving hazardous materials.

  8. Small mammal populations at hazardous waste disposal sites near Houston, Texas, USA

    USGS Publications Warehouse

    Robbins, C.S.

    1990-01-01

    Small mammals were trapped, tagged and recaptured in 0?45 ha plots at six hazardous industrial waste disposal sites to determine if populations, body mass and age structures were different from paired control site plots. Low numbers of six species of small mammals were captured on industrial waste sites or control sites. Only populations of hispid cotton rats at industrial waste sites and control sites were large enough for comparisons. Overall population numbers, age structure, and body mass of adult male and female cotton rats were similar at industrial waste sites and control sites. Populations of small mammals (particularly hispid cotton rats) may not suffice as indicators of environments with hazardous industrial waste contamination.

  9. Creating Economic Incentives for Waste Disposal in Developing Countries Using the MixAlco Process.

    PubMed

    Lonkar, Sagar; Fu, Zhihong; Wales, Melinda; Holtzapple, Mark

    2017-01-01

    In rapidly growing developing countries, waste disposal is a major challenge. Current waste disposal methods (e.g., landfills and sewage treatment) incur costs and often are not employed; thus, wastes accumulate in the environment. To address this challenge, it is advantageous to create economic incentives to collect and process wastes. One approach is the MixAlco process, which uses methane-inhibited anaerobic fermentation to convert waste biomass into carboxylate salts, which are chemically converted to industrial chemicals and fuels. In this paper, humanure (raw human feces and urine) is explored as a possible nutrient source for fermentation. This work focuses on fermenting municipal solid waste (energy source) and humanure (nutrient source) in batch fermentations. Using the Continuum Particle Distribution Model (CPDM), the performance of continuous countercurrent fermentation was predicted at different volatile solid loading rates (VSLR) and liquid residence times (LRT). For a four-stage countercurrent fermentation system at VSLR = 4 g/(L∙day), LRT = 30 days, and solids concentration = 100 g/L liquid, the model predicts carboxylic acid concentration of 68 g/L and conversion of 78.5 %.

  10. Household Hazardous Waste Disposal Project. Summary Report. Metro Toxicant Program Report No. 1A.

    ERIC Educational Resources Information Center

    Ridgley, Susan M.; Galvin, David V.

    The Household Hazardous Waste Disposal Project was established as an interagency effort to reduce the level of toxicants entering the environment by developing a control plan for the safe disposal of small quantities of household chemicals. This summary report provides an overview of the aspects of this problem that were examined, and the steps…

  11. Gamma-ray spectrometry method used for radioactive waste drums characterization for final disposal at National Repository for Low and Intermediate Radioactive Waste--Baita, Romania.

    PubMed

    Done, L; Tugulan, L C; Dragolici, F; Alexandru, C

    2014-05-01

    The Radioactive Waste Management Department from IFIN-HH, Bucharest, performs the conditioning of the institutional radioactive waste in concrete matrix, in 200 l drums with concrete shield, for final disposal at DNDR - Baita, Bihor county, in an old exhausted uranium mine. This paper presents a gamma-ray spectrometry method for the characterization of the radioactive waste drums' radionuclides content, for final disposal. In order to study the accuracy of the method, a similar concrete matrix with Portland cement in a 200 l drum was used. © 2013 The Authors. Published by Elsevier Ltd All rights reserved.

  12. Treatment of Radioactive Metallic Waste from Operation of Nuclear Power Plants by Melting - The German Way for a Consistent Recycling to Minimize the Quantity of Radioactive Waste from Operation and Dismantling for Disposal - 12016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wegener, Dirk; Kluth, Thomas

    2012-07-01

    During maintenance of nuclear power plants, and during their decommissioning period, a large quantity of radioactive metallic waste will accrue. On the other hand the capacity for final disposal of radioactive waste in Germany is limited as well as that in the US. That is why all procedures related to this topic should be handled with a maximum of efficiency. The German model of consistent recycling of the radioactive metal scrap within the nuclear industry therefore also offers high capabilities for facilities in the US. The paper gives a compact overview of the impressive results of melting treatment, the currentmore » potential and further developments. Thousands of cubic metres of final disposal capacity have been saved. The highest level of efficiency and safety by combining general surface decontamination by blasting and nuclide specific decontamination by melting associated with the typical effects of homogenization. An established process - nationally and internationally recognized. Excellent connection between economy and ecology. (authors)« less

  13. Special Analysis for the Disposal of the Consolidated Edison Uranium Solidification Project Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Management

    2013-01-31

    The purpose of this Special Analysis (SA) is to determine if the Oak Ridge (OR) Consolidated Edison Uranium Solidification Project (CEUSP) uranium-233 (233U) waste stream (DRTK000000050, Revision 0) is acceptable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). The CEUSP 233U waste stream requires a special analysis because the concentrations of thorium-229 (229Th), 230Th, 232U, 233U, and 234U exceeded their NNSS Waste Acceptance Criteria action levels. The acceptability of the waste stream is evaluated by determining if performance assessment (PA) modeling provides a reasonable expectation that SLBmore » disposal is protective of human health and the environment. The CEUSP 233U waste stream is a long-lived waste with unique radiological hazards. The SA evaluates the long-term acceptability of the CEUSP 233U waste stream for near-surface disposal as a two tier process. The first tier, which is the usual SA process, uses the approved probabilistic PA model to determine if there is a reasonable expectation that disposal of the CEUSP 233U waste stream can meet the performance objectives of U.S. Department of Energy Manual DOE M 435.1-1, “Radioactive Waste Management,” for a period of 1,000 years (y) after closure. The second tier addresses the acceptability of the OR CEUSP 233U waste stream for near-surface disposal by evaluating long-term site stability and security, by performing extended (i.e., 10,000 and 60,000 y) modeling analyses, and by evaluating the effect of containers and the depth of burial on performance. Tier I results indicate that there is a reasonable expectation of compliance with all performance objectives if the OR CEUSP 233U waste stream is disposed in the Area 5 RWMS SLB disposal units. The maximum mean and 95th percentile PA results are all less than the performance objective for 1,000 y. Monte Carlo uncertainty analysis indicates that there is a high

  14. Waste isolation safety assessment program. Task 4. Third contractor information meeting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-06-01

    The Contractor Information Meeting (October 14 to 17, 1979) was part of the FY-1979 effort of Task 4 of the Waste Isolation Safety Assessment Program (WISAP): Sorption/Desorption Analysis. The objectives of this task are to: evaluate sorption/desorption measurement methods and develop a standardized measurement procedure; produce a generic data bank of nuclide-geologic interactions using a wide variety of geologic media and groundwaters; perform statistical analysis and synthesis of these data; perform validation studies to compare short-term laboratory studies to long-term in situ behavior; develop a fundamental understanding of sorption/desorption processes; produce x-ray and gamma-emitting isotopes suitable for the study ofmore » actinides at tracer concentrations; disseminate resulting information to the international technical community; and provide input data support for repository safety assessment. Conference participants included those subcontracted to WISAP Task 4, representatives and independent subcontractors to the Office of Nuclear Waste Isolation, representatives from other waste disposal programs, and experts in the area of waste/geologic media interaction. Since the meeting, WISAP has been divided into two programs: Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) (modeling efforts) and Waste/Rock Interactions Technology (WRIT) (experimental work). The WRIT program encompasses the work conducted under Task 4. This report contains the information presented at the Task 4, Third Contractor Information Meeting. Technical Reports from the subcontractors, as well as Pacific Northwest Laboratory (PNL), are provided along with transcripts of the question-and-answer sessions. The agenda and abstracts of the presentations are also included. Appendix A is a list of the participants. Appendix B gives an overview of the WRIT program and details the WRIT work breakdown structure for 1980.« less

  15. Siting industrial waste land disposal facilities in Thailand: A risk based approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fingleton, D.J.; Habegger, L.; Peters, R.

    The Thailand Industrial Works Department (IWD) has established a toxic industrial waste Central Treatment and Stabilization Center (CTSC) for textile dyeing and electroplating industries located in the Thonburi region of the Bangkok metropolitan area. Industrial waste is treated, stabilized, and stored at the CTSC. Although the IWD plans to ship the stabilized sludge to the Ratchaburi Province in western Thailand for burial, the location for the land disposal site has not been selected. Assessing the relative health risks from exposure to toxic chemicals released from an industrial waste land disposal site is a complicated, data-intensive process that requires a multidisciplinarymore » approach. This process is further complicated by the unique physical and cultural characteristics exhibited by the rapidly industrializing Thai economy. The purpose of this paper is to describe the research approach taken and to detail the constraints to health risk assessments in Thailand. issues discussed include data availability and quality, effectiveness of control or mitigation methods, cultural differences, and the basic assumptions inherent in many of the risk assessment components.« less

  16. Application of geographical information system in disposal site selection for hazardous wastes.

    PubMed

    Rezaeimahmoudi, Mehdi; Esmaeli, Abdolreza; Gharegozlu, Alireza; Shabanian, Hassan; Rokni, Ladan

    2014-01-01

    The aim of this study was to provide a scientific method based on Geographical Information System (GIS) regarding all sustainable development measures to locate a proper landfill for disposal of hazardous wastes, especially industrial (radioactive) wastes. Seven effective factors for determining hazardous waste landfill were applied in Qom Province, central Iran. These criteria included water, slope, population centers, roads, fault, protected areas and geology. The Analysis Hierarchical Process (AHP) model based on pair comparison was used. First, the weight of each factor was determined by experts; afterwards each layer of maps entered to ARC GIS and with special weight multiplied together, finally the best suitable site was introduced. The most suitable sites for burial were in northwest and west of Qom Province and eventually five zones were introduced as the sample sites. GIs and AHP model is introduced as the technical, useful and accelerator tool for disposal site selection. Furthermore it is determined that geological factor is the most effective layer for site selection. It is suggested that geological conditions should be considered primarily then other factors are taken into consideration.

  17. Modeling Groundwater Flow and Infiltration at Potential Low-Level Radioactive Waste Disposal Sites in Taiwan

    NASA Astrophysics Data System (ADS)

    Arnold, B. W.; Lee, C.; Ma, C.; Knowlton, R. G.

    2006-12-01

    Taiwan is evaluating representative sites for the potential disposal of low-level radioactive waste (LLW), including consideration of shallow land burial and cavern disposal concepts. A representative site for shallow land burial is on a small island in the Taiwan Strait with basalt bedrock. The shallow land burial concept includes an engineered cover to limit infiltration into the waste disposal cell. A representative site for cavern disposal is located on the southeast coast of Taiwan. The tunnel system for this disposal concept would be several hundred meters below the mountainous land surface in argillite bedrock. The LLW will consist of about 966,000 drums, primarily from the operation and decommissioning of four nuclear power plants. Sandia National Laboratories and the Institute of Nuclear Energy Research have collaborated to develop performance assessment models to evaluate the long-term safety of LLW disposal at these representative sites. Important components of the system models are sub-models of groundwater flow in the natural system and infiltration through the engineered cover for the shallow land burial concept. The FEHM software code was used to simulate groundwater flow in three-dimensional models at both sites. In addition, a higher-resolution two-dimensional model was developed to simulate flow through the engineered tunnel system at the cavern site. The HELP software was used to simulate infiltration through the cover at the island site. The primary objective of these preliminary models is to provide a modeling framework, given the lack of site-specific data and detailed engineering design specifications. The steady-state groundwater flow model at the island site uses a specified recharge boundary at the land surface and specified head at the island shoreline. Simulated groundwater flow vectors are extracted from the FEHM model along a cross section through one of the LLW disposal cells for utilization in radionuclide transport simulations in

  18. Multi-discipline Waste Acceptance Process at the Nevada National Security Site - 13573

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carilli, Jhon T.; Krenzien, Susan K.

    2013-07-01

    The Nevada National Security Site low-level radioactive waste disposal facility acceptance process requires multiple disciplines to ensure the protection of workers, the public, and the environment. These disciplines, which include waste acceptance, nuclear criticality, safety, permitting, operations, and performance assessment, combine into the overall waste acceptance process to assess low-level radioactive waste streams for disposal at the Area 5 Radioactive Waste Management Site. Four waste streams recently highlighted the integration of these disciplines: the Oak Ridge Radioisotope Thermoelectric Generators and Consolidated Edison Uranium Solidification Project material, West Valley Melter, and classified waste. (authors)

  19. Safety Assessment for a Surface Repository in the Chernobyl Exclusion Zone - Methodology for Assessing Disposal under Intervention Conditions - 13476

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haverkamp, B.; Krone, J.; Shybetskyi, I.

    The Radioactive Waste Disposal Facility (RWDF) Buryakovka was constructed in 1986 as part of the intervention measures after the accident at Chernobyl NPP (ChNPP). Today, RWDF Buryakovka is still being operated but its maximum capacity is nearly reached. Plans for enlargement of the facility exist since more than 10 years but have not been implemented yet. In the framework of an European Commission Project DBE Technology GmbH prepared a safety analysis report of the facility in its current state (SAR) and a preliminary safety analysis report (PSAR) based on the planned enlargement. Due to its history RWDF Buryakovka does notmore » fully comply with today's best international practices and the latest Ukrainian regulations in this area. The most critical aspects are its inventory of long-lived radionuclides, and the non-existent multi-barrier waste confinement system. A significant part of the project was dedicated, therefore, to the development of a methodology for the safety assessment taking into consideration the facility's special situation and to reach an agreement with all stakeholders involved in the later review and approval procedure of the safety analysis reports. Main aspect of the agreed methodology was to analyze the safety, not strictly based on regulatory requirements but on the assessment of the actual situation of the facility including its location within the Exclusion Zone. For both safety analysis reports, SAR and PSAR, the assessment of the long-term safety led to results that were either within regulatory limits or within the limits allowing for a specific situational evaluation by the regulator. (authors)« less

  20. REMEDIAL ACTION, TREATMENT AND DISPOSAL OF HAZARDOUS WASTE: PROCEEDINGS OF THE SIXTEENTH ANNUAL HAZARDOUS WASTE RESEARCH SYMPOSIUM

    EPA Science Inventory

    The Sixteenth Annual Research Symposium on Remedial Action, Treatment and Disposal of Hazardous Waste was held in Cincinnati, Ohio, April 3-5, 1990. he purpose of this Symposium was to present the latest significant research findings from ongoing and recently completed projects f...

  1. Spanish methodological approach for biosphere assessment of radioactive waste disposal.

    PubMed

    Agüero, A; Pinedo, P; Cancio, D; Simón, I; Moraleda, M; Pérez-Sánchez, D; Trueba, C

    2007-10-01

    The development of radioactive waste disposal facilities requires implementation of measures that will afford protection of human health and the environment over a specific temporal frame that depends on the characteristics of the wastes. The repository design is based on a multi-barrier system: (i) the near-field or engineered barrier, (ii) far-field or geological barrier and (iii) the biosphere system. Here, the focus is on the analysis of this last system, the biosphere. A description is provided of conceptual developments, methodological aspects and software tools used to develop the Biosphere Assessment Methodology in the context of high-level waste (HLW) disposal facilities in Spain. This methodology is based on the BIOMASS "Reference Biospheres Methodology" and provides a logical and systematic approach with supplementary documentation that helps to support the decisions necessary for model development. It follows a five-stage approach, such that a coherent biosphere system description and the corresponding conceptual, mathematical and numerical models can be built. A discussion on the improvements implemented through application of the methodology to case studies in international and national projects is included. Some facets of this methodological approach still require further consideration, principally an enhanced integration of climatology, geography and ecology into models considering evolution of the environment, some aspects of the interface between the geosphere and biosphere, and an accurate quantification of environmental change processes and rates.

  2. Safety and Waste Management for SAM Pathogen Methods

    EPA Pesticide Factsheets

    The General Safety and Waste Management page offers section-specific safety and waste management details for the pathogens included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  3. Safety and Waste Management for SAM Biotoxin Methods

    EPA Pesticide Factsheets

    The General Safety and Waste Management page offers section-specific safety and waste management details for the biotoxins included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  4. A new dawn for buried garbage? An investigation of the marketability of previously disposed shredder waste.

    PubMed

    Johansson, N; Krook, J; Frändegård, P

    2017-02-01

    This paper examines the market potential of disposed shredder waste, a resource that is increasingly emphasized as a future mine. A framework with gate requirements of various outlets was developed and contrasted with a pilot project focusing on excavated waste from a shredder landfill, sorted in an advanced recycling facility. Only the smallest fraction by percentage had an outlet, the metals (8%), which were sold according to a lower quality class. The other fractions (92%) were not accepted for incineration, as construction materials or even for re-deposition. Previous studies have shown similar lack of marketability. This means that even if one fraction can be recovered, the outlet of the other material is often unpredictable, resulting in a waste disposal problem, which easily prevents a landfill mining project altogether. This calls for marketability and usability of deposited waste to become a central issue for landfill mining research. The paper concludes by discussing how concerned actors can enhance the marketability, for example by pre-treating the disposed waste to acclimatize it to existing sorting methods. However, for concerned actors to become interested in approaching unconventional resources such as deposited waste, greater regulatory flexibility is needed in which, for example, re-deposition could be allowed as long as the environmental benefits of the projects outweigh the disadvantages. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Space transportation and destination considerations for extraterrestrial disposal of radioactive waste

    NASA Technical Reports Server (NTRS)

    Zimmerman, A. V.; Thompson, R. L.; Lubick, R. J.

    1973-01-01

    A feasibility study is summarized of extraterrestrial (space) disposal of radioactive waste. The initial work on the evaluation and comparison of possible space destinations and launch vehicles is reported. Only current or planned space transportation systems were considered. The currently planned space shuttle was found to be more cost effective than current expendable launch vehicles, by about a factor of two. The space shuttle will require a third stage to perform the disposal missions. Depending on the particular mission this could be either a reusable space tug or an expendable stage such as a Centaur. Of the destinations considered, high earth orbits (between geostationary and lunar orbit altitudes), solar orbits (such as a 0.90 AU circular solar orbit) or a direct injection to solar system escape appear to be the best candidates. Both earth orbits and solar orbits have uncertainties regarding orbit stability and waste package integrity for times on the order of a million years.

  6. Safety and Waste Management for SAM Chemistry Methods

    EPA Pesticide Factsheets

    The General Safety and Waste Management page offers section-specific safety and waste management details for the chemical analytes included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  7. Safety and Waste Management for SAM Radiochemical Methods

    EPA Pesticide Factsheets

    The General Safety and Waste Management page offers section-specific safety and waste management details for the radiochemical analytes included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  8. ICRP PUBLICATION 122: radiological protection in geological disposal of long-lived solid radioactive waste.

    PubMed

    Weiss, W; Larsson, C-M; McKenney, C; Minon, J-P; Mobbs, S; Schneider, T; Umeki, H; Hilden, W; Pescatore, C; Vesterlind, M

    2013-06-01

    This report updates and consolidates previous recommendations of the International Commission on Radiological Protection (ICRP) related to solid waste disposal (ICRP, 1985, 1997b, 1998). The recommendations given apply specifically to geological disposal of long-lived solid radioactive waste. The report explains how the ICRP system of radiological protection described in Publication 103 (ICRP, 2007) can be applied in the context of the geological disposal of long-lived solid radioactive waste. Although the report is written as a standalone document, previous ICRP recommendations not dealt with in depth in the report are still valid. The 2007 ICRP system of radiological protection evolves from the previous process-based protection approach relying on the distinction between practices and interventions by moving to an approach based on the distinction between three types of exposure situation: planned, emergency and existing. The Recommendations maintains the Commission's three fundamental principles of radiological protection namely: justification, optimisation of protection and the application of dose limits. They also maintain the current individual dose limits for effective dose and equivalent dose from all regulated sources in planned exposure situations. They re-enforce the principle of optimisation of radiological protection, which applies in a similar way to all exposure situations, subject to restrictions on individual doses: constraints for planned exposure situations, and reference levels for emergency and existing exposure situations. The Recommendations also include an approach for developing a framework to demonstrate radiological protection of the environment. This report describes the different stages in the life time of a geological disposal facility, and addresses the application of relevant radiological protection principles for each stage depending on the various exposure situations that can be encountered. In particular, the crucial factor that

  9. Monitoring the dispersion of ocean waste disposal plumes from ERTS-1 and Skylab. [Delaware coastal waters

    NASA Technical Reports Server (NTRS)

    Klemas, V. (Principal Investigator); Davis, G.; Myers, T.

    1974-01-01

    The author has identified the following significant results. About forty miles off the Delaware coast is located the disposal site for waste discharged from a plant processing titanium dioxide. The discharge is a greenish-brown; 15-20% acid liquid which consists primarily of iron chlorides and sulfates. The barge which transports this waste has a 1,000,000 gallon capacity and makes approximately three trips to the disposal site per week. ERTS-1 MSS digital tapes are being used to study the dispersion patterns and drift velocities of the iron-acid plume. Careful examination of ERTS-1 imagery disclosed a fishhook-shaped plume about 40 miles east of Cape Henlopen caused by a barge disposing acid wastes. The plume shows up more strongly in the green band than in the red band. Since some acids have a strong green component during dumping and turn slowly more brownish-reddish with age, the ratio of radiance signatures between the green and red bands may give an indication of how long before the satellite overpass the acid was dumped. Enlarged enhancements of the acid waste plumes, prepared from the ERTS-1 MSS digital tapes aided considerably in studies of the dispersion of the waste plume. Currently acid dumps are being coordinated with ERTS-1 overpasses.

  10. Defining and managing biohazardous waste in U.S. research-oriented universities: a survey of environmental health and safety professionals.

    PubMed

    Mecklem, Robin Lyn; Neumann, Catherine M

    2003-01-01

    A survey was conducted of environmental health and safety professionals responsible for biohazardous waste management at 122 institutions. The overall response rate was 82.6 percent (100 out of 122). Results indicate that university policies for biohazardous waste are heavily influenced by state environmental regulations, the Occupational Safety and Health Administration Bloodborne Pathogens Standard, and the biosafety guidelines of the Centers for Disease Control and Prevention and the National Institutes of Health. With respect to definition of waste, 84 percent of the universities treat non-infectious human-cell-culture waste as biohazardous. Sharp items, including hypodermic needles, syringes with needles, and scalpel blades, are commonly treated (by 85 percent of universities) as biohazardous sharps regardless of contamination status. Importantly, while 90 percent of universities use autoclave sterilization for waste treatment, only 52 percent use a biological indicator to validate the process. On-site incineration is currently used by 42 percent of universities. Twenty-two of 42 incinerators are hospital/medical/infectious-waste incinerators, and 10 of these will continue to operate under the U.S. Environmental Protection Agency's revised incinerator regulations. Eighty-seven percent of the respondents indicated that some portion of their university's biohazardous waste is treated and disposed of through a licensed medical waste hauler (MWH). To ensure compliance with institutional policy, most universities segregate and package waste, train waste generators, and conduct inspections.

  11. Colleges Struggle to Dispose of Hazardous Wastes in Face of Rising Costs and Increased Regulation.

    ERIC Educational Resources Information Center

    Magner, Denise K.

    1989-01-01

    After years of being ignored by federal regulators because of the low volume of hazardous waste in question, colleges and universities are facing increased enforcement of environmental laws concerning waste disposal and storage, at great cost in money, facilities, and personnel. (MSE)

  12. Polonium-210 in the environment around a radioactive waste disposal area and phosphate ore processing plant.

    PubMed

    Arthur, W J; Markham, O D

    1984-04-01

    Polonium-210 concentrations were determined for soil, vegetation and small mammal tissues collected at a solid radioactive waste disposal area, near a phosphate ore processing plant and at two rural areas in southeastern Idaho. Polonium concentrations in media sampled near the radioactive waste disposal facility were equal to or less than values from rural area samples, indicating that disposal of solid radioactive waste at the Idaho National Engineering Laboratory Site has not resulted in increased environmental levels of polonium. Concentrations of 210Po in soils, deer mice hide and carcass samples collected near the phosphate processing plant were statistically (P less than or equal to 0.05) greater than the other sampling locations; however, the mean 210Po concentration in soils and small mammal tissues from sampling areas near the phosphate plant were only four and three times greater, respectively, than control values. No statistical (P greater than 0.05) difference was observed for 210Po concentrations in vegetation among any of the sampling locations.

  13. Assessment of alternative disposal methods to reduce greenhouse gas emissions from municipal solid waste in India.

    PubMed

    Yedla, Sudhakar; Sindhu, N T

    2016-06-01

    Open dumping, the most commonly practiced method of solid waste disposal in Indian cities, creates serious environment and economic challenges, and also contributes significantly to greenhouse gas emissions. The present article attempts to analyse and identify economically effective ways to reduce greenhouse gas emissions from municipal solid waste. The article looks at the selection of appropriate methods for the control of methane emissions. Multivariate functional models are presented, based on theoretical considerations as well as the field measurements to forecast the greenhouse gas mitigation potential for all the methodologies under consideration. Economic feasibility is tested by calculating the unit cost of waste disposal for the respective disposal process. The purpose-built landfill system proposed by Yedla and Parikh has shown promise in controlling greenhouse gas and saving land. However, these studies show that aerobic composting offers the optimal method, both in terms of controlling greenhouse gas emissions and reducing costs, mainly by requiring less land than other methods. © The Author(s) 2016.

  14. General Safety and Waste Management Related to SAM

    EPA Pesticide Factsheets

    The General Safety and Waste Management page offers section-specific safety and waste management details for chemicals, radiochemicals, pathogens, and biotoxins included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  15. RADIOACTIVE WASTE PROCESSING AND DISPOSAL: A BIBLIOGRAPHY OF SELECTED REPORT LITERATURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voress, H.E.; Davis, T.F.; Hubbard, T.N. Jr.

    1958-06-01

    An annotated bibliography is presented containing 698 references to unclassifled reports on currert and proposed ranioactive waste processing and disposal practices for solutions from radiochemical processing plants and laboratories, decontamination of surfaces, air cleaning, and other related subjects. Author, corporate author, subject, and report nuunber indexes are included. (auth)

  16. Impact of waste disposal on health of a poor urban community in Zimbambwe.

    PubMed

    Makoni, F S; Ndamba, J; Mbati, P A; Manase, G

    2004-08-01

    To assess excreta and waste disposal facilities available and their impact on sanitation related diseases in Epworth, an informal settlement on the outskirts of Harare. Descriptive cross-sectional survey. This was a community based study of Epworth informal settlement. A total of 308 households were interviewed. Participating households were randomly selected from the three communities of Epworth. Secondary medical archival data on diarrhoeal disease prevalence was collected from local clinics and district health offices in the study areas. Only 7% of households were connected to the sewer system. The study revealed that in Zinyengere extension 13% had no toilet facilities, 48% had simple pits and 37% had Blair VIP latrines. In Overspill 2% had no toilet facilities, 28% had simple latrines and 36% had Blair VIP latrines while in New Gada 20% had no toilet facilities, 24% had simple pits and 23% had Blair VIP latrines. Although a significant percentage had latrines (83.2%), over 50% of the population were not satisfied with the toilet facilities they were using. All the respondents expressed dissatisfaction with their domestic waste disposal practices with 46.6% admitting to have indiscriminately dumped waste. According to the community, diarrhoeal diseases were the most prevalent diseases (50%) related to poor sanitation. Health statistics also indicated that diarrhoea was a major problem in this community. It is recommended that households and the local authorities concentrate on improving the provision of toilets, water and waste disposal facilities as a way of improving the health state of the community.

  17. Feasibility Studies on Pipeline Disposal of Concentrated Copper Tailings Slurry for Waste Minimization

    NASA Astrophysics Data System (ADS)

    Senapati, Pradipta Kumar; Mishra, Barada Kanta

    2017-06-01

    The conventional lean phase copper tailings slurry disposal systems create pollution all around the disposal area through seepage and flooding of waste slurry water. In order to reduce water consumption and minimize pollution, the pipeline disposal of these waste slurries at high solids concentrations may be considered as a viable option. The paper presents the rheological and pipeline flow characteristics of copper tailings samples in the solids concentration range of 65-72 % by weight. The tailings slurry indicated non-Newtonian behaviour at these solids concentrations and the rheological data were best fitted by Bingham plastic model. The influence of solids concentration on yield stress and plastic viscosity for the copper tailings samples were discussed. Using a high concentration test loop, pipeline experiments were conducted in a 50 mm nominal bore (NB) pipe by varying the pipe flow velocity from 1.5 to 3.5 m/s. A non-Newtonian Bingham plastic pressure drop model predicted the experimental data reasonably well for the concentrated tailings slurry. The pressure drop model was used for higher size pipes and the operating conditions for pipeline disposal of concentrated copper tailings slurry in a 200 mm NB pipe with respect to specific power consumption were discussed.

  18. DOSE ASSESSMENTS FROM THE DISPOSAL OF LOW ...

    EPA Pesticide Factsheets

    Modeling the long-term performance of the RCRA-C disposal cell and potential doses to off-site receptors is used to derive maximum radionuclide specific concentrations in the wastes that would enable these wastes to be disposed of safely using the RCRA-C disposal cell technology. Modeling potential exposures to derive these waste acceptance concentrations involves modeling exposures to workers during storage, treatment and disposal of the wastes, as well as exposures to individuals after disposal operations have ceased. Post facility closure exposures can result from the slow expected degradation of the disposal cell over long time periods (one thousand years after disposal) and in advertent human intrusion. Provide a means of determining waste acceptance radionuclide concentrations for disposal of debris from radiological dispersal device incidents as well as low-activity wastes generated in commercial, medical and research activities, potentially serve as the technical basis for guidance on disposal of these materials.

  19. Gas production, composition and emission at a modern disposal site receiving waste with a low-organic content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheutz, Charlotte, E-mail: chs@env.dtu.dk; Fredenslund, Anders M., E-mail: amf@env.dtu.dk; Nedenskov, Jonas, E-mail: jne@amfor.dk

    2011-05-15

    AV Miljo is a modern waste disposal site receiving non-combustible waste with a low-organic content. The objective of the current project was to determine the gas generation, composition, emission, and oxidation in top covers on selected waste cells as well as the total methane (CH{sub 4}) emission from the disposal site. The investigations focused particularly on three waste disposal cells containing shredder waste (cell 1.5.1), mixed industrial waste (cell 2.2.2), and mixed combustible waste (cell 1.3). Laboratory waste incubation experiments as well as gas modeling showed that significant gas generation was occurring in all three cells. Field analysis showed thatmore » the gas generated in the cell with mixed combustible waste consisted of mainly CH{sub 4} (70%) and carbon dioxide (CO{sub 2}) (29%) whereas the gas generated within the shredder waste, primarily consisted of CH{sub 4} (27%) and nitrogen (N{sub 2}) (71%), containing no CO{sub 2}. The results indicated that the gas composition in the shredder waste was governed by chemical reactions as well as microbial reactions. CH{sub 4} mass balances from three individual waste cells showed that a significant part (between 15% and 67%) of the CH{sub 4} generated in cell 1.3 and 2.2.2 was emitted through leachate collection wells, as a result of the relatively impermeable covers in place at these two cells preventing vertical migration of the gas. At cell 1.5.1, which is un-covered, the CH{sub 4} emission through the leachate system was low due to the high gas permeability of the shredder waste. Instead the gas was emitted through the waste resulting in some hotspot observations on the shredder surface with higher emission rates. The remaining gas that was not emitted through surfaces or the leachate collection system could potentially be oxidized as the measured oxidation capacity exceeded the potential emission rate. The whole CH{sub 4} emission from the disposal site was found to be 820 {+-} 202 kg CH{sub 4

  20. 40 CFR 761.218 - Certificate of disposal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.218 Certificate of disposal. (a) For each shipment of manifested PCB waste that the owner or operator of a disposal facility accepts by signing the manifest, the... certifying the fact of disposal of the identified PCB waste, including the date(s) of disposal, and...