Sample records for safety-critical embedded systems

  1. Analyzing Software Requirements Errors in Safety-Critical, Embedded Systems

    NASA Technical Reports Server (NTRS)

    Lutz, Robyn R.

    1993-01-01

    This paper analyzes the root causes of safety-related software errors in safety-critical, embedded systems. The results show that software errors identified as potentially hazardous to the system tend to be produced by different error mechanisms than non- safety-related software errors. Safety-related software errors are shown to arise most commonly from (1) discrepancies between the documented requirements specifications and the requirements needed for correct functioning of the system and (2) misunderstandings of the software's interface with the rest of the system. The paper uses these results to identify methods by which requirements errors can be prevented. The goal is to reduce safety-related software errors and to enhance the safety of complex, embedded systems.

  2. Review of battery powered embedded systems design for mission-critical low-power applications

    NASA Astrophysics Data System (ADS)

    Malewski, Matthew; Cowell, David M. J.; Freear, Steven

    2018-06-01

    The applications and uses of embedded systems is increasingly pervasive. Mission and safety critical systems relying on embedded systems pose specific challenges. Embedded systems is a multi-disciplinary domain, involving both hardware and software. Systems need to be designed in a holistic manner so that they are able to provide the desired reliability and minimise unnecessary complexity. The large problem landscape means that there is no one solution that fits all applications of embedded systems. With the primary focus of these mission and safety critical systems being functionality and reliability, there can be conflicts with business needs, and this can introduce pressures to reduce cost at the expense of reliability and functionality. This paper examines the challenges faced by battery powered systems, and then explores at more general problems, and several real-world embedded systems.

  3. 78 FR 29392 - Embedded Digital Devices in Safety-Related Systems, Systems Important to Safety, and Items Relied...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-20

    ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0098] Embedded Digital Devices in Safety-Related Systems... (NRC) is issuing for public comment Draft Regulatory Issue Summary (RIS) 2013-XX, ``Embedded Digital... requirements for the quality and reliability of basic components with embedded digital devices. DATES: Submit...

  4. Development of a methodology for assessing the safety of embedded software systems

    NASA Technical Reports Server (NTRS)

    Garrett, C. J.; Guarro, S. B.; Apostolakis, G. E.

    1993-01-01

    A Dynamic Flowgraph Methodology (DFM) based on an integrated approach to modeling and analyzing the behavior of software-driven embedded systems for assessing and verifying reliability and safety is discussed. DFM is based on an extension of the Logic Flowgraph Methodology to incorporate state transition models. System models which express the logic of the system in terms of causal relationships between physical variables and temporal characteristics of software modules are analyzed to determine how a certain state can be reached. This is done by developing timed fault trees which take the form of logical combinations of static trees relating the system parameters at different point in time. The resulting information concerning the hardware and software states can be used to eliminate unsafe execution paths and identify testing criteria for safety critical software functions.

  5. Software Safety Risk in Legacy Safety-Critical Computer Systems

    NASA Technical Reports Server (NTRS)

    Hill, Janice; Baggs, Rhoda

    2007-01-01

    Safety-critical computer systems must be engineered to meet system and software safety requirements. For legacy safety-critical computer systems, software safety requirements may not have been formally specified during development. When process-oriented software safety requirements are levied on a legacy system after the fact, where software development artifacts don't exist or are incomplete, the question becomes 'how can this be done?' The risks associated with only meeting certain software safety requirements in a legacy safety-critical computer system must be addressed should such systems be selected as candidates for reuse. This paper proposes a method for ascertaining formally, a software safety risk assessment, that provides measurements for software safety for legacy systems which may or may not have a suite of software engineering documentation that is now normally required. It relies upon the NASA Software Safety Standard, risk assessment methods based upon the Taxonomy-Based Questionnaire, and the application of reverse engineering CASE tools to produce original design documents for legacy systems.

  6. Analyzing Software Errors in Safety-Critical Embedded Systems

    NASA Technical Reports Server (NTRS)

    Lutz, Robyn R.

    1994-01-01

    This paper analyzes the root causes of safty-related software faults identified as potentially hazardous to the system are distributed somewhat differently over the set of possible error causes than non-safety-related software faults.

  7. ESSAA: Embedded system safety analysis assistant

    NASA Technical Reports Server (NTRS)

    Wallace, Peter; Holzer, Joseph; Guarro, Sergio; Hyatt, Larry

    1987-01-01

    The Embedded System Safety Analysis Assistant (ESSAA) is a knowledge-based tool that can assist in identifying disaster scenarios. Imbedded software issues hazardous control commands to the surrounding hardware. ESSAA is intended to work from outputs to inputs, as a complement to simulation and verification methods. Rather than treating the software in isolation, it examines the context in which the software is to be deployed. Given a specified disasterous outcome, ESSAA works from a qualitative, abstract model of the complete system to infer sets of environmental conditions and/or failures that could cause a disasterous outcome. The scenarios can then be examined in depth for plausibility using existing techniques.

  8. A Comparison of Bus Architectures for Safety-Critical Embedded Systems

    NASA Technical Reports Server (NTRS)

    Rushby, John; Miner, Paul S. (Technical Monitor)

    2003-01-01

    We describe and compare the architectures of four fault-tolerant, safety-critical buses with a view to deducing principles common to all of them, the main differences in their design choices, and the tradeoffs made. Two of the buses come from an avionics heritage, and two from automobiles, though all four strive for similar levels of reliability and assurance. The avionics buses considered are the Honeywell SAFEbus (the backplane data bus used in the Boeing 777 Airplane Information Management System) and the NASA SPIDER (an architecture being developed as a demonstrator for certification under the new DO-254 guidelines); the automobile buses considered are the TTTech Time-Triggered Architecture (TTA), recently adopted by Audi for automobile applications, and by Honeywell for avionics and aircraft control functions, and FlexRay, which is being developed by a consortium of BMW, DaimlerChrysler, Motorola, and Philips.

  9. Traceability of Software Safety Requirements in Legacy Safety Critical Systems

    NASA Technical Reports Server (NTRS)

    Hill, Janice L.

    2007-01-01

    How can traceability of software safety requirements be created for legacy safety critical systems? Requirements in safety standards are imposed most times during contract negotiations. On the other hand, there are instances where safety standards are levied on legacy safety critical systems, some of which may be considered for reuse for new applications. Safety standards often specify that software development documentation include process-oriented and technical safety requirements, and also require that system and software safety analyses are performed supporting technical safety requirements implementation. So what can be done if the requisite documents for establishing and maintaining safety requirements traceability are not available?

  10. Testing of Safety-Critical Software Embedded in an Artificial Heart

    NASA Astrophysics Data System (ADS)

    Cha, Sungdeok; Jeong, Sehun; Yoo, Junbeom; Kim, Young-Gab

    Software is being used more frequently to control medical devices such as artificial heart or robotic surgery system. While much of software safety issues in such systems are similar to other safety-critical systems (e.g., nuclear power plants), domain-specific properties may warrant development of customized techniques to demonstrate fitness of the system on patients. In this paper, we report results of a preliminary analysis done on software controlling a Hybrid Ventricular Assist Device (H-VAD) developed by Korea Artificial Organ Centre (KAOC). It is a state-of-the-art artificial heart which completed animal testing phase. We performed software testing in in-vitro experiments and animal experiments. An abnormal behaviour, never detected during extensive in-vitro analysis and animal testing, was found.

  11. Software Safety Risk in Legacy Safety-Critical Computer Systems

    NASA Technical Reports Server (NTRS)

    Hill, Janice L.; Baggs, Rhoda

    2007-01-01

    Safety Standards contain technical and process-oriented safety requirements. Technical requirements are those such as "must work" and "must not work" functions in the system. Process-Oriented requirements are software engineering and safety management process requirements. Address the system perspective and some cover just software in the system > NASA-STD-8719.13B Software Safety Standard is the current standard of interest. NASA programs/projects will have their own set of safety requirements derived from the standard. Safety Cases: a) Documented demonstration that a system complies with the specified safety requirements. b) Evidence is gathered on the integrity of the system and put forward as an argued case. [Gardener (ed.)] c) Problems occur when trying to meet safety standards, and thus make retrospective safety cases, in legacy safety-critical computer systems.

  12. Overview of Risk Mitigation for Safety-Critical Computer-Based Systems

    NASA Technical Reports Server (NTRS)

    Torres-Pomales, Wilfredo

    2015-01-01

    This report presents a high-level overview of a general strategy to mitigate the risks from threats to safety-critical computer-based systems. In this context, a safety threat is a process or phenomenon that can cause operational safety hazards in the form of computational system failures. This report is intended to provide insight into the safety-risk mitigation problem and the characteristics of potential solutions. The limitations of the general risk mitigation strategy are discussed and some options to overcome these limitations are provided. This work is part of an ongoing effort to enable well-founded assurance of safety-related properties of complex safety-critical computer-based aircraft systems by developing an effective capability to model and reason about the safety implications of system requirements and design.

  13. Product Engineering Class in the Software Safety Risk Taxonomy for Building Safety-Critical Systems

    NASA Technical Reports Server (NTRS)

    Hill, Janice; Victor, Daniel

    2008-01-01

    When software safety requirements are imposed on legacy safety-critical systems, retrospective safety cases need to be formulated as part of recertifying the systems for further use and risks must be documented and managed to give confidence for reusing the systems. The SEJ Software Development Risk Taxonomy [4] focuses on general software development issues. It does not, however, cover all the safety risks. The Software Safety Risk Taxonomy [8] was developed which provides a construct for eliciting and categorizing software safety risks in a straightforward manner. In this paper, we present extended work on the taxonomy for safety that incorporates the additional issues inherent in the development and maintenance of safety-critical systems with software. An instrument called a Software Safety Risk Taxonomy Based Questionnaire (TBQ) is generated containing questions addressing each safety attribute in the Software Safety Risk Taxonomy. Software safety risks are surfaced using the new TBQ and then analyzed. In this paper we give the definitions for the specialized Product Engineering Class within the Software Safety Risk Taxonomy. At the end of the paper, we present the tool known as the 'Legacy Systems Risk Database Tool' that is used to collect and analyze the data required to show traceability to a particular safety standard

  14. Critical Characteristics of Radiation Detection System Components to be Dedicated for use in Safety Class and Safety Significant System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DAVIS, S.J.

    2000-05-25

    This document identifies critical characteristics of components to be dedicated for use in Safety Class (SC) or Safety Significant (SS) Systems, Structures, or Components (SSCs). This document identifies the requirements for the components of the common radiation area monitor alarm in the WESF pool cell. These are procured as Commercial Grade Items (CGI), with the qualification testing and formal dedication to be performed at the Waste Encapsulation Storage Facility (WESF), in safety class, safety significant systems. System modifications are to be performed in accordance with the instructions provided on ECN 658230. Components for this change are commercially available and interchangeablemore » with the existing alarm configuration This document focuses on the operational requirements for alarm, declaration of the safety classification, identification of critical characteristics, and interpretation of requirements for procurement. Critical characteristics are identified herein and must be verified, followed by formal dedication, prior to the components being used in safety related applications.« less

  15. Tank waste remediation system nuclear criticality safety program management review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BRADY RAAP, M.C.

    1999-06-24

    This document provides the results of an internal management review of the Tank Waste Remediation System (TWRS) criticality safety program, performed in advance of the DOE/RL assessment for closure of the TWRS Nuclear Criticality Safety Issue, March 1994. Resolution of the safety issue was identified as Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-40-12, due September 1999.

  16. Critical Characteristics of Radiation Detection System Components to be Dedicated for use in Safety Class and Safety Significant System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DAVIS, S.J.

    2000-12-28

    This document identifies critical characteristics of components to be dedicated for use in Safety Significant (SS) Systems, Structures, or Components (SSCs). This document identifies the requirements for the components of the common, radiation area, monitor alarm in the WESF pool cell. These are procured as Commercial Grade Items (CGI), with the qualification testing and formal dedication to be performed at the Waste Encapsulation Storage Facility (WESF) for use in safety significant systems. System modifications are to be performed in accordance with the approved design. Components for this change are commercially available and interchangeable with the existing alarm configuration This documentmore » focuses on the operational requirements for alarm, declaration of the safety classification, identification of critical characteristics, and interpretation of requirements for procurement. Critical characteristics are identified herein and must be verified, followed by formal dedication, prior to the components being used in safety related applications.« less

  17. Security for safety critical space borne systems

    NASA Technical Reports Server (NTRS)

    Legrand, Sue

    1987-01-01

    The Space Station contains safety critical computer software components in systems that can affect life and vital property. These components require a multilevel secure system that provides dynamic access control of the data and processes involved. A study is under way to define requirements for a security model providing access control through level B3 of the Orange Book. The model will be prototyped at NASA-Johnson Space Center.

  18. Java Source Code Analysis for API Migration to Embedded Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winter, Victor; McCoy, James A.; Guerrero, Jonathan

    Embedded systems form an integral part of our technological infrastructure and oftentimes play a complex and critical role within larger systems. From the perspective of reliability, security, and safety, strong arguments can be made favoring the use of Java over C in such systems. In part, this argument is based on the assumption that suitable subsets of Java’s APIs and extension libraries are available to embedded software developers. In practice, a number of Java-based embedded processors do not support the full features of the JVM. For such processors, source code migration is a mechanism by which key abstractions offered bymore » APIs and extension libraries can made available to embedded software developers. The analysis required for Java source code-level library migration is based on the ability to correctly resolve element references to their corresponding element declarations. A key challenge in this setting is how to perform analysis for incomplete source-code bases (e.g., subsets of libraries) from which types and packages have been omitted. This article formalizes an approach that can be used to extend code bases targeted for migration in such a manner that the threats associated the analysis of incomplete code bases are eliminated.« less

  19. Critical care nursing: Embedded complex systems.

    PubMed

    Trinier, Ruth; Liske, Lori; Nenadovic, Vera

    2016-01-01

    Variability in parameters such as heart rate, respiratory rate and blood pressure defines healthy physiology and the ability of the person to adequately respond to stressors. Critically ill patients have lost this variability and require highly specialized nursing care to support life and monitor changes in condition. The critical care environment is a dynamic system through which information flows. The critical care unit is typically designed as a tree structure with generally one attending physician and multiple nurses and allied health care professionals. Information flow through the system allows for identification of deteriorating patient status and timely interventionfor rescue from further deleterious effects. Nurses provide the majority of direct patient care in the critical care setting in 2:1, 1:1 or 1:2 nurse-to-patient ratios. The bedside nurse-critically ill patient relationship represents the primary, real-time feedback loop of information exchange, monitoring and treatment. Variables that enhance information flow through this loop and support timely nursing intervention can improve patient outcomes, while barriers can lead to errors and adverse events. Examining patient information flow in the critical care environment from a dynamic systems perspective provides insights into how nurses deliver effective patient care and prevent adverse events.

  20. ASSIP Study of Real-Time Safety-Critical Embedded Software-Intensive System Engineering Practices

    DTIC Science & Technology

    2008-02-01

    and assessment 2. product engineering processes 3. tooling processes 6 | CMU/SEI-2008-SR-001 Slide 1 Process Standards IEC/ ISO 12207 Software...and technical effort to align with 12207 IEC/ ISO 15026 System & Software Integrity Levels Generic Safety SAE ARP 4754 Certification Considerations...Process Frameworks in revision – ISO 9001, ISO 9004 – ISO 15288/ ISO 12207 harmonization – RTCA DO-178B, MOD Standard UK 00-56/3, … • Methods & Tools

  1. RICIS Symposium 1992: Mission and Safety Critical Systems Research and Applications

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This conference deals with computer systems which control systems whose failure to operate correctly could produce the loss of life and or property, mission and safety critical systems. Topics covered are: the work of standards groups, computer systems design and architecture, software reliability, process control systems, knowledge based expert systems, and computer and telecommunication protocols.

  2. An aspect-oriented approach for designing safety-critical systems

    NASA Astrophysics Data System (ADS)

    Petrov, Z.; Zaykov, P. G.; Cardoso, J. P.; Coutinho, J. G. F.; Diniz, P. C.; Luk, W.

    The development of avionics systems is typically a tedious and cumbersome process. In addition to the required functions, developers must consider various and often conflicting non-functional requirements such as safety, performance, and energy efficiency. Certainly, an integrated approach with a seamless design flow that is capable of requirements modelling and supporting refinement down to an actual implementation in a traceable way, may lead to a significant acceleration of development cycles. This paper presents an aspect-oriented approach supported by a tool chain that deals with functional and non-functional requirements in an integrated manner. It also discusses how the approach can be applied to development of safety-critical systems and provides experimental results.

  3. Co Modeling and Co Synthesis of Safety Critical Multi threaded Embedded Software for Multi Core Embedded Platforms

    DTIC Science & Technology

    2017-03-20

    computation, Prime Implicates, Boolean Abstraction, real- time embedded software, software synthesis, correct by construction software design , model...types for time -dependent data-flow networks". J.-P. Talpin, P. Jouvelot, S. Shukla. ACM-IEEE Conference on Methods and Models for System Design ...information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing   data sources, gathering and

  4. A Practical Risk Assessment Methodology for Safety-Critical Train Control Systems

    DOT National Transportation Integrated Search

    2009-07-01

    This project proposes a Practical Risk Assessment Methodology (PRAM) for analyzing railroad accident data and assessing the risk and benefit of safety-critical train control systems. This report documents in simple steps the algorithms and data input...

  5. System Guidelines for EMC Safety-Critical Circuits: Design, Selection, and Margin Demonstration

    NASA Technical Reports Server (NTRS)

    Lawton, R. M.

    1996-01-01

    Demonstration of safety margins for critical points (circuits) has traditionally been required since it first became a part of systems-level Electromagnetic Compatibility (EMC) requirements of MIL-E-6051C. The goal of this document is to present cost-effective guidelines for ensuring adequate Electromagnetic Effects (EME) safety margins on spacecraft critical circuits. It is for the use of NASA and other government agencies and their contractors to prevent loss of life, loss of spacecraft, or unacceptable degradation. This document provides practical definition and treatment guidance to contain costs within affordable limits.

  6. System Guidelines for EMC Safety-Critical Circuits: Design, Selection, and Margin Demonstration

    NASA Technical Reports Server (NTRS)

    Lawton, R. M.

    1996-01-01

    Demonstration of required safety margins on critical electrical/electronic circuits in large complex systems has become an implementation and cost problem. These margins are the difference between the activation level of the circuit and the electrical noise on the circuit in the actual operating environment. This document discusses the origin of the requirement and gives a detailed process flow for the identification of the system electromagnetic compatibility (EMC) critical circuit list. The process flow discusses the roles of engineering disciplines such as systems engineering, safety, and EMC. Design and analysis guidelines are provided to assist the designer in assuring the system design has a high probability of meeting the margin requirements. Examples of approaches used on actual programs (Skylab and Space Shuttle Solid Rocket Booster) are provided to show how variations of the approach can be used successfully.

  7. Some Challenges in the Design of Human-Automation Interaction for Safety-Critical Systems

    NASA Technical Reports Server (NTRS)

    Feary, Michael S.; Roth, Emilie

    2014-01-01

    Increasing amounts of automation are being introduced to safety-critical domains. While the introduction of automation has led to an overall increase in reliability and improved safety, it has also introduced a class of failure modes, and new challenges in risk assessment for the new systems, particularly in the assessment of rare events resulting from complex inter-related factors. Designing successful human-automation systems is challenging, and the challenges go beyond good interface development (e.g., Roth, Malin, & Schreckenghost 1997; Christoffersen & Woods, 2002). Human-automation design is particularly challenging when the underlying automation technology generates behavior that is difficult for the user to anticipate or understand. These challenges have been recognized in several safety-critical domains, and have resulted in increased efforts to develop training, procedures, regulations and guidance material (CAST, 2008, IAEA, 2001, FAA, 2013, ICAO, 2012). This paper points to the continuing need for new methods to describe and characterize the operational environment within which new automation concepts are being presented. We will describe challenges to the successful development and evaluation of human-automation systems in safety-critical domains, and describe some approaches that could be used to address these challenges. We will draw from experience with the aviation, spaceflight and nuclear power domains.

  8. Rethinking healthcare as a safety--critical industry.

    PubMed

    Lwears, Robert

    2012-01-01

    The discipline of ergonomics, or human factors engineering, has made substantial contributions to both the development of a science of safety, and to the improvement of safety in a wide variety of hazardous industries, including nuclear power, aviation, shipping, energy extraction and refining, military operations, and finance. It is notable that healthcare, which in most advanced societies is a substantial sector of the economy (eg, 15% of US gross domestic product) and has been associated with large volumes of potentially preventable morbidity and mortality, has heretofore not been viewed as a safety-critical industry. This paper proposes that improving safety performance in healthcare must involve a re-envisioning of healthcare itself as a safety-critical industry, but one with considerable differences from most engineered safety-critical systems. This has implications both for healthcare, and for conceptions of safety-critical industries.

  9. Is Model-Based Development a Favorable Approach for Complex and Safety-Critical Computer Systems on Commercial Aircraft?

    NASA Technical Reports Server (NTRS)

    Torres-Pomales, Wilfredo

    2014-01-01

    A system is safety-critical if its failure can endanger human life or cause significant damage to property or the environment. State-of-the-art computer systems on commercial aircraft are highly complex, software-intensive, functionally integrated, and network-centric systems of systems. Ensuring that such systems are safe and comply with existing safety regulations is costly and time-consuming as the level of rigor in the development process, especially the validation and verification activities, is determined by considerations of system complexity and safety criticality. A significant degree of care and deep insight into the operational principles of these systems is required to ensure adequate coverage of all design implications relevant to system safety. Model-based development methodologies, methods, tools, and techniques facilitate collaboration and enable the use of common design artifacts among groups dealing with different aspects of the development of a system. This paper examines the application of model-based development to complex and safety-critical aircraft computer systems. Benefits and detriments are identified and an overall assessment of the approach is given.

  10. The Department of Energy Nuclear Criticality Safety Program

    NASA Astrophysics Data System (ADS)

    Felty, James R.

    2005-05-01

    This paper broadly covers key events and activities from which the Department of Energy Nuclear Criticality Safety Program (NCSP) evolved. The NCSP maintains fundamental infrastructure that supports operational criticality safety programs. This infrastructure includes continued development and maintenance of key calculational tools, differential and integral data measurements, benchmark compilation, development of training resources, hands-on training, and web-based systems to enhance information preservation and dissemination. The NCSP was initiated in response to Defense Nuclear Facilities Safety Board Recommendation 97-2, Criticality Safety, and evolved from a predecessor program, the Nuclear Criticality Predictability Program, that was initiated in response to Defense Nuclear Facilities Safety Board Recommendation 93-2, The Need for Critical Experiment Capability. This paper also discusses the role Dr. Sol Pearlstein played in helping the Department of Energy lay the foundation for a robust and enduring criticality safety infrastructure.

  11. Four Pillars for Improving the Quality of Safety-Critical Software-Reliant Systems

    DTIC Science & Technology

    2013-04-01

    Studies of safety-critical software-reliant systems developed using the current practices of build-then-test show that requirements and architecture ... design defects make up approximately 70% of all defects, many system level related to operational quality attributes, and 80% of these defects are

  12. CRITICALITY SAFETY CONTROLS AND THE SAFETY BASIS AT PFP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kessler, S

    2009-04-21

    With the implementation of DOE Order 420.1B, Facility Safety, and DOE-STD-3007-2007, 'Guidelines for Preparing Criticality Safety Evaluations at Department of Energy Non-Reactor Nuclear Facilities', a new requirement was imposed that all criticality safety controls be evaluated for inclusion in the facility Documented Safety Analysis (DSA) and that the evaluation process be documented in the site Criticality Safety Program Description Document (CSPDD). At the Hanford site in Washington State the CSPDD, HNF-31695, 'General Description of the FH Criticality Safety Program', requires each facility develop a linking document called a Criticality Control Review (CCR) to document performance of these evaluations. Chapter 5,more » Appendix 5B of HNF-7098, Criticality Safety Program, provided an example of a format for a CCR that could be used in lieu of each facility developing its own CCR. Since the Plutonium Finishing Plant (PFP) is presently undergoing Deactivation and Decommissioning (D&D), new procedures are being developed for cleanout of equipment and systems that have not been operated in years. Existing Criticality Safety Evaluations (CSE) are revised, or new ones written, to develop the controls required to support D&D activities. Other Hanford facilities, including PFP, had difficulty using the basic CCR out of HNF-7098 when first implemented. Interpretation of the new guidelines indicated that many of the controls needed to be elevated to TSR level controls. Criterion 2 of the standard, requiring that the consequence of a criticality be examined for establishing the classification of a control, was not addressed. Upon in-depth review by PFP Criticality Safety staff, it was not clear that the programmatic interpretation of criterion 8C could be applied at PFP. Therefore, the PFP Criticality Safety staff decided to write their own CCR. The PFP CCR provides additional guidance for the evaluation team to use by clarifying the evaluation criteria in DOE-STD-3007

  13. Criticality Safety Evaluation for the TACS at DAF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Percher, C. M.; Heinrichs, D. P.

    2011-06-10

    Hands-on experimental training in the physical behavior of multiplying systems is one of ten key areas of training required for practitioners to become qualified in the discipline of criticality safety as identified in DOE-STD-1135-99, Guidance for Nuclear Criticality Safety Engineer Training and Qualification. This document is a criticality safety evaluation of the training activities and operations associated with HS-3201-P, Nuclear Criticality 4-Day Training Course (Practical). This course was designed to also address the training needs of nuclear criticality safety professionals under the auspices of the NNSA Nuclear Criticality Safety Program1. The hands-on, or laboratory, portion of the course will utilizemore » the Training Assembly for Criticality Safety (TACS) and will be conducted in the Device Assembly Facility (DAF) at the Nevada Nuclear Security Site (NNSS). The training activities will be conducted by Lawrence Livermore National Laboratory following the requirements of an Integrated Work Sheet (IWS) and associated Safety Plan. Students will be allowed to handle the fissile material under the supervision of an LLNL Certified Fissile Material Handler.« less

  14. 2011 Annual Criticality Safety Program Performance Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrea Hoffman

    The 2011 review of the INL Criticality Safety Program has determined that the program is robust and effective. The review was prepared for, and fulfills Contract Data Requirements List (CDRL) item H.20, 'Annual Criticality Safety Program performance summary that includes the status of assessments, issues, corrective actions, infractions, requirements management, training, and programmatic support.' This performance summary addresses the status of these important elements of the INL Criticality Safety Program. Assessments - Assessments in 2011 were planned and scheduled. The scheduled assessments included a Criticality Safety Program Effectiveness Review, Criticality Control Area Inspections, a Protection of Controlled Unclassified Information Inspection,more » an Assessment of Criticality Safety SQA, and this management assessment of the Criticality Safety Program. All of the assessments were completed with the exception of the 'Effectiveness Review' for SSPSF, which was delayed due to emerging work. Although minor issues were identified in the assessments, no issues or combination of issues indicated that the INL Criticality Safety Program was ineffective. The identification of issues demonstrates the importance of an assessment program to the overall health and effectiveness of the INL Criticality Safety Program. Issues and Corrective Actions - There are relatively few criticality safety related issues in the Laboratory ICAMS system. Most were identified by Criticality Safety Program assessments. No issues indicate ineffectiveness in the INL Criticality Safety Program. All of the issues are being worked and there are no imminent criticality concerns. Infractions - There was one criticality safety related violation in 2011. On January 18, 2011, it was discovered that a fuel plate bundle in the Nuclear Materials Inspection and Storage (NMIS) facility exceeded the fissionable mass limit, resulting in a technical safety requirement (TSR) violation. The TSR limits

  15. Research on memory management in embedded systems

    NASA Astrophysics Data System (ADS)

    Huang, Xian-ying; Yang, Wu

    2005-12-01

    Memory is a scarce resource in embedded system due to cost and size. Thus, applications in embedded systems cannot use memory randomly, such as in desktop applications. However, data and code must be stored into memory for running. The purpose of this paper is to save memory in developing embedded applications and guarantee running under limited memory conditions. Embedded systems often have small memory and are required to run a long time. Thus, a purpose of this study is to construct an allocator that can allocate memory effectively and bear a long-time running situation, reduce memory fragmentation and memory exhaustion. Memory fragmentation and exhaustion are related to the algorithm memory allocated. Static memory allocation cannot produce fragmentation. In this paper it is attempted to find an effective allocation algorithm dynamically, which can reduce memory fragmentation. Data is the critical part that ensures an application can run regularly, which takes up a large amount of memory. The amount of data that can be stored in the same size of memory is relevant with the selected data structure. Skills for designing application data in mobile phone are explained and discussed also.

  16. Embedded real-time operating system micro kernel design

    NASA Astrophysics Data System (ADS)

    Cheng, Xiao-hui; Li, Ming-qiang; Wang, Xin-zheng

    2005-12-01

    Embedded systems usually require a real-time character. Base on an 8051 microcontroller, an embedded real-time operating system micro kernel is proposed consisting of six parts, including a critical section process, task scheduling, interruption handle, semaphore and message mailbox communication, clock managent and memory managent. Distributed CPU and other resources are among tasks rationally according to the importance and urgency. The design proposed here provides the position, definition, function and principle of micro kernel. The kernel runs on the platform of an ATMEL AT89C51 microcontroller. Simulation results prove that the designed micro kernel is stable and reliable and has quick response while operating in an application system.

  17. Certification Processes for Safety-Critical and Mission-Critical Aerospace Software

    NASA Technical Reports Server (NTRS)

    Nelson, Stacy

    2003-01-01

    This document is a quick reference guide with an overview of the processes required to certify safety-critical and mission-critical flight software at selected NASA centers and the FAA. Researchers and software developers can use this guide to jumpstart their understanding of how to get new or enhanced software onboard an aircraft or spacecraft. The introduction contains aerospace industry definitions of safety and safety-critical software, as well as, the current rationale for certification of safety-critical software. The Standards for Safety-Critical Aerospace Software section lists and describes current standards including NASA standards and RTCA DO-178B. The Mission-Critical versus Safety-Critical software section explains the difference between two important classes of software: safety-critical software involving the potential for loss of life due to software failure and mission-critical software involving the potential for aborting a mission due to software failure. The DO-178B Safety-critical Certification Requirements section describes special processes and methods required to obtain a safety-critical certification for aerospace software flying on vehicles under auspices of the FAA. The final two sections give an overview of the certification process used at Dryden Flight Research Center and the approval process at the Jet Propulsion Lab (JPL).

  18. Evaluating Models of Human Performance: Safety-Critical Systems Applications

    NASA Technical Reports Server (NTRS)

    Feary, Michael S.

    2012-01-01

    This presentation is part of panel discussion on Evaluating Models of Human Performance. The purpose of this panel is to discuss the increasing use of models in the world today and specifically focus on how to describe and evaluate models of human performance. My presentation will focus on discussions of generating distributions of performance, and the evaluation of different strategies for humans performing tasks with mixed initiative (Human-Automation) systems. I will also discuss issues with how to provide Human Performance modeling data to support decisions on acceptability and tradeoffs in the design of safety critical systems. I will conclude with challenges for the future.

  19. 48 CFR 209.270 - Aviation and ship critical safety items.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 3 2012-10-01 2012-10-01 false Aviation and ship critical safety items. 209.270 Section 209.270 Federal Acquisition Regulations System DEFENSE ACQUISITION... Requirements 209.270 Aviation and ship critical safety items. ...

  20. 48 CFR 209.270 - Aviation and ship critical safety items.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Aviation and ship critical safety items. 209.270 Section 209.270 Federal Acquisition Regulations System DEFENSE ACQUISITION... Requirements 209.270 Aviation and ship critical safety items. ...

  1. 48 CFR 209.270 - Aviation and ship critical safety items.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 3 2013-10-01 2013-10-01 false Aviation and ship critical safety items. 209.270 Section 209.270 Federal Acquisition Regulations System DEFENSE ACQUISITION... Requirements 209.270 Aviation and ship critical safety items. ...

  2. 48 CFR 209.270 - Aviation and ship critical safety items.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Aviation and ship critical safety items. 209.270 Section 209.270 Federal Acquisition Regulations System DEFENSE ACQUISITION... Requirements 209.270 Aviation and ship critical safety items. ...

  3. 48 CFR 209.270 - Aviation and ship critical safety items.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Requirements 209.270 Aviation and ship critical safety items. ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Aviation and ship critical safety items. 209.270 Section 209.270 Federal Acquisition Regulations System DEFENSE ACQUISITION...

  4. Impact of an electronic alert notification system embedded in radiologists' workflow on closed-loop communication of critical results: a time series analysis.

    PubMed

    Lacson, Ronilda; O'Connor, Stacy D; Sahni, V Anik; Roy, Christopher; Dalal, Anuj; Desai, Sonali; Khorasani, Ramin

    2016-07-01

    Optimal critical test result communication is a Joint Commission national patient safety goal and requires documentation of closed-loop communication among care providers in the medical record. Electronic alert notification systems can facilitate an auditable process for creating alerts for transmission and acknowledgement of critical test results. We evaluated the impact of a patient safety initiative with an alert notification system on reducing critical results lacking documented communication, and assessed potential overuse of the alerting system for communicating results. We implemented an alert notification system-Alert Notification of Critical Results (ANCR)-in January 2010. We reviewed radiology reports finalised in 2009-2014 which lacked documented communication between the radiologist and another care provider, and assessed the impact of ANCR on the proportion of such reports with critical findings, using trend analysis over 10 semiannual time periods. To evaluate potential overuse of ANCR, we assessed the proportion of reports with non-critical results among provider-communicated reports. The proportion of reports with critical results among reports without documented communication decreased significantly over 4 years (2009-2014) from 0.19 to 0.05 (p<0.0001, Cochran-Armitage trend test). The proportion of provider-communicated reports with non-critical results remained unchanged over time before and after ANCR implementation (0.20 to 0.15, p=0.45, Cochran-Armitage trend test). A patient safety initiative with an alert notification system reduced the proportion of critical results among reports lacking documented communication between care providers. We observed no change in documented communication of non-critical results, suggesting the system did not promote overuse. Future studies are needed to evaluate whether such systems prevent subsequent patient harm. Published by the BMJ Publishing Group Limited. For permission to use (where not already

  5. A system-level approach for embedded memory robustness

    NASA Astrophysics Data System (ADS)

    Mariani, Riccardo; Boschi, Gabriele

    2005-11-01

    New ultra-deep submicron technologies are bringing not only new advantages such extraordinary transistor densities or unforeseen performances, but also new uncertainties such soft-error susceptibility, modelling complexity, coupling effects, leakage contribution and increased sensitivity to internal and external disturbs. Nowadays, embedded memories are taking profit of such new technologies and they are more and more used in systems: therefore as robustness and reliability requirement increase, memory systems must be protected against different kind of faults (permanent and transient) and that should be done in an efficient way. It means that reliability and costs, such overhead and performance degradation, must be efficiently tuned based on the system and on the application. Moreover, the new emerging norms for safety-critical applications such IEC 61508 are requiring precise answers in terms of robustness also in the case of memory systems. In this paper, classical protection techniques for error detection and correction are enriched with a system-aware approach, where the memory system is analyzed based on its role in the application. A configurable memory protection system is presented, together with the results of its application to a proof-of-concept architecture. This work has been developed in the framework of MEDEA+ T126 project called BLUEBERRIES.

  6. Validation of Safety-Critical Systems for Aircraft Loss-of-Control Prevention and Recovery

    NASA Technical Reports Server (NTRS)

    Belcastro, Christine M.

    2012-01-01

    Validation of technologies developed for loss of control (LOC) prevention and recovery poses significant challenges. Aircraft LOC can result from a wide spectrum of hazards, often occurring in combination, which cannot be fully replicated during evaluation. Technologies developed for LOC prevention and recovery must therefore be effective under a wide variety of hazardous and uncertain conditions, and the validation framework must provide some measure of assurance that the new vehicle safety technologies do no harm (i.e., that they themselves do not introduce new safety risks). This paper summarizes a proposed validation framework for safety-critical systems, provides an overview of validation methods and tools developed by NASA to date within the Vehicle Systems Safety Project, and develops a preliminary set of test scenarios for the validation of technologies for LOC prevention and recovery

  7. Embedded Web Technology: Applying World Wide Web Standards to Embedded Systems

    NASA Technical Reports Server (NTRS)

    Ponyik, Joseph G.; York, David W.

    2002-01-01

    Embedded Systems have traditionally been developed in a highly customized manner. The user interface hardware and software along with the interface to the embedded system are typically unique to the system for which they are built, resulting in extra cost to the system in terms of development time and maintenance effort. World Wide Web standards have been developed in the passed ten years with the goal of allowing servers and clients to intemperate seamlessly. The client and server systems can consist of differing hardware and software platforms but the World Wide Web standards allow them to interface without knowing about the details of system at the other end of the interface. Embedded Web Technology is the merging of Embedded Systems with the World Wide Web. Embedded Web Technology decreases the cost of developing and maintaining the user interface by allowing the user to interface to the embedded system through a web browser running on a standard personal computer. Embedded Web Technology can also be used to simplify an Embedded System's internal network.

  8. MISSION: Mission and Safety Critical Support Environment. Executive overview

    NASA Technical Reports Server (NTRS)

    Mckay, Charles; Atkinson, Colin

    1992-01-01

    For mission and safety critical systems it is necessary to: improve definition, evolution and sustenance techniques; lower development and maintenance costs; support safe, timely and affordable system modifications; and support fault tolerance and survivability. The goal of the MISSION project is to lay the foundation for a new generation of integrated systems software providing a unified infrastructure for mission and safety critical applications and systems. This will involve the definition of a common, modular target architecture and a supporting infrastructure.

  9. Software Reliability Issues Concerning Large and Safety Critical Software Systems

    NASA Technical Reports Server (NTRS)

    Kamel, Khaled; Brown, Barbara

    1996-01-01

    This research was undertaken to provide NASA with a survey of state-of-the-art techniques using in industrial and academia to provide safe, reliable, and maintainable software to drive large systems. Such systems must match the complexity and strict safety requirements of NASA's shuttle system. In particular, the Launch Processing System (LPS) is being considered for replacement. The LPS is responsible for monitoring and commanding the shuttle during test, repair, and launch phases. NASA built this system in the 1970's using mostly hardware techniques to provide for increased reliability, but it did so often using custom-built equipment, which has not been able to keep up with current technologies. This report surveys the major techniques used in industry and academia to ensure reliability in large and critical computer systems.

  10. A primer on criticality safety

    DOE PAGES

    Costa, David A.; Cournoyer, Michael E.; Merhege, James F.; ...

    2017-05-01

    Criticality is the state of a nuclear chain reacting medium when the chain reaction is just self-sustaining (or critical). Criticality is dependent on nine interrelated parameters. Moreover, we design criticality safety controls in order to constrain these parameters to minimize fissions and maximize neutron leakage and absorption in other materials, which makes criticality more difficult or impossible to achieve. We present the consequences of criticality accidents are discussed, the nine interrelated parameters that combine to affect criticality are described, and criticality safety controls used to minimize the likelihood of a criticality accident are presented.

  11. An Approach to V&V of Embedded Adaptive Systems

    NASA Technical Reports Server (NTRS)

    Liu, Yan; Yerramalla, Sampath; Fuller, Edgar; Cukic, Bojan; Gururajan, Srikaruth

    2004-01-01

    Rigorous Verification and Validation (V&V) techniques are essential for high assurance systems. Lately, the performance of some of these systems is enhanced by embedded adaptive components in order to cope with environmental changes. Although the ability of adapting is appealing, it actually poses a problem in terms of V&V. Since uncertainties induced by environmental changes have a significant impact on system behavior, the applicability of conventional V&V techniques is limited. In safety-critical applications such as flight control system, the mechanisms of change must be observed, diagnosed, accommodated and well understood prior to deployment. In this paper, we propose a non-conventional V&V approach suitable for online adaptive systems. We apply our approach to an intelligent flight control system that employs a particular type of Neural Networks (NN) as the adaptive learning paradigm. Presented methodology consists of a novelty detection technique and online stability monitoring tools. The novelty detection technique is based on Support Vector Data Description that detects novel (abnormal) data patterns. The Online Stability Monitoring tools based on Lyapunov's Stability Theory detect unstable learning behavior in neural networks. Cases studies based on a high fidelity simulator of NASA's Intelligent Flight Control System demonstrate a successful application of the presented V&V methodology. ,

  12. Providing Nuclear Criticality Safety Analysis Education through Benchmark Experiment Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John D. Bess; J. Blair Briggs; David W. Nigg

    2009-11-01

    One of the challenges that today's new workforce of nuclear criticality safety engineers face is the opportunity to provide assessment of nuclear systems and establish safety guidelines without having received significant experience or hands-on training prior to graduation. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and/or the International Reactor Physics Experiment Evaluation Project (IRPhEP) provides students and young professionals the opportunity to gain experience and enhance critical engineering skills.

  13. Nuclear criticality safety: 5-day training course

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlesser, J.A.

    1992-11-01

    This compilation of notes is presented as a source reference for the criticality safety course. It represents the contributions of many people, particularly Tom McLaughlin, the course's primary instructor. At the completion of this training course, the attendee will: be able to define terms commonly used in nuclear criticality safety; be able to appreciate the fundamentals of nuclear criticality safety; be able to identify factors which affect nuclear criticality safety; be able to identify examples of criticality controls as used at Los Alamos; be able to identify examples of circumstances present during criticality accidents; be able to identify examples ofmore » computer codes used by the nuclear criticality safety specialist; be able to identify examples of safety consciousness required in nuclear criticality safety.« less

  14. Aluminum Data Measurements and Evaluation for Criticality Safety Applications

    NASA Astrophysics Data System (ADS)

    Leal, L. C.; Guber, K. H.; Spencer, R. R.; Derrien, H.; Wright, R. Q.

    2002-12-01

    The Defense Nuclear Facility Safety Board (DNFSB) Recommendation 93-2 motivated the US Department of Energy (DOE) to develop a comprehensive criticality safety program to maintain and to predict the criticality of systems throughout the DOE complex. To implement the response to the DNFSB Recommendation 93-2, a Nuclear Criticality Safety Program (NCSP) was created including the following tasks: Critical Experiments, Criticality Benchmarks, Training, Analytical Methods, and Nuclear Data. The Nuclear Data portion of the NCSP consists of a variety of differential measurements performed at the Oak Ridge Electron Linear Accelerator (ORELA) at the Oak Ridge National Laboratory (ORNL), data analysis and evaluation using the generalized least-squares fitting code SAMMY in the resolved, unresolved, and high energy ranges, and the development and benchmark testing of complete evaluations for a nuclide for inclusion into the Evaluated Nuclear Data File (ENDF/B). This paper outlines the work performed at ORNL to measure, evaluate, and test the nuclear data for aluminum for applications in criticality safety problems.

  15. The Integrated Safety-Critical Advanced Avionics Communication and Control (ISAACC) System Concept: Infrastructure for ISHM

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; Briscoe, Jeri M.

    2005-01-01

    Integrated System Health Management (ISHM) architectures for spacecraft will include hard real-time, critical subsystems and soft real-time monitoring subsystems. Interaction between these subsystems will be necessary and an architecture supporting multiple criticality levels will be required. Demonstration hardware for the Integrated Safety-Critical Advanced Avionics Communication & Control (ISAACC) system has been developed at NASA Marshall Space Flight Center. It is a modular system using a commercially available time-triggered protocol, ?Tp/C, that supports hard real-time distributed control systems independent of the data transmission medium. The protocol is implemented in hardware and provides guaranteed low-latency messaging with inherent fault-tolerance and fault-containment. Interoperability between modules and systems of modules using the TTP/C is guaranteed through definition of messages and the precise message schedule implemented by the master-less Time Division Multiple Access (TDMA) communications protocol. "Plug-and-play" capability for sensors and actuators provides automatically configurable modules supporting sensor recalibration and control algorithm re-tuning without software modification. Modular components of controlled physical system(s) critical to control algorithm tuning, such as pumps or valve components in an engine, can be replaced or upgraded as "plug and play" components without modification to the ISAACC module hardware or software. ISAACC modules can communicate with other vehicle subsystems through time-triggered protocols or other communications protocols implemented over Ethernet, MIL-STD- 1553 and RS-485/422. Other communication bus physical layers and protocols can be included as required. In this way, the ISAACC modules can be part of a system-of-systems in a vehicle with multi-tier subsystems of varying criticality. The goal of the ISAACC architecture development is control and monitoring of safety critical systems of a

  16. Validation and Verification of Future Integrated Safety-Critical Systems Operating under Off-Nominal Conditions

    NASA Technical Reports Server (NTRS)

    Belcastro, Christine M.

    2010-01-01

    Loss of control remains one of the largest contributors to aircraft fatal accidents worldwide. Aircraft loss-of-control accidents are highly complex in that they can result from numerous causal and contributing factors acting alone or (more often) in combination. Hence, there is no single intervention strategy to prevent these accidents and reducing them will require a holistic integrated intervention capability. Future onboard integrated system technologies developed for preventing loss of vehicle control accidents must be able to assure safe operation under the associated off-nominal conditions. The transition of these technologies into the commercial fleet will require their extensive validation and verification (V and V) and ultimate certification. The V and V of complex integrated systems poses major nontrivial technical challenges particularly for safety-critical operation under highly off-nominal conditions associated with aircraft loss-of-control events. This paper summarizes the V and V problem and presents a proposed process that could be applied to complex integrated safety-critical systems developed for preventing aircraft loss-of-control accidents. A summary of recent research accomplishments in this effort is also provided.

  17. FAILSAFE Health Management for Embedded Systems

    NASA Technical Reports Server (NTRS)

    Horvath, Gregory A.; Wagner, David A.; Wen, Hui Ying; Barry, Matthew

    2010-01-01

    The FAILSAFE project is developing concepts and prototype implementations for software health management in mission- critical, real-time embedded systems. The project unites features of the industry-standard ARINC 653 Avionics Application Software Standard Interface and JPL s Mission Data System (MDS) technology (see figure). The ARINC 653 standard establishes requirements for the services provided by partitioned, real-time operating systems. The MDS technology provides a state analysis method, canonical architecture, and software framework that facilitates the design and implementation of software-intensive complex systems. The MDS technology has been used to provide the health management function for an ARINC 653 application implementation. In particular, the focus is on showing how this combination enables reasoning about, and recovering from, application software problems.

  18. Product-based Safety Certification for Medical Devices Embedded Software.

    PubMed

    Neto, José Augusto; Figueiredo Damásio, Jemerson; Monthaler, Paul; Morais, Misael

    2015-01-01

    Worldwide medical device embedded software certification practices are currently focused on manufacturing best practices. In Brazil, the national regulatory agency does not hold a local certification process for software-intensive medical devices and admits international certification (e.g. FDA and CE) from local and international industry to operate in the Brazilian health care market. We present here a product-based certification process as a candidate process to support the Brazilian regulatory agency ANVISA in medical device software regulation. Center of Strategic Technology for Healthcare (NUTES) medical device embedded software certification is based on a solid safety quality model and has been tested with reasonable success against the Class I risk device Generic Infusion Pump (GIP).

  19. Feature-based component model for design of embedded systems

    NASA Astrophysics Data System (ADS)

    Zha, Xuan Fang; Sriram, Ram D.

    2004-11-01

    An embedded system is a hybrid of hardware and software, which combines software's flexibility and hardware real-time performance. Embedded systems can be considered as assemblies of hardware and software components. An Open Embedded System Model (OESM) is currently being developed at NIST to provide a standard representation and exchange protocol for embedded systems and system-level design, simulation, and testing information. This paper proposes an approach to representing an embedded system feature-based model in OESM, i.e., Open Embedded System Feature Model (OESFM), addressing models of embedded system artifacts, embedded system components, embedded system features, and embedded system configuration/assembly. The approach provides an object-oriented UML (Unified Modeling Language) representation for the embedded system feature model and defines an extension to the NIST Core Product Model. The model provides a feature-based component framework allowing the designer to develop a virtual embedded system prototype through assembling virtual components. The framework not only provides a formal precise model of the embedded system prototype but also offers the possibility of designing variation of prototypes whose members are derived by changing certain virtual components with different features. A case study example is discussed to illustrate the embedded system model.

  20. Critical Incident Stress Management (CISM) in complex systems: cultural adaptation and safety impacts in healthcare.

    PubMed

    Müller-Leonhardt, Alice; Mitchell, Shannon G; Vogt, Joachim; Schürmann, Tim

    2014-07-01

    In complex systems, such as hospitals or air traffic control operations, critical incidents (CIs) are unavoidable. These incidents can not only become critical for victims but also for professionals working at the "sharp end" who may have to deal with critical incident stress (CIS) reactions that may be severe and impede emotional, physical, cognitive and social functioning. These CIS reactions may occur not only under exceptional conditions but also during every-day work and become an important safety issue. In contrast to air traffic management (ATM) operations in Europe, which have readily adopted critical incident stress management (CISM), most hospitals have not yet implemented comprehensive peer support programs. This survey was conducted in 2010 at the only European general hospital setting which implemented CISM program since 2004. The aim of the article is to describe possible contribution of CISM in hospital settings framed from the perspective of organizational safety and individual health for healthcare professionals. Findings affirm that daily work related incidents also can become critical for healthcare professionals. Program efficiency appears to be influenced by the professional culture, as well as organizational structure and policies. Overall, findings demonstrate that the adaptation of the CISM program in general hospitals takes time but, once established, it may serve as a mechanism for changing professional culture, thereby permitting the framing of even small incidents or near misses as an opportunity to provide valuable feedback to the system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Cyber Security Threats to Safety-Critical, Space-Based Infrastructures

    NASA Astrophysics Data System (ADS)

    Johnson, C. W.; Atencia Yepez, A.

    2012-01-01

    Space-based systems play an important role within national critical infrastructures. They are being integrated into advanced air-traffic management applications, rail signalling systems, energy distribution software etc. Unfortunately, the end users of communications, location sensing and timing applications often fail to understand that these infrastructures are vulnerable to a wide range of security threats. The following pages focus on concerns associated with potential cyber-attacks. These are important because future attacks may invalidate many of the safety assumptions that support the provision of critical space-based services. These safety assumptions are based on standard forms of hazard analysis that ignore cyber-security considerations This is a significant limitation when, for instance, security attacks can simultaneously exploit multiple vulnerabilities in a manner that would never occur without a deliberate enemy seeking to damage space based systems and ground infrastructures. We address this concern through the development of a combined safety and security risk assessment methodology. The aim is to identify attack scenarios that justify the allocation of additional design resources so that safety barriers can be strengthened to increase our resilience against security threats.

  2. Proceedings of the Nuclear Criticality Technology Safety Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rene G. Sanchez

    1998-04-01

    This document contains summaries of most of the papers presented at the 1995 Nuclear Criticality Technology Safety Project (NCTSP) meeting, which was held May 16 and 17 at San Diego, Ca. The meeting was broken up into seven sessions, which covered the following topics: (1) Criticality Safety of Project Sapphire; (2) Relevant Experiments For Criticality Safety; (3) Interactions with the Former Soviet Union; (4) Misapplications and Limitations of Monte Carlo Methods Directed Toward Criticality Safety Analyses; (5) Monte Carlo Vulnerabilities of Execution and Interpretation; (6) Monte Carlo Vulnerabilities of Representation; and (7) Benchmark Comparisons.

  3. Regenerative braking strategies, vehicle safety and stability control systems: critical use-case proposals

    NASA Astrophysics Data System (ADS)

    Oleksowicz, Selim A.; Burnham, Keith J.; Southgate, Adam; McCoy, Chris; Waite, Gary; Hardwick, Graham; Harrington, Cian; McMurran, Ross

    2013-05-01

    The sustainable development of vehicle propulsion systems that have mainly focused on reduction of fuel consumption (i.e. CO2 emission) has led, not only to the development of systems connected with combustion processes but also to legislation and testing procedures. In recent years, the low carbon policy has made hybrid vehicles and fully electric vehicles (H/EVs) popular. The main virtue of these propulsion systems is their ability to restore some of the expended energy from kinetic movement, e.g. the braking process. Consequently new research and testing methods for H/EVs are currently being developed. This especially concerns the critical 'use-cases' for functionality tests within dynamic events for both virtual simulations, as well as real-time road tests. The use-case for conventional vehicles for numerical simulations and road tests are well established. However, the wide variety of tests and their great number (close to a thousand) creates a need for selection, in the first place, and the creation of critical use-cases suitable for testing H/EVs in both virtual and real-world environments. It is known that a marginal improvement in the regenerative braking ratio can significantly improve the vehicle range and, therefore, the economic cost of its operation. In modern vehicles, vehicle dynamics control systems play the principal role in safety, comfort and economic operation. Unfortunately, however, the existing standard road test scenarios are insufficient for H/EVs. Sector knowledge suggests that there are currently no agreed tests scenarios to fully investigate the effects of brake blending between conventional and regenerative braking as well as the regenerative braking interaction with active driving safety systems (ADSS). The paper presents seven manoeuvres, which are considered to be suitable and highly informative for the development and examination of H/EVs with regenerative braking capability. The critical manoeuvres presented are considered to be

  4. Energy efficiency of task allocation for embedded JPEG systems.

    PubMed

    Fan, Yang-Hsin; Wu, Jan-Ou; Wang, San-Fu

    2014-01-01

    Embedded system works everywhere for repeatedly performing a few particular functionalities. Well-known products include consumer electronics, smart home applications, and telematics device, and so forth. Recently, developing methodology of embedded systems is applied to conduct the design of cloud embedded system resulting in the applications of embedded system being more diverse. However, the more energy consumes result from the more embedded system works. This study presents hyperrectangle technology (HT) to embedded system for obtaining energy saving. The HT adopts drift effect to construct embedded systems with more hardware circuits than software components or vice versa. It can fast construct embedded system with a set of hardware circuits and software components. Moreover, it has a great benefit to fast explore energy consumption for various embedded systems. The effects are presented by assessing a JPEG benchmarks. Experimental results demonstrate that the HT, respectively, achieves the energy saving by 29.84%, 2.07%, and 68.80% on average to GA, GHO, and Lin.

  5. Energy Efficiency of Task Allocation for Embedded JPEG Systems

    PubMed Central

    2014-01-01

    Embedded system works everywhere for repeatedly performing a few particular functionalities. Well-known products include consumer electronics, smart home applications, and telematics device, and so forth. Recently, developing methodology of embedded systems is applied to conduct the design of cloud embedded system resulting in the applications of embedded system being more diverse. However, the more energy consumes result from the more embedded system works. This study presents hyperrectangle technology (HT) to embedded system for obtaining energy saving. The HT adopts drift effect to construct embedded systems with more hardware circuits than software components or vice versa. It can fast construct embedded system with a set of hardware circuits and software components. Moreover, it has a great benefit to fast explore energy consumption for various embedded systems. The effects are presented by assessing a JPEG benchmarks. Experimental results demonstrate that the HT, respectively, achieves the energy saving by 29.84%, 2.07%, and 68.80% on average to GA, GHO, and Lin. PMID:24982983

  6. Critical roles of orthopaedic surgeon leadership in healthcare systems to improve orthopaedic surgical patient safety.

    PubMed

    Kuo, Calvin C; Robb, William J

    2013-06-01

    The prevention of medical and surgical harm remains an important public health problem despite increased awareness and implementation of safety programs. Successful introduction and maintenance of surgical safety programs require both surgeon leadership and collaborative surgeon-hospital alignment. Documentation of success of such surgical safety programs in orthopaedic practice is limited. We describe the scope of orthopaedic surgical patient safety issues, define critical elements of orthopaedic surgical safety, and outline leadership roles for orthopaedic surgeons needed to establish and sustain a culture of safety in contemporary healthcare systems. We identified the most common causes of preventable surgical harm based on adverse and sentinel surgical events reported to The Joint Commission. A comprehensive literature review through a MEDLINE(®) database search (January 1982 through April 2012) to identify pertinent orthopaedic surgical safety articles found 14 articles. Where gaps in orthopaedic literature were identified, the review was supplemented by 22 nonorthopaedic surgical references. Our final review included 36 articles. Six important surgical safety program elements needed to eliminate preventable surgical harm were identified: (1) effective surgical team communication, (2) proper informed consent, (3) implementation and regular use of surgical checklists, (4) proper surgical site/procedure identification, (5) reduction of surgical team distractions, and (6) routine surgical data collection and analysis to improve the safety and quality of surgical patient care. Successful surgical safety programs require a culture of safety supported by all six key surgical safety program elements, active surgeon champions, and collaborative hospital and/or administrative support designed to enhance surgical safety and improve surgical patient outcomes. Further research measuring improvements from such surgical safety systems in orthopaedic care is needed.

  7. Resilience Engineering in Critical Long Term Aerospace Software Systems: A New Approach to Spacecraft Software Safety

    NASA Astrophysics Data System (ADS)

    Dulo, D. A.

    Safety critical software systems permeate spacecraft, and in a long term venture like a starship would be pervasive in every system of the spacecraft. Yet software failure today continues to plague both the systems and the organizations that develop them resulting in the loss of life, time, money, and valuable system platforms. A starship cannot afford this type of software failure in long journeys away from home. A single software failure could have catastrophic results for the spaceship and the crew onboard. This paper will offer a new approach to developing safe reliable software systems through focusing not on the traditional safety/reliability engineering paradigms but rather by focusing on a new paradigm: Resilience and Failure Obviation Engineering. The foremost objective of this approach is the obviation of failure, coupled with the ability of a software system to prevent or adapt to complex changing conditions in real time as a safety valve should failure occur to ensure safe system continuity. Through this approach, safety is ensured through foresight to anticipate failure and to adapt to risk in real time before failure occurs. In a starship, this type of software engineering is vital. Through software developed in a resilient manner, a starship would have reduced or eliminated software failure, and would have the ability to rapidly adapt should a software system become unstable or unsafe. As a result, long term software safety, reliability, and resilience would be present for a successful long term starship mission.

  8. Heterogeneous Embedded Real-Time Systems Environment

    DTIC Science & Technology

    2003-12-01

    AFRL-IF-RS-TR-2003-290 Final Technical Report December 2003 HETEROGENEOUS EMBEDDED REAL - TIME SYSTEMS ENVIRONMENT Integrated...HETEROGENEOUS EMBEDDED REAL - TIME SYSTEMS ENVIRONMENT 6. AUTHOR(S) Cosmo Castellano and James Graham 5. FUNDING NUMBERS C - F30602-97-C-0259

  9. SRTC criticality safety technical review: Nuclear Criticality Safety Evaluation 93-04 enriched uranium receipt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rathbun, R.

    Review of NMP-NCS-930087, {open_quotes}Nuclear Criticality Safety Evaluation 93-04 Enriched Uranium Receipt (U), July 30, 1993, {close_quotes} was requested of SRTC (Savannah River Technology Center) Applied Physics Group. The NCSE is a criticality assessment to determine the mass limit for Engineered Low Level Trench (ELLT) waste uranium burial. The intent is to bury uranium in pits that would be separated by a specified amount of undisturbed soil. The scope of the technical review, documented in this report, consisted of (1) an independent check of the methods and models employed, (2) independent HRXN/KENO-V.a calculations of alternate configurations, (3) application of ANSI/ANS 8.1,more » and (4) verification of WSRC Nuclear Criticality Safety Manual procedures. The NCSE under review concludes that a 500 gram limit per burial position is acceptable to ensure the burial site remains in a critically safe configuration for all normal and single credible abnormal conditions. This reviewer agrees with that conclusion.« less

  10. Stocks, Flows, and Distribution of Critical Metals in Embedded Electronics in Passenger Vehicles.

    PubMed

    Restrepo, Eliette; Løvik, Amund N; Wäger, Patrick; Widmer, Rolf; Lonka, Radek; Müller, Daniel B

    2017-02-07

    One of the major applications of critical metals (CMs) is in electrical and electronic equipment (EEE), which is increasingly embedded in other products, notably passenger vehicles. However, recycling strategies for future CM quantities in end-of-life vehicles (ELVs) are poorly understood, mainly due to a limited understating of the complexity of automotive embedded EEE. We introduce a harmonization of the network structure of automotive electronics that enables a comprehensive quantification of CMs in all embedded EEE in a vehicle. This network is combined with a material flow analysis along the vehicle lifecycle in Switzerland to quantify the stocks and flows of Ag, Au, Pd, Ru, Dy, La, Nd, and Co in automotive embedded EEE. In vehicles in use, we calculated 5 -2 +3 t precious metals in controllers embedded in all vehicle types and 220 -60 +90 t rare earth elements (REE); found mainly in five electric motors: alternator, starter, radiator-fan and electronic power steering motor embedded in conventional passenger vehicles and drive motor/generator embedded in hybrid and electric vehicles. Dismantling these devices before ELV shredding, as well as postshredder treatment of automobile shredder residue may increase the recovery of CMs from ELVs. Environmental and economic implications of such recycling strategies must be considered.

  11. Nuclear Criticality Safety Data Book

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollenbach, D. F.

    The objective of this document is to support the revision of criticality safety process studies (CSPSs) for the Uranium Processing Facility (UPF) at the Y-12 National Security Complex (Y-12). This design analysis and calculation (DAC) document contains development and justification for generic inputs typically used in Nuclear Criticality Safety (NCS) DACs to model both normal and abnormal conditions of processes at UPF to support CSPSs. This will provide consistency between NCS DACs and efficiency in preparation and review of DACs, as frequently used data are provided in one reference source.

  12. Scheduling Real-Time Mixed-Criticality Jobs

    NASA Astrophysics Data System (ADS)

    Baruah, Sanjoy K.; Bonifaci, Vincenzo; D'Angelo, Gianlorenzo; Li, Haohan; Marchetti-Spaccamela, Alberto; Megow, Nicole; Stougie, Leen

    Many safety-critical embedded systems are subject to certification requirements; some systems may be required to meet multiple sets of certification requirements, from different certification authorities. Certification requirements in such "mixed-criticality" systems give rise to interesting scheduling problems, that cannot be satisfactorily addressed using techniques from conventional scheduling theory. In this paper, we study a formal model for representing such mixed-criticality workloads. We demonstrate first the intractability of determining whether a system specified in this model can be scheduled to meet all its certification requirements, even for systems subject to two sets of certification requirements. Then we quantify, via the metric of processor speedup factor, the effectiveness of two techniques, reservation-based scheduling and priority-based scheduling, that are widely used in scheduling such mixed-criticality systems, showing that the latter of the two is superior to the former. We also show that the speedup factors are tight for these two techniques.

  13. Embedding technology into inter-professional best practices in home safety evaluation.

    PubMed

    Burns, Suzanne Perea; Pickens, Noralyn Davel

    2017-08-01

    To explore inter-professional home evaluators' perspectives and needs for building useful and acceptable decision-support tools for the field of home modifications. Twenty semi-structured interviews were conducted with a range of home modification professionals from different regions of the United States. The interview transcripts were analyzed with a qualitative, descriptive, perspective approach. Technology supports current best practice and has potential to inform decision making through features that could enhance home evaluation processes, quality, efficiency and inter-professional communication. Technological advances with app design have created numerous opportunities for the field of home modifications. Integrating technology and inter-professional best practices will improve home safety evaluation and intervention development to meet client-centred and societal needs. Implications for rehabilitation Understanding home evaluators technology needs for home safety evaluations contributes to the development of app-based assessments. Integrating inter-professional perspectives of best practice and technological needs in an app for home assessments improves processes. Novice and expert home evaluators would benefit from decision support systems embedded in app-based assessments. Adoption of app-based assessment would improve efficiency while remaining client-centred.

  14. Model-Based Safety Analysis

    NASA Technical Reports Server (NTRS)

    Joshi, Anjali; Heimdahl, Mats P. E.; Miller, Steven P.; Whalen, Mike W.

    2006-01-01

    System safety analysis techniques are well established and are used extensively during the design of safety-critical systems. Despite this, most of the techniques are highly subjective and dependent on the skill of the practitioner. Since these analyses are usually based on an informal system model, it is unlikely that they will be complete, consistent, and error free. In fact, the lack of precise models of the system architecture and its failure modes often forces the safety analysts to devote much of their effort to gathering architectural details about the system behavior from several sources and embedding this information in the safety artifacts such as the fault trees. This report describes Model-Based Safety Analysis, an approach in which the system and safety engineers share a common system model created using a model-based development process. By extending the system model with a fault model as well as relevant portions of the physical system to be controlled, automated support can be provided for much of the safety analysis. We believe that by using a common model for both system and safety engineering and automating parts of the safety analysis, we can both reduce the cost and improve the quality of the safety analysis. Here we present our vision of model-based safety analysis and discuss the advantages and challenges in making this approach practical.

  15. Ending on a positive: Examining the role of safety leadership decisions, behaviours and actions in a safety critical situation.

    PubMed

    Donovan, Sarah-Louise; Salmon, Paul M; Horberry, Timothy; Lenné, Michael G

    2018-01-01

    Safety leadership is an important factor in supporting safe performance in the workplace. The present case study examined the role of safety leadership during the Bingham Canyon Mine high-wall failure, a significant mining incident in which no fatalities or injuries were incurred. The Critical Decision Method (CDM) was used in conjunction with a self-reporting approach to examine safety leadership in terms of decisions, behaviours and actions that contributed to the incidents' safe outcome. Mapping the analysis onto Rasmussen's Risk Management Framework (Rasmussen, 1997), the findings demonstrate clear links between safety leadership decisions, and emergent behaviours and actions across the work system. Communication and engagement based decisions featured most prominently, and were linked to different leadership practices across the work system. Further, a core sub-set of CDM decision elements were linked to the open flow and exchange of information across the work system, which was critical to supporting the safe outcome. The findings provide practical implications for the development of safety leadership capability to support safety within the mining industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Agile Methods for Open Source Safety-Critical Software.

    PubMed

    Gary, Kevin; Enquobahrie, Andinet; Ibanez, Luis; Cheng, Patrick; Yaniv, Ziv; Cleary, Kevin; Kokoori, Shylaja; Muffih, Benjamin; Heidenreich, John

    2011-08-01

    The introduction of software technology in a life-dependent environment requires the development team to execute a process that ensures a high level of software reliability and correctness. Despite their popularity, agile methods are generally assumed to be inappropriate as a process family in these environments due to their lack of emphasis on documentation, traceability, and other formal techniques. Agile methods, notably Scrum, favor empirical process control, or small constant adjustments in a tight feedback loop. This paper challenges the assumption that agile methods are inappropriate for safety-critical software development. Agile methods are flexible enough to encourage the rightamount of ceremony; therefore if safety-critical systems require greater emphasis on activities like formal specification and requirements management, then an agile process will include these as necessary activities. Furthermore, agile methods focus more on continuous process management and code-level quality than classic software engineering process models. We present our experiences on the image-guided surgical toolkit (IGSTK) project as a backdrop. IGSTK is an open source software project employing agile practices since 2004. We started with the assumption that a lighter process is better, focused on evolving code, and only adding process elements as the need arose. IGSTK has been adopted by teaching hospitals and research labs, and used for clinical trials. Agile methods have matured since the academic community suggested they are not suitable for safety-critical systems almost a decade ago, we present our experiences as a case study for renewing the discussion.

  17. Embedded programmable blood pressure monitoring system

    NASA Astrophysics Data System (ADS)

    Hasan, Md. Mahmud-Ul; Islam, Md. Kafiul; Shawon, Mehedi Azad; Nowrin, Tasnuva Faruk

    2010-02-01

    A more efficient newer algorithm of detecting systolic and diastolic pressure of human body along with a complete package of an effective user-friendly embedded programmable blood pressure monitoring system has been proposed in this paper to reduce the overall workload of medical personals as well as to monitor patient's condition more conveniently and accurately. Available devices for measuring blood pressure have some problems and limitations in case of both analog and digital devices. The sphygmomanometer, being analog device, is still being used widely because of its reliability and accuracy over digital ones. But it requires a skilled person to measure the blood pressure and obviously not being automated as well as time consuming. Our proposed system being a microcontroller based embedded system has the advantages of the available digital blood pressure machines along with a much improved form and has higher accuracy at the same time. This system can also be interfaced with computer through serial port/USB to publish the measured blood pressure data on the LAN or internet. The device can be programmed to determine the patient's blood pressure after each certain interval of time in a graphical form. To sense the pressure of human body, a pressure to voltage transducer is used along with a cuff in our system. During the blood pressure measurement cycle, the output voltage of the transducer is taken by the built-in ADC of microcontroller after an amplifier stage. The recorded data are then processed and analyzed using the effective software routine to determine the blood pressure of the person under test. Our proposed system is thus expected to certainly enhance the existing blood pressure monitoring system by providing accuracy, time efficiency, user-friendliness and at last but not the least the 'better way of monitoring patient's blood pressure under critical care' all together at the same time.

  18. Self-Test Procedures for Gas Sensors Embedded in Microreactor Systems

    PubMed Central

    Helwig, Andreas; Hackner, Angelika; Zappa, Dario; Sberveglieri, Giorgio

    2018-01-01

    Metal oxide (MOX) gas sensors sensitively respond to a wide variety of combustible, explosive and poisonous gases. However, due to the lack of a built-in self-test capability, MOX gas sensors have not yet been able to penetrate safety-critical applications. In the present work we report on gas sensing experiments performed on MOX gas sensors embedded in ceramic micro-reaction chambers. With the help of an external micro-pump, such systems can be operated in a periodic manner alternating between flow and no-flow conditions, thus allowing repetitive measurements of the sensor resistances under clean air, R0, and under gas exposure, Rgas, to be obtained, even under field conditions. With these pairs of resistance values, eventual drifts in the sensor baseline resistance can be detected and drift-corrected values of the relative resistance response Resp=(R0−Rgas)/R0 can be determined. Residual poisoning-induced changes in the relative resistance response can be detected by reference to humidity measurements taken with room-temperature-operated capacitive humidity sensors which are insensitive to the poisoning processes operative on heated MOX gas sensors. PMID:29401673

  19. Self-Test Procedures for Gas Sensors Embedded in Microreactor Systems.

    PubMed

    Helwig, Andreas; Hackner, Angelika; Müller, Gerhard; Zappa, Dario; Sberveglieri, Giorgio

    2018-02-03

    Metal oxide (MOX) gas sensors sensitively respond to a wide variety of combustible, explosive and poisonous gases. However, due to the lack of a built-in self-test capability, MOX gas sensors have not yet been able to penetrate safety-critical applications. In the present work we report on gas sensing experiments performed on MOX gas sensors embedded in ceramic micro-reaction chambers. With the help of an external micro-pump, such systems can be operated in a periodic manner alternating between flow and no-flow conditions, thus allowing repetitive measurements of the sensor resistances under clean air, R 0 , and under gas exposure, R g a s , to be obtained, even under field conditions. With these pairs of resistance values, eventual drifts in the sensor baseline resistance can be detected and drift-corrected values of the relative resistance response R e s p = ( R 0 - R g a s ) / R 0 can be determined. Residual poisoning-induced changes in the relative resistance response can be detected by reference to humidity measurements taken with room-temperature-operated capacitive humidity sensors which are insensitive to the poisoning processes operative on heated MOX gas sensors.

  20. HSE's safety assessment principles for criticality safety.

    PubMed

    Simister, D N; Finnerty, M D; Warburton, S J; Thomas, E A; Macphail, M R

    2008-06-01

    The Health and Safety Executive (HSE) published its revised Safety Assessment Principles for Nuclear Facilities (SAPs) in December 2006. The SAPs are primarily intended for use by HSE's inspectors when judging the adequacy of safety cases for nuclear facilities. The revised SAPs relate to all aspects of safety in nuclear facilities including the technical discipline of criticality safety. The purpose of this paper is to set out for the benefit of a wider audience some of the thinking behind the final published words and to provide an insight into the development of UK regulatory guidance. The paper notes that it is HSE's intention that the Safety Assessment Principles should be viewed as a reflection of good practice in the context of interpreting primary legislation such as the requirements under site licence conditions for arrangements for producing an adequate safety case and for producing a suitable and sufficient risk assessment under the Ionising Radiations Regulations 1999 (SI1999/3232 www.opsi.gov.uk/si/si1999/uksi_19993232_en.pdf).

  1. Localized attacks on spatially embedded networks with dependencies.

    PubMed

    Berezin, Yehiel; Bashan, Amir; Danziger, Michael M; Li, Daqing; Havlin, Shlomo

    2015-03-11

    Many real world complex systems such as critical infrastructure networks are embedded in space and their components may depend on one another to function. They are also susceptible to geographically localized damage caused by malicious attacks or natural disasters. Here, we study a general model of spatially embedded networks with dependencies under localized attacks. We develop a theoretical and numerical approach to describe and predict the effects of localized attacks on spatially embedded systems with dependencies. Surprisingly, we find that a localized attack can cause substantially more damage than an equivalent random attack. Furthermore, we find that for a broad range of parameters, systems which appear stable are in fact metastable. Though robust to random failures-even of finite fraction-if subjected to a localized attack larger than a critical size which is independent of the system size (i.e., a zero fraction), a cascading failure emerges which leads to complete system collapse. Our results demonstrate the potential high risk of localized attacks on spatially embedded network systems with dependencies and may be useful for designing more resilient systems.

  2. The embedded operating system project

    NASA Technical Reports Server (NTRS)

    Campbell, R. H.

    1984-01-01

    This progress report describes research towards the design and construction of embedded operating systems for real-time advanced aerospace applications. The applications concerned require reliable operating system support that must accommodate networks of computers. The report addresses the problems of constructing such operating systems, the communications media, reconfiguration, consistency and recovery in a distributed system, and the issues of realtime processing. A discussion is included on suitable theoretical foundations for the use of atomic actions to support fault tolerance and data consistency in real-time object-based systems. In particular, this report addresses: atomic actions, fault tolerance, operating system structure, program development, reliability and availability, and networking issues. This document reports the status of various experiments designed and conducted to investigate embedded operating system design issues.

  3. Modeling of Embedded Human Systems

    DTIC Science & Technology

    2013-07-01

    ISAT study [7] for DARPA in 20051 concretized the notion of an embedded human, who is a necessary component of the system. The proposed work integrates...Technology, IEEE Transactions on, vol. 16, no. 2, pp. 229–244, March 2008. [7] C. J. Tomlin and S. S. Sastry, “Embedded humans,” tech. rep., DARPA ISAT

  4. Criticality Safety Basics for INL FMHs and CSOs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    V. L. Putman

    2012-04-01

    Nuclear power is a valuable and efficient energy alternative in our energy-intensive society. However, material that can generate nuclear power has properties that require this material be handled with caution. If improperly handled, a criticality accident could result, which could severely harm workers. This document is a modular self-study guide about Criticality Safety Principles. This guide's purpose it to help you work safely in areas where fissionable nuclear materials may be present, avoiding the severe radiological and programmatic impacts of a criticality accident. It is designed to stress the fundamental physical concepts behind criticality controls and the importance of criticalitymore » safety when handling fissionable materials outside nuclear reactors. This study guide was developed for fissionable-material-handler and criticality-safety-officer candidates to use with related web-based course 00INL189, BEA Criticality Safety Principles, and to help prepare for the course exams. These individuals must understand basic information presented here. This guide may also be useful to other Idaho National Laboratory personnel who must know criticality safety basics to perform their assignments safely or to design critically safe equipment or operations. This guide also includes additional information that will not be included in 00INL189 tests. The additional information is in appendices and paragraphs with headings that begin with 'Did you know,' or with, 'Been there Done that'. Fissionable-material-handler and criticality-safety-officer candidates may review additional information at their own discretion. This guide is revised as needed to reflect program changes, user requests, and better information. Issued in 2006, Revision 0 established the basic text and integrated various programs from former contractors. Revision 1 incorporates operation and program changes implemented since 2006. It also incorporates suggestions, clarifications, and additional

  5. Agile Methods for Open Source Safety-Critical Software

    PubMed Central

    Enquobahrie, Andinet; Ibanez, Luis; Cheng, Patrick; Yaniv, Ziv; Cleary, Kevin; Kokoori, Shylaja; Muffih, Benjamin; Heidenreich, John

    2011-01-01

    The introduction of software technology in a life-dependent environment requires the development team to execute a process that ensures a high level of software reliability and correctness. Despite their popularity, agile methods are generally assumed to be inappropriate as a process family in these environments due to their lack of emphasis on documentation, traceability, and other formal techniques. Agile methods, notably Scrum, favor empirical process control, or small constant adjustments in a tight feedback loop. This paper challenges the assumption that agile methods are inappropriate for safety-critical software development. Agile methods are flexible enough to encourage the right amount of ceremony; therefore if safety-critical systems require greater emphasis on activities like formal specification and requirements management, then an agile process will include these as necessary activities. Furthermore, agile methods focus more on continuous process management and code-level quality than classic software engineering process models. We present our experiences on the image-guided surgical toolkit (IGSTK) project as a backdrop. IGSTK is an open source software project employing agile practices since 2004. We started with the assumption that a lighter process is better, focused on evolving code, and only adding process elements as the need arose. IGSTK has been adopted by teaching hospitals and research labs, and used for clinical trials. Agile methods have matured since the academic community suggested they are not suitable for safety-critical systems almost a decade ago, we present our experiences as a case study for renewing the discussion. PMID:21799545

  6. Evolution of safety-critical requirements post-launch

    NASA Technical Reports Server (NTRS)

    Lutz, R. R.; Mikulski, I. C.

    2001-01-01

    This paper reports the results of a small study of requirements changes to the onboard software of three spacecraft subsequent to launch. Only those requirement changes that resulted from post-launch anoma-lies (i.e., during operations) were of interest here, since the goal was to better understand the relation-ship between critical anomalies during operations and how safety-critical requirements evolve. The results of the study were surprising in that anomaly-driven, post-launch requirements changes were rarely due to previous requirements having been incorrect. Instead, changes involved new requirements (1) for the software to handle rare events or (2) for the software to compensate for hardware failures or limitations. The prevalence of new requirements as a result of post-launch anomalies suggests a need for increased requirements-engineering support of maintenance activities in these systems. The results also confirm both the difficulty and the benefits of pursuing requirements completeness, especially in terms of fault tolerance, during development of critical systems.

  7. Integrated Design and Implementation of Embedded Control Systems with Scilab

    PubMed Central

    Ma, Longhua; Xia, Feng; Peng, Zhe

    2008-01-01

    Embedded systems are playing an increasingly important role in control engineering. Despite their popularity, embedded systems are generally subject to resource constraints and it is therefore difficult to build complex control systems on embedded platforms. Traditionally, the design and implementation of control systems are often separated, which causes the development of embedded control systems to be highly time-consuming and costly. To address these problems, this paper presents a low-cost, reusable, reconfigurable platform that enables integrated design and implementation of embedded control systems. To minimize the cost, free and open source software packages such as Linux and Scilab are used. Scilab is ported to the embedded ARM-Linux system. The drivers for interfacing Scilab with several communication protocols including serial, Ethernet, and Modbus are developed. Experiments are conducted to test the developed embedded platform. The use of Scilab enables implementation of complex control algorithms on embedded platforms. With the developed platform, it is possible to perform all phases of the development cycle of embedded control systems in a unified environment, thus facilitating the reduction of development time and cost. PMID:27873827

  8. Integrated Design and Implementation of Embedded Control Systems with Scilab.

    PubMed

    Ma, Longhua; Xia, Feng; Peng, Zhe

    2008-09-05

    Embedded systems are playing an increasingly important role in control engineering. Despite their popularity, embedded systems are generally subject to resource constraints and it is therefore difficult to build complex control systems on embedded platforms. Traditionally, the design and implementation of control systems are often separated, which causes the development of embedded control systems to be highly timeconsuming and costly. To address these problems, this paper presents a low-cost, reusable, reconfigurable platform that enables integrated design and implementation of embedded control systems. To minimize the cost, free and open source software packages such as Linux and Scilab are used. Scilab is ported to the embedded ARM-Linux system. The drivers for interfacing Scilab with several communication protocols including serial, Ethernet, and Modbus are developed. Experiments are conducted to test the developed embedded platform. The use of Scilab enables implementation of complex control algorithms on embedded platforms. With the developed platform, it is possible to perform all phases of the development cycle of embedded control systems in a unified environment, thus facilitating the reduction of development time and cost.

  9. Autonomous Flight Safety System

    NASA Technical Reports Server (NTRS)

    Ferrell, Bob; Santuro, Steve; Simpson, James; Zoerner, Roger; Bull, Barton; Lanzi, Jim

    2004-01-01

    Autonomous Flight Safety System (AFSS) is an independent flight safety system designed for small to medium sized expendable launch vehicles launching from or needing range safety protection while overlying relatively remote locations. AFSS replaces the need for a man-in-the-loop to make decisions for flight termination. AFSS could also serve as the prototype for an autonomous manned flight crew escape advisory system. AFSS utilizes onboard sensors and processors to emulate the human decision-making process using rule-based software logic and can dramatically reduce safety response time during critical launch phases. The Range Safety flight path nominal trajectory, its deviation allowances, limit zones and other flight safety rules are stored in the onboard computers. Position, velocity and attitude data obtained from onboard global positioning system (GPS) and inertial navigation system (INS) sensors are compared with these rules to determine the appropriate action to ensure that people and property are not jeopardized. The final system will be fully redundant and independent with multiple processors, sensors, and dead man switches to prevent inadvertent flight termination. AFSS is currently in Phase III which includes updated algorithms, integrated GPS/INS sensors, large scale simulation testing and initial aircraft flight testing.

  10. Constraint Embedding Technique for Multibody System Dynamics

    NASA Technical Reports Server (NTRS)

    Woo, Simon S.; Cheng, Michael K.

    2011-01-01

    Multibody dynamics play a critical role in simulation testbeds for space missions. There has been a considerable interest in the development of efficient computational algorithms for solving the dynamics of multibody systems. Mass matrix factorization and inversion techniques and the O(N) class of forward dynamics algorithms developed using a spatial operator algebra stand out as important breakthrough on this front. Techniques such as these provide the efficient algorithms and methods for the application and implementation of such multibody dynamics models. However, these methods are limited only to tree-topology multibody systems. Closed-chain topology systems require different techniques that are not as efficient or as broad as those for tree-topology systems. The closed-chain forward dynamics approach consists of treating the closed-chain topology as a tree-topology system subject to additional closure constraints. The resulting forward dynamics solution consists of: (a) ignoring the closure constraints and using the O(N) algorithm to solve for the free unconstrained accelerations for the system; (b) using the tree-topology solution to compute a correction force to enforce the closure constraints; and (c) correcting the unconstrained accelerations with correction accelerations resulting from the correction forces. This constraint-embedding technique shows how to use direct embedding to eliminate local closure-loops in the system and effectively convert the system back to a tree-topology system. At this point, standard tree-topology techniques can be brought to bear on the problem. The approach uses a spatial operator algebra approach to formulating the equations of motion. The operators are block-partitioned around the local body subgroups to convert them into aggregate bodies. Mass matrix operator factorization and inversion techniques are applied to the reformulated tree-topology system. Thus in essence, the new technique allows conversion of a system with

  11. Static Schedulers for Embedded Real-Time Systems

    DTIC Science & Technology

    1989-12-01

    Because of the need for having efficient scheduling algorithms in large scale real time systems , software engineers put a lot of effort on developing...provide static schedulers for he Embedded Real Time Systems with single processor using Ada programming language. The independent nonpreemptable...support the Computer Aided Rapid Prototyping for Embedded Real Time Systems so that we determine whether the system, as designed, meets the required

  12. Does the concept of safety culture help or hinder systems thinking in safety?

    PubMed

    Reiman, Teemu; Rollenhagen, Carl

    2014-07-01

    The concept of safety culture has become established in safety management applications in all major safety-critical domains. The idea that safety culture somehow represents a "systemic view" on safety is seldom explicitly spoken out, but nevertheless seem to linger behind many safety culture discourses. However, in this paper we argue that the "new" contribution to safety management from safety culture never really became integrated with classical engineering principles and concepts. This integration would have been necessary for the development of a more genuine systems-oriented view on safety; e.g. a conception of safety in which human, technological, organisational and cultural factors are understood as mutually interacting elements. Without of this integration, researchers and the users of the various tools and methods associated with safety culture have sometimes fostered a belief that "safety culture" in fact represents such a systemic view about safety. This belief is, however, not backed up by theoretical or empirical evidence. It is true that safety culture, at least in some sense, represents a holistic term-a totality of factors that include human, organisational and technological aspects. However, the departure for such safety culture models is still human and organisational factors rather than technology (or safety) itself. The aim of this paper is to critically review the various uses of the concept of safety culture as representing a systemic view on safety. The article will take a look at the concepts of culture and safety culture based on previous studies, and outlines in more detail the theoretical challenges in safety culture as a systems concept. The paper also presents recommendations on how to make safety culture more systemic. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Planning the Unplanned Experiment: Assessing the Efficacy of Standards for Safety Critical Software

    NASA Technical Reports Server (NTRS)

    Graydon, Patrick J.; Holloway, C. Michael

    2015-01-01

    We need well-founded means of determining whether software is t for use in safety-critical applications. While software in industries such as aviation has an excellent safety record, the fact that software aws have contributed to deaths illustrates the need for justi ably high con dence in software. It is often argued that software is t for safety-critical use because it conforms to a standard for software in safety-critical systems. But little is known about whether such standards `work.' Reliance upon a standard without knowing whether it works is an experiment; without collecting data to assess the standard, this experiment is unplanned. This paper reports on a workshop intended to explore how standards could practicably be assessed. Planning the Unplanned Experiment: Assessing the Ecacy of Standards for Safety Critical Software (AESSCS) was held on 13 May 2014 in conjunction with the European Dependable Computing Conference (EDCC). We summarize and elaborate on the workshop's discussion of the topic, including both the presented positions and the dialogue that ensued.

  14. A Course in Real-Time Embedded Software

    ERIC Educational Resources Information Center

    Archibald, J. K.; Fife, W. S.

    2007-01-01

    Embedded systems are increasingly pervasive, and the creation of reliable controlling software offers unique challenges. Embedded software must interact directly with hardware, it must respond to events in a time-critical fashion, and it typically employs concurrency to meet response time requirements. This paper describes an innovative course…

  15. Teaching Embedded System Concepts for Technological Literacy

    ERIC Educational Resources Information Center

    Winzker, M.; Schwandt, A.

    2011-01-01

    A basic understanding of technology is recognized as important knowledge even for students not connected with engineering and computer science. This paper shows that embedded system concepts can be taught in a technological literacy course. An embedded system teaching block that has been used in an electronics module for non-engineers is…

  16. Constraint Embedding for Multibody System Dynamics

    NASA Technical Reports Server (NTRS)

    Jain, Abhinandan

    2009-01-01

    This paper describes a constraint embedding approach for the handling of local closure constraints in multibody system dynamics. The approach uses spatial operator techniques to eliminate local-loop constraints from the system and effectively convert the system into tree-topology systems. This approach allows the direct derivation of recursive O(N) techniques for solving the system dynamics and avoiding the expensive steps that would otherwise be required for handling the closedchain dynamics. The approach is very effective for systems where the constraints are confined to small-subgraphs within the system topology. The paper provides background on the spatial operator O(N) algorithms, the extensions for handling embedded constraints, and concludes with some examples of such constraints.

  17. Embedded System Implementation on FPGA System With μCLinux OS

    NASA Astrophysics Data System (ADS)

    Fairuz Muhd Amin, Ahmad; Aris, Ishak; Syamsul Azmir Raja Abdullah, Raja; Kalos Zakiah Sahbudin, Ratna

    2011-02-01

    Embedded systems are taking on more complicated tasks as the processors involved become more powerful. The embedded systems have been widely used in many areas such as in industries, automotives, medical imaging, communications, speech recognition and computer vision. The complexity requirements in hardware and software nowadays need a flexibility system for further enhancement in any design without adding new hardware. Therefore, any changes in the design system will affect the processor that need to be changed. To overcome this problem, a System On Programmable Chip (SOPC) has been designed and developed using Field Programmable Gate Array (FPGA). A softcore processor, NIOS II 32-bit RISC, which is the microprocessor core was utilized in FPGA system together with the embedded operating system(OS), μClinux. In this paper, an example of web server is explained and demonstrated

  18. Embedded ubiquitous services on hospital information systems.

    PubMed

    Kuroda, Tomohiro; Sasaki, Hiroshi; Suenaga, Takatoshi; Masuda, Yasushi; Yasumuro, Yoshihiro; Hori, Kenta; Ohboshi, Naoki; Takemura, Tadamasa; Chihara, Kunihiro; Yoshihara, Hiroyuki

    2012-11-01

    A Hospital Information Systems (HIS) have turned a hospital into a gigantic computer with huge computational power, huge storage and wired/wireless local area network. On the other hand, a modern medical device, such as echograph, is a computer system with several functional units connected by an internal network named a bus. Therefore, we can embed such a medical device into the HIS by simply replacing the bus with the local area network. This paper designed and developed two embedded systems, a ubiquitous echograph system and a networked digital camera. Evaluations of the developed systems clearly show that the proposed approach, embedding existing clinical systems into HIS, drastically changes productivity in the clinical field. Once a clinical system becomes a pluggable unit for a gigantic computer system, HIS, the combination of multiple embedded systems with application software designed under deep consideration about clinical processes may lead to the emergence of disruptive innovation in the clinical field.

  19. Modelling safety of multistate systems with ageing components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kołowrocki, Krzysztof; Soszyńska-Budny, Joanna

    An innovative approach to safety analysis of multistate ageing systems is presented. Basic notions of the ageing multistate systems safety analysis are introduced. The system components and the system multistate safety functions are defined. The mean values and variances of the multistate systems lifetimes in the safety state subsets and the mean values of their lifetimes in the particular safety states are defined. The multi-state system risk function and the moment of exceeding by the system the critical safety state are introduced. Applications of the proposed multistate system safety models to the evaluation and prediction of the safty characteristics ofmore » the consecutive “m out of n: F” is presented as well.« less

  20. RESLanjut: The learning media for improve students understanding in embedded systems

    NASA Astrophysics Data System (ADS)

    Indrianto, Susanti, Meilia Nur Indah; Karina, Djunaidi

    2017-08-01

    The use of network in embedded system can be done with many kinds of network, with the use of mobile phones, bluetooths, modems, ethernet cards, wireless technology and so on. Using network in embedded system could help people to do remote controlling. On previous research, researchers found that many students have the ability to comprehend the basic concept of embedded system. They could also make embedded system tools but without network integration. And for that, a development is needed for the embedded system module. The embedded system practicum module design needs a prototype method in order to achieve the desired goal. The prototype method is often used in the real world. Or even, a prototype method is a part of products that consist of logic expression or external physical interface. The embedded system practicum module is meant to increase student comprehension of embedded system course, and also to encourage students to innovate on technology based tools. It is also meant to help teachers to teach the embedded system concept on the course. The student comprehension is hoped to increase with the use of practicum course.

  1. Quantitative safety assessment of air traffic control systems through system control capacity

    NASA Astrophysics Data System (ADS)

    Guo, Jingjing

    Quantitative Safety Assessments (QSA) are essential to safety benefit verification and regulations of developmental changes in safety critical systems like the Air Traffic Control (ATC) systems. Effectiveness of the assessments is particularly desirable today in the safe implementations of revolutionary ATC overhauls like NextGen and SESAR. QSA of ATC systems are however challenged by system complexity and lack of accident data. Extending from the idea "safety is a control problem" in the literature, this research proposes to assess system safety from the control perspective, through quantifying a system's "control capacity". A system's safety performance correlates to this "control capacity" in the control of "safety critical processes". To examine this idea in QSA of the ATC systems, a Control-capacity Based Safety Assessment Framework (CBSAF) is developed which includes two control capacity metrics and a procedural method. The two metrics are Probabilistic System Control-capacity (PSC) and Temporal System Control-capacity (TSC); each addresses an aspect of a system's control capacity. And the procedural method consists three general stages: I) identification of safety critical processes, II) development of system control models and III) evaluation of system control capacity. The CBSAF was tested in two case studies. The first one assesses an en-route collision avoidance scenario and compares three hypothetical configurations. The CBSAF was able to capture the uncoordinated behavior between two means of control, as was observed in a historic midair collision accident. The second case study compares CBSAF with an existing risk based QSA method in assessing the safety benefits of introducing a runway incursion alert system. Similar conclusions are reached between the two methods, while the CBSAF has the advantage of simplicity and provides a new control-based perspective and interpretation to the assessments. The case studies are intended to investigate the

  2. Future Data Communication Architectures for Safety Critical Aircraft Cabin Systems

    NASA Astrophysics Data System (ADS)

    Berkhahn, Sven-Olaf

    2012-05-01

    The cabin of modern aircraft is subject to increasing demands for fast reconfiguration and hence flexibility. These demands require studies for new network architectures and technologies of the electronic cabin systems, which consider also weight and cost reductions as well as safety constraints. Two major approaches are in consideration to reduce the complex and heavy wiring harness: the usage of a so called hybrid data bus technology, which enables the common usage of the same data bus for several electronic cabin systems with different safety and security requirements and the application of wireless data transfer technologies for electronic cabin systems.

  3. Safety Critical Mechanisms

    NASA Technical Reports Server (NTRS)

    Robertson, Brandan

    2008-01-01

    Spaceflight mechanisms have a reputation for being difficult to develop and operate successfully. This reputation is well earned. Many circumstances conspire to make this so: the environments in which the mechanisms are used are extremely severe, there is usually limited or no maintenance opportunity available during operation due to this environment, the environments are difficult to replicate accurately on the ground, the expense of the mechanism development makes it impractical to build and test many units for long periods of time before use, mechanisms tend to be highly specialized and not prone to interchangeability or off-the-shelf use, they can generate and store a lot of energy, and the nature of mechanisms themselves, as a combination of structures, electronics, etc. designed to accomplish specific dynamic performance, makes them very complex and subject to many unpredictable interactions of many types. In addition to their complexities, mechanism are often counted upon to provide critical vehicle functions that can result in catastrophic events should the functions not be performed. It is for this reason that mechanisms are frequently subjected to special scrutiny in safety processes. However, a failure tolerant approach, along with good design and development practices and detailed design reviews, can be developed to allow such notoriously troublesome mechanisms to be utilized confidently in safety-critical applications.

  4. Research and application of embedded real-time operating system

    NASA Astrophysics Data System (ADS)

    Zhang, Bo

    2013-03-01

    In this paper, based on the analysis of existing embedded real-time operating system, the architecture of an operating system is designed and implemented. The experimental results show that the design fully complies with the requirements of embedded real-time operating system, can achieve the purposes of reducing the complexity of embedded software design and improving the maintainability, reliability, flexibility. Therefore, this design program has high practical value.

  5. Embedded object concept with a telepresence robot system

    NASA Astrophysics Data System (ADS)

    Vallius, Tero; Röning, Juha

    2005-10-01

    This paper presents the Embedded Object Concept (EOC) and a telepresence robot system which is a test case for the EOC. The EOC utilizes common object-oriented methods used in software by applying them to combined Lego-like software-hardware entities. These entities represent objects in object-oriented design methods, and they are the building blocks of embedded systems. The goal of the EOC is to make the designing of embedded systems faster and easier. This concept enables people without comprehensive knowledge in electronics design to create new embedded systems, and for experts it shortens the design time of new embedded systems. We present the current status of the EOC, including two generations of embedded objects named Atomi objects. The first generation of the Atomi objects has been tested with different applications, and found to be functional, but not optimal. The second generation aims to correct the issues found with the first generation, and it is being tested in a relatively complex test case. The test case is a telepresence robot consisting of a two wheeled human height robot and its computer counter part. The robot has been constructed using incremental device development, which is made possible by the architecture of the EOC. The robot contains video and audio exchange capability, and a controlling and balancing system for driving with two wheels. The robot is built in two versions, the first consisting of a PDA device and Atomi objects, and the second consisting of only Atomi objects. The robot is currently incomplete, but for the most part it has been successfully tested.

  6. Nuclear criticality safety staff training and qualifications at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monahan, S.P.; McLaughlin, T.P.

    1997-05-01

    Operations involving significant quantities of fissile material have been conducted at Los Alamos National Laboratory continuously since 1943. Until the advent of the Laboratory`s Nuclear Criticality Safety Committee (NCSC) in 1957, line management had sole responsibility for controlling criticality risks. From 1957 until 1961, the NCSC was the Laboratory body which promulgated policy guidance as well as some technical guidance for specific operations. In 1961 the Laboratory created the position of Nuclear Criticality Safety Office (in addition to the NCSC). In 1980, Laboratory management moved the Criticality Safety Officer (and one other LACEF staff member who, by that time, wasmore » also working nearly full-time on criticality safety issues) into the Health Division office. Later that same year the Criticality Safety Group, H-6 (at that time) was created within H-Division, and staffed by these two individuals. The training and education of these individuals in the art of criticality safety was almost entirely self-regulated, depending heavily on technical interactions between each other, as well as NCSC, LACEF, operations, other facility, and broader criticality safety community personnel. Although the Los Alamos criticality safety group has grown both in size and formality of operations since 1980, the basic philosophy that a criticality specialist must be developed through mentoring and self motivation remains the same. Formally, this philosophy has been captured in an internal policy, document ``Conduct of Business in the Nuclear Criticality Safety Group.`` There are no short cuts or substitutes in the development of a criticality safety specialist. A person must have a self-motivated personality, excellent communications skills, a thorough understanding of the principals of neutron physics, a safety-conscious and helpful attitude, a good perspective of real risk, as well as a detailed understanding of process operations and credible upsets.« less

  7. A telepresence robot system realized by embedded object concept

    NASA Astrophysics Data System (ADS)

    Vallius, Tero; Röning, Juha

    2006-10-01

    This paper presents the Embedded Object Concept (EOC) and a telepresence robot system which is a test case for the EOC. The EOC utilizes common object-oriented methods used in software by applying them to combined Lego-like software-hardware entities. These entities represent objects in object-oriented design methods, and they are the building blocks of embedded systems. The goal of the EOC is to make the designing embedded systems faster and easier. This concept enables people without comprehensive knowledge in electronics design to create new embedded systems, and for experts it shortens the design time of new embedded systems. We present the current status of a telepresence robot created with second-generation Atomi-objects, which is the name for our implementation of the embedded objects. The telepresence robot is a relatively complex test case for the EOC. The robot has been constructed using incremental device development, which is made possible by the architecture of the EOC. The robot contains video and audio exchange capability and a controlling system for driving with two wheels. The robot is built in two versions, the first consisting of a PC device and Atomi-objects, and the second consisting of only Atomi-objects. The robot is currently incomplete, but most of it has been successfully tested.

  8. Additional nuclear criticality safety calculations for small-diameter containers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hone, M.J.

    This report documents additional criticality safety analysis calculations for small diameter containers, which were originally documented in Reference 1. The results in Reference 1 indicated that some of the small diameter containers did not meet the criteria established for criticality safety at the Portsmouth facility (K{sub eff} +2{sigma}<.95) when modeled under various contingency assumptions of reflection and moderation. The calculations performed in this report reexamine those cases which did not meet the criticality safety criteria. In some cases, unnecessary conservatism is removed, and in other cases mass or assay limits are established for use with the respective containers.

  9. Nanotechnology and MEMS-based systems for civil infrastructure safety and security: Opportunities and challenges

    NASA Astrophysics Data System (ADS)

    Robinson, Nidia; Saafi, Mohamed

    2006-03-01

    Critical civil infrastructure systems such as bridges, high rises, dams, nuclear power plants and pipelines present a major investment and the health of the United States' economy and the lifestyle of its citizens both depend on their safety and security. The challenge for engineers is to maintain the safety and security of these large structures in the face of terrorism threats, natural disasters and long-term deterioration, as well as to meet the demands of emergency response times. With the significant negative impact that these threats can have on the structural environment, health monitoring of civil infrastructure holds promise as a way to provide information for near real-time condition assessment of the structure's safety and security. This information can be used to assess the integrity of the structure for post-earthquake and terrorist attacks rescue and recovery, and to safely and rapidly remove the debris and to temporary shore specific structural elements. This information can also be used for identification of incipient damage in structures experiencing long-term deterioration. However, one of the major obstacles preventing sensor-based monitoring is the lack of reliable, easy-to-install, cost-effective and harsh environment resistant sensors that can be densely embedded into large-scale civil infrastructure systems. Nanotechnology and MEMS-based systems which have matured in recent years represent an innovative solution to current damage detection systems, leading to wireless, inexpensive, durable, compact, and high-density information collection. In this paper, ongoing research activities at Alabama A&M University (AAMU) Center for Transportation Infrastructure Safety and Security on the application of nanotechnology and MEMS to Civil Infrastructure for health monitoring will presented. To date, research showed that nanotechnology and MEMS-based systems can be used to wirelessly detect and monitor different damage mechanisms in concrete structures

  10. Medication safety infrastructure in critical-access hospitals in Florida.

    PubMed

    Winterstein, Almut G; Hartzema, Abraham G; Johns, Thomas E; De Leon, Jessica M; McDonald, Kathie; Henshaw, Zak; Pannell, Robert

    2006-03-01

    The medication safety infrastructure of critical-access hospitals (CAHs) in Florida was evaluated. Qualitative assessments, including a self-administered survey and site visits, were conducted in seven of nine CAHs between January and June 2003. The survey consisted of the Institute for Safe Medication Practices Medication Safety Self-assessment, the 2003 Joint Commission on Accreditation of Healthcare Organizations patient safety goals, health information technology (HIT) questions, and medication-use-process flow charts. On-site visits included interviews of CAH personnel who had safety responsibility and inspections of pharmacy facilities. The findings were compiled into a matrix reflecting structural and procedural components of the CAH medication safety infrastructure. The nine characteristics that emerged as targets for quality improvement (QI) were medication accessibility and storage, sterile product compounding, access to drug information, access to and utilization of patient information in medication order review, advanced safety technology, drug formularies and standardized medication protocols, safety culture, and medication reconciliation. Based on weighted importance and feasibility, QI efforts in CAHs should focus on enhancing medication order review systems, standardizing procedures for handling high-risk medications, promoting an appropriate safety culture, involvement in seamless care, and investment in HIT.

  11. The Shale Hills Critical Zone Observatory for Embedded Sensing and Simulation

    NASA Astrophysics Data System (ADS)

    Duffy, C.; Davis, K.; Kane, T.; Boyer, E.

    2009-04-01

    The future of environmental observing systems will utilize embedded sensor networks with continuous real-time measurement of hydrologic, atmospheric, biogeochemical, and ecological variables across diverse terrestrial environments. Embedded environmental sensors, benefitting from advances in information sciences, networking technology, materials science, computing capacity, and data synthesis methods, are undergoing revolutionary change. It is now possible to field spatially-distributed, multi-node sensor networks that provide density and spatial coverage previously accessible only via numerical simulation. At the same time, computational tools are advancing rapidly to the point where it is now possible to simulate the physical processes controlling individual parcels of water and solutes through the complete terrestrial water cycle. Our goal for the Penn State Critical Zone Observatory is to apply environmental sensor arrays, integrated hydrologic models deployed and coordinated at a testbed within the Penn State Experimental Forest. The NSF-funded CZO is designed to observe the detailed space and time complexities of the water and energy cycle for a watershed and ultimately the river basin for all physical states and fluxes (groundwater, soil moisture, temperature, streamflow, latent heat, snowmelt, chemistry, isotopes etc.). Presently fully-coupled physical models are being developed that link the atmosphere-land-vegetation-subsurface system into a fully-coupled distributed system. During the last 5 years the Penn State Integrated Hydrologic Modeling System has been under development as an open-source community modeling project funded by NSF EAR/GEO and NSF CBET/ENG. PIHM represents a strategy for the formulation and solution of fully-coupled process equations at the watershed and river basin scales, and includes a tightly coupled GIS tool for data handling, domain decomposition, optimal unstructured grid generation, and model parameterization. (PIHM; http

  12. Tools for Embedded Computing Systems Software

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A workshop was held to assess the state of tools for embedded systems software and to determine directions for tool development. A synopsis of the talk and the key figures of each workshop presentation, together with chairmen summaries, are presented. The presentations covered four major areas: (1) tools and the software environment (development and testing); (2) tools and software requirements, design, and specification; (3) tools and language processors; and (4) tools and verification and validation (analysis and testing). The utility and contribution of existing tools and research results for the development and testing of embedded computing systems software are described and assessed.

  13. Heartbeat-based error diagnosis framework for distributed embedded systems

    NASA Astrophysics Data System (ADS)

    Mishra, Swagat; Khilar, Pabitra Mohan

    2012-01-01

    Distributed Embedded Systems have significant applications in automobile industry as steer-by-wire, fly-by-wire and brake-by-wire systems. In this paper, we provide a general framework for fault detection in a distributed embedded real time system. We use heartbeat monitoring, check pointing and model based redundancy to design a scalable framework that takes care of task scheduling, temperature control and diagnosis of faulty nodes in a distributed embedded system. This helps in diagnosis and shutting down of faulty actuators before the system becomes unsafe. The framework is designed and tested using a new simulation model consisting of virtual nodes working on a message passing system.

  14. Heartbeat-based error diagnosis framework for distributed embedded systems

    NASA Astrophysics Data System (ADS)

    Mishra, Swagat; Khilar, Pabitra Mohan

    2011-12-01

    Distributed Embedded Systems have significant applications in automobile industry as steer-by-wire, fly-by-wire and brake-by-wire systems. In this paper, we provide a general framework for fault detection in a distributed embedded real time system. We use heartbeat monitoring, check pointing and model based redundancy to design a scalable framework that takes care of task scheduling, temperature control and diagnosis of faulty nodes in a distributed embedded system. This helps in diagnosis and shutting down of faulty actuators before the system becomes unsafe. The framework is designed and tested using a new simulation model consisting of virtual nodes working on a message passing system.

  15. An integrated compact airborne multispectral imaging system using embedded computer

    NASA Astrophysics Data System (ADS)

    Zhang, Yuedong; Wang, Li; Zhang, Xuguo

    2015-08-01

    An integrated compact airborne multispectral imaging system using embedded computer based control system was developed for small aircraft multispectral imaging application. The multispectral imaging system integrates CMOS camera, filter wheel with eight filters, two-axis stabilized platform, miniature POS (position and orientation system) and embedded computer. The embedded computer has excellent universality and expansibility, and has advantages in volume and weight for airborne platform, so it can meet the requirements of control system of the integrated airborne multispectral imaging system. The embedded computer controls the camera parameters setting, filter wheel and stabilized platform working, image and POS data acquisition, and stores the image and data. The airborne multispectral imaging system can connect peripheral device use the ports of the embedded computer, so the system operation and the stored image data management are easy. This airborne multispectral imaging system has advantages of small volume, multi-function, and good expansibility. The imaging experiment results show that this system has potential for multispectral remote sensing in applications such as resource investigation and environmental monitoring.

  16. Failure Modes Effects and Criticality Analysis, an Underutilized Safety, Reliability, Project Management and Systems Engineering Tool

    NASA Astrophysics Data System (ADS)

    Mullin, Daniel Richard

    2013-09-01

    The majority of space programs whether manned or unmanned for science or exploration require that a Failure Modes Effects and Criticality Analysis (FMECA) be performed as part of their safety and reliability activities. This comes as no surprise given that FMECAs have been an integral part of the reliability engineer's toolkit since the 1950s. The reasons for performing a FMECA are well known including fleshing out system single point failures, system hazards and critical components and functions. However, in the author's ten years' experience as a space systems safety and reliability engineer, findings demonstrate that the FMECA is often performed as an afterthought, simply to meet contract deliverable requirements and is often started long after the system requirements allocation and preliminary design have been completed. There are also important qualitative and quantitative components often missing which can provide useful data to all of project stakeholders. These include; probability of occurrence, probability of detection, time to effect and time to detect and, finally, the Risk Priority Number. This is unfortunate as the FMECA is a powerful system design tool that when used effectively, can help optimize system function while minimizing the risk of failure. When performed as early as possible in conjunction with writing the top level system requirements, the FMECA can provide instant feedback on the viability of the requirements while providing a valuable sanity check early in the design process. It can indicate which areas of the system will require redundancy and which areas are inherently the most risky from the onset. Based on historical and practical examples, it is this author's contention that FMECAs are an immense source of important information for all involved stakeholders in a given project and can provide several benefits including, efficient project management with respect to cost and schedule, system engineering and requirements management

  17. Selecting an Architecture for a Safety-Critical Distributed Computer System with Power, Weight and Cost Considerations

    NASA Technical Reports Server (NTRS)

    Torres-Pomales, Wilfredo

    2014-01-01

    This report presents an example of the application of multi-criteria decision analysis to the selection of an architecture for a safety-critical distributed computer system. The design problem includes constraints on minimum system availability and integrity, and the decision is based on the optimal balance of power, weight and cost. The analysis process includes the generation of alternative architectures, evaluation of individual decision criteria, and the selection of an alternative based on overall value. In this example presented here, iterative application of the quantitative evaluation process made it possible to deliberately generate an alternative architecture that is superior to all others regardless of the relative importance of cost.

  18. Definition and means of maintaining the criticality detectors and alarms portion of the PFP safety envelope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, W.F.

    The purpose of this document is to provide the definition and means of maintaining the Safety Envelope (SE) related to the Criticality Alarm System (CAS). This document provides amplification of the Limiting Condition for Operation (LCO) described in the Plutonium Finishing Plant (PFP) Operational Safety Requirements (OSR), WHC-SD-CP-OSR-010, Rev. 0, 1994, Section 3.1.2, Criticality Detectors and Alarms. This document, with its appendices, provides the following: (1) System functional requirements for determining system operability (Section 3); (2) A list of annotated system block diagrams which indicate the safety envelope boundaries (Appendix C); (3) A list of the Safety Class 1 andmore » 2 Safety Envelope (SC-1/2 SE) equipment for input into the Master Component Index (Appendix B); (4) Functional requirements for individual SC-1/2 SE components, including appropriate setpoints and process parameters (Section 6 and Appendix A); (5) A list of the operational, maintenance and surveillance procedures necessary to operate and maintain the SC-1/2 SE components as required by the LCO (Section 6 and Appendix A).« less

  19. ETHERNET BASED EMBEDDED SYSTEM FOR FEL DIAGNOSTICS AND CONTROLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jianxun Yan; Daniel Sexton; Steven Moore

    2006-10-24

    An Ethernet based embedded system has been developed to upgrade the Beam Viewer and Beam Position Monitor (BPM) systems within the free-electron laser (FEL) project at Jefferson Lab. The embedded microcontroller was mounted on the front-end I/O cards with software packages such as Experimental Physics and Industrial Control System (EPICS) and Real Time Executive for Multiprocessor System (RTEMS) running as an Input/Output Controller (IOC). By cross compiling with the EPICS, the RTEMS kernel, IOC device supports, and databases all of these can be downloaded into the microcontroller. The first version of the BPM electronics based on the embedded controller wasmore » built and is currently running in our FEL system. The new version of BPM that will use a Single Board IOC (SBIOC), which integrates with an Field Programming Gate Array (FPGA) and a ColdFire embedded microcontroller, is presently under development. The new system has the features of a low cost IOC, an open source real-time operating system, plug&play-like ease of installation and flexibility, and provides a much more localized solution.« less

  20. Assuring NASA's Safety and Mission Critical Software

    NASA Technical Reports Server (NTRS)

    Deadrick, Wesley

    2015-01-01

    What is IV&V? Independent Verification and Validation (IV&V) is an objective examination of safety and mission critical software processes and products. Independence: 3 Key parameters: Technical Independence; Managerial Independence; Financial Independence. NASA IV&V perspectives: Will the system's software: Do what it is supposed to do?; Not do what it is not supposed to do?; Respond as expected under adverse conditions?. Systems Engineering: Determines if the right system has been built and that it has been built correctly. IV&V Technical Approaches: Aligned with IEEE 1012; Captured in a Catalog of Methods; Spans the full project lifecycle. IV&V Assurance Strategy: The IV&V Project's strategy for providing mission assurance; Assurance Strategy is driven by the specific needs of an individual project; Implemented via an Assurance Design; Communicated via Assurance Statements.

  1. Embedded optical interconnect technology in data storage systems

    NASA Astrophysics Data System (ADS)

    Pitwon, Richard C. A.; Hopkins, Ken; Milward, Dave; Muggeridge, Malcolm

    2010-05-01

    As both data storage interconnect speeds increase and form factors in hard disk drive technologies continue to shrink, the density of printed channels on the storage array midplane goes up. The dominant interconnect protocol on storage array midplanes is expected to increase to 12 Gb/s by 2012 thereby exacerbating the performance bottleneck in future digital data storage systems. The design challenges inherent to modern data storage systems are discussed and an embedded optical infrastructure proposed to mitigate this bottleneck. The proposed solution is based on the deployment of an electro-optical printed circuit board and active interconnect technology. The connection architecture adopted would allow for electronic line cards with active optical edge connectors to be plugged into and unplugged from a passive electro-optical midplane with embedded polymeric waveguides. A demonstration platform has been developed to assess the viability of embedded electro-optical midplane technology in dense data storage systems and successfully demonstrated at 10.3 Gb/s. Active connectors incorporate optical transceiver interfaces operating at 850 nm and are connected in an in-plane coupling configuration to the embedded waveguides in the midplane. In addition a novel method of passively aligning and assembling passive optical devices to embedded polymer waveguide arrays has also been demonstrated.

  2. Criticality Safety Evaluation of the LLNL Inherently Safe Subcritical Assembly (ISSA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Percher, Catherine

    2012-06-19

    The LLNL Nuclear Criticality Safety Division has developed a training center to illustrate criticality safety and reactor physics concepts through hands-on experimental training. The experimental assembly, the Inherently Safe Subcritical Assembly (ISSA), uses surplus highly enriched research reactor fuel configured in a water tank. The training activities will be conducted by LLNL following the requirements of an Integration Work Sheet (IWS) and associated Safety Plan. Students will be allowed to handle the fissile material under the supervision of LLNL instructors. This report provides the technical criticality safety basis for instructional operations with the ISSA experimental assembly.

  3. System modeling with the DISC framework: evidence from safety-critical domains.

    PubMed

    Reiman, Teemu; Pietikäinen, Elina; Oedewald, Pia; Gotcheva, Nadezhda

    2012-01-01

    The objective of this paper is to illustrate the development and application of the Design for Integrated Safety Culture (DISC) framework for system modeling by evaluating organizational potential for safety in nuclear and healthcare domains. The DISC framework includes criteria for good safety culture and a description of functions that the organization needs to implement in order to orient the organization toward the criteria. Three case studies will be used to illustrate the utilization of the DISC framework in practice.

  4. Data entry and error embedding system

    NASA Technical Reports Server (NTRS)

    Woo, Daniel N. (Inventor); Woo, Jr., John (Inventor)

    1998-01-01

    A data entry and error embedding system in which, first, a document is bitmapped and recorded in a first memory. Then, it is displayed, and portions of it to be replicated by data entry are underlayed by a window, into which window replicated data is entered in location and size such that it is juxtaposed just below that which is replicated, enhancing the accuracy of replication. Second, with this format in place, selected portions of the replicated data are altered by the insertion of character or word substitutions, thus the embedding of errors. Finally, a proofreader would endeavor to correct the error embedded data and a record of his or her changes recorded. In this manner, the skill level of the proofreader and accuracy of the data are computed.

  5. Embedded system of image storage based on fiber channel

    NASA Astrophysics Data System (ADS)

    Chen, Xiaodong; Su, Wanxin; Xing, Zhongbao; Wang, Hualong

    2008-03-01

    In domains of aerospace, aviation, aiming, and optic measure etc., the embedded system of imaging, processing and recording is absolutely necessary, which has small volume, high processing speed and high resolution. But the embedded storage technology becomes system bottleneck because of developing slowly. It is used to use RAID to promote storage speed, but it is unsuitable for the embedded system because of its big volume. Fiber channel (FC) technology offers a new method to develop the high-speed, portable storage system. In order to make storage subsystem meet the needs of high storage rate, make use of powerful Virtex-4 FPGA and high speed fiber channel, advance a project of embedded system of digital image storage based on Xilinx Fiber Channel Arbitrated Loop LogiCORE. This project utilizes Virtex- 4 RocketIO MGT transceivers to transmit the data serially, and connects many Fiber Channel hard drivers by using of Arbitrated Loop optionally. It can achieve 400MBps storage rate, breaks through the bottleneck of PCI interface, and has excellences of high-speed, real-time, portable and massive capacity.

  6. A new technology perspective and engineering tools approach for large, complex and distributed mission and safety critical systems components

    NASA Technical Reports Server (NTRS)

    Carrio, Miguel A., Jr.

    1988-01-01

    Rapidly emerging technology and methodologies have out-paced the systems development processes' ability to use them effectively, if at all. At the same time, the tools used to build systems are becoming obsolescent themselves as a consequence of the same technology lag that plagues systems development. The net result is that systems development activities have not been able to take advantage of available technology and have become equally dependent on aging and ineffective computer-aided engineering tools. New methods and tools approaches are essential if the demands of non-stop and Mission and Safety Critical (MASC) components are to be met.

  7. Medication safety in the home care setting: Development and piloting of a Critical Incident Reporting System

    PubMed

    Meyer-Massetti, Carla; Krummenacher, Evelyne; Hedinger-Grogg, Barbara; Luterbacher, Stephan; Hersberger, Kurt E

    2016-09-01

    Background: While drug-related problems are among the most frequent adverse events in health care, little is known about their type and prevalence in home care in the current literature. The use of a Critical Incident Reporting System (CIRS), known as an economic and efficient tool to record medication errors for subsequent analysis, is widely implemented in inpatient care, but less established in ambulatory care. Recommendations on a possible format are scarce. A manual CIRS was developed based on the literature and subsequently piloted and implemented in a Swiss home care organization. Aim: The aim of this work was to implement a critical incident reporting system specifically for medication safety in home care. Results: The final CIRS form was well accepted among staff. Requiring limited resources, it allowed preliminary identification and trending of medication errors in home care. The most frequent error reports addressed medication preparation at the patients’ home, encompassing the following errors: omission (30 %), wrong dose (17.5 %) and wrong time (15 %). The most frequent underlying causes were related to working conditions (37.9 %), lacking attention (68.2 %), time pressure (22.7 %) and interruptions by patients (9.1 %). Conclusions: A manual CIRS allowed efficient data collection and subsequent analysis of medication errors in order to plan future interventions for improvement of medication safety. The development of an electronic CIRS would allow a reduction of the expenditure of time regarding data collection and analysis. In addition, it would favour the development of a national CIRS network among home care institutions.

  8. Cluster Computing for Embedded/Real-Time Systems

    NASA Technical Reports Server (NTRS)

    Katz, D.; Kepner, J.

    1999-01-01

    Embedded and real-time systems, like other computing systems, seek to maximize computing power for a given price, and thus can significantly benefit from the advancing capabilities of cluster computing.

  9. 48 CFR 252.209-7010 - Critical Safety Items.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... personal injury or loss of life; or (iii) An uncommanded engine shutdown that jeopardizes safety. Design... personal injury or loss of life. (b) Identification of critical safety items. One or more of the items... control activity: (Insert additional lines as necessary) (c) Heightened quality assurance surveillance...

  10. 48 CFR 252.209-7010 - Critical Safety Items.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... personal injury or loss of life; or (iii) An uncommanded engine shutdown that jeopardizes safety. Design... personal injury or loss of life. (b) Identification of critical safety items. One or more of the items... control activity: (Insert additional lines as necessary) (c) Heightened quality assurance surveillance...

  11. 48 CFR 252.209-7010 - Critical Safety Items.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... personal injury or loss of life; or (iii) An uncommanded engine shutdown that jeopardizes safety. Design... personal injury or loss of life. (b) Identification of critical safety items. One or more of the items... control activity: (Insert additional lines as necessary) (c) Heightened quality assurance surveillance...

  12. 48 CFR 252.209-7010 - Critical Safety Items.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... personal injury or loss of life; or (iii) An uncommanded engine shutdown that jeopardizes safety. Design... personal injury or loss of life. (b) Identification of critical safety items. One or more of the items... control activity: (Insert additional lines as necessary) (c) Heightened quality assurance surveillance...

  13. System safety in Stirling engine development

    NASA Technical Reports Server (NTRS)

    Bankaitis, H.

    1981-01-01

    The DOE/NASA Stirling Engine Project Office has required that contractors make safety considerations an integral part of all phases of the Stirling engine development program. As an integral part of each engine design subtask, analyses are evolved to determine possible modes of failure. The accepted system safety analysis techniques (Fault Tree, FMEA, Hazards Analysis, etc.) are applied in various degrees of extent at the system, subsystem and component levels. The primary objectives are to identify critical failure areas, to enable removal of susceptibility to such failures or their effects from the system and to minimize risk.

  14. Validation and Verification (V&V) of Safety-Critical Systems Operating Under Off-Nominal Conditions

    NASA Technical Reports Server (NTRS)

    Belcastro, Christine M.

    2012-01-01

    Loss of control (LOC) remains one of the largest contributors to aircraft fatal accidents worldwide. Aircraft LOC accidents are highly complex in that they can result from numerous causal and contributing factors acting alone or more often in combination. Hence, there is no single intervention strategy to prevent these accidents. Research is underway at the National Aeronautics and Space Administration (NASA) in the development of advanced onboard system technologies for preventing or recovering from loss of vehicle control and for assuring safe operation under off-nominal conditions associated with aircraft LOC accidents. The transition of these technologies into the commercial fleet will require their extensive validation and verification (V&V) and ultimate certification. The V&V of complex integrated systems poses highly significant technical challenges and is the subject of a parallel research effort at NASA. This chapter summarizes the V&V problem and presents a proposed process that could be applied to complex integrated safety-critical systems developed for preventing aircraft LOC accidents. A summary of recent research accomplishments in this effort is referenced.

  15. Module Embedded Micro-inverter Smart Grid Ready Residential Solar Electric System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agamy, Mohammed

    The “Module Embedded Micro-inverter Smart Grid Ready Residential Solar Electric System” program is focused on developing innovative concepts for residential photovoltaic (PV) systems with the following objectives: to create an Innovative micro-inverter topology that reduces the cost from the best in class micro-inverter and provides high efficiency (>96% CEC - California Energy Commission), and 25+ year warranty, as well as reactive power support; integrate micro-inverter and PV module to reduce system price by at least $0.25/W through a) accentuating dual use of the module metal frame as a large area heat spreader reducing operating temperature, and b) eliminating redundant wiringmore » and connectors; and create micro-inverter controller handles smart grid and safety functions to simplify implementation and reduce cost.« less

  16. Implementation of image transmission server system using embedded Linux

    NASA Astrophysics Data System (ADS)

    Park, Jong-Hyun; Jung, Yeon Sung; Nam, Boo Hee

    2005-12-01

    In this paper, we performed the implementation of image transmission server system using embedded system that is for the specified object and easy to install and move. Since the embedded system has lower capability than the PC, we have to reduce the quantity of calculation of the baseline JPEG image compression and transmission. We used the Redhat Linux 9.0 OS at the host PC and the target board based on embedded Linux. The image sequences are obtained from the camera attached to the FPGA (Field Programmable Gate Array) board with ALTERA cooperation chip. For effectiveness and avoiding some constraints from the vendor's own, we made the device driver using kernel module.

  17. 76 FR 52138 - Defense Federal Acquisition Regulation Supplement; Identification of Critical Safety Items (DFARS...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-19

    ...; or (iii) An uncommanded engine shutdown that jeopardizes safety. Design control activity. (i) With... aviation critical safety item is to be used; and (ii) With respect to a ship critical safety item, means...-AG92 Defense Federal Acquisition Regulation Supplement; Identification of Critical Safety Items (DFARS...

  18. Safety Metrics for Human-Computer Controlled Systems

    NASA Technical Reports Server (NTRS)

    Leveson, Nancy G; Hatanaka, Iwao

    2000-01-01

    The rapid growth of computer technology and innovation has played a significant role in the rise of computer automation of human tasks in modem production systems across all industries. Although the rationale for automation has been to eliminate "human error" or to relieve humans from manual repetitive tasks, various computer-related hazards and accidents have emerged as a direct result of increased system complexity attributed to computer automation. The risk assessment techniques utilized for electromechanical systems are not suitable for today's software-intensive systems or complex human-computer controlled systems.This thesis will propose a new systemic model-based framework for analyzing risk in safety-critical systems where both computers and humans are controlling safety-critical functions. A new systems accident model will be developed based upon modem systems theory and human cognitive processes to better characterize system accidents, the role of human operators, and the influence of software in its direct control of significant system functions Better risk assessments will then be achievable through the application of this new framework to complex human-computer controlled systems.

  19. Nuclear Data Activities in Support of the DOE Nuclear Criticality Safety Program

    NASA Astrophysics Data System (ADS)

    Westfall, R. M.; McKnight, R. D.

    2005-05-01

    The DOE Nuclear Criticality Safety Program (NCSP) provides the technical infrastructure maintenance for those technologies applied in the evaluation and performance of safe fissionable-material operations in the DOE complex. These technologies include an Analytical Methods element for neutron transport as well as the development of sensitivity/uncertainty methods, the performance of Critical Experiments, evaluation and qualification of experiments as Benchmarks, and a comprehensive Nuclear Data program coordinated by the NCSP Nuclear Data Advisory Group (NDAG). The NDAG gathers and evaluates differential and integral nuclear data, identifies deficiencies, and recommends priorities on meeting DOE criticality safety needs to the NCSP Criticality Safety Support Group (CSSG). Then the NDAG identifies the required resources and unique capabilities for meeting these needs, not only for performing measurements but also for data evaluation with nuclear model codes as well as for data processing for criticality safety applications. The NDAG coordinates effort with the leadership of the National Nuclear Data Center, the Cross Section Evaluation Working Group (CSEWG), and the Working Party on International Evaluation Cooperation (WPEC) of the OECD/NEA Nuclear Science Committee. The overall objective is to expedite the issuance of new data and methods to the DOE criticality safety user. This paper describes these activities in detail, with examples based upon special studies being performed in support of criticality safety for a variety of DOE operations.

  20. Scheduling of network access for feedback-based embedded systems

    NASA Astrophysics Data System (ADS)

    Liberatore, Vincenzo

    2002-07-01

    nd communication capabilities. Examples range from smart dust embedded in building materials to networks of appliances in the home. Embedded devices will be deployed in unprecedented numbers, will enable pervasive distributed computing, and will radically change the way people interact with the surrounding environment [EGH00a]. The paper targets embedded systems and their real-time (RT) communication requirements. RT requirements arise from the

  1. Model Transformation for a System of Systems Dependability Safety Case

    NASA Technical Reports Server (NTRS)

    Murphy, Judy; Driskell, Stephen B.

    2010-01-01

    Software plays an increasingly larger role in all aspects of NASA's science missions. This has been extended to the identification, management and control of faults which affect safety-critical functions and by default, the overall success of the mission. Traditionally, the analysis of fault identification, management and control are hardware based. Due to the increasing complexity of system, there has been a corresponding increase in the complexity in fault management software. The NASA Independent Validation & Verification (IV&V) program is creating processes and procedures to identify, and incorporate safety-critical software requirements along with corresponding software faults so that potential hazards may be mitigated. This Specific to Generic ... A Case for Reuse paper describes the phases of a dependability and safety study which identifies a new, process to create a foundation for reusable assets. These assets support the identification and management of specific software faults and, their transformation from specific to generic software faults. This approach also has applications to other systems outside of the NASA environment. This paper addresses how a mission specific dependability and safety case is being transformed to a generic dependability and safety case which can be reused for any type of space mission with an emphasis on software fault conditions.

  2. Investigation of criticality safety control infraction data at a nuclear facility

    DOE PAGES

    Cournoyer, Michael E.; Merhege, James F.; Costa, David A.; ...

    2014-10-27

    Chemical and metallurgical operations involving plutonium and other nuclear materials account for most activities performed at the LANL's Plutonium Facility (PF-4). The presence of large quantities of fissile materials in numerous forms at PF-4 makes it necessary to maintain an active criticality safety program. The LANL Nuclear Criticality Safety (NCS) Program provides guidance to enable efficient operations while ensuring prevention of criticality accidents in the handling, storing, processing and transportation of fissionable material at PF-4. In order to achieve and sustain lower criticality safety control infraction (CSCI) rates, PF-4 operations are continuously improved, through the use of Lean Manufacturing andmore » Six Sigma (LSS) business practices. Employing LSS, statistically significant variations (trends) can be identified in PF-4 CSCI reports. In this study, trends have been identified in the NCS Program using the NCS Database. An output metric has been developed that measures ADPSM Management progress toward meeting its NCS objectives and goals. Using a Pareto Chart, the primary CSCI attributes have been determined in order of those requiring the most management support. Data generated from analysis of CSCI data help identify and reduce number of corresponding attributes. In-field monitoring of CSCI's contribute to an organization's scientific and technological excellence by providing information that can be used to improve criticality safety operation safety. This increases technical knowledge and augments operational safety.« less

  3. Critical Friendship and Critical Orphanship: Embedded Research of an English Local Authority Initiative

    ERIC Educational Resources Information Center

    Duggan, James R.

    2014-01-01

    The article engages with the opportunities and constraints raised by embedded research during times of rapid and extensive organisational change. Embedded research is an increasingly common approach for funding PhD studentships. The rapid and extensive reforms of the English public sector pose significant and underexplored challenges for embedded…

  4. Instructional games and activities for criticality safety training

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bullard, B.; McBride, J.

    1993-01-01

    During the past several years, the Training and Management Systems Division (TMSD) staff of Oak Ridge Institute for Science and Education (ORISE) has designed and developed nuclear criticality safety (NCS) training programs that focus on high trainee involvement through the use of instructional games and activities. This paper discusses the instructional game, initial considerations for developing games, advantages and limitations of games, and how games may be used in developing and implementing NCS training. It also provides examples of the various instructional games and activities used in separate courses designed for Martin Marietta Energy Systems (MMES's) supervisors and U.S. Nuclearmore » Regulatory Commission (NRC) fuel facility inspectors.« less

  5. Lecture Notes on Criticality Safety Validation Using MCNP & Whisper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Forrest B.; Rising, Michael Evan; Alwin, Jennifer Louise

    Training classes for nuclear criticality safety, MCNP documentation. The need for, and problems surrounding, validation of computer codes and data area considered first. Then some background for MCNP & Whisper is given--best practices for Monte Carlo criticality calculations, neutron spectra, S(α,β) thermal neutron scattering data, nuclear data sensitivities, covariance data, and correlation coefficients. Whisper is computational software designed to assist the nuclear criticality safety analyst with validation studies with the Monte Carlo radiation transport package MCNP. Whisper's methodology (benchmark selection – C k's, weights; extreme value theory – bias, bias uncertainty; MOS for nuclear data uncertainty – GLLS) and usagemore » are discussed.« less

  6. An Embedded Sensory System for Worker Safety: Prototype Development and Evaluation

    PubMed Central

    Cho, Chunhee; Park, JeeWoong

    2018-01-01

    At a construction site, workers mainly rely on two senses, which are sight and sound, in order to perceive their physical surroundings. However, they are often hindered by the nature of most construction sites, which are usually dynamic, loud, and complicated. To overcome these challenges, this research explored a method using an embedded sensory system that might offer construction workers an artificial sensing ability to better perceive their surroundings. This study identified three parameters (i.e., intensity, signal length, and delay between consecutive pulses) needed for tactile-based signals for the construction workers to communicate quickly. We developed a prototype system based on these parameters, conducted experimental studies to quantify and validate the sensitivity of the parameters for quick communication, and analyzed test data to reveal what was added by this method in order to perceive information from the tactile signals. The findings disclosed that the parameters of tactile-based signals and their distinguishable ranges could be perceived in a short amount of time (i.e., a fraction of a second). Further experimentation demonstrated the capability of the identified unit signals combined with a signal mapping technique to effectively deliver simple information to individuals and offer an additional sense of awareness to the surroundings. The findings of this study could serve as a basis for future research in exploring advanced tactile-based messages to overcome challenges in environments for which communication is a struggle. PMID:29662008

  7. An Embedded Sensory System for Worker Safety: Prototype Development and Evaluation.

    PubMed

    Cho, Chunhee; Park, JeeWoong

    2018-04-14

    At a construction site, workers mainly rely on two senses, which are sight and sound, in order to perceive their physical surroundings. However, they are often hindered by the nature of most construction sites, which are usually dynamic, loud, and complicated. To overcome these challenges, this research explored a method using an embedded sensory system that might offer construction workers an artificial sensing ability to better perceive their surroundings. This study identified three parameters (i.e., intensity, signal length, and delay between consecutive pulses) needed for tactile-based signals for the construction workers to communicate quickly. We developed a prototype system based on these parameters, conducted experimental studies to quantify and validate the sensitivity of the parameters for quick communication, and analyzed test data to reveal what was added by this method in order to perceive information from the tactile signals. The findings disclosed that the parameters of tactile-based signals and their distinguishable ranges could be perceived in a short amount of time (i.e., a fraction of a second). Further experimentation demonstrated the capability of the identified unit signals combined with a signal mapping technique to effectively deliver simple information to individuals and offer an additional sense of awareness to the surroundings. The findings of this study could serve as a basis for future research in exploring advanced tactile-based messages to overcome challenges in environments for which communication is a struggle.

  8. Influence Map Methodology for Evaluating Systemic Safety Issues

    NASA Technical Reports Server (NTRS)

    2008-01-01

    "Raising the bar" in safety performance is a critical challenge for many organizations, including Kennedy Space Center. Contributing-factor taxonomies organize information about the reasons accidents occur and therefore are essential elements of accident investigations and safety reporting systems. Organizations must balance efforts to identify causes of specific accidents with efforts to evaluate systemic safety issues in order to become more proactive about improving safety. This project successfully addressed the following two problems: (1) methods and metrics to support the design of effective taxonomies are limited and (2) influence relationships among contributing factors are not explicitly modeled within a taxonomy.

  9. Design of signal reception and processing system of embedded ultrasonic endoscope

    NASA Astrophysics Data System (ADS)

    Li, Ming; Yu, Feng; Zhang, Ruiqiang; Li, Yan; Chen, Xiaodong; Yu, Daoyin

    2009-11-01

    Embedded Ultrasonic Endoscope, based on embedded microprocessor and embedded real-time operating system, sends a micro ultrasonic probe into coelom through the biopsy channel of the Electronic Endoscope to get the fault histology features of digestive organs by rotary scanning, and acquires the pictures of the alimentary canal mucosal surface. At the same time, ultrasonic signals are processed by signal reception and processing system, forming images of the full histology of the digestive organs. Signal Reception and Processing System is an important component of Embedded Ultrasonic Endoscope. However, the traditional design, using multi-level amplifiers and special digital processing circuits to implement signal reception and processing, is no longer satisfying the standards of high-performance, miniaturization and low power requirements that embedded system requires, and as a result of the high noise that multi-level amplifier brought, the extraction of small signal becomes hard. Therefore, this paper presents a method of signal reception and processing based on double variable gain amplifier and FPGA, increasing the flexibility and dynamic range of the Signal Reception and Processing System, improving system noise level, and reducing power consumption. Finally, we set up the embedded experiment system, using a transducer with the center frequency of 8MHz to scan membrane samples, and display the image of ultrasonic echo reflected by each layer of membrane, with a frame rate of 5Hz, verifying the correctness of the system.

  10. 49 CFR 229.309 - Safety-critical changes and failures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Safety-critical changes and failures. 229.309 Section 229.309 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Locomotive Electronics § 229...

  11. 49 CFR 229.309 - Safety-critical changes and failures.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Safety-critical changes and failures. 229.309 Section 229.309 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Locomotive Electronics § 229...

  12. 49 CFR 229.309 - Safety-critical changes and failures.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Safety-critical changes and failures. 229.309 Section 229.309 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Locomotive Electronics § 229...

  13. Usability evaluation of a medication reconciliation tool: Embedding safety probes to assess users' detection of medication discrepancies.

    PubMed

    Russ, Alissa L; Jahn, Michelle A; Patel, Himalaya; Porter, Brian W; Nguyen, Khoa A; Zillich, Alan J; Linsky, Amy; Simon, Steven R

    2018-06-01

    An electronic medication reconciliation tool was previously developed by another research team to aid provider-patient communication for medication reconciliation. To evaluate the usability of this tool, we integrated artificial safety probes into standard usability methods. The objective of this article is to describe this method of using safety probes, which enabled us to evaluate how well the tool supports users' detection of medication discrepancies. We completed a mixed-method usability evaluation in a simulated setting with 30 participants: 20 healthcare professionals (HCPs) and 10 patients. We used factual scenarios but embedded three artificial safety probes: (1) a missing medication (i.e., omission); (2) an extraneous medication (i.e., commission); and (3) an inaccurate dose (i.e., dose discrepancy). We measured users' detection of each probe to estimate the probability that a HCP or patient would detect these discrepancies. Additionally, we recorded participants' detection of naturally occurring discrepancies. Each safety probe was detected by ≤50% of HCPs. Patients' detection rates were generally higher. Estimates indicate that a HCP and patient, together, would detect 44.8% of these medication discrepancies. Additionally, HCPs and patients detected 25 and 45 naturally-occurring discrepancies, respectively. Overall, detection of medication discrepancies was low. Findings indicate that more advanced interface designs are warranted. Future research is needed on how technologies can be designed to better aid HCPs' and patients' detection of medication discrepancies. This is one of the first studies to evaluate the usability of a collaborative medication reconciliation tool and assess HCPs' and patients' detection of medication discrepancies. Results demonstrate that embedded safety probes can enhance standard usability methods by measuring additional, clinically-focused usability outcomes. The novel safety probes we used may serve as an initial, standard

  14. Human factors systems approach to healthcare quality and patient safety

    PubMed Central

    Carayon, Pascale; Wetterneck, Tosha B.; Rivera-Rodriguez, A. Joy; Hundt, Ann Schoofs; Hoonakker, Peter; Holden, Richard; Gurses, Ayse P.

    2013-01-01

    Human factors systems approaches are critical for improving healthcare quality and patient safety. The SEIPS (Systems Engineering Initiative for Patient Safety) model of work system and patient safety is a human factors systems approach that has been successfully applied in healthcare research and practice. Several research and practical applications of the SEIPS model are described. Important implications of the SEIPS model for healthcare system and process redesign are highlighted. Principles for redesigning healthcare systems using the SEIPS model are described. Balancing the work system and encouraging the active and adaptive role of workers are key principles for improving healthcare quality and patient safety. PMID:23845724

  15. Design method of ARM based embedded iris recognition system

    NASA Astrophysics Data System (ADS)

    Wang, Yuanbo; He, Yuqing; Hou, Yushi; Liu, Ting

    2008-03-01

    With the advantages of non-invasiveness, uniqueness, stability and low false recognition rate, iris recognition has been successfully applied in many fields. Up to now, most of the iris recognition systems are based on PC. However, a PC is not portable and it needs more power. In this paper, we proposed an embedded iris recognition system based on ARM. Considering the requirements of iris image acquisition and recognition algorithm, we analyzed the design method of the iris image acquisition module, designed the ARM processing module and its peripherals, studied the Linux platform and the recognition algorithm based on this platform, finally actualized the design method of ARM-based iris imaging and recognition system. Experimental results show that the ARM platform we used is fast enough to run the iris recognition algorithm, and the data stream can flow smoothly between the camera and the ARM chip based on the embedded Linux system. It's an effective method of using ARM to actualize portable embedded iris recognition system.

  16. DOE standard 3009 - a reasoned, practical approach to integrating criticality safety into SARs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vessard, S.G.

    1995-12-31

    In the past there have been efforts by the U.S. Department of Energy (DOE) to provide guidance on those elements that should be included in a facility`s safety analysis report (SAR). In particular, there are two DOE Orders (5480.23, {open_quotes}Nuclear Safety Analysis Reports,{close_quotes} and 5480.24, {open_quotes}Nuclear Criticality Safety{close_quotes}), an interpretive guidance document (NE-70, Interpretive Guidance for DOE Order 5480.24, {open_quotes}Nuclear Criticality Safety{close_quotes}), and DOE Standard DOE-STD-3009-94 {open_quotes}Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports.{close_quotes} Of these, the most practical and useful (pertaining to the application of criticality safety) is DOE-STD-3009-94. This paper is a reviewmore » of Chapters 3, 4, and 6 of this standard and how they provide very clear, helpful, and reasoned criticality safety guidance.« less

  17. Embedded expert system for space shuttle main engine maintenance

    NASA Technical Reports Server (NTRS)

    Pooley, J.; Thompson, W.; Homsley, T.; Teoh, W.; Jones, J.; Lewallen, P.

    1987-01-01

    The SPARTA Embedded Expert System (SEES) is an intelligent health monitoring system that directs analysis by placing confidence factors on possible engine status and then recommends a course of action to an engineer or engine controller. The technique can prevent catastropic failures or costly rocket engine down time because of false alarms. Further, the SEES has potential as an on-board flight monitor for reusable rocket engine systems. The SEES methodology synergistically integrates vibration analysis, pattern recognition and communications theory techniques with an artificial intelligence technique - the Embedded Expert System (EES).

  18. Robust optical sensors for safety critical automotive applications

    NASA Astrophysics Data System (ADS)

    De Locht, Cliff; De Knibber, Sven; Maddalena, Sam

    2008-02-01

    Optical sensors for the automotive industry need to be robust, high performing and low cost. This paper focuses on the impact of automotive requirements on optical sensor design and packaging. Main strategies to lower optical sensor entry barriers in the automotive market include: Perform sensor calibration and tuning by the sensor manufacturer, sensor test modes on chip to guarantee functional integrity at operation, and package technology is key. As a conclusion, optical sensor applications are growing in automotive. Optical sensor robustness matured to the level of safety critical applications like Electrical Power Assisted Steering (EPAS) and Drive-by-Wire by optical linear arrays based systems and Automated Cruise Control (ACC), Lane Change Assist and Driver Classification/Smart Airbag Deployment by camera imagers based systems.

  19. Time-Centric Models For Designing Embedded Cyber-physical Systems

    DTIC Science & Technology

    2009-10-09

    Time -centric Models For Designing Embedded Cyber- physical Systems John C. Eidson Edward A. Lee Slobodan Matic Sanjit A. Seshia Jia Zou Electrical... Time -centric Models For Designing Embedded Cyber-physical Systems ∗ John C. Eidson , Edward A. Lee, Slobodan Matic, Sanjit A. Seshia, Jia Zou...implementations, such a uniform notion of time cannot be precisely realized. Time triggered networks [10] and time synchronization [9] can be used to

  20. Real-Time Considerations for Rugged Embedded Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumeo, Antonino; Ceriani, Marco; Palermo, Gianluca

    This chapter introduces the characterizing aspects of embedded systems, and discusses the specific features that a designer should address to an embedded system “rugged”, i.e., able to operate reliably in harsh environments. The chapter addresses both the hardware and the less obvious software aspect. After presenting a current list of certifications for ruggedization, the chapters present a case study that focuses on the interaction of the hardware and software layers in reactive real-time system. In particular, it shows how the use of fast FPGA prototyping could provide insights on unexpected factors that influence the performance and thus responsiveness to eventsmore » of a scheduling algorithm for multiprocessor systems that manages both periodic, hard real-time task, and aperiodic tasks. The main lesson is that to make the system “rugged”, a designer should consider these issues by, for example, overprovisioning resources and/or computation capabilities.« less

  1. Research and Design of Embedded Wireless Meal Ordering System Based on SQLite

    NASA Astrophysics Data System (ADS)

    Zhang, Jihong; Chen, Xiaoquan

    The paper describes features and internal architecture and developing method of SQLite. And then it gives a design and program of meal ordering system. The system realizes the information interaction among the users and embedded devices with SQLite as database system. The embedded database SQLite manages the data and achieves wireless communication by using Bluetooth. A system program based on Qt/Embedded and Linux drivers realizes the local management of environmental data.

  2. Extending density functional embedding theory for covalently bonded systems.

    PubMed

    Yu, Kuang; Carter, Emily A

    2017-12-19

    Quantum embedding theory aims to provide an efficient solution to obtain accurate electronic energies for systems too large for full-scale, high-level quantum calculations. It adopts a hierarchical approach that divides the total system into a small embedded region and a larger environment, using different levels of theory to describe each part. Previously, we developed a density-based quantum embedding theory called density functional embedding theory (DFET), which achieved considerable success in metals and semiconductors. In this work, we extend DFET into a density-matrix-based nonlocal form, enabling DFET to study the stronger quantum couplings between covalently bonded subsystems. We name this theory density-matrix functional embedding theory (DMFET), and we demonstrate its performance in several test examples that resemble various real applications in both chemistry and biochemistry. DMFET gives excellent results in all cases tested thus far, including predicting isomerization energies, proton transfer energies, and highest occupied molecular orbital-lowest unoccupied molecular orbital gaps for local chromophores. Here, we show that DMFET systematically improves the quality of the results compared with the widely used state-of-the-art methods, such as the simple capped cluster model or the widely used ONIOM method.

  3. The embedded operating system project

    NASA Technical Reports Server (NTRS)

    Campbell, R. H.

    1985-01-01

    The design and construction of embedded operating systems for real-time advanced aerospace applications was investigated. The applications require reliable operating system support that must accommodate computer networks. Problems that arise in the construction of such operating systems, reconfiguration, consistency and recovery in a distributed system, and the issues of real-time processing are reported. A thesis that provides theoretical foundations for the use of atomic actions to support fault tolerance and data consistency in real-time object-based system is included. The following items are addressed: (1) atomic actions and fault-tolerance issues; (2) operating system structure; (3) program development; (4) a reliable compiler for path Pascal; and (5) mediators, a mechanism for scheduling distributed system processes.

  4. Design of embedded endoscopic ultrasonic imaging system

    NASA Astrophysics Data System (ADS)

    Li, Ming; Zhou, Hao; Wen, Shijie; Chen, Xiodong; Yu, Daoyin

    2008-12-01

    Endoscopic ultrasonic imaging system is an important component in the endoscopic ultrasonography system (EUS). Through the ultrasonic probe, the characteristics of the fault histology features of digestive organs is detected by EUS, and then received by the reception circuit which making up of amplifying, gain compensation, filtering and A/D converter circuit, in the form of ultrasonic echo. Endoscopic ultrasonic imaging system is the back-end processing system of the EUS, with the function of receiving digital ultrasonic echo modulated by the digestive tract wall from the reception circuit, acquiring and showing the fault histology features in the form of image and characteristic data after digital signal processing, such as demodulation, etc. Traditional endoscopic ultrasonic imaging systems are mainly based on image acquisition and processing chips, which connecting to personal computer with USB2.0 circuit, with the faults of expensive, complicated structure, poor portability, and difficult to popularize. To against the shortcomings above, this paper presents the methods of digital signal acquisition and processing specially based on embedded technology with the core hardware structure of ARM and FPGA for substituting the traditional design with USB2.0 and personal computer. With built-in FIFO and dual-buffer, FPGA implement the ping-pong operation of data storage, simultaneously transferring the image data into ARM through the EBI bus by DMA function, which is controlled by ARM to carry out the purpose of high-speed transmission. The ARM system is being chosen to implement the responsibility of image display every time DMA transmission over and actualizing system control with the drivers and applications running on the embedded operating system Windows CE, which could provide a stable, safe and reliable running platform for the embedded device software. Profiting from the excellent graphical user interface (GUI) and good performance of Windows CE, we can not

  5. Cultural safety and the challenges of translating critically oriented knowledge in practice.

    PubMed

    Browne, Annette J; Varcoe, Colleen; Smye, Victoria; Reimer-Kirkham, Sheryl; Lynam, M Judith; Wong, Sabrina

    2009-07-01

    Cultural safety is a relatively new concept that has emerged in the New Zealand nursing context and is being taken up in various ways in Canadian health care discourses. Our research team has been exploring the relevance of cultural safety in the Canadian context, most recently in relation to a knowledge-translation study conducted with nurses practising in a large tertiary hospital. We were drawn to using cultural safety because we conceptualized it as being compatible with critical theoretical perspectives that foster a focus on power imbalances and inequitable social relationships in health care; the interrelated problems of culturalism and racialization; and a commitment to social justice as central to the social mandate of nursing. Engaging in this knowledge-translation study has provided new perspectives on the complexities, ambiguities and tensions that need to be considered when using the concept of cultural safety to draw attention to racialization, culturalism, and health and health care inequities. The philosophic analysis discussed in this paper represents an epistemological grounding for the concept of cultural safety that links directly to particular moral ends with social justice implications. Although cultural safety is a concept that we have firmly positioned within the paradigm of critical inquiry, ambiguities associated with the notions of 'culture', 'safety', and 'cultural safety' need to be anticipated and addressed if they are to be effectively used to draw attention to critical social justice issues in practice settings. Using cultural safety in practice settings to draw attention to and prompt critical reflection on politicized knowledge, therefore, brings an added layer of complexity. To address these complexities, we propose that what may be required to effectively use cultural safety in the knowledge-translation process is a 'social justice curriculum for practice' that would foster a philosophical stance of critical inquiry at both the

  6. Logic flowgraph methodology - A tool for modeling embedded systems

    NASA Technical Reports Server (NTRS)

    Muthukumar, C. T.; Guarro, S. B.; Apostolakis, G. E.

    1991-01-01

    The logic flowgraph methodology (LFM), a method for modeling hardware in terms of its process parameters, has been extended to form an analytical tool for the analysis of integrated (hardware/software) embedded systems. In the software part of a given embedded system model, timing and the control flow among different software components are modeled by augmenting LFM with modified Petrinet structures. The objective of the use of such an augmented LFM model is to uncover possible errors and the potential for unanticipated software/hardware interactions. This is done by backtracking through the augmented LFM mode according to established procedures which allow the semiautomated construction of fault trees for any chosen state of the embedded system (top event). These fault trees, in turn, produce the possible combinations of lower-level states (events) that may lead to the top event.

  7. Ultrafast fingerprint indexing for embedded systems

    NASA Astrophysics Data System (ADS)

    Zhou, Ru; Sin, Sang Woo; Li, Dongju; Isshiki, Tsuyoshi; Kunieda, Hiroaki

    2011-10-01

    A novel core-based fingerprint indexing scheme for embedded systems is presented in this paper. Our approach is enabled by our new precise and fast core-detection algorithm with the direction map. It introduces the feature of CMP (core minutiae pair), which describes the coordinates of minutiae and the direction of ridges associated with the minutiae based on the uniquely defined core coordinates. Since each CMP is identical against the shift and rotation of the fingerprint image, the CMP comparison between a template and an input image can be performed without any alignment. The proposed indexing algorithm based on CMP is suitable for embedded systems because the tremendous speed up and the memory reduction are achieved. In fact, the experiments with the fingerprint database FVC2002 show that its speed for the identifications becomes about 40 times faster than conventional approaches, even though the database includes fingerprints with no core.

  8. Visual warning system for worker safety on roadside work-zones.

    DOT National Transportation Integrated Search

    2016-08-01

    Growing traffic on US roadways and heavy construction machinery on road construction sites pose a critical safety : threat to construction workers. This report summarizes the design and development of a worker safety system using : Dedicated Short Ra...

  9. Parametric Criticality Safety Calculations for Arrays of TRU Waste Containers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gough, Sean T.

    The Nuclear Criticality Safety Division (NCSD) has performed criticality safety calculations for finite and infinite arrays of transuranic (TRU) waste containers. The results of these analyses may be applied in any technical area onsite (e.g., TA-54, TA-55, etc.), as long as the assumptions herein are met. These calculations are designed to update the existing reference calculations for waste arrays documented in Reference 1, in order to meet current guidance on calculational methodology.

  10. Recognising safety critical events: can automatic video processing improve naturalistic data analyses?

    PubMed

    Dozza, Marco; González, Nieves Pañeda

    2013-11-01

    New trends in research on traffic accidents include Naturalistic Driving Studies (NDS). NDS are based on large scale data collection of driver, vehicle, and environment information in real world. NDS data sets have proven to be extremely valuable for the analysis of safety critical events such as crashes and near crashes. However, finding safety critical events in NDS data is often difficult and time consuming. Safety critical events are currently identified using kinematic triggers, for instance searching for deceleration below a certain threshold signifying harsh braking. Due to the low sensitivity and specificity of this filtering procedure, manual review of video data is currently necessary to decide whether the events identified by the triggers are actually safety critical. Such reviewing procedure is based on subjective decisions, is expensive and time consuming, and often tedious for the analysts. Furthermore, since NDS data is exponentially growing over time, this reviewing procedure may not be viable anymore in the very near future. This study tested the hypothesis that automatic processing of driver video information could increase the correct classification of safety critical events from kinematic triggers in naturalistic driving data. Review of about 400 video sequences recorded from the events, collected by 100 Volvo cars in the euroFOT project, suggested that drivers' individual reaction may be the key to recognize safety critical events. In fact, whether an event is safety critical or not often depends on the individual driver. A few algorithms, able to automatically classify driver reaction from video data, have been compared. The results presented in this paper show that the state of the art subjective review procedures to identify safety critical events from NDS can benefit from automated objective video processing. In addition, this paper discusses the major challenges in making such video analysis viable for future NDS and new potential

  11. University education and nuclear criticality safety professionals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, R.E.; Stachowiak, R.V.; Knief, R.A.

    1996-12-31

    The problem of developing a productive criticality safety specialist at a nuclear fuel facility has long been with us. The normal practice is to hire a recent undergraduate or graduate degree recipient and invest at least a decade in on-the-job training. In the early 1980s, the U.S. Department of Energy (DOE) developed a model intern program in an attempt to speed up the process. The program involved working at assigned projects for extended periods at a working critical mass laboratory, a methods development group, and a fuel cycle facility. This never gained support as it involved extended time away frommore » the job. At the Rocky Flats Environmental Technology Site, the training method is currently the traditional one involving extensive experience. The flaw is that the criticality safety staff turnover has been such that few individuals continue for the decade some consider necessary for maturity in the discipline. To maintain quality evaluations and controls as well as interpretation decisions, extensive group review is used. This has proved costly to the site and professionally unsatisfying to the current staff. The site contractor has proposed a training program to remedy the basic problem.« less

  12. Fault Tree Analysis Application for Safety and Reliability

    NASA Technical Reports Server (NTRS)

    Wallace, Dolores R.

    2003-01-01

    Many commercial software tools exist for fault tree analysis (FTA), an accepted method for mitigating risk in systems. The method embedded in the tools identifies a root as use in system components, but when software is identified as a root cause, it does not build trees into the software component. No commercial software tools have been built specifically for development and analysis of software fault trees. Research indicates that the methods of FTA could be applied to software, but the method is not practical without automated tool support. With appropriate automated tool support, software fault tree analysis (SFTA) may be a practical technique for identifying the underlying cause of software faults that may lead to critical system failures. We strive to demonstrate that existing commercial tools for FTA can be adapted for use with SFTA, and that applied to a safety-critical system, SFTA can be used to identify serious potential problems long before integrator and system testing.

  13. Cosimulation of embedded system using RTOS software simulator

    NASA Astrophysics Data System (ADS)

    Wang, Shihao; Duan, Zhigang; Liu, Mingye

    2003-09-01

    Embedded system design often employs co-simulation to verify system's function; one efficient verification tool of software is Instruction Set Simulator (ISS). As a full functional model of target CPU, ISS interprets instruction of embedded software step by step, which usually is time-consuming since it simulates at low-level. Hence ISS often becomes the bottleneck of co-simulation in a complicated system. In this paper, a new software verification tools, the RTOS software simulator (RSS) was presented. The mechanism of its operation was described in a full details. In RSS method, RTOS API is extended and hardware simulator driver is adopted to deal with data-exchange and synchronism between the two simulators.

  14. Safety Capital: The Management of Organizational Knowledge on Occupational Health and Safety

    ERIC Educational Resources Information Center

    Nunez, Imanol; Villanueva, Mikel

    2011-01-01

    Purpose: The concept of Safety Capital was developed by analyzing the creation and composition of the Intellectual Capital embedded in Occupational Health and Safety (OHS) systems. The paper aims to address this relationship. Design/methodology/approach: By drawing a theoretical link for the relationship between OHS activities and intellectual…

  15. Applying Human Factors Principles to Mitigate Usability Issues Related to Embedded Assumptions in Health Information Technology Design

    PubMed Central

    Lowry, Svetlana Z; Patterson, Emily S

    2014-01-01

    Background There is growing recognition that design flaws in health information technology (HIT) lead to increased cognitive work, impact workflows, and produce other undesirable user experiences that contribute to usability issues and, in some cases, patient harm. These usability issues may in turn contribute to HIT utilization disparities and patient safety concerns, particularly among “non-typical” HIT users and their health care providers. Health care disparities are associated with poor health outcomes, premature death, and increased health care costs. HIT has the potential to reduce these disparate outcomes. In the computer science field, it has long been recognized that embedded cultural assumptions can reduce the usability, usefulness, and safety of HIT systems for populations whose characteristics differ from “stereotypical” users. Among these non-typical users, inappropriate embedded design assumptions may contribute to health care disparities. It is unclear how to address potentially inappropriate embedded HIT design assumptions once detected. Objective The objective of this paper is to explain HIT universal design principles derived from the human factors engineering literature that can help to overcome potential usability and/or patient safety issues that are associated with unrecognized, embedded assumptions about cultural groups when designing HIT systems. Methods Existing best practices, guidance, and standards in software usability and accessibility were subjected to a 5-step expert review process to identify and summarize those best practices, guidance, and standards that could help identify and/or address embedded design assumptions in HIT that could negatively impact patient safety, particularly for non-majority HIT user populations. An iterative consensus-based process was then used to derive evidence-based design principles from the data to address potentially inappropriate embedded cultural assumptions. Results Design principles that

  16. Applying Human Factors Principles to Mitigate Usability Issues Related to Embedded Assumptions in Health Information Technology Design.

    PubMed

    Gibbons, Michael C; Lowry, Svetlana Z; Patterson, Emily S

    2014-12-18

    There is growing recognition that design flaws in health information technology (HIT) lead to increased cognitive work, impact workflows, and produce other undesirable user experiences that contribute to usability issues and, in some cases, patient harm. These usability issues may in turn contribute to HIT utilization disparities and patient safety concerns, particularly among "non-typical" HIT users and their health care providers. Health care disparities are associated with poor health outcomes, premature death, and increased health care costs. HIT has the potential to reduce these disparate outcomes. In the computer science field, it has long been recognized that embedded cultural assumptions can reduce the usability, usefulness, and safety of HIT systems for populations whose characteristics differ from "stereotypical" users. Among these non-typical users, inappropriate embedded design assumptions may contribute to health care disparities. It is unclear how to address potentially inappropriate embedded HIT design assumptions once detected. The objective of this paper is to explain HIT universal design principles derived from the human factors engineering literature that can help to overcome potential usability and/or patient safety issues that are associated with unrecognized, embedded assumptions about cultural groups when designing HIT systems. Existing best practices, guidance, and standards in software usability and accessibility were subjected to a 5-step expert review process to identify and summarize those best practices, guidance, and standards that could help identify and/or address embedded design assumptions in HIT that could negatively impact patient safety, particularly for non-majority HIT user populations. An iterative consensus-based process was then used to derive evidence-based design principles from the data to address potentially inappropriate embedded cultural assumptions. Design principles that may help identify and address embedded HIT

  17. Cockpit emergency safety system

    NASA Astrophysics Data System (ADS)

    Keller, Leo

    2000-06-01

    A comprehensive safety concept is proposed for aircraft's experiencing an incident to the development of fire and smoke in the cockpit. Fire or excessive heat development caused by malfunctioning electrical appliance may produce toxic smoke, may reduce the clear vision to the instrument panel and may cause health-critical respiration conditions. Immediate reaction of the crew, safe respiration conditions and a clear undisturbed view to critical flight information data can be assumed to be the prerequisites for a safe emergency landing. The personal safety equipment of the aircraft has to be effective in supporting the crew to divert the aircraft to an alternate airport in the shortest possible amount of time. Many other elements in the cause-and-effect context of the emergence of fire, such as fire prevention, fire detection, the fire extinguishing concept, systematic redundancy, the wiring concept, the design of the power supplying system and concise emergency checklist procedures are briefly reviewed, because only a comprehensive and complete approach will avoid fatal accidents of complex aircraft in the future.

  18. Towards Resilient Critical Infrastructures: Application of Type-2 Fuzzy Logic in Embedded Network Security Cyber Sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ondrej Linda; Todd Vollmer; Jim Alves-Foss

    2011-08-01

    Resiliency and cyber security of modern critical infrastructures is becoming increasingly important with the growing number of threats in the cyber-environment. This paper proposes an extension to a previously developed fuzzy logic based anomaly detection network security cyber sensor via incorporating Type-2 Fuzzy Logic (T2 FL). In general, fuzzy logic provides a framework for system modeling in linguistic form capable of coping with imprecise and vague meanings of words. T2 FL is an extension of Type-1 FL which proved to be successful in modeling and minimizing the effects of various kinds of dynamic uncertainties. In this paper, T2 FL providesmore » a basis for robust anomaly detection and cyber security state awareness. In addition, the proposed algorithm was specifically developed to comply with the constrained computational requirements of low-cost embedded network security cyber sensors. The performance of the system was evaluated on a set of network data recorded from an experimental cyber-security test-bed.« less

  19. Work Practice Simulation of Complex Human-Automation Systems in Safety Critical Situations: The Brahms Generalized berlingen Model

    NASA Technical Reports Server (NTRS)

    Clancey, William J.; Linde, Charlotte; Seah, Chin; Shafto, Michael

    2013-01-01

    The transition from the current air traffic system to the next generation air traffic system will require the introduction of new automated systems, including transferring some functions from air traffic controllers to on­-board automation. This report describes a new design verification and validation (V&V) methodology for assessing aviation safety. The approach involves a detailed computer simulation of work practices that includes people interacting with flight-critical systems. The research is part of an effort to develop new modeling and verification methodologies that can assess the safety of flight-critical systems, system configurations, and operational concepts. The 2002 Ueberlingen mid-air collision was chosen for analysis and modeling because one of the main causes of the accident was one crew's response to a conflict between the instructions of the air traffic controller and the instructions of TCAS, an automated Traffic Alert and Collision Avoidance System on-board warning system. It thus furnishes an example of the problem of authority versus autonomy. It provides a starting point for exploring authority/autonomy conflict in the larger system of organization, tools, and practices in which the participants' moment-by-moment actions take place. We have developed a general air traffic system model (not a specific simulation of Überlingen events), called the Brahms Generalized Ueberlingen Model (Brahms-GUeM). Brahms is a multi-agent simulation system that models people, tools, facilities/vehicles, and geography to simulate the current air transportation system as a collection of distributed, interactive subsystems (e.g., airports, air-traffic control towers and personnel, aircraft, automated flight systems and air-traffic tools, instruments, crew). Brahms-GUeM can be configured in different ways, called scenarios, such that anomalous events that contributed to the Überlingen accident can be modeled as functioning according to requirements or in an

  20. Embedded controller for GEM detector readout system

    NASA Astrophysics Data System (ADS)

    Zabołotny, Wojciech M.; Byszuk, Adrian; Chernyshova, Maryna; Cieszewski, Radosław; Czarski, Tomasz; Dominik, Wojciech; Jakubowska, Katarzyna L.; Kasprowicz, Grzegorz; Poźniak, Krzysztof; Rzadkiewicz, Jacek; Scholz, Marek

    2013-10-01

    This paper describes the embedded controller used for the multichannel readout system for the GEM detector. The controller is based on the embedded Mini ITX mainboard, running the GNU/Linux operating system. The controller offers two interfaces to communicate with the FPGA based readout system. FPGA configuration and diagnostics is controlled via low speed USB based interface, while high-speed setup of the readout parameters and reception of the measured data is handled by the PCI Express (PCIe) interface. Hardware access is synchronized by the dedicated server written in C. Multiple clients may connect to this server via TCP/IP network, and different priority is assigned to individual clients. Specialized protocols have been implemented both for low level access on register level and for high level access with transfer of structured data with "msgpack" protocol. High level functionalities have been split between multiple TCP/IP servers for parallel operation. Status of the system may be checked, and basic maintenance may be performed via web interface, while the expert access is possible via SSH server. System was designed with reliability and flexibility in mind.

  1. Software-Based Safety Systems in Space - Learning from other Domains

    NASA Astrophysics Data System (ADS)

    Klicker, M.; Putzer, H.

    2012-01-01

    Increasing complexity and new emerging capabilities for manned and unmanned missions have been the hallmark of the past decades of space exploration. One of the drivers in this process was the ever increasing use of software and software-intensive systems to implement system functions necessary to the capabilities needed. The course of technological evolution suggests that this development will continue well into the future with a number of challenges for the safety community some of which shall be discussed in this paper. The current state of the art reveals a number of problems with developing and assessing safety critical software which explains the reluctance of the space community to rely on software-based safety measures to mitigate hazards. Among others, usually lack of trustworthy evidence of software integrity in all foreseeable situations and the difficulties to integrate software in the traditional safety analysis framework are cited. Experience from other domains and recent developments in modern software development methodologies and verification techniques are analysed for the suitability for space systems and an avionics architectural framework (see STANAG 4626) for the implementation of safety critical software is proposed. This is shown to create among other features the possibility of numerous degradation modes enhancing overall system safety and interoperability of computerized space systems. It also potentially simplifies international cooperation on a technical level by introducing a higher degree of compatibility. As software safety cannot be tested or argued into a system in hindsight, the development process and especially the architecture chosen are essential to establish safety properties for the software used to implement safety functions. The core of the safety argument revolves around the separation of different functions and software modules from each other by minimal coupling of functions and credible separation mechanisms in the

  2. NASA System Safety Handbook. Volume 1; System Safety Framework and Concepts for Implementation

    NASA Technical Reports Server (NTRS)

    Dezfuli, Homayoon; Benjamin, Allan; Everett, Christopher; Smith, Curtis; Stamatelatos, Michael; Youngblood, Robert

    2011-01-01

    unrtainties represents a method of probabilistic thinking wherein the analyst and decision makers recognize possible outcomes other than the outcome perceived to be "most likely." Without this type of analysis, it is not possible to determine the worth of an analysis product as a basis for making decisions related to safety and mission success. In line with these considerations the handbook does not take a hazard-analysis-centric approach to system safety. Hazard analysis remains a useful tool to facilitate brainstorming but does not substitute for a more holistic approach geared to a comprehensive identification and understanding of individual risk issues and their contributions to aggregate safety risks. The handbook strives to emphasize the importance of identifying the most critical scenarios that contribute to the risk of not meeting the agreed-upon safety objectives and requirements using all appropriate tools (including but not limited to hazard analysis). Thereafter, emphasis shifts to identifying the risk drivers that cause these scenarios to be critical and ensuring that there are controls directed toward preventing or mitigating the risk drivers. To address these and other areas, the handbook advocates a proactive, analytic-deliberative, risk-informed approach to system safety, enabling the integration of system safety activities with systems engineering and risk management processes. It emphasizes how one can systematically provide the necessary evidence to substantiate the claim that a system is safe to within an acceptable risk tolerance, and that safety has been achieved in a cost-effective manner. The methodology discussed in this handbook is part of a systems engineering process and is intended to be integral to the system safety practices being conducted by the NASA safety and mission assurance and systems engineering organizations. The handbook posits that to conclude that a system is adequately safe, it is necessary to consider a set of safety claims that

  3. Verification and Validation for Flight-Critical Systems (VVFCS)

    NASA Technical Reports Server (NTRS)

    Graves, Sharon S.; Jacobsen, Robert A.

    2010-01-01

    On March 31, 2009 a Request for Information (RFI) was issued by NASA s Aviation Safety Program to gather input on the subject of Verification and Validation (V & V) of Flight-Critical Systems. The responses were provided to NASA on or before April 24, 2009. The RFI asked for comments in three topic areas: Modeling and Validation of New Concepts for Vehicles and Operations; Verification of Complex Integrated and Distributed Systems; and Software Safety Assurance. There were a total of 34 responses to the RFI, representing a cross-section of academic (26%), small & large industry (47%) and government agency (27%).

  4. Safety impacts of bicycle infrastructure: A critical review.

    PubMed

    DiGioia, Jonathan; Watkins, Kari Edison; Xu, Yanzhi; Rodgers, Michael; Guensler, Randall

    2017-06-01

    This paper takes a critical look at the present state of bicycle infrastructure treatment safety research, highlighting data needs. Safety literature relating to 22 bicycle treatments is examined, including findings, study methodologies, and data sources used in the studies. Some preliminary conclusions related to research efficacy are drawn from the available data and findings in the research. While the current body of bicycle safety literature points toward some defensible conclusions regarding the safety and effectiveness of certain bicycle treatments, such as bike lanes and removal of on-street parking, the vast majority treatments are still in need of rigorous research. Fundamental questions arise regarding appropriate exposure measures, crash measures, and crash data sources. This research will aid transportation departments with regard to decisions about bicycle infrastructure and guide future research efforts toward understanding safety impacts of bicycle infrastructure. Copyright © 2017 Elsevier Ltd and National Safety Council. All rights reserved.

  5. Mission and Safety Critical (MASC) plans for the MASC Kernel simulation

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This report discusses a prototype for Mission and Safety Critical (MASC) kernel simulation which explains the intended approach and how the simulation will be used. Smalltalk is chosen for the simulation because of usefulness in quickly building working models of the systems and its object-oriented approach to software. A scenario is also introduced to give details about how the simulation works. The eventual system will be a fully object-oriented one implemented in Ada via Dragoon. To implement the simulation, a scenario using elements typical of those in the Space Station, was created.

  6. Design and realization of flash translation layer in tiny embedded system

    NASA Astrophysics Data System (ADS)

    Ren, Xiaoping; Sui, Chaoya; Luo, Zhenghua; Cao, Wenji

    2018-05-01

    We design a solution of tiny embedded device NAND Flash storage system on the basis of deeply studying the characteristics of widely used NAND Flash in the embedded devices in order to adapt to the development of intelligent interconnection trend and solve the storage problem of large data volume in tiny embedded system. The hierarchical structure and function purposes of the system are introduced. The design and realization of address mapping, error correction, bad block management, wear balance, garbage collection and other algorithms in flash memory transformation layer are described in details. NAND Flash drive and management are realized on STM32 micro-controller, thereby verifying design effectiveness and feasibility.

  7. Speculation detection for Chinese clinical notes: Impacts of word segmentation and embedding models.

    PubMed

    Zhang, Shaodian; Kang, Tian; Zhang, Xingting; Wen, Dong; Elhadad, Noémie; Lei, Jianbo

    2016-04-01

    Speculations represent uncertainty toward certain facts. In clinical texts, identifying speculations is a critical step of natural language processing (NLP). While it is a nontrivial task in many languages, detecting speculations in Chinese clinical notes can be particularly challenging because word segmentation may be necessary as an upstream operation. The objective of this paper is to construct a state-of-the-art speculation detection system for Chinese clinical notes and to investigate whether embedding features and word segmentations are worth exploiting toward this overall task. We propose a sequence labeling based system for speculation detection, which relies on features from bag of characters, bag of words, character embedding, and word embedding. We experiment on a novel dataset of 36,828 clinical notes with 5103 gold-standard speculation annotations on 2000 notes, and compare the systems in which word embeddings are calculated based on word segmentations given by general and by domain specific segmenters respectively. Our systems are able to reach performance as high as 92.2% measured by F score. We demonstrate that word segmentation is critical to produce high quality word embedding to facilitate downstream information extraction applications, and suggest that a domain dependent word segmenter can be vital to such a clinical NLP task in Chinese language. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Taking ownership of safety. What are the active ingredients of safety coaching and how do they impact safety outcomes in critical offshore working environments?

    PubMed

    Krauesslar, Victoria; Avery, Rachel E; Passmore, Jonathan

    2015-01-01

    Safety coaching interventions have become a common feature in the safety critical offshore working environments of the North Sea. Whilst the beneficial impact of coaching as an organizational tool has been evidenced, there remains a question specifically over the use of safety coaching and its impact on behavioural change and producing safe working practices. A series of 24 semi-structured interviews were conducted with three groups of experts in the offshore industry: safety coaches, offshore managers and HSE directors. Using a thematic analysis approach, several significant themes were identified across the three expert groups including connecting with and creating safety ownership in the individual, personal significance and humanisation, ingraining safety and assessing and measuring a safety coach's competence. Results suggest clear utility of safety coaching when applied by safety coaches with appropriate coach training and understanding of safety issues in an offshore environment. The current work has found that the use of safety coaching in the safety critical offshore oil and gas industry is a powerful tool in managing and promoting a culture of safety and care.

  9. Component Composition for Embedded Systems Using Semantic Aspect-Oriented Programming

    DTIC Science & Technology

    2004-10-01

    real - time systems for the defense community. Our research focused on Real-Time Java implementation and analysis techniques. Real-Time Java is important for the defense community because it holds out the promise of enabling developers to apply COTS Java technology to specialized military embedded systems. It also promises to allow the defense community to utilize a large Java-literate workforce for building defense systems. Our research has delivered several techniques that may make Real-Time Java a better platform for developing embedded

  10. Natural Language Interface for Safety Certification of Safety-Critical Software

    NASA Technical Reports Server (NTRS)

    Denney, Ewen; Fischer, Bernd

    2011-01-01

    Model-based design and automated code generation are being used increasingly at NASA. The trend is to move beyond simulation and prototyping to actual flight code, particularly in the guidance, navigation, and control domain. However, there are substantial obstacles to more widespread adoption of code generators in such safety-critical domains. Since code generators are typically not qualified, there is no guarantee that their output is correct, and consequently the generated code still needs to be fully tested and certified. The AutoCert generator plug-in supports the certification of automatically generated code by formally verifying that the generated code is free of different safety violations, by constructing an independently verifiable certificate, and by explaining its analysis in a textual form suitable for code reviews.

  11. An embedded system developed for hand held assay used in water monitoring

    NASA Astrophysics Data System (ADS)

    Wu, Lin; Wang, Jianwei; Ramakrishna, Bharath; Hsueh, Mingkai; Liu, Jonathan; Wu, Qufei; Wu, Chao-Cheng; Cao, Mang; Chang, Chein-I.; Jensen, Janet L.; Jensen, James O.; Knapp, Harlan; Daniel, Robert; Yin, Ray

    2005-11-01

    The US Army Joint Service Agent Water Monitor (JSAWM) program is currently interested in an approach that can implement a hardware- designed device in ticket-based hand-held assay (currently being developed) used for chemical/biological agent detection. This paper presents a preliminary investigation of the proof of concept. Three components are envisioned to accomplish the task. One is the ticket development which has been undertaken by the ANP, Inc. Another component is the software development which has been carried out by the Remote Sensing Signal and Image Processing Laboratory (RSSIPL) at the University of Maryland, Baltimore County (UMBC). A third component is an embedded system development which can be used to drive the UMBC-developed software to analyze the ANP-developed HHA tickets on a small pocket-size device like a PDA. The main focus of this paper is to investigate the third component that is viable and is yet to be explored. In order to facilitate to prove the concept, a flatbed scanner is used to replace a ticket reader to serve as an input device. The Stargate processor board is used as the embedded System with Embedded Linux installed. It is connected to an input device such as scanner as well as output devices such as LCD display or laptop etc. It executes the C-Coded processing program developed for this embedded system and outputs its findings on a display device. The embedded system to be developed and investigated in this paper is the core of a future hardware device. Several issues arising in such an embedded system will be addressed. Finally, the proof-of-concept pilot embedded system will be demonstrated.

  12. Palo Alto Research Center - Smart Embedded Network of Sensors with an Optical Readout

    ScienceCinema

    Raghavan, Ajay; Sahu, Saroj; Bringans, Ross; Johnson, Noble; Kiesel, Peter; Saha, Bhaskar

    2018-05-18

    PARC is developing new fiber optic sensors that would be embedded into batteries to monitor and measure key internal parameters during charge and discharge cycles. Two significant problems with today's best batteries are their lack of internal monitoring capabilities and their design oversizing. The lack of monitoring interferes with the ability to identify and manage performance or safety issues as they arise, which are presently managed by very conservative design oversizing and protection approaches that result in cost inefficiencies. PARC's design combines low-cost, embedded optical battery sensors and smart algorithms to overcome challenges faced by today's best battery management systems. These advanced fiber optic sensing technologies have the potential to dramatically improve the safety, performance, and life-time of energy storage systems.

  13. Integrating Embedded Computing Systems into High School and Early Undergraduate Education

    ERIC Educational Resources Information Center

    Benson, B.; Arfaee, A.; Choon Kim; Kastner, R.; Gupta, R. K.

    2011-01-01

    Early exposure to embedded computing systems is crucial for students to be prepared for the embedded computing demands of today's world. However, exposure to systems knowledge often comes too late in the curriculum to stimulate students' interests and to provide a meaningful difference in how they direct their choice of electives for future…

  14. High-speed event detector for embedded nanopore bio-systems.

    PubMed

    Huang, Yiyun; Magierowski, Sebastian; Ghafar-Zadeh, Ebrahim; Wang, Chengjie

    2015-08-01

    Biological measurements of microscopic phenomena often deal with discrete-event signals. The ability to automatically carry out such measurements at high-speed in a miniature embedded system is desirable but compromised by high-frequency noise along with practical constraints on filter quality and sampler resolution. This paper presents a real-time event-detection method in the context of nanopore sensing that helps to mitigate these drawbacks and allows accurate signal processing in an embedded system. Simulations show at least a 10× improvement over existing on-line detection methods.

  15. Educating Next Generation Nuclear Criticality Safety Engineers at the Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. D. Bess; J. B. Briggs; A. S. Garcia

    2011-09-01

    One of the challenges in educating our next generation of nuclear safety engineers is the limitation of opportunities to receive significant experience or hands-on training prior to graduation. Such training is generally restricted to on-the-job-training before this new engineering workforce can adequately provide assessment of nuclear systems and establish safety guidelines. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) can provide students and young professionals the opportunity to gain experience and enhance critical engineering skills. The ICSBEP and IRPhEP publish annual handbooks that contain evaluations of experiments along withmore » summarized experimental data and peer-reviewed benchmark specifications to support the validation of neutronics codes, nuclear cross-section data, and the validation of reactor designs. Participation in the benchmark process not only benefits those who use these Handbooks within the international community, but provides the individual with opportunities for professional development, networking with an international community of experts, and valuable experience to be used in future employment. Traditionally students have participated in benchmarking activities via internships at national laboratories, universities, or companies involved with the ICSBEP and IRPhEP programs. Additional programs have been developed to facilitate the nuclear education of students while participating in the benchmark projects. These programs include coordination with the Center for Space Nuclear Research (CSNR) Next Degree Program, the Collaboration with the Department of Energy Idaho Operations Office to train nuclear and criticality safety engineers, and student evaluations as the basis for their Master's thesis in nuclear engineering.« less

  16. Copilot: Monitoring Embedded Systems

    NASA Technical Reports Server (NTRS)

    Pike, Lee; Wegmann, Nis; Niller, Sebastian; Goodloe, Alwyn

    2012-01-01

    Runtime verification (RV) is a natural fit for ultra-critical systems, where correctness is imperative. In ultra-critical systems, even if the software is fault-free, because of the inherent unreliability of commodity hardware and the adversity of operational environments, processing units (and their hosted software) are replicated, and fault-tolerant algorithms are used to compare the outputs. We investigate both software monitoring in distributed fault-tolerant systems, as well as implementing fault-tolerance mechanisms using RV techniques. We describe the Copilot language and compiler, specifically designed for generating monitors for distributed, hard real-time systems. We also describe two case-studies in which we generated Copilot monitors in avionics systems.

  17. Implementation of a critical incident reporting system in a neurosurgical department.

    PubMed

    Kantelhardt, P; Müller, M; Giese, A; Rohde, V; Kantelhardt, S R

    2011-02-01

    Critical incident monitoring is an important tool for quality improvement and the maintenance of high safety standards. It was developed for aviation safety and is now widely accepted as a useful tool to reduce medical care-related morbidity and mortality. Despite this widespread acceptance, the literature has no reports on any neurosurgical applications of critical incident monitoring. We describe the introduction of a mono-institutional critical incident reporting system in a neurosurgical department. Furthermore, we have developed a formula to assess possible counterstrategies. All staff members of a neurosurgical department were advised to report critical incidents. The anonymous reporting form contained a box for the description of the incident, several multiple-choice questions on specific risk factors, place and reason for occurrence of the incident, severity of the consequences and suggested counterstrategies. The incident data was entered into an online documentation system (ADKA DokuPik) and evaluated by an external specialist. For data analysis we applied a modified assessment scheme initially designed for flight safety. Data collection was started in September 2008. The average number of reported incidents was 18 per month (currently 216 in total). Most incidents occurred on the neurosurgical ward (64%). Human error was involved in 86% of the reported incidents. The largest group of incidents consisted of medication-related problems. Accordingly, counterstrategies were developed, resulting in a decrease in the relative number of reported medication-related incidents from 42% (March 09) to 30% (September 09). Implementation of the critical incident reporting system presented no technical problems. The reporting rate was high compared to that reported in the current literature. The formulation, evaluation and introduction of specific counterstrategies to guard against selected groups of incidents may improve patient safety in neurosurgical departments.

  18. The Use of Video-Gaming Devices as a Motivation for Learning Embedded Systems Programming

    ERIC Educational Resources Information Center

    Gonzalez, J.; Pomares, H.; Damas, M.; Garcia-Sanchez,P.; Rodriguez-Alvarez, M.; Palomares, J. M.

    2013-01-01

    As embedded systems are becoming prevalent in everyday life, many universities are incorporating embedded systems-related courses in their undergraduate curricula. However, it is not easy to motivate students in such courses since they conceive of embedded systems as bizarre computing elements, different from the personal computers with which they…

  19. Reasons For Physicians Not Adopting Clinical Decision Support Systems: Critical Analysis.

    PubMed

    Khairat, Saif; Marc, David; Crosby, William; Al Sanousi, Ali

    2018-04-18

    Clinical decision support systems (CDSSs) are an integral component of today's health information technologies. They assist with interpretation, diagnosis, and treatment. A CDSS can be embedded throughout the patient safety continuum providing reminders, recommendations, and alerts to health care providers. Although CDSSs have been shown to reduce medical errors and improve patient outcomes, they have fallen short of their full potential. User acceptance has been identified as one of the potential reasons for this shortfall. The purpose of this paper was to conduct a critical review and task analysis of CDSS research and to develop a new framework for CDSS design in order to achieve user acceptance. A critical review of CDSS papers was conducted with a focus on user acceptance. To gain a greater understanding of the problems associated with CDSS acceptance, we conducted a task analysis to identify and describe the goals, user input, system output, knowledge requirements, and constraints from two different perspectives: the machine (ie, the CDSS engine) and the user (ie, the physician). Favorability of CDSSs was based on user acceptance of clinical guidelines, reminders, alerts, and diagnostic suggestions. We propose two models: (1) the user acceptance and system adaptation design model, which includes optimizing CDSS design based on user needs/expectations, and (2) the input-process-output-engagemodel, which reveals to users the processes that govern CDSS outputs. This research demonstrates that the incorporation of the proposed models will improve user acceptance to support the beneficial effects of CDSSs adoption. Ultimately, if a user does not accept technology, this not only poses a threat to the use of the technology but can also pose a threat to the health and well-being of patients. ©Saif Khairat, David Marc, William Crosby, Ali Al Sanousi. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 18.04.2018.

  20. A robust embedded vision system feasible white balance algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Yu, Feihong

    2018-01-01

    White balance is a very important part of the color image processing pipeline. In order to meet the need of efficiency and accuracy in embedded machine vision processing system, an efficient and robust white balance algorithm combining several classical ones is proposed. The proposed algorithm mainly has three parts. Firstly, in order to guarantee higher efficiency, an initial parameter calculated from the statistics of R, G and B components from raw data is used to initialize the following iterative method. After that, the bilinear interpolation algorithm is utilized to implement demosaicing procedure. Finally, an adaptive step adjustable scheme is introduced to ensure the controllability and robustness of the algorithm. In order to verify the proposed algorithm's performance on embedded vision system, a smart camera based on IMX6 DualLite, IMX291 and XC6130 is designed. Extensive experiments on a large amount of images under different color temperatures and exposure conditions illustrate that the proposed white balance algorithm avoids color deviation problem effectively, achieves a good balance between efficiency and quality, and is suitable for embedded machine vision processing system.

  1. A Study of the Ethernet Troughput Performance of the Embedded System

    NASA Astrophysics Data System (ADS)

    Duan, Zhi-Yu; Zhao, Zhao-Wang

    2007-09-01

    An ethernet acceleration solution developed for the NIOS II Embedded System in astronomical applications - Mason Express is introduced in this paper. By manually constructing the proper network protocol headers and directly driving the hardware, Mason Express goes around the performance bottleneck of the Light Weighted IP stack (LWIP), and achieves up to 90Mb/s unidirectional data troughput rate from the embedded system board to the data collecting computer. With the LWIP stack, the maximum data rate is about 10.57Mb/s. Mason Express is a total software solution and no hardware changes required, neither does it affect the uCOS II operating system nor the LWIP stack, and can be implemented with or without any embedded operating system. It maximally protects the intelligence investment of the users.

  2. Designing flexible engineering systems utilizing embedded architecture options

    NASA Astrophysics Data System (ADS)

    Pierce, Jeff G.

    This dissertation develops and applies an integrated framework for embedding flexibility in an engineered system architecture. Systems are constantly faced with unpredictability in the operational environment, threats from competing systems, obsolescence of technology, and general uncertainty in future system demands. Current systems engineering and risk management practices have focused almost exclusively on mitigating or preventing the negative consequences of uncertainty. This research recognizes that high uncertainty also presents an opportunity to design systems that can flexibly respond to changing requirements and capture additional value throughout the design life. There does not exist however a formalized approach to designing appropriately flexible systems. This research develops a three stage integrated flexibility framework based on the concept of architecture options embedded in the system design. Stage One defines an eight step systems engineering process to identify candidate architecture options. This process encapsulates the operational uncertainty though scenario development, traces new functional requirements to the affected design variables, and clusters the variables most sensitive to change. The resulting clusters can generate insight into the most promising regions in the architecture to embed flexibility in the form of architecture options. Stage Two develops a quantitative option valuation technique, grounded in real options theory, which is able to value embedded architecture options that exhibit variable expiration behavior. Stage Three proposes a portfolio optimization algorithm, for both discrete and continuous options, to select the optimal subset of architecture options, subject to budget and risk constraints. Finally, the feasibility, extensibility and limitations of the framework are assessed by its application to a reconnaissance satellite system development problem. Detailed technical data, performance models, and cost estimates

  3. Universal test system for system embedded optical interconnect

    NASA Astrophysics Data System (ADS)

    Pitwon, R.; Wang, K.; Immonen, M.; Schröder, H.; Neitz, M.

    2018-02-01

    We introduce a universal test and measurement system allowing comparative characterisation of optical transceivers, board-to-board optical connectors and both embedded and passive optical circuit boards. The system comprises a test enclosure with interlocking and interchangeable test cards, allowing different technologies spanning different Technology Readiness Levels to be both characterised alone and in combination with other technologies. They form part of the open test design standards portfolio developed on the FP7 PhoxTroT and H2020 COSMICC projects and allow testing on a common test platform.

  4. Information Retrieval and Criticality in Parity-Time-Symmetric Systems.

    PubMed

    Kawabata, Kohei; Ashida, Yuto; Ueda, Masahito

    2017-11-10

    By investigating information flow between a general parity-time (PT-)symmetric non-Hermitian system and an environment, we find that the complete information retrieval from the environment can be achieved in the PT-unbroken phase, whereas no information can be retrieved in the PT-broken phase. The PT-transition point thus marks the reversible-irreversible criticality of information flow, around which many physical quantities such as the recurrence time and the distinguishability between quantum states exhibit power-law behavior. Moreover, by embedding a PT-symmetric system into a larger Hilbert space so that the entire system obeys unitary dynamics, we reveal that behind the information retrieval lies a hidden entangled partner protected by PT symmetry. Possible experimental situations are also discussed.

  5. Information Retrieval and Criticality in Parity-Time-Symmetric Systems

    NASA Astrophysics Data System (ADS)

    Kawabata, Kohei; Ashida, Yuto; Ueda, Masahito

    2017-11-01

    By investigating information flow between a general parity-time (P T -)symmetric non-Hermitian system and an environment, we find that the complete information retrieval from the environment can be achieved in the P T -unbroken phase, whereas no information can be retrieved in the P T -broken phase. The P T -transition point thus marks the reversible-irreversible criticality of information flow, around which many physical quantities such as the recurrence time and the distinguishability between quantum states exhibit power-law behavior. Moreover, by embedding a P T -symmetric system into a larger Hilbert space so that the entire system obeys unitary dynamics, we reveal that behind the information retrieval lies a hidden entangled partner protected by P T symmetry. Possible experimental situations are also discussed.

  6. Two challenges in embedded systems design: predictability and robustness.

    PubMed

    Henzinger, Thomas A

    2008-10-28

    I discuss two main challenges in embedded systems design: the challenge to build predictable systems, and that to build robust systems. I suggest how predictability can be formalized as a form of determinism, and robustness as a form of continuity.

  7. Critical factors and paths influencing construction workers' safety risk tolerances.

    PubMed

    Wang, Jiayuan; Zou, Patrick X W; Li, Penny P

    2016-08-01

    While workers' safety risk tolerances have been regarded as a main reason for their unsafe behaviors, little is known about why different people have different risk tolerances even when confronting the same situation. The aim of this research is to identify the critical factors and paths that influence workers' safety risk tolerance and to explore how they contribute to accident causal model from a system thinking perceptive. A number of methods were carried out to analyze the data collected through interviews and questionnaire surveys. In the first and second steps of the research, factor identification, factor ranking and factor analysis were carried out, and the results show that workers' safety risk tolerance can be influenced by four groups of factors, namely: (1) personal subjective perception; (2) work knowledge and experiences; (3) work characteristics; and (4) safety management. In the third step of the research, hypothetical influencing path model was developed and tested by using structural equation modeling (SEM). It is found that the effects of external factors (safety management and work characteristics) on risk tolerance are larger than that of internal factors (personal subjective perception and work knowledge & experiences). Specifically, safety management contributes the most to workers' safety risk tolerance through its direct effect and indirect effect; while personal subjective perception comes the second and can act as an intermedia for work characteristics. This research provides an in-depth insight of workers' unsafe behaviors by depicting the contributing factors as shown in the accident causal model developed in this research. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. The adaptive safety analysis and monitoring system

    NASA Astrophysics Data System (ADS)

    Tu, Haiying; Allanach, Jeffrey; Singh, Satnam; Pattipati, Krishna R.; Willett, Peter

    2004-09-01

    The Adaptive Safety Analysis and Monitoring (ASAM) system is a hybrid model-based software tool for assisting intelligence analysts to identify terrorist threats, to predict possible evolution of the terrorist activities, and to suggest strategies for countering terrorism. The ASAM system provides a distributed processing structure for gathering, sharing, understanding, and using information to assess and predict terrorist network states. In combination with counter-terrorist network models, it can also suggest feasible actions to inhibit potential terrorist threats. In this paper, we will introduce the architecture of the ASAM system, and discuss the hybrid modeling approach embedded in it, viz., Hidden Markov Models (HMMs) to detect and provide soft evidence on the states of terrorist network nodes based on partial and imperfect observations, and Bayesian networks (BNs) to integrate soft evidence from multiple HMMs. The functionality of the ASAM system is illustrated by way of application to the Indian Airlines Hijacking, as modeled from open sources.

  9. An Incremental Life-cycle Assurance Strategy for Critical System Certification

    DTIC Science & Technology

    2014-11-04

    for Safe Aircraft Operation Embedded software systems introduce a new class of problems not addressed by traditional system modeling & analysis...Platform Runtime Architecture Application Software Embedded SW System Engineer Data Stream Characteristics Latency jitter affects control behavior...do system level failures still occur despite fault tolerance techniques being deployed in systems ? Embedded software system as major source of

  10. Conformal and embedded IDT microsensors for health monitoring of structures

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.; Varadan, Vasundara V.

    2000-06-01

    MEMS are currently being applied to the structural health monitoring of critical aircraft components and composites. The approach integrates acoustic emission, strain gauges, MEMS accelerometers and vibration monitoring aircraft components with a known history of catastrophic failure due to fracture. Recently a combination of the need for safety in the air and the desire to control costs is encouraging the use of in-flight monitoring of aircraft components and systems using light-weight, wireless and cost effective microsensors and MEMS. An in-situ aircraft structural health monitoring system, with sensors embedded in the composite structure or surface-mounted on the structure, would permit the timely detection of damage in aircraft. Micromachining offers the potential for fabricating a range of microsensor and MEMS for structural applications including load, vibration and acoustics characterization and monitoring. Such microsensors are extremely small; they can be embedded into structural materials, can be mass-produced and are therefore potentially cheap. The smart sensors are being developed using the standard microelectronics and micromachining in conjunction with novel Penn State wireless communication systems suitable for condition monitoring of aircraft structures in-flight. The main application areas of this investigation include continuos monitoring of a) structural integrity of aging aircraft, b) fatigue cracking, c) corrosion, d) deflection and strain of aircraft structures, wings, and rotorblades, e) impact damage, f) delamination and g) location and propagation of cracks. In this paper we give an overview of wireless programmable microsensors and MEMS and their associated driving electronics for such applications.

  11. Design of UAV-Embedded Microphone Array System for Sound Source Localization in Outdoor Environments.

    PubMed

    Hoshiba, Kotaro; Washizaki, Kai; Wakabayashi, Mizuho; Ishiki, Takahiro; Kumon, Makoto; Bando, Yoshiaki; Gabriel, Daniel; Nakadai, Kazuhiro; Okuno, Hiroshi G

    2017-11-03

    In search and rescue activities, unmanned aerial vehicles (UAV) should exploit sound information to compensate for poor visual information. This paper describes the design and implementation of a UAV-embedded microphone array system for sound source localization in outdoor environments. Four critical development problems included water-resistance of the microphone array, efficiency in assembling, reliability of wireless communication, and sufficiency of visualization tools for operators. To solve these problems, we developed a spherical microphone array system (SMAS) consisting of a microphone array, a stable wireless network communication system, and intuitive visualization tools. The performance of SMAS was evaluated with simulated data and a demonstration in the field. Results confirmed that the SMAS provides highly accurate localization, water resistance, prompt assembly, stable wireless communication, and intuitive information for observers and operators.

  12. Embedding health literacy into health systems: a case study of a regional health service.

    PubMed

    Vellar, Lucia; Mastroianni, Fiorina; Lambert, Kelly

    2017-12-01

    Objective The aim of the present study was to describe how one regional health service the Illawarra Shoalhaven Local Health District embedded health literacy principles into health systems over a 3-year period. Methods Using a case study approach, this article describes the development of key programs and the manner in which clinical incidents were used to create a health environment that allows consumers the right to equitably access quality health services and to participate in their own health care. Results The key outcomes demonstrating successful embedding of health literacy into health systems in this regional health service include the creation of a governance structure and web-based platform for developing and testing plain English consumer health information, a clearly defined process to engage with consumers, development of the health literacy ambassador training program and integrating health literacy into clinical quality improvement processes via a formal program with consumers to guide processes such as improvements to access and navigation around hospital sites. Conclusions The Illawarra Shoalhaven Local Health District has developed an evidence-based health literacy framework, guided by the core principles of universal precaution and organisational responsibility. Health literacy was also viewed as both an outcome and a process. The approach taken by the Illawarra Shoalhaven Local Health District to address poor health literacy in a coordinated way has been recognised by the Australian Commission on Safety and Quality in Health Care as an exemplar of a coordinated approach to embed health literacy into health systems. What is known about the topic? Poor health literacy is a significant national concern in Australia. The leadership, governance and consumer partnership culture of a health organisation can have considerable effects on an individual's ability to access, understand and apply the health-related information and services available to them

  13. A Project-Based Laboratory for Learning Embedded System Design with Industry Support

    ERIC Educational Resources Information Center

    Lee, Chyi-Shyong; Su, Juing-Huei; Lin, Kuo-En; Chang, Jia-Hao; Lin, Gu-Hong

    2010-01-01

    A project-based laboratory for learning embedded system design with support from industry is presented in this paper. The aim of this laboratory is to motivate students to learn the building blocks of embedded systems and practical control algorithms by constructing a line-following robot using the quadratic interpolation technique to predict the…

  14. Patient Safety Learning Systems: A Systematic Review and Qualitative Synthesis.

    PubMed

    2017-01-01

    A patient safety learning system (sometimes called a critical incident reporting system) refers to structured reporting, collation, and analysis of critical incidents. To inform a provincial working group's recommendations for an Ontario Patient Safety Event Learning System, a systematic review was undertaken to determine design features that would optimize its adoption into the health care system and would inform implementation strategies. The objective of this review was to address two research questions: (a) what are the barriers to and facilitators of successful adoption of a patient safety learning system reported by health professionals and (b) what design components maximize successful adoption and implementation? To answer the first question, we used a published systematic review. To answer the second question, we used scoping study methodology. Common barriers reported in the literature by health care professionals included fear of blame, legal penalties, the perception that incident reporting does not improve patient safety, lack of organizational support, inadequate feedback, lack of knowledge about incident reporting systems, and lack of understanding about what constitutes an error. Common facilitators included a non-accusatory environment, the perception that incident reporting improves safety, clarification of the route of reporting and of how the system uses reports, enhanced feedback, role models (such as managers) using and promoting reporting, legislated protection of those who report, ability to report anonymously, education and training opportunities, and clear guidelines on what to report. Components of a patient safety learning system that increased successful adoption and implementation were emphasis on a blame-free culture that encourages reporting and learning, clear guidelines on how and what to report, making sure the system is user-friendly, organizational development support for data analysis to generate meaningful learning outcomes

  15. Food safety systems in a small dairy factory: implementation, major challenges, and assessment of systems' performances.

    PubMed

    Cusato, Sueli; Gameiro, Augusto H; Corassin, Carlos H; Sant'ana, Anderson S; Cruz, Adriano G; Faria, José de Assis F; de Oliveira, Carlos Augusto F

    2013-01-01

    The present study describes the implementation of a food safety system in a dairy processing plant located in the State of São Paulo, Brazil, and the challenges found during the process. In addition, microbiological indicators have been used to assess system's implementation performance. The steps involved in the implementation of a food safety system included a diagnosis of the prerequisites, implementation of the good manufacturing practices (GMPs), sanitation standard operating procedures (SSOPs), training of the food handlers, and hazard analysis and critical control point (HACCP). In the initial diagnosis, conformity with 70.7% (n=106) of the items analyzed was observed. A total of 12 critical control points (CCPs) were identified: (1) reception of the raw milk, (2) storage of the raw milk, (3 and 4) reception of the ingredients and packaging, (5) milk pasteurization, (6 and 7) fermentation and cooling, (8) addition of ingredients, (9) filling, (10) storage of the finished product, (11) dispatching of the product, and (12) sanitization of the equipment. After implementation of the food safety system, a significant reduction in the yeast and mold count was observed (p<0.05). The main difficulties encountered for the implementation of food safety system were related to the implementation of actions established in the flow chart and to the need for constant training/adherence of the workers to the system. Despite this, the implementation of the food safety system was shown to be challenging, but feasible to be reached by small-scale food industries.

  16. An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses--Criticality (keff) Predictions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scaglione, John M; Mueller, Don; Wagner, John C

    2011-01-01

    One of the most significant remaining challenges associated with expanded implementation of burnup credit in the United States is the validation of depletion and criticality calculations used in the safety evaluation - in particular, the availability and use of applicable measured data to support validation, especially for fission products. Applicants and regulatory reviewers have been constrained by both a scarcity of data and a lack of clear technical basis or approach for use of the data. U.S. Nuclear Regulatory Commission (NRC) staff have noted that the rationale for restricting their Interim Staff Guidance on burnup credit (ISG-8) to actinide-only ismore » based largely on the lack of clear, definitive experiments that can be used to estimate the bias and uncertainty for computational analyses associated with using burnup credit. To address the issue of validation, the NRC initiated a project with the Oak Ridge National Laboratory to (1) develop and establish a technically sound validation approach (both depletion and criticality) for commercial spent nuclear fuel (SNF) criticality safety evaluations based on best-available data and methods and (2) apply the approach for representative SNF storage and transport configurations/conditions to demonstrate its usage and applicability, as well as to provide reference bias results. The purpose of this paper is to describe the criticality (k{sub eff}) validation approach, and resulting observations and recommendations. Validation of the isotopic composition (depletion) calculations is addressed in a companion paper at this conference. For criticality validation, the approach is to utilize (1) available laboratory critical experiment (LCE) data from the International Handbook of Evaluated Criticality Safety Benchmark Experiments and the French Haut Taux de Combustion (HTC) program to support validation of the principal actinides and (2) calculated sensitivities, nuclear data uncertainties, and the limited available

  17. EVA safety: Space suit system interoperability

    NASA Technical Reports Server (NTRS)

    Skoog, A. I.; McBarron, J. W.; Abramov, L. P.; Zvezda, A. O.

    1995-01-01

    The results and the recommendations of the International Academy of Astronautics extravehicular activities (IAA EVA) Committee work are presented. The IAA EVA protocols and operation were analyzed for harmonization procedures and for the standardization of safety critical and operationally important interfaces. The key role of EVA and how to improve the situation based on the identified EVA space suit system interoperability deficiencies were considered.

  18. Digital interface of electronic transformers based on embedded system

    NASA Astrophysics Data System (ADS)

    Shang, Qiufeng; Qi, Yincheng

    2008-10-01

    Benefited from digital interface of electronic transformers, information sharing and system integration in substation can be realized. An embedded system-based digital output scheme of electronic transformers is proposed. The digital interface is designed with S3C44B0X 32bit RISC microprocessor as the hardware platform. The μCLinux operation system (OS) is transplanted on ARM7 (S3C44B0X). Applying Ethernet technology as the communication mode in the substation automation system is a new trend. The network interface chip RTL8019AS is adopted. Data transmission is realized through the in-line TCP/IP protocol of uClinux embedded OS. The application result and character analysis show that the design can meet the real-time and reliability requirements of IEC60044-7/8 electronic voltage/current instrument transformer standards.

  19. Constructing Pairing-Friendly Elliptic Curves under Embedding Degree 1 for Securing Critical Infrastructures.

    PubMed

    Wang, Maocai; Dai, Guangming; Choo, Kim-Kwang Raymond; Jayaraman, Prem Prakash; Ranjan, Rajiv

    2016-01-01

    Information confidentiality is an essential requirement for cyber security in critical infrastructure. Identity-based cryptography, an increasingly popular branch of cryptography, is widely used to protect the information confidentiality in the critical infrastructure sector due to the ability to directly compute the user's public key based on the user's identity. However, computational requirements complicate the practical application of Identity-based cryptography. In order to improve the efficiency of identity-based cryptography, this paper presents an effective method to construct pairing-friendly elliptic curves with low hamming weight 4 under embedding degree 1. Based on the analysis of the Complex Multiplication(CM) method, the soundness of our method to calculate the characteristic of the finite field is proved. And then, three relative algorithms to construct pairing-friendly elliptic curve are put forward. 10 elliptic curves with low hamming weight 4 under 160 bits are presented to demonstrate the utility of our approach. Finally, the evaluation also indicates that it is more efficient to compute Tate pairing with our curves, than that of Bertoni et al.

  20. Constructing Pairing-Friendly Elliptic Curves under Embedding Degree 1 for Securing Critical Infrastructures

    PubMed Central

    Dai, Guangming

    2016-01-01

    Information confidentiality is an essential requirement for cyber security in critical infrastructure. Identity-based cryptography, an increasingly popular branch of cryptography, is widely used to protect the information confidentiality in the critical infrastructure sector due to the ability to directly compute the user’s public key based on the user’s identity. However, computational requirements complicate the practical application of Identity-based cryptography. In order to improve the efficiency of identity-based cryptography, this paper presents an effective method to construct pairing-friendly elliptic curves with low hamming weight 4 under embedding degree 1. Based on the analysis of the Complex Multiplication(CM) method, the soundness of our method to calculate the characteristic of the finite field is proved. And then, three relative algorithms to construct pairing-friendly elliptic curve are put forward. 10 elliptic curves with low hamming weight 4 under 160 bits are presented to demonstrate the utility of our approach. Finally, the evaluation also indicates that it is more efficient to compute Tate pairing with our curves, than that of Bertoni et al. PMID:27564373

  1. An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses: Criticality (k eff) Predictions

    DOE PAGES

    Scaglione, John M.; Mueller, Don E.; Wagner, John C.

    2014-12-01

    One of the most important remaining challenges associated with expanded implementation of burnup credit in the United States is the validation of depletion and criticality calculations used in the safety evaluation—in particular, the availability and use of applicable measured data to support validation, especially for fission products (FPs). Applicants and regulatory reviewers have been constrained by both a scarcity of data and a lack of clear technical basis or approach for use of the data. In this study, this paper describes a validation approach for commercial spent nuclear fuel (SNF) criticality safety (k eff) evaluations based on best-available data andmore » methods and applies the approach for representative SNF storage and transport configurations/conditions to demonstrate its usage and applicability, as well as to provide reference bias results. The criticality validation approach utilizes not only available laboratory critical experiment (LCE) data from the International Handbook of Evaluated Criticality Safety Benchmark Experiments and the French Haut Taux de Combustion program to support validation of the principal actinides but also calculated sensitivities, nuclear data uncertainties, and limited available FP LCE data to predict and verify individual biases for relevant minor actinides and FPs. The results demonstrate that (a) sufficient critical experiment data exist to adequately validate k eff calculations via conventional validation approaches for the primary actinides, (b) sensitivity-based critical experiment selection is more appropriate for generating accurate application model bias and uncertainty, and (c) calculated sensitivities and nuclear data uncertainties can be used for generating conservative estimates of bias for minor actinides and FPs. Results based on the SCALE 6.1 and the ENDF/B-VII.0 cross-section libraries indicate that a conservative estimate of the bias for the minor actinides and FPs is 1.5% of their worth within the

  2. Final Technical Report on Quantifying Dependability Attributes of Software Based Safety Critical Instrumentation and Control Systems in Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smidts, Carol; Huang, Funqun; Li, Boyuan

    With the current transition from analog to digital instrumentation and control systems in nuclear power plants, the number and variety of software-based systems have significantly increased. The sophisticated nature and increasing complexity of software raises trust in these systems as a significant challenge. The trust placed in a software system is typically termed software dependability. Software dependability analysis faces uncommon challenges since software systems’ characteristics differ from those of hardware systems. The lack of systematic science-based methods for quantifying the dependability attributes in software-based instrumentation as well as control systems in safety critical applications has proved itself to be amore » significant inhibitor to the expanded use of modern digital technology in the nuclear industry. Dependability refers to the ability of a system to deliver a service that can be trusted. Dependability is commonly considered as a general concept that encompasses different attributes, e.g., reliability, safety, security, availability and maintainability. Dependability research has progressed significantly over the last few decades. For example, various assessment models and/or design approaches have been proposed for software reliability, software availability and software maintainability. Advances have also been made to integrate multiple dependability attributes, e.g., integrating security with other dependability attributes, measuring availability and maintainability, modeling reliability and availability, quantifying reliability and security, exploring the dependencies between security and safety and developing integrated analysis models. However, there is still a lack of understanding of the dependencies between various dependability attributes as a whole and of how such dependencies are formed. To address the need for quantification and give a more objective basis to the review process -- therefore reducing regulatory

  3. Experiences with Ada in an embedded system

    NASA Technical Reports Server (NTRS)

    Labaugh, Robert J.

    1988-01-01

    Recent experiences with using Ada in a real time environment are described. The application was the control system for an experimental robotic arm. The objectives of the effort were to experiment with developing embedded applications in Ada, evaluating the suitability of the language for the application, and determining the performance of the system. Additional objectives were to develop a control system based on the NASA/NBS Standard Reference Model for Telerobot Control System Architecture (NASREM) in Ada, and to experiment with the control laws and how to incorporate them into the NASREM architecture.

  4. Verification and Validation of Flight-Critical Systems

    NASA Technical Reports Server (NTRS)

    Brat, Guillaume

    2010-01-01

    For the first time in many years, the NASA budget presented to congress calls for a focused effort on the verification and validation (V&V) of complex systems. This is mostly motivated by the results of the VVFCS (V&V of Flight-Critical Systems) study, which should materialize as a a concrete effort under the Aviation Safety program. This talk will present the results of the study, from requirements coming out of discussions with the FAA and the Joint Planning and Development Office (JPDO) to technical plan addressing the issue, and its proposed current and future V&V research agenda, which will be addressed by NASA Ames, Langley, and Dryden as well as external partners through NASA Research Announcements (NRA) calls. This agenda calls for pushing V&V earlier in the life cycle and take advantage of formal methods to increase safety and reduce cost of V&V. I will present the on-going research work (especially the four main technical areas: Safety Assurance, Distributed Systems, Authority and Autonomy, and Software-Intensive Systems), possible extensions, and how VVFCS plans on grounding the research in realistic examples, including an intended V&V test-bench based on an Integrated Modular Avionics (IMA) architecture and hosted by Dryden.

  5. Brazed Joints Design and Allowables: Discuss Margins of Safety in Critical Brazed Structures

    NASA Technical Reports Server (NTRS)

    FLom, Yury

    2009-01-01

    This slide presentation tutorial discusses margins of safety in critical brazed structures. It reviews: (1) the present situation (2) definition of strength (3) margins of safety (4) design allowables (5) mechanical testing (6) failure criteria (7) design flowchart (8) braze gap (9) residual stresses and (10) delayed failures. This presentation addresses the strength of the brazed joints, the methods of mechanical testing, and our ability to evaluate the margins of safety of the brazed joints as it applies to the design of critical and expensive brazed assemblies.

  6. Bus operator safety : critical issues examination and model practices.

    DOT National Transportation Integrated Search

    2014-01-01

    In this study, researchers at the National Center for Transit Research performed a multi-topic comprehensive : examination of bus operator-related critical safety and personal security issues. The goals of this research : effort were to: : 1. Identif...

  7. Nuclear criticality safety evaluation of SRS 9971 shipping package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vescovi, P.J.

    1993-02-01

    This evaluation is requested to revise the criticality evaluation used to generate Chapter 6 (Criticality Evaluation) of the Safety Analysis Report for Packaging (SARP) for shipment Of UO{sub 3} product from the Uranium Solidification Facility (USF) in the SRS 9971 shipping package. The pertinent document requesting this evaluation is included as Attachment I. The results of the evaluation are given in Attachment II which is written as Chapter 6 of a NRC format SARP.

  8. 76 FR 14641 - Defense Federal Acquisition Regulation Supplement; Identification of Critical Safety Items (DFARS...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-17

    ... Federal Acquisition Regulation Supplement; Identification of Critical Safety Items (DFARS Case 2010-D022... contract clause that clearly identifies any items being purchased that are critical safety items so that.... SUPPLEMENTARY INFORMATION: I. Background This DFARS case was initiated at the request of the Defense Contract...

  9. Pediatric post-marketing safety systems in North America: assessment of the current status.

    PubMed

    McMahon, Ann W; Wharton, Gerold T; Bonnel, Renan; DeCelle, Mary; Swank, Kimberley; Testoni, Daniela; Cope, Judith U; Smith, Phillip Brian; Wu, Eileen; Murphy, Mary Dianne

    2015-08-01

    It is critical to have pediatric post-marketing safety systems that contain enough clinical and epidemiological detail to draw regulatory, public health, and clinical conclusions. The pediatric safety surveillance workshop (PSSW), coordinated by the Food and Drug Administration (FDA), identified these pediatric systems as of 2010. This manuscript aims to update the information from the PSSW and look critically at the systems currently in use. We reviewed North American pediatric post-marketing safety systems such as databases, networks, and research consortiums found in peer-reviewed journals and other online sources. We detail clinical examples from three systems that FDA used to assess pediatric medical product safety. Of the 59 systems reviewed for pediatric content, only nine were pediatric-focused and met the inclusion criteria. Brief descriptions are provided for these nine. The strengths and weaknesses of three systems (two of the nine pediatric-focused and one including both children and adults) are illustrated with clinical examples. Systems reviewed in this manuscript have strengths such as clinical detail, a large enough sample size to capture rare adverse events, and/or a patient denominator internal to the database. Few systems include all of these attributes. Pediatric drug safety would be better informed by utilizing multiple systems to take advantage of their individual characteristics. Copyright © 2015 John Wiley & Sons, Ltd.

  10. System safety education focused on flight safety

    NASA Technical Reports Server (NTRS)

    Holt, E.

    1971-01-01

    The measures necessary for achieving higher levels of system safety are analyzed with an eye toward maintaining the combat capability of the Air Force. Several education courses were provided for personnel involved in safety management. Data include: (1) Flight Safety Officer Course, (2) Advanced Safety Program Management, (3) Fundamentals of System Safety, and (4) Quantitative Methods of Safety Analysis.

  11. Collegiate Aviation Research and Education Solutions to Critical Safety Issues. UNO Aviation Monograph Series. UNOAI Report.

    ERIC Educational Resources Information Center

    Bowen, Brent, Ed.

    This document contains four papers concerning collegiate aviation research and education solutions to critical safety issues. "Panel Proposal Titled Collegiate Aviation Research and Education Solutions to Critical Safety Issues for the Tim Forte Collegiate Aviation Safety Symposium" (Brent Bowen) presents proposals for panels on the…

  12. An open and configurable embedded system for EMG pattern recognition implementation for artificial arms.

    PubMed

    Jun Liu; Fan Zhang; Huang, He Helen

    2014-01-01

    Pattern recognition (PR) based on electromyographic (EMG) signals has been developed for multifunctional artificial arms for decades. However, assessment of EMG PR control for daily prosthesis use is still limited. One of the major barriers is the lack of a portable and configurable embedded system to implement the EMG PR control. This paper aimed to design an open and configurable embedded system for EMG PR implementation so that researchers can easily modify and optimize the control algorithms upon our designed platform and test the EMG PR control outside of the lab environments. The open platform was built on an open source embedded Linux Operating System running a high-performance Gumstix board. Both the hardware and software system framework were openly designed. The system was highly flexible in terms of number of inputs/outputs and calibration interfaces used. Such flexibility enabled easy integration of our embedded system with different types of commercialized or prototypic artificial arms. Thus far, our system was portable for take-home use. Additionally, compared with previously reported embedded systems for EMG PR implementation, our system demonstrated improved processing efficiency and high system precision. Our long-term goals are (1) to develop a wearable and practical EMG PR-based control for multifunctional artificial arms, and (2) to quantify the benefits of EMG PR-based control over conventional myoelectric prosthesis control in a home setting.

  13. Flexible Architecture for FPGAs in Embedded Systems

    NASA Technical Reports Server (NTRS)

    Clark, Duane I.; Lim, Chester N.

    2012-01-01

    Commonly, field-programmable gate arrays (FPGAs) being developed in cPCI embedded systems include the bus interface in the FPGA. This complicates the development because the interface is complicated and requires a lot of development time and FPGA resources. In addition, flight qualification requires a substantial amount of time be devoted to just this interface. Another complication of putting the cPCI interface into the FPGA being developed is that configuration information loaded into the device by the cPCI microprocessor is lost when a new bit file is loaded, requiring cumbersome operations to return the system to an operational state. Finally, SRAM-based FPGAs are typically programmed via specialized cables and software, with programming files being loaded either directly into the FPGA, or into PROM devices. This can be cumbersome when doing FPGA development in an embedded environment, and does not have an easy path to flight. Currently, FPGAs used in space applications are usually programmed via multiple space-qualified PROM devices that are physically large and require extra circuitry (typically including a separate one-time programmable FPGA) to enable them to be used for this application. This technology adds a cPCI interface device with a simple, flexible, high-performance backend interface supporting multiple backend FPGAs. It includes a mechanism for programming the FPGAs directly via the microprocessor in the embedded system, eliminating specialized hardware, software, and PROM devices and their associated circuitry. It has a direct path to flight, and no extra hardware and minimal software are required to support reprogramming in flight. The device added is currently a small FPGA, but an advantage of this technology is that the design of the device does not change, regardless of the application in which it is being used. This means that it needs to be qualified for flight only once, and is suitable for one-time programmable devices or an application

  14. Design of UAV-Embedded Microphone Array System for Sound Source Localization in Outdoor Environments †

    PubMed Central

    Hoshiba, Kotaro; Washizaki, Kai; Wakabayashi, Mizuho; Ishiki, Takahiro; Bando, Yoshiaki; Gabriel, Daniel; Nakadai, Kazuhiro; Okuno, Hiroshi G.

    2017-01-01

    In search and rescue activities, unmanned aerial vehicles (UAV) should exploit sound information to compensate for poor visual information. This paper describes the design and implementation of a UAV-embedded microphone array system for sound source localization in outdoor environments. Four critical development problems included water-resistance of the microphone array, efficiency in assembling, reliability of wireless communication, and sufficiency of visualization tools for operators. To solve these problems, we developed a spherical microphone array system (SMAS) consisting of a microphone array, a stable wireless network communication system, and intuitive visualization tools. The performance of SMAS was evaluated with simulated data and a demonstration in the field. Results confirmed that the SMAS provides highly accurate localization, water resistance, prompt assembly, stable wireless communication, and intuitive information for observers and operators. PMID:29099790

  15. An embedded wireless system for remote monitoring of bridges

    NASA Astrophysics Data System (ADS)

    Harms, T.; Bastianini, F.; Sedigh Sarvestani, S.

    2008-03-01

    This paper describes an autonomous embedded system for remote monitoring of bridges. Salient features of the system include ultra-low power consumption, wireless communication of data and alerts, and incorporation of embedded sensors that monitor various indicators of the structural health of a bridge, while capturing the state of its surrounding environment. Examples include water level, temperature, vibration, and acoustic emissions. Ease of installation, physical robustness, remote maintenance and calibration, and autonomous data communication make the device a self-contained solution for remote monitoring of structural health. The system addresses shortcomings present in centralized structural health monitoring systems, particularly their reliance on a laptop or handheld computer. The system has been field-tested to verify the accuracy of the collected data and dependability of communication. The sheer volume of data collected, and the regularity of its collection can enable accurate and precise assessment of the health of a bridge, guiding maintenance efforts and providing early warning of potentially dangerous events. In this paper, we present a detailed breakdown of the system's power requirements and the results of the initial field test.

  16. Design and implementation of embedded un-interruptible power supply system (EUPSS) for web-based mobile application

    NASA Astrophysics Data System (ADS)

    Zhang, De-gan; Zhang, Xiao-dan

    2012-11-01

    With the growth of the amount of information manipulated by embedded application systems, which are embedded into devices and offer access to the devices on the internet, the requirements of saving the information systemically is necessary so as to fulfil access from the client and the local processing more efficiently. For supporting mobile applications, a design and implementation solution of embedded un-interruptible power supply (UPS) system (in brief, EUPSS) is brought forward for long-distance monitoring and controlling of UPS based on Web. The implementation of system is based on ATmega161, RTL8019AS and Arm chips with TCP/IP protocol suite for communication. In the embedded UPS system, an embedded file system is designed and implemented which saves the data and index information on a serial EEPROM chip in a structured way and communicates with a microcontroller unit through I2C bus. By embedding the file system into UPS system or other information appliances, users can access and manipulate local data on the web client side. Embedded file system on chips will play a major role in the growth of IP networking. Based on our experiment tests, the mobile users can easily monitor and control UPS in different places of long-distance. The performance of EUPSS has satisfied the requirements of all kinds of Web-based mobile applications.

  17. Meaningful participation for children in the Dutch child protection system: A critical analysis of relevant provisions in policy documents.

    PubMed

    Bouma, Helen; López López, Mónica; Knorth, Erik J; Grietens, Hans

    2018-05-01

    Policymakers are increasingly focusing on the participation of children in the child protection system (CPS). However, research shows that actual practice still needs to be improved. Embedding children's participation in legislation and policy documents is one important prerequisite for achieving meaningful participation in child protection practice. In this study, the participation of children in the Dutch CPS under the new Youth Act 2015 is critically analyzed. National legislation and policy documents were studied using a model of "meaningful participation" based on article 12 of the UNCRC. Results show that the idea of children's participation is deeply embedded in the current Dutch CPS. However, Dutch policy documents do not fully cover the three dimensions of what is considered to be meaningful participation for children: informing, hearing, and involving. Furthermore, children's participation differs among the organizations included in the child protection chain. A clear overall policy concerning the participation of children in the Dutch CPS is lacking. The conclusions of this critical analysis of policy documents and the framework of meaningful participation presented may provide a basis for the embedding of meaningful participation for children in child protection systems of other countries. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Capturing Safety Requirements to Enable Effective Task Allocation Between Humans and Automaton in Increasingly Autonomous Systems

    NASA Technical Reports Server (NTRS)

    Neogi, Natasha A.

    2016-01-01

    There is a current drive towards enabling the deployment of increasingly autonomous systems in the National Airspace System (NAS). However, shifting the traditional roles and responsibilities between humans and automation for safety critical tasks must be managed carefully, otherwise the current emergent safety properties of the NAS may be disrupted. In this paper, a verification activity to assess the emergent safety properties of a clearly defined, safety critical, operational scenario that possesses tasks that can be fluidly allocated between human and automated agents is conducted. Task allocation role sets were proposed for a human-automation team performing a contingency maneuver in a reduced crew context. A safety critical contingency procedure (engine out on takeoff) was modeled in the Soar cognitive architecture, then translated into the Hybrid Input Output formalism. Verification activities were then performed to determine whether or not the safety properties held over the increasingly autonomous system. The verification activities lead to the development of several key insights regarding the implicit assumptions on agent capability. It subsequently illustrated the usefulness of task annotations associated with specialized requirements (e.g., communication, timing etc.), and demonstrated the feasibility of this approach.

  19. Automated Transfer Vehicle (ATV) Critical Safety Software Overview

    NASA Astrophysics Data System (ADS)

    Berthelier, D.

    2002-01-01

    The European Automated Transfer Vehicle is an unmanned transportation system designed to dock to International Space Station (ISS) and to contribute to the logistic servicing of the ISS. Concisely, ATV control is realized by a nominal flight control function (using computers, softwares, sensors, actuators). In order to cover the extreme situations where this nominal chain can not ensure safe trajectory with respect to ISS, a segregated proximity flight safety function is activated, where unsafe free drift trajectories can be encountered. This function relies notably on a segregated computer, the Monitoring and Safing Unit (MSU) ; in case of major ATV malfunction detection, ATV is then controlled by MSU software. Therefore, this software is critical because a MSU software failure could result in catastrophic consequences. This paper provides an overview both of this software functions and of the software development and validation method which is specific considering its criticality. First part of the paper describes briefly the proximity flight safety chain. Second part deals with the software functions. Indeed, MSU software is in charge of monitoring nominal computers and ATV corridors, using its own navigation algorithms, and, if an abnormal situation is detected, it is in charge of the ATV control during the Collision Avoidance Manoeuvre (CAM) consisting in an attitude controlled braking boost, followed by a Post-CAM manoeuvre : a Sun-pointed ATV attitude control during up to 24 hours on a safe trajectory. Monitoring, navigation and control algorithms principles are presented. Third part of this paper describes the development and validation process : algorithms functional studies , ADA coding and unit validations ; algorithms ADA code integration and validation on a specific non real-time MATLAB/SIMULINK simulator ; global software functional engineering phase, architectural design, unit testing, integration and validation on target computer.

  20. In Bed with the Library: A Critical Exploration of Embedded Librarianship at the City University of New York

    ERIC Educational Resources Information Center

    Pollack, Julia

    2017-01-01

    This project considers the efficacy and scalability of embedded librarianship initiatives within the City University of New York (CUNY) library system and presents findings of an original research study conducted in 2015. Through an analysis of recent LIS literature on embedment, response data from a survey of librarians, and a selection of…

  1. An algorithm of a real time image tracking system using a camera with pan/tilt motors on an embedded system

    NASA Astrophysics Data System (ADS)

    Kim, Hie-Sik; Nam, Chul; Ha, Kwan-Yong; Ayurzana, Odgeral; Kwon, Jong-Won

    2005-12-01

    The embedded systems have been applied to many fields, including households and industrial sites. The user interface technology with simple display on the screen was implemented more and more. The user demands are increasing and the system has more various applicable fields due to a high penetration rate of the Internet. Therefore, the demand for embedded system is tend to rise. An embedded system for image tracking was implemented. This system is used a fixed IP for the reliable server operation on TCP/IP networks. Using an USB camera on the embedded Linux system developed a real time broadcasting of video image on the Internet. The digital camera is connected at the USB host port of the embedded board. All input images from the video camera are continuously stored as a compressed JPEG file in a directory at the Linux web-server. And each frame image data from web camera is compared for measurement of displacement Vector. That used Block matching algorithm and edge detection algorithm for past speed. And the displacement vector is used at pan/tilt motor control through RS232 serial cable. The embedded board utilized the S3C2410 MPU, which used the ARM 920T core form Samsung. The operating system was ported to embedded Linux kernel and mounted of root file system. And the stored images are sent to the client PC through the web browser. It used the network function of Linux and it developed a program with protocol of the TCP/IP.

  2. Embedded control system for computerized franking machine

    NASA Astrophysics Data System (ADS)

    Shi, W. M.; Zhang, L. B.; Xu, F.; Zhan, H. W.

    2007-12-01

    This paper presents a novel control system for franking machine. A methodology for operating a franking machine using the functional controls consisting of connection, configuration and franking electromechanical drive is studied. A set of enabling technologies to synthesize postage management software architectures driven microprocessor-based embedded systems is proposed. The cryptographic algorithm that calculates mail items is analyzed to enhance the postal indicia accountability and security. The study indicated that the franking machine is reliability, performance and flexibility in printing mail items.

  3. Spatial network surrogates for disentangling complex system structure from spatial embedding of nodes

    NASA Astrophysics Data System (ADS)

    Wiedermann, Marc; Donges, Jonathan F.; Kurths, Jürgen; Donner, Reik V.

    2016-04-01

    Networks with nodes embedded in a metric space have gained increasing interest in recent years. The effects of spatial embedding on the networks' structural characteristics, however, are rarely taken into account when studying their macroscopic properties. Here, we propose a hierarchy of null models to generate random surrogates from a given spatially embedded network that can preserve certain global and local statistics associated with the nodes' embedding in a metric space. Comparing the original network's and the resulting surrogates' global characteristics allows one to quantify to what extent these characteristics are already predetermined by the spatial embedding of the nodes and links. We apply our framework to various real-world spatial networks and show that the proposed models capture macroscopic properties of the networks under study much better than standard random network models that do not account for the nodes' spatial embedding. Depending on the actual performance of the proposed null models, the networks are categorized into different classes. Since many real-world complex networks are in fact spatial networks, the proposed approach is relevant for disentangling the underlying complex system structure from spatial embedding of nodes in many fields, ranging from social systems over infrastructure and neurophysiology to climatology.

  4. GROWTH OF THE INTERNATIONAL CRITICALITY SAFETY AND REACTOR PHYSICS EXPERIMENT EVALUATION PROJECTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Blair Briggs; John D. Bess; Jim Gulliford

    2011-09-01

    Since the International Conference on Nuclear Criticality Safety (ICNC) 2007, the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) have continued to expand their efforts and broaden their scope. Eighteen countries participated on the ICSBEP in 2007. Now, there are 20, with recent contributions from Sweden and Argentina. The IRPhEP has also expanded from eight contributing countries in 2007 to 16 in 2011. Since ICNC 2007, the contents of the 'International Handbook of Evaluated Criticality Safety Benchmark Experiments1' have increased from 442 evaluations (38000 pages), containing benchmark specifications for 3955 critical ormore » subcritical configurations to 516 evaluations (nearly 55000 pages), containing benchmark specifications for 4405 critical or subcritical configurations in the 2010 Edition of the ICSBEP Handbook. The contents of the Handbook have also increased from 21 to 24 criticality-alarm-placement/shielding configurations with multiple dose points for each, and from 20 to 200 configurations categorized as fundamental physics measurements relevant to criticality safety applications. Approximately 25 new evaluations and 150 additional configurations are expected to be added to the 2011 edition of the Handbook. Since ICNC 2007, the contents of the 'International Handbook of Evaluated Reactor Physics Benchmark Experiments2' have increased from 16 different experimental series that were performed at 12 different reactor facilities to 53 experimental series that were performed at 30 different reactor facilities in the 2011 edition of the Handbook. Considerable effort has also been made to improve the functionality of the searchable database, DICE (Database for the International Criticality Benchmark Evaluation Project) and verify the accuracy of the data contained therein. DICE will be discussed in separate papers at ICNC 2011. The status of the ICSBEP and

  5. Non-standard analysis and embedded software

    NASA Technical Reports Server (NTRS)

    Platek, Richard

    1995-01-01

    One model for computing in the future is ubiquitous, embedded computational devices analogous to embedded electrical motors. Many of these computers will control physical objects and processes. Such hidden computerized environments introduce new safety and correctness concerns whose treatment go beyond present Formal Methods. In particular, one has to begin to speak about Real Space software in analogy with Real Time software. By this we mean, computerized systems which have to meet requirements expressed in the real geometry of space. How to translate such requirements into ordinary software specifications and how to carry out proofs is a major challenge. In this talk we propose a research program based on the use of no-standard analysis. Much detail remains to be carried out. The purpose of the talk is to inform the Formal Methods community that Non-Standard Analysis provides a possible avenue to attack which we believe will be fruitful.

  6. Issues in Software System Safety: Polly Ann Smith Co. versus Ned I. Ludd

    NASA Technical Reports Server (NTRS)

    Holloway, C. Michael

    2002-01-01

    This paper is a work of fiction, but it is fiction with a very real purpose: to stimulate careful thought and friendly discussion about some questions for which thought is often careless and discussion is often unfriendly. To accomplish this purpose, the paper creates a fictional legal case. The most important issue in this fictional case is whether certain proffered expert testimony about software engineering for safety critical systems should be admitted. Resolving this issue requires deciding the extent to which current practices and research in software engineering, especially for safety-critical systems, can rightly be considered based on knowledge, rather than opinion.

  7. An Embedded Multi-Agent Systems Based Industrial Wireless Sensor Network.

    PubMed

    Taboun, Mohammed S; Brennan, Robert W

    2017-09-14

    With the emergence of cyber-physical systems, there has been a growing interest in network-connected devices. One of the key requirements of a cyber-physical device is the ability to sense its environment. Wireless sensor networks are a widely-accepted solution for this requirement. In this study, an embedded multi-agent systems-managed wireless sensor network is presented. A novel architecture is proposed, along with a novel wireless sensor network architecture. Active and passive wireless sensor node types are defined, along with their communication protocols, and two application-specific examples are presented. A series of three experiments is conducted to evaluate the performance of the agent-embedded wireless sensor network.

  8. ESAS Deliverable PS 1.1.2.3: Customer Survey on Code Generations in Safety-Critical Applications

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Denney, Ewen

    2006-01-01

    Automated code generators (ACG) are tools that convert a (higher-level) model of a software (sub-)system into executable code without the necessity for a developer to actually implement the code. Although both commercially supported and in-house tools have been used in many industrial applications, little data exists on how these tools are used in safety-critical domains (e.g., spacecraft, aircraft, automotive, nuclear). The aims of the survey, therefore, were threefold: 1) to determine if code generation is primarily used as a tool for prototyping, including design exploration and simulation, or for fiight/production code; 2) to determine the verification issues with code generators relating, in particular, to qualification and certification in safety-critical domains; and 3) to determine perceived gaps in functionality of existing tools.

  9. Understanding the Role of Critical Incidents in Relation to Self-Efficacy during Course-Embedded Preservice Teacher Field Experiences: A Qualitative Study

    ERIC Educational Resources Information Center

    Epperly, Anna C.

    2017-01-01

    This qualitative, collective case study documented the development of the self-efficacy beliefs of special education preservice candidates during one semester of a course-embedded field experience in a small, private, faith-based university in the Midwest. Interviews of candidates regarding critical incidents in field experiences as documented by…

  10. Activities of the DOE Nuclear Criticality Safety Program (NCSP) at the Oak Ridge Electron Linear Accelerator (ORELA)

    NASA Astrophysics Data System (ADS)

    Valentine, Timothy E.; Leal, Luiz C.; Guber, Klaus H.

    2002-12-01

    The Department of Energy established the Nuclear Criticality Safety Program (NCSP) in response to the Recommendation 97-2 by the Defense Nuclear Facilities Safety Board. The NCSP consists of seven elements of which nuclear data measurements and evaluations is a key component. The intent of the nuclear data activities is to provide high resolution nuclear data measurements that are evaluated, validated, and formatted for use by the nuclear criticality safety community to provide improved and reliable calculations for nuclear criticality safety evaluations. High resolution capture, fission, and transmission measurements are performed at the Oak Ridge Electron Linear Accelerator (ORELA) to address the needs of the criticality safety community and to address known deficiencies in nuclear data evaluations. The activities at ORELA include measurements on both light and heavy nuclei and have been used to identify improvements in measurement techniques that greatly improve the measurement of small capture cross sections. The measurement activities at ORELA provide precise and reliable high-resolution nuclear data for the nuclear criticality safety community.

  11. 10 CFR 72.124 - Criteria for nuclear criticality safety.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Criteria for nuclear criticality safety. 72.124 Section 72.124 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C...

  12. 10 CFR 72.124 - Criteria for nuclear criticality safety.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Criteria for nuclear criticality safety. 72.124 Section 72.124 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C...

  13. 10 CFR 72.124 - Criteria for nuclear criticality safety.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Criteria for nuclear criticality safety. 72.124 Section 72.124 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C...

  14. 10 CFR 72.124 - Criteria for nuclear criticality safety.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Criteria for nuclear criticality safety. 72.124 Section 72.124 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C...

  15. 10 CFR 72.124 - Criteria for nuclear criticality safety.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Criteria for nuclear criticality safety. 72.124 Section 72.124 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C...

  16. Quality and Safety Education for Nurses (QSEN): The Key is Systems Thinking.

    PubMed

    Dolansky, Mary A; Moore, Shirley M

    2013-09-30

    Over a decade has passed since the Institute of Medicine's reports on the need to improve the American healthcare system, and yet only slight improvement in quality and safety has been reported. The Quality and Safety Education for Nurses (QSEN) initiative was developed to integrate quality and safety competencies into nursing education. The current challenge is for nurses to move beyond the application of QSEN competencies to individual patients and families and incorporate systems thinking in quality and safety education and healthcare delivery. This article provides a history of QSEN and proposes a framework in which systems thinking is a critical aspect in the application of the QSEN competencies. We provide examples of how using this framework expands nursing focus from individual care to care of the system and propose ways to teach and measure systems thinking. The conclusion calls for movement from personal effort and individual care to a focus on care of the system that will accelerate improvement of healthcare quality and safety.

  17. Social networks as embedded complex adaptive systems.

    PubMed

    Benham-Hutchins, Marge; Clancy, Thomas R

    2010-09-01

    As systems evolve over time, their natural tendency is to become increasingly more complex. Studies in the field of complex systems have generated new perspectives on management in social organizations such as hospitals. Much of this research appears as a natural extension of the cross-disciplinary field of systems theory. This is the 15th in a series of articles applying complex systems science to the traditional management concepts of planning, organizing, directing, coordinating, and controlling. In this article, the authors discuss healthcare social networks as a hierarchy of embedded complex adaptive systems. The authors further examine the use of social network analysis tools as a means to understand complex communication patterns and reduce medical errors.

  18. A Validation Metrics Framework for Safety-Critical Software-Intensive Systems

    DTIC Science & Technology

    2009-03-01

    so does its definition, tools, and techniques, including means for measuring the validation activity, its outputs, and impact on development...independent of the SDLP. When considering the above SDLPs from the safety engineering team’s perspective, there are also large impacts on the way... impact . Interpretation of any actionable metric data will need to be undertaken in the context of the SDLP. 2. Safety Input The software safety

  19. Commonalities and Differences in Functional Safety Systems Between ISS Payloads and Industrial Applications

    NASA Astrophysics Data System (ADS)

    Malyshev, Mikhail; Kreimer, Johannes

    2013-09-01

    Safety analyses for electrical, electronic and/or programmable electronic (E/E/EP) safety-related systems used in payload applications on-board the International Space Station (ISS) are often based on failure modes, effects and criticality analysis (FMECA). For industrial applications of E/E/EP safety-related systems, comparable strategies exist and are defined in the IEC-61508 standard. This standard defines some quantitative criteria based on potential failure modes (for example, Safe Failure Fraction). These criteria can be calculated for an E/E/EP system or components to assess their compliance to requirements of a particular Safety Integrity Level (SIL). The standard defines several SILs depending on how much risk has to be mitigated by a safety-critical system. When a FMECA is available for an ISS payload or its subsystem, it may be possible to calculate the same or similar parameters as defined in the 61508 standard. One example of a payload that has a dedicated functional safety subsystem is the Electromagnetic Levitator (EML). This payload for the ISS is planned to be operated on-board starting 2014. The EML is a high-temperature materials processing facility. The dedicated subsystem "Hazard Control Electronics" (HCE) is implemented to ensure compliance to failure tolerance in limiting samples processing parameters to maintain generation of the potentially toxic by-products to safe limits in line with the requirements applied to the payloads by the ISS Program. The objective of this paper is to assess the implementation of the HCE in the EML against criteria for functional safety systems in the IEC-61508 standard and to evaluate commonalities and differences with respect to safety requirements levied on ISS Payloads. An attempt is made to assess a possibility of using commercially available components and systems certified for compliance to industrial functional safety standards in ISS payloads.

  20. [Preliminary studies on critical control point of traceability system in wolfberry].

    PubMed

    Liu, Sai; Xu, Chang-Qing; Li, Jian-Ling; Lin, Chen; Xu, Rong; Qiao, Hai-Li; Guo, Kun; Chen, Jun

    2016-07-01

    As a traditional Chinese medicine, wolfberry (Lycium barbarum) has a long cultivation history and a good industrial development foundation. With the development of wolfberry production, the expansion of cultivation area and the increased attention of governments and consumers on food safety, the quality and safety requirement of wolfberry is higher demanded. The quality tracing and traceability system of production entire processes is the important technology tools to protect the wolfberry safety, and to maintain sustained and healthy development of the wolfberry industry. Thus, this article analyzed the wolfberry quality management from the actual situation, the safety hazard sources were discussed according to the HACCP (hazard analysis and critical control point) and GAP (good agricultural practice for Chinese crude drugs), and to provide a reference for the traceability system of wolfberry. Copyright© by the Chinese Pharmaceutical Association.

  1. Criticality Safety Evaluation of Standard Criticality Safety Requirements #1-520 g Operations in PF-4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamanaka, Alan Joseph Jr.

    Guidance has been requested from the Nuclear Criticality Safety Division (NCSD) regarding processes that involve 520 grams of fissionable material or less. This Level-3 evaluation was conducted and documented in accordance with NCS-AP-004 (Ref. 1), formerly NCS-GUIDE-01. This evaluation is being written as a generic evaluation for all operations that will be able to operate using a 520-gram mass limit. Implementation for specific operations will be performed using a Level 1 CSED, which will confirm and document that this CSED can be used for the specific operation as discussed in NCS-MEMO-17-007 (Ref. 2). This Level 3 CSED updates and supersedesmore » the analysis performed in NCS-TECH-14-014 (Ref. 3).« less

  2. NASA System Safety Handbook. Volume 2: System Safety Concepts, Guidelines, and Implementation Examples

    NASA Technical Reports Server (NTRS)

    Dezfuli, Homayoon; Benjamin, Allan; Everett, Christopher; Feather, Martin; Rutledge, Peter; Sen, Dev; Youngblood, Robert

    2015-01-01

    This is the second of two volumes that collectively comprise the NASA System Safety Handbook. Volume 1 (NASASP-210-580) was prepared for the purpose of presenting the overall framework for System Safety and for providing the general concepts needed to implement the framework. Volume 2 provides guidance for implementing these concepts as an integral part of systems engineering and risk management. This guidance addresses the following functional areas: 1.The development of objectives that collectively define adequate safety for a system, and the safety requirements derived from these objectives that are levied on the system. 2.The conduct of system safety activities, performed to meet the safety requirements, with specific emphasis on the conduct of integrated safety analysis (ISA) as a fundamental means by which systems engineering and risk management decisions are risk-informed. 3.The development of a risk-informed safety case (RISC) at major milestone reviews to argue that the systems safety objectives are satisfied (and therefore that the system is adequately safe). 4.The evaluation of the RISC (including supporting evidence) using a defined set of evaluation criteria, to assess the veracity of the claims made therein in order to support risk acceptance decisions.

  3. An Embedded Multi-Agent Systems Based Industrial Wireless Sensor Network

    PubMed Central

    Brennan, Robert W.

    2017-01-01

    With the emergence of cyber-physical systems, there has been a growing interest in network-connected devices. One of the key requirements of a cyber-physical device is the ability to sense its environment. Wireless sensor networks are a widely-accepted solution for this requirement. In this study, an embedded multi-agent systems-managed wireless sensor network is presented. A novel architecture is proposed, along with a novel wireless sensor network architecture. Active and passive wireless sensor node types are defined, along with their communication protocols, and two application-specific examples are presented. A series of three experiments is conducted to evaluate the performance of the agent-embedded wireless sensor network. PMID:28906452

  4. Systematic Model-in-the-Loop Test of Embedded Control Systems

    NASA Astrophysics Data System (ADS)

    Krupp, Alexander; Müller, Wolfgang

    Current model-based development processes offer new opportunities for verification automation, e.g., in automotive development. The duty of functional verification is the detection of design flaws. Current functional verification approaches exhibit a major gap between requirement definition and formal property definition, especially when analog signals are involved. Besides lack of methodical support for natural language formalization, there does not exist a standardized and accepted means for formal property definition as a target for verification planning. This article addresses several shortcomings of embedded system verification. An Enhanced Classification Tree Method is developed based on the established Classification Tree Method for Embeded Systems CTM/ES which applies a hardware verification language to define a verification environment.

  5. [Implementation of a safety and health planning system in a teaching hospital].

    PubMed

    Mariani, F; Bravi, C; Dolcetti, L; Moretto, A; Palermo, A; Ronchin, M; Tonelli, F; Carrer, P

    2007-01-01

    University Hospital "L. Sacco" had started in 2006 a two-year project in order to set up a "Health and Safety Management System (HSMS)" referring to the technical guideline OHSAS 18001:1999 and the UNI and INAIL "Guidelines for a health and safety management system at workplace". So far, the following operations had been implemented: Setting up of a specific Commission within the Risk Management Committee; Identification and appointment of Departmental Representatives of HSMS; Carrying out of a training course addressed to Workers Representatives for Safety and Departmental Representatives of HSMS; Development of an Integrated Informative System for Prevention and Safety; Auditors qualification; Inspection of the Occupational Health Unit and the Prevention and Safety Service: reporting of critical situations and monitoring solutions adopted. Short term objectives are: Self-evaluation through check-lists of each department; Sharing of the Improvement Plan among the departments of the hospital; Planning of Health and Safety training activities in the framework of the Hospital Training Plan; Safety audit.

  6. Evaluation of Embedded System Component Utilized in Delivery Integrated Design Project Course

    NASA Astrophysics Data System (ADS)

    Junid, Syed Abdul Mutalib Al; Hussaini, Yusnira; Nazmie Osman, Fairul; Razak, Abdul Hadi Abdul; Idros, Mohd Faizul Md; Karimi Halim, Abdul

    2018-03-01

    This paper reports the evaluation of the embedded system component utilized in delivering the integrated electronic engineering design project course. The evaluation is conducted based on the report project submitted as to fulfil the assessment criteria for the integrated electronic engineering design project course named; engineering system design. Six projects were assessed in this evaluation. The evaluation covers the type of controller, programming language and the number of embedded component utilization as well. From the evaluation, the C-programming based language is the best solution preferred by the students which provide them flexibility in the programming. Moreover, the Analog to Digital converter is intensively used in the projects which include sensors in their proposed design. As a conclusion, in delivering the integrated design project course, the knowledge over the embedded system solution is very important since the high density of the knowledge acquired in accomplishing the project assigned.

  7. Space engine safety system

    NASA Technical Reports Server (NTRS)

    Maul, William A.; Meyer, Claudia M.

    1991-01-01

    A rocket engine safety system was designed to initiate control procedures to minimize damage to the engine or vehicle or test stand in the event of an engine failure. The features and the implementation issues associated with rocket engine safety systems are discussed, as well as the specific concerns of safety systems applied to a space-based engine and long duration space missions. Examples of safety system features and architectures are given, based on recent safety monitoring investigations conducted for the Space Shuttle Main Engine and for future liquid rocket engines. Also, the general design and implementation process for rocket engine safety systems is presented.

  8. Micro-precise spatiotemporal delivery system embedded in 3D printing for complex tissue regeneration.

    PubMed

    Tarafder, Solaiman; Koch, Alia; Jun, Yena; Chou, Conrad; Awadallah, Mary R; Lee, Chang H

    2016-04-25

    Three dimensional (3D) printing has emerged as an efficient tool for tissue engineering and regenerative medicine, given its advantages for constructing custom-designed scaffolds with tunable microstructure/physical properties. Here we developed a micro-precise spatiotemporal delivery system embedded in 3D printed scaffolds. PLGA microspheres (μS) were encapsulated with growth factors (GFs) and then embedded inside PCL microfibers that constitute custom-designed 3D scaffolds. Given the substantial difference in the melting points between PLGA and PCL and their low heat conductivity, μS were able to maintain its original structure while protecting GF's bioactivities. Micro-precise spatial control of multiple GFs was achieved by interchanging dispensing cartridges during a single printing process. Spatially controlled delivery of GFs, with a prolonged release, guided formation of multi-tissue interfaces from bone marrow derived mesenchymal stem/progenitor cells (MSCs). To investigate efficacy of the micro-precise delivery system embedded in 3D printed scaffold, temporomandibular joint (TMJ) disc scaffolds were fabricated with micro-precise spatiotemporal delivery of CTGF and TGFβ3, mimicking native-like multiphase fibrocartilage. In vitro, TMJ disc scaffolds spatially embedded with CTGF/TGFβ3-μS resulted in formation of multiphase fibrocartilaginous tissues from MSCs. In vivo, TMJ disc perforation was performed in rabbits, followed by implantation of CTGF/TGFβ3-μS-embedded scaffolds. After 4 wks, CTGF/TGFβ3-μS embedded scaffolds significantly improved healing of the perforated TMJ disc as compared to the degenerated TMJ disc in the control group with scaffold embedded with empty μS. In addition, CTGF/TGFβ3-μS embedded scaffolds significantly prevented arthritic changes on TMJ condyles. In conclusion, our micro-precise spatiotemporal delivery system embedded in 3D printing may serve as an efficient tool to regenerate complex and inhomogeneous tissues.

  9. PRELIMINARY NUCLEAR CRITICALITY NUCLEAR SAFETY EVLAUATION FOR THE CONTAINER SURVEILLANCE AND STORAGE CAPABILITY PROJECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Low, M; Matthew02 Miller, M; Thomas Reilly, T

    2007-04-30

    Washington Safety Management Solutions (WSMS) provides criticality safety services to Washington Savannah River Company (WSRC) at the Savannah River Site. One activity at SRS is the Container Surveillance and Storage Capability (CSSC) Project, which will perform surveillances on 3013 containers (hereafter referred to as 3013s) to verify that they meet the Department of Energy (DOE) Standard (STD) 3013 for plutonium storage. The project will handle quantities of material that are greater than ANS/ANSI-8.1 single parameter mass limits, and thus required a Nuclear Criticality Safety Evaluation (NCSE). The WSMS methodology for conducting an NCSE is outlined in the WSMS methods manual.more » The WSMS methods manual currently follows the requirements of DOE-O-420.1B, DOE-STD-3007-2007, and the Washington Savannah River Company (WSRC) SCD-3 manual. DOE-STD-3007-2007 describes how a NCSE should be performed, while DOE-O-420.1B outlines the requirements for a Criticality Safety Program (CSP). The WSRC SCD-3 manual implements DOE requirements and ANS standards. NCSEs do not address the Nuclear Criticality Safety (NCS) of non-reactor nuclear facilities that may be affected by overt or covert activities of sabotage, espionage, terrorism or other security malevolence. Events which are beyond the Design Basis Accidents (DBAs) are outside the scope of a double contingency analysis.« less

  10. Criticality Safety Evaluations on the Use of 200-gram Pu Mass Limit for RHWM Waste Storage Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, P

    This work establishes the criticality safety technical basis to increase the fissile mass limit from 120 grams to 200 grams for Type A 55-gallon drums and their equivalents. Current RHWM fissile mass limit is 120 grams Pu for Type A 55-gallon containers and their equivalent. In order to increase the Type A 55-gallon drum limit to 200 grams, a few additional criticality safety control requirements are needed on moderators, reflectors, and array controls to ensure that the 200-gram Pu drums remain criticality safe with inadvertent criticality remains incredible. The purpose of this work is to analyze the use of 200-grammore » Pu drum mass limit for waste storage operations in Radioactive and Hazardous Waste Management (RHWM) Facilities. In this evaluation, the criticality safety controls associated with the 200-gram Pu drums are established for the RHWM waste storage operations. With the implementation of these criticality safety controls, the 200-gram Pu waste drum storage operations are demonstrated to be criticality safe and meet the double-contingency-principle requirement per DOE O 420.1.« less

  11. Applied research of embedded WiFi technology in the motion capture system

    NASA Astrophysics Data System (ADS)

    Gui, Haixia

    2012-04-01

    Embedded wireless WiFi technology is one of the current wireless hot spots in network applications. This paper firstly introduces the definition and characteristics of WiFi. With the advantages of WiFi such as using no wiring, simple operation and stable transmission, this paper then gives a system design for the application of embedded wireless WiFi technology in the motion capture system. Also, it verifies the effectiveness of design in the WiFi-based wireless sensor hardware and software program.

  12. Editorial: emerging issues in sociotechnical systems thinking and workplace safety.

    PubMed

    Noy, Y Ian; Hettinger, Lawrence J; Dainoff, Marvin J; Carayon, Pascale; Leveson, Nancy G; Robertson, Michelle M; Courtney, Theodore K

    2015-01-01

    The burden of on-the-job accidents and fatalities and the harm of associated human suffering continue to present an important challenge for safety researchers and practitioners. While significant improvements have been achieved in recent decades, the workplace accident rate remains unacceptably high. This has spurred interest in the development of novel research approaches, with particular interest in the systemic influences of social/organisational and technological factors. In response, the Hopkinton Conference on Sociotechnical Systems and Safety was organised to assess the current state of knowledge in the area and to identify research priorities. Over the course of several months prior to the conference, leading international experts drafted collaborative, state-of-the-art reviews covering various aspects of sociotechnical systems and safety. These papers, presented in this special issue, cover topics ranging from the identification of key concepts and definitions to sociotechnical characteristics of safe and unsafe organisations. This paper provides an overview of the conference and introduces key themes and topics. Sociotechnical approaches to workplace safety are intended to draw practitioners' attention to the critical influence that systemic social/organisational and technological factors exert on safety-relevant outcomes. This paper introduces major themes addressed in the Hopkinton Conference within the context of current workplace safety research and practice challenges.

  13. Editorial: emerging issues in sociotechnical systems thinking and workplace safety

    PubMed Central

    Noy, Y. Ian; Hettinger, Lawrence J.; Dainoff, Marvin J.; Carayon, Pascale; Leveson, Nancy G.; Robertson, Michelle M.; Courtney, Theodore K.

    2015-01-01

    The burden of on-the-job accidents and fatalities and the harm of associated human suffering continue to present an important challenge for safety researchers and practitioners. While significant improvements have been achieved in recent decades, the workplace accident rate remains unacceptably high. This has spurred interest in the development of novel research approaches, with particular interest in the systemic influences of social/organisational and technological factors. In response, the Hopkinton Conference on Sociotechnical Systems and Safety was organised to assess the current state of knowledge in the area and to identify research priorities. Over the course of several months prior to the conference, leading international experts drafted collaborative, state-of-the-art reviews covering various aspects of sociotechnical systems and safety. These papers, presented in this special issue, cover topics ranging from the identification of key concepts and definitions to sociotechnical characteristics of safe and unsafe organisations. This paper provides an overview of the conference and introduces key themes and topics. Practitioner Summary: Sociotechnical approaches to workplace safety are intended to draw practitioners' attention to the critical influence that systemic social/organisational and technological factors exert on safety-relevant outcomes. This paper introduces major themes addressed in the Hopkinton Conference within the context of current workplace safety research and practice challenges. PMID:25819595

  14. Design and implement of pack filter module base on embedded firewall

    NASA Astrophysics Data System (ADS)

    Tian, Libo; Wang, Chen; Yang, Shunbo

    2011-10-01

    In the traditional security solution conditions, software firewall cannot intercept and respond the invasion before being attacked. And because of the high cost, the hardware firewall does not apply to the security strategy of the end nodes, so we have designed a kind of solution of embedded firewall with hardware and software. With ARM embedding Linux operating system, we have designed packet filter module and intrusion detection module to implement the basic function of firewall. Experiments and results show that that firewall has the advantages of low cost, high processing speed, high safety and the application of the computer terminals. This paper focuses on packet filtering module design and implementation.

  15. Project-Based Learning to Enhance Teaching Embedded Systems

    ERIC Educational Resources Information Center

    Sababha, Belal H.; Alqudah, Yazan A.; Abualbasal, Abdelraheem; AlQaralleh, Esam A.

    2016-01-01

    Exposing engineering students during their education to real-world problems and giving them the chance to apply what they learn in the classroom is a vital element of engineering education. The Embedded Systems course at Princess Sumaya University for Technology (PSUT) is one of the main courses that bridge the gap between theoretical electrical…

  16. [Design of an embedded stroke rehabilitation apparatus system based on Linux computer engineering].

    PubMed

    Zhuang, Pengfei; Tian, XueLong; Zhu, Lin

    2014-04-01

    A realizaton project of electrical stimulator aimed at motor dysfunction of stroke is proposed in this paper. Based on neurophysiological biofeedback, this system, using an ARM9 S3C2440 as the core processor, integrates collection and display of surface electromyography (sEMG) signal, as well as neuromuscular electrical stimulation (NMES) into one system. By embedding Linux system, the project is able to use Qt/Embedded as a graphical interface design tool to accomplish the design of stroke rehabilitation apparatus. Experiments showed that this system worked well.

  17. Reliability Analysis and Optimal Release Problem Considering Maintenance Time of Software Components for an Embedded OSS Porting Phase

    NASA Astrophysics Data System (ADS)

    Tamura, Yoshinobu; Yamada, Shigeru

    OSS (open source software) systems which serve as key components of critical infrastructures in our social life are still ever-expanding now. Especially, embedded OSS systems have been gaining a lot of attention in the embedded system area, i.e., Android, BusyBox, TRON, etc. However, the poor handling of quality problem and customer support prohibit the progress of embedded OSS. Also, it is difficult for developers to assess the reliability and portability of embedded OSS on a single-board computer. In this paper, we propose a method of software reliability assessment based on flexible hazard rates for the embedded OSS. Also, we analyze actual data of software failure-occurrence time-intervals to show numerical examples of software reliability assessment for the embedded OSS. Moreover, we compare the proposed hazard rate model for the embedded OSS with the typical conventional hazard rate models by using the comparison criteria of goodness-of-fit. Furthermore, we discuss the optimal software release problem for the porting-phase based on the total expected software maintenance cost.

  18. NASA Software Safety Standard

    NASA Technical Reports Server (NTRS)

    Rosenberg, Linda

    1997-01-01

    If software is a critical element in a safety critical system, it is imperative to implement a systematic approach to software safety as an integral part of the overall system safety programs. The NASA-STD-8719.13A, "NASA Software Safety Standard", describes the activities necessary to ensure that safety is designed into software that is acquired or developed by NASA, and that safety is maintained throughout the software life cycle. A PDF version, is available on the WWW from Lewis. A Guidebook that will assist in the implementation of the requirements in the Safety Standard is under development at the Lewis Research Center (LeRC). After completion, it will also be available on the WWW from Lewis.

  19. Software development for safety-critical medical applications

    NASA Technical Reports Server (NTRS)

    Knight, John C.

    1992-01-01

    There are many computer-based medical applications in which safety and not reliability is the overriding concern. Reduced, altered, or no functionality of such systems is acceptable as long as no harm is done. A precise, formal definition of what software safety means is essential, however, before any attempt can be made to achieve it. Without this definition, it is not possible to determine whether a specific software entity is safe. A set of definitions pertaining to software safety will be presented and a case study involving an experimental medical device will be described. Some new techniques aimed at improving software safety will also be discussed.

  20. Embedded Control System for Smart Walking Assistance Device.

    PubMed

    Bosnak, Matevz; Skrjanc, Igor

    2017-03-01

    This paper presents the design and implementation of a unique control system for a smart hoist, a therapeutic device that is used in rehabilitation of walking. The control system features a unique human-machine interface that allows the human to intuitively control the system just by moving or rotating its body. The paper contains an overview of the complete system, including the design and implementation of custom sensors, dc servo motor controllers, communication interfaces and embedded-system based central control system. The prototype of the complete system was tested by conducting a 6-runs experiment on 11 subjects and results are showing that the proposed control system interface is indeed intuitive and simple to adopt by the user.

  1. Certification Strategies using Run-Time Safety Assurance for Part 23 Autopilot Systems

    NASA Technical Reports Server (NTRS)

    Hook, Loyd R.; Clark, Matthew; Sizoo, David; Skoog, Mark A.; Brady, James

    2016-01-01

    Part 23 aircraft operation, and in particular general aviation, is relatively unsafe when compared to other common forms of vehicle travel. Currently, there exists technologies that could increase safety statistics for these aircraft; however, the high burden and cost of performing the requisite safety critical certification processes for these systems limits their proliferation. For this reason, many entities, including the Federal Aviation Administration, NASA, and the US Air Force, are considering new options for certification for technologies that will improve aircraft safety. Of particular interest, are low cost autopilot systems for general aviation aircraft, as these systems have the potential to positively and significantly affect safety statistics. This paper proposes new systems and techniques, leveraging run-time verification, for the assurance of general aviation autopilot systems, which would be used to supplement the current certification process and provide a viable path for near-term low-cost implementation. In addition, discussions on preliminary experimentation and building the assurance case for a system, based on these principles, is provided.

  2. Application of SAE ARP4754A to Flight Critical Systems

    NASA Technical Reports Server (NTRS)

    Peterson, Eric M.

    2015-01-01

    This report documents applications of ARP4754A to the development of modern computer-based (i.e., digital electronics, software and network-based) aircraft systems. This study is to offer insight and provide educational value relative to the guidelines in ARP4754A and provide an assessment of the current state-of-the- practice within industry and regulatory bodies relative to development assurance for complex and safety-critical computer-based aircraft systems.

  3. Systemic safety project selection tool.

    DOT National Transportation Integrated Search

    2013-07-01

    "The Systemic Safety Project Selection Tool presents a process for incorporating systemic safety planning into traditional safety management processes. The Systemic Tool provides a step-by-step process for conducting systemic safety analysis; conside...

  4. The Embodied Embedded Character of System 1 Processing

    PubMed Central

    Bellini-Leite, Samuel de Castro

    2013-01-01

    In the last thirty years, a relatively large group of cognitive scientists have begun characterising the mind in terms of two distinct, relatively autonomous systems. To account for paradoxes in empirical results of studies mainly on reasoning, Dual Process Theories were developed. Such Dual Process Theories generally agree that System 1 is rapid, automatic, parallel, and heuristic-based and System 2 is slow, capacity-demanding, sequential, and related to consciousness. While System 2 can still be decently understood from a traditional cognitivist approach, I will argue that it is essential for System 1 processing to be comprehended in an Embodied Embedded approach to Cognition. PMID:23678245

  5. The embodied embedded character of system 1 processing.

    PubMed

    Bellini-Leite, Samuel de Castro

    2013-01-01

    In the last thirty years, a relatively large group of cognitive scientists have begun characterising the mind in terms of two distinct, relatively autonomous systems. To account for paradoxes in empirical results of studies mainly on reasoning, Dual Process Theories were developed. Such Dual Process Theories generally agree that System 1 is rapid, automatic, parallel, and heuristic-based and System 2 is slow, capacity-demanding, sequential, and related to consciousness. While System 2 can still be decently understood from a traditional cognitivist approach, I will argue that it is essential for System 1 processing to be comprehended in an Embodied Embedded approach to Cognition.

  6. Embedding Critical Thinking in IS Curricula

    ERIC Educational Resources Information Center

    Thomas, Theda; Davis, Tim; Kazlauskas, Alanah

    2007-01-01

    It is important for students to develop critical thinking and other higher-order thinking skills during their tertiary studies. Along with the ability to think critically comes the need to develop students' meta-cognitive skills. These abilities work together to enable students to control, monitor, and regulate their own cognitive processes and…

  7. A critical incident reporting system in anaesthesia.

    PubMed

    Madzimbamuto, F D; Chiware, R

    2001-01-01

    To audit the recently established Critical Incident Reporting System in the Department of Anaesthesia and Critical Care Medicine, University of Zimbabwe Medical School. The system was set up with the purpose of improving the quality of care delivered by the department. Cross sectional study. A critical incident was defined as 'any adverse and reversible event in theatre, during or immediately after surgery that if it persisted without correction would cause harm to the patient'. The anaesthetic or recovery room staff filled a critical incident form anonymously. Data was collected from critical incident reporting forms for analysis. The anaesthetic service in the two teaching hospitals of Harare Central and Parirenyatwa General Hospitals. Between May and October 2000, 62 completed critical incident forms were collected. The nature of the incident and the monitoring used were recorded, the cause was classified as human, equipment or monitoring failure and the outcome for each patient reported. There was no formal system for reminding staff to fill in their critical incident forms. A total of 14,165 operations were performed over the reporting period: 62 critical incident forms were collected, reporting 130 incidents, giving a rate of 0.92% (130/14,165). Of these, 42 patients were emergencies and 20 elective. The incidents were hypotension, hypoxia, bradycardia, ECG changes, aspiration, laryngospasm, high spinal, and cardiac arrest. Monitoring present on patients who had critical incidents was: capnography 57%, oxymetry 90% and ECG 100%. Other monitors are not reported. Human error contributed in 32/62 of patients and equipment failure in 31/62 of patients. Patient outcome showed 15% died, 23% were unplanned admissions to HDU while 62% were discharged to the ward with little or no adverse outcome. Despite some under reporting, the critical incident rate was within the range reported in the literature. Supervision of juniors is not adequate, especially on call. The

  8. Planning the Unplanned Experiment: Towards Assessing the Efficacy of Standards for Safety-Critical Software

    NASA Technical Reports Server (NTRS)

    Graydon, Patrick J.; Holloway, C. M.

    2015-01-01

    Safe use of software in safety-critical applications requires well-founded means of determining whether software is fit for such use. While software in industries such as aviation has a good safety record, little is known about whether standards for software in safety-critical applications 'work' (or even what that means). It is often (implicitly) argued that software is fit for safety-critical use because it conforms to an appropriate standard. Without knowing whether a standard works, such reliance is an experiment; without carefully collecting assessment data, that experiment is unplanned. To help plan the experiment, we organized a workshop to develop practical ideas for assessing software safety standards. In this paper, we relate and elaborate on the workshop discussion, which revealed subtle but important study design considerations and practical barriers to collecting appropriate historical data and recruiting appropriate experimental subjects. We discuss assessing standards as written and as applied, several candidate definitions for what it means for a standard to 'work,' and key assessment strategies and study techniques and the pros and cons of each. Finally, we conclude with thoughts about the kinds of research that will be required and how academia, industry, and regulators might collaborate to overcome the noted barriers.

  9. Risk-Informed Safety Assurance and Probabilistic Assessment of Mission-Critical Software-Intensive Systems

    NASA Technical Reports Server (NTRS)

    Guarro, Sergio B.

    2010-01-01

    This report validates and documents the detailed features and practical application of the framework for software intensive digital systems risk assessment and risk-informed safety assurance presented in the NASA PRA Procedures Guide for Managers and Practitioner. This framework, called herein the "Context-based Software Risk Model" (CSRM), enables the assessment of the contribution of software and software-intensive digital systems to overall system risk, in a manner which is entirely compatible and integrated with the format of a "standard" Probabilistic Risk Assessment (PRA), as currently documented and applied for NASA missions and applications. The CSRM also provides a risk-informed path and criteria for conducting organized and systematic digital system and software testing so that, within this risk-informed paradigm, the achievement of a quantitatively defined level of safety and mission success assurance may be targeted and demonstrated. The framework is based on the concept of context-dependent software risk scenarios and on the modeling of such scenarios via the use of traditional PRA techniques - i.e., event trees and fault trees - in combination with more advanced modeling devices such as the Dynamic Flowgraph Methodology (DFM) or other dynamic logic-modeling representations. The scenarios can be synthesized and quantified in a conditional logic and probabilistic formulation. The application of the CSRM method documented in this report refers to the MiniAERCam system designed and developed by the NASA Johnson Space Center.

  10. Integrating an embedded system in a microwave moisture meter

    USDA-ARS?s Scientific Manuscript database

    The conversion of a PC- or laptop-controlled microwave moisture meter to a stand-alone meter hosting its own embedded system is discussed. The moisture meter measures the attenuation and phase shift of low power microwaves traversing the sample, from which the dielectric properties are calculated. T...

  11. Pragmatic clinical trials embedded in healthcare systems: generalizable lessons from the NIH Collaboratory.

    PubMed

    Weinfurt, Kevin P; Hernandez, Adrian F; Coronado, Gloria D; DeBar, Lynn L; Dember, Laura M; Green, Beverly B; Heagerty, Patrick J; Huang, Susan S; James, Kathryn T; Jarvik, Jeffrey G; Larson, Eric B; Mor, Vincent; Platt, Richard; Rosenthal, Gary E; Septimus, Edward J; Simon, Gregory E; Staman, Karen L; Sugarman, Jeremy; Vazquez, Miguel; Zatzick, Douglas; Curtis, Lesley H

    2017-09-18

    The clinical research enterprise is not producing the evidence decision makers arguably need in a timely and cost effective manner; research currently involves the use of labor-intensive parallel systems that are separate from clinical care. The emergence of pragmatic clinical trials (PCTs) poses a possible solution: these large-scale trials are embedded within routine clinical care and often involve cluster randomization of hospitals, clinics, primary care providers, etc. Interventions can be implemented by health system personnel through usual communication channels and quality improvement infrastructure, and data collected as part of routine clinical care. However, experience with these trials is nascent and best practices regarding design operational, analytic, and reporting methodologies are undeveloped. To strengthen the national capacity to implement cost-effective, large-scale PCTs, the Common Fund of the National Institutes of Health created the Health Care Systems Research Collaboratory (Collaboratory) to support the design, execution, and dissemination of a series of demonstration projects using a pragmatic research design. In this article, we will describe the Collaboratory, highlight some of the challenges encountered and solutions developed thus far, and discuss remaining barriers and opportunities for large-scale evidence generation using PCTs. A planning phase is critical, and even with careful planning, new challenges arise during execution; comparisons between arms can be complicated by unanticipated changes. Early and ongoing engagement with both health care system leaders and front-line clinicians is critical for success. There is also marked uncertainty when applying existing ethical and regulatory frameworks to PCTS, and using existing electronic health records for data capture adds complexity.

  12. Fuzzy Logic Based Anomaly Detection for Embedded Network Security Cyber Sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ondrej Linda; Todd Vollmer; Jason Wright

    Resiliency and security in critical infrastructure control systems in the modern world of cyber terrorism constitute a relevant concern. Developing a network security system specifically tailored to the requirements of such critical assets is of a primary importance. This paper proposes a novel learning algorithm for anomaly based network security cyber sensor together with its hardware implementation. The presented learning algorithm constructs a fuzzy logic rule based model of normal network behavior. Individual fuzzy rules are extracted directly from the stream of incoming packets using an online clustering algorithm. This learning algorithm was specifically developed to comply with the constrainedmore » computational requirements of low-cost embedded network security cyber sensors. The performance of the system was evaluated on a set of network data recorded from an experimental test-bed mimicking the environment of a critical infrastructure control system.« less

  13. Architecture of an E-Learning System with Embedded Authoring Support.

    ERIC Educational Resources Information Center

    Baudry, Andreas; Bungenstock, Michael; Mertsching, Barbel

    This paper introduces an architecture for an e-learning system with an embedded authoring system. Based on the metaphor of a construction kit, this approach offers a general solution for specific content creation and publication. The learning resources are IMS "Content Packages" with a special structure to separate content and presentation. These…

  14. Towards A Comprehensive Consideration of Epistemic Questions in Software System Safety

    NASA Technical Reports Server (NTRS)

    Holloway, C. M.; Johnson, Chris W.

    2009-01-01

    For any software system upon which lives depend, the most important question one can ask about it is, 'How do we know the system is safe?' Despite the critical importance of this question, no widely accepted, generally applicable answer exists. Instead, debate continues to rage over the question, with theorists and practitioners quarrelling with each other and amongst themselves. This paper suggests a possible way forward towards quelling the quarrels, based on refining the critical safety question into additional questions, which may be more likely to have answers on which a consensus can be reached.

  15. Results from an Independent View on The Validation of Safety-Critical Space Systems

    NASA Astrophysics Data System (ADS)

    Silva, N.; Lopes, R.; Esper, A.; Barbosa, R.

    2013-08-01

    The Independent verification and validation (IV&V) has been a key process for decades, and is considered in several international standards. One of the activities described in the “ESA ISVV Guide” is the independent test verification (stated as Integration/Unit Test Procedures and Test Data Verification). This activity is commonly overlooked since customers do not really see the added value of checking thoroughly the validation team work (could be seen as testing the tester's work). This article presents the consolidated results of a large set of independent test verification activities, including the main difficulties, results obtained and advantages/disadvantages for the industry of these activities. This study will support customers in opting-in or opting-out for this task in future IV&V contracts since we provide concrete results from real case studies in the space embedded systems domain.

  16. Mission and Safety Critical (MASC): An EVACS simulation with nested transactions

    NASA Technical Reports Server (NTRS)

    Auty, David; Atkinson, Colin; Randall, Charlie

    1992-01-01

    The Extra-Vehicular Activity Control System (EVACS) Simulation with Nested Transactions, a recent effort of the MISSION Kernel Team, is documented. The EVACS simulation is a simulation of some aspects of the Extra-Vehicular Activity Control System, in particular, just the selection of communication frequencies. The simulation is a tool to explore mission and safety critical (MASC) applications. For the purpose of this effort, its current definition is quite narrow serving only as a starting point for prototyping purposes. (Note that EVACS itself has been supplanted in a larger scenario of a lunar outpost with astronauts and a lunar rover). The frequency selection scenario was modified to embed its processing in nested transactions. Again as a first step, only two aspects of transaction support were implemented in this prototype: architecture and state recovery. Issues of concurrency and distribution are yet to be addressed.

  17. Comprehensive target populations for current active safety systems using national crash databases.

    PubMed

    Kusano, Kristofer D; Gabler, Hampton C

    2014-01-01

    The objective of active safety systems is to prevent or mitigate collisions. A critical component in the design of active safety systems is the identification of the target population for a proposed system. The target population for an active safety system is that set of crashes that a proposed system could prevent or mitigate. Target crashes have scenarios in which the sensors and algorithms would likely activate. For example, the rear-end crash scenario, where the front of one vehicle contacts another vehicle traveling in the same direction and in the same lane as the striking vehicle, is one scenario for which forward collision warning (FCW) would be most effective in mitigating or preventing. This article presents a novel set of precrash scenarios based on coded variables from NHTSA's nationally representative crash databases in the United States. Using 4 databases (National Automotive Sampling System-General Estimates System [NASS-GES], NASS Crashworthiness Data System [NASS-CDS], Fatality Analysis Reporting System [FARS], and National Motor Vehicle Crash Causation Survey [NMVCCS]) the scenarios developed in this study can be used to quantify the number of police-reported crashes, seriously injured occupants, and fatalities that are applicable to proposed active safety systems. In this article, we use the precrash scenarios to identify the target populations for FCW, pedestrian crash avoidance systems (PCAS), lane departure warning (LDW), and vehicle-to-vehicle (V2V) or vehicle-to-infrastructure (V2I) systems. Crash scenarios were derived using precrash variables (critical event, accident type, precrash movement) present in all 4 data sources. This study found that these active safety systems could potentially mitigate approximately 1 in 5 of all severity and serious injury crashes in the United States and 26 percent of fatal crashes. Annually, this corresponds to 1.2 million all severity, 14,353 serious injury (MAIS 3+), and 7412 fatal crashes. In addition

  18. An embedded vision system for an unmanned four-rotor helicopter

    NASA Astrophysics Data System (ADS)

    Lillywhite, Kirt; Lee, Dah-Jye; Tippetts, Beau; Fowers, Spencer; Dennis, Aaron; Nelson, Brent; Archibald, James

    2006-10-01

    In this paper an embedded vision system and control module is introduced that is capable of controlling an unmanned four-rotor helicopter and processing live video for various law enforcement, security, military, and civilian applications. The vision system is implemented on a newly designed compact FPGA board (Helios). The Helios board contains a Xilinx Virtex-4 FPGA chip and memory making it capable of implementing real time vision algorithms. A Smooth Automated Intelligent Leveling daughter board (SAIL), attached to the Helios board, collects attitude and heading information to be processed in order to control the unmanned helicopter. The SAIL board uses an electrolytic tilt sensor, compass, voltage level converters, and analog to digital converters to perform its operations. While level flight can be maintained, problems stemming from the characteristics of the tilt sensor limits maneuverability of the helicopter. The embedded vision system has proven to give very good results in its performance of a number of real-time robotic vision algorithms.

  19. Siblings of Children with Autism: the Siblings Embedded Systems Framework.

    PubMed

    Kovshoff, Hanna; Cebula, Katie; Tsai, Hsiao-Wei Joy; Hastings, Richard P

    2017-01-01

    A range of interacting factors/mechanisms at the individual, family, and wider systems levels influences siblings living in families where one sibling has autism. We introduce the Sibling Embedded Systems Framework which aims to contextualise siblings' experience and characterise the multiple and interacting factors influencing family and, in particular, sibling outcomes. Findings from studies that have reported outcomes for siblings of children with autism are equivocal, ranging from negative impact, no difference, to positive experience. This is likely due to the complex nature of understanding the sibling experience. We focus on particular elements of the framework and review recent novel literature to help guide future directions for research and practice including the influence of culture, methodological considerations, and wider participatory methods. The Siblings Embedded System Framework can be used to understand interactive factors that affect sibling adjustment and to develop clinically, educationally and empirically based work that aims to enhance and support sibling adjustment, relationships, and well-being in families of children with autism.

  20. Window-closing safety system

    DOEpatents

    McEwan, Thomas E.

    1997-01-01

    A safety device includes a wire loop embedded in the glass of a passenger car window and routed near the closing leading-edge of the window. The wire loop carries microwave pulses around the loop to and from a transceiver with separate output and input ports. An evanescent field only and inch or two in radius is created along the wire loop by the pulses. Just about any object coming within the evanescent field will dramatically reduce the energy of the microwave pulses received back by the transceiver. Such a loss in energy is interpreted as a closing area blockage, and electrical interlocks are provided to halt or reverse a power window motor that is actively trying to close the window.

  1. Window-closing safety system

    DOEpatents

    McEwan, T.E.

    1997-08-26

    A safety device includes a wire loop embedded in the glass of a passenger car window and routed near the closing leading-edge of the window. The wire loop carries microwave pulses around the loop to and from a transceiver with separate output and input ports. An evanescent field only an inch or two in radius is created along the wire loop by the pulses. Just about any object coming within the evanescent field will dramatically reduce the energy of the microwave pulses received back by the transceiver. Such a loss in energy is interpreted as a closing area blockage, and electrical interlocks are provided to halt or reverse a power window motor that is actively trying to close the window. 5 figs.

  2. A High-Efficiency Wind Energy Harvester for Autonomous Embedded Systems

    PubMed Central

    Brunelli, Davide

    2016-01-01

    Energy harvesting is currently a hot research topic, mainly as a consequence of the increasing attractiveness of computing and sensing solutions based on small, low-power distributed embedded systems. Harvesting may enable systems to operate in a deploy-and-forget mode, particularly when power grid is absent and the use of rechargeable batteries is unattractive due to their limited lifetime and maintenance requirements. This paper focuses on wind flow as an energy source feasible to meet the energy needs of a small autonomous embedded system. In particular the contribution is on the electrical converter and system integration. We characterize the micro-wind turbine, we define a detailed model of its behaviour, and then we focused on a highly efficient circuit to convert wind energy into electrical energy. The optimized design features an overall volume smaller than 64 cm3. The core of the harvester is a high efficiency buck-boost converter which performs an optimal power point tracking. Experimental results show that the wind generator boosts efficiency over a wide range of operating conditions. PMID:26959018

  3. A High-Efficiency Wind Energy Harvester for Autonomous Embedded Systems.

    PubMed

    Brunelli, Davide

    2016-03-04

    Energy harvesting is currently a hot research topic, mainly as a consequence of the increasing attractiveness of computing and sensing solutions based on small, low-power distributed embedded systems. Harvesting may enable systems to operate in a deploy-and-forget mode, particularly when power grid is absent and the use of rechargeable batteries is unattractive due to their limited lifetime and maintenance requirements. This paper focuses on wind flow as an energy source feasible to meet the energy needs of a small autonomous embedded system. In particular the contribution is on the electrical converter and system integration. We characterize the micro-wind turbine, we define a detailed model of its behaviour, and then we focused on a highly efficient circuit to convert wind energy into electrical energy. The optimized design features an overall volume smaller than 64 cm³. The core of the harvester is a high efficiency buck-boost converter which performs an optimal power point tracking. Experimental results show that the wind generator boosts efficiency over a wide range of operating conditions.

  4. The research and application of multi-biometric acquisition embedded system

    NASA Astrophysics Data System (ADS)

    Deng, Shichao; Liu, Tiegen; Guo, Jingjing; Li, Xiuyan

    2009-11-01

    The identification technology based on multi-biometric can greatly improve the applicability, reliability and antifalsification. This paper presents a multi-biometric system bases on embedded system, which includes: three capture daughter boards are applied to obtain different biometric: one each for fingerprint, iris and vein of the back of hand; FPGA (Field Programmable Gate Array) is designed as coprocessor, which uses to configure three daughter boards on request and provides data path between DSP (digital signal processor) and daughter boards; DSP is the master processor and its functions include: control the biometric information acquisition, extracts feature as required and responsible for compare the results with the local database or data server through network communication. The advantages of this system were it can acquire three different biometric in real time, extracts complexity feature flexibly in different biometrics' raw data according to different purposes and arithmetic and network interface on the core-board will be the solution of big data scale. Because this embedded system has high stability, reliability, flexibility and fit for different data scale, it can satisfy the demand of multi-biometric recognition.

  5. EOS: A project to investigate the design and construction of real-time distributed Embedded Operating Systems

    NASA Technical Reports Server (NTRS)

    Campbell, R. H.; Essick, Ray B.; Johnston, Gary; Kenny, Kevin; Russo, Vince

    1987-01-01

    Project EOS is studying the problems of building adaptable real-time embedded operating systems for the scientific missions of NASA. Choices (A Class Hierarchical Open Interface for Custom Embedded Systems) is an operating system designed and built by Project EOS to address the following specific issues: the software architecture for adaptable embedded parallel operating systems, the achievement of high-performance and real-time operation, the simplification of interprocess communications, the isolation of operating system mechanisms from one another, and the separation of mechanisms from policy decisions. Choices is written in C++ and runs on a ten processor Encore Multimax. The system is intended for use in constructing specialized computer applications and research on advanced operating system features including fault tolerance and parallelism.

  6. Integrating an Embedded System within a Microwave Moisture Meter

    USDA-ARS?s Scientific Manuscript database

    In this paper, the conversion of a PC or laptop-controlled microwave moisture meter to a stand-alone meter hosting its own embedded system is discussed. The moisture meter uses low-power microwaves to measure the attenuation and phase shift of the sample, from which the dielectric properties are cal...

  7. 75 FR 8239 - School Food Safety Program Based on Hazard Analysis and Critical Control Point Principles (HACCP...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-24

    ... 0584-AD65 School Food Safety Program Based on Hazard Analysis and Critical Control Point Principles... Safety Program Based on Hazard Analysis and Critical Control Point Principles (HACCP) was published on... of Management and Budget (OMB) cleared the associated information collection requirements (ICR) on...

  8. Nested Interrupt Analysis of Low Cost and High Performance Embedded Systems Using GSPN Framework

    NASA Astrophysics Data System (ADS)

    Lin, Cheng-Min

    Interrupt service routines are a key technology for embedded systems. In this paper, we introduce the standard approach for using Generalized Stochastic Petri Nets (GSPNs) as a high-level model for generating CTMC Continuous-Time Markov Chains (CTMCs) and then use Markov Reward Models (MRMs) to compute the performance for embedded systems. This framework is employed to analyze two embedded controllers with low cost and high performance, ARM7 and Cortex-M3. Cortex-M3 is designed with a tail-chaining mechanism to improve the performance of ARM7 when a nested interrupt occurs on an embedded controller. The Platform Independent Petri net Editor 2 (PIPE2) tool is used to model and evaluate the controllers in terms of power consumption and interrupt overhead performance. Using numerical results, in spite of the power consumption or interrupt overhead, Cortex-M3 performs better than ARM7.

  9. Structural empowerment and patient safety culture among registered nurses working in adult critical care units.

    PubMed

    Armellino, Donna; Quinn Griffin, Mary T; Fitzpatrick, Joyce J

    2010-10-01

    The aim of the present study was to examine the relationship between structural empowerment and patient safety culture among staff level Registered Nurses (RNs) within adult critical care units (ACCU). There is literature to support the value of RNs' structurally empowered work environments and emerging literature towards patient safety culture; the link between empowerment and patient safety culture is being discovered. A sample of 257 RNs, working within adult critical care of a tertiary hospital in the United States, was surveyed. Instruments included a background data sheet, the Conditions of Workplace Effectiveness and the Hospital Survey on Patient Safety Culture. Structural empowerment and patient safety culture were significantly correlated. As structural empowerment increased so did the RNs' perception of patient safety culture. To foster patient safety culture, nurse leaders should consider providing structurally empowering work environments for RNs. This study contributes to the body of knowledge linking structural empowerment and patient safety culture. Results link structurally empowered RNs and increased patient safety culture, essential elements in delivering efficient, competent, quality care. They inform nursing management of key factors in the nurses' environment that promote safe patient care environments. © 2010 The Authors. Journal compilation © 2010 Blackwell Publishing Ltd.

  10. Phosphatidylcholine embedded micellar systems: enhanced permeability through rat skin.

    PubMed

    Spernath, Aviram; Aserin, Abraham; Sintov, Amnon C; Garti, Nissim

    2008-02-15

    Micellar and microemulsion systems are excellent potential vehicles for delivery of drugs because of their high solubilization capacity and improved transmembrane bioavailability. Mixtures of propylene glycol (PG) and nonionic surfactants with sodium diclofenac (DFC) were prepared in the presence of phosphatidylcholine (PC) as transmembrane transport enhancers. Fully dilutable systems with maximum DFC solubilization capacity (SC) at pH 7 are presented. It was demonstrated that the concentrates underwent phase transitions from reverse micelles to swollen reverse micelles and, via the bicontinuous transitional mesophase, into inverted O/W microstructures. The SC decreases as a function of dilution. DFC transdermal penetration using rat skin in vitro correlated with SC, water content, effect of phospholipid content, presence of an oil phase, and ethanol. Skin penetration from the inverted bicontinuous mesophase and the skin penetration from the O/W-like microstructure were higher than that measured from the W/O-like droplets, especially when the micellar system containing the nonionic surfactant, sugar ester L-1695, and hexaglycerol laurate. PC embedded within the micelle interface significantly increased the penetration flux across the skin compared to micellar systems without the embedded PC at their interface. Moreover, the combination of PC with HECO40 improved the permeation rate (P) and shortened the lag-time (T(L)).

  11. Designing Fault-Injection Experiments for the Reliability of Embedded Systems

    NASA Technical Reports Server (NTRS)

    White, Allan L.

    2012-01-01

    This paper considers the long-standing problem of conducting fault-injections experiments to establish the ultra-reliability of embedded systems. There have been extensive efforts in fault injection, and this paper offers a partial summary of the efforts, but these previous efforts have focused on realism and efficiency. Fault injections have been used to examine diagnostics and to test algorithms, but the literature does not contain any framework that says how to conduct fault-injection experiments to establish ultra-reliability. A solution to this problem integrates field-data, arguments-from-design, and fault-injection into a seamless whole. The solution in this paper is to derive a model reduction theorem for a class of semi-Markov models suitable for describing ultra-reliable embedded systems. The derivation shows that a tight upper bound on the probability of system failure can be obtained using only the means of system-recovery times, thus reducing the experimental effort to estimating a reasonable number of easily-observed parameters. The paper includes an example of a system subject to both permanent and transient faults. There is a discussion of integrating fault-injection with field-data and arguments-from-design.

  12. Effective scheme for partitioning covalent bonds in density-functional embedding theory: From molecules to extended covalent systems.

    PubMed

    Huang, Chen; Muñoz-García, Ana Belén; Pavone, Michele

    2016-12-28

    Density-functional embedding theory provides a general way to perform multi-physics quantum mechanics simulations of large-scale materials by dividing the total system's electron density into a cluster's density and its environment's density. It is then possible to compute the accurate local electronic structures and energetics of the embedded cluster with high-level methods, meanwhile retaining a low-level description of the environment. The prerequisite step in the density-functional embedding theory is the cluster definition. In covalent systems, cutting across the covalent bonds that connect the cluster and its environment leads to dangling bonds (unpaired electrons). These represent a major obstacle for the application of density-functional embedding theory to study extended covalent systems. In this work, we developed a simple scheme to define the cluster in covalent systems. Instead of cutting covalent bonds, we directly split the boundary atoms for maintaining the valency of the cluster. With this new covalent embedding scheme, we compute the dehydrogenation energies of several different molecules, as well as the binding energy of a cobalt atom on graphene. Well localized cluster densities are observed, which can facilitate the use of localized basis sets in high-level calculations. The results are found to converge faster with the embedding method than the other multi-physics approach ONIOM. This work paves the way to perform the density-functional embedding simulations of heterogeneous systems in which different types of chemical bonds are present.

  13. How could the topic patient safety be embedded in the curriculum? A recommendation by the Committee for Patient Safety and Error Management of the GMA.

    PubMed

    Kiesewetter, Jan; Drossard, Sabine; Gaupp, Rainer; Baschnegger, Heiko; Kiesewetter, Isabel; Hoffmann, Susanne

    2018-01-01

    The topic of patient safety is of fundamental interest for the health care sector. In view of the realisation of the National Competence-Based Learning Objectives Catalogue for Undergraduate Medical Education (NKLM) this topic now has to be prepared for medical education. For a disciplinary and content-related orientation the GMA Committee developed the Learning Objectives Catalogue Patient Safety for Undergraduate Medical Education (GMA-LZK). To ensure an optimal implementation of the GMA-LZK we recommend a longitudinal embedding into the existing curriculum. This position paper supports the implementation of the GMA-LZK and is aimed at everyone who wants to establish teaching courses on the topic patient safety and embed them in the curriculum. In light of this, we will initially describe the key features for a structured analysis of the current situation. Based on three best-practice-examples, as seen in the faculties of Freiburg, Bonn and Munich, different approaches to the implementation of the GMA-LZK will be illustrated. Lastly, we will outline the methodical requirements regarding the curriculum development as well as the disciplinary and methodical competences that the lecturers will have to hold or develop to fulfil the requirements.

  14. Mobile Monitoring and Embedded Control System for Factory Environment

    PubMed Central

    Lian, Kuang-Yow; Hsiao, Sung-Jung; Sung, Wen-Tsai

    2013-01-01

    This paper proposes a real-time method to carry out the monitoring of factory zone temperatures, humidity and air quality using smart phones. At the same time, the system detects possible flames, and analyzes and monitors electrical load. The monitoring also includes detecting the vibrations of operating machinery in the factory area. The research proposes using ZigBee and Wi-Fi protocol intelligent monitoring system integration within the entire plant framework. The sensors on the factory site deliver messages and real-time sensing data to an integrated embedded systems via the ZigBee protocol. The integrated embedded system is built by the open-source 32-bit ARM (Advanced RISC Machine) core Arduino Due module, where the network control codes are built in for the ARM chipset integrated controller. The intelligent integrated controller is able to instantly provide numerical analysis results according to the received data from the ZigBee sensors. The Android APP and web-based platform are used to show measurement results. The built-up system will transfer these results to a specified cloud device using the TCP/IP protocol. Finally, the Fast Fourier Transform (FFT) approach is used to analyze the power loads in the factory zones. Moreover, Near Field Communication (NFC) technology is used to carry out the actual electricity load experiments using smart phones. PMID:24351642

  15. Mobile monitoring and embedded control system for factory environment.

    PubMed

    Lian, Kuang-Yow; Hsiao, Sung-Jung; Sung, Wen-Tsai

    2013-12-17

    This paper proposes a real-time method to carry out the monitoring of factory zone temperatures, humidity and air quality using smart phones. At the same time, the system detects possible flames, and analyzes and monitors electrical load. The monitoring also includes detecting the vibrations of operating machinery in the factory area. The research proposes using ZigBee and Wi-Fi protocol intelligent monitoring system integration within the entire plant framework. The sensors on the factory site deliver messages and real-time sensing data to an integrated embedded systems via the ZigBee protocol. The integrated embedded system is built by the open-source 32-bit ARM (Advanced RISC Machine) core Arduino Due module, where the network control codes are built in for the ARM chipset integrated controller. The intelligent integrated controller is able to instantly provide numerical analysis results according to the received data from the ZigBee sensors. The Android APP and web-based platform are used to show measurement results. The built-up system will transfer these results to a specified cloud device using the TCP/IP protocol. Finally, the Fast Fourier Transform (FFT) approach is used to analyze the power loads in the factory zones. Moreover, Near Field Communication (NFC) technology is used to carry out the actual electricity load experiments using smart phones.

  16. Reliability/safety analysis of a fly-by-wire system

    NASA Technical Reports Server (NTRS)

    Brock, L. D.; Goddman, H. A.

    1980-01-01

    An analysis technique has been developed to estimate the reliability of a very complex, safety-critical system by constructing a diagram of the reliability equations for the total system. This diagram has many of the characteristics of a fault-tree or success-path diagram, but is much easier to construct for complex redundant systems. The diagram provides insight into system failure characteristics and identifies the most likely failure modes. A computer program aids in the construction of the diagram and the computation of reliability. Analysis of the NASA F-8 Digital Fly-by-Wire Flight Control System is used to illustrate the technique.

  17. Bayesian Statistics and Uncertainty Quantification for Safety Boundary Analysis in Complex Systems

    NASA Technical Reports Server (NTRS)

    He, Yuning; Davies, Misty Dawn

    2014-01-01

    The analysis of a safety-critical system often requires detailed knowledge of safe regions and their highdimensional non-linear boundaries. We present a statistical approach to iteratively detect and characterize the boundaries, which are provided as parameterized shape candidates. Using methods from uncertainty quantification and active learning, we incrementally construct a statistical model from only few simulation runs and obtain statistically sound estimates of the shape parameters for safety boundaries.

  18. Stereoscopic 3D reconstruction using motorized zoom lenses within an embedded system

    NASA Astrophysics Data System (ADS)

    Liu, Pengcheng; Willis, Andrew; Sui, Yunfeng

    2009-02-01

    This paper describes a novel embedded system capable of estimating 3D positions of surfaces viewed by a stereoscopic rig consisting of a pair of calibrated cameras. Novel theoretical and technical aspects of the system are tied to two aspects of the design that deviate from typical stereoscopic reconstruction systems: (1) incorporation of an 10x zoom lens (Rainbow- H10x8.5) and (2) implementation of the system on an embedded system. The system components include a DSP running μClinux, an embedded version of the Linux operating system, and an FPGA. The DSP orchestrates data flow within the system and performs complex computational tasks and the FPGA provides an interface to the system devices which consist of a CMOS camera pair and a pair of servo motors which rotate (pan) each camera. Calibration of the camera pair is accomplished using a collection of stereo images that view a common chess board calibration pattern for a set of pre-defined zoom positions. Calibration settings for an arbitrary zoom setting are estimated by interpolation of the camera parameters. A low-computational cost method for dense stereo matching is used to compute depth disparities for the stereo image pairs. Surface reconstruction is accomplished by classical triangulation of the matched points from the depth disparities. This article includes our methods and results for the following problems: (1) automatic computation of the focus and exposure settings for the lens and camera sensor, (2) calibration of the system for various zoom settings and (3) stereo reconstruction results for several free form objects.

  19. A Software Safety Risk Taxonomy for Use in Retrospective Safety Cases

    NASA Technical Reports Server (NTRS)

    Hill, Janice L.

    2007-01-01

    Safety standards contain technical and process-oriented safely requirements. The best time to include these requirements is early in the development lifecycle of the system. When software safety requirements are levied on a legacy system after the fact, a retrospective safety case will need to be constructed for the software in the system. This can be a difficult task because there may be few to no art facts available to show compliance to the software safely requirements. The risks associated with not meeting safely requirements in a legacy safely-critical computer system must be addressed to give confidence for reuse. This paper introduces a proposal for a software safely risk taxonomy for legacy safely-critical computer systems, by specializing the Software Engineering Institute's 'Software Development Risk Taxonomy' with safely elements and attributes.

  20. Vision-based Nano Robotic System for High-throughput Non-embedded Cell Cutting

    NASA Astrophysics Data System (ADS)

    Shang, Wanfeng; Lu, Haojian; Wan, Wenfeng; Fukuda, Toshio; Shen, Yajing

    2016-03-01

    Cell cutting is a significant task in biology study, but the highly productive non-embedded cell cutting is still a big challenge for current techniques. This paper proposes a vision-based nano robotic system and then realizes automatic non-embedded cell cutting with this system. First, the nano robotic system is developed and integrated with a nanoknife inside an environmental scanning electron microscopy (ESEM). Then, the positions of the nanoknife and the single cell are recognized, and the distance between them is calculated dynamically based on image processing. To guarantee the positioning accuracy and the working efficiency, we propose a distance-regulated speed adapting strategy, in which the moving speed is adjusted intelligently based on the distance between the nanoknife and the target cell. The results indicate that the automatic non-embedded cutting is able to be achieved within 1-2 mins with low invasion benefiting from the high precise nanorobot system and the sharp edge of nanoknife. This research paves a way for the high-throughput cell cutting at cell’s natural condition, which is expected to make significant impact on the biology studies, especially for the in-situ analysis at cellular and subcellular scale, such as cell interaction investigation, neural signal transduction and low invasive cell surgery.

  1. Introduction for Freshmen to Embedded Systems Using LEGO Mindstorms

    ERIC Educational Resources Information Center

    Kim, Seung Han; Jeon, Jae Wook

    2009-01-01

    The purpose of the course presented here is to introduce freshmen to embedded systems using LEGO Mindstorms, under an ANSI-C programming environment. The students build their own LEGO robots, make programs for them using ANSI-C, and operate them. By creating these LEGO robots, the students become more motivated, learning the basic concepts of…

  2. Quantifying Pilot Contribution to Flight Safety during Hydraulic Systems Failure

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Etherington, Timothy J.; Bailey, Randall E.; Kennedy, Kellie D.

    2017-01-01

    Accident statistics cite the flight crew as a causal factor in over 60% of large transport aircraft fatal accidents. Yet, a well-trained and well-qualified pilot is acknowledged as the critical center point of aircraft systems safety and an integral safety component of the entire commercial aviation system. The latter statement, while generally accepted, cannot be verified because little or no quantitative data exists on how and how many accidents/incidents are averted by crew actions. A joint NASA/FAA high-fidelity motion-base human-in-the-loop test was conducted using a Level D certified Boeing 737-800 simulator to evaluate the pilot's contribution to safety-of-flight during routine air carrier flight operations and in response to aircraft system failures. To quantify the human's contribution, crew complement (two-crew, reduced crew, single pilot) was used as the independent variable in a between-subjects design. This paper details the crew's actions, including decision-making, and responses while dealing with a hydraulic systems leak - one of 6 total non-normal events that were simulated in this experiment.

  3. Embedding research to improve program implementation in Latin America and the Caribbean.

    PubMed

    Tran, Nhan; Langlois, Etienne V; Reveiz, Ludovic; Varallyay, Ilona; Elias, Vanessa; Mancuso, Arielle; Becerra-Posada, Francisco; Ghaffar, Abdul

    2017-06-08

    In the last 10 years, implementation research has come to play a critical role in improving the implementation of already-proven health interventions by promoting the systematic uptake of research findings and other evidence-based strategies into routine practice. The Alliance for Health Policy and Systems Research and the Pan American Health Organization implemented a program of embedded implementation research to support health programs in Latin America and the Caribbean (LAC) in 2014-2015. A total of 234 applications were received from 28 countries in the Americas. The Improving Program Implementation through Embedded Research (iPIER) scheme supported 12 implementation research projects led by health program implementers from nine LAC countries: Argentina, Bolivia, Brazil, Chile, Colombia, Mexico, Panama, Peru, and Saint Lucia. Through this experience, we learned that the "insider" perspective, which implementers bring to the research proposal, is particularly important in identifying research questions that focus on the systems failures that often manifest in barriers to implementation. This paper documents the experience of and highlights key conclusions about the conduct of embedded implementation research. The iPIER experience has shown great promise for embedded research models that place implementers at the helm of implementation research initiatives.

  4. Software System Safety and the NASA Aeronautics Blueprint

    NASA Technical Reports Server (NTRS)

    Holloway, C. Michael; Hayhurst, Kelly J.

    2002-01-01

    NASA's Aeronautics Blueprint lays out a research agenda for the Agency s aeronautics program. The word software appears only four times in this Blueprint, but the critical importance of safe and correct software to the fulfillment of the proposed research is evident on almost every page. Most of the technology solutions proposed to address challenges in aviation are software dependent technologies. Of the fifty-two specific technology solutions described in the Blueprint, forty-one depend, at least in part, on software for success. For thirty-five of these forty-one, software is not only critical to success, but also to human safety. That is, implementing the technology solutions will require using software in such a way that it may, if not specified, designed, and implemented properly, lead to fatal accidents. These results have at least two implications for the research based on the Blueprint: (1) knowledge about the current state-of-the-art and state-of-the-practice in software engineering and software system safety is essential, and (2) research into current unsolved problems in these software disciplines is also essential.

  5. A Vision-Based Driver Nighttime Assistance and Surveillance System Based on Intelligent Image Sensing Techniques and a Heterogamous Dual-Core Embedded System Architecture

    PubMed Central

    Chen, Yen-Lin; Chiang, Hsin-Han; Chiang, Chuan-Yen; Liu, Chuan-Ming; Yuan, Shyan-Ming; Wang, Jenq-Haur

    2012-01-01

    This study proposes a vision-based intelligent nighttime driver assistance and surveillance system (VIDASS system) implemented by a set of embedded software components and modules, and integrates these modules to accomplish a component-based system framework on an embedded heterogamous dual-core platform. Therefore, this study develops and implements computer vision and sensing techniques of nighttime vehicle detection, collision warning determination, and traffic event recording. The proposed system processes the road-scene frames in front of the host car captured from CCD sensors mounted on the host vehicle. These vision-based sensing and processing technologies are integrated and implemented on an ARM-DSP heterogamous dual-core embedded platform. Peripheral devices, including image grabbing devices, communication modules, and other in-vehicle control devices, are also integrated to form an in-vehicle-embedded vision-based nighttime driver assistance and surveillance system. PMID:22736956

  6. A vision-based driver nighttime assistance and surveillance system based on intelligent image sensing techniques and a heterogamous dual-core embedded system architecture.

    PubMed

    Chen, Yen-Lin; Chiang, Hsin-Han; Chiang, Chuan-Yen; Liu, Chuan-Ming; Yuan, Shyan-Ming; Wang, Jenq-Haur

    2012-01-01

    This study proposes a vision-based intelligent nighttime driver assistance and surveillance system (VIDASS system) implemented by a set of embedded software components and modules, and integrates these modules to accomplish a component-based system framework on an embedded heterogamous dual-core platform. Therefore, this study develops and implements computer vision and sensing techniques of nighttime vehicle detection, collision warning determination, and traffic event recording. The proposed system processes the road-scene frames in front of the host car captured from CCD sensors mounted on the host vehicle. These vision-based sensing and processing technologies are integrated and implemented on an ARM-DSP heterogamous dual-core embedded platform. Peripheral devices, including image grabbing devices, communication modules, and other in-vehicle control devices, are also integrated to form an in-vehicle-embedded vision-based nighttime driver assistance and surveillance system.

  7. Shielding calculation and criticality safety analysis of spent fuel transportation cask in research reactors.

    PubMed

    Mohammadi, A; Hassanzadeh, M; Gharib, M

    2016-02-01

    In this study, shielding calculation and criticality safety analysis were carried out for general material testing reactor (MTR) research reactors interim storage and relevant transportation cask. During these processes, three major terms were considered: source term, shielding, and criticality calculations. The Monte Carlo transport code MCNP5 was used for shielding calculation and criticality safety analysis and ORIGEN2.1 code for source term calculation. According to the results obtained, a cylindrical cask with body, top, and bottom thicknesses of 18, 13, and 13 cm, respectively, was accepted as the dual-purpose cask. Furthermore, it is shown that the total dose rates are below the normal transport criteria that meet the standards specified. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. A systems-based food safety evaluation: an experimental approach.

    PubMed

    Higgins, Charles L; Hartfield, Barry S

    2004-11-01

    Food establishments are complex systems with inputs, subsystems, underlying forces that affect the system, outputs, and feedback. Building on past exploration of the hazard analysis critical control point concept and Ludwig von Bertalanffy General Systems Theory, the National Park Service (NPS) is attempting to translate these ideas into a realistic field assessment of food service establishments and to use information gathered by these methods in efforts to improve food safety. Over the course of the last two years, an experimental systems-based methodology has been drafted, developed, and tested by the NPS Public Health Program. This methodology is described in this paper.

  9. System-level power optimization for real-time distributed embedded systems

    NASA Astrophysics Data System (ADS)

    Luo, Jiong

    Power optimization is one of the crucial design considerations for modern electronic systems. In this thesis, we present several system-level power optimization techniques for real-time distributed embedded systems, based on dynamic voltage scaling, dynamic power management, and management of peak power and variance of the power profile. Dynamic voltage scaling has been widely acknowledged as an important and powerful technique to trade off dynamic power consumption and delay. Efficient dynamic voltage scaling requires effective variable-voltage scheduling mechanisms that can adjust voltages and clock frequencies adaptively based on workloads and timing constraints. For this purpose, we propose static variable-voltage scheduling algorithms utilizing criticalpath driven timing analysis for the case when tasks are assumed to have uniform switching activities, as well as energy-gradient driven slack allocation for a more general scenario. The proposed techniques can achieve closeto-optimal power savings with very low computational complexity, without violating any real-time constraints. We also present algorithms for power-efficient joint scheduling of multi-rate periodic task graphs along with soft aperiodic tasks. The power issue is addressed through both dynamic voltage scaling and power management. Periodic task graphs are scheduled statically. Flexibility is introduced into the static schedule to allow the on-line scheduler to make local changes to PE schedules through resource reclaiming and slack stealing, without interfering with the validity of the global schedule. We provide a unified framework in which the response times of aperiodic tasks and power consumption are dynamically optimized simultaneously. Interconnection network fabrics point to a new generation of power-efficient and scalable interconnection architectures for distributed embedded systems. As the system bandwidth continues to increase, interconnection networks become power/energy limited as

  10. Automated critical test result notification system: architecture, design, and assessment of provider satisfaction.

    PubMed

    Lacson, Ronilda; O'Connor, Stacy D; Andriole, Katherine P; Prevedello, Luciano M; Khorasani, Ramin

    2014-11-01

    Communicating critical results of diagnostic imaging procedures is a national patient safety goal. The purposes of this study were to describe the system architecture and design of Alert Notification of Critical Results (ANCR), an automated system designed to facilitate communication of critical imaging results between care providers; to report providers' satisfaction with ANCR; and to compare radiologists' and ordering providers' attitudes toward ANCR. The design decisions made for each step in the alert communication process, which includes user authentication, alert creation, alert communication, alert acknowledgment and management, alert reminder and escalation, and alert documentation, are described. To assess attitudes toward ANCR, internally developed and validated surveys were administered to all radiologists (n = 320) and ordering providers (n = 4323) who sent or received alerts 3 years after ANCR implementation. The survey response rates were 50.4% for radiologists and 36.1% for ordering providers. Ordering providers were generally dissatisfied with the training received for use of ANCR and with access to technical support. Radiologists were more satisfied with documenting critical result communication (61.1% vs 43.2%; p = 0.0001) and tracking critical results (51.6% vs 35.1%; p = 0.0003) than were ordering providers. Both groups agreed use of ANCR reduces medical errors and improves the quality of patient care. Use of ANCR enables automated communication of critical test results. The survey results confirm overall provider satisfaction with ANCR but highlight the need for improved training strategies for large numbers of geographically dispersed ordering providers. Future enhancements beyond acknowledging receipt of critical results are needed to help ensure timely and appropriate follow-up of critical results to improve quality and patient safety.

  11. Approach for validating actinide and fission product compositions for burnup credit criticality safety analyses

    DOE PAGES

    Radulescu, Georgeta; Gauld, Ian C.; Ilas, Germina; ...

    2014-11-01

    This paper describes a depletion code validation approach for criticality safety analysis using burnup credit for actinide and fission product nuclides in spent nuclear fuel (SNF) compositions. The technical basis for determining the uncertainties in the calculated nuclide concentrations is comparison of calculations to available measurements obtained from destructive radiochemical assay of SNF samples. Probability distributions developed for the uncertainties in the calculated nuclide concentrations were applied to the SNF compositions of a criticality safety analysis model by the use of a Monte Carlo uncertainty sampling method to determine bias and bias uncertainty in effective neutron multiplication factor. Application ofmore » the Monte Carlo uncertainty sampling approach is demonstrated for representative criticality safety analysis models of pressurized water reactor spent fuel pool storage racks and transportation packages using burnup-dependent nuclide concentrations calculated with SCALE 6.1 and the ENDF/B-VII nuclear data. Furthermore, the validation approach and results support a recent revision of the U.S. Nuclear Regulatory Commission Interim Staff Guidance 8.« less

  12. Design of embedded intelligent monitoring system based on face recognition

    NASA Astrophysics Data System (ADS)

    Liang, Weidong; Ding, Yan; Zhao, Liangjin; Li, Jia; Hu, Xuemei

    2017-01-01

    In this paper, a new embedded intelligent monitoring system based on face recognition is proposed. The system uses Pi Raspberry as the central processor. A sensors group has been designed with Zigbee module in order to assist the system to work better and the two alarm modes have been proposed using the Internet and 3G modem. The experimental results show that the system can work under various light intensities to recognize human face and send alarm information in real time.

  13. Metal-superconductor transition in low-dimensional superconducting clusters embedded in two-dimensional electron systems

    NASA Astrophysics Data System (ADS)

    Bucheli, D.; Caprara, S.; Castellani, C.; Grilli, M.

    2013-02-01

    Motivated by recent experimental data on thin film superconductors and oxide interfaces, we propose a random-resistor network apt to describe the occurrence of a metal-superconductor transition in a two-dimensional electron system with disorder on the mesoscopic scale. We consider low-dimensional (e.g. filamentary) structures of a superconducting cluster embedded in the two-dimensional network and we explore the separate effects and the interplay of the superconducting structure and of the statistical distribution of local critical temperatures. The thermal evolution of the resistivity is determined by a numerical calculation of the random-resistor network and, for comparison, a mean-field approach called effective medium theory (EMT). Our calculations reveal the relevance of the distribution of critical temperatures for clusters with low connectivity. In addition, we show that the presence of spatial correlations requires a modification of standard EMT to give qualitative agreement with the numerical results. Applying the present approach to an LaTiO3/SrTiO3 oxide interface, we find that the measured resistivity curves are compatible with a network of spatially dense but loosely connected superconducting islands.

  14. Confirming criticality safety of TRU waste with neutron measurements and risk analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winn, W.G.; Hochel, R.D.

    1992-04-01

    The criticality safety of {sup 239}Pu in 55-gallon drums stored in TRU waste containers (culverts) is confirmed using NDA neutron measurements and risk analyses. The neutron measurements yield a {sup 239}Pu mass and k{sub eff} for a culvert, which contains up to 14 drums. Conservative probabilistic risk analyses were developed for both drums and culverts. Overall {sup 239}Pu mass estimates are less than a calculated safety limit of 2800 g per culvert. The largest measured k{sub eff} is 0.904. The largest probability for a critical drum is 6.9 {times} 10{sup {minus}8} and that for a culvert is 1.72 {times} 10{supmore » {minus}7}. All examined suspect culverts, totaling 118 in number, are appraised as safe based on these observations.« less

  15. Reconfigurable Embedded System for Electrocardiogram Acquisition.

    PubMed

    Kay, Marcel Seiji; Iaione, Fábio

    2015-01-01

    Smartphones include features that offers the chance to develop mobile systems in medical field, resulting in an area called mobile-health. One of the most common medical examinations is the electrocardiogram (ECG), which allows the diagnosis of various heart diseases, leading to preventative measures and preventing more serious problems. The objective of this study was to develop a wireless reconfigurable embedded system using a FPAA (Field Programmable Analog Array), for the acquisition of ECG signals, and an application showing and storing these signals on Android smartphones. The application also performs the partial FPAA reconfiguration in real time (adjustable gain). Previous studies using FPAA usually use the development boards provided by the manufacturer (high cost), do not allow the reconfiguration in real time, use no smartphone and communicate via cables. The parameters tested in the acquisition circuit and the quality of ECGs registered in an individual were satisfactory.

  16. Laser safety research and modeling for high-energy laser systems

    NASA Astrophysics Data System (ADS)

    Smith, Peter A.; Montes de Oca, Cecilia I.; Kennedy, Paul K.; Keppler, Kenneth S.

    2002-06-01

    The Department of Defense has an increasing number of high-energy laser weapons programs with the potential to mature in the not too distant future. However, as laser systems with increasingly higher energies are developed, the difficulty of the laser safety problem increases proportionally, and presents unique safety challenges. The hazard distance for the direct beam can be in the order of thousands of miles, and radiation reflected from the target may also be hazardous over long distances. This paper details the Air Force Research Laboratory/Optical Radiation Branch (AFRL/HEDO) High-Energy Laser (HEL) safety program, which has been developed to support DOD HEL programs by providing critical capability and knowledge with respect to laser safety. The overall aim of the program is to develop and demonstrate technologies that permit safe testing, deployment and use of high-energy laser weapons. The program spans the range of applicable technologies, including evaluation of the biological effects of high-energy laser systems, development and validation of laser hazard assessment tools, and development of appropriate eye protection for those at risk.

  17. Embedded systems for supporting computer accessibility.

    PubMed

    Mulfari, Davide; Celesti, Antonio; Fazio, Maria; Villari, Massimo; Puliafito, Antonio

    2015-01-01

    Nowadays, customized AT software solutions allow their users to interact with various kinds of computer systems. Such tools are generally available on personal devices (e.g., smartphones, laptops and so on) commonly used by a person with a disability. In this paper, we investigate a way of using the aforementioned AT equipments in order to access many different devices without assistive preferences. The solution takes advantage of open source hardware and its core component consists of an affordable Linux embedded system: it grabs data coming from the assistive software, which runs on the user's personal device, then, after processing, it generates native keyboard and mouse HID commands for the target computing device controlled by the end user. This process supports any operating system available on the target machine and it requires no specialized software installation; therefore the user with a disability can rely on a single assistive tool to control a wide range of computing platforms, including conventional computers and many kinds of mobile devices, which receive input commands through the USB HID protocol.

  18. Integration of Si-CMOS embedded photo detector array and mixed signal processing system with embedded optical waveguide input

    NASA Astrophysics Data System (ADS)

    Kim, Daeik D.; Thomas, Mikkel A.; Brooke, Martin A.; Jokerst, Nan M.

    2004-06-01

    Arrays of embedded bipolar junction transistor (BJT) photo detectors (PD) and a parallel mixed-signal processing system were fabricated as a silicon complementary metal oxide semiconductor (Si-CMOS) circuit for the integration optical sensors on the surface of the chip. The circuit was fabricated with AMI 1.5um n-well CMOS process and the embedded PNP BJT PD has a pixel size of 8um by 8um. BJT PD was chosen to take advantage of its higher gain amplification of photo current than that of PiN type detectors since the target application is a low-speed and high-sensitivity sensor. The photo current generated by BJT PD is manipulated by mixed-signal processing system, which consists of parallel first order low-pass delta-sigma oversampling analog-to-digital converters (ADC). There are 8 parallel ADCs on the chip and a group of 8 BJT PDs are selected with CMOS switches. An array of PD is composed of three or six groups of PDs depending on the number of rows.

  19. Safety management system needs assessment.

    DOT National Transportation Integrated Search

    2016-04-01

    The safety of the traveling public is critical as each year there are approximately 200 highway fatalities in Nebraska and numerous crash injuries. The objective of this research was to conduct a needs assessment to identify the requirements of a sta...

  20. Untangling Brain-Wide Dynamics in Consciousness by Cross-Embedding

    PubMed Central

    Tajima, Satohiro; Yanagawa, Toru; Fujii, Naotaka; Toyoizumi, Taro

    2015-01-01

    Brain-wide interactions generating complex neural dynamics are considered crucial for emergent cognitive functions. However, the irreducible nature of nonlinear and high-dimensional dynamical interactions challenges conventional reductionist approaches. We introduce a model-free method, based on embedding theorems in nonlinear state-space reconstruction, that permits a simultaneous characterization of complexity in local dynamics, directed interactions between brain areas, and how the complexity is produced by the interactions. We demonstrate this method in large-scale electrophysiological recordings from awake and anesthetized monkeys. The cross-embedding method captures structured interaction underlying cortex-wide dynamics that may be missed by conventional correlation-based analysis, demonstrating a critical role of time-series analysis in characterizing brain state. The method reveals a consciousness-related hierarchy of cortical areas, where dynamical complexity increases along with cross-area information flow. These findings demonstrate the advantages of the cross-embedding method in deciphering large-scale and heterogeneous neuronal systems, suggesting a crucial contribution by sensory-frontoparietal interactions to the emergence of complex brain dynamics during consciousness. PMID:26584045

  1. The procedure safety system

    NASA Technical Reports Server (NTRS)

    Obrien, Maureen E.

    1990-01-01

    Telerobotic operations, whether under autonomous or teleoperated control, require a much more sophisticated safety system than that needed for most industrial applications. Industrial robots generally perform very repetitive tasks in a controlled, static environment. The safety system in that case can be as simple as shutting down the robot if a human enters the work area, or even simply building a cage around the work space. Telerobotic operations, however, will take place in a dynamic, sometimes unpredictable environment, and will involve complicated and perhaps unrehearsed manipulations. This creates a much greater potential for damage to the robot or objects in its vicinity. The Procedural Safety System (PSS) collects data from external sensors and the robot, then processes it through an expert system shell to determine whether an unsafe condition or potential unsafe condition exists. Unsafe conditions could include exceeding velocity, acceleration, torque, or joint limits, imminent collision, exceeding temperature limits, and robot or sensor component failure. If a threat to safety exists, the operator is warned. If the threat is serious enough, the robot is halted. The PSS, therefore, uses expert system technology to enhance safety thus reducing operator work load, allowing him/her to focus on performing the task at hand without the distraction of worrying about violating safety criteria.

  2. Breaking down the barriers of using strong authentication and encryption in resource constrained embedded systems

    NASA Astrophysics Data System (ADS)

    Knobler, Ron; Scheffel, Peter; Jackson, Scott; Gaj, Kris; Kaps, Jens Peter

    2013-05-01

    Various embedded systems, such as unattended ground sensors (UGS), are deployed in dangerous areas, where they are subject to compromise. Since numerous systems contain a network of devices that communicate with each other (often times with commercial off the shelf [COTS] radios), an adversary is able to intercept messages between system devices, which jeopardizes sensitive information transmitted by the system (e.g. location of system devices). Secret key algorithms such as AES are a very common means to encrypt all system messages to a sufficient security level, for which lightweight implementations exist for even very resource constrained devices. However, all system devices must use the appropriate key to encrypt and decrypt messages from each other. While traditional public key algorithms (PKAs), such as RSA and Elliptic Curve Cryptography (ECC), provide a sufficiently secure means to provide authentication and a means to exchange keys, these traditional PKAs are not suitable for very resource constrained embedded systems or systems which contain low reliability communication links (e.g. mesh networks), especially as the size of the network increases. Therefore, most UGS and other embedded systems resort to pre-placed keys (PPKs) or other naïve schemes which greatly reduce the security and effectiveness of the overall cryptographic approach. McQ has teamed with the Cryptographic Engineering Research Group (CERG) at George Mason University (GMU) to develop an approach using revolutionary cryptographic techniques that provides both authentication and encryption, but on resource constrained embedded devices, without the burden of large amounts of key distribution or storage.

  3. Towards integrated hygiene and food safety management systems: the Hygieneomic approach.

    PubMed

    Armstrong, G D

    1999-09-15

    Integrated hygiene and food safety management systems in food production can give rise to exceptional improvements in food safety performance, but require high level commitment and full functional involvement. A new approach, named hygieneomics, has been developed to assist management in their introduction of hygiene and food safety systems. For an effective introduction, the management systems must be designed to fit with the current generational state of an organisation. There are, broadly speaking, four generational states of an organisation in their approach to food safety. They comprise: (i) rules setting; (ii) ensuring compliance; (iii) individual commitment; (iv) interdependent action. In order to set up an effective integrated hygiene and food safety management system a number of key managerial requirements are necessary. The most important ones are: (a) management systems must integrate the activities of key functions from research and development through to supply chain and all functions need to be involved; (b) there is a critical role for the senior executive, in communicating policy and standards; (c) responsibilities must be clearly defined, and it should be clear that food safety is a line management responsibility not to be delegated to technical or quality personnel; (d) a thorough and effective multi-level audit approach is necessary; (e) key activities in the system are HACCP and risk management, but it is stressed that these are ongoing management activities, not once-off paper generating exercises; and (f) executive management board level review is necessary of audit results, measurements, status and business benefits.

  4. Protection and Safety.

    ERIC Educational Resources Information Center

    American School Board Journal, 1964

    1964-01-01

    Several aspects of school safety and protection are presented for school administrators and architects. Among those topics discussed are--(1) life safety, (2) vandalism controlled through proper design, (3) personal protective devices, and (4) fire alarm systems. Another critical factor in providing a complete school safety program is proper…

  5. Masters Thesis- Criticality Alarm System Design Guide with Accompanying Alarm System Development for the Radioisotope Production Laboratory in Richland, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenfield, Bryce A.

    2009-12-01

    A detailed instructional manual was created to guide criticality safety engineers through the process of designing a criticality alarm system (CAS) for Department of Energy (DOE) hazard class 1 and 2 facilities. Regulatory and technical requirements were both addressed. A list of design tasks and technical subtasks are thoroughly analyzed to provide concise direction for how to complete the analysis. An example of the application of the design methodology, the Criticality Alarm System developed for the Radioisotope Production Laboratory (RPL) of Richland, Washington is also included. The analysis for RPL utilizes the Monte Carlo code MCNP5 for establishing detector coveragemore » in the facility. Significant improvements to the existing CAS were made that increase the reliability, transparency, and coverage of the system.« less

  6. Retrieval medicine: a review and guide for UK practitioners. Part 2: safety in patient retrieval systems

    PubMed Central

    Hearns, S; Shirley, P J

    2006-01-01

    Retrieval and transfer of critically ill and injured patients is a high risk activity. Risk can be minimised with robust safety and clinical governance systems in place. This article describes the various governance systems that can be employed to optimise safety and efficiency in retrieval services. These include operating procedure development, equipment management, communications procedures, crew resource management, significant event analysis, audit and training. PMID:17130608

  7. XtratuM: An Open Source Hypervisor for TSP Embedded Systems in Aerospace

    NASA Astrophysics Data System (ADS)

    Crespo, A.; Ripoll, I.; Masmano, M.; Arberet, P.; Metge, J. J.

    2009-05-01

    XtratuM is an hypervisor designed to meet safety critical requirements. XtratuM 2.1.0 is a redesign of the former version XtratuM 2.0 (for x86 architectures) to meet safety critical requirements. It has been ported to SPARC v8 arquitecture and specially to the to the LEON2 processor, which is the reference platform for the spatial sector. Adaptation involves a strong effort in redesign to be closer to the ARINC-653 standards. As far as we know, XtratuM is the first hypervisor for the SPARC v8 arquitecture. In this paper, the main design aspects are discussed and the internal architecture described. An initial evaluation of the most significant metrics is also provided.

  8. Analytic integrable systems: Analytic normalization and embedding flows

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang

    In this paper we mainly study the existence of analytic normalization and the normal form of finite dimensional complete analytic integrable dynamical systems. More details, we will prove that any complete analytic integrable diffeomorphism F(x)=Bx+f(x) in (Cn,0) with B having eigenvalues not modulus 1 and f(x)=O(|) is locally analytically conjugate to its normal form. Meanwhile, we also prove that any complete analytic integrable differential system x˙=Ax+f(x) in (Cn,0) with A having nonzero eigenvalues and f(x)=O(|) is locally analytically conjugate to its normal form. Furthermore we will prove that any complete analytic integrable diffeomorphism defined on an analytic manifold can be embedded in a complete analytic integrable flow. We note that parts of our results are the improvement of Moser's one in J. Moser, The analytic invariants of an area-preserving mapping near a hyperbolic fixed point, Comm. Pure Appl. Math. 9 (1956) 673-692 and of Poincaré's one in H. Poincaré, Sur l'intégration des équations différentielles du premier order et du premier degré, II, Rend. Circ. Mat. Palermo 11 (1897) 193-239. These results also improve the ones in Xiang Zhang, Analytic normalization of analytic integrable systems and the embedding flows, J. Differential Equations 244 (2008) 1080-1092 in the sense that the linear part of the systems can be nonhyperbolic, and the one in N.T. Zung, Convergence versus integrability in Poincaré-Dulac normal form, Math. Res. Lett. 9 (2002) 217-228 in the way that our paper presents the concrete expression of the normal form in a restricted case.

  9. Feasibility and safety of virtual-reality-based early neurocognitive stimulation in critically ill patients.

    PubMed

    Turon, Marc; Fernandez-Gonzalo, Sol; Jodar, Mercè; Gomà, Gemma; Montanya, Jaume; Hernando, David; Bailón, Raquel; de Haro, Candelaria; Gomez-Simon, Victor; Lopez-Aguilar, Josefina; Magrans, Rudys; Martinez-Perez, Melcior; Oliva, Joan Carles; Blanch, Lluís

    2017-12-01

    Growing evidence suggests that critical illness often results in significant long-term neurocognitive impairments in one-third of survivors. Although these neurocognitive impairments are long-lasting and devastating for survivors, rehabilitation rarely occurs during or after critical illness. Our aim is to describe an early neurocognitive stimulation intervention based on virtual reality for patients who are critically ill and to present the results of a proof-of-concept study testing the feasibility, safety, and suitability of this intervention. Twenty critically ill adult patients undergoing or having undergone mechanical ventilation for ≥24 h received daily 20-min neurocognitive stimulation sessions when awake and alert during their ICU stay. The difficulty of the exercises included in the sessions progressively increased over successive sessions. Physiological data were recorded before, during, and after each session. Safety was assessed through heart rate, peripheral oxygen saturation, and respiratory rate. Heart rate variability analysis, an indirect measure of autonomic activity sensitive to cognitive demands, was used to assess the efficacy of the exercises in stimulating attention and working memory. Patients successfully completed the sessions on most days. No sessions were stopped early for safety concerns, and no adverse events occurred. Heart rate variability analysis showed that the exercises stimulated attention and working memory. Critically ill patients considered the sessions enjoyable and relaxing without being overly fatiguing. The results in this proof-of-concept study suggest that a virtual-reality-based neurocognitive intervention is feasible, safe, and tolerable, stimulating cognitive functions and satisfying critically ill patients. Future studies will evaluate the impact of interventions on neurocognitive outcomes. Trial registration Clinical trials.gov identifier: NCT02078206.

  10. Development of EPA Protocol Information Enquiry Service System Based on Embedded ARM Linux

    NASA Astrophysics Data System (ADS)

    Peng, Daogang; Zhang, Hao; Weng, Jiannian; Li, Hui; Xia, Fei

    Industrial Ethernet is a new technology for industrial network communications developed in recent years. In the field of industrial automation in China, EPA is the first standard accepted and published by ISO, and has been included in the fourth edition IEC61158 Fieldbus of NO.14 type. According to EPA standard, Field devices such as industrial field controller, actuator and other instruments are all able to realize communication based on the Ethernet standard. The Atmel AT91RM9200 embedded development board and open source embedded Linux are used to develop an information inquiry service system of EPA protocol based on embedded ARM Linux in this paper. The system is capable of designing an EPA Server program for EPA data acquisition procedures, the EPA information inquiry service is available for programs in local or remote host through Socket interface. The EPA client can access data and information of other EPA equipments on the EPA network when it establishes connection with the monitoring port of the server.

  11. An Improved Method to Control the Critical Parameters of a Multivariable Control System

    NASA Astrophysics Data System (ADS)

    Subha Hency Jims, P.; Dharmalingam, S.; Wessley, G. Jims John

    2017-10-01

    The role of control systems is to cope with the process deficiencies and the undesirable effect of the external disturbances. Most of the multivariable processes are highly iterative and complex in nature. Aircraft systems, Modern Power Plants, Refineries, Robotic systems are few such complex systems that involve numerous critical parameters that need to be monitored and controlled. Control of these important parameters is not only tedious and cumbersome but also is crucial from environmental, safety and quality perspective. In this paper, one such multivariable system, namely, a utility boiler has been considered. A modern power plant is a complex arrangement of pipework and machineries with numerous interacting control loops and support systems. In this paper, the calculation of controller parameters based on classical tuning concepts has been presented. The controller parameters thus obtained and employed has controlled the critical parameters of a boiler during fuel switching disturbances. The proposed method can be applied to control the critical parameters like elevator, aileron, rudder, elevator trim rudder and aileron trim, flap control systems of aircraft systems.

  12. Goal Selection for Embedded Systems with Oversubscribed Resources

    NASA Technical Reports Server (NTRS)

    Rabideau, Gregg; Chien, Steve; McLaren, David

    2010-01-01

    We describe an efficient, online goal selection algorithm and its use for selecting goals at runtime. Our focus is on the re-planning that must be performed in a timely manner on the embedded system where computational resources are limited. In particular, our algorithm generates near optimal solutions to problems with fully specified goal requests that oversubscribe available resources but have no temporal flexibility. By using a fast, incremental algorithm, goal selection can be postponed in a "just-in-time" fashion allowing requests to be changed or added at the last minute. This enables shorter response cycles and greater autonomy for the system under control.

  13. Automated Critical Test Result Notification System: Architecture, Design, and Assessment of Provider Satisfaction

    PubMed Central

    Lacson, Ronilda; O'Connor, Stacy D.; Andriole, Katherine P.; Prevedello, Luciano M.; Khorasani, Ramin

    2015-01-01

    OBJECTIVE Communicating critical results of diagnostic imaging procedures is a national patient safety goal. The purposes of this study were to describe the system architecture and design of Alert Notification of Critical Results (ANCR), an automated system designed to facilitate communication of critical imaging results between care providers; to report providers’ satisfaction with ANCR; and to compare radiologists’ and ordering providers’ attitudes toward ANCR. MATERIALS AND METHODS The design decisions made for each step in the alert communication process, which includes user authentication, alert creation, alert communication, alert acknowledgment and management, alert reminder and escalation, and alert documentation, are described. To assess attitudes toward ANCR, internally developed and validated surveys were administered to all radiologists (n = 320) and ordering providers (n = 4323) who sent or received alerts 3 years after ANCR implementation. RESULTS The survey response rates were 50.4% for radiologists and 36.1% for ordering providers. Ordering providers were generally dissatisfied with the training received for use of ANCR and with access to technical support. Radiologists were more satisfied with documenting critical result communication (61.1% vs 43.2%; p = 0.0001) and tracking critical results (51.6% vs 35.1%; p = 0.0003) than were ordering providers. Both groups agreed use of ANCR reduces medical errors and improves the quality of patient care. CONCLUSION Use of ANCR enables automated communication of critical test results. The survey results confirm overall provider satisfaction with ANCR but highlight the need for improved training strategies for large numbers of geographically dispersed ordering providers. Future enhancements beyond acknowledging receipt of critical results are needed to help ensure timely and appropriate follow-up of critical results to improve quality and patient safety. PMID:25341163

  14. Understanding safety-critical interactions with a home medical device through Distributed Cognition.

    PubMed

    Rajkomar, Atish; Mayer, Astrid; Blandford, Ann

    2015-08-01

    As healthcare shifts from the hospital to the home, it is becoming increasingly important to understand how patients interact with home medical devices, to inform the safe and patient-friendly design of these devices. Distributed Cognition (DCog) has been a useful theoretical framework for understanding situated interactions in the healthcare domain. However, it has not previously been applied to study interactions with home medical devices. In this study, DCog was applied to understand renal patients' interactions with Home Hemodialysis Technology (HHT), as an example of a home medical device. Data was gathered through ethnographic observations and interviews with 19 renal patients and interviews with seven professionals. Data was analyzed through the principles summarized in the Distributed Cognition for Teamwork methodology. In this paper we focus on the analysis of system activities, information flows, social structures, physical layouts, and artefacts. By explicitly considering different ways in which cognitive processes are distributed, the DCog approach helped to understand patients' interaction strategies, and pointed to design opportunities that could improve patients' experiences of using HHT. The findings highlight the need to design HHT taking into consideration likely scenarios of use in the home and of the broader home context. A setting such as home hemodialysis has the characteristics of a complex and safety-critical socio-technical system, and a DCog approach effectively helps to understand how safety is achieved or compromised in such a system. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Manned space flight nuclear system safety. Volume 6: Space base nuclear system safety plan

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A qualitative identification of the steps required to assure the incorporation of radiological system safety principles and objectives into all phases of a manned space base program are presented. Specific areas of emphasis include: (1) radiological program management, (2) nuclear system safety plan implementation, (3) impact on program, and (4) summary of the key operation and design guidelines and requirements. The plan clearly indicates the necessity of considering and implementing radiological system safety recommendations as early as possible in the development cycle to assure maximum safety and minimize the impact on design and mission plans.

  16. Y-12 PLANT NUCLEAR SAFETY HANDBOOK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wachter, J.W. ed.; Bailey, M.L.; Cagle, T.J.

    1963-03-27

    Information needed to solve nuclear safety problems is condensed into a reference book for use by persons familiar with the field. Included are a glossary of terms; useful tables; nuclear constants; criticality calculations; basic nuclear safety limits; solution geometries and critical values; metal critical values; criticality values for intermediate, heterogeneous, and interacting systems; miscellaneous and related information; and report number, author, and subject indexes. (C.H.)

  17. Software-safety and software quality assurance in real-time applications Part 2: Real-time structures and languages

    NASA Astrophysics Data System (ADS)

    Schoitsch, Erwin

    1988-07-01

    Our society is depending more and more on the reliability of embedded (real-time) computer systems even in every-day life. Considering the complexity of the real world, this might become a severe threat. Real-time programming is a discipline important not only in process control and data acquisition systems, but also in fields like communication, office automation, interactive databases, interactive graphics and operating systems development. General concepts of concurrent programming and constructs for process-synchronization are discussed in detail. Tasking and synchronization concepts, methods of process communication, interrupt- and timeout handling in systems based on semaphores, signals, conditional critical regions or on real-time languages like Concurrent PASCAL, MODULA, CHILL and ADA are explained and compared with each other and with respect to their potential to quality and safety.

  18. A Spiral Step-by-Step Educational Method for Cultivating Competent Embedded System Engineers to Meet Industry Demands

    ERIC Educational Resources Information Center

    Jing,Lei; Cheng, Zixue; Wang, Junbo; Zhou, Yinghui

    2011-01-01

    Embedded system technologies are undergoing dramatic change. Competent embedded system engineers are becoming a scarce resource in the industry. Given this, universities should revise their specialist education to meet industry demands. In this paper, a spirally tight-coupled step-by-step educational method, based on an analysis of industry…

  19. Nonlinear soil parameter effects on dynamic embedment of offshore pipeline on soft clay

    NASA Astrophysics Data System (ADS)

    Yu, Su Young; Choi, Han Suk; Lee, Seung Keon; Park, Kyu-Sik; Kim, Do Kyun

    2015-06-01

    In this paper, the effects of nonlinear soft clay on dynamic embedment of offshore pipeline were investigated. Seabed embedment by pipe-soil interactions has impacts on the structural boundary conditions for various subsea structures such as pipeline, riser, pile, and many other systems. A number of studies have been performed to estimate real soil behavior, but their estimation of seabed embedment has not been fully identified and there are still many uncertainties. In this regards, comparison of embedment between field survey and existing empirical models has been performed to identify uncertainties and investigate the effect of nonlinear soil parameter on dynamic embedment. From the comparison, it is found that the dynamic embedment with installation effects based on nonlinear soil model have an influence on seabed embedment. Therefore, the pipe embedment under dynamic condition by nonlinear parameters of soil models was investigated by Dynamic Embedment Factor (DEF) concept, which is defined as the ratio of the dynamic and static embedment of pipeline, in order to overcome the gap between field embedment and currently used empirical and numerical formula. Although DEF through various researches is suggested, its range is too wide and it does not consider dynamic laying effect. It is difficult to find critical parameters that are affecting to the embedment result. Therefore, the study on dynamic embedment factor by soft clay parameters of nonlinear soil model was conducted and the sensitivity analyses about parameters of nonlinear soil model were performed as well. The tendency on dynamic embedment factor was found by conducting numerical analyses using OrcaFlex software. It is found that DEF was influenced by shear strength gradient than other factors. The obtained results will be useful to understand the pipe embedment on soft clay seabed for applying offshore pipeline designs such as on-bottom stability and free span analyses.

  20. Implementation of safety management systems in Hong Kong construction industry - A safety practitioner's perspective.

    PubMed

    Yiu, Nicole S N; Sze, N N; Chan, Daniel W M

    2018-02-01

    In the 1980s, the safety management system (SMS) was introduced in the construction industry to mitigate against workplaces hazards, reduce the risk of injuries, and minimize property damage. Also, the Factories and Industrial Undertakings (Safety Management) Regulation was introduced on 24 November 1999 in Hong Kong to empower the mandatory implementation of a SMS in certain industries including building construction. Therefore, it is essential to evaluate the effectiveness of the SMS in improving construction safety and identify the factors that influence its implementation in Hong Kong. A review of the current state-of-the-practice helped to establish the critical success factors (CSFs), benefits, and difficulties of implementing the SMS in the construction industry, while structured interviews were used to establish the key factors of the SMS implementation. Results of the state-of-the-practice review and structured interviews indicated that visible senior commitment, in terms of manpower and cost allocation, and competency of safety manager as key drivers for the SMS implementation. More so, reduced accident rates and accident costs, improved organization framework, and increased safety audit ratings were identified as core benefits of implementing the SMS. Meanwhile, factors such as insufficient resources, tight working schedule, and high labor turnover rate were the key challenges to the effective SMS implementation in Hong Kong. The findings of the study were consistent and indicative of the future development of safety management practice and the sustainable safety improvement of Hong Kong construction industry in the long run. Copyright © 2018 National Safety Council and Elsevier Ltd. All rights reserved.

  1. Low Cost Embedded Stereo System for Underwater Surveys

    NASA Astrophysics Data System (ADS)

    Nawaf, M. M.; Boï, J.-M.; Merad, D.; Royer, J.-P.; Drap, P.

    2017-11-01

    This paper provides details of both hardware and software conception and realization of a hand-held stereo embedded system for underwater imaging. The designed system can run most image processing techniques smoothly in real-time. The developed functions provide direct visual feedback on the quality of the taken images which helps taking appropriate actions accordingly in terms of movement speed and lighting conditions. The proposed functionalities can be easily customized or upgraded whereas new functions can be easily added thanks to the available supported libraries. Furthermore, by connecting the designed system to a more powerful computer, a real-time visual odometry can run on the captured images to have live navigation and site coverage map. We use a visual odometry method adapted to low computational resources systems and long autonomy. The system is tested in a real context and showed its robustness and promising further perspectives.

  2. CSER 98-003: Criticality safety evaluation report for PFP glovebox HC-21A with button can opening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ERICKSON, D.G.

    1999-02-23

    Glovebox HC-21A is an enclosure where cans containing plutonium metal buttons or other plutonium bearing materials are prepared for thermal stabilization in the muffle furnaces. The Inert Atmosphere Confinement (IAC), a new feature added to Glovebox HC-21A, allows the opening of containers suspected of containing hydrided plutonium metal. The argon atmosphere in the IAC prevents an adverse reaction between oxygen and the hydride. The hydride is then stabilized in a controlled manner to prevent glovebox over pressurization. After removal from the containers, the plutonium metal buttons or plutonium bearing materials will be placed into muffle furnace boats and then bemore » sent to one of the muffle furnace gloveboxes for stabilization. The materials allowed to be brought into GloveboxHC-21 A are limited to those with a hydrogen to fissile atom ratio (H/X) {le} 20. Glovebox HC-21A is classified as a DRY glovebox, meaning it has no internal liquid lines, and no free liquids or solutions are allowed to be introduced. The double contingency principle states that designs shall incorporate sufficient factors of safety to require at least two unlikely, independent, and concurrent changes in process conditions before a criticality accident is possible. This criticality safety evaluation report (CSER) shows that the operations to be performed in this glovebox are safe from a criticality standpoint. No single identified event that causes criticality controls to be lost exceeded the criticality safety limit of k{sub eff} = 0.95. Therefore, this CSER meets the requirements for a criticality analysis contained in the Hanford Site Nuclear Criticality Safety Manual, HNF-PRO-334, and meets the double contingency principle.« less

  3. Safety Hazards During Intrahospital Transport: A Prospective Observational Study.

    PubMed

    Bergman, Lina M; Pettersson, Monica E; Chaboyer, Wendy P; Carlström, Eric D; Ringdal, Mona L

    2017-10-01

    To identify, classify, and describe safety hazards during the process of intrahospital transport of critically ill patients. A prospective observational study. Data from participant observations of the intrahospital transport process were collected over a period of 3 months. The study was undertaken at two ICUs in one university hospital. Critically ill patients transported within the hospital by critical care nurses, unlicensed nurses, and physicians. None. Content analysis was performed using deductive and inductive approaches. We detected a total of 365 safety hazards (median, 7; interquartile range, 4-10) during 51 intrahospital transports of critically ill patients, 80% of whom were mechanically ventilated. The majority of detected safety hazards were assessed as increasing the risk of harm, compromising patient safety (n = 204). Using the System Engineering Initiative for Patient Safety, we identified safety hazards related to the work system, as follows: team (n = 61), tasks (n = 83), tools and technologies (n = 124), environment (n = 48), and organization (n = 49). Inductive analysis provided an in-depth description of those safety hazards, contributing factors, and process-related outcomes. Findings suggest that intrahospital transport is a hazardous process for critically ill patients. We have identified several factors that may contribute to transport-related adverse events, which will provide the opportunity for the redesign of systems to enhance patient safety.

  4. An inference engine for embedded diagnostic systems

    NASA Technical Reports Server (NTRS)

    Fox, Barry R.; Brewster, Larry T.

    1987-01-01

    The implementation of an inference engine for embedded diagnostic systems is described. The system consists of two distinct parts. The first is an off-line compiler which accepts a propositional logical statement of the relationship between facts and conclusions and produces data structures required by the on-line inference engine. The second part consists of the inference engine and interface routines which accept assertions of fact and return the conclusions which necessarily follow. Given a set of assertions, it will generate exactly the conclusions which logically follow. At the same time, it will detect any inconsistencies which may propagate from an inconsistent set of assertions or a poorly formulated set of rules. The memory requirements are fixed and the worst case execution times are bounded at compile time. The data structures and inference algorithms are very simple and well understood. The data structures and algorithms are described in detail. The system has been implemented on Lisp, Pascal, and Modula-2.

  5. "Going solid": a model of system dynamics and consequences for patient safety

    PubMed Central

    Cook, R; Rasmussen, J

    2005-01-01

    

 Rather than being a static property of hospitals and other healthcare facilities, safety is dynamic and often on short time scales. In the past most healthcare delivery systems were loosely coupled—that is, activities and conditions in one part of the system had only limited effect on those elsewhere. Loose coupling allowed the system to buffer many conditions such as short term surges in demand. Modern management techniques and information systems have allowed facilities to reduce inefficiencies in operation. One side effect is the loss of buffers that previously accommodated demand surges. As a result, situations occur in which activities in one area of the hospital become critically dependent on seemingly insignificant events in seemingly distant areas. This tight coupling condition is called "going solid". Rasmussen's dynamic model of risk and safety can be used to formulate a model of patient safety dynamics that includes "going solid" and its consequences. Because the model addresses the dynamic aspects of safety, it is particularly suited to understanding current conditions in modern healthcare delivery and the way these conditions may lead to accidents. PMID:15805459

  6. Implementation of a patient safety program at a tertiary health system: A longitudinal analysis of interventions and serious safety events.

    PubMed

    Cropper, Douglas P; Harb, Nidal H; Said, Patricia A; Lemke, Jon H; Shammas, Nicolas W

    2018-04-01

    We hypothesize that implementation of a safety program based on high reliability organization principles will reduce serious safety events (SSE). The safety program focused on 7 essential elements: (a) safety rounding, (b) safety oversight teams, (c) safety huddles, (d) safety coaches, (e) good catches/safety heroes, (f) safety education, and (g) red rule. An educational curriculum was implemented focusing on changing high-risk behaviors and implementing critical safety policies. All unusual occurrences were captured in the Midas system and investigated by risk specialists, the safety officer, and the chief medical officer. A multidepartmental committee evaluated these events, and a root cause analysis (RCA) was performed. Events were tabulated and serious safety event (SSE) recorded and plotted over time. Safety success stories (SSSs) were also evaluated over time. A steady drop in SSEs was seen over 9 years. Also a rise in SSSs was evident, reflecting on staff engagement in the program. The parallel change in SSEs, SSSs, and the implementation of various safety interventions highly suggest that the program was successful in achieving its goals. A safety program based on high-reliability organization principles and made a core value of the institution can have a significant positive impact on reducing SSEs. © 2018 American Society for Healthcare Risk Management of the American Hospital Association.

  7. NASA Safety Manual. Volume 3: System Safety

    NASA Technical Reports Server (NTRS)

    1970-01-01

    This Volume 3 of the NASA Safety Manual sets forth the basic elements and techniques for managing a system safety program and the technical methods recommended for use in developing a risk evaluation program that is oriented to the identification of hazards in aerospace hardware systems and the development of residual risk management information for the program manager that is based on the hazards identified. The methods and techniques described in this volume are in consonance with the requirements set forth in NHB 1700.1 (VI), Chapter 3. This volume and future volumes of the NASA Safety Manual shall not be rewritten, reprinted, or reproduced in any manner. Installation implementing procedures, if necessary, shall be inserted as page supplements in accordance with the provisions of Appendix A. No portion of this volume or future volumes of the NASA Safety Manual shall be invoked in contracts.

  8. Criticality safety strategy for the Fuel Cycle Facility electrorefiner at Argonne National Laboratory, West

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mariani, R.D.; Benedict, R.W.; Lell, R.M.

    1993-09-01

    The Integral Fast Reactor being developed by Argonne National Laboratory (ANL) combines the advantages of metal-fueled, liquid-metal-cooled reactors and a closed fuel cycle. Presently, the Fuel Cycle Facility (FCF) at ANL-West in Idaho Falls, Idaho is being modified to recycle spent metallic fuel from Experimental Breeder Reactor II as part of a demonstration project sponsored by the Department of Energy. A key component of the FCF is the electrorefiner (ER) in which the actinides are separated from the fission products. In the electrorefining process, the metal fuel is anodically dissolved into a high-temperature molten salt and refined uranium or uranium/plutoniummore » products are deposited at cathodes. In this report, the criticality safety strategy for the FCF ER is summarized. FCF ER operations and processes formed the basis for evaluating criticality safety and control during actinide metal fuel refining. In order to show criticality safety for the FCF ER, the reference operating conditions for the ER had to be defined. Normal operating envelopes (NOES) were then defined to bracket the important operating conditions. To keep the operating conditions within their NOES, process controls were identified that can be used to regulate the actinide forms and content within the ER. A series of operational checks were developed for each operation that wig verify the extent or success of an operation. The criticality analysis considered the ER operating conditions at their NOE values as the point of departure for credible and incredible failure modes. As a result of the analysis, FCF ER operations were found to be safe with respect to criticality.« less

  9. Preliminary Design of Critical Function Monitoring System of PGSFR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2015-07-01

    A PGSFR (Prototype Gen-IV Sodium-cooled Fast Reactor) is under development at Korea Atomic Energy Research Institute. A critical function monitoring system of the PGSFR is preliminarily studied. The functions of CFMS are to display critical plant variables related to the safety of the plant during normal and accident conditions and guide the operators corrective actions to keep the plant in a safe condition and mitigate the consequences of accidents. The minimal critical functions of the PGSFR are composed of reactivity control, reactor core cooling, reactor coolant system integrity, primary heat transfer system(PHTS) heat removal, sodium water reaction mitigation, radiation controlmore » and containment conditions. The variables and alarm legs of each critical function of the PGSFR are as follows; - Reactivity control: The variables of reactivity control function are power range neutron flux instrumentation, intermediate range neutron flux instrumentation, source range neutron flux instrumentation, and control rod bottom contacts. The alarm leg to display the reactivity controls consists of status of control drop malfunction, high post trip power and thermal reactivity addition. - Reactor core cooling: The variables are PHTS sodium level, hot pool temperature of PHTS, subassembly exit temperature, cold pool temperature of the PHTS, PHTS pump current, and PHTS pump breaker status. The alarm leg consists of high core delta temperature, low sodium level of the PHTS, high subassembly exit temperature, and low PHTS pump load. - Reactor coolant system integrity: The variables are PHTS sodium level, cover gas pressure, and safeguard vessel sodium level. The alarm leg is composed of low sodium level of PHTS, high cover gas pressure and high sodium level of the safety guard vessel. - PHTS heat removal: The variables are PHTS sodium level, hot pool temperature of PHTS, core exit temperature, cold pool temperature of the PHTS, flow rate of passive residual heat removal

  10. Comprehensive Lifecycle for Assuring System Safety

    NASA Technical Reports Server (NTRS)

    Knight, John C.; Rowanhill, Jonathan C.

    2017-01-01

    CLASS is a novel approach to the enhancement of system safety in which the system safety case becomes the focus of safety engineering throughout the system lifecycle. CLASS also expands the role of the safety case across all phases of the system's lifetime, from concept formation to decommissioning. As CLASS has been developed, the concept has been generalized to a more comprehensive notion of assurance becoming the driving goal, where safety is an important special case. This report summarizes major aspects of CLASS and contains a bibliography of papers that provide additional details.

  11. Verification of MCNP6.2 for Nuclear Criticality Safety Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Forrest B.; Rising, Michael Evan; Alwin, Jennifer Louise

    2017-05-10

    Several suites of verification/validation benchmark problems were run in early 2017 to verify that the new production release of MCNP6.2 performs correctly for nuclear criticality safety applications (NCS). MCNP6.2 results for several NCS validation suites were compared to the results from MCNP6.1 [1] and MCNP6.1.1 [2]. MCNP6.1 is the production version of MCNP® released in 2013, and MCNP6.1.1 is the update released in 2014. MCNP6.2 includes all of the standard features for NCS calculations that have been available for the past 15 years, along with new features for sensitivity-uncertainty based methods for NCS validation [3]. Results from the benchmark suitesmore » were compared with results from previous verification testing [4-8]. Criticality safety analysts should consider testing MCNP6.2 on their particular problems and validation suites. No further development of MCNP5 is planned. MCNP6.1 is now 4 years old, and MCNP6.1.1 is now 3 years old. In general, released versions of MCNP are supported only for about 5 years, due to resource limitations. All future MCNP improvements, bug fixes, user support, and new capabilities are targeted only to MCNP6.2 and beyond.« less

  12. A Silent Safety Program

    NASA Technical Reports Server (NTRS)

    Goodin, James Ronald

    2006-01-01

    NASA's Columbia Accident Investigation Board (CAIB) referred 8 times to the NASA "Silent Safety Program." This term, "Silent Safety Program" was not an original observation but first appeared in the Rogers Commission's Investigation of the Challenger Mishap. The CAIB on page 183 of its report in the paragraph titled 'Encouraging Minority Opinion,' stated "The Naval Reactor Program encourages minority opinions and "bad news." Leaders continually emphasize that when no minority opinions are present, the responsibility for a thorough and critical examination falls to management. . . Board interviews revealed that it is difficult for minority and dissenting opinions to percolate up through the agency's hierarchy. . ." The first question and perhaps the only question is - what is a silent safety program? Well, a silent safety program may be the same as the dog that didn't bark in Sherlock Holmes' "Adventure of the Silver Blaze" because system safety should behave as a devil's advocate for the program barking on every occasion to insure a critical review inclusion. This paper evaluates the NASA safety program and provides suggestions to prevent the recurrence of the silent safety program alluded to in the Challenger Mishap Investigation. Specifically targeted in the CAM report, "The checks and balances the safety system was meant to provide were not working." A silent system safety program is not unique to NASA but could emerge in any and every organization. Principles developed by Irving Janis in his book, Groupthink, listed criteria used to evaluate an organization's cultural attributes that allows a silent safety program to evolve. If evidence validates Jams's criteria, then Jams's recommendations for preventing groupthink can also be used to improve a critical evaluation and thus prevent the development of a silent safety program.

  13. Learning Embedded Software Design in an Open 3A Multiuser Laboratory

    ERIC Educational Resources Information Center

    Shih, Chien-Chou; Hwang, Lain-Jinn

    2011-01-01

    The need for professional programmers in embedded applications has become critical for industry growth. This need has increased the popularity of embedded software design courses, which are resource-intensive and space-limited in traditional real lab-based instruction. To overcome geographic and time barriers in enhancing practical skills that…

  14. Qualification of the flight-critical AFTI/F-16 digital flight control system. [Advanced Fighter Technology Integration

    NASA Technical Reports Server (NTRS)

    Mackall, D. A.; Ishmael, S. D.; Regenie, V. A.

    1983-01-01

    Qualification considerations for assuring the safety of a life-critical digital flight control system include four major areas: systems interactions, verification, validation, and configuration control. The AFTI/F-16 design, development, and qualification illustrate these considerations. In this paper, qualification concepts, procedures, and methodologies are discussed and illustrated through specific examples.

  15. Java simulations of embedded control systems.

    PubMed

    Farias, Gonzalo; Cervin, Anton; Arzén, Karl-Erik; Dormido, Sebastián; Esquembre, Francisco

    2010-01-01

    This paper introduces a new Open Source Java library suited for the simulation of embedded control systems. The library is based on the ideas and architecture of TrueTime, a toolbox of Matlab devoted to this topic, and allows Java programmers to simulate the performance of control processes which run in a real time environment. Such simulations can improve considerably the learning and design of multitasking real-time systems. The choice of Java increases considerably the usability of our library, because many educators program already in this language. But also because the library can be easily used by Easy Java Simulations (EJS), a popular modeling and authoring tool that is increasingly used in the field of Control Education. EJS allows instructors, students, and researchers with less programming capabilities to create advanced interactive simulations in Java. The paper describes the ideas, implementation, and sample use of the new library both for pure Java programmers and for EJS users. The JTT library and some examples are online available on http://lab.dia.uned.es/jtt.

  16. Java Simulations of Embedded Control Systems

    PubMed Central

    Farias, Gonzalo; Cervin, Anton; Årzén, Karl-Erik; Dormido, Sebastián; Esquembre, Francisco

    2010-01-01

    This paper introduces a new Open Source Java library suited for the simulation of embedded control systems. The library is based on the ideas and architecture of TrueTime, a toolbox of Matlab devoted to this topic, and allows Java programmers to simulate the performance of control processes which run in a real time environment. Such simulations can improve considerably the learning and design of multitasking real-time systems. The choice of Java increases considerably the usability of our library, because many educators program already in this language. But also because the library can be easily used by Easy Java Simulations (EJS), a popular modeling and authoring tool that is increasingly used in the field of Control Education. EJS allows instructors, students, and researchers with less programming capabilities to create advanced interactive simulations in Java. The paper describes the ideas, implementation, and sample use of the new library both for pure Java programmers and for EJS users. The JTT library and some examples are online available on http://lab.dia.uned.es/jtt. PMID:22163674

  17. Moving Object Detection in Heterogeneous Conditions in Embedded Systems.

    PubMed

    Garbo, Alessandro; Quer, Stefano

    2017-07-01

    This paper presents a system for moving object exposure, focusing on pedestrian detection, in external, unfriendly, and heterogeneous environments. The system manipulates and accurately merges information coming from subsequent video frames, making small computational efforts in each single frame. Its main characterizing feature is to combine several well-known movement detection and tracking techniques, and to orchestrate them in a smart way to obtain good results in diversified scenarios. It uses dynamically adjusted thresholds to characterize different regions of interest, and it also adopts techniques to efficiently track movements, and detect and correct false positives. Accuracy and reliability mainly depend on the overall receipt, i.e., on how the software system is designed and implemented, on how the different algorithmic phases communicate information and collaborate with each other, and on how concurrency is organized. The application is specifically designed to work with inexpensive hardware devices, such as off-the-shelf video cameras and small embedded computational units, eventually forming an intelligent urban grid. As a matter of fact, the major contribution of the paper is the presentation of a tool for real-time applications in embedded devices with finite computational (time and memory) resources. We run experimental results on several video sequences (both home-made and publicly available), showing the robustness and accuracy of the overall detection strategy. Comparisons with state-of-the-art strategies show that our application has similar tracking accuracy but much higher frame-per-second rates.

  18. Moving Object Detection in Heterogeneous Conditions in Embedded Systems

    PubMed Central

    Garbo, Alessandro

    2017-01-01

    This paper presents a system for moving object exposure, focusing on pedestrian detection, in external, unfriendly, and heterogeneous environments. The system manipulates and accurately merges information coming from subsequent video frames, making small computational efforts in each single frame. Its main characterizing feature is to combine several well-known movement detection and tracking techniques, and to orchestrate them in a smart way to obtain good results in diversified scenarios. It uses dynamically adjusted thresholds to characterize different regions of interest, and it also adopts techniques to efficiently track movements, and detect and correct false positives. Accuracy and reliability mainly depend on the overall receipt, i.e., on how the software system is designed and implemented, on how the different algorithmic phases communicate information and collaborate with each other, and on how concurrency is organized. The application is specifically designed to work with inexpensive hardware devices, such as off-the-shelf video cameras and small embedded computational units, eventually forming an intelligent urban grid. As a matter of fact, the major contribution of the paper is the presentation of a tool for real-time applications in embedded devices with finite computational (time and memory) resources. We run experimental results on several video sequences (both home-made and publicly available), showing the robustness and accuracy of the overall detection strategy. Comparisons with state-of-the-art strategies show that our application has similar tracking accuracy but much higher frame-per-second rates. PMID:28671582

  19. Embedded systems engineering for products and services design.

    PubMed

    Ahram, Tareq Z; Karwowski, Waldemar; Soares, Marcelo M

    2012-01-01

    Systems engineering (SE) professionals strive to develop new techniques to enhance the value of contributions to multidisciplinary smart product design teams. Products and services designers challenge themselves to search beyond the traditional design concept of addressing the physical, social, and cognitive factors. This paper covers the application of embedded user-centered systems engineering design practices into work processes based on the ISO 13407 framework [20] to support smart systems and services design and development. As practitioners collaborate to investigate alternative smart product designs, they concentrate on creating valuable products which will enhance positive interaction. This paper capitalizes on the need to follow a user-centered SE approach to smart products design [4, 22]. Products and systems intelligence should embrace a positive approach to user-centered design while improving our understanding of usable value-adding, experience and extending our knowledge of what inspires others to design enjoyable services and products.

  20. Critical features of an auditable management system for an ISO 9000-compatible occupational health and safety standard.

    PubMed

    Levine, S; Dyjack, D T

    1997-04-01

    An International Organization for Standardization (ISO) 9001: 1994-harmonized occupational health and safety (OHS) management system has been written at the University of Michigan, and reviewed, revised, and accepted under the direction of the American Industrial Hygiene Association (AIHA) Occupational Health and Safety Management Systems (OHSMS) Task Force and the Board of Directors. This system is easily adaptable to the ISO 14001 format and to both OHS and environmental management system applications. As was the case with ISO 9001: 1994, this system is expected to be compatible with current production quality and OHS quality systems and standards, have forward compatibility for new applications, and forward flexibility, with new features added as needed. Since ISO 9001: 1987 and 9001: 1994 have been applied worldwide, the incorporation of harmonized OHS and environmental management system components should be acceptable to business units already performing first-party (self-) auditing, and second-party (contract qualification) auditing. This article explains the basis of this OHS management system, its relationship to ISO 9001 and 14001 standards, the philosophy and methodology of an ISO-harmonized system audit, the relationship of these systems to traditional OHS audit systems, and the authors' vision of the future for application of such systems.

  1. Nuclear criticality safety evaluation of SRS 9971 shipping package. [SRS (Savannah River Site)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vescovi, P.J.

    1993-02-01

    This evaluation is requested to revise the criticality evaluation used to generate Chapter 6 (Criticality Evaluation) of the Safety Analysis Report for Packaging (SARP) for shipment Of UO[sub 3] product from the Uranium Solidification Facility (USF) in the SRS 9971 shipping package. The pertinent document requesting this evaluation is included as Attachment I. The results of the evaluation are given in Attachment II which is written as Chapter 6 of a NRC format SARP.

  2. Safety Verification of the Small Aircraft Transportation System Concept of Operations

    NASA Technical Reports Server (NTRS)

    Carreno, Victor; Munoz, Cesar

    2005-01-01

    A critical factor in the adoption of any new aeronautical technology or concept of operation is safety. Traditionally, safety is accomplished through a rigorous process that involves human factors, low and high fidelity simulations, and flight experiments. As this process is usually performed on final products or functional prototypes, concept modifications resulting from this process are very expensive to implement. This paper describe an approach to system safety that can take place at early stages of a concept design. It is based on a set of mathematical techniques and tools known as formal methods. In contrast to testing and simulation, formal methods provide the capability of exhaustive state exploration analysis. We present the safety analysis and verification performed for the Small Aircraft Transportation System (SATS) Concept of Operations (ConOps). The concept of operations is modeled using discrete and hybrid mathematical models. These models are then analyzed using formal methods. The objective of the analysis is to show, in a mathematical framework, that the concept of operation complies with a set of safety requirements. It is also shown that the ConOps has some desirable characteristic such as liveness and absence of dead-lock. The analysis and verification is performed in the Prototype Verification System (PVS), which is a computer based specification language and a theorem proving assistant.

  3. Nuclear criticality safety assessment of the low level radioactive waste disposal facility trenches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahook, S.D.

    1994-04-01

    Results of the analyses performed to evaluate the possibility of nuclear criticality in the Low Level Radioactive Waste Disposal Facility (LLRWDF) trenches are documented in this report. The studies presented in this document are limited to assessment of the possibility of criticality due to existing conditions in the LLRWDF. This document does not propose nor set limits for enriched uranium (EU) burial in the LLRWDF and is not a nuclear criticality safety evaluation nor analysis. The calculations presented in the report are Level 2 calculations as defined by the E7 Procedure 2.31, Engineering Calculations.

  4. Enabling MPEG-2 video playback in embedded systems through improved data cache efficiency

    NASA Astrophysics Data System (ADS)

    Soderquist, Peter; Leeser, Miriam E.

    1999-01-01

    Digital video decoding, enabled by the MPEG-2 Video standard, is an important future application for embedded systems, particularly PDAs and other information appliances. Many such system require portability and wireless communication capabilities, and thus face severe limitations in size and power consumption. This places a premium on integration and efficiency, and favors software solutions for video functionality over specialized hardware. The processors in most embedded system currently lack the computational power needed to perform video decoding, but a related and equally important problem is the required data bandwidth, and the need to cost-effectively insure adequate data supply. MPEG data sets are very large, and generate significant amounts of excess memory traffic for standard data caches, up to 100 times the amount required for decoding. Meanwhile, cost and power limitations restrict cache sizes in embedded systems. Some systems, including many media processors, eliminate caches in favor of memories under direct, painstaking software control in the manner of digital signal processors. Yet MPEG data has locality which caches can exploit if properly optimized, providing fast, flexible, and automatic data supply. We propose a set of enhancements which target the specific needs of the heterogeneous types within the MPEG decoder working set. These optimizations significantly improve the efficiency of small caches, reducing cache-memory traffic by almost 70 percent, and can make an enhanced 4 KB cache perform better than a standard 1 MB cache. This performance improvement can enable high-resolution, full frame rate video playback in cheaper, smaller system than woudl otherwise be possible.

  5. Embedded calibration system for the DIII-D Langmuir probe analog fiber optic links

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watkins, J. G.; Rajpal, R.; Mandaliya, H.

    2012-10-15

    This paper describes a generally applicable technique for simultaneously measuring offset and gain of 64 analog fiber optic data links used for the DIII-D fixed Langmuir probes by embedding a reference voltage waveform in the optical transmitted signal before every tokamak shot. The calibrated data channels allow calibration of the power supply control fiber optic links as well. The array of fiber optic links and the embedded calibration system described here makes possible the use of superior modern data acquisition electronics in the control room.

  6. Generalized implementation of software safety policies

    NASA Technical Reports Server (NTRS)

    Knight, John C.; Wika, Kevin G.

    1994-01-01

    As part of a research program in the engineering of software for safety-critical systems, we are performing two case studies. The first case study, which is well underway, is a safety-critical medical application. The second, which is just starting, is a digital control system for a nuclear research reactor. Our goal is to use these case studies to permit us to obtain a better understanding of the issues facing developers of safety-critical systems, and to provide a vehicle for the assessment of research ideas. The case studies are not based on the analysis of existing software development by others. Instead, we are attempting to create software for new and novel systems in a process that ultimately will involve all phases of the software lifecycle. In this abstract, we summarize our results to date in a small part of this project, namely the determination and classification of policies related to software safety that must be enforced to ensure safe operation. We hypothesize that this classification will permit a general approach to the implementation of a policy enforcement mechanism.

  7. Motorcycles that See: Multifocal Stereo Vision Sensor for Advanced Safety Systems in Tilting Vehicles

    PubMed Central

    2018-01-01

    Advanced driver assistance systems, ADAS, have shown the possibility to anticipate crash accidents and effectively assist road users in critical traffic situations. This is not the case for motorcyclists, in fact ADAS for motorcycles are still barely developed. Our aim was to study a camera-based sensor for the application of preventive safety in tilting vehicles. We identified two road conflict situations for which automotive remote sensors installed in a tilting vehicle are likely to fail in the identification of critical obstacles. Accordingly, we set two experiments conducted in real traffic conditions to test our stereo vision sensor. Our promising results support the application of this type of sensors for advanced motorcycle safety applications. PMID:29351267

  8. 77 FR 70409 - System Safety Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-26

    ...-0060, Notice No. 2] 2130-AC31 System Safety Program AGENCY: Federal Railroad Administration (FRA... passenger railroads to develop and implement a system safety program (SSP) to improve the safety of their... Division, U.S. Department of Transportation, Federal Railroad Administration, Office of Railroad Safety...

  9. NASA's Software Safety Standard

    NASA Technical Reports Server (NTRS)

    Ramsay, Christopher M.

    2005-01-01

    NASA (National Aeronautics and Space Administration) relies more and more on software to control, monitor, and verify its safety critical systems, facilities and operations. Since the 1960's there has hardly been a spacecraft (manned or unmanned) launched that did not have a computer on board that provided vital command and control services. Despite this growing dependence on software control and monitoring, there has been no consistent application of software safety practices and methodology to NASA's projects with safety critical software. Led by the NASA Headquarters Office of Safety and Mission Assurance, the NASA Software Safety Standard (STD-18l9.13B) has recently undergone a significant update in an attempt to provide that consistency. This paper will discuss the key features of the new NASA Software Safety Standard. It will start with a brief history of the use and development of software in safety critical applications at NASA. It will then give a brief overview of the NASA Software Working Group and the approach it took to revise the software engineering process across the Agency.

  10. HYGIENE PRACTICES IN URBAN RESTAURANTS AND CHALLENGES TO IMPLEMENTING FOOD SAFETY AND HAZARD ANALYSIS CRITICAL CONTROL POINTS (HACCP) PROGRAMMES IN THIKA TOWN, KENYA.

    PubMed

    Muinde, R K; Kiinyukia, C; Rombo, G O; Muoki, M A

    2012-12-01

    To determine the microbial load in food, examination of safety measures and possibility of implementing an Hazard Analysis Critical Control Points (HACCP) system. The target population for this study consisted of restaurants owners in Thika. Municipality (n = 30). Simple randomsamples of restaurantswere selected on a systematic sampling method of microbial analysis in cooked, non-cooked, raw food and water sanitation in the selected restaurants. Two hundred and ninety eight restaurants within Thika Municipality were selected. Of these, 30 were sampled for microbiological testing. From the study, 221 (74%) of the restaurants were ready to eat establishments where food was prepared early enough to hold and only 77(26%) of the total restaurants, customers made an order of food they wanted. 118(63%) of the restaurant operators/staff had knowledge on quality control on food safety measures, 24 (8%) of the restaurants applied these knowledge while 256 (86%) of the restaurants staff showed that food contains ingredients that were hazard if poorly handled. 238 (80%) of the resultants used weighing and sorting of food materials, 45 (15%) used preservation methods and the rest used dry foods as critical control points on food safety measures. The study showed that there was need for implementation of Hazard Analysis Critical Control Points (HACCP) system to enhance food safety. Knowledge of HACCP was very low with 89 (30%) of the restaurants applying some of quality measures to the food production process systems. There was contamination with Coliforms, Escherichia coli and Staphylococcus aureus microbial though at very low level. The means of Coliforms, Escherichia coli and Staphylococcus aureas microbial in sampled food were 9.7 x 103CFU/gm, 8.2 x 103 CFU/gm and 5.4 x 103 CFU/gm respectively with Coliforms taking the highest mean.

  11. Knowledge of Curriculum Embedded Mathematics: Exploring a Critical Domain of Teaching

    ERIC Educational Resources Information Center

    Remillard, Janine; Kim, Ok-Kyeong

    2017-01-01

    This paper proposes a framework for identifying the mathematical knowledge teachers activate when using curriculum resources. We use the term "knowledge of curriculum embedded mathematics" (KCEM) to refer to the mathematics knowledge activated by teachers when reading and interpreting mathematical tasks, instructional designs, and…

  12. Manned space flight nuclear system safety. Volume 5: Nuclear System safety guidelines. Part 1: Space base nuclear safety

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The design and operations guidelines and requirements developed in the study of space base nuclear system safety are presented. Guidelines and requirements are presented for the space base subsystems, nuclear hardware (reactor, isotope sources, dynamic generator equipment), experiments, interfacing vehicles, ground support systems, range safety and facilities. Cross indices and references are provided which relate guidelines to each other, and to substantiating data in other volumes. The guidelines are intended for the implementation of nuclear safety related design and operational considerations in future space programs.

  13. Critical review of controlled release packaging to improve food safety and quality.

    PubMed

    Chen, Xi; Chen, Mo; Xu, Chenyi; Yam, Kit L

    2018-03-19

    Controlled release packaging (CRP) is an innovative technology that uses the package to release active compounds in a controlled manner to improve safety and quality for a wide range of food products during storage. This paper provides a critical review of the uniqueness, design considerations, and research gaps of CRP, with a focus on the kinetics and mechanism of active compounds releasing from the package. Literature data and practical examples are presented to illustrate how CRP controls what active compounds to release, when and how to release, how much and how fast to release, in order to improve food safety and quality.

  14. A Microbial Assessment Scheme to measure microbial performance of Food Safety Management Systems.

    PubMed

    Jacxsens, L; Kussaga, J; Luning, P A; Van der Spiegel, M; Devlieghere, F; Uyttendaele, M

    2009-08-31

    A Food Safety Management System (FSMS) implemented in a food processing industry is based on Good Hygienic Practices (GHP), Hazard Analysis Critical Control Point (HACCP) principles and should address both food safety control and assurance activities in order to guarantee food safety. One of the most emerging challenges is to assess the performance of a present FSMS. The objective of this work is to explain the development of a Microbial Assessment Scheme (MAS) as a tool for a systematic analysis of microbial counts in order to assess the current microbial performance of an implemented FSMS. It is assumed that low numbers of microorganisms and small variations in microbial counts indicate an effective FSMS. The MAS is a procedure that defines the identification of critical sampling locations, the selection of microbiological parameters, the assessment of sampling frequency, the selection of sampling method and method of analysis, and finally data processing and interpretation. Based on the MAS assessment, microbial safety level profiles can be derived, indicating which microorganisms and to what extent they contribute to food safety for a specific food processing company. The MAS concept is illustrated with a case study in the pork processing industry, where ready-to-eat meat products are produced (cured, cooked ham and cured, dried bacon).

  15. The implementation of a Hazard Analysis and Critical Control Point management system in a peanut butter ice cream plant.

    PubMed

    Hung, Yu-Ting; Liu, Chi-Te; Peng, I-Chen; Hsu, Chin; Yu, Roch-Chui; Cheng, Kuan-Chen

    2015-09-01

    To ensure the safety of the peanut butter ice cream manufacture, a Hazard Analysis and Critical Control Point (HACCP) plan has been designed and applied to the production process. Potential biological, chemical, and physical hazards in each manufacturing procedure were identified. Critical control points for the peanut butter ice cream were then determined as the pasteurization and freezing process. The establishment of a monitoring system, corrective actions, verification procedures, and documentation and record keeping were followed to complete the HACCP program. The results of this study indicate that implementing the HACCP system in food industries can effectively enhance food safety and quality while improving the production management. Copyright © 2015. Published by Elsevier B.V.

  16. Galvanic Liquid Applied Coating System for Protection of Embedded Steel Surfaces from Corrosion

    NASA Technical Reports Server (NTRS)

    Curran, Joseph; MacDowell, Louis; Voska, N. (Technical Monitor)

    2002-01-01

    The corrosion of reinforcing steel in concrete is an insidious problem for the Kennedy Space Center, government agencies, and the general public. Existing corrosion protection systems on the market are costly, complex, and time-consuming to install, require continuous maintenance and monitoring, and require specialized skills for installation. NASA's galvanic liquid-applied coating offers companies the ability to conveniently protect embedded steel rebar surfaces from corrosion. Liquid-applied inorganic galvanic coating contains one ore more of the following metallic particles: magnesium, zinc, or indium and may contain moisture attracting compounds that facilitate the protection process. The coating is applied to the outer surface of reinforced concrete so that electrical current is established between metallic particles and surfaces of embedded steel rebar; and electric (ionic) current is responsible for providing the necessary cathodic protection for embedded rebar surfaces.

  17. A method for identifying EMI critical circuits during development of a large C3

    NASA Astrophysics Data System (ADS)

    Barr, Douglas H.

    The circuit analysis methods and process Boeing Aerospace used on a large, ground-based military command, control, and communications (C3) system are described. This analysis was designed to help identify electromagnetic interference (EMI) critical circuits. The methodology used the MIL-E-6051 equipment criticality categories as the basis for defining critical circuits, relational database technology to help sort through and account for all of the approximately 5000 system signal cables, and Macintosh Plus personal computers to predict critical circuits based on safety margin analysis. The EMI circuit analysis process systematically examined all system circuits to identify which ones were likely to be EMI critical. The process used two separate, sequential safety margin analyses to identify critical circuits (conservative safety margin analysis, and detailed safety margin analysis). These analyses used field-to-wire and wire-to-wire coupling models using both worst-case and detailed circuit parameters (physical and electrical) to predict circuit safety margins. This process identified the predicted critical circuits that could then be verified by test.

  18. Why system safety programs can fail

    NASA Technical Reports Server (NTRS)

    Hammer, W.

    1971-01-01

    Factors that cause system safety programs to fail are discussed from the viewpoint that in general these programs have not achieved their intended aims. The one item which is considered to contribute most to failure of a system safety program is a poor statement of work which consists of ambiguity, lack of clear definition, use of obsolete requirements, and pure typographical errors. It is pointed out that unless safety requirements are stated clearly, and where they are readily apparent as firm requirements, some of them will be overlooked by designers and contractors. The lack of clarity is stated as being a major contributing factor in system safety program failure and usually evidenced in: (1) lack of clear requirements by the procuring activity, (2) lack of clear understanding of system safety by other managers, and (3) lack of clear methodology to be employed by system safety engineers.

  19. The role of microbiological testing in systems for assuring the safety of beef.

    PubMed

    Brown, M H; Gill, C O; Hollingsworth, J; Nickelson, R; Seward, S; Sheridan, J J; Stevenson, T; Sumner, J L; Theno, D M; Usborne, W R; Zink, D

    2000-12-05

    The use of microbiological testing in systems for assuring the safety of beef was considered at a meeting arranged by the International Livestock Educational Foundation as part of the International Livestock Congress, TX, USA, during February, 2000. The 11 invited participants from industry and government research organizations concurred in concluding that microbiological testing is necessary for the implementation and maintenance of effective Hazard Analysis Critical Control Point (HACCP) systems, which are the only means of assuring the microbiological safety of beef; that microbiological testing for HACCP purposes must involve the enumeration of indicator organisms rather than the detection of pathogens; that the efficacy of process control should be assessed against performance criteria and food safety objectives that refer to the numbers of indicator organisms in product; that sampling procedures should allow indicator organisms to be enumerated at very low numbers; and that food safety objectives and microbiological criteria are better related to variables, rather than attributes sampling plans.

  20. Packaging Strategies for Criticality Safety for "Other" DOE Fuels in a Repository

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larry L Taylor

    2004-06-01

    Since 1998, there has been an ongoing effort to gain acceptance of U.S. Department of Energy (DOE)-owned spent nuclear fuel (SNF) in the national repository. To accomplish this goal, the fuel matrix was used as a discriminating feature to segregate fuels into nine distinct groups. From each of those groups, a characteristic fuel was selected and analyzed for criticality safety based on a proposed packaging strategy. This report identifies and quantifies the important criticality parameters for the canisterized fuels within each criticality group to: (1) demonstrate how the “other” fuels in the group are bounded by the baseline calculations ormore » (2) allow identification of individual type fuels that might require special analysis and packaging.« less

  1. System-on-chip-centric unattended embedded sensors in homeland security and defense applications

    NASA Astrophysics Data System (ADS)

    Jannson, Tomasz; Forrester, Thomas; Degrood, Kevin; Shih, Min-Yi; Walter, Kevin; Lee, Kang; Gans, Eric; Esterkin, Vladimir

    2009-05-01

    System-on-chip (SoC) single-die electronic integrated circuit (IC) integration has recently been attracting a great deal of attention, due to its high modularity, universality, and relatively low fabrication cost. The SoC also has low power consumption and it is naturally suited to being a base for integration of embedded sensors. Such sensors can run unattended, and can be either commercial off-the-shelf (COTS) electronic, COTS microelectromechanical systems (MEMS), or optical-COTS or produced in house (i.e., at Physical Optics Corporation, POC). In the version with the simplest electronic packaging, they can be integrated with low-power wireless RF that can communicate with a central processing unit (CPU) integrated in-house and installed on the specific platform of interest. Such a platform can be a human body (for e-clothing), unmanned aerial vehicle (UAV), unmanned ground vehicle (UGV), or many others. In this paper we discuss SoC-centric embedded unattended sensors in Homeland Security and military applications, including specific application scenarios (or CONOPS). In one specific example, we analyze an embedded polarization optical sensor produced in house, including generalized Lambertian light-emitting diode (LED) sources and secondary nonimaging optics (NIO).

  2. Using the Job Demands-Resources model to investigate risk perception, safety climate and job satisfaction in safety critical organizations.

    PubMed

    Nielsen, Morten Birkeland; Mearns, Kathryn; Matthiesen, Stig Berge; Eid, Jarle

    2011-10-01

    Using the Job Demands-Resources model (JD-R) as a theoretical framework, this study investigated the relationship between risk perception as a job demand and psychological safety climate as a job resource with regard to job satisfaction in safety critical organizations. In line with the JD-R model, it was hypothesized that high levels of risk perception is related to low job satisfaction and that a positive perception of safety climate is related to high job satisfaction. In addition, it was hypothesized that safety climate moderates the relationship between risk perception and job satisfaction. Using a sample of Norwegian offshore workers (N = 986), all three hypotheses were supported. In summary, workers who perceived high levels of risk reported lower levels of job satisfaction, whereas this effect diminished when workers perceived their safety climate as positive. Follow-up analyses revealed that this interaction was dependent on the type of risks in question. The results of this study supports the JD-R model, and provides further evidence for relationships between safety-related concepts and work-related outcomes indicating that organizations should not only develop and implement sound safety procedures to reduce the effects of risks and hazards on workers, but can also enhance other areas of organizational life through a focus on safety. © 2011 The Authors. Scandinavian Journal of Psychology © 2011 The Scandinavian Psychological Associations.

  3. Hydrothermal mineralising systems as critical systems

    NASA Astrophysics Data System (ADS)

    Hobbs, Bruce

    2015-04-01

    Hydrothermal mineralising systems as critical systems. Bruce E Hobbs1,2, Alison Ord1 and Mark A. Munro1. 1. Centre for Exploration Targeting, The University of Western Australia, M006, 35 Stirling Highway, Crawley, WA 6009, Australia. 2. CSIRO Earth and Resource Engineering, Bentley, WA, Australia Hydrothermal mineralising systems are presented as large, open chemical reactors held far from equilibrium during their life-time by the influx of heat, fluid and dissolved chemical species. As such they are nonlinear dynamical systems and need to be analysed using the tools that have been developed for such systems. Hydrothermal systems undergo a number of transitions during their evolution and this paper focuses on methods for characterising these transitions in a quantitative manner and establishing whether they resemble first or second (critical) phase transitions or whether they have some other kind of nature. Critical phase transitions are characterised by long range correlations for some parameter characteristic of the system, power-law probability distributions so that there is no characteristic length scale and a high sensitivity to perturbations; as one approaches criticality, characteristic parameters for the system scale in a power law manner with distance from the critical point. The transitions undergone in mineralised hydrothermal systems are: (i) widespread, non-localised mineral alteration involving exothermic mineral reactions that produce hydrous silicate phases, carbonates and iron-oxides, (ii) strongly localised veining, brecciation and/or stock-work formation, (iii) a series of endothermic mineral reactions involving the formation of non-hydrous silicates, sulphides and metals such as gold, (iv) multiple repetitions of transitions (ii) and (iii). We have quantified aspects of these transitions in gold deposits from the Yilgarn craton of Western Australia using wavelet transforms. This technique is convenient and fast. It enables one to establish if

  4. Bubbling and on-off intermittency in bailout embeddings.

    PubMed

    Cartwright, Julyan H E; Magnasco, Marcelo O; Piro, Oreste; Tuval, Idan

    2003-07-01

    We establish and investigate the conceptual connection between the dynamics of the bailout embedding of a Hamiltonian system and the dynamical regimes associated with the occurrence of bubbling and blowout bifurcations. The roles of the invariant manifold and the dynamics restricted to it, required in bubbling and blowout bifurcating systems, are played in the bailout embedding by the embedded Hamiltonian dynamical system. The Hamiltonian nature of the dynamics is precisely the distinctive feature of this instance of a bubbling or blowout bifurcation. The detachment of the embedding trajectories from the original ones can thus be thought of as transient on-off intermittency, and noise-induced avoidance of some regions of the embedded phase space can be recognized as Hamiltonian bubbling.

  5. The aviation safety reporting system

    NASA Technical Reports Server (NTRS)

    Reynard, W. D.

    1984-01-01

    The aviation safety reporting system, an accident reporting system, is presented. The system identifies deficiencies and discrepancies and the data it provides are used for long term identification of problems. Data for planning and policy making are provided. The system offers training in safety education to pilots. Data and information are drawn from the available data bases.

  6. Hybrid energy harvesting/transmission system for embedded devices

    NASA Astrophysics Data System (ADS)

    Hehr, Adam; Park, Gyuhae; Farinholt, Kevin

    2012-04-01

    In most energy harvesting applications the need for a reliable long-term energy supply is essential in powering embedded sensing and control electronics. The goal of many harvesters is to extract energy from the ambient environment to power hardware; however in some applications there may be conditions in which the harvester's performance cannot meet all of the demands of the embedded electronics. One method for addressing this shortfall is to supplement harvested power through the transmission of wireless energy, a concept that has successfully been demonstrated by the authors in previous studies. In this paper we present our findings on the use of a single electromagnetic coil to harvest kinetic energy in a solenoid configuration, as well as background and directed wireless energy in the 2.4 GHz radio frequency (RF) bands commonly used in WiFi and cellular phone applications. The motivation for this study is to develop a compact energy harvester / receiver that conserves physical volume, while providing multi-modal energy harvesting capabilities. As with most hybrid systems there are performance trade-offs that must be considered when capturing energy from different physical sources. As part of this paper, many of the issues related to power transmission, physical design, and potential applications are addressed for this device.

  7. NASA Aviation Safety Reporting System (ASRS)

    NASA Technical Reports Server (NTRS)

    Connell, Linda

    2011-01-01

    The NASA Aviation Safety Reporting System (ASRS) collects, analyzes, and distributes de-identified safety information provided through confidentially submitted reports from frontline aviation personnel. Since its inception in 1976, the ASRS has collected over 900,000 reports and has never breached the identity of the people sharing their information about events or safety issues. From this volume of data, the ASRS has released over 5,500 aviation safety alerts concerning potential hazards and safety concerns. The ASRS processes these reports, evaluates the information, and provides de-identified report information through the online ASRS Database at http://asrs.arc.nasa.gov. The NASA ASRS is also a founding member of the International Confidential Aviation Safety Systems (ICASS) group which is a collection of other national aviation reporting systems throughout the world. The ASRS model has also been replicated for application to improving safety in railroad, medical, fire fighting, and other domains. This presentation \\vill discuss confidential, voluntary, and non-punitive reporting systems and their advantages in providing information for safety improvements.

  8. NASA Aviation Safety Reporting System (ASRS)

    NASA Technical Reports Server (NTRS)

    Connell, Linda J.

    2017-01-01

    The NASA Aviation Safety Reporting System (ASRS) collects, analyzes, and distributes de-identified safety information provided through confidentially submitted reports from frontline aviation personnel. Since its inception in 1976, the ASRS has collected over 1.4 million reports and has never breached the identity of the people sharing their information about events or safety issues. From this volume of data, the ASRS has released over 6,000 aviation safety alerts concerning potential hazards and safety concerns. The ASRS processes these reports, evaluates the information, and provides selected de-identified report information through the online ASRS Database at http:asrs.arc.nasa.gov. The NASA ASRS is also a founding member of the International Confidential Aviation Safety Systems (ICASS) group which is a collection of other national aviation reporting systems throughout the world. The ASRS model has also been replicated for application to improving safety in railroad, medical, fire fighting, and other domains. This presentation will discuss confidential, voluntary, and non-punitive reporting systems and their advantages in providing information for safety improvements.

  9. Comparison of medication safety systems in critical access hospitals: Combined analysis of two studies.

    PubMed

    Cochran, Gary L; Barrett, Ryan S; Horn, Susan D

    2016-08-01

    The role of pharmacist transcription, onsite pharmacist dispensing, use of automated dispensing cabinets (ADCs), nurse-nurse double checks, or barcode-assisted medication administration (BCMA) in reducing medication error rates in critical access hospitals (CAHs) was evaluated. Investigators used the practice-based evidence methodology to identify predictors of medication errors in 12 Nebraska CAHs. Detailed information about each medication administered was recorded through direct observation. Errors were identified by comparing the observed medication administered with the physician's order. Chi-square analysis and Fisher's exact test were used to measure differences between groups of medication-dispensing procedures. Nurses observed 6497 medications being administered to 1374 patients. The overall error rate was 1.2%. The transcription error rates for orders transcribed by an onsite pharmacist were slightly lower than for orders transcribed by a telepharmacy service (0.10% and 0.33%, respectively). Fewer dispensing errors occurred when medications were dispensed by an onsite pharmacist versus any other method of medication acquisition (0.10% versus 0.44%, p = 0.0085). The rates of dispensing errors for medications that were retrieved from a single-cell ADC (0.19%), a multicell ADC (0.45%), or a drug closet or general supply (0.77%) did not differ significantly. BCMA was associated with a higher proportion of dispensing and administration errors intercepted before reaching the patient (66.7%) compared with either manual double checks (10%) or no BCMA or double check (30.4%) of the medication before administration (p = 0.0167). Onsite pharmacist dispensing and BCMA were associated with fewer medication errors and are important components of a medication safety strategy in CAHs. Copyright © 2016 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  10. Embedding methods for the steady Euler equations

    NASA Technical Reports Server (NTRS)

    Chang, S. H.; Johnson, G. M.

    1983-01-01

    An approach to the numerical solution of the steady Euler equations is to embed the first-order Euler system in a second-order system and then to recapture the original solution by imposing additional boundary conditions. Initial development of this approach and computational experimentation with it were previously based on heuristic physical reasoning. This has led to the construction of a relaxation procedure for the solution of two-dimensional steady flow problems. The theoretical justification for the embedding approach is addressed. It is proven that, with the appropriate choice of embedding operator and additional boundary conditions, the solution to the embedded system is exactly the one to the original Euler equations. Hence, solving the embedded version of the Euler equations will not produce extraneous solutions.

  11. Reliability and performance evaluation of systems containing embedded rule-based expert systems

    NASA Technical Reports Server (NTRS)

    Beaton, Robert M.; Adams, Milton B.; Harrison, James V. A.

    1989-01-01

    A method for evaluating the reliability of real-time systems containing embedded rule-based expert systems is proposed and investigated. It is a three stage technique that addresses the impact of knowledge-base uncertainties on the performance of expert systems. In the first stage, a Markov reliability model of the system is developed which identifies the key performance parameters of the expert system. In the second stage, the evaluation method is used to determine the values of the expert system's key performance parameters. The performance parameters can be evaluated directly by using a probabilistic model of uncertainties in the knowledge-base or by using sensitivity analyses. In the third and final state, the performance parameters of the expert system are combined with performance parameters for other system components and subsystems to evaluate the reliability and performance of the complete system. The evaluation method is demonstrated in the context of a simple expert system used to supervise the performances of an FDI algorithm associated with an aircraft longitudinal flight-control system.

  12. Integrating system safety into the basic systems engineering process

    NASA Technical Reports Server (NTRS)

    Griswold, J. W.

    1971-01-01

    The basic elements of a systems engineering process are given along with a detailed description of what the safety system requires from the systems engineering process. Also discussed is the safety that the system provides to other subfunctions of systems engineering.

  13. 49 CFR 385.103 - Safety monitoring system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Safety monitoring system. 385.103 Section 385.103... Safety Monitoring System for Mexico-Domiciled Carriers § 385.103 Safety monitoring system. (a) General... Vehicle Safety Standards (FMVSSs), and Hazardous Materials Regulations (HMRs). (b) Roadside monitoring...

  14. 49 CFR 385.103 - Safety monitoring system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Safety monitoring system. 385.103 Section 385.103... Safety Monitoring System for Mexico-Domiciled Carriers § 385.103 Safety monitoring system. (a) General... Vehicle Safety Standards (FMVSSs), and Hazardous Materials Regulations (HMRs). (b) Roadside monitoring...

  15. Embedded biofilm, a new biofilm model based on the embedded growth of bacteria.

    PubMed

    Jung, Yong-Gyun; Choi, Jungil; Kim, Soo-Kyoung; Lee, Joon-Hee; Kwon, Sunghoon

    2015-01-01

    A variety of systems have been developed to study biofilm formation. However, most systems are based on the surface-attached growth of microbes under shear stress. In this study, we designed a microfluidic channel device, called a microfluidic agarose channel (MAC), and found that microbial cells in the MAC system formed an embedded cell aggregative structure (ECAS). ECASs were generated from the embedded growth of bacterial cells in an agarose matrix and better mimicked the clinical environment of biofilms formed within mucus or host tissue under shear-free conditions. ECASs were developed with the production of extracellular polymeric substances (EPS), the most important feature of biofilms, and eventually burst to release planktonic cells, which resembles the full developmental cycle of biofilms. Chemical and genetic effects have also confirmed that ECASs are a type of biofilm. Unlike the conventional biofilms formed in the flow cell model system, this embedded-type biofilm completes the developmental cycle in only 9 to 12 h and can easily be observed with ordinary microscopes. We suggest that ECASs are a type of biofilm and that the MAC is a system for observing biofilm formation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. A Human Reliability Based Usability Evaluation Method for Safety-Critical Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillippe Palanque; Regina Bernhaupt; Ronald Boring

    2006-04-01

    Recent years have seen an increasing use of sophisticated interaction techniques including in the field of safety critical interactive software [8]. The use of such techniques has been required in order to increase the bandwidth between the users and systems and thus to help them deal efficiently with increasingly complex systems. These techniques come from research and innovation done in the field of humancomputer interaction (HCI). A significant effort is currently being undertaken by the HCI community in order to apply and extend current usability evaluation techniques to these new kinds of interaction techniques. However, very little has been donemore » to improve the reliability of software offering these kinds of interaction techniques. Even testing basic graphical user interfaces remains a challenge that has rarely been addressed in the field of software engineering [9]. However, the non reliability of interactive software can jeopardize usability evaluation by showing unexpected or undesired behaviors. The aim of this SIG is to provide a forum for both researchers and practitioners interested in testing interactive software. Our goal is to define a roadmap of activities to cross fertilize usability and reliability testing of these kinds of systems to minimize duplicate efforts in both communities.« less

  17. Fault Injection Validation of a Safety-Critical TMR Sysem

    NASA Astrophysics Data System (ADS)

    Irrera, Ivano; Madeira, Henrique; Zentai, Andras; Hergovics, Beata

    2016-08-01

    Digital systems and their software are the core technology for controlling and monitoring industrial systems in practically all activity domains. Functional safety standards such as the European standard EN 50128 for railway applications define the procedures and technical requirements for the development of software for railway control and protection systems. The validation of such systems is a highly demanding task. In this paper we discuss the use of fault injection techniques, which have been used extensively in several domains, particularly in the space domain, to complement the traditional procedures to validate a SIL (Safety Integrity Level) 4 system for railway signalling, implementing a TMR (Triple Modular Redundancy) architecture. The fault injection tool is based on JTAG technology. The results of our injection campaign showed a high degree of tolerance to most of the injected faults, but several cases of unexpected behaviour have also been observed, helping understanding worst-case scenarios.

  18. Autonomous safety and reliability features of the K-1 avionics system

    NASA Astrophysics Data System (ADS)

    Mueller, George E.; Kohrs, Dick; Bailey, Richard; Lai, Gary

    2004-03-01

    Kistler Aerospace Corporation is developing the K-1, a fully reusable, two-stage-to-orbit launch vehicle. Both stages return to the launch site using parachutes and airbags. Initial flight operations will occur from Woomera, Australia. K-1 guidance is performed autonomously. Each stage of the K-1 employs a triplex, fault tolerant avionics architecture, including three fault tolerant computers and three radiation hardened Embedded GPS/INS units with a hardware voter. The K-1 has an Integrated Vehicle Health Management (IVHM) system on each stage residing in the three vehicle computers based on similar systems in commercial aircraft. During first-stage ascent, the IVHM system performs an Instantaneous Impact Prediction (IIP) calculation 25 times per second, initiating an abort in the event the vehicle is outside a predetermined safety corridor for at least 3 consecutive calculations. In this event, commands are issued to terminate thrust, separate the stages, dump all propellant in the first-stage, and initiate a normal landing sequence. The second-stage flight computer calculates its ability to reach orbit along its state vector, initiating an abort sequence similar to the first stage if it cannot. On a nominal mission, following separation, the second-stage also performs calculations to assure its impact point is within a safety corridor. The K-1's guidance and control design is being tested through simulation with hardware-in-the-loop at Draper Laboratory. Kistler's verification strategy assures reliable and safe operation of the K-1.

  19. Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 1: Cell embedding method and performance

    NASA Astrophysics Data System (ADS)

    Raghavan, Ajay; Kiesel, Peter; Sommer, Lars Wilko; Schwartz, Julian; Lochbaum, Alexander; Hegyi, Alex; Schuh, Andreas; Arakaki, Kyle; Saha, Bhaskar; Ganguli, Anurag; Kim, Kyung Ho; Kim, ChaeAh; Hah, Hoe Jin; Kim, SeokKoo; Hwang, Gyu-Ok; Chung, Geun-Chang; Choi, Bokkyu; Alamgir, Mohamed

    2017-02-01

    A key challenge hindering the mass adoption of Lithium-ion and other next-gen chemistries in advanced battery applications such as hybrid/electric vehicles (xEVs) has been management of their functional performance for more effective battery utilization and control over their life. Contemporary battery management systems (BMS) reliant on monitoring external parameters such as voltage and current to ensure safe battery operation with the required performance usually result in overdesign and inefficient use of capacity. More informative embedded sensors are desirable for internal cell state monitoring, which could provide accurate state-of-charge (SOC) and state-of-health (SOH) estimates and early failure indicators. Here we present a promising new embedded sensing option developed by our team for cell monitoring, fiber-optic sensors. High-performance large-format pouch cells with embedded fiber-optic sensors were fabricated. The first of this two-part paper focuses on the embedding method details and performance of these cells. The seal integrity, capacity retention, cycle life, compatibility with existing module designs, and mass-volume cost estimates indicate their suitability for xEV and other advanced battery applications. The second part of the paper focuses on the internal strain and temperature signals obtained from these sensors under various conditions and their utility for high-accuracy cell state estimation algorithms.

  20. 49 CFR 385.703 - Safety monitoring system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Safety monitoring system. 385.703 Section 385.703... Safety Monitoring System for Non-North American Carriers § 385.703 Safety monitoring system. (a) General... Vehicle Safety Standards (FMVSSs), and Hazardous Materials Regulations (HMRs). (b) Roadside monitoring...

  1. 49 CFR 385.703 - Safety monitoring system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Safety monitoring system. 385.703 Section 385.703... Safety Monitoring System for Non-North American Carriers § 385.703 Safety monitoring system. (a) General... Vehicle Safety Standards (FMVSSs), and Hazardous Materials Regulations (HMRs). (b) Roadside monitoring...

  2. Embedded Hyperchaotic Generators: A Comparative Analysis

    NASA Astrophysics Data System (ADS)

    Sadoudi, Said; Tanougast, Camel; Azzaz, Mohamad Salah; Dandache, Abbas

    In this paper, we present a comparative analysis of FPGA implementation performances, in terms of throughput and resources cost, of five well known autonomous continuous hyperchaotic systems. The goal of this analysis is to identify the embedded hyperchaotic generator which leads to designs with small logic area cost, satisfactory throughput rates, low power consumption and low latency required for embedded applications such as secure digital communications between embedded systems. To implement the four-dimensional (4D) chaotic systems, we use a new structural hardware architecture based on direct VHDL description of the forth order Runge-Kutta method (RK-4). The comparative analysis shows that the hyperchaotic Lorenz generator provides attractive performances compared to that of others. In fact, its hardware implementation requires only 2067 CLB-slices, 36 multipliers and no block RAMs, and achieves a throughput rate of 101.6 Mbps, at the output of the FPGA circuit, at a clock frequency of 25.315 MHz with a low latency time of 316 ns. Consequently, these good implementation performances offer to the embedded hyperchaotic Lorenz generator the advantage of being the best candidate for embedded communications applications.

  3. Multiview Locally Linear Embedding for Effective Medical Image Retrieval

    PubMed Central

    Shen, Hualei; Tao, Dacheng; Ma, Dianfu

    2013-01-01

    Content-based medical image retrieval continues to gain attention for its potential to assist radiological image interpretation and decision making. Many approaches have been proposed to improve the performance of medical image retrieval system, among which visual features such as SIFT, LBP, and intensity histogram play a critical role. Typically, these features are concatenated into a long vector to represent medical images, and thus traditional dimension reduction techniques such as locally linear embedding (LLE), principal component analysis (PCA), or laplacian eigenmaps (LE) can be employed to reduce the “curse of dimensionality”. Though these approaches show promising performance for medical image retrieval, the feature-concatenating method ignores the fact that different features have distinct physical meanings. In this paper, we propose a new method called multiview locally linear embedding (MLLE) for medical image retrieval. Following the patch alignment framework, MLLE preserves the geometric structure of the local patch in each feature space according to the LLE criterion. To explore complementary properties among a range of features, MLLE assigns different weights to local patches from different feature spaces. Finally, MLLE employs global coordinate alignment and alternating optimization techniques to learn a smooth low-dimensional embedding from different features. To justify the effectiveness of MLLE for medical image retrieval, we compare it with conventional spectral embedding methods. We conduct experiments on a subset of the IRMA medical image data set. Evaluation results show that MLLE outperforms state-of-the-art dimension reduction methods. PMID:24349277

  4. Degradation of lindane by a novel embedded bio-nano hybrid system in aqueous environment.

    PubMed

    Salam, Jaseetha Abdul; Das, Nilanjana

    2015-03-01

    The objective of this study was to evaluate the effect of an embedded bio-nano hybrid system using nanoscale zinc oxide (n-ZnO) and lindane-degrading yeast Candida VITJzN04 for lindane degradation. Nano-embedding of the yeast was done with chemically synthesized n-ZnO particles (50 mg/mL) and was visualized by atomic force microscope (AFM) and scanning electron microscope (SEM). Nanoparticles were embedded substantially on the surfaces of the yeast cells and translocated into the cell cytoplasm without causing any lethal effect to the cell until 50 mg/mL. Lindane (600 mg/L) degradation was studied both in the individual and hybrid system. Rapid reductive-dechlorination of lindane was attained with n-ZnO under illuminated conditions, with the generation of chlorobenzene and benzene as dechlorination products. The bio-nano hybrid was found to be more effective compared to the native yeasts for lindane degradation and resulted in complete removal within 3 days. The kinetic data analysis implied that the half-life of lindane was 9 h for bio-nano hybrid and 28 h for Candida VITJzN04. The enhanced lindane degradation by bio-nano hybrid might be due to increased porosity and permeability of the yeast cell membrane, facilitating the easy entry of lindane into cell cytoplasm and n-ZnO-mediated dechlorination. To the best of our knowledge, this report, for the first time, suggests the use of n-ZnO-mediated dechlorination of lindane and the novel bio-nano hybrid system that reduces the half-life to one third of the time taken by the yeast alone. The embedded bio-nano hybrid system may be exploited as an effective remediation tool for the treatment of lindane-contaminated wastewaters.

  5. Nuclear criticality safety bounding analysis for the in-tank-precipitation (ITP) process, impacted by fissile isotopic weight fractions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bess, C.E.

    The In-Tank Precipitation process (ITP) receives High Level Waste (HLW) supernatant liquid containing radionuclides in waste processing tank 48H. Sodium tetraphenylborate, NaTPB, and monosodium titanate (MST), NaTi{sub 2}O{sub 5}H, are added for removal of radioactive Cs and Sr, respectively. In addition to removal of radio-strontium, MST will also remove plutonium and uranium. The majority of the feed solutions to ITP will come from the dissolution of supernate that had been concentrated by evaporation to a crystallized salt form, commonly referred to as saltcake. The concern for criticality safety arises from the adsorption of U and Pt onto MST. If sufficientmore » mass and optimum conditions are achieved then criticality is credible. The concentration of u and Pt from solution into the smaller volume of precipitate represents a concern for criticality. This report supplements WSRC-TR-93-171, Nuclear Criticality Safety Bounding Analysis For The In-Tank-Precipitation (ITP) Process. Criticality safety in ITP can be analyzed by two bounding conditions: (1) the minimum safe ratio of MST to fissionable material and (2) the maximum fissionable material adsorption capacity of the MST. Calculations have provided the first bounding condition and experimental analysis has established the second. This report combines these conditions with canyon facility data to evaluate the potential for criticality in the ITP process due to the adsorption of the fissionable material from solution. In addition, this report analyzes the potential impact of increased U loading onto MST. Results of this analysis demonstrate a greater safety margin for ITP operations than the previous analysis. This report further demonstrates that the potential for criticality in the ITP process due to adsorption of fissionable material by MST is not credible.« less

  6. A Review on Internet of Things for Defense and Public Safety

    PubMed Central

    Fraga-Lamas, Paula; Fernández-Caramés, Tiago M.; Suárez-Albela, Manuel; Castedo, Luis; González-López, Miguel

    2016-01-01

    The Internet of Things (IoT) is undeniably transforming the way that organizations communicate and organize everyday businesses and industrial procedures. Its adoption has proven well suited for sectors that manage a large number of assets and coordinate complex and distributed processes. This survey analyzes the great potential for applying IoT technologies (i.e., data-driven applications or embedded automation and intelligent adaptive systems) to revolutionize modern warfare and provide benefits similar to those in industry. It identifies scenarios where Defense and Public Safety (PS) could leverage better commercial IoT capabilities to deliver greater survivability to the warfighter or first responders, while reducing costs and increasing operation efficiency and effectiveness. This article reviews the main tactical requirements and the architecture, examining gaps and shortcomings in existing IoT systems across the military field and mission-critical scenarios. The review characterizes the open challenges for a broad deployment and presents a research roadmap for enabling an affordable IoT for defense and PS. PMID:27782052

  7. Integrated risk assessment and screening analysis of drinking water safety of a conventional water supply system.

    PubMed

    Sun, F; Chen, J; Tong, Q; Zeng, S

    2007-01-01

    Management of drinking water safety is changing towards an integrated risk assessment and risk management approach that includes all processes in a water supply system from catchment to consumers. However, given the large number of water supply systems in China and the cost of implementing such a risk assessment procedure, there is a necessity to first conduct a strategic screening analysis at a national level. An integrated methodology of risk assessment and screening analysis is thus proposed to evaluate drinking water safety of a conventional water supply system. The violation probability, indicating drinking water safety, is estimated at different locations of a water supply system in terms of permanganate index, ammonia nitrogen, turbidity, residual chlorine and trihalomethanes. Critical parameters with respect to drinking water safety are then identified, based on which an index system is developed to prioritize conventional water supply systems in implementing a detailed risk assessment procedure. The evaluation results are represented as graphic check matrices for the concerned hazards in drinking water, from which the vulnerability of a conventional water supply system is characterized.

  8. A Prototype Embedding of Bluespec System Verilog in the PVS Theorem Prover

    NASA Technical Reports Server (NTRS)

    Richards, Dominic; Lester, David

    2010-01-01

    Bluespec SystemVerilog (BSV) is a Hardware Description Language based on the guarded action model of concurrency. It has an elegant semantics, which makes it well suited for formal reasoning. To date, a number of BSV designs have been verified with hand proofs, but little work has been conducted on the application of automated reasoning. We present a prototype shallow embedding of BSV in the PVS theorem prover. Our embedding is compatible with the PVS model checker, which can automatically prove an important class of theorems, and can also be used in conjunction with the powerful proof strategies of PVS to verify a broader class of properties than can be achieved with model checking alone.

  9. Multi-modal demands of a smartphone used to place calls and enter addresses during highway driving relative to two embedded systems.

    PubMed

    Reimer, Bryan; Mehler, Bruce; Reagan, Ian; Kidd, David; Dobres, Jonathan

    2016-12-01

    There is limited research on trade-offs in demand between manual and voice interfaces of embedded and portable technologies. Mehler et al. identified differences in driving performance, visual engagement and workload between two contrasting embedded vehicle system designs (Chevrolet MyLink and Volvo Sensus). The current study extends this work by comparing these embedded systems with a smartphone (Samsung Galaxy S4). None of the voice interfaces eliminated visual demand. Relative to placing calls manually, both embedded voice interfaces resulted in less eyes-off-road time than the smartphone. Errors were most frequent when calling contacts using the smartphone. The smartphone and MyLink allowed addresses to be entered using compound voice commands resulting in shorter eyes-off-road time compared with the menu-based Sensus but with many more errors. Driving performance and physiological measures indicated increased demand when performing secondary tasks relative to 'just driving', but were not significantly different between the smartphone and embedded systems. Practitioner Summary: The findings show that embedded system and portable device voice interfaces place fewer visual demands on the driver than manual interfaces, but they also underscore how differences in system designs can significantly affect not only the demands placed on drivers, but also the successful completion of tasks.

  10. Multi-modal demands of a smartphone used to place calls and enter addresses during highway driving relative to two embedded systems

    PubMed Central

    Reimer, Bryan; Mehler, Bruce; Reagan, Ian; Kidd, David; Dobres, Jonathan

    2016-01-01

    Abstract There is limited research on trade-offs in demand between manual and voice interfaces of embedded and portable technologies. Mehler et al. identified differences in driving performance, visual engagement and workload between two contrasting embedded vehicle system designs (Chevrolet MyLink and Volvo Sensus). The current study extends this work by comparing these embedded systems with a smartphone (Samsung Galaxy S4). None of the voice interfaces eliminated visual demand. Relative to placing calls manually, both embedded voice interfaces resulted in less eyes-off-road time than the smartphone. Errors were most frequent when calling contacts using the smartphone. The smartphone and MyLink allowed addresses to be entered using compound voice commands resulting in shorter eyes-off-road time compared with the menu-based Sensus but with many more errors. Driving performance and physiological measures indicated increased demand when performing secondary tasks relative to ‘just driving’, but were not significantly different between the smartphone and embedded systems. Practitioner Summary: The findings show that embedded system and portable device voice interfaces place fewer visual demands on the driver than manual interfaces, but they also underscore how differences in system designs can significantly affect not only the demands placed on drivers, but also the successful completion of tasks. PMID:27110964

  11. Overview of critical risk factors in Power-Two-Wheeler safety.

    PubMed

    Vlahogianni, Eleni I; Yannis, George; Golias, John C

    2012-11-01

    Power-Two-Wheelers (PTWs) constitute a vulnerable class of road users with increased frequency and severity of accidents. The present paper focuses of the PTW accident risk factors and reviews existing literature with regard to the PTW drivers' interactions with the automobile drivers, as well as interactions with infrastructure elements and weather conditions. Several critical risk factors are revealed with different levels of influence to PTW accident likelihood and severity. A broad classification based on the magnitude and the need for further research for each risk factor is proposed. The paper concludes by discussing the importance of dealing with accident configurations, the data quality and availability, methods implemented to model risk and exposure and risk identification which are critical for a thorough understanding of the determinants of PTW safety. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Remote Diagnosis of the International Space Station Utilizing Telemetry Data

    NASA Technical Reports Server (NTRS)

    Deb, Somnath; Ghoshal, Sudipto; Malepati, Venkat; Domagala, Chuck; Patterson-Hine, Ann; Alena, Richard; Norvig, Peter (Technical Monitor)

    2000-01-01

    Modern systems such as fly-by-wire aircraft, nuclear power plants, manufacturing facilities, battlefields, etc., are all examples of highly connected network enabled systems. Many of these systems are also mission critical and need to be monitored round the clock. Such systems typically consist of embedded sensors in networked subsystems that can transmit data to central (or remote) monitoring stations. Moreover, many legacy are safety systems were originally not designed for real-time onboard diagnosis, but a critical and would benefit from such a solution. Embedding additional software or hardware in such systems is often considered too intrusive and introduces flight safety and validation concerns. Such systems can be equipped to transmit the sensor data to a remote-processing center for continuous health monitoring. At Qualtech Systems, we are developing a Remote Diagnosis Server (RDS) that can support multiple simultaneous diagnostic sessions from a variety of remote subsystems.

  13. System safety engineering analysis handbook

    NASA Technical Reports Server (NTRS)

    Ijams, T. E.

    1972-01-01

    The basic requirements and guidelines for the preparation of System Safety Engineering Analysis are presented. The philosophy of System Safety and the various analytic methods available to the engineering profession are discussed. A text-book description of each of the methods is included.

  14. Color-coding and human factors engineering to improve patient safety characteristics of paper-based emergency department clinical documentation.

    PubMed

    Kobayashi, Leo; Boss, Robert M; Gibbs, Frantz J; Goldlust, Eric; Hennedy, Michelle M; Monti, James E; Siegel, Nathan A

    2011-01-01

    Investigators studied an emergency department (ED) physical chart system and identified inconsistent, small font labeling; a single-color scheme; and an absence of human factors engineering (HFE) cues. A case study and description of the methodology with which surrogate measures of chart-related patient safety were studied and subsequently used to reduce latent hazards are presented. Medical records present a challenge to patient safety in EDs. Application of HFE can improve specific aspects of existing medical chart organization systems as they pertain to patient safety in acute care environments. During 10 random audits over 5 consecutive days (573 data points), 56 (9.8%) chart binders (range 0.0-23%) were found to be either misplaced or improperly positioned relative to other chart binders; 12 (21%) were in the critical care area. HFE principles were applied to develop an experimental chart binder system with alternating color-based chart groupings, simple and prominent identifiers, and embedded visual cues. Post-intervention audits revealed significant reductions in chart binder location problems overall (p < 0.01), for Urgent Care A and B pods (6.4% to 1.2%; p < 0.05), Fast Track C pod (19.3% to 0.0%; p < 0.05) and Behavioral/Substance Abuse D pod (15.7% to 0.0%; p < 0.05) areas of the ED. The critical care room area did not display an improvement (11.4% to 13.2%; p = 0.40). Application of HFE methods may aid the development, assessment, and modification of acute care clinical environments through evidence-based design methodologies and contribute to safe patient care delivery.

  15. Automated Translation of Safety Critical Application Software Specifications into PLC Ladder Logic

    NASA Technical Reports Server (NTRS)

    Leucht, Kurt W.; Semmel, Glenn S.

    2008-01-01

    The numerous benefits of automatic application code generation are widely accepted within the software engineering community. A few of these benefits include raising the abstraction level of application programming, shorter product development time, lower maintenance costs, and increased code quality and consistency. Surprisingly, code generation concepts have not yet found wide acceptance and use in the field of programmable logic controller (PLC) software development. Software engineers at the NASA Kennedy Space Center (KSC) recognized the need for PLC code generation while developing their new ground checkout and launch processing system. They developed a process and a prototype software tool that automatically translates a high-level representation or specification of safety critical application software into ladder logic that executes on a PLC. This process and tool are expected to increase the reliability of the PLC code over that which is written manually, and may even lower life-cycle costs and shorten the development schedule of the new control system at KSC. This paper examines the problem domain and discusses the process and software tool that were prototyped by the KSC software engineers.

  16. The Evolution of System Safety at NASA

    NASA Technical Reports Server (NTRS)

    Dezfuli, Homayoon; Everett, Chris; Groen, Frank

    2014-01-01

    The NASA system safety framework is in the process of change, motivated by the desire to promote an objectives-driven approach to system safety that explicitly focuses system safety efforts on system-level safety performance, and serves to unify, in a purposeful manner, safety-related activities that otherwise might be done in a way that results in gaps, redundancies, or unnecessary work. An objectives-driven approach to system safety affords more flexibility to determine, on a system-specific basis, the means by which adequate safety is achieved and verified. Such flexibility and efficiency is becoming increasingly important in the face of evolving engineering modalities and acquisition models, where, for example, NASA will increasingly rely on commercial providers for transportation services to low-earth orbit. A key element of this objectives-driven approach is the use of the risk-informed safety case (RISC): a structured argument, supported by a body of evidence, that provides a compelling, comprehensible and valid case that a system is or will be adequately safe for a given application in a given environment. The RISC addresses each of the objectives defined for the system, providing a rational basis for making informed risk acceptance decisions at relevant decision points in the system life cycle.

  17. [The critical incident reporting system as an instrument of risk management for better patient safety].

    PubMed

    Panzica, M; Krettek, C; Cartes, M

    2011-09-01

    The probability that an inpatient will be harmed by a medical procedure is at least 3% of all patients. As a consequence, hospital risk management has become a central management task in the health care sector. The critical incident reporting system (CIRS) as a voluntary instrument for reporting (near) incidents plays a key role in the implementation of a risk management system. The goal of the CIRS is to register system errors without assigning guilt or meting out punishment and at the same time increasing the number of voluntary reports.

  18. Electrostatically Embedded Many-Body Expansion for Neutral and Charged Metalloenzyme Model Systems.

    PubMed

    Kurbanov, Elbek K; Leverentz, Hannah R; Truhlar, Donald G; Amin, Elizabeth A

    2012-01-10

    The electrostatically embedded many-body (EE-MB) method has proven accurate for calculating cohesive and conformational energies in clusters, and it has recently been extended to obtain bond dissociation energies for metal-ligand bonds in positively charged inorganic coordination complexes. In the present paper, we present four key guidelines that maximize the accuracy and efficiency of EE-MB calculations for metal centers. Then, following these guidelines, we show that the EE-MB method can also perform well for bond dissociation energies in a variety of neutral and negatively charged inorganic coordination systems representing metalloenzyme active sites, including a model of the catalytic site of the zinc-bearing anthrax toxin lethal factor, a popular target for drug development. In particular, we find that the electrostatically embedded three-body (EE-3B) method is able to reproduce conventionally calculated bond-breaking energies in a series of pentacoordinate and hexacoordinate zinc-containing systems with an average absolute error (averaged over 25 cases) of only 0.98 kcal/mol.

  19. The development of regulatory expectations for computer-based safety systems for the UK nuclear programme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, P. J.; Westwood, R.N; Mark, R. T.

    2006-07-01

    The Nuclear Installations Inspectorate (NII) of the UK's Health and Safety Executive (HSE) has completed a review of their Safety Assessment Principles (SAPs) for Nuclear Installations recently. During the period of the SAPs review in 2004-2005 the designers of future UK naval reactor plant were optioneering the control and protection systems that might be implemented. Because there was insufficient regulatory guidance available in the naval sector to support this activity the Defence Nuclear Safety Regulator (DNSR) invited the NII to collaborate with the production of a guidance document that provides clarity of regulatory expectations for the production of safety casesmore » for computer based safety systems. A key part of producing regulatory expectations was identifying the relevant extant standards and sector guidance that reflect good practice. The three principal sources of such good practice were: IAEA Safety Guide NS-G-1.1 (Software for Computer Based Systems Important to Safety in Nuclear Power Plants), European Commission consensus document (Common Position of European Nuclear Regulators for the Licensing of Safety Critical Software for Nuclear Reactors) and IEC nuclear sector standards such as IEC60880. A common understanding has been achieved between the NII and DNSR and regulatory guidance developed which will be used by both NII and DNSR in the assessment of computer-based safety systems and in the further development of more detailed joint technical assessment guidance for both regulatory organisations. (authors)« less

  20. Design of Plant Eco-physiology Monitoring System Based on Embedded Technology

    NASA Astrophysics Data System (ADS)

    Li, Yunbing; Wang, Cheng; Qiao, Xiaojun; Liu, Yanfei; Zhang, Xinlu

    A real time system has been developed to collect plant's growth information comprehensively. Plant eco-physiological signals can be collected and analyzed effectively. The system adopted embedded technology: wireless sensors network collect the eco-physiological information. Touch screen and ARM microprocessor make the system work independently without PC. The system is versatile and all parameters can be set by the touch screen. Sensors' intelligent compensation can be realized in this system. Information can be displayed by either graphically or in table mode. The ARM microprocessor provides the interface to connect with the internet, so the system support remote monitoring and controlling. The system has advantages of friendly interface, flexible construction and extension. It's a good tool for plant's management.

  1. A Novel Series Connected Batteries State of High Voltage Safety Monitor System for Electric Vehicle Application

    PubMed Central

    Jiaxi, Qiang; Lin, Yang; Jianhui, He; Qisheng, Zhou

    2013-01-01

    Batteries, as the main or assistant power source of EV (Electric Vehicle), are usually connected in series with high voltage to improve the drivability and energy efficiency. Today, more and more batteries are connected in series with high voltage, if there is any fault in high voltage system (HVS), the consequence is serious and dangerous. Therefore, it is necessary to monitor the electric parameters of HVS to ensure the high voltage safety and protect personal safety. In this study, a high voltage safety monitor system is developed to solve this critical issue. Four key electric parameters including precharge, contact resistance, insulation resistance, and remaining capacity are monitored and analyzed based on the equivalent models presented in this study. The high voltage safety controller which integrates the equivalent models and control strategy is developed. By the help of hardware-in-loop system, the equivalent models integrated in the high voltage safety controller are validated, and the online electric parameters monitor strategy is analyzed and discussed. The test results indicate that the high voltage safety monitor system designed in this paper is suitable for EV application. PMID:24194677

  2. A novel series connected batteries state of high voltage safety monitor system for electric vehicle application.

    PubMed

    Jiaxi, Qiang; Lin, Yang; Jianhui, He; Qisheng, Zhou

    2013-01-01

    Batteries, as the main or assistant power source of EV (Electric Vehicle), are usually connected in series with high voltage to improve the drivability and energy efficiency. Today, more and more batteries are connected in series with high voltage, if there is any fault in high voltage system (HVS), the consequence is serious and dangerous. Therefore, it is necessary to monitor the electric parameters of HVS to ensure the high voltage safety and protect personal safety. In this study, a high voltage safety monitor system is developed to solve this critical issue. Four key electric parameters including precharge, contact resistance, insulation resistance, and remaining capacity are monitored and analyzed based on the equivalent models presented in this study. The high voltage safety controller which integrates the equivalent models and control strategy is developed. By the help of hardware-in-loop system, the equivalent models integrated in the high voltage safety controller are validated, and the online electric parameters monitor strategy is analyzed and discussed. The test results indicate that the high voltage safety monitor system designed in this paper is suitable for EV application.

  3. System safety education focused on industrial engineering

    NASA Technical Reports Server (NTRS)

    Johnston, W. L.; Morris, R. S.

    1971-01-01

    An educational program, designed to train students with the specific skills needed to become safety specialists, is described. The discussion concentrates on application, selection, and utilization of various system safety analytical approaches. Emphasis is also placed on the management of a system safety program, its relationship with other disciplines, and new developments and applications of system safety techniques.

  4. A telemetry system embedded in clothes for indoor localization and elderly health monitoring.

    PubMed

    Charlon, Yoann; Fourty, Nicolas; Campo, Eric

    2013-09-04

    This paper presents a telemetry system used in a combined trilateration method for the precise indoor localization of the elderly who need health monitoring. The system is based on the association of two wireless technologies: ultrasonic and 802.15.4. The use of the 802.15.4 RF signal gives the reference starting time of the ultrasonic emission (time difference of arrival method). A time of flight measurement of the ultrasonic pulses provides the distances between the mobile node and three anchor points. These distance measurements are then used to locate the mobile node using the trilateration method with an accuracy of a few centimetres. The originality of our work lies in embedding the mobile node in clothes. The system is embedded in clothes in two ways: on a shoe in order to form a "smart" shoe and in a hat in order to form a "smart" hat. Both accessories allow movements, gait speed and distance covered to be monitored for health applications. Experiments in a test room are presented to show the effectiveness of our system.

  5. NASA's Software Safety Standard

    NASA Technical Reports Server (NTRS)

    Ramsay, Christopher M.

    2007-01-01

    NASA relies more and more on software to control, monitor, and verify its safety critical systems, facilities and operations. Since the 1960's there has hardly been a spacecraft launched that does not have a computer on board that will provide command and control services. There have been recent incidents where software has played a role in high-profile mission failures and hazardous incidents. For example, the Mars Orbiter, Mars Polar Lander, the DART (Demonstration of Autonomous Rendezvous Technology), and MER (Mars Exploration Rover) Spirit anomalies were all caused or contributed to by software. The Mission Control Centers for the Shuttle, ISS, and unmanned programs are highly dependant on software for data displays, analysis, and mission planning. Despite this growing dependence on software control and monitoring, there has been little to no consistent application of software safety practices and methodology to NASA's projects with safety critical software. Meanwhile, academia and private industry have been stepping forward with procedures and standards for safety critical systems and software, for example Dr. Nancy Leveson's book Safeware: System Safety and Computers. The NASA Software Safety Standard, originally published in 1997, was widely ignored due to its complexity and poor organization. It also focused on concepts rather than definite procedural requirements organized around a software project lifecycle. Led by NASA Headquarters Office of Safety and Mission Assurance, the NASA Software Safety Standard has recently undergone a significant update. This new standard provides the procedures and guidelines for evaluating a project for safety criticality and then lays out the minimum project lifecycle requirements to assure the software is created, operated, and maintained in the safest possible manner. This update of the standard clearly delineates the minimum set of software safety requirements for a project without detailing the implementation for those

  6. 75 FR 11918 - Hewlett Pachard Company, Business Critical Systems, Mission Critical Business Software Division...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ... Pachard Company, Business Critical Systems, Mission Critical Business Software Division, Openvms Operating... Business Software Division, Openvms Operating System Development Group, Including an Employee Operating Out... Company, Business Critical Systems, Mission Critical Business Software Division, OpenVMS Operating System...

  7. 49 CFR 176.704 - Requirements relating to transport indices and criticality safety indices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Requirements relating to transport indices and... Requirements relating to transport indices and criticality safety indices. (a) The sum of the transport indices..., transport and unloading are to be supervised by persons qualified in the transport of radioactive material...

  8. 49 CFR 176.704 - Requirements relating to transport indices and criticality safety indices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Requirements relating to transport indices and... Requirements relating to transport indices and criticality safety indices. (a) The sum of the transport indices..., transport and unloading are to be supervised by persons qualified in the transport of radioactive material...

  9. A telehealth architecture for networked embedded systems: a case study in in vivo health monitoring.

    PubMed

    Dabiri, Foad; Massey, Tammara; Noshadi, Hyduke; Hagopian, Hagop; Lin, C K; Tan, Robert; Schmidt, Jacob; Sarrafzadeh, Majid

    2009-05-01

    The improvement in processor performance through continuous breakthroughs in transistor technology has resulted in the proliferation of lightweight embedded systems. Advances in wireless technology and embedded systems have enabled remote healthcare and telemedicine. While medical examinations could previously extract only localized symptoms through snapshots, now continuous monitoring can discretely analyze how a patient's lifestyle affects his/her physiological conditions and if additional symptoms occur under various stimuli. We demonstrate how medical applications in particular benefit from a hierarchical networking scheme that will improve the quantity and quality of ubiquitous data collection. Our Telehealth networking infrastructure provides flexibility in terms of functionality and the type of applications that it supports. We specifically present a case study that demonstrates the effectiveness of our networked embedded infrastructure in an in vivo pressure application. Experimental results of the in vivo system demonstrate how it can wirelessly transmit pressure readings measuring from 0 to 1.5 lbf/in (2) with an accuracy of 0.02 lbf/in (2). The challenges in biocompatible packaging, transducer drift, power management, and in vivo signal transmission are also discussed. This research brings researchers a step closer to continuous, real-time systemic monitoring that will allow one to analyze the dynamic human physiology.

  10. Systems Thinking and Patient Safety

    DTIC Science & Technology

    2005-01-01

    1 Prologue Systems Thinking and Patient Safety Paul M. Schyve Patient safety is a prominent theme in health care delivery today. This should... patient safety and a willingness to invest in patient safety research. This volume—published by the Agency for Healthcare Research and Quality (AHRQ...The recent advent of the health care field’s emphasis on patient safety came at a favorable time. One or two decades earlier, our response would have

  11. Safety leadership and systems thinking: application and evaluation of a Risk Management Framework in the mining industry.

    PubMed

    Donovan, Sarah-Louise; Salmon, Paul M; Lenné, Michael G; Horberry, Tim

    2017-10-01

    Safety leadership is an important factor in supporting safety in high-risk industries. This article contends that applying systems-thinking methods to examine safety leadership can support improved learning from incidents. A case study analysis was undertaken of a large-scale mining landslide incident in which no injuries or fatalities were incurred. A multi-method approach was adopted, in which the Critical Decision Method, Rasmussen's Risk Management Framework and Accimap method were applied to examine the safety leadership decisions and actions which enabled the safe outcome. The approach enabled Rasmussen's predictions regarding safety and performance to be examined in the safety leadership context, with findings demonstrating the distribution of safety leadership across leader and system levels, and the presence of vertical integration as key to supporting the successful safety outcome. In doing so, the findings also demonstrate the usefulness of applying systems-thinking methods to examine and learn from incidents in terms of what 'went right'. The implications, including future research directions, are discussed. Practitioner Summary: This paper presents a case study analysis, in which systems-thinking methods are applied to the examination of safety leadership decisions and actions during a large-scale mining landslide incident. The findings establish safety leadership as a systems phenomenon, and furthermore, demonstrate the usefulness of applying systems-thinking methods to learn from incidents in terms of what 'went right'. Implications, including future research directions, are discussed.

  12. Nuclear criticality safety evaluation of the passage of decontaminated salt solution from the ITP filters into tank 50H for interim storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hobbs, D.T.; Davis, J.R.

    This report assesses the nuclear criticality safety associated with the decontaminated salt solution after passing through the In-Tank Precipitation (ITP) filters, through the stripper columns and into Tank 50H for interim storage until transfer to the Saltstone facility. The criticality safety basis for the ITP process is documented. Criticality safety in the ITP filtrate has been analyzed under normal and process upset conditions. This report evaluates the potential for criticality due to the precipitation or crystallization of fissionable material from solution and an ITP process filter failure in which insoluble material carryover from salt dissolution is present. It is concludedmore » that no single inadvertent error will cause criticality and that the process will remain subcritical under normal and credible abnormal conditions.« less

  13. Systems thinking and incivility in nursing practice: An integrative review.

    PubMed

    Phillips, Janet M; Stalter, Ann M; Winegardner, Sherri; Wiggs, Carol; Jauch, Amy

    2018-01-23

    There is a critical need for nurses and interprofessional healthcare providers to implement systems thinking (ST) across international borders, addressing incivility and its perilous effects on patient quality and safety. An estimated one million patients die in hospitals worldwide due to avoidable patient-related errors. Establishing safe and civil workplaces using ST is paramount to promoting clear, level-headed thinking from which patient-centered nursing actions can impact health systems. The purpose of the paper is to answer the research question, What ST evidence fosters the effect of workplace civility in practice settings? Whittemore and Knafl's integrative review method guided this study. The quality of articles was determined using Chu et al.'s Mixed Methods Assessment Tool. Thirty-eight studies were reviewed. Themes emerged describing antecedents and consequences of incivility as embedded within complex systems, suggesting improvements for civility and systems/ST in nursing practice. This integrative review provides information about worldwide incivility in nursing practice from a systems perspective. Several models are offered as a means of promoting civility in nursing practice to improve patient quality and safety. Further study is needed regarding incivility and resultant effects on patient quality and safety. © 2018 Wiley Periodicals, Inc.

  14. Event-Triggered Model Predictive Control for Embedded Artificial Pancreas Systems.

    PubMed

    Chakrabarty, Ankush; Zavitsanou, Stamatina; Doyle, Francis J; Dassau, Eyal

    2018-03-01

    The development of artificial pancreas (AP) technology for deployment in low-energy, embedded devices is contingent upon selecting an efficient control algorithm for regulating glucose in people with type 1 diabetes mellitus. In this paper, we aim to lower the energy consumption of the AP by reducing controller updates, that is, the number of times the decision-making algorithm is invoked to compute an appropriate insulin dose. Physiological insights into glucose management are leveraged to design an event-triggered model predictive controller (MPC) that operates efficiently, without compromising patient safety. The proposed event-triggered MPC is deployed on a wearable platform. Its robustness to latent hypoglycemia, model mismatch, and meal misinformation is tested, with and without meal announcement, on the full version of the US-FDA accepted UVA/Padova metabolic simulator. The event-based controller remains on for 18 h of 41 h in closed loop with unannounced meals, while maintaining glucose in 70-180 mg/dL for 25 h, compared to 27 h for a standard MPC controller. With meal announcement, the time in 70-180 mg/dL is almost identical, with the controller operating a mere 25.88% of the time in comparison with a standard MPC. A novel control architecture for AP systems enables safe glycemic regulation with reduced processor computations. Our proposed framework integrated seamlessly with a wide variety of popular MPC variants reported in AP research, customizes tradeoff between glycemic regulation and efficacy according to prior design specifications, and eliminates judicious prior selection of controller sampling times.

  15. Polarization-Analyzing CMOS Image Sensor With Monolithically Embedded Polarizer for Microchemistry Systems.

    PubMed

    Tokuda, T; Yamada, H; Sasagawa, K; Ohta, J

    2009-10-01

    This paper proposes and demonstrates a polarization-analyzing CMOS sensor based on image sensor architecture. The sensor was designed targeting applications for chiral analysis in a microchemistry system. The sensor features a monolithically embedded polarizer. Embedded polarizers with different angles were implemented to realize a real-time absolute measurement of the incident polarization angle. Although the pixel-level performance was confirmed to be limited, estimation schemes based on the variation of the polarizer angle provided a promising performance for real-time polarization measurements. An estimation scheme using 180 pixels in a 1deg step provided an estimation accuracy of 0.04deg. Polarimetric measurements of chiral solutions were also successfully performed to demonstrate the applicability of the sensor to optical chiral analysis.

  16. Development and Implementation of Production Area of Agricultural Product Data Collection System Based on Embedded System

    NASA Astrophysics Data System (ADS)

    Xi, Lei; Guo, Wei; Che, Yinchao; Zhang, Hao; Wang, Qiang; Ma, Xinming

    To solve problems in detecting the origin of agricultural products, this paper brings about an embedded data-based terminal, applies middleware thinking, and provides reusable long-range two-way data exchange module between business equipment and data acquisition systems. The system is constructed by data collection node and data center nodes. Data collection nodes taking embedded data terminal NetBoxII as the core, consisting of data acquisition interface layer, controlling information layer and data exchange layer, completing the data reading of different front-end acquisition equipments, and packing the data TCP to realize the data exchange between data center nodes according to the physical link (GPRS / CDMA / Ethernet). Data center node consists of the data exchange layer, the data persistence layer, and the business interface layer, which make the data collecting durable, and provide standardized data for business systems based on mapping relationship of collected data and business data. Relying on public communications networks, application of the system could establish the road of flow of information between the scene of origin certification and management center, and could realize the real-time collection, storage and processing between data of origin certification scene and databases of certification organization, and could achieve needs of long-range detection of agricultural origin.

  17. Estimated critical conditions for UF{sub 4}-oil systems in fully oil-reflected spherical geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plaster, M.J.

    Paraffinic oil has been exposed to UF{sub 6} gas in seal exhaust pumps and cascade equipment at the Portsmouth Gaseous Diffusion Plant. The resulting mixture is more nuclearly reactive than mixtures of UO{sub 2}F{sub 2} and H{sub 2}O and is not bounded by the subcritical mass limits presented in several nuclear criticality safety guides. The purpose of this analysis is to determine several critical parameters; specifically, (1) k{sub {infinity}} and the critical mass for several enrichments and moderation levels and (2) the mass limits for these mixtures. The estimated critical masses for the UF{sub 4}-oil systems are smaller than formore » the UO{sub 2}F{sub 2}-H{sub 2}O systems. The suggested mass limits for the UF{sub 4}-oil systems are 0.240, 0.280, 0.350, 0.430, and 0.670, and 1.170 kg {sup 235}U for enrichments of 100, 50, 20, 10, 5, and 3 wt.% {sup 235}U respectively.« less

  18. Prospective Safety Analysis and the Complex Aviation System

    NASA Technical Reports Server (NTRS)

    Smith, Brian E.

    2013-01-01

    Fatal accident rates in commercial passenger aviation are at historic lows yet have plateaued and are not showing evidence of further safety advances. Modern aircraft accidents reflect both historic causal factors and new unexpected "Black Swan" events. The ever-increasing complexity of the aviation system, along with its associated technology and organizational relationships, provides fertile ground for fresh problems. It is important to take a proactive approach to aviation safety by working to identify novel causation mechanisms for future aviation accidents before they happen. Progress has been made in using of historic data to identify the telltale signals preceding aviation accidents and incidents, using the large repositories of discrete and continuous data on aircraft and air traffic control performance and information reported by front-line personnel. Nevertheless, the aviation community is increasingly embracing predictive approaches to aviation safety. The "prospective workshop" early assessment tool described in this paper represents an approach toward this prospective mindset-one that attempts to identify the future vectors of aviation and asks the question: "What haven't we considered in our current safety assessments?" New causation mechanisms threatening aviation safety will arise in the future because new (or revised) systems and procedures will have to be used under future contextual conditions that have not been properly anticipated. Many simulation models exist for demonstrating the safety cases of new operational concepts and technologies. However the results from such models can only be as valid as the accuracy and completeness of assumptions made about the future context in which the new operational concepts and/or technologies will be immersed. Of course that future has not happened yet. What is needed is a reasonably high-confidence description of the future operational context, capturing critical contextual characteristics that modulate

  19. Wireless and embedded carbon nanotube networks for damage detection in concrete structures

    NASA Astrophysics Data System (ADS)

    Saafi, Mohamed

    2009-09-01

    Concrete structures undergo an uncontrollable damage process manifesting in the form of cracks due to the coupling of fatigue loading and environmental effects. In order to achieve long-term durability and performance, continuous health monitoring systems are needed to make critical decisions regarding operation, maintenance and repairs. Recent advances in nanostructured materials such as carbon nanotubes have opened the door for new smart and advanced sensing materials that could effectively be used in health monitoring of structures where wireless and real time sensing could provide information on damage development. In this paper, carbon nanotube networks were embedded into a cement matrix to develop an in situ wireless and embedded sensor for damage detection in concrete structures. By wirelessly measuring the change in the electrical resistance of the carbon nanotube networks, the progress of damage can be detected and monitored. As a proof of concept, wireless cement-carbon nanotube sensors were embedded into concrete beams and subjected to monotonic and cyclic loading to evaluate the effect of damage on their response. Experimental results showed that the wireless response of the embedded nanotube sensors changes due to the formation of cracks during loading. In addition, the nanotube sensors were able to detect the initiation of damage at an early stage of loading.

  20. In-space propellant systems safety. Volume 3: System safety analysis

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The primary objective was to examine from a system safety viewpoint in-space propellant logistic elements and operations to define the potential hazards and to recommend means to reduce, eliminate or control them. A secondary objective was to conduct trade studies of specific systems or operations to determine the safest of alternate approaches.

  1. Application of the SCALE TSUNAMI Tools for the Validation of Criticality Safety Calculations Involving 233U

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Don; Rearden, Bradley T; Hollenbach, Daniel F

    2009-02-01

    The Radiochemical Development Facility at Oak Ridge National Laboratory has been storing solid materials containing 233U for decades. Preparations are under way to process these materials into a form that is inherently safe from a nuclear criticality safety perspective. This will be accomplished by down-blending the {sup 233}U materials with depleted or natural uranium. At the request of the U.S. Department of Energy, a study has been performed using the SCALE sensitivity and uncertainty analysis tools to demonstrate how these tools could be used to validate nuclear criticality safety calculations of selected process and storage configurations. ISOTEK nuclear criticality safetymore » staff provided four models that are representative of the criticality safety calculations for which validation will be needed. The SCALE TSUNAMI-1D and TSUNAMI-3D sequences were used to generate energy-dependent k{sub eff} sensitivity profiles for each nuclide and reaction present in the four safety analysis models, also referred to as the applications, and in a large set of critical experiments. The SCALE TSUNAMI-IP module was used together with the sensitivity profiles and the cross-section uncertainty data contained in the SCALE covariance data files to propagate the cross-section uncertainties ({Delta}{sigma}/{sigma}) to k{sub eff} uncertainties ({Delta}k/k) for each application model. The SCALE TSUNAMI-IP module was also used to evaluate the similarity of each of the 672 critical experiments with each application. Results of the uncertainty analysis and similarity assessment are presented in this report. A total of 142 experiments were judged to be similar to application 1, and 68 experiments were judged to be similar to application 2. None of the 672 experiments were judged to be adequately similar to applications 3 and 4. Discussion of the uncertainty analysis and similarity assessment is provided for each of the four applications. Example upper subcritical limits (USLs) were

  2. Implementation of an integrated computerized prescriber order-entry system for chemotherapy in a multisite safety-net health system.

    PubMed

    Chung, Clement; Patel, Shital; Lee, Rosetta; Fu, Lily; Reilly, Sean; Ho, Tuyet; Lionetti, Jason; George, Michael D; Taylor, Pam

    2018-03-15

    The development of a computerized prescriber order-entry (CPOE) system for chemotherapy in a multisite safety-net health system and the challenges to its successful implementation are described. Before CPOE for chemotherapy was first implemented and embedded in the electronic medical record system of Harris Health System (HHS), pharmacy personnel relied on regimen-specific preprinted order sets. However, due to differences in practice styles and workflow logistics, the paper orders across the 3 facilities were mostly site specific, with varying clinical content. Many of these order sets had not been approved by the oncology subcommittee. In addition, disparities in clinical knowledge and lack of communication contributed to inconsistencies in order set development. Led by medical directors from medical oncology departments at the 3 facilities, pharmacy administrators, and information technology representatives, HHS committed resources to supporting the adoption and use of a CPOE system for chemotherapy. Five practical lessons of broad applicability have been learned: engagement of interprofessional stakeholders, optimization of workflow before CPOE implementation, requirement of verification tool for CPOE, consolidation of protocols, and commitment to ongoing training and support. Evaluation of the CPOE system demonstrated a systemwide reduction in medication errors by 75% ( p < 0.05). Satisfaction with the CPOE system varied among sites and was unchanged institutionwide 6 months after the CPOE implementation. The development and implementation of CPOE for chemotherapy at a multisite safety-net health system created opportunities to optimize patient care and reduce variations through interprofessional collaborations. Initial evaluation suggested that CPOE reduced the medication-order error rate and improved user satisfaction in 1 of 3 facilities. Copyright © 2018 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  3. Software system safety

    NASA Technical Reports Server (NTRS)

    Uber, James G.

    1988-01-01

    Software itself is not hazardous, but since software and hardware share common interfaces there is an opportunity for software to create hazards. Further, these software systems are complex, and proven methods for the design, analysis, and measurement of software safety are not yet available. Some past software failures, future NASA software trends, software engineering methods, and tools and techniques for various software safety analyses are reviewed. Recommendations to NASA are made based on this review.

  4. Soft-error tolerance and energy consumption evaluation of embedded computer with magnetic random access memory in practical systems using computer simulations

    NASA Astrophysics Data System (ADS)

    Nebashi, Ryusuke; Sakimura, Noboru; Sugibayashi, Tadahiko

    2017-08-01

    We evaluated the soft-error tolerance and energy consumption of an embedded computer with magnetic random access memory (MRAM) using two computer simulators. One is a central processing unit (CPU) simulator of a typical embedded computer system. We simulated the radiation-induced single-event-upset (SEU) probability in a spin-transfer-torque MRAM cell and also the failure rate of a typical embedded computer due to its main memory SEU error. The other is a delay tolerant network (DTN) system simulator. It simulates the power dissipation of wireless sensor network nodes of the system using a revised CPU simulator and a network simulator. We demonstrated that the SEU effect on the embedded computer with 1 Gbit MRAM-based working memory is less than 1 failure in time (FIT). We also demonstrated that the energy consumption of the DTN sensor node with MRAM-based working memory can be reduced to 1/11. These results indicate that MRAM-based working memory enhances the disaster tolerance of embedded computers.

  5. Evaluation Of The Vehicle Radar Safety Systems Rashid Radar Safety Brake Collision Warning System, Final Report

    DOT National Transportation Integrated Search

    1988-02-01

    THIS EVALUATION OF THE VEHICLE RADAR SAFETY SYSTEMS? ANTI-COLLISION DEVICE (HEREAFTER VRSS) WAS UNDERTAKEN BY THE OPERATOR PERFORMANCE AND SAFETY ANALYSIS DIVISION OF THE TRANSPORTATION SYSTEMS CENTER AT THE REQUEST OF THE NATIONAL HIGHWAY TRAFFIC SA...

  6. Microfluidic systems with embedded materials and structures and method thereof

    DOEpatents

    Morse, Jeffrey D [Martinez, CA; Rose, Klint A [Boston, MA; Maghribi, Mariam [Livermore, CA; Benett, William [Livermore, CA; Krulevitch, Peter [Pleasanton, CA; Hamilton, Julie [Tracy, CA; Graff, Robert T [Modesto, CA; Jankowski, Alan [Livermore, CA

    2007-03-06

    Described herein is a process for fabricating microfluidic systems with embedded components in which micron-scale features are molded into the polymeric material polydimethylsiloxane (PDMS). Micromachining is used to create a mold master and the liquid precursors for PDMS are poured over the mold and allowed to cure. The PDMS is then removed form the mold and bonded to another material such as PDMS, glass, or silicon after a simple surface preparation step to form sealed microchannels.

  7. A Taxonomy of Fallacies in System Safety Arguments

    NASA Technical Reports Server (NTRS)

    Greenwell, William S.; Knight, John C.; Holloway, C. Michael; Pease, Jacob J.

    2006-01-01

    Safety cases are gaining acceptance as assurance vehicles for safety-related systems. A safety case documents the evidence and argument that a system is safe to operate; however, logical fallacies in the underlying argument may undermine a system s safety claims. Removing these fallacies is essential to reduce the risk of safety-related system failure. We present a taxonomy of common fallacies in safety arguments that is intended to assist safety professionals in avoiding and detecting fallacious reasoning in the arguments they develop and review. The taxonomy derives from a survey of general argument fallacies and a separate survey of fallacies in real-world safety arguments. Our taxonomy is specific to safety argumentation, and it is targeted at professionals who work with safety arguments but may lack formal training in logic or argumentation. We discuss the rationale for the selection and categorization of fallacies in the taxonomy. In addition to its applications to the development and review of safety cases, our taxonomy could also support the analysis of system failures and promote the development of more robust safety case patterns.

  8. Software Dependability and Safety Evaluations ESA's Initiative

    NASA Astrophysics Data System (ADS)

    Hernek, M.

    ESA has allocated funds for an initiative to evaluate Dependability and Safety methods of Software. The objectives of this initiative are; · More extensive validation of Safety and Dependability techniques for Software · Provide valuable results to improve the quality of the Software thus promoting the application of Dependability and Safety methods and techniques. ESA space systems are being developed according to defined PA requirement specifications. These requirements may be implemented through various design concepts, e.g. redundancy, diversity etc. varying from project to project. Analysis methods (FMECA. FTA, HA, etc) are frequently used during requirements analysis and design activities to assure the correct implementation of system PA requirements. The criticality level of failures, functions and systems is determined and by doing that the critical sub-systems are identified, on which dependability and safety techniques are to be applied during development. Proper performance of the software development requires the development of a technical specification for the products at the beginning of the life cycle. Such technical specification comprises both functional and non-functional requirements. These non-functional requirements address characteristics of the product such as quality, dependability, safety and maintainability. Software in space systems is more and more used in critical functions. Also the trend towards more frequent use of COTS and reusable components pose new difficulties in terms of assuring reliable and safe systems. Because of this, its dependability and safety must be carefully analysed. ESA identified and documented techniques, methods and procedures to ensure that software dependability and safety requirements are specified and taken into account during the design and development of a software system and to verify/validate that the implemented software systems comply with these requirements [R1].

  9. System safety management: A new discipline

    NASA Technical Reports Server (NTRS)

    Pope, W. C.

    1971-01-01

    The systems theory is discussed in relation to safety management. It is suggested that systems safety management, as a new discipline, holds great promise for reducing operating errors, conserving labor resources, avoiding operating costs due to mistakes, and for improving managerial techniques. It is pointed out that managerial failures or system breakdowns are the basic reasons for human errors and condition defects. In this respect, a recommendation is made that safety engineers stop visualizing the problem only with the individual (supervisor or employee) and see the problem from the systems point of view.

  10. Embedded object concept: case balancing two-wheeled robot

    NASA Astrophysics Data System (ADS)

    Vallius, Tero; Röning, Juha

    2007-09-01

    This paper presents the Embedded Object Concept (EOC) and a telepresence robot system which is a test case for the EOC. The EOC utilizes common object-oriented methods used in software by applying them to combined Lego-like software-hardware entities. These entities represent objects in object-oriented design methods, and they are the building blocks of embedded systems. The goal of the EOC is to make the designing of embedded systems faster and easier. This concept enables people without comprehensive knowledge in electronics design to create new embedded systems, and for experts it shortens the design time of new embedded systems. We present the current status of a telepresence robot created with Atomi-objects, which is the name for our implementation of the embedded objects. The telepresence robot is a relatively complex test case for the EOC. The robot has been constructed using incremental device development, which is made possible by the architecture of the EOC. The robot contains video and audio exchange capability and a controlling system for driving with two wheels. The robot consists of Atomi-objects, demonstrating the suitability of the EOC for prototyping and easy modifications, and proving the capabilities of the EOC by realizing a function that normally requires a computer. The computer counterpart is a regular PC with audio and video capabilities running with a robot control application. The robot is functional and successfully tested.

  11. The Game Embedded CALL System to Facilitate English Vocabulary Acquisition and Pronunciation

    ERIC Educational Resources Information Center

    Young, Shelley Shwu-Ching; Wang, Yi-Hsuan

    2014-01-01

    The aim of this study is to make a new attempt to explore the potential of integrating game strategies with automatic speech recognition technologies to provide learners with individual opportunities for English pronunciation learning. The study developed the Game Embedded CALL (GeCALL) system with two activities for on-line speaking practice. For…

  12. Extended time-to-collision measures for road traffic safety assessment.

    PubMed

    Minderhoud, M M; Bovy, P H

    2001-01-01

    This article describes two new safety indicators based on the time-to-collision notion suitable for comparative road traffic safety analyses. Such safety indicators can be applied in the comparison of a do-nothing case with an adapted situation, e.g. the introduction of intelligent driver support systems. In contrast to the classical time-to-collision value, measured at a cross section, the improved safety indicators use vehicle trajectories collected over a specific time horizon for a certain roadway segment to calculate the overall safety indicator value. Vehicle-specific indicator values as well as safety-critical probabilities can easily be determined from the developed safety measures. Application of the derived safety indicators is demonstrated for the assessment of the potential safety impacts of driver support systems from which it appears that some Autonomous Intelligent Cruise Control (AICC) designs are more safety-critical than the reference case without these systems. It is suggested that the indicator threshold value to be applied in the safety assessment has to be adapted when advanced AICC-systems with safe characteristics are introduced.

  13. An overview of the V&V of Flight-Critical Systems effort at NASA

    NASA Technical Reports Server (NTRS)

    Brat, Guillaume P.

    2011-01-01

    As the US is getting ready for the Next Generation (NextGen) of Air Traffic System, there is a growing concern that the current techniques for verification and validation will not be adequate for the changes to come. The JPDO (in charge of implementing NextGen) has given NASA a mandate to address the problem and it resulted in the formulation of the V&V of Flight-Critical Systems effort. This research effort is divided into four themes: argument-based safety assurance, distributed systems, authority and autonomy, and, software intensive systems. This paper presents an overview of the technologies that will address the problem.

  14. Critical Landau Velocity in Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Brauer, Nils B.; Smolarek, Szymon; Loginov, Evgeniy; Mateo, David; Hernando, Alberto; Pi, Marti; Barranco, Manuel; Buma, Wybren J.; Drabbels, Marcel

    2013-10-01

    The best-known property of superfluid helium is the vanishing viscosity that objects experience while moving through the liquid with speeds below the so-called critical Landau velocity. This critical velocity is generally considered a macroscopic property as it is related to the collective excitations of the helium atoms in the liquid. In the present work we determine to what extent this concept can still be applied to nanometer-scale, finite size helium systems. To this end, atoms and molecules embedded in helium nanodroplets of various sizes are accelerated out of the droplets by means of optical excitation, and the speed distributions of the ejected particles are determined. The measurements reveal the existence of a critical velocity in these systems, even for nanodroplets consisting of only a thousand helium atoms. Accompanying theoretical simulations based on a time-dependent density functional description of the helium confirm and further elucidate this experimental finding.

  15. Embedded diagnostic, prognostic, and health management system and method for a humanoid robot

    NASA Technical Reports Server (NTRS)

    Barajas, Leandro G. (Inventor); Strawser, Philip A (Inventor); Sanders, Adam M (Inventor); Reiland, Matthew J (Inventor)

    2013-01-01

    A robotic system includes a humanoid robot with multiple compliant joints, each moveable using one or more of the actuators, and having sensors for measuring control and feedback data. A distributed controller controls the joints and other integrated system components over multiple high-speed communication networks. Diagnostic, prognostic, and health management (DPHM) modules are embedded within the robot at the various control levels. Each DPHM module measures, controls, and records DPHM data for the respective control level/connected device in a location that is accessible over the networks or via an external device. A method of controlling the robot includes embedding a plurality of the DPHM modules within multiple control levels of the distributed controller, using the DPHM modules to measure DPHM data within each of the control levels, and recording the DPHM data in a location that is accessible over at least one of the high-speed communication networks.

  16. Innovative Embedded Fiber Sensor System for Spacecraft's Health in Situ Monitoring

    NASA Astrophysics Data System (ADS)

    Haddad, E.; Kruzelecky, R.; Zou, J.; Wong, B.; Mohammad, N.; Thatte, G.; Jamroz, W.; Riendeau, S.

    2009-01-01

    Monitoring of various parameters in satellites is desirable to provide the necessary information on the condition and status of the spacecraft and its various subsystems (AOCS, thermal, propulsion, power, mechanisms etc.) throughout its lifecycle. Fiber-Optic Bragg Grating (FBG) sensors represent an alternative to current technological approaches, enabling in situ distributed dynamic health monitoring, to provide a mapping of the spacecraft strain and temperature distributions, for varying operating and orbital conditions. In addition, these sensors may be implemented in the very early spacecraft fabrication stages, as built-in testing and diagnostic tools, and then used continuously through the mission phases until the end of the spacecraft mission. This can substantially reduce the cost of ground qualification and facilitate improved spacecraft design. MPBC has developed and ground qualified a demonstrator fiber sensor network, the Fiber Sensor Demonstrator (FSD) that has been successfully integrated with ESA's Proba-2. This is scheduled to launch in the fall of 2008, and will be the first complete fiber-optic sensing system in space. The advantages of the MPBC approach include a central interrogation system that can be used to control a multi-parameter sensing incorporating various types of sensors. Using a combination of both parallel signal distribution and serial wavelength division sensor multiplexing along single strands of optical fiber enables a high sensor capacity. In a continuous effort, MPB Communications (MPBC) is developing an innovative Embedded Distributed Fiber Sensor (EDFOS) within space composite structures. It addresses the challenges of embedding very thin fiber sensors within a selected material matrix, the decoupling of the strain and temperature effects on the fiber, and the sensor distribution. The embedded sensor approach allows the sensor system to follow the status of the space structure through its entire life cycle; from fabrication

  17. FingerScanner: Embedding a Fingerprint Scanner in a Raspberry Pi.

    PubMed

    Sapes, Jordi; Solsona, Francesc

    2016-02-06

    Nowadays, researchers are paying increasing attention to embedding systems. Cost reduction has lead to an increase in the number of platforms supporting the operating system Linux, jointly with the Raspberry Pi motherboard. Thus, embedding devices on Raspberry-Linux systems is a goal in order to make competitive commercial products. This paper presents a low-cost fingerprint recognition system embedded into a Raspberry Pi with Linux.

  18. FingerScanner: Embedding a Fingerprint Scanner in a Raspberry Pi

    PubMed Central

    Sapes, Jordi; Solsona, Francesc

    2016-01-01

    Nowadays, researchers are paying increasing attention to embedding systems. Cost reduction has lead to an increase in the number of platforms supporting the operating system Linux, jointly with the Raspberry Pi motherboard. Thus, embedding devices on Raspberry-Linux systems is a goal in order to make competitive commercial products. This paper presents a low-cost fingerprint recognition system embedded into a Raspberry Pi with Linux. PMID:26861340

  19. An enhanced Ada run-time system for real-time embedded processors

    NASA Technical Reports Server (NTRS)

    Sims, J. T.

    1991-01-01

    An enhanced Ada run-time system has been developed to support real-time embedded processor applications. The primary focus of this development effort has been on the tasking system and the memory management facilities of the run-time system. The tasking system has been extended to support efficient and precise periodic task execution as required for control applications. Event-driven task execution providing a means of task-asynchronous control and communication among Ada tasks is supported in this system. Inter-task control is even provided among tasks distributed on separate physical processors. The memory management system has been enhanced to provide object allocation and protected access support for memory shared between disjoint processors, each of which is executing a distinct Ada program.

  20. Determination of Slope Safety Factor with Analytical Solution and Searching Critical Slip Surface with Genetic-Traversal Random Method

    PubMed Central

    2014-01-01

    In the current practice, to determine the safety factor of a slope with two-dimensional circular potential failure surface, one of the searching methods for the critical slip surface is Genetic Algorithm (GA), while the method to calculate the slope safety factor is Fellenius' slices method. However GA needs to be validated with more numeric tests, while Fellenius' slices method is just an approximate method like finite element method. This paper proposed a new method to determine the minimum slope safety factor which is the determination of slope safety factor with analytical solution and searching critical slip surface with Genetic-Traversal Random Method. The analytical solution is more accurate than Fellenius' slices method. The Genetic-Traversal Random Method uses random pick to utilize mutation. A computer automatic search program is developed for the Genetic-Traversal Random Method. After comparison with other methods like slope/w software, results indicate that the Genetic-Traversal Random Search Method can give very low safety factor which is about half of the other methods. However the obtained minimum safety factor with Genetic-Traversal Random Search Method is very close to the lower bound solutions of slope safety factor given by the Ansys software. PMID:24782679

  1. Patient Safety and the Malpractice System.

    PubMed

    Swift, James Q

    2017-05-01

    The cost of health care in the United States and malpractice insurance has escalated greatly over the past 30 years. In an ideal world, the goals of the tort system would be aligned with efforts at improving safety. In fact, there is little evidence that the tort system and the processes of risk management and informed consent have improved patient safety. This article explores the disunion between patient safety and the malpractice system. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Self-Learning Embedded System for Object Identification in Intelligent Infrastructure Sensors.

    PubMed

    Villaverde, Monica; Perez, David; Moreno, Felix

    2015-11-17

    The emergence of new horizons in the field of travel assistant management leads to the development of cutting-edge systems focused on improving the existing ones. Moreover, new opportunities are being also presented since systems trend to be more reliable and autonomous. In this paper, a self-learning embedded system for object identification based on adaptive-cooperative dynamic approaches is presented for intelligent sensor's infrastructures. The proposed system is able to detect and identify moving objects using a dynamic decision tree. Consequently, it combines machine learning algorithms and cooperative strategies in order to make the system more adaptive to changing environments. Therefore, the proposed system may be very useful for many applications like shadow tolls since several types of vehicles may be distinguished, parking optimization systems, improved traffic conditions systems, etc.

  3. Critical safety assurance factors for manned spacecraft - A fire safety perspective

    NASA Technical Reports Server (NTRS)

    Rodney, George A.

    1990-01-01

    Safety assurance factors for manned spacecraft are discussed with a focus on the Space Station Freedom. A hazard scenario is provided to demonstrate a process commonly used by safety engineers and other analysts to identify onboard safety risks. Fire strategies are described, including a review of fire extinguishing agents being considered for the Space Station. Lessons learned about fire safety technology in other areas are also noted. NASA and industry research on fire safety applications is discussed. NASA's approach to ensuring safety for manned spacecraft is addressed in the context of its multidiscipline program.

  4. A system for respiratory motion detection using optical fibers embedded into textiles.

    PubMed

    D'Angelo, L T; Weber, S; Honda, Y; Thiel, T; Narbonneau, F; Luth, T C

    2008-01-01

    In this contribution, a first prototype for mobile respiratory motion detection using optical fibers embedded into textiles is presented. The developed system consists of a T-shirt with an integrated fiber sensor and a portable monitoring unit with a wireless communication link enabling the data analysis and visualization on a PC. A great effort is done worldwide to develop mobile solutions for health monitoring of vital signs for patients needing continuous medical care. Wearable, comfortable and smart textiles incorporating sensors are good approaches to solve this problem. In most of the cases, electrical sensors are integrated, showing significant limits such as for the monitoring of anaesthetized patients during Magnetic Resonance Imaging (MRI). OFSETH (Optical Fibre Embedded into technical Textile for Healthcare) uses optical sensor technologies to extend the current capabilities of medical technical textiles.

  5. The effects of perceived USB-delay for sensor and embedded system development.

    PubMed

    Du, J; Kade, D; Gerdtman, C; Ozcan, O; Linden, M

    2016-08-01

    Perceiving delay in computer input devices is a problem which gets even more eminent when being used in healthcare applications and/or in small, embedded systems. Therefore, the amount of delay found as acceptable when using computer input devices was investigated in this paper. A device was developed to perform a benchmark test for the perception of delay. The delay can be set from 0 to 999 milliseconds (ms) between a receiving computer and an available USB-device. The USB-device can be a mouse, a keyboard or some other type of USB-connected input device. Feedback from performed user tests with 36 people form the basis for the determination of time limitations for the USB data processing in microprocessors and embedded systems without users' noticing the delay. For this paper, tests were performed with a personal computer and a common computer mouse, testing the perception of delays between 0 and 500 ms. The results of our user tests show that perceived delays up to 150 ms were acceptable and delays larger than 300 ms were not acceptable at all.

  6. Safer Systems: A NextGen Aviation Safety Strategic Goal

    NASA Technical Reports Server (NTRS)

    Darr, Stephen T.; Ricks, Wendell R.; Lemos, Katherine A.

    2008-01-01

    The Joint Planning and Development Office (JPDO), is charged by Congress with developing the concepts and plans for the Next Generation Air Transportation System (NextGen). The National Aviation Safety Strategic Plan (NASSP), developed by the Safety Working Group of the JPDO, focuses on establishing the goals, objectives, and strategies needed to realize the safety objectives of the NextGen Integrated Plan. The three goal areas of the NASSP are Safer Practices, Safer Systems, and Safer Worldwide. Safer Practices emphasizes an integrated, systematic approach to safety risk management through implementation of formalized Safety Management Systems (SMS) that incorporate safety data analysis processes, and the enhancement of methods for ensuring safety is an inherent characteristic of NextGen. Safer Systems emphasizes implementation of safety-enhancing technologies, which will improve safety for human-centered interfaces and enhance the safety of airborne and ground-based systems. Safer Worldwide encourages coordinating the adoption of the safer practices and safer systems technologies, policies and procedures worldwide, such that the maximum level of safety is achieved across air transportation system boundaries. This paper introduces the NASSP and its development, and focuses on the Safer Systems elements of the NASSP, which incorporates three objectives for NextGen systems: 1) provide risk reducing system interfaces, 2) provide safety enhancements for airborne systems, and 3) provide safety enhancements for ground-based systems. The goal of this paper is to expose avionics and air traffic management system developers to NASSP objectives and Safer Systems strategies.

  7. New research opportunities for roadside safety barriers improvement

    NASA Astrophysics Data System (ADS)

    Cantisani, Giuseppe; Di Mascio, Paola; Polidori, Carlo

    2017-09-01

    Among the major topics regarding the protection of roads, restraint systems still represent a big opportunity in order to increase safety performances. When accidents happen, in fact, the infrastructure can substantially contribute to the reduction of consequences if its marginal spaces are well designed and/or effective restraint systems are installed there. Nevertheless, basic concepts and technology of road safety barriers have not significantly changed for the last two decades. The paper proposes a new approach to the study aimed to define possible enhancements of restraint safety systems performances, by using new materials and defining innovative design principles. In particular, roadside systems can be developed with regard to vehicle-barrier interaction, vehicle-oriented design (included low-mass and extremely low-mass vehicles), traffic suitability, user protection, working width reduction. In addition, thanks to sensors embedded into the barriers, it is also expected to deal with new challenges related to the guidance of automatic vehicles and I2V communication.

  8. Criticality safety strategy and analysis summary for the fuel cycle facility electrorefiner at Argonne National Laboratory West

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mariani, R.D.; Benedict, R.W.; Lell, R.M.

    1996-05-01

    As part of the termination activities of Experimental Breeder Reactor II (EBR-II) at Argonne National Laboratory (ANL) West, the spent metallic fuel from EBR-II will be treated in the fuel cycle facility (FCF). A key component of the spent-fuel treatment process in the FCF is the electrorefiner (ER) in which the actinide metals are separated from the active metal fission products and the reactive bond sodium. In the electrorefining process, the metal fuel is anodically dissolved into a high-temperature molten salt, and refined uranium or uranium/plutonium products are deposited at cathodes. The criticality safety strategy and analysis for the ANLmore » West FCF ER is summarized. The FCF ER operations and processes formed the basis for evaluating criticality safety and control during actinide metal fuel refining. To show criticality safety for the FCF ER, the reference operating conditions for the ER had to be defined. Normal operating envelopes (NOEs) were then defined to bracket the important operating conditions. To keep the operating conditions within their NOEs, process controls were identified that can be used to regulate the actinide forms and content within the ER. A series of operational checks were developed for each operation that will verify the extent or success of an operation. The criticality analysis considered the ER operating conditions at their NOE values as the point of departure for credible and incredible failure modes. As a result of the analysis, FCF ER operations were found to be safe with respect to criticality.« less

  9. Transportation systems safety hazard analysis tool (SafetyHAT) user guide (version 1.0)

    DOT National Transportation Integrated Search

    2014-03-24

    This is a user guide for the transportation system Safety Hazard Analysis Tool (SafetyHAT) Version 1.0. SafetyHAT is a software tool that facilitates System Theoretic Process Analysis (STPA.) This user guide provides instructions on how to download, ...

  10. Critical and Alternative Directions in Applied Linguistics

    ERIC Educational Resources Information Center

    Pennycook, Alastair

    2010-01-01

    Critical directions in applied linguistics can be understood in various ways. The term "critical" as it has been used in "critical applied linguistics," "critical discourse analysis," "critical literacy" and so forth, is now embedded as part of applied linguistic work, adding an overt focus on questions of power and inequality to discourse…

  11. Electrostatically Embedded Many-Body Approximation for Systems of Water, Ammonia, and Sulfuric Acid and the Dependence of Its Performance on Embedding Charges.

    PubMed

    Leverentz, Hannah R; Truhlar, Donald G

    2009-06-09

    This work tests the capability of the electrostatically embedded many-body (EE-MB) method to calculate accurate (relative to conventional calculations carried out at the same level of electronic structure theory and with the same basis set) binding energies of mixed clusters (as large as 9-mers) consisting of water, ammonia, sulfuric acid, and ammonium and bisulfate ions. This work also investigates the dependence of the accuracy of the EE-MB approximation on the type and origin of the charges used for electrostatically embedding these clusters. The conclusions reached are that for all of the clusters and sets of embedding charges studied in this work, the electrostatically embedded three-body (EE-3B) approximation is capable of consistently yielding relative errors of less than 1% and an average relative absolute error of only 0.3%, and that the performance of the EE-MB approximation does not depend strongly on the specific set of embedding charges used. The electrostatically embedded pairwise approximation has errors about an order of magnitude larger than EE-3B. This study also explores the question of why the accuracy of the EE-MB approximation shows such little dependence on the types of embedding charges employed.

  12. WTEC monograph on instrumentation, control and safety systems of Canadian nuclear facilities

    NASA Technical Reports Server (NTRS)

    Uhrig, Robert E.; Carter, Richard J.

    1993-01-01

    This report updates a 1989-90 survey of advanced instrumentation and controls (I&C) technologies and associated human factors issues in the U.S. and Canadian nuclear industries carried out by a team from Oak Ridge National Laboratory (Carter and Uhrig 1990). The authors found that the most advanced I&C systems are in the Canadian CANDU plants, where the newest plant (Darlington) has digital systems in almost 100 percent of its control systems and in over 70 percent of its plant protection system. Increased emphasis on human factors and cognitive science in modern control rooms has resulted in a reduced workload for the operators and the elimination of many human errors. Automation implemented through digital instrumentation and control is effectively changing the role of the operator to that of a systems manager. The hypothesis that properly introducing digital systems increases safety is supported by the Canadian experience. The performance of these digital systems has been achieved using appropriate quality assurance programs for both hardware and software development. Recent regulatory authority review of the development of safety-critical software has resulted in the creation of isolated software modules with well defined interfaces and more formal structure in the software generation. The ability of digital systems to detect impending failures and initiate a fail-safe action is a significant safety issue that should be of special interest to nuclear utilities and regulatory authorities around the world.

  13. Safety features of subcritical fluid fueled systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, C.R.

    1995-10-01

    Accelerator-driven transmutation technology has been under study at Los Alamos for several years for application to nuclear waste treatment, tritium production, energy generation, and recently, to the disposition of excess weapons plutonium. Studies and evaluations performed to date at Los Alamos have led to a current focus on a fluid-fuel, fission system operating in a neutron source-supported subcritical mode, using molten salt reactor technology and accelerator-driven proton-neutron spallation. In this paper, the safety features and characteristics of such systems are explored from the perspective of the fundamental nuclear safety objectives that any reactor-type system should address. This exploration is qualitativemore » in nature and uses current vintage solid-fueled reactors as a baseline for comparison. Based on the safety perspectives presented, such systems should be capable of meeting the fundamental nuclear safety objectives. In addition, they should be able to provide the safety robustness desired for advanced reactors. However, the manner in which safety objectives and robustness are achieved is very different from that associated with conventional reactors. Also, there are a number of safety design and operational challenges that will have to be addressed for the safety potential of such systems to be credible.« less

  14. 46 CFR 62.25-15 - Safety control systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ....35-50. Note: Safety control systems include automatic and manual safety trip controls and automatic... engines. (e) Automatic safety trip control systems must— (1) Be provided where there is an immediate... 46 Shipping 2 2011-10-01 2011-10-01 false Safety control systems. 62.25-15 Section 62.25-15...

  15. Indigenous Healing Knowledge and Infertility in Indonesia: Learning about Cultural Safety from Sasak Midwives.

    PubMed

    Bennett, Linda Rae

    2017-01-01

    In this article I demonstrate what can be learned from the indigenous healing knowledge and practices of traditional Sasak midwives on Lombok island in eastern Indonesia. I focus on the treatment of infertility, contrasting the differential experiences of Sasak women when they consult traditional midwives and biomedical doctors. Women's and midwives' perspectives provide critical insight into how cultural safety is both constituted and compromised in the context of reproductive health care. Core components of cultural safety embedded in the practices of traditional midwives include the treatment of women as embodied subjects rather than objectified bodies, and privileging physical contact as a healing modality. Cultural safety also encompasses respect for women's privacy and bodily dignity, as well as two-way and narrative communication styles. Local understandings of cultural safety have great potential to improve the routine practices of doctors, particularly in relation to doctor-patient communication and protocols for conducting pelvic exams.

  16. Design, implementation and evaluation of an independent real-time safety layer for medical robotic systems using a force-torque-acceleration (FTA) sensor.

    PubMed

    Richter, Lars; Bruder, Ralf

    2013-05-01

    Most medical robotic systems require direct interaction or contact with the robot. Force-Torque (FT) sensors can easily be mounted to the robot to control the contact pressure. However, evaluation is often done in software, which leads to latencies. To overcome that, we developed an independent safety system, named FTA sensor, which is based on an FT sensor and an accelerometer. An embedded system (ES) runs a real-time monitoring system for continuously checking of the readings. In case of a collision or error, it instantaneously stops the robot via the robot's external emergency stop. We found that the ES implementing the FTA sensor has a maximum latency of [Formula: see text] ms to trigger the robot's emergency stop. For the standard settings in the application of robotized transcranial magnetic stimulation, the robot will stop after at most 4 mm. Therefore, it works as an independent safety layer preventing patient and/or operator from serious harm.

  17. Unfree markets: socially embedded informal health providers in northern Karnataka, India.

    PubMed

    George, Asha; Iyer, Aditi

    2013-11-01

    The dynamics of informal health markets in marginalised regions are relevant to policy discourse in India, but are poorly understood. We examine how informal health markets operate from the viewpoint of informal providers (those without any government-recognised medical degrees, otherwise known as RMPs) by drawing upon data from a household survey in 2002, a provider census in 2004 and ongoing field observations from a research site in Koppal district, Karnataka, India. We find that despite their illegality, RMPs depend on government and private providers for their training and referral networks. Buffeted by unregulated market pressures, RMPs are driven to provide allopathic commodities regardless of need, but can also be circumspect in their practice. Though motivated by profit, their socially embedded practice at community level at times undermines their ability to ensure payment of fees for their services. In addition, RMPs feel that communities can threaten them via violence or malicious rumours, leading them to seek political favour and social protection from village elites and elected representatives. RMPs operate within negotiated quid pro quo bargains that lead to tenuous reciprocity or fragile trust between them and the communities in which they practise. In the context of this 'unfree' market, some RMPs reported being more embedded in health systems, more responsive to communities and more vulnerable to unregulated market pressures than others. Understanding the heterogeneity, nuanced motivations and the embedded social relations that mark informal providers in the health systems, markets and communities they work in, is critical for health system reforms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. myBrain: a novel EEG embedded system for epilepsy monitoring.

    PubMed

    Pinho, Francisco; Cerqueira, João; Correia, José; Sousa, Nuno; Dias, Nuno

    2017-10-01

    The World Health Organisation has pointed that a successful health care delivery, requires effective medical devices as tools for prevention, diagnosis, treatment and rehabilitation. Several studies have concluded that longer monitoring periods and outpatient settings might increase diagnosis accuracy and success rate of treatment selection. The long-term monitoring of epileptic patients through electroencephalography (EEG) has been considered a powerful tool to improve the diagnosis, disease classification, and treatment of patients with such condition. This work presents the development of a wireless and wearable EEG acquisition platform suitable for both long-term and short-term monitoring in inpatient and outpatient settings. The developed platform features 32 passive dry electrodes, analogue-to-digital signal conversion with 24-bit resolution and a variable sampling frequency from 250 Hz to 1000 Hz per channel, embedded in a stand-alone module. A computer-on-module embedded system runs a Linux ® operating system that rules the interface between two software frameworks, which interact to satisfy the real-time constraints of signal acquisition as well as parallel recording, processing and wireless data transmission. A textile structure was developed to accommodate all components. Platform performance was evaluated in terms of hardware, software and signal quality. The electrodes were characterised through electrochemical impedance spectroscopy and the operating system performance running an epileptic discrimination algorithm was evaluated. Signal quality was thoroughly assessed in two different approaches: playback of EEG reference signals and benchmarking with a clinical-grade EEG system in alpha-wave replacement and steady-state visual evoked potential paradigms. The proposed platform seems to efficiently monitor epileptic patients in both inpatient and outpatient settings and paves the way to new ambulatory clinical regimens as well as non-clinical EEG

  19. An embedded EEG analyzing system based on muC/os-II.

    PubMed

    Liu, Boqiang; Zhang, Yanyan; Liu, Zhongguo; Yin, Cong

    2007-01-01

    An EEG analyzing system based on Advanced RISC Machines (ARM) and muC/os-II real time operating system is discussed in this paper. The detailed system design including the producing of event signals and the synchronization between event signals and EEG signals is described. The details of data acquisition, data preprocessing, data transmitting through USB and system configurations are also contained in the system design. In this paper the design of high capability amplifier and the software of embedded subsystem are discussed. Also the design of realizing multi-task system in muC/os-II, the definition of communicating protocols between PC and the equipment and the detail configurations of USB are given out. The final test shows that the filter behaviors of this equipment are feasible.

  20. System theory and safety models in Swedish, UK, Dutch and Australian road safety strategies.

    PubMed

    Hughes, B P; Anund, A; Falkmer, T

    2015-01-01

    Road safety strategies represent interventions on a complex social technical system level. An understanding of a theoretical basis and description is required for strategies to be structured and developed. Road safety strategies are described as systems, but have not been related to the theory, principles and basis by which systems have been developed and analysed. Recently, road safety strategies, which have been employed for many years in different countries, have moved to a 'vision zero', or 'safe system' style. The aim of this study was to analyse the successful Swedish, United Kingdom and Dutch road safety strategies against the older, and newer, Australian road safety strategies, with respect to their foundations in system theory and safety models. Analysis of the strategies against these foundations could indicate potential improvements. The content of four modern cases of road safety strategy was compared against each other, reviewed against scientific systems theory and reviewed against types of safety model. The strategies contained substantial similarities, but were different in terms of fundamental constructs and principles, with limited theoretical basis. The results indicate that the modern strategies do not include essential aspects of systems theory that describe relationships and interdependencies between key components. The description of these strategies as systems is therefore not well founded and deserves further development. Copyright © 2014 Elsevier Ltd. All rights reserved.