Sample records for safety-significant structures systems

  1. Impact of Passive Safety on FHR Instrumentation Systems Design and Classification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holcomb, David Eugene

    2015-01-01

    Fluoride salt-cooled high-temperature reactors (FHRs) will rely more extensively on passive safety than earlier reactor classes. 10CFR50 Appendix A, General Design Criteria for Nuclear Power Plants, establishes minimum design requirements to provide reasonable assurance of adequate safety. 10CFR50.69, Risk-Informed Categorization and Treatment of Structures, Systems and Components for Nuclear Power Reactors, provides guidance on how the safety significance of systems, structures, and components (SSCs) should be reflected in their regulatory treatment. The Nuclear Energy Institute (NEI) has provided 10 CFR 50.69 SSC Categorization Guideline (NEI-00-04) that factors in probabilistic risk assessment (PRA) model insights, as well as deterministic insights, throughmore » an integrated decision-making panel. Employing the PRA to inform deterministic requirements enables an appropriately balanced, technically sound categorization to be established. No FHR currently has an adequate PRA or set of design basis accidents to enable establishing the safety classification of its SSCs. While all SSCs used to comply with the general design criteria (GDCs) will be safety related, the intent is to limit the instrumentation risk significance through effective design and reliance on inherent passive safety characteristics. For example, FHRs have no safety-significant temperature threshold phenomena, thus enabling the primary and reserve reactivity control systems required by GDC 26 to be passively, thermally triggered at temperatures well below those for which core or primary coolant boundary damage would occur. Moreover, the passive thermal triggering of the primary and reserve shutdown systems may relegate the control rod drive motors to the control system, substantially decreasing the amount of safety-significant wiring needed. Similarly, FHR decay heat removal systems are intended to be running continuously to minimize the amount of safety-significant instrumentation needed to initiate operation of systems and components important to safety as required in GDC 20. This paper provides an overview of the design process employed to develop a pre-conceptual FHR instrumentation architecture intended to lower plant capital and operational costs by minimizing reliance on expensive, safety related, safety-significant instrumentation through the use of inherent passive features of FHRs.« less

  2. Critical Characteristics of Radiation Detection System Components to be Dedicated for use in Safety Class and Safety Significant System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DAVIS, S.J.

    2000-05-25

    This document identifies critical characteristics of components to be dedicated for use in Safety Class (SC) or Safety Significant (SS) Systems, Structures, or Components (SSCs). This document identifies the requirements for the components of the common radiation area monitor alarm in the WESF pool cell. These are procured as Commercial Grade Items (CGI), with the qualification testing and formal dedication to be performed at the Waste Encapsulation Storage Facility (WESF), in safety class, safety significant systems. System modifications are to be performed in accordance with the instructions provided on ECN 658230. Components for this change are commercially available and interchangeablemore » with the existing alarm configuration This document focuses on the operational requirements for alarm, declaration of the safety classification, identification of critical characteristics, and interpretation of requirements for procurement. Critical characteristics are identified herein and must be verified, followed by formal dedication, prior to the components being used in safety related applications.« less

  3. Critical Characteristics of Radiation Detection System Components to be Dedicated for use in Safety Class and Safety Significant System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DAVIS, S.J.

    2000-12-28

    This document identifies critical characteristics of components to be dedicated for use in Safety Significant (SS) Systems, Structures, or Components (SSCs). This document identifies the requirements for the components of the common, radiation area, monitor alarm in the WESF pool cell. These are procured as Commercial Grade Items (CGI), with the qualification testing and formal dedication to be performed at the Waste Encapsulation Storage Facility (WESF) for use in safety significant systems. System modifications are to be performed in accordance with the approved design. Components for this change are commercially available and interchangeable with the existing alarm configuration This documentmore » focuses on the operational requirements for alarm, declaration of the safety classification, identification of critical characteristics, and interpretation of requirements for procurement. Critical characteristics are identified herein and must be verified, followed by formal dedication, prior to the components being used in safety related applications.« less

  4. Safety equipment list for the 241-SY-101 RAPID mitigation project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MORRIS, K.L.

    1999-06-29

    This document provides the safety classification for the safety (safety class and safety RAPID Mitigation Project. This document is being issued as the project SEL until the supporting authorization basis documentation, this document will be superseded by the TWRS SEL (LMHC 1999), documentation istlralized. Upon implementation of the authorization basis significant) structures, systems, and components (SSCS) associated with the 241-SY-1O1 which will be updated to include the information contained herein.

  5. Keeping patients safe in healthcare organizations: a structuration theory of safety culture.

    PubMed

    Groves, Patricia S; Meisenbach, Rebecca J; Scott-Cawiezell, Jill

    2011-08-01

    This paper presents a discussion of the use of structuration theory to facilitate understanding and improvement of safety culture in healthcare organizations. Patient safety in healthcare organizations is an important problem worldwide. Safety culture has been proposed as a means to keep patients safe. However, lack of appropriate theory limits understanding and improvement of safety culture. The proposed structuration theory of safety culture was based on a critique of available English-language literature, resulting in literature published from 1983 to mid-2009. CINAHL, Communication and Mass Media Complete, ABI/Inform and Google Scholar databases were searched using the following terms: nursing, safety, organizational culture and safety culture. When viewed through the lens of structuration theory, safety culture is a system involving both individual actions and organizational structures. Healthcare organization members, particularly nurses, share these values through communication and enact them in practice, (re)producing an organizational safety culture system that reciprocally constrains and enables the actions of the members in terms of patient safety. This structurational viewpoint illuminates multiple opportunities for safety culture improvement. Nurse leaders should be cognizant of competing value-based culture systems in the organization and attend to nursing agency and all forms of communication when attempting to create or strengthen a safety culture. Applying structuration theory to the concept of safety culture reveals a dynamic system of individual action and organizational structure constraining and enabling safety practice. Nurses are central to the (re)production of this safety culture system. © 2011 Blackwell Publishing Ltd.

  6. Information Processing Research

    DTIC Science & Technology

    1992-01-03

    structure of instances. Opal provides special graphical objects called "Ag- greGadgets" which are used to hold a collection of other objects (either...available in classes of expert systems tasks, re- late this to the structure of parallel production systems, and incorporate parallel-decomposition...Anantharaman et al. 88]. We designed a new pawn structure algorithm and upgraded the king-safety pattern recog- nizers, which contributed significantly

  7. Thesis - keeping the management system {open_quotes}live{close_quotes} and reaching the workforce

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Primrose, M.J.; Bentley, P.D.; Graaf, G.C. van der

    1996-12-31

    Previous papers given to SPE conferences have described the Shell Group approach to Safety Management Systems and to Safety Cases. Their extension to HSE MS and to HSE Cases has also been addressed. Since 1984 the Enhanced Safety Management (ESM) programme within Shell companies has led to a significant improvement in the management of safety but it was only when structured management systems (based upon an understanding of the business processes) were introduced that true integration of HSE as a line responsibility became a reality. This paper describes the THESIS software package and the way that management systems have beenmore » made {open_quote}live{close_quote} and how workforce involvement can be demonstrated.« less

  8. Determining the causal relationships among balanced scorecard perspectives on school safety performance: case of Saudi Arabia.

    PubMed

    Alolah, Turki; Stewart, Rodney A; Panuwatwanich, Kriengsak; Mohamed, Sherif

    2014-07-01

    In the public schools of many developing countries, numerous accidents and incidents occur because of poor safety regulations and management systems. To improve the educational environment in Saudi Arabia, the Ministry of Education seeks novel approaches to measure school safety performance in order to decrease incidents and accidents. The main objective of this research was to develop a systematic approach for measuring Saudi school safety performance using the balanced scorecard framework philosophy. The evolved third generation balanced scorecard framework is considered to be a suitable and robust framework that captures the system-wide leading and lagging indicators of business performance. The balanced scorecard architecture is ideal for adaptation to complex areas such as safety management where a holistic system evaluation is more effective than traditional compartmentalised approaches. In developing the safety performance balanced scorecard for Saudi schools, the conceptual framework was first developed and peer-reviewed by eighteen Saudi education experts. Next, 200 participants, including teachers, school executives, and Ministry of Education officers, were recruited to rate both the importance and the performance of 79 measurement items used in the framework. Exploratory factor analysis, followed by the confirmatory partial least squares method, was then conducted in order to operationalise the safety performance balanced scorecard, which encapsulates the following five salient perspectives: safety management and leadership; safety learning and training; safety policy, procedures and processes; workforce safety culture; and safety performance. Partial least squares based structural equation modelling was then conducted to reveal five significant relationships between perspectives, namely, safety management and leadership had a significant effect on safety learning and training and safety policy, procedures and processes, both safety learning and training and safety policy, procedures and processes had significant effects on workforce safety culture, and workforce safety culture had a significant effect on safety performance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Who is in control of road safety? A STAMP control structure analysis of the road transport system in Queensland, Australia.

    PubMed

    Salmon, Paul M; Read, Gemma J M; Stevens, Nicholas J

    2016-11-01

    Despite significant progress, road trauma continues to represent a global safety issue. In Queensland (Qld), Australia, there is currently a focus on preventing the 'fatal five' behaviours underpinning road trauma (drug and drink driving, distraction, seat belt wearing, speeding, and fatigue), along with an emphasis on a shared responsibility for road safety that spans road users, vehicle manufacturers, designers, policy makers etc. The aim of this article is to clarify who shares the responsibility for road safety in Qld and to determine what control measures are enacted to prevent the fatal five behaviours. This is achieved through the presentation of a control structure model that depicts the actors and organisations within the Qld road transport system along with the control and feedback relationships that exist between them. Validated through a Delphi study, the model shows a diverse set of actors and organisations who share the responsibility for road safety that goes beyond those discussed in road safety policies and strategies. The analysis also shows that, compared to other safety critical domains, there are less formal control structures in road transport and that opportunities exist to add new controls and strengthen existing ones. Relationships that influence rather than control are also prominent. Finally, when compared to other safety critical domains, the strength of road safety controls is brought into question. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Nanotechnology and MEMS-based systems for civil infrastructure safety and security: Opportunities and challenges

    NASA Astrophysics Data System (ADS)

    Robinson, Nidia; Saafi, Mohamed

    2006-03-01

    Critical civil infrastructure systems such as bridges, high rises, dams, nuclear power plants and pipelines present a major investment and the health of the United States' economy and the lifestyle of its citizens both depend on their safety and security. The challenge for engineers is to maintain the safety and security of these large structures in the face of terrorism threats, natural disasters and long-term deterioration, as well as to meet the demands of emergency response times. With the significant negative impact that these threats can have on the structural environment, health monitoring of civil infrastructure holds promise as a way to provide information for near real-time condition assessment of the structure's safety and security. This information can be used to assess the integrity of the structure for post-earthquake and terrorist attacks rescue and recovery, and to safely and rapidly remove the debris and to temporary shore specific structural elements. This information can also be used for identification of incipient damage in structures experiencing long-term deterioration. However, one of the major obstacles preventing sensor-based monitoring is the lack of reliable, easy-to-install, cost-effective and harsh environment resistant sensors that can be densely embedded into large-scale civil infrastructure systems. Nanotechnology and MEMS-based systems which have matured in recent years represent an innovative solution to current damage detection systems, leading to wireless, inexpensive, durable, compact, and high-density information collection. In this paper, ongoing research activities at Alabama A&M University (AAMU) Center for Transportation Infrastructure Safety and Security on the application of nanotechnology and MEMS to Civil Infrastructure for health monitoring will presented. To date, research showed that nanotechnology and MEMS-based systems can be used to wirelessly detect and monitor different damage mechanisms in concrete structures as well as monitor critical structures' stability during floods and barge impact. However, some technical issues that needs to be addressed before full implementation of these new systems and will also be discussed in this paper.

  11. The relationships between OHS prevention costs, safety performance, employee satisfaction and accident costs.

    PubMed

    Bayram, Metin; Ünğan, Mustafa C; Ardıç, Kadir

    2017-06-01

    Little is known about the costs of safety. A literature review conducted for this study indicates there is a lack of survey-based research dealing with the effects of occupational health and safety (OHS) prevention costs. To close this gap in the literature, this study investigates the interwoven relationships between OHS prevention costs, employee satisfaction, OHS performance and accident costs. Data were collected from 159 OHS management system 18001-certified firms operating in Turkey and analyzed through structural equation modeling. The findings indicate that OHS prevention costs have a significant positive effect on safety performance, employee satisfaction and accident costs savings; employee satisfaction has a significant positive effect on accident costs savings; and occupational safety performance has a significant positive effect on employee satisfaction and accident costs savings. Also, the results indicate that safety performance and employee satisfaction leverage the relationship between prevention costs and accident costs.

  12. Research on public participant urban infrastructure safety monitoring system using smartphone

    NASA Astrophysics Data System (ADS)

    Zhao, Xuefeng; Wang, Niannian; Ou, Jinping; Yu, Yan; Li, Mingchu

    2017-04-01

    Currently more and more people concerned about the safety of major public security. Public participant urban infrastructure safety monitoring and investigation has become a trend in the era of big data. In this paper, public participant urban infrastructure safety protection system based on smart phones is proposed. The system makes it possible to public participant disaster data collection, monitoring and emergency evaluation in the field of disaster prevention and mitigation. Function of the system is to monitor the structural acceleration, angle and other vibration information, and extract structural deformation and implement disaster emergency communications based on smartphone without network. The monitoring data is uploaded to the website to create urban safety information database. Then the system supports big data analysis processing, the structure safety assessment and city safety early warning.

  13. Autonomous Assembly of Modular Structures in Space and on Extraterrestrial Locations

    NASA Astrophysics Data System (ADS)

    Alhorn, Dean C.

    2005-02-01

    The new U.S. National Vision for Space Exploration requires many new enabling technologies to accomplish the goals of space commercialization and returning humans to the moon and extraterrestrial environments. Traditionally, flight elements are complete sub-systems requiring humans to complete the integration and assembly. These bulky structures also require the use of heavy launch vehicles to send the units to a desired location. This philosophy necessitates a high degree of safety, numerous space walks at a significant cost. Future space mission costs must be reduced and safety increased to reasonably achieve exploration goals. One proposed concept is the autonomous assembly of space structures. This concept is an affordable, reliable solution to in-space and extraterrestrial assembly. Assembly is autonomously performed when two components join after determining that specifications are correct. Local sensors continue monitor joint integrity post assembly, which is critical for safety and structural reliability. Achieving this concept requires a change in space structure design philosophy and the development of innovative technologies to perform autonomous assembly. Assembly of large space structures will require significant numbers of integrity sensors. Thus simple, low-cost sensors are integral to the success of this concept. This paper addresses these issues and proposes a novel concept for assembling space structures autonomously. Core technologies required to achieve in space assembly are presented. These core technologies are critical to the goal of utilizing space in a cost efficient and safe manner. Additionally, these novel technologies can be applied to other systems both on earth and extraterrestrial environments.

  14. Structures and Materials Technologies for Extreme Environments Applied to Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Scotti, Stephen J.; Clay, Christopher; Rezin, Marc

    2003-01-01

    This paper provides an overview of the evolution of structures and materials technology approaches to survive the challenging extreme environments encountered by earth-to-orbit space transportation systems, with emphasis on more recent developments in the USA. The evolution of technology requirements and experience in the various approaches to meeting these requirements has significantly influenced the technology approaches. While previous goals were primarily performance driven, more recently dramatic improvements in costs/operations and in safety have been paramount goals. Technologies that focus on the cost/operations and safety goals in the area of hot structures and thermal protection systems for reusable launch vehicles are presented. Assessments of the potential ability of the various technologies to satisfy the technology requirements, and their current technology readiness status are also presented.

  15. Design of a Conceptual Bumper Energy Absorber Coupling Pedestrian Safety and Low-Speed Impact Requirements

    PubMed Central

    Mo, Fuhao; Zhao, Siqi; Yu, Chuanhui; Duan, Shuyong

    2018-01-01

    The car front bumper system needs to meet the requirements of both pedestrian safety and low-speed impact which are somewhat contradicting. This study aims to design a new kind of modular self-adaptive energy absorber of the front bumper system which can balance the two performances. The X-shaped energy-absorbing structure was proposed which can enhance the energy absorption capacity during impact by changing its deformation mode based on the amount of external collision energy. Then, finite element simulations with a realistic vehicle bumper system are performed to demonstrate its crashworthiness in comparison with the traditional foam energy absorber, which presents a significant improvement of the two performances. Furthermore, the structural parameters of the X-shaped energy-absorbing structure including thickness (t u), side arc radius (R), and clamping boost beam thickness (t b) are analyzed using a full factorial method, and a multiobjective optimization is implemented regarding evaluation indexes of both pedestrian safety and low-speed impact. The optimal parameters are then verified, and the feasibility of the optimal results is confirmed. In conclusion, the new X-shaped energy absorber can meet both pedestrian safety and low-speed impact requirements well by altering the main deformation modes according to different impact energy levels. PMID:29581728

  16. Design of a Conceptual Bumper Energy Absorber Coupling Pedestrian Safety and Low-Speed Impact Requirements.

    PubMed

    Mo, Fuhao; Zhao, Siqi; Yu, Chuanhui; Xiao, Zhi; Duan, Shuyong

    2018-01-01

    The car front bumper system needs to meet the requirements of both pedestrian safety and low-speed impact which are somewhat contradicting. This study aims to design a new kind of modular self-adaptive energy absorber of the front bumper system which can balance the two performances. The X-shaped energy-absorbing structure was proposed which can enhance the energy absorption capacity during impact by changing its deformation mode based on the amount of external collision energy. Then, finite element simulations with a realistic vehicle bumper system are performed to demonstrate its crashworthiness in comparison with the traditional foam energy absorber, which presents a significant improvement of the two performances. Furthermore, the structural parameters of the X-shaped energy-absorbing structure including thickness ( t u ), side arc radius ( R ), and clamping boost beam thickness ( t b ) are analyzed using a full factorial method, and a multiobjective optimization is implemented regarding evaluation indexes of both pedestrian safety and low-speed impact. The optimal parameters are then verified, and the feasibility of the optimal results is confirmed. In conclusion, the new X-shaped energy absorber can meet both pedestrian safety and low-speed impact requirements well by altering the main deformation modes according to different impact energy levels.

  17. Introduction of structural health and safety monitoring warning systems for Shenzhen-Hong Kong Western Corridor Shenzhen Bay Bridge

    NASA Astrophysics Data System (ADS)

    Li, N.; Zhang, X. Y.; Zhou, X. T.; Leng, J.; Liang, Z.; Zheng, C.; Sun, X. F.

    2008-03-01

    Though the brief introduction of the completed structural health and safety monitoring warning systems for Shenzhen-Hongkong western corridor Shenzhen bay highway bridge (SZBHMS), the self-developed system frame, hardware and software scheme of this practical research project are systematically discussed in this paper. The data acquisition and transmission hardware and the basic software based on the NI (National Instruments) Company virtual instruments technology were selected in this system, which adopted GPS time service receiver technology and so on. The objectives are to establish the structural safety monitoring and status evaluation system to monitor the structural responses and working conditions in real time and to analyze the structural working statue using information obtained from the measured data. It will be also provided the scientific decision-making bases for the bridge management and maintenance. Potential technical approaches to the structural safety warning systems, status identification and evaluation method are presented. The result indicated that the performance of the system has achieved the desired objectives, ensure the longterm high reliability, real time concurrence and advanced technology of SZBHMS. The innovate achievement which is the first time to implement in domestic, provide the reference for long-span bridge structural health and safety monitoring warning systems design.

  18. 10 CFR 72.122 - Overall requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... § 72.122 Overall requirements. (a) Quality Standards. Structures, systems, and components important to... natural phenomena. (1) Structures, systems, and components important to safety must be designed to... accidents. (2)(i) Structures, systems, and components important to safety must be designed to withstand the...

  19. System analysis of vehicle active safety problem

    NASA Astrophysics Data System (ADS)

    Buznikov, S. E.

    2018-02-01

    The problem of the road transport safety affects the vital interests of the most of the population and is characterized by a global level of significance. The system analysis of problem of creation of competitive active vehicle safety systems is presented as an interrelated complex of tasks of multi-criterion optimization and dynamic stabilization of the state variables of a controlled object. Solving them requires generation of all possible variants of technical solutions within the software and hardware domains and synthesis of the control, which is close to optimum. For implementing the task of the system analysis the Zwicky “morphological box” method is used. Creation of comprehensive active safety systems involves solution of the problem of preventing typical collisions. For solving it, a structured set of collisions is introduced with its elements being generated also using the Zwicky “morphological box” method. The obstacle speed, the longitudinal acceleration of the controlled object and the unpredictable changes in its movement direction due to certain faults, the road surface condition and the control errors are taken as structure variables that characterize the conditions of collisions. The conditions for preventing typical collisions are presented as inequalities for physical variables that define the state vector of the object and its dynamic limits.

  20. Structural Health Monitoring with Fiber Bragg Grating and Piezo Arrays

    NASA Technical Reports Server (NTRS)

    Black, Richard J.; Faridian, Ferey; Moslehi, Behzad; Sotoudeh, Vahid

    2012-01-01

    Structural health monitoring (SHM) is one of the most important tools available for the maintenance, safety, and integrity of aerospace structural systems. Lightweight, electromagnetic-interference- immune, fiber-optic sensor-based SHM will play an increasing role in more secure air transportation systems. Manufacturers and maintenance personnel have pressing needs for significantly improving safety and reliability while providing for lower inspection and maintenance costs. Undetected or untreated damage may grow and lead to catastrophic structural failure. Damage can originate from the strain/stress history of the material, imperfections of domain boundaries in metals, delamination in multi-layer materials, or the impact of machine tools in the manufacturing process. Damage can likewise develop during service life from wear and tear, or under extraordinary circumstances such as with unusual forces, temperature cycling, or impact of flying objects. Monitoring and early detection are key to preventing a catastrophic failure of structures, especially when these are expected to perform near their limit conditions.

  1. A new leadership role for pharmacists: a prescription for change.

    PubMed

    Burgess, L Hayley; Cohen, Michael R; Denham, Charles R

    2010-03-01

    Pharmacists can play an important role as leaders to reduce patient safety risks, optimize the safe function of medication management systems, and align pharmacy services with national initiatives that measure and reward quality performance. The objective of this article is to determine the actions that pharmacists can take to create a visible and sustainable safe medication management structure and system in the health care environment. An evidence-based literature search was performed to determine what actions successful pharmacist leaders have taken to improve patient safety. There is a growing number of quality and patient safety standards, as well as measures that focus specifically on medication use and education. Health care organizations must be made aware of the valuable resources that pharmacists provide and of the complexity of medication management. There are steps that pharmacist leaders can take to achieve these goals. The 10 steps that pharmacist leaders can take to create a visible and sustainable safe medication management structure and system are the following: 1. Identify and mitigate medication management risks and hazards to reduce preventable patient harm. 2. Establish pharmacy leadership structures and systems to ensure organizational awareness of medication safety gaps. 3. Support an organizational culture of safe medication use. 4. Ensure evidence-based medication regimens for all patients. 5. Have daily check-in calls/meetings, with the primary focus on significant safety or quality issues. 6. Establish a medication safety committee. 7. Perform medication safety walk-rounds to evaluate medication processes, and request front-line staff ’s input about medication safe practices. 8. Ensure that pharmacy staff engage in teamwork, skill building, and communication training. 9. Engage in readiness planning for implementation of health information technology (HIT). 10. Include medication history-taking and reviews upon entry into the organization; medication counseling and training during the discharge process; and follow-up after the transition to home.

  2. Formal Foundations for Hierarchical Safety Cases

    NASA Technical Reports Server (NTRS)

    Denney, Ewen; Pai, Ganesh; Whiteside, Iain

    2015-01-01

    Safety cases are increasingly being required in many safety-critical domains to assure, using structured argumentation and evidence, that a system is acceptably safe. However, comprehensive system-wide safety arguments present appreciable challenges to develop, understand, evaluate, and manage, partly due to the volume of information that they aggregate, such as the results of hazard analysis, requirements analysis, testing, formal verification, and other engineering activities. Previously, we have proposed hierarchical safety cases, hicases, to aid the comprehension of safety case argument structures. In this paper, we build on a formal notion of safety case to formalise the use of hierarchy as a structuring technique, and show that hicases satisfy several desirable properties. Our aim is to provide a formal, theoretical foundation for safety cases. In particular, we believe that tools for high assurance systems should be granted similar assurance to the systems to which they are applied. To this end, we formally specify and prove the correctness of key operations for constructing and managing hicases, which gives the specification for implementing hicases in AdvoCATE, our toolset for safety case automation. We motivate and explain the theory with the help of a simple running example, extracted from a real safety case and developed using AdvoCATE.

  3. 75 FR 62008 - Safety Management System for Certificated Airports

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-07

    .... The majority of pilot study airports indicated an existing organizational structure to manage safety... organizational structure; Identifies the lines of safety responsibility and accountability; Establishes and... understands that airport operations and organizational structures vary widely. Accordingly, the FAA would not...

  4. FLAMMABLE GAS TECHNICAL BASIS DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KRIPPS, L.J.

    2005-02-18

    This document describes the qualitative evaluation of frequency and consequences for double shell tank (DST) and single shell tank (SST) representative flammable gas accidents and associated hazardous conditions without controls. The evaluation indicated that safety-significant SSCs and/or TSRS were required to prevent or mitigate flammable gas accidents. Discussion on the resulting control decisions is included. This technical basis document was developed to support of the Tank Farms Documented Safety Analysis (DSA) and describes the risk binning process for the flammable gas representative accidents and associated represented hazardous conditions. The purpose of the risk binning process is to determine the needmore » for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous condition based on an evaluation of the event frequency and consequence.« less

  5. 10 CFR 63.112 - Requirements for preclosure safety analysis of the geologic repository operations area.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... emergency power to instruments, utility service systems, and operating systems important to safety if there... include: (a) A general description of the structures, systems, components, equipment, and process... of the performance of the structures, systems, and components to identify those that are important to...

  6. 10 CFR 63.112 - Requirements for preclosure safety analysis of the geologic repository operations area.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... emergency power to instruments, utility service systems, and operating systems important to safety if there... include: (a) A general description of the structures, systems, components, equipment, and process... of the performance of the structures, systems, and components to identify those that are important to...

  7. 10 CFR 63.112 - Requirements for preclosure safety analysis of the geologic repository operations area.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... emergency power to instruments, utility service systems, and operating systems important to safety if there... include: (a) A general description of the structures, systems, components, equipment, and process... of the performance of the structures, systems, and components to identify those that are important to...

  8. 10 CFR 63.112 - Requirements for preclosure safety analysis of the geologic repository operations area.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... emergency power to instruments, utility service systems, and operating systems important to safety if there... include: (a) A general description of the structures, systems, components, equipment, and process... of the performance of the structures, systems, and components to identify those that are important to...

  9. Engineering a safe landing: engaging medical practitioners in a systems approach to patient safety.

    PubMed

    Brand, C; Ibrahim, J; Bain, C; Jones, C; King, B

    2007-05-01

    Several event studies, including the Australian Safety and Quality in Healthcare Study, emphasize gaps in safety for hospitalized patients. It is now recognized that system-based factors contribute significantly to risk of adverse events and this has led to a shift in focus of patient safety from the autonomous responsibility of medical clinicians to a systems-based approach. The aim of this study was to determine medical practitioner awareness of, level of engagement in and barriers to engagement in a systems approach to patient safety and quality. Information from acute and subacute care medical practitioners at a metropolitan public hospital was collected within an anonymous structured electronic survey, a discussion group and key informant interviews. There were 73 survey respondents (response rate 7.6%). Fifty-one (69.9%) were unaware of the Institute of Medicine report 'To Err is human'. Thirty-six (49.3%) were unaware of the Australian Quality in Healthcare Study and 12 (16.4%) had read the article. There was a positive relation identified between awareness and seniority. There was a low level of participation in systems-focused quality and safety activities and limited understanding of the role of systems in medical error causation. There was uncertainty about the changing role of medical practitioners in patient safety and perceived lack of skills to effectively engage with hospital management about safety and quality issues. Several factors are limiting engagement of medical practitioners in a systems approach to patient safety. Increased educational support is needed and may be best focused within clinical effectiveness activities pertinent to practitioner interest and expertise.

  10. Pedestrian headform testing: inferring performance at impact speeds and for headform masses not tested, and estimating average performance in a range of real-world conditions.

    PubMed

    Hutchinson, T Paul; Anderson, Robert W G; Searson, Daniel J

    2012-01-01

    Tests are routinely conducted where instrumented headforms are projected at the fronts of cars to assess pedestrian safety. Better information would be obtained by accounting for performance over the range of expected impact conditions in the field. Moreover, methods will be required to integrate the assessment of secondary safety performance with primary safety systems that reduce the speeds of impacts. Thus, we discuss how to estimate performance over a range of impact conditions from performance in one test and how this information can be combined with information on the probability of different impact speeds to provide a balanced assessment of pedestrian safety. Theoretical consideration is given to 2 distinct aspects to impact safety performance: the test impact severity (measured by the head injury criterion, HIC) at a speed at which a structure does not bottom out and the speed at which bottoming out occurs. Further considerations are given to an injury risk function, the distribution of impact speeds likely in the field, and the effect of primary safety systems on impact speeds. These are used to calculate curves that estimate injuriousness for combinations of test HIC, bottoming out speed, and alternative distributions of impact speeds. The injuriousness of a structure that may be struck by the head of a pedestrian depends not only on the result of the impact test but also the bottoming out speed and the distribution of impact speeds. Example calculations indicate that the relationship between the test HIC and injuriousness extends over a larger range than is presently used by the European New Car Assessment Programme (Euro NCAP), that bottoming out at speeds only slightly higher than the test speed can significantly increase the injuriousness of an impact location and that effective primary safety systems that reduce impact speeds significantly modify the relationship between the test HIC and injuriousness. Present testing regimes do not take fully into account the relationship between impact severity and variations in impact conditions. Instead, they assess injury risk at a single impact speed. Hence, they may fail to differentiate risks due to the effects of bottoming out under different impact conditions. Because the level of injuriousness changes across a wide range of HIC values, even slight improvements to very stiff structures need to be encouraged through testing. Indications are that the potential of autonomous braking systems is substantial and needs to be weighted highly in vehicle safety assessments.

  11. Safety of High Speed Guided Ground Transportation Systems: Work Breakdown Structure

    DOT National Transportation Integrated Search

    1994-11-30

    This report provides a systems approach to the assessment, evaluation and application of high-speed guided ground transportation (HSGGT) safety criteria and : presents one potential methodology by combining a work breakdown structure (WBS) : approach...

  12. [Road map for health and safety management systems in healthcare facilities, according to the OHSAS 18001:2007 standard].

    PubMed

    Pugliese, F; Albini, E; Serio, O; Apostoli, P

    2011-01-01

    The 81/2008 Act has defined a model of a health and safety management system that can contribute to prevent the occupational health and safety risks. We have developed the structure of a health and safety management system model and the necessary tools for its implementation in health care facilities. The realization of a model is structured in various phases: initial review, safety policy, planning, implementation, monitoring, management review and continuous improvement. Such a model, in continuous evolution, is based on the responsibilities of the different corporate characters and on an accurate analysis of risks and involved norms.

  13. Using argument notation to engineer biological simulations with increased confidence

    PubMed Central

    Alden, Kieran; Andrews, Paul S.; Polack, Fiona A. C.; Veiga-Fernandes, Henrique; Coles, Mark C.; Timmis, Jon

    2015-01-01

    The application of computational and mathematical modelling to explore the mechanics of biological systems is becoming prevalent. To significantly impact biological research, notably in developing novel therapeutics, it is critical that the model adequately represents the captured system. Confidence in adopting in silico approaches can be improved by applying a structured argumentation approach, alongside model development and results analysis. We propose an approach based on argumentation from safety-critical systems engineering, where a system is subjected to a stringent analysis of compliance against identified criteria. We show its use in examining the biological information upon which a model is based, identifying model strengths, highlighting areas requiring additional biological experimentation and providing documentation to support model publication. We demonstrate our use of structured argumentation in the development of a model of lymphoid tissue formation, specifically Peyer's Patches. The argumentation structure is captured using Artoo (www.york.ac.uk/ycil/software/artoo), our Web-based tool for constructing fitness-for-purpose arguments, using a notation based on the safety-critical goal structuring notation. We show how argumentation helps in making the design and structured analysis of a model transparent, capturing the reasoning behind the inclusion or exclusion of each biological feature and recording assumptions, as well as pointing to evidence supporting model-derived conclusions. PMID:25589574

  14. Using argument notation to engineer biological simulations with increased confidence.

    PubMed

    Alden, Kieran; Andrews, Paul S; Polack, Fiona A C; Veiga-Fernandes, Henrique; Coles, Mark C; Timmis, Jon

    2015-03-06

    The application of computational and mathematical modelling to explore the mechanics of biological systems is becoming prevalent. To significantly impact biological research, notably in developing novel therapeutics, it is critical that the model adequately represents the captured system. Confidence in adopting in silico approaches can be improved by applying a structured argumentation approach, alongside model development and results analysis. We propose an approach based on argumentation from safety-critical systems engineering, where a system is subjected to a stringent analysis of compliance against identified criteria. We show its use in examining the biological information upon which a model is based, identifying model strengths, highlighting areas requiring additional biological experimentation and providing documentation to support model publication. We demonstrate our use of structured argumentation in the development of a model of lymphoid tissue formation, specifically Peyer's Patches. The argumentation structure is captured using Artoo (www.york.ac.uk/ycil/software/artoo), our Web-based tool for constructing fitness-for-purpose arguments, using a notation based on the safety-critical goal structuring notation. We show how argumentation helps in making the design and structured analysis of a model transparent, capturing the reasoning behind the inclusion or exclusion of each biological feature and recording assumptions, as well as pointing to evidence supporting model-derived conclusions.

  15. 10 CFR 52.79 - Contents of applications; technical information in final safety analysis report.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... assurance program will be implemented; (26) The applicant's organizational structure, allocations or... presents a safety analysis of the structures, systems, and components of the facility as a whole. The final... contain an analysis and evaluation of the major structures, systems, and components of the facility that...

  16. Autonomous Assembly of Modular Structures in Space and on Extraterrestrial Locations

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C.

    2005-01-01

    The new U.S. National Vision for Space Exploration requires many new enabling technologies to accomplish the goals of space commercialization and returning humans to the moon and extraterrestrial environments. Traditionally, flight elements are complete subsystems requiring humans to complete the integration and assembly. These bulky structures also require the use of heavy launch vehicles to send the units to a desired location. This philosophy necessitates a high degree of safety, numerous space walks at a significant cost. Future space mission costs must be reduced and safety increased to reasonably achieve exploration goals. One proposed concept is the autonomous assembly of space structures. This concept is an affordable, reliable solution to in-space and extraterrestrial assembly. Assembly is autonomously performed when two components join after determining that specifications are correct. Local sensors continue monitor joint integrity post assembly, which is critical for safety and structural reliability. Achieving this concept requires a change in space structure design philosophy and the development of innovative technologies to perform autonomous assembly. Assembly of large space structures will require significant numbers of integrity sensors. Thus simple, low-cost sensors are integral to the success of this concept. This paper addresses these issues and proposes a novel concept for assembling space structures autonomously. Core technologies required to achieve in space assembly are presented. These core technologies are critical to the goal of utilizing space in a cost efficient and safe manner. Additionally, these novel technologies can be applied to other systems both on earth and extraterrestrial environments.

  17. Light Water Reactor Sustainability Program: Risk-Informed Safety Margins Characterization (RISMC) Pathway Technical Program Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Curtis; Rabiti, Cristian; Martineau, Richard

    Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). As the current Light Water Reactor (LWR) NPPs age beyond 60 years, there are possibilities for increased frequency of Systems, Structures, and Components (SSCs) degradations or failures that initiate safety-significant events, reduce existing accident mitigation capabilities, or create new failure modes. Plant designers commonly “over-design” portions of NPPs and provide robustness in the form of redundant and diverse engineered safety features to ensure that, even in the case of well-beyond design basis scenarios, public health and safety will be protected with a very high degreemore » of assurance. This form of defense-in-depth is a reasoned response to uncertainties and is often referred to generically as “safety margin.” Historically, specific safety margin provisions have been formulated, primarily based on “engineering judgment.”« less

  18. 78 FR 41436 - Proposed Revision to Treatment of Non-Safety Systems for Passive Advanced Light Water Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-10

    ... Safety Analysis Reports for Nuclear Power Plants: LWR Edition,'' on a proposed new section to its... revised position on the treatment of the high winds external hazard for certain RTNSS structures, systems... winds external hazard for certain RTNSS structures, systems and components (SSCs). This position differs...

  19. Querying Safety Cases

    NASA Technical Reports Server (NTRS)

    Denney, Ewen W.; Naylor, Dwight; Pai, Ganesh

    2014-01-01

    Querying a safety case to show how the various stakeholders' concerns about system safety are addressed has been put forth as one of the benefits of argument-based assurance (in a recent study by the Health Foundation, UK, which reviewed the use of safety cases in safety-critical industries). However, neither the literature nor current practice offer much guidance on querying mechanisms appropriate for, or available within, a safety case paradigm. This paper presents a preliminary approach that uses a formal basis for querying safety cases, specifically Goal Structuring Notation (GSN) argument structures. Our approach semantically enriches GSN arguments with domain-specific metadata that the query language leverages, along with its inherent structure, to produce views. We have implemented the approach in our toolset AdvoCATE, and illustrate it by application to a fragment of the safety argument for an Unmanned Aircraft System (UAS) being developed at NASA Ames. We also discuss the potential practical utility of our query mechanism within the context of the existing framework for UAS safety assurance.

  20. Potentials of Optical Damage Assessment Techniques in Automotive Crash-Concepts composed of FRP-Steel Hybrid Material Systems

    NASA Astrophysics Data System (ADS)

    Dlugosch, M.; Spiegelhalter, B.; Soot, T.; Lukaszewicz, D.; Fritsch, J.; Hiermaier, S.

    2017-05-01

    With car manufacturers simultaneously facing increasing passive safety and efficiency requirements, FRP-metal hybrid material systems are one way to design lightweight and crashworthy vehicle structures. Generic automotive hybrid structural concepts have been tested under crash loading conditions. In order to assess the state of overall damage and structural integrity, and primarily to validate simulation data, several NDT techniques have been assessed regarding their potential to detect common damage mechanisms in such hybrid systems. Significant potentials were found particularly in combining 3D-topography laser scanning and X-Ray imaging results. Ultrasonic testing proved to be limited by the signal coupling quality on damaged or curved surfaces.

  1. Model-based safety analysis of human-robot interactions: the MIRAS walking assistance robot.

    PubMed

    Guiochet, Jérémie; Hoang, Quynh Anh Do; Kaaniche, Mohamed; Powell, David

    2013-06-01

    Robotic systems have to cope with various execution environments while guaranteeing safety, and in particular when they interact with humans during rehabilitation tasks. These systems are often critical since their failure can lead to human injury or even death. However, such systems are difficult to validate due to their high complexity and the fact that they operate within complex, variable and uncertain environments (including users), in which it is difficult to foresee all possible system behaviors. Because of the complexity of human-robot interactions, rigorous and systematic approaches are needed to assist the developers in the identification of significant threats and the implementation of efficient protection mechanisms, and in the elaboration of a sound argumentation to justify the level of safety that can be achieved by the system. For threat identification, we propose a method called HAZOP-UML based on a risk analysis technique adapted to system description models, focusing on human-robot interaction models. The output of this step is then injected in a structured safety argumentation using the GSN graphical notation. Those approaches have been successfully applied to the development of a walking assistant robot which is now in clinical validation.

  2. Do European hospitals have quality and safety governance systems and structures in place?

    PubMed

    Shaw, C; Kutryba, B; Crisp, H; Vallejo, P; Suñol, R

    2009-02-01

    Internal systems for quality and safety were assessed in 89 hospitals in six European states, by external teams using standardised criteria and procedures, as part of the Methods of Assessing Response to Quality Improvement Strategies (MARQuIS) project. The assessments were made primarily to identify the current use of quality management systems in the sample hospitals, and also to demonstrate a potential tool for comparable assessment of hospitals in general. The large majority of the hospitals had a formal, documented infrastructure to manage quality and safety, but a significant minority had no designated mission, programme or coordination. In two-thirds of hospitals, the governing body was active in defining policy and programmes for improvement, and received reports on quality, safety and patient satisfaction at least once a year. The brief on-site assessments identified systematic variations, within and between countries, in structures and processes of governance and to document the uptake of best practice. Unacceptable variations in practice could be reduced, to the benefit of consumers and providers, by developing and publishing basic organisational standards relevant to all European states. The simple assessment criteria designed for this project could be developed into a practical tool for self-assessment, peer review or benchmarking of hospitals across national borders. This assessment, combined with explicit, relevant and achievable standards, could provide a vehicle to promote the voluntary uptake of best practice and consistency in quality and safety among hospitals in Europe.

  3. Structural equation model to investigate the dimensions influencing safety culture improvement in construction sector: A case in Indonesia

    NASA Astrophysics Data System (ADS)

    Machfudiyanto, Rossy Armyn; Latief, Yusuf; Yogiswara, Yoko; Setiawan, R. Mahendra Fitra

    2017-06-01

    In facing the ASEAN Economic Community, the level of prevailing working accidents becomes one of the competitiveness factors among the companies. A construction industry is one of the industries prone to high level of accidents. Improving the safety record will not be completely effective unless the occupational safety and healthy culture is enhanced. The aim of this research was to develop a model and to conduct empirical investigation on the relationships among the dimensions of construction occupational safety culture. This research used the structural equation model as a means to examine the hypothesis of positive relationships between dimensions and objectives. The method used in this research was questionnaire survey which was distributed to the respondents from construction companies in a state-owned enterprise in Indonesia. Moreover, there were dimensions of occupational safety culture that was established, such as leadership, behavior, value, strategy, policy, process, employee, safety cost, and contract system. The results of this study indicated that all dimensions were significant and inter-related in forming the safety culture. The result of R2 yielded the safety performance was 54%, which means it was in low category and evaluation of policies on construction companies was required in addressing the issue of working accidents.

  4. A system methodology for optimization design of the structural crashworthiness of a vehicle subjected to a high-speed frontal crash

    NASA Astrophysics Data System (ADS)

    Xia, Liang; Liu, Weiguo; Lv, Xiaojiang; Gu, Xianguang

    2018-04-01

    The structural crashworthiness design of vehicles has become an important research direction to ensure the safety of the occupants. To effectively improve the structural safety of a vehicle in a frontal crash, a system methodology is presented in this study. The surrogate model of Online support vector regression (Online-SVR) is adopted to approximate crashworthiness criteria and different kernel functions are selected to enhance the accuracy of the model. The Online-SVR model is demonstrated to have the advantages of solving highly nonlinear problems and saving training costs, and can effectively be applied for vehicle structural crashworthiness design. By combining the non-dominated sorting genetic algorithm II and Monte Carlo simulation, both deterministic optimization and reliability-based design optimization (RBDO) are conducted. The optimization solutions are further validated by finite element analysis, which shows the effectiveness of the RBDO solution in the structural crashworthiness design process. The results demonstrate the advantages of using RBDO, resulting in not only increased energy absorption and decreased structural weight from a baseline design, but also a significant improvement in the reliability of the design.

  5. Structural empowerment and patient safety culture among registered nurses working in adult critical care units.

    PubMed

    Armellino, Donna; Quinn Griffin, Mary T; Fitzpatrick, Joyce J

    2010-10-01

    The aim of the present study was to examine the relationship between structural empowerment and patient safety culture among staff level Registered Nurses (RNs) within adult critical care units (ACCU). There is literature to support the value of RNs' structurally empowered work environments and emerging literature towards patient safety culture; the link between empowerment and patient safety culture is being discovered. A sample of 257 RNs, working within adult critical care of a tertiary hospital in the United States, was surveyed. Instruments included a background data sheet, the Conditions of Workplace Effectiveness and the Hospital Survey on Patient Safety Culture. Structural empowerment and patient safety culture were significantly correlated. As structural empowerment increased so did the RNs' perception of patient safety culture. To foster patient safety culture, nurse leaders should consider providing structurally empowering work environments for RNs. This study contributes to the body of knowledge linking structural empowerment and patient safety culture. Results link structurally empowered RNs and increased patient safety culture, essential elements in delivering efficient, competent, quality care. They inform nursing management of key factors in the nurses' environment that promote safe patient care environments. © 2010 The Authors. Journal compilation © 2010 Blackwell Publishing Ltd.

  6. Investigations of plastic composite materials for highway safety structures

    DOT National Transportation Integrated Search

    1998-08-01

    This report presents a basic overview and assessment of different concepts and technologies of using polymer composites in structures generally used for highway safety. The structural systems included a highway barrier guardrail with its posts and bl...

  7. Technology Innovations from NASA's Next Generation Launch Technology Program

    NASA Technical Reports Server (NTRS)

    Cook, Stephen A.; Morris, Charles E. K., Jr.; Tyson, Richard W.

    2004-01-01

    NASA's Next Generation Launch Technology Program has been on the cutting edge of technology, improving the safety, affordability, and reliability of future space-launch-transportation systems. The array of projects focused on propulsion, airframe, and other vehicle systems. Achievements range from building miniature fuel/oxygen sensors to hot-firings of major rocket-engine systems as well as extreme thermo-mechanical testing of large-scale structures. Results to date have significantly advanced technology readiness for future space-launch systems using either airbreathing or rocket propulsion.

  8. A low-cost wireless system for autonomous generation of road safety alerts

    NASA Astrophysics Data System (ADS)

    Banks, B.; Harms, T.; Sedigh Sarvestani, S.; Bastianini, F.

    2009-03-01

    This paper describes an autonomous wireless system that generates road safety alerts, in the form of SMS and email messages, and sends them to motorists subscribed to the service. Drivers who regularly traverse a particular route are the main beneficiaries of the proposed system, which is intended for sparsely populated rural areas, where information available to drivers about road safety, especially bridge conditions, is very limited. At the heart of this system is the SmartBrick, a wireless system for remote structural health monitoring that has been presented in our previous work. Sensors on the SmartBrick network regularly collect data on water level, temperature, strain, and other parameters important to safety of a bridge. This information is stored on the device, and reported to a remote server over the GSM cellular infrastructure. The system generates alerts indicating hazardous road conditions when the data exceeds thresholds that can be remotely changed. The remote server and any number of designated authorities can be notified by email, FTP, and SMS. Drivers can view road conditions and subscribe to SMS and/or email alerts through a web page. The subscription-only form of alert generation has been deliberately selected to mitigate privacy concerns. The proposed system can significantly increase the safety of travel through rural areas. Real-time availability of information to transportation authorities and law enforcement officials facilitates early or proactive reaction to road hazards. Direct notification of drivers further increases the utility of the system in increasing the safety of the traveling public.

  9. RELEASE OF DRIED RADIOACTIVE WASTE MATERIALS TECHNICAL BASIS DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KOZLOWSKI, S.D.

    2007-05-30

    This technical basis document was developed to support RPP-23429, Preliminary Documented Safety Analysis for the Demonstration Bulk Vitrification System (PDSA) and RPP-23479, Preliminary Documented Safety Analysis for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Facility. The main document describes the risk binning process and the technical basis for assigning risk bins to the representative accidents involving the release of dried radioactive waste materials from the Demonstration Bulk Vitrification System (DBVS) and to the associated represented hazardous conditions. Appendices D through F provide the technical basis for assigning risk bins to the representative dried waste release accident and associated represented hazardous conditionsmore » for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Packaging Unit (WPU). The risk binning process uses an evaluation of the frequency and consequence of a given representative accident or represented hazardous condition to determine the need for safety structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls. A representative accident or a represented hazardous condition is assigned to a risk bin based on the potential radiological and toxicological consequences to the public and the collocated worker. Note that the risk binning process is not applied to facility workers because credible hazardous conditions with the potential for significant facility worker consequences are considered for safety-significant SSCs and/or TSR-level controls regardless of their estimated frequency. The controls for protection of the facility workers are described in RPP-23429 and RPP-23479. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, as described below.« less

  10. 10 CFR 52.157 - Contents of applications; technical information in final safety analysis report.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... analysis of the structures, systems, and components of the reactor to be manufactured, with emphasis upon... assumed for this evaluation should be based upon a major accident, hypothesized for purposes of site... structures, systems, and components with the objective of assessing the risk to public health and safety...

  11. From Board to Bedside: How the Application of Financial Structures to Safety and Quality Can Drive Accountability in a Large Health Care System.

    PubMed

    Austin, J Matthew; Demski, Renee; Callender, Tiffany; Lee, K H Ken; Hoffman, Ann; Allen, Lisa; Radke, Deborah A; Kim, Yungjin; Werthman, Ronald J; Peterson, Ronald R; Pronovost, Peter J

    2017-04-01

    As the health care system in the United States places greater emphasis on the public reporting of quality and safety data and its use to determine payment, provider organizations must implement structures that ensure discipline and rigor regarding these data. An academic health system, as part of a performance management system, applied four key components of a financial reporting structure to support the goal of top-to-bottom accountability for improving quality and safety. The four components implemented by Johns Hopkins Medicine were governance, accountability, reporting of consolidated quality performance statements, and auditing. Governance is provided by the health system's Patient Safety and Quality Board Committee, which reviews goals and strategy for patient safety and quality, reviews quarterly performance for each entity, and holds organizational leaders accountable for performance. An accountability plan includes escalating levels of review corresponding to the number of months an entity misses the defined performance target for a measure. A consolidated quality statement helps inform the Patient Safety and Quality Board Committee and leadership on key quality and safety issues. An audit evaluates the efficiency and effectiveness of processes for data collection, validation, and storage, as to ensure the accuracy and completeness of quality measure reporting. If hospitals and health systems truly want to prioritize improvements in safety and quality, they will need to create a performance management system that ensures data validity and supports performance accountability. Without valid data, it is difficult to know whether a performance gap is due to data quality or clinical quality. Copyright © 2017 The Joint Commission. Published by Elsevier Inc. All rights reserved.

  12. WTEC monograph on instrumentation, control and safety systems of Canadian nuclear facilities

    NASA Technical Reports Server (NTRS)

    Uhrig, Robert E.; Carter, Richard J.

    1993-01-01

    This report updates a 1989-90 survey of advanced instrumentation and controls (I&C) technologies and associated human factors issues in the U.S. and Canadian nuclear industries carried out by a team from Oak Ridge National Laboratory (Carter and Uhrig 1990). The authors found that the most advanced I&C systems are in the Canadian CANDU plants, where the newest plant (Darlington) has digital systems in almost 100 percent of its control systems and in over 70 percent of its plant protection system. Increased emphasis on human factors and cognitive science in modern control rooms has resulted in a reduced workload for the operators and the elimination of many human errors. Automation implemented through digital instrumentation and control is effectively changing the role of the operator to that of a systems manager. The hypothesis that properly introducing digital systems increases safety is supported by the Canadian experience. The performance of these digital systems has been achieved using appropriate quality assurance programs for both hardware and software development. Recent regulatory authority review of the development of safety-critical software has resulted in the creation of isolated software modules with well defined interfaces and more formal structure in the software generation. The ability of digital systems to detect impending failures and initiate a fail-safe action is a significant safety issue that should be of special interest to nuclear utilities and regulatory authorities around the world.

  13. Fiber grating systems used to measure strain in cylindrical structures

    NASA Astrophysics Data System (ADS)

    Udd, Eric; Corona-Bittick, Kelli; Slattery, Kerry T.; Dorr, Donald J.; Crowe, C. Robert; Vandiver, Terry L.; Evans, Robert N.

    1997-07-01

    Fiber optic grating systems are described that have been used to measure strain in cylindrical structures. The applications of these systems to a composite utility pole and to a composite missile body are described. Composite utility poles have significant advantages with respect to wooden utility poles that include superior strength and uniformity; light weight for ease of deployment; the ability to be recycled, reducing hazardous waste associated with chemically treated wooden poles; and compatibility with embedded fiber optic sensors, allowing structural loads to be monitored. Tests conducted of fiber optic grating sensors in combination with an overcoupled coupler demodulation system to support structural testing of a 22-ft composite pole are reported. Monitoring strain in composite missile bodies has the potential to improve the quality of manufactured parts, support performance testing, and enhance safety during long periods of storage. Strain measurements made with fiber optic grating and electrical strain gauges are described.

  14. Republished: Building a culture of safety through team training and engagement.

    PubMed

    Thomas, Lily; Galla, Catherine

    2013-07-01

    Medical errors continue to occur despite multiple strategies devised for their prevention. Although many safety initiatives lead to improvement, they are often short lived and unsustainable. Our goal was to build a culture of patient safety within a structure that optimised teamwork and ongoing engagement of the healthcare team. Teamwork impacts the effectiveness of care, patient safety and clinical outcomes, and team training has been identified as a strategy for enhancing teamwork, reducing medical errors and building a culture of safety in healthcare. Therefore, we implemented Team Strategies and Tools to Enhance Performance and Patient Safety (TeamSTEPPS), an evidence-based framework which was used for team training to create transformational and/or incremental changes; facilitating transformation of organisational culture, or solving specific problems. To date, TeamSTEPPS (TS) has been implemented in 14 hospitals, two Long Term Care Facilities, and outpatient areas across the North Shore LIJ Health System. 32 150 members of the healthcare team have been trained. TeamSTEPPS was piloted at a community hospital within the framework of the health system's organisational care delivery model, the Collaborative Care Model to facilitate sustainment. AHRQ's Hospital Survey on Patient Safety Culture, (HSOPSC), was administered before and after implementation of TeamSTEPPS, comparing the perception of patient safety by the heathcare team. Pilot hospital results of HSOPSC show significant improvement from 2007 (pre-TeamSTEPPS) to 2010. System-wide results of HSOPSC show similar trends to those seen in the pilot hospital. Valuable lessons for organisational success from the pilot hospital enabled rapid spread of TeamSTEPPS across the rest of the health system.

  15. Building a culture of safety through team training and engagement.

    PubMed

    Thomas, Lily; Galla, Catherine

    2013-05-01

    Medical errors continue to occur despite multiple strategies devised for their prevention. Although many safety initiatives lead to improvement, they are often short lived and unsustainable. Our goal was to build a culture of patient safety within a structure that optimised teamwork and ongoing engagement of the healthcare team. Teamwork impacts the effectiveness of care, patient safety and clinical outcomes, and team training has been identified as a strategy for enhancing teamwork, reducing medical errors and building a culture of safety in healthcare. Therefore, we implemented Team Strategies and Tools to Enhance Performance and Patient Safety (TeamSTEPPS), an evidence-based framework which was used for team training to create transformational and/or incremental changes; facilitating transformation of organisational culture, or solving specific problems. To date, TeamSTEPPS (TS) has been implemented in 14 hospitals, two Long Term Care Facilities, and outpatient areas across the North Shore LIJ Health System. 32 150 members of the healthcare team have been trained. TeamSTEPPS was piloted at a community hospital within the framework of the health system's organisational care delivery model, the Collaborative Care Model to facilitate sustainment. AHRQ's Hospital Survey on Patient Safety Culture, (HSOPSC), was administered before and after implementation of TeamSTEPPS, comparing the perception of patient safety by the heathcare team. Pilot hospital results of HSOPSC show significant improvement from 2007 (pre-TeamSTEPPS) to 2010. System-wide results of HSOPSC show similar trends to those seen in the pilot hospital. Valuable lessons for organisational success from the pilot hospital enabled rapid spread of TeamSTEPPS across the rest of the health system.

  16. The impact of nursing leadership on patient safety in a developing country.

    PubMed

    Stewart, Lee; Usher, Kim

    2010-11-01

    This article is a report of a study to identify the ways nursing leaders and managers in a developing country have an impact on patient safety. The attempt to address the problem of patient safety in health care is a global issue. Literature addressing the significant impact that nursing leadership has on patient safety is extensive and focuses almost exclusively on the developed world. A critical ethnography was conducted with senior registered nursing leaders and managers throughout the Fiji Islands, specifically those in the Head Office of the Fiji Ministry of Health and the most senior nurse in a hospital or community health service. Semi-structured interviews were conducted with senior nursing leaders and managers in Fiji. Thematic analysis of the interviews was undertaken from a critical theory perspective, with reference to the macro socio-political system of the Fiji Ministry of Health. Four interrelated issues regarding the nursing leaders and managers' impact on patient safety emerged from the study. Empowerment of nursing leaders and managers, an increased focus on the patient, the necessity to explore conditions for front-line nurses and the direct relationship between improved nursing conditions and increased patient safety mirrored literature from developed countries. The findings have significant implications for developing countries and it is crucial that support for patient safety in developing countries become a focus for the international nursing community. Nursing leaders and managers' increased focus on their own place in the hierarchy of the health care system and on nursing conditions as these affect patient safety could decrease adverse patient outcomes. The findings could assist the global nursing community to better support developing countries in pursuing a patient safety agenda. © 2010 Blackwell Publishing Ltd.

  17. Verification and Validation in a Rapid Software Development Process

    NASA Technical Reports Server (NTRS)

    Callahan, John R.; Easterbrook, Steve M.

    1997-01-01

    The high cost of software production is driving development organizations to adopt more automated design and analysis methods such as rapid prototyping, computer-aided software engineering (CASE) tools, and high-level code generators. Even developers of safety-critical software system have adopted many of these new methods while striving to achieve high levels Of quality and reliability. While these new methods may enhance productivity and quality in many cases, we examine some of the risks involved in the use of new methods in safety-critical contexts. We examine a case study involving the use of a CASE tool that automatically generates code from high-level system designs. We show that while high-level testing on the system structure is highly desirable, significant risks exist in the automatically generated code and in re-validating releases of the generated code after subsequent design changes. We identify these risks and suggest process improvements that retain the advantages of rapid, automated development methods within the quality and reliability contexts of safety-critical projects.

  18. The influence of individual and contextual work factors on workers' compliance with health and safety routines.

    PubMed

    Torp, Steffen; Grøgaard, Jens B

    2009-03-01

    This study investigated the relationships between workers' compliance with health and safety (H&S) routines and instructions adopted in the company (dependent variable) and psychological demands, decision authority, social support, management support, unionization and H&S management system (independent variables). A cross-sectional questionnaire study was performed among 1051 workers and the managers of 102 small- and medium-sized motor vehicle repair garages. Multilevel modeling was performed to account for the hierarchical structure of the data. At the worker level, high compliance with H&S routines correlated significantly with both social support and H&S-related management support. At the garage level, mean management support and a well-developed H&S management system correlated significantly with high workers' compliance. Changing both the individual and contextual factors in the work environment may thus increase workers' participation in H&S activities.

  19. A cross-sectional study to identify organisational processes associated with nurse-reported quality and patient safety

    PubMed Central

    Tvedt, Christine; Sjetne, Ingeborg Strømseng; Helgeland, Jon; Bukholm, Geir

    2012-01-01

    Objectives The purpose of this study was to identify organisational processes and structures that are associated with nurse-reported patient safety and quality of nursing. Design This is an observational cross-sectional study using survey methods. Setting Respondents from 31 Norwegian hospitals with more than 85 beds were included in the survey. Participants All registered nurses working in direct patient care in a position of 20% or more were invited to answer the survey. In this study, 3618 nurses from surgical and medical wards responded (response rate 58.9). Nurses' practice environment was defined as organisational processes and measured by the Nursing Work Index Revised and items from Hospital Survey on Patient Safety Culture. Outcome measures Nurses' assessments of patient safety, quality of nursing, confidence in how their patients manage after discharge and frequency of adverse events were used as outcome measures. Results Quality system, nurse–physician relation, patient safety management and staff adequacy were process measures associated with nurse-reported work-related and patient-related outcomes, but we found no associations with nurse participation, education and career and ward leadership. Most organisational structures were non-significant in the multilevel model except for nurses’ affiliations to medical department and hospital type. Conclusions Organisational structures may have minor impact on how nurses perceive work-related and patient-related outcomes, but the findings in this study indicate that there is a considerable potential to address organisational design in improvement of patient safety and quality of care. PMID:23263021

  20. Recent advances in computational structural reliability analysis methods

    NASA Astrophysics Data System (ADS)

    Thacker, Ben H.; Wu, Y.-T.; Millwater, Harry R.; Torng, Tony Y.; Riha, David S.

    1993-10-01

    The goal of structural reliability analysis is to determine the probability that the structure will adequately perform its intended function when operating under the given environmental conditions. Thus, the notion of reliability admits the possibility of failure. Given the fact that many different modes of failure are usually possible, achievement of this goal is a formidable task, especially for large, complex structural systems. The traditional (deterministic) design methodology attempts to assure reliability by the application of safety factors and conservative assumptions. However, the safety factor approach lacks a quantitative basis in that the level of reliability is never known and usually results in overly conservative designs because of compounding conservatisms. Furthermore, problem parameters that control the reliability are not identified, nor their importance evaluated. A summary of recent advances in computational structural reliability assessment is presented. A significant level of activity in the research and development community was seen recently, much of which was directed towards the prediction of failure probabilities for single mode failures. The focus is to present some early results and demonstrations of advanced reliability methods applied to structural system problems. This includes structures that can fail as a result of multiple component failures (e.g., a redundant truss), or structural components that may fail due to multiple interacting failure modes (e.g., excessive deflection, resonate vibration, or creep rupture). From these results, some observations and recommendations are made with regard to future research needs.

  1. Recent advances in computational structural reliability analysis methods

    NASA Technical Reports Server (NTRS)

    Thacker, Ben H.; Wu, Y.-T.; Millwater, Harry R.; Torng, Tony Y.; Riha, David S.

    1993-01-01

    The goal of structural reliability analysis is to determine the probability that the structure will adequately perform its intended function when operating under the given environmental conditions. Thus, the notion of reliability admits the possibility of failure. Given the fact that many different modes of failure are usually possible, achievement of this goal is a formidable task, especially for large, complex structural systems. The traditional (deterministic) design methodology attempts to assure reliability by the application of safety factors and conservative assumptions. However, the safety factor approach lacks a quantitative basis in that the level of reliability is never known and usually results in overly conservative designs because of compounding conservatisms. Furthermore, problem parameters that control the reliability are not identified, nor their importance evaluated. A summary of recent advances in computational structural reliability assessment is presented. A significant level of activity in the research and development community was seen recently, much of which was directed towards the prediction of failure probabilities for single mode failures. The focus is to present some early results and demonstrations of advanced reliability methods applied to structural system problems. This includes structures that can fail as a result of multiple component failures (e.g., a redundant truss), or structural components that may fail due to multiple interacting failure modes (e.g., excessive deflection, resonate vibration, or creep rupture). From these results, some observations and recommendations are made with regard to future research needs.

  2. Safety envelope for load tolerance of structural element design based on multi-stage testing

    DOE PAGES

    Park, Chanyoung; Kim, Nam H.

    2016-09-06

    Structural elements, such as stiffened panels and lap joints, are basic components of aircraft structures. For aircraft structural design, designers select predesigned elements satisfying the design load requirement based on their load-carrying capabilities. Therefore, estimation of safety envelope of structural elements for load tolerances would be a good investment for design purpose. In this article, a method of estimating safety envelope is presented using probabilistic classification, which can estimate a specific level of failure probability under both aleatory and epistemic uncertainties. An important contribution of this article is that the calculation uncertainty is reflected in building a safety envelope usingmore » Gaussian process, and the effect of element test data on reducing the calculation uncertainty is incorporated by updating the Gaussian process model with the element test data. It is shown that even one element test can significantly reduce the calculation uncertainty due to lacking knowledge of actual physics, so that conservativeness in a safety envelope is significantly reduced. The proposed approach was demonstrated with a cantilever beam example, which represents a structural element. The example shows that calculation uncertainty provides about 93% conservativeness against the uncertainty due to a few element tests. As a result, it is shown that even a single element test can increase the load tolerance modeled with the safety envelope by 20%.« less

  3. The effect of certification and accreditation on quality management in 4 clinical services in 73 European hospitals

    PubMed Central

    Shaw, Charles D.; Groene, Oliver; Botje, Daan; Sunol, Rosa; Kutryba, Basia; Klazinga, Niek; Bruneau, Charles; Hammer, Antje; Wang, Aolin; Arah, Onyebuchi A.; Wagner, Cordula; Klazinga, N; Kringos, DS; Lombarts, K; Plochg, T; Lopez, MA; Secanell, M; Sunol, R; Vallejo, P; Bartels, P; Kristensen, S; Michel, P; Saillour-Glenisson, F; Vlcek, F; Car, M; Jones, S; Klaus, E; Garel, P; Hanslik, K; Saluvan, M; Bruneau, C; Depaigne-Loth, A; Shaw, C; Hammer, A; Ommen, O; Pfaff, H; Groene, O; Botje, D; Wagner, C; Kutaj-Wasikowska, H; Kutryba, B; Escoval, A; Franca, M; Almeman, F; Kus, H; Ozturk, K; Mannion, R; Arah, OA; Chow, A; DerSarkissian, M; Thompson, C; Wang, A; Thompson, A

    2014-01-01

    Objective To investigate the relationship between ISO 9001 certification, healthcare accreditation and quality management in European hospitals. Design A mixed method multi-level cross-sectional design in seven countries. External teams assessed clinical services on the use of quality management systems, illustrated by four clinical pathways. Setting and Participants Seventy-three acute care hospitals with a total of 291 services managing acute myocardial infarction (AMI), hip fracture, stroke and obstetric deliveries, in Czech Republic, France, Germany, Poland, Portugal, Spain and Turkey. Main Outcome Measure Four composite measures of quality and safety [specialized expertise and responsibility (SER), evidence-based organization of pathways (EBOP), patient safety strategies (PSS) and clinical review (CR)] applied to four pathways. Results Accreditation in isolation showed benefits in AMI and stroke more than in deliveries and hip fracture; the greatest significant association was with CR in stroke. Certification in isolation showed little benefit in AMI but had more positive association with the other conditions; greatest significant association was in PSS with stroke. The combination of accreditation and certification showed least benefit in EBOP, but significant benefits in SER (AMI), in PSS (AMI, hip fracture and stroke) and in CR (AMI and stroke). Conclusions Accreditation and certification are positively associated with clinical leadership, systems for patient safety and clinical review, but not with clinical practice. Both systems promote structures and processes, which support patient safety and clinical organization but have limited effect on the delivery of evidence-based patient care. Further analysis of DUQuE data will explore the association of certification and accreditation with clinical outcomes. PMID:24615598

  4. The effect of certification and accreditation on quality management in 4 clinical services in 73 European hospitals.

    PubMed

    Shaw, Charles D; Groene, Oliver; Botje, Daan; Sunol, Rosa; Kutryba, Basia; Klazinga, Niek; Bruneau, Charles; Hammer, Antje; Wang, Aolin; Arah, Onyebuchi A; Wagner, Cordula

    2014-04-01

    To investigate the relationship between ISO 9001 certification, healthcare accreditation and quality management in European hospitals. A mixed method multi-level cross-sectional design in seven countries. External teams assessed clinical services on the use of quality management systems, illustrated by four clinical pathways. Seventy-three acute care hospitals with a total of 291 services managing acute myocardial infarction (AMI), hip fracture, stroke and obstetric deliveries, in Czech Republic, France, Germany, Poland, Portugal, Spain and Turkey. Four composite measures of quality and safety [specialized expertise and responsibility (SER), evidence-based organization of pathways (EBOP), patient safety strategies (PSS) and clinical review (CR)] applied to four pathways. Accreditation in isolation showed benefits in AMI and stroke more than in deliveries and hip fracture; the greatest significant association was with CR in stroke. Certification in isolation showed little benefit in AMI but had more positive association with the other conditions; greatest significant association was in PSS with stroke. The combination of accreditation and certification showed least benefit in EBOP, but significant benefits in SER (AMI), in PSS (AMI, hip fracture and stroke) and in CR (AMI and stroke). Accreditation and certification are positively associated with clinical leadership, systems for patient safety and clinical review, but not with clinical practice. Both systems promote structures and processes, which support patient safety and clinical organization but have limited effect on the delivery of evidence-based patient care. Further analysis of DUQuE data will explore the association of certification and accreditation with clinical outcomes.

  5. The development and application of electronic information system for safety administration of newborns in the rooming-in care.

    PubMed

    Wang, Fang; Dong, Jian-Cheng; Chen, Jian-Rong; Wu, Hui-Qun; Liu, Man-Hua; Xue, Li-Ly; Zhu, Xiang-Hua; Wang, Jian

    2015-01-01

    To independently research and develop an electronic information system for safety administration of newborns in the rooming-in care, and to investigate the effects of its clinical application. By VS 2010 SQL SERVER 2005 database and adopting Microsoft visual programming tool, an interactive mobile information system was established, with integrating data, information and knowledge with using information structures, information processes and information technology. From July 2011 to July 2012, totally 210 newborns from the rooming-in care of the Obstetrics Department of the Second Affiliated Hospital of Nantong University were chosen and randomly divided into two groups: the information system monitoring group (110 cases) and the regular monitoring group (100 cases). Incidence of abnormal events and degree of satisfaction were recorded and calculated. ① The wireless electronic information system has four main functions including risk scaling display, identity recognition display, nursing round notes board and health education board; ② statistically significant differences were found between the two groups both on the active or passive discovery rate of abnormal events occurred in the newborns (P<0.05) and the satisfaction degree of the mothers and their families (P<0.05); ③ the system was sensitive and reliable, and the wireless transmission of information was correct and safety. The system is with high practicability in the clinic and can ensure the safety for the newborns with improved satisfactions.

  6. Structural analysis of a rehabilitative training system based on a ceiling rail for safety of hemiplegia patients.

    PubMed

    Kim, Kyong; Song, Won Kyung; Chong, Woo Suk; Yu, Chang Ho

    2018-04-17

    The body-weight support (BWS) function, which helps to decrease load stresses on a user, is an effective tool for gait and balance rehabilitation training for elderly people with weakened lower-extremity muscular strength, hemiplegic patients, etc. This study conducts structural analysis to secure user safety in order to develop a rail-type gait and balance rehabilitation training system (RRTS). The RRTS comprises a rail, trolley, and brain-machine interface. The rail (platform) is connected to the ceiling structure, bearing the loads of the RRTS and of the user and allowing locomobility. The trolley consists of a smart drive unit (SDU) that assists the user with forward and backward mobility and a body-weight support (BWS) unit that helps the user to control his/her body-weight load, depending on the severity of his/her hemiplegia. The brain-machine interface estimates and measures on a real-time basis the body-weight (load) of the user and the intended direction of his/her movement. Considering the weight of the system and the user, the mechanical safety performance of the system frame under an applied 250-kg static load is verified through structural analysis using ABAQUS (6.14-3) software. The maximum stresses applied on the rail and trolley under the given gravity load of 250 kg, respectively, are 18.52 MPa and 48.44 MPa. The respective safety factors are computed to be 7.83 and 5.26, confirming the RRTS's mechanical safety. An RRTS with verified structural safety could be utilized for gait movement and balance rehabilitation and training for patients with hemiplegia.

  7. Loosely Coupled GPS-Aided Inertial Navigation System for Range Safety

    NASA Technical Reports Server (NTRS)

    Heatwole, Scott; Lanzi, Raymond J.

    2010-01-01

    The Autonomous Flight Safety System (AFSS) aims to replace the human element of range safety operations, as well as reduce reliance on expensive, downrange assets for launches of expendable launch vehicles (ELVs). The system consists of multiple navigation sensors and flight computers that provide a highly reliable platform. It is designed to ensure that single-event failures in a flight computer or sensor will not bring down the whole system. The flight computer uses a rules-based structure derived from range safety requirements to make decisions whether or not to destroy the rocket.

  8. Technology Development for Fire Safety in Exploration Spacecraft and Habitats

    NASA Technical Reports Server (NTRS)

    Ruff, Gary A.; Urban, David L.

    2007-01-01

    Fire during an exploration mission far from Earth is a particularly critical risk for exploration vehicles and habitats. The Fire Prevention, Detection, and Suppression (FPDS) project is part of the Exploration Technology Development Program (ETDP) and has the goal to enhance crew health and safety on exploration missions by reducing the likelihood of a fire, or, if one does occur, minimizing the risk to the mission, crew, or system. Within the past year, the FPDS project has been formalized within the ETDP structure and has seen significant progress on its tasks in fire prevention, detection, and suppression. As requirements for Constellation vehicles and, specifically, the CEV have developed, the need for the FPDS technologies has become more apparent and we continue to make strides to infuse them into the Constellation architecture. This paper describes the current structure of the project within the ETDP and summarizes the significant programmatic activities. Major technical accomplishments are identified as are activities planned for FY07.

  9. Technology Development for Fire Safety in Exploration Spacecraft and Habitats

    NASA Technical Reports Server (NTRS)

    Ruff, Gary A.; Urban, David L.

    2006-01-01

    Fire during an exploration mission far from Earth is a particularly critical risk for exploration vehicles and habitats. The Fire Prevention, Detection, and Suppression (FPDS) project is part of the Exploration Technology Development Program (ETDP) and has the goal to enhance crew health and safety on exploration missions by reducing the likelihood of a fire, or, if one does occur, minimizing the risk to the mission, crew, or system. Within the past year, the FPDS project has been formalized within the ETDP structure and has seen significant progress on its tasks in fire prevention, detection, and suppression. As requirements for Constellation vehicles and, specifically, the CEV have developed, the need for the FPDS technologies has become more apparent and we continue to make strides to infuse them into the Constellation architecture. This paper describes the current structure of the project within the ETDP and summarizes the significant programmatic activities. Major technical accomplishments are identified as are activities planned for FY07.

  10. A system of safety management practices and worker engagement for reducing and preventing accidents: an empirical and theoretical investigation.

    PubMed

    Wachter, Jan K; Yorio, Patrick L

    2014-07-01

    The overall research objective was to theoretically and empirically develop the ideas around a system of safety management practices (ten practices were elaborated), to test their relationship with objective safety statistics (such as accident rates), and to explore how these practices work to achieve positive safety results (accident prevention) through worker engagement. Data were collected using safety manager, supervisor and employee surveys designed to assess and link safety management system practices, employee perceptions resulting from existing practices, and safety performance outcomes. Results indicate the following: there is a significant negative relationship between the presence of ten individual safety management practices, as well as the composite of these practices, with accident rates; there is a significant negative relationship between the level of safety-focused worker emotional and cognitive engagement with accident rates; safety management systems and worker engagement levels can be used individually to predict accident rates; safety management systems can be used to predict worker engagement levels; and worker engagement levels act as mediators between the safety management system and safety performance outcomes (such as accident rates). Even though the presence of safety management system practices is linked with incident reduction and may represent a necessary first-step in accident prevention, safety performance may also depend on mediation by safety-focused cognitive and emotional engagement by workers. Thus, when organizations invest in a safety management system approach to reducing/preventing accidents and improving safety performance, they should also be concerned about winning over the minds and hearts of their workers through human performance-based safety management systems designed to promote and enhance worker engagement. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Effects of Different Types of Cognitive Training on Cognitive Function, Brain Structure, and Driving Safety in Senior Daily Drivers: A Pilot Study.

    PubMed

    Nozawa, Takayuki; Taki, Yasuyuki; Kanno, Akitake; Akimoto, Yoritaka; Ihara, Mizuki; Yokoyama, Ryoichi; Kotozaki, Yuka; Nouchi, Rui; Sekiguchi, Atsushi; Takeuchi, Hikaru; Miyauchi, Carlos Makoto; Ogawa, Takeshi; Goto, Takakuni; Sunda, Takashi; Shimizu, Toshiyuki; Tozuka, Eiji; Hirose, Satoru; Nanbu, Tatsuyoshi; Kawashima, Ryuta

    2015-01-01

    Increasing proportion of the elderly in the driving population raises the importance of assuring their safety. We explored the effects of three different types of cognitive training on the cognitive function, brain structure, and driving safety of the elderly. Thirty-seven healthy elderly daily drivers were randomly assigned to one of three training groups: Group V trained in a vehicle with a newly developed onboard cognitive training program, Group P trained with a similar program but on a personal computer, and Group C trained to solve a crossword puzzle. Before and after the 8-week training period, they underwent neuropsychological tests, structural brain magnetic resonance imaging, and driving safety tests. For cognitive function, only Group V showed significant improvements in processing speed and working memory. For driving safety, Group V showed significant improvements both in the driving aptitude test and in the on-road evaluations. Group P showed no significant improvements in either test, and Group C showed significant improvements in the driving aptitude but not in the on-road evaluations. The results support the effectiveness of the onboard training program in enhancing the elderly's abilities to drive safely and the potential advantages of a multimodal training approach.

  12. Effects of Different Types of Cognitive Training on Cognitive Function, Brain Structure, and Driving Safety in Senior Daily Drivers: A Pilot Study

    PubMed Central

    Taki, Yasuyuki; Kanno, Akitake; Akimoto, Yoritaka; Ihara, Mizuki; Yokoyama, Ryoichi; Kotozaki, Yuka; Sekiguchi, Atsushi; Takeuchi, Hikaru; Miyauchi, Carlos Makoto; Ogawa, Takeshi; Goto, Takakuni; Sunda, Takashi; Shimizu, Toshiyuki; Tozuka, Eiji; Hirose, Satoru; Nanbu, Tatsuyoshi; Kawashima, Ryuta

    2015-01-01

    Background. Increasing proportion of the elderly in the driving population raises the importance of assuring their safety. We explored the effects of three different types of cognitive training on the cognitive function, brain structure, and driving safety of the elderly. Methods. Thirty-seven healthy elderly daily drivers were randomly assigned to one of three training groups: Group V trained in a vehicle with a newly developed onboard cognitive training program, Group P trained with a similar program but on a personal computer, and Group C trained to solve a crossword puzzle. Before and after the 8-week training period, they underwent neuropsychological tests, structural brain magnetic resonance imaging, and driving safety tests. Results. For cognitive function, only Group V showed significant improvements in processing speed and working memory. For driving safety, Group V showed significant improvements both in the driving aptitude test and in the on-road evaluations. Group P showed no significant improvements in either test, and Group C showed significant improvements in the driving aptitude but not in the on-road evaluations. Conclusion. The results support the effectiveness of the onboard training program in enhancing the elderly's abilities to drive safely and the potential advantages of a multimodal training approach. PMID:26161000

  13. Integrated material state awareness system with self-learning symbiotic diagnostic algorithms and models

    NASA Astrophysics Data System (ADS)

    Banerjee, Sourav; Liu, Lie; Liu, S. T.; Yuan, Fuh-Gwo; Beard, Shawn

    2011-04-01

    Materials State Awareness (MSA) goes beyond traditional NDE and SHM in its challenge to characterize the current state of material damage before the onset of macro-damage such as cracks. A highly reliable, minimally invasive system for MSA of Aerospace Structures, Naval structures as well as next generation space systems is critically needed. Development of such a system will require a reliable SHM system that can detect the onset of damage well before the flaw grows to a critical size. Therefore, it is important to develop an integrated SHM system that not only detects macroscale damages in the structures but also provides an early indication of flaw precursors and microdamages. The early warning for flaw precursors and their evolution provided by an SHM system can then be used to define remedial strategies before the structural damage leads to failure, and significantly improve the safety and reliability of the structures. Thus, in this article a preliminary concept of developing the Hybrid Distributed Sensor Network Integrated with Self-learning Symbiotic Diagnostic Algorithms and Models to accurately and reliably detect the precursors to damages that occur to the structure are discussed. Experiments conducted in a laboratory environment shows potential of the proposed technique.

  14. Safety models incorporating graph theory based transit indicators.

    PubMed

    Quintero, Liliana; Sayed, Tarek; Wahba, Mohamed M

    2013-01-01

    There is a considerable need for tools to enable the evaluation of the safety of transit networks at the planning stage. One interesting approach for the planning of public transportation systems is the study of networks. Network techniques involve the analysis of systems by viewing them as a graph composed of a set of vertices (nodes) and edges (links). Once the transport system is visualized as a graph, various network properties can be evaluated based on the relationships between the network elements. Several indicators can be calculated including connectivity, coverage, directness and complexity, among others. The main objective of this study is to investigate the relationship between network-based transit indicators and safety. The study develops macro-level collision prediction models that explicitly incorporate transit physical and operational elements and transit network indicators as explanatory variables. Several macro-level (zonal) collision prediction models were developed using a generalized linear regression technique, assuming a negative binomial error structure. The models were grouped into four main themes: transit infrastructure, transit network topology, transit route design, and transit performance and operations. The safety models showed that collisions were significantly associated with transit network properties such as: connectivity, coverage, overlapping degree and the Local Index of Transit Availability. As well, the models showed a significant relationship between collisions and some transit physical and operational attributes such as the number of routes, frequency of routes, bus density, length of bus and 3+ priority lanes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Automating the Generation of Heterogeneous Aviation Safety Cases

    NASA Technical Reports Server (NTRS)

    Denney, Ewen W.; Pai, Ganesh J.; Pohl, Josef M.

    2012-01-01

    A safety case is a structured argument, supported by a body of evidence, which provides a convincing and valid justification that a system is acceptably safe for a given application in a given operating environment. This report describes the development of a fragment of a preliminary safety case for the Swift Unmanned Aircraft System. The construction of the safety case fragment consists of two parts: a manually constructed system-level case, and an automatically constructed lower-level case, generated from formal proof of safety-relevant correctness properties. We provide a detailed discussion of the safety considerations for the target system, emphasizing the heterogeneity of sources of safety-relevant information, and use a hazard analysis to derive safety requirements, including formal requirements. We evaluate the safety case using three classes of metrics for measuring degrees of coverage, automation, and understandability. We then present our preliminary conclusions and make suggestions for future work.

  16. Quasi-Static Probabilistic Structural Analyses Process and Criteria

    NASA Technical Reports Server (NTRS)

    Goldberg, B.; Verderaime, V.

    1999-01-01

    Current deterministic structural methods are easily applied to substructures and components, and analysts have built great design insights and confidence in them over the years. However, deterministic methods cannot support systems risk analyses, and it was recently reported that deterministic treatment of statistical data is inconsistent with error propagation laws that can result in unevenly conservative structural predictions. Assuming non-nal distributions and using statistical data formats throughout prevailing stress deterministic processes lead to a safety factor in statistical format, which integrated into the safety index, provides a safety factor and first order reliability relationship. The embedded safety factor in the safety index expression allows a historically based risk to be determined and verified over a variety of quasi-static metallic substructures consistent with the traditional safety factor methods and NASA Std. 5001 criteria.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Chanyoung; Kim, Nam H.

    Structural elements, such as stiffened panels and lap joints, are basic components of aircraft structures. For aircraft structural design, designers select predesigned elements satisfying the design load requirement based on their load-carrying capabilities. Therefore, estimation of safety envelope of structural elements for load tolerances would be a good investment for design purpose. In this article, a method of estimating safety envelope is presented using probabilistic classification, which can estimate a specific level of failure probability under both aleatory and epistemic uncertainties. An important contribution of this article is that the calculation uncertainty is reflected in building a safety envelope usingmore » Gaussian process, and the effect of element test data on reducing the calculation uncertainty is incorporated by updating the Gaussian process model with the element test data. It is shown that even one element test can significantly reduce the calculation uncertainty due to lacking knowledge of actual physics, so that conservativeness in a safety envelope is significantly reduced. The proposed approach was demonstrated with a cantilever beam example, which represents a structural element. The example shows that calculation uncertainty provides about 93% conservativeness against the uncertainty due to a few element tests. As a result, it is shown that even a single element test can increase the load tolerance modeled with the safety envelope by 20%.« less

  18. 10 CFR 52.137 - Contents of applications; technical information.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... limits on its operation, and presents a safety analysis of the structures, systems, and components and of... products. The description shall be sufficient to permit understanding of the system designs and their relationship to the safety evaluations. Items such as the reactor core, reactor coolant system, instrumentation...

  19. Ethics and safety in home care: perspectives on home support workers.

    PubMed

    Storch, Janet; Curry, Cherie Geering; Stevenson, Lynn; Macdonald, Marilyn; Lang, Ariella

    2014-03-01

    Home support workers (HSWs) encounter unique safety issues in their provision of home care. These issues raise ethical concerns, affecting the care workers provide to seniors and other recipients. This paper is derived from a subproject of a larger Canada-wide study, Safety at Home: A Pan-Canadian Home Care Safety Study, released in June 2013 by the Canadian Patient Safety Institute. Semi-structured, face-to-face, audiotaped interviews were conducted with providers, clients and informal caregivers in British Columbia, Manitoba and New Brunswick to better understand their perceptions of patient safety in home care. Using the BC data only, we then compared our findings to findings of other BC studies focusing on safety in home care that were conducted over the past decade. Through our interviews and comparative analyses it became clear that HSWs experienced significant inequities in providing home care. Utilizing a model depicting concerns of and for HSWs developed by Craven and colleagues (2012), we were able to illustrate the physical, spatial, interpersonal and temporal concerns set in the context of system design that emphasized the ethical dilemmas of HSWs in home care. Our data suggested the necessity of adding a fifth domain, organizational (system design). In this paper, we issue a call for stronger advocacy for home care and improved collaboration and resource equity between institutional care and community care.

  20. The Evolution of System Safety at NASA

    NASA Technical Reports Server (NTRS)

    Dezfuli, Homayoon; Everett, Chris; Groen, Frank

    2014-01-01

    The NASA system safety framework is in the process of change, motivated by the desire to promote an objectives-driven approach to system safety that explicitly focuses system safety efforts on system-level safety performance, and serves to unify, in a purposeful manner, safety-related activities that otherwise might be done in a way that results in gaps, redundancies, or unnecessary work. An objectives-driven approach to system safety affords more flexibility to determine, on a system-specific basis, the means by which adequate safety is achieved and verified. Such flexibility and efficiency is becoming increasingly important in the face of evolving engineering modalities and acquisition models, where, for example, NASA will increasingly rely on commercial providers for transportation services to low-earth orbit. A key element of this objectives-driven approach is the use of the risk-informed safety case (RISC): a structured argument, supported by a body of evidence, that provides a compelling, comprehensible and valid case that a system is or will be adequately safe for a given application in a given environment. The RISC addresses each of the objectives defined for the system, providing a rational basis for making informed risk acceptance decisions at relevant decision points in the system life cycle.

  1. A safety-based decision making architecture for autonomous systems

    NASA Technical Reports Server (NTRS)

    Musto, Joseph C.; Lauderbaugh, L. K.

    1991-01-01

    Engineering systems designed specifically for space applications often exhibit a high level of autonomy in the control and decision-making architecture. As the level of autonomy increases, more emphasis must be placed on assimilating the safety functions normally executed at the hardware level or by human supervisors into the control architecture of the system. The development of a decision-making structure which utilizes information on system safety is detailed. A quantitative measure of system safety, called the safety self-information, is defined. This measure is analogous to the reliability self-information defined by McInroy and Saridis, but includes weighting of task constraints to provide a measure of both reliability and cost. An example is presented in which the safety self-information is used as a decision criterion in a mobile robot controller. The safety self-information is shown to be consistent with the entropy-based Theory of Intelligent Machines defined by Saridis.

  2. Abstracts of NASA-ASRDI publications relevant to aerospace safety research

    NASA Technical Reports Server (NTRS)

    Mandel, G.; Mckenna, P. J.

    1973-01-01

    Abstracts covering the following areas are presented: (1) oxygen technology; (2) fire safety; (3) accidents/incidents; (4) toxic spills; (5) aircraft safety; (6) structural failures; (7) nuclear systems; (8) fluid flow; and (9) zero gravity combustion.

  3. Options for enhancing the effectiveness of Virginia's safety management system : final report.

    DOT National Transportation Integrated Search

    1996-02-01

    In 1993, Virginia began to formalize the relationships and organizational structure for its Safety Management System (SMS). Although the SMS is no longer a federal requirement, Virginia decided to continue its implementation. The Focal Point for the ...

  4. Safety and integrity of pipeline systems - philosophy and experience in Germany

    DOT National Transportation Integrated Search

    1997-01-01

    The design, construction and operation of gas pipeline systems in Germany are subject to the Energy Act and associated regulations. This legal structure is based on a deterministic rather than a probabilistic safety philosophy, consisting of technica...

  5. A Case Study of Dynamic Response Analysis and Safety Assessment for a Suspended Monorail System.

    PubMed

    Bao, Yulong; Li, Yongle; Ding, Jiajie

    2016-11-10

    A suspended monorail transit system is a category of urban rail transit, which is effective in alleviating traffic pressure and injury prevention. Meanwhile, with the advantages of low cost and short construction time, suspended monorail transit systems show vast potential for future development. However, the suspended monorail has not been systematically studied in China, and there is a lack of relevant knowledge and analytical methods. To ensure the health and reliability of a suspended monorail transit system, the driving safety of vehicles and structure dynamic behaviors when vehicles are running on the bridge should be analyzed and evaluated. Based on the method of vehicle-bridge coupling vibration theory, the finite element method (FEM) software ANSYS and multi-body dynamics software SIMPACK are adopted respectively to establish the finite element model for bridge and the multi-body vehicle. A co-simulation method is employed to investigate the vehicle-bridge coupling vibration for the transit system. The traffic operation factors, including train formation, track irregularity and tire stiffness, are incorporated into the models separately to analyze the bridge and vehicle responses. The results show that the coupling of dynamic effects of the suspended monorail system between vehicle and bridge are significant in the case studied, and it is strongly suggested to take necessary measures for vibration suppression. The simulation of track irregularity is a critical factor for its vibration safety, and the track irregularity of A-level road roughness negatively influences the system vibration safety.

  6. A Case Study of Dynamic Response Analysis and Safety Assessment for a Suspended Monorail System

    PubMed Central

    Bao, Yulong; Li, Yongle; Ding, Jiajie

    2016-01-01

    A suspended monorail transit system is a category of urban rail transit, which is effective in alleviating traffic pressure and injury prevention. Meanwhile, with the advantages of low cost and short construction time, suspended monorail transit systems show vast potential for future development. However, the suspended monorail has not been systematically studied in China, and there is a lack of relevant knowledge and analytical methods. To ensure the health and reliability of a suspended monorail transit system, the driving safety of vehicles and structure dynamic behaviors when vehicles are running on the bridge should be analyzed and evaluated. Based on the method of vehicle-bridge coupling vibration theory, the finite element method (FEM) software ANSYS and multi-body dynamics software SIMPACK are adopted respectively to establish the finite element model for bridge and the multi-body vehicle. A co-simulation method is employed to investigate the vehicle-bridge coupling vibration for the transit system. The traffic operation factors, including train formation, track irregularity and tire stiffness, are incorporated into the models separately to analyze the bridge and vehicle responses. The results show that the coupling of dynamic effects of the suspended monorail system between vehicle and bridge are significant in the case studied, and it is strongly suggested to take necessary measures for vibration suppression. The simulation of track irregularity is a critical factor for its vibration safety, and the track irregularity of A-level road roughness negatively influences the system vibration safety. PMID:27834923

  7. Systemic study on the safety of immuno-deficient nude mice treated by atmospheric plasma-activated water

    NASA Astrophysics Data System (ADS)

    Dehui, XU; Qingjie, CUI; Yujing, XU; Bingchuan, WANG; Miao, TIAN; Qiaosong, LI; Zhijie, LIU; Dingxin, LIU; Hailan, CHEN; Michael, G. KONG

    2018-04-01

    Cold atmospheric-pressure plasma is a new technology, widely used in many fields of biomedicine, especially in cancer treatment. Cold plasma can selectively kill a variety of tumor cells, and its biological safety in clinical trials is also very important. In many cases, the patient’s immune level is relatively low, so we first studied the safety assessment of plasma treatment in an immuno-compromised animal model. In this study, we examined the safety of immuno-deficient nude mice by oral lavage treatment of plasma-activated water, and studied the growth status, main organs and blood biochemical indexes. Acute toxicity test results showed that the maximum dose of plasma treatment for 15 min had no lethal effect and other acute toxicity. There were no significant changes in body weight and survival status of mice after 2 min and 4 min of plasma-activated water (PAW) treatment for 2 weeks. After treatment, the major organs, including heart, liver, spleen, lung and kidney, were not significantly changed in organ coefficient and tissue structure. Blood biochemical markers showed that blood neutrophils and mononuclear cells were slightly increased, and the others remained unchanged. Liver function, renal function, electrolytes, glucose metabolism and lipid metabolism were not affected by different doses of PAW treatment. The above results indicate that PAW treatment can be used to treat immuno-deficient nude mice without significant safety problems.

  8. Safety of clinical and non-clinical decision makers in telephone triage: a narrative review.

    PubMed

    Wheeler, Sheila Q; Greenberg, Mary E; Mahlmeister, Laura; Wolfe, Nicole

    2015-09-01

    Patient safety is a persistent problem in telephone triage research; however, studies have not differentiated between clinicians' and non-clinicians' respective safety. Currently, four groups of decision makers perform aspects of telephone triage: clinicians (physicians, nurses), and non-clinicians (emergency medical dispatchers (EMD) and clerical staff). Using studies published between 2002-2012, we applied Donabedian's structure-process-outcome model to examine groups' systems for evidence of system completeness (a minimum measure of structure and quality). We defined system completeness as the presence of a decision maker and four additional components: guidelines, documentation, training, and standards. Defining safety as appropriate referrals (AR) - (right time, right place with the right person), we measured each groups' corresponding AR rate percentages (outcomes). We analyzed each group's respective decision-making process as a safe match to the telephone triage task, based on each group's system structure completeness, process and AR rates (outcome). Studies uniformly noted system component presence: nurses (2-4), physicians (1), EMDs (2), clerical staff (1). Nurses had the highest average appropriate referral (AR) rates (91%), physicians' AR (82% average). Clerical staff had no system and did not perform telephone triage by standard definitions; EMDs may represent the use of the wrong system. Telephone triage appears least safe after hours when decision makers with the least complete systems (physicians, clerical staff) typically manage calls. At minimum, telephone triage decision makers should be clinicians; however, clinicians' safety calls for improvement. With improved training, standards and CDSS quality, the 24/7 clinical call center has potential to represent the national standard. © The Author(s) 2015.

  9. Effects of organizational safety on employees' proactivity safety behaviors and occupational health and safety management systems in Chinese high-risk small-scale enterprises.

    PubMed

    Mei, Qiang; Wang, Qiwei; Liu, Suxia; Zhou, Qiaomei; Zhang, Jingjing

    2018-06-07

    Based on the characteristics of small-scale enterprises, the improvement of occupational health and safety management systems (OHS MS) needs an effective intervention. This study proposed a structural equation model and examined the relationships of perceived organization support for safety (POSS), person-organization safety fit (POSF) and proactivity safety behaviors with safety management, safety procedures and safety hazards identification. Data were collected from 503 employees of 105 Chinese high-risk small-scale enterprises over 6 months. The results showed that both POSS and POSF were positively related to improvement in safety management, safety procedures and safety hazards identification through proactivity safety behaviors. Our findings provide a new perspective on organizational safety for improving OHS MS for small-scale enterprises and extend the application of proactivity safety behaviors.

  10. Is Model-Based Development a Favorable Approach for Complex and Safety-Critical Computer Systems on Commercial Aircraft?

    NASA Technical Reports Server (NTRS)

    Torres-Pomales, Wilfredo

    2014-01-01

    A system is safety-critical if its failure can endanger human life or cause significant damage to property or the environment. State-of-the-art computer systems on commercial aircraft are highly complex, software-intensive, functionally integrated, and network-centric systems of systems. Ensuring that such systems are safe and comply with existing safety regulations is costly and time-consuming as the level of rigor in the development process, especially the validation and verification activities, is determined by considerations of system complexity and safety criticality. A significant degree of care and deep insight into the operational principles of these systems is required to ensure adequate coverage of all design implications relevant to system safety. Model-based development methodologies, methods, tools, and techniques facilitate collaboration and enable the use of common design artifacts among groups dealing with different aspects of the development of a system. This paper examines the application of model-based development to complex and safety-critical aircraft computer systems. Benefits and detriments are identified and an overall assessment of the approach is given.

  11. An Assessment of Software Safety as Applied to the Department of Defense Software Development Process

    DTIC Science & Technology

    1992-12-01

    provide program 5 managers some level of confidence that their software will operate at an acceptable level of risk. A number of structured safety...safety within the constraints of operational effectiveness, schedule, and cost through timely application of system safety management and engineering...Master of Science in Software Systems Management Peter W. Colan, B.S.E. Robert W. Prouhet, B.S. Captain, USAF Captain, USAF December 1992 Approved for

  12. [Associations of occupational safety atmosphere and behaviors with unintentional injuries].

    PubMed

    Xiao, Ya-ni; Huang, Zhi-xiong; Huang, Shao-bin; Cao, Xiao-ou; Chen, Xia-ming; Liu, Xu-hua; Chen, Wei-qing

    2012-07-01

    To evaluate the associations of perception of safety atmosphere at workplace, occupational safety attitude and behaviors with occupational unintentional injury among manufacturing workers. A cross-sectional study was performed and a self-administered questionnaire was used to inquire socio-demographic characteristics, perceived safety atmosphere, occupational safety attitudes, occupational safety behaviors and occupational unintentional injuries among 10585 manufacturing workers selected from 46 enterprises in Guangdong. Structural equation modeling was applied to assess the relationship of the perception of safety atmosphere at workplace, occupational safety attitude, and occupational safety behaviors with occupational unintentional injury. Among 24 pathways supposed in structural equation model, 20 pathways (except for the attitude toward occupational safety, the attitude toward managers' support, the work posture and individual protection) were significantly related to the occupational unintentional injuries. The further analysis indicated that the perceived safety atmosphere might impact the occupational unintentional injuries by the attitude toward occupational safety and occupational safety behaviors. Workers' perception of safety atmosphere indirectly influenced on occupational unintentional injuries through occupational safety attitudes and occupational safety behaviors.

  13. Space flight hazards catalog

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The most significant hazards identified on manned space flight programs are listed. This summary is of special value to system safety engineers in developing safety checklists and otherwise tailoring safety tasks to specific systems and subsystems.

  14. The SISIFO project: Seismic Safety at High Schools

    NASA Astrophysics Data System (ADS)

    Peruzza, Laura; Barnaba, Carla; Bragato, Pier Luigi; Dusi, Alberto; Grimaz, Stefano; Malisan, Petra; Saraò, Angela; Mucciarelli, Marco

    2014-05-01

    For many years, the Italian scientific community has faced the problem of the reduction of earthquake risk using innovative educational techniques. Recent earthquakes in Italy and around the world have clearly demonstrated that seismic codes alone are not able to guarantee an effective mitigation of risk. After the tragic events of San Giuliano di Puglia (2002), where an earthquake killed 26 school children, special attention was paid in Italy to the seismic safety of schools, but mainly with respect to structural aspects. Little attention has been devoted to the possible and even significant damage to non-structural elements (collapse of ceilings, tipping of cabinets and shelving, obstruction of escape routes, etc..). Students and teachers trained on these aspects may lead to a very effective preventive vigilance. Since 2002, the project EDURISK (www.edurisk.it) proposed educational tools and training programs for schools, at primary and middle levels. More recently, a nationwide campaign aimed to adults (www.iononrischio.it) was launched with the extensive support of civil protection volounteers. There was a gap for high schools, and Project SISIFO was designed to fill this void and in particular for those schools with technical/scientific curricula. SISIFO (https://sites.google.com/site/ogssisifo/) is a multidisciplinary initiative, aimed at the diffusion of scientific culture for achieving seismic safety in schools, replicable and can be structured in training the next several years. The students, helped by their teachers and by experts from scientific institutions, followed a course on specialized training on earthquake safety. The trial began in North-East Italy, with a combination of hands-on activities for the measurement of earthquakes with low-cost instruments and lectures with experts in various disciplines, accompanied by specifically designed teaching materials, both on paper and digital format. We intend to raise teachers and students knowledge of the problems of seismic hazard, seismic response of foundation soils, and building dynamics to stimulate awareness of seismic safety, including seismic hazard, seismic site response, seismic behaviour of structural and non-structural elements and functional issues (escape ways, emergency systems, etc.). The awareness of seismic safety in places of study, work and life aims at improving the capacity to recognize safety issues and possible solutions

  15. Significance of Waterway Navigation Positioning Systems On Ship's Manoeuvring Safety

    NASA Astrophysics Data System (ADS)

    Galor, W.

    The main goal of navigation is to lead the ship to the point of destination safety and efficiently. Various factors may affect ship realisating this process. The ship movement on waterway are mainly limited by water area dimensions (surface and depth). These limitations cause the requirement to realise the proper of ship movement trajectory. In case when this re requirement cant't fulfil then marine accident may happend. This fact is unwanted event caused losses of human health and life, damage or loss of cargo and ship, pollution of natural environment, damage of port structures or blocking the port of its ports and lost of salvage operation. These losses in same cases can be catas- trophical especially while e.i. crude oil spilling could be place. To realise of safety navigation process is needed to embrace the ship's movement trajectory by waterways area. The ship's trajectory is described by manoeuvring lane as a surface of water area which is require to realise of safety ship movement. Many conditions affect to ship manoeuvring line. The main are following: positioning accuracy, ship's manoeuvring features and phenomena's of shore and ship's bulk common affecting. The accuracy of positioning system is most important. This system depends on coast navigation mark- ing which can range many kinds of technical realisation. Mainly used systems based on lights (line), radionavigation (local system or GPS, DGPS), or radars. If accuracy of positiong is higer, then safety of navigation is growing. This article presents these problems exemplifying with approaching channel to ports situated on West Pomera- nian water region.

  16. Structural Monitoring and Field Test for Kao Ping Hsi Cable-Stayed Bridge in Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Chern-Hwa

    2010-05-01

    This work applies system identification techniques to analyze the measured data from structural monitoring system and field test for Kao Ping Hsi cable-stayed bridge in Taiwan. The continuous wavelet transform algorithm can be used to identify the dynamic characteristics of the cable-stayed bridge under environmental vibration. The identified results with traffic flow were compared with those obtained from ambient vibration test. The excellent agreement both the identified results from different traffic conditions indicates that the traffic flow would not significantly change the natural frequencies of the cable-stayed bridge. The modal parameters identified from the field vibration test will be compared with those used in the finite element analysis. The results obtained herein will be used as the damage detection for monitoring the long-term safety of the Kao Ping Hsi cable-stayed bridge by using structural monitoring system.

  17. Identifying behaviour patterns of construction safety using system archetypes.

    PubMed

    Guo, Brian H W; Yiu, Tak Wing; González, Vicente A

    2015-07-01

    Construction safety management involves complex issues (e.g., different trades, multi-organizational project structure, constantly changing work environment, and transient workforce). Systems thinking is widely considered as an effective approach to understanding and managing the complexity. This paper aims to better understand dynamic complexity of construction safety management by exploring archetypes of construction safety. To achieve this, this paper adopted the ground theory method (GTM) and 22 interviews were conducted with participants in various positions (government safety inspector, client, health and safety manager, safety consultant, safety auditor, and safety researcher). Eight archetypes were emerged from the collected data: (1) safety regulations, (2) incentive programs, (3) procurement and safety, (4) safety management in small businesses (5) production and safety, (6) workers' conflicting goals, (7) blame on workers, and (8) reactive and proactive learning. These archetypes capture the interactions between a wide range of factors within various hierarchical levels and subsystems. As a free-standing tool, they advance the understanding of dynamic complexity of construction safety management and provide systemic insights into dealing with the complexity. They also can facilitate system dynamics modelling of construction safety process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Active photo-thermal self-healing of shape memory polyurethanes

    NASA Astrophysics Data System (ADS)

    Kazemi-Lari, Mohammad A.; Malakooti, Mohammad H.; Sodano, Henry A.

    2017-05-01

    Structural health monitoring (SHM) has received significant interest over the past decade and has led to the development of a wide variety of sensors and signal processing techniques to determine the presence of changes or damage in a structural system. The topic has attracted significant attention due to the safety and performance enhancing benefits as well as the potential lifesaving capabilities offered by the technology. While the resulting systems are capable of sensing their surrounding structural and environmental conditions, few methods exist for using the information to autonomously react and repair or protect the system. One of the major challenges in the future implementation of SHM systems is their coupling with materials that can react to the damage to heal themselves and return to normal function. The coupling of self-healing materials with SHM has the potential to significantly prolong the lifetime of structural systems and extend the required inspection intervals. In the present study, an optical fiber based self-healing system composed of mendable polyurethanes based on the thermally reversible Diels-Alder (DA) reaction is developed. Inspired by health monitoring techniques, active photo-thermal sensing and actuation is achieved using infrared laser light passing through an optical fiber and a thermal power sensor to detect the presence of cracking in the structure. Healing is triggered as the crack propagates through the polymer and fractures the embedded optical fiber. Through a feedback loop, the detected power drop by the sensor is utilized as a signal to heat the cracked area and stimulate the shape memory effect of the polyurethane and the retro-DA reaction. The healing performance results indicate that this novel integrated system can be effectively employed to monitor the incidence of damage and actively heal a crack in the polymer.

  19. Monitoring system of arch bridge for safety network management

    NASA Astrophysics Data System (ADS)

    Joo, Bong Chul; Yoo, Young Jun; Lee, Chin Hyung; Park, Ki Tae; Hwang, Yoon Koog

    2010-03-01

    Korea has constructed the safety management network monitoring test systems for the civil infrastructure since 2006 which includes airport structure, irrigation structure, railroad structure, road structure, and underground structure. Bridges among the road structure include the various superstructure types which are Steel box girder bridge, suspension bridge, PSC-box-girder bridge, and arch bridge. This paper shows the process of constructing the real-time monitoring system for the arch bridge and the measured result by the system. The arch type among various superstructure types has not only the structural efficiency but the visual beauty, because the arch type superstructure makes full use of the feature of curve. The main measuring points of arch bridges composited by curved members make a difference to compare with the system of girder bridges composited by straight members. This paper also shows the method to construct the monitoring system that considers the characteristic of the arch bridge. The system now includes strain gauges and thermometers, and it will include various sensor types such as CCTV, accelerometers and so on additionally. For the long term and accuracy monitoring, the latest optical sensors and equipments are applied to the system.

  20. Safety Control and Safety Education at Technical Institutes

    NASA Astrophysics Data System (ADS)

    Iino, Hiroshi

    The importance of safety education for students at technical institutes is emphasized on three grounds including safety of all working members and students in their education, research and other activities. The Kanazawa Institute of Technology re-organized the safety organization into a line structure and improved safety minds of all their members and now has a chemical materials control system and a set of compulsory safety education programs for their students, although many problems still remain.

  1. The Johns Hopkins Hospital: identifying and addressing risks and safety issues.

    PubMed

    Paine, Lori A; Baker, David R; Rosenstein, Beryl; Pronovost, Peter J

    2004-10-01

    At The Johns Hopkins Hospital (JHH), a culture of safety refers to the presence of characteristics such as the belief that harm is untenable and the use of a systems approach to analyzing safety issues. The leadership of JHH provides strategic planning guidance for safety and improvement initiatives, involves the patient safety committee in capital investment allocation decisions and in designing and planning new hospital facilities, and ensures that safety and quality head the agenda of board-of-trustees meetings. Although JHH takes a systems approach, structures such as monitoring staff behavior trends are used to hold people accountable for job performance. JHH encountered three major hurdles in implementing and sustaining a culture of safety. First, JHH's decentralized organizational structure contributes to a silo effect that limits the spread of ideas, practices, and culture. JHH intends to create an internal collaborative of departmental safety initiatives to foster opportunities for units to share ideas and results. Second, in response to the challenge of encouraging teams to think and act in an interdisciplinary fashion, communication and teamwork training are being used to enhance the effectiveness of interdisciplinary teams. Further development of valid and meaningful safety-related measurement and data collection methodologies is JHH's largest remaining challenge.

  2. Normal people working in normal organizations with normal equipment: system safety and cognition in a mid-air collision.

    PubMed

    de Carvalho, Paulo Victor Rodrigues; Gomes, José Orlando; Huber, Gilbert Jacob; Vidal, Mario Cesar

    2009-05-01

    A fundamental challenge in improving the safety of complex systems is to understand how accidents emerge in normal working situations, with equipment functioning normally in normally structured organizations. We present a field study of the en route mid-air collision between a commercial carrier and an executive jet, in the clear afternoon Amazon sky in which 154 people lost their lives, that illustrates one response to this challenge. Our focus was on how and why the several safety barriers of a well structured air traffic system melted down enabling the occurrence of this tragedy, without any catastrophic component failure, and in a situation where everything was functioning normally. We identify strong consistencies and feedbacks regarding factors of system day-to-day functioning that made monitoring and awareness difficult, and the cognitive strategies that operators have developed to deal with overall system behavior. These findings emphasize the active problem-solving behavior needed in air traffic control work, and highlight how the day-to-day functioning of the system can jeopardize such behavior. An immediate consequence is that safety managers and engineers should review their traditional safety approach and accident models based on equipment failure probability, linear combinations of failures, rules and procedures, and human errors, to deal with complex patterns of coincidence possibilities, unexpected links, resonance among system functions and activities, and system cognition.

  3. A rapid method for identifying and characterizing structural impacts using distributed sensors: An application for automotive pedestrian protection

    NASA Astrophysics Data System (ADS)

    Kim, Andrew C.

    This research is motivated by recent activity to improve automotive safety, especially for pedestrians. In many parts of the world today, injuries and fatalities from road accidents are a significant problem. Safety features such as seat restraints and air bags provide considerable levels of protection for car occupants; however, no such protective measures currently exist for pedestrians. Drawing upon the success and effectiveness of occupant air bag systems, current research aims to develop similar devices for pedestrians. These active pedestrian protection systems deploy a safety feature such as an external air bag when a pedestrian is hit by a vehicle. Contact with the front bumper induces a body rotation that may result in a violent head collision. The deployable safety device provides a cushioning surface for the vulnerable pedestrian during impact. The challenge of such a system is an effective sensory unit that can rapidly and correctly discriminate pedestrian impacts from non-pedestrian ones. The fast kinematics of the automobile-pedestrian impact leaves a minimal amount of time for signal processing and computation. This research study focuses on a discrimination scheme that satisfies both the time and accuracy requirements for a proposed sensory system for pedestrian protection. A unique methodology was developed to identify structural impacts using dominant frequency features extracted from sensory data. Contact sensors mounted on the front bumper of an automobile measure the strain response from an impact event. The dominant frequencies obtained from these sensor signals are greatly influenced by the impact object's properties and can be used to discriminate between different objects. Extensive tests were conducted to gather sensor data and validate the proposed methodology and impact discrimination algorithm. Results of the impact tests indicate that the approach is sound, and the sensory system effectively identifies "pedestrian" impacts within a short period of time.

  4. Utilizing data consortia to monitor safety and effectiveness of biosimilars and their innovator products.

    PubMed

    Baldziki, Mike; Brown, Jeff; Chan, Hungching; Cheetham, T Craig; Conn, Thomas; Daniel, Gregory W; Hendrickson, Mark; Hilbrich, Lutz; Johnson, Ayanna; Miller, Steven B; Moore, Tom; Motheral, Brenda; Priddy, Sarah A; Raebel, Marsha A; Randhawa, Gurvaneet; Surratt, Penny; Walraven, Cheryl; White, T Jeff; Bruns, Kevin; Carden, Mary Jo; Dragovich, Charlie; Eichelberger, Bernadette; Rosato, Edith; Sega, Todd

    2015-01-01

    The Biologics Price Competition and Innovation Act, introduced as part of the Affordable Care Act, directed the FDA to create an approval pathway for biologic products shown to be biosimilar or interchangeable with an FDA-approved innovator drug. These biosimilars will not be chemically identical to the reference agent. Investigational studies conducted with biosimilar agents will likely provide limited real-world evidence of their effectiveness and safety. How do we best monitor effectiveness and safety of biosimilar products once approved by the FDA and used more extensively by patients? To determine the feasibility of developing a distributed research network that will use health insurance plan and health delivery system data to detect biosimilar safety and effectiveness signals early and be able to answer important managed care pharmacy questions from both the government and managed care organizations. Twenty-one members of the AMCP Task Force on Biosimilar Collective Intelligence Systems met November 12, 2013, to discuss issues involved in designing this consortium and to explore next steps. The task force concluded that a managed care biosimilars research consortium would be of significant value. Task force members agreed that it is best to use a distributed research network structurally similar to existing DARTNet, HMO Research Network, and Mini-Sentinel consortia. However, for some surveillance projects that it undertakes, the task force recognizes it may need supplemental data from managed care and other sources (i.e., a "hybrid" structure model). The task force believes that AMCP is well positioned to lead the biosimilar-monitoring effort and that the next step to developing a biosimilar-innovator collective intelligence system is to convene an advisory council to address organizational governance.

  5. A new method for the assessment of patient safety competencies during a medical school clerkship using an objective structured clinical examination

    PubMed Central

    Daud-Gallotti, Renata Mahfuz; Morinaga, Christian Valle; Arlindo-Rodrigues, Marcelo; Velasco, Irineu Tadeu; Arruda Martins, Milton; Tiberio, Iolanda Calvo

    2011-01-01

    INTRODUCTION: Patient safety is seldom assessed using objective evaluations during undergraduate medical education. OBJECTIVE: To evaluate the performance of fifth-year medical students using an objective structured clinical examination focused on patient safety after implementation of an interactive program based on adverse events recognition and disclosure. METHODS: In 2007, a patient safety program was implemented in the internal medicine clerkship of our hospital. The program focused on human error theory, epidemiology of incidents, adverse events, and disclosure. Upon completion of the program, students completed an objective structured clinical examination with five stations and standardized patients. One station focused on patient safety issues, including medical error recognition/disclosure, the patient-physician relationship and humanism issues. A standardized checklist was completed by each standardized patient to assess the performance of each student. The student's global performance at each station and performance in the domains of medical error, the patient-physician relationship and humanism were determined. The correlations between the student performances in these three domains were calculated. RESULTS: A total of 95 students participated in the objective structured clinical examination. The mean global score at the patient safety station was 87.59±1.24 points. Students' performance in the medical error domain was significantly lower than their performance on patient-physician relationship and humanistic issues. Less than 60% of students (n = 54) offered the simulated patient an apology after a medical error occurred. A significant correlation was found between scores obtained in the medical error domains and scores related to both the patient-physician relationship and humanistic domains. CONCLUSIONS: An objective structured clinical examination is a useful tool to evaluate patient safety competencies during the medical student clerkship. PMID:21876976

  6. Linking empowering leadership to safety participation in nuclear power plants: a structural equation model.

    PubMed

    Martínez-Córcoles, Mario; Schöbel, Markus; Gracia, Francisco J; Tomás, Inés; Peiró, José M

    2012-07-01

    Safety participation is of paramount importance in guaranteeing the safe running of nuclear power plants. The present study examined the effects of empowering leadership on safety participation. Based on a sample of 495 employees from two Spanish nuclear power plants, structural equation modeling showed that empowering leadership has a significant relationship with safety participation, which is mediated by collaborative team learning. In addition, the results revealed that the relationship between empowering leadership and collaborative learning is partially mediated by the promotion of dialogue and open communication. The implications of these findings for safety research and their practical applications are outlined. An empowering leadership style enhances workers' safety performance, particularly safety participation behaviors. Safety participation is recommended to detect possible rule inconsistencies or misunderstood procedures and make workers aware of critical safety information and issues. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  7. AP1000{sup R} design robustness against extreme external events - Seismic, flooding, and aircraft crash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfister, A.; Goossen, C.; Coogler, K.

    2012-07-01

    Both the International Atomic Energy Agency (IAEA) and the U.S. Nuclear Regulatory Commission (NRC) require existing and new nuclear power plants to conduct plant assessments to demonstrate the unit's ability to withstand external hazards. The events that occurred at the Fukushima-Dai-ichi nuclear power station demonstrated the importance of designing a nuclear power plant with the ability to protect the plant against extreme external hazards. The innovative design of the AP1000{sup R} nuclear power plant provides unparalleled protection against catastrophic external events which can lead to extensive infrastructure damage and place the plant in an extended abnormal situation. The AP1000 plantmore » is an 1100-MWe pressurized water reactor with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance and safety. The plant's compact safety related footprint and protection provided by its robust nuclear island structures prevent significant damage to systems, structures, and components required to safely shutdown the plant and maintain core and spent fuel pool cooling and containment integrity following extreme external events. The AP1000 nuclear power plant has been extensively analyzed and reviewed to demonstrate that it's nuclear island design and plant layout provide protection against both design basis and extreme beyond design basis external hazards such as extreme seismic events, external flooding that exceeds the maximum probable flood limit, and malicious aircraft impact. The AP1000 nuclear power plant uses fail safe passive features to mitigate design basis accidents. The passive safety systems are designed to function without safety-grade support systems (such as AC power, component cooling water, service water, compressed air or HVAC). The plant has been designed to protect systems, structures, and components critical to placing the reactor in a safe shutdown condition within the steel containment vessel which is further surrounded by a substantial 'steel concrete' composite shield building. The containment vessel is not affected by external flooding, and the shield building design provides hazard protection beyond that provided by a comparable reinforced concrete structure. The intent of this paper is to demonstrate the robustness of the AP1000 design against extreme events. The paper will focus on the plants ability to withstand extreme external events such as beyond design basis flooding, seismic events, and malicious aircraft impact. The paper will highlight the robustness of the AP1000 nuclear island design including the protection provided by the unique AP1000 composite shield building. (authors)« less

  8. John M. Eisenberg Patient Safety Awards. System innovation: Concord Hospital.

    PubMed

    Uhlig, Paul N; Brown, Jeffrey; Nason, Anne K; Camelio, Addie; Kendall, Elise

    2002-12-01

    The Cardiac Surgery Program at Concord Hospital (Concord, NH) restructured clinical teamwork for improved safety and effectiveness on the basis of theory and practice from human factors science, aviation safety, and high-reliability organization theory. A team-based, collaborative rounds process--the Concord Collaborative Care Model--that involved use of a structured communications protocol was conducted daily at each patient's bedside. The entire care team agreed to meet at the same time each day (8:45 AM to 9:30 AM) to share information and develop a plan of care for each patient, with patient and family members as active participants. The cardiac surgery team developed a structured communications protocol adapted from human factors science. To provide a forum for discussion of team goals and progress and to address system-level concerns, a biweekly system rounds process was established. Following implementation of collaborative rounds, mortality of Concord Hospital's cardiac surgery patients declined significantly from expected rates. Satisfaction rates of open heart patients scores were consistently in the 97th-99th percentile nationally. A quality of work life survey indicated that in every category, providers expressed greater satisfaction with the collaborative care process than with the traditional rounds process. Practice patterns in the Cardiac Surgery Program at Concord Hospital have changed to a much more collaborative and participatory process, with improved outcomes, happier patients, and more satisfied practitioners. A culture of continuous program improvement has been implemented that continues to evolve and produce benefits.

  9. Airline Safety and Economy

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This video documents efforts at NASA Langley Research Center to improve safety and economy in aircraft. Featured are the cockpit weather information needs computer system, which relays real time weather information to the pilot, and efforts to improve techniques to detect structural flaws and corrosion, such as the thermal bond inspection system.

  10. Structural verification for GAS experiments

    NASA Technical Reports Server (NTRS)

    Peden, Mark Daniel

    1992-01-01

    The purpose of this paper is to assist the Get Away Special (GAS) experimenter in conducting a thorough structural verification of its experiment structural configuration, thus expediting the structural review/approval process and the safety process in general. Material selection for structural subsystems will be covered with an emphasis on fasteners (GSFC fastener integrity requirements) and primary support structures (Stress Corrosion Cracking requirements and National Space Transportation System (NSTS) requirements). Different approaches to structural verifications (tests and analyses) will be outlined especially those stemming from lessons learned on load and fundamental frequency verification. In addition, fracture control will be covered for those payloads that utilize a door assembly or modify the containment provided by the standard GAS Experiment Mounting Plate (EMP). Structural hazard assessment and the preparation of structural hazard reports will be reviewed to form a summation of structural safety issues for inclusion in the safety data package.

  11. System theory and safety models in Swedish, UK, Dutch and Australian road safety strategies.

    PubMed

    Hughes, B P; Anund, A; Falkmer, T

    2015-01-01

    Road safety strategies represent interventions on a complex social technical system level. An understanding of a theoretical basis and description is required for strategies to be structured and developed. Road safety strategies are described as systems, but have not been related to the theory, principles and basis by which systems have been developed and analysed. Recently, road safety strategies, which have been employed for many years in different countries, have moved to a 'vision zero', or 'safe system' style. The aim of this study was to analyse the successful Swedish, United Kingdom and Dutch road safety strategies against the older, and newer, Australian road safety strategies, with respect to their foundations in system theory and safety models. Analysis of the strategies against these foundations could indicate potential improvements. The content of four modern cases of road safety strategy was compared against each other, reviewed against scientific systems theory and reviewed against types of safety model. The strategies contained substantial similarities, but were different in terms of fundamental constructs and principles, with limited theoretical basis. The results indicate that the modern strategies do not include essential aspects of systems theory that describe relationships and interdependencies between key components. The description of these strategies as systems is therefore not well founded and deserves further development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Development of the FHR advanced natural circulation analysis code and application to FHR safety analysis

    DOE PAGES

    Guo, Z.; Zweibaum, N.; Shao, M.; ...

    2016-04-19

    The University of California, Berkeley (UCB) is performing thermal hydraulics safety analysis to develop the technical basis for design and licensing of fluoride-salt-cooled, high-temperature reactors (FHRs). FHR designs investigated by UCB use natural circulation for emergency, passive decay heat removal when normal decay heat removal systems fail. The FHR advanced natural circulation analysis (FANCY) code has been developed for assessment of passive decay heat removal capability and safety analysis of these innovative system designs. The FANCY code uses a one-dimensional, semi-implicit scheme to solve for pressure-linked mass, momentum and energy conservation equations. Graph theory is used to automatically generate amore » staggered mesh for complicated pipe network systems. Heat structure models have been implemented for three types of boundary conditions (Dirichlet, Neumann and Robin boundary conditions). Heat structures can be composed of several layers of different materials, and are used for simulation of heat structure temperature distribution and heat transfer rate. Control models are used to simulate sequences of events or trips of safety systems. A proportional-integral controller is also used to automatically make thermal hydraulic systems reach desired steady state conditions. A point kinetics model is used to model reactor kinetics behavior with temperature reactivity feedback. The underlying large sparse linear systems in these models are efficiently solved by using direct and iterative solvers provided by the SuperLU code on high performance machines. Input interfaces are designed to increase the flexibility of simulation for complicated thermal hydraulic systems. In conclusion, this paper mainly focuses on the methodology used to develop the FANCY code, and safety analysis of the Mark 1 pebble-bed FHR under development at UCB is performed.« less

  13. Safety Assessment of Methyl Glucose Polyethers and Esters as Used in Cosmetics.

    PubMed

    Johnson, Wilbur; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2016-11-01

    The Cosmetic Ingredient Review Expert Panel (Panel) reviewed the safety of methyl glucose polyethers and esters which function in cosmetics as skin/hair-conditioning agents, surfactants, or viscosity increasing agents. The esters included in this assessment are mono-, di-, or tricarboxyester substituted methyl glucosides, and the polyethers are mixtures of various chain lengths. The Panel reviewed available animal and clinical data, including the molecular weights, log K ow s, and other properties in making its determination of safety on these ingredients. Where there were data gaps, similarities between molecular structures, physicochemical and biological characteristics, and functions and concentrations in cosmetics allowed for extrapolation of the available toxicological data to assess the safety of the entire group. The Panel concluded that there likely would be no significant systemic exposure from cosmetic use of these ingredients, and that these ingredients are safe in cosmetic formulations in the present practices of use and concentration. © The Author(s) 2016.

  14. Exploring the possibility of a common structural model measuring associations between safety climate factors and safety behaviour in health care and the petroleum sectors.

    PubMed

    Olsen, Espen

    2010-09-01

    The aim of the present study was to explore the possibility of identifying general safety climate concepts in health care and petroleum sectors, as well as develop and test the possibility of a common cross-industrial structural model. Self-completion questionnaire surveys were administered in two organisations and sectors: (1) a large regional hospital in Norway that offers a wide range of hospital services, and (2) a large petroleum company that produces oil and gas worldwide. In total, 1919 and 1806 questionnaires were returned from the hospital and petroleum organisation, with response rates of 55 percent and 52 percent, respectively. Using a split sample procedure principal factor analysis and confirmatory factor analysis revealed six identical cross-industrial measurement concepts in independent samples-five measures of safety climate and one of safety behaviour. The factors' psychometric properties were explored with satisfactory internal consistency and concept validity. Thus, a common cross-industrial structural model was developed and tested using structural equation modelling (SEM). SEM revealed that a cross-industrial structural model could be identified among health care workers and offshore workers in the North Sea. The most significant contributing variables in the model testing stemmed from organisational management support for safety and supervisor/manager expectations and actions promoting safety. These variables indirectly enhanced safety behaviour (stop working in dangerous situations) through transitions and teamwork across units, and teamwork within units as well as learning, feedback, and improvement. Two new safety climate instruments were validated as part of the study: (1) Short Safety Climate Survey (SSCS) and (2) Hospital Survey on Patient Safety Culture-short (HSOPSC-short). Based on development of measurements and structural model assessment, this study supports the possibility of a common safety climate structural model across health care and the offshore petroleum industry. 2010 Elsevier Ltd. All rights reserved.

  15. Bleacher Safety: What Do We Look for? What Can We Do?

    ERIC Educational Resources Information Center

    IEA Environmental Consultant, 1999

    1999-01-01

    Discusses safety issues surrounding aging bleacher systems, highlighting the following three primary safety considerations: space between seats and footboards; guardrails; and the structural provisions of the 1997 Uniform Building Code. Tips for bleacher accident-prevention assessment and excerpts from federal and Minnesota legislation on bleacher…

  16. Development and experimental validation of computational methods to simulate abnormal thermal and structural environments

    NASA Astrophysics Data System (ADS)

    Moya, J. L.; Skocypec, R. D.; Thomas, R. K.

    1993-09-01

    Over the past 40 years, Sandia National Laboratories (SNL) has been actively engaged in research to improve the ability to accurately predict the response of engineered systems to abnormal thermal and structural environments. These engineered systems contain very hazardous materials. Assessing the degree of safety/risk afforded the public and environment by these engineered systems, therefore, is of upmost importance. The ability to accurately predict the response of these systems to accidents (to abnormal environments) is required to assess the degree of safety. Before the effect of the abnormal environment on these systems can be determined, it is necessary to ascertain the nature of the environment. Ascertaining the nature of the environment, in turn, requires the ability to physically characterize and numerically simulate the abnormal environment. Historically, SNL has demonstrated the level of safety provided by these engineered systems by either of two approaches: a purely regulatory approach, or by a probabilistic risk assessment (PRA). This paper will address the latter of the two approaches.

  17. Rapid prototyping of flexible intrafascicular electrode arrays by picosecond laser structuring

    NASA Astrophysics Data System (ADS)

    Mueller, Matthias; de la Oliva, Natalia; del Valle, Jaume; Delgado-Martínez, Ignacio; Navarro, Xavier; Stieglitz, Thomas

    2017-12-01

    Objective. Interfacing the peripheral nervous system can be performed with a large variety of electrode arrays. However, stimulating and recording a nerve while having a reasonable amount of channels limits the number of available systems. Translational research towards human clinical trial requires device safety and biocompatibility but would benefit from design flexibility in the development process to individualize probes. Approach. We selected established medical grade implant materials like precious metals and Parylene C to develop a rapid prototyping process for novel intrafascicular electrode arrays using a picosecond laser structuring. A design for a rodent animal model was developed in conjunction with an intrafascicular implantation strategy. Electrode characterization and optimization was performed first in saline solution in vitro before performance and biocompatibility were validated in sciatic nerves of rats in chronic implantation. Main results. The novel fabrication process proved to be suitable for prototyping and building intrafascicular electrode arrays. Electrochemical properties of the electrode sites were enhanced and tested for long-term stability. Chronic implantation in the sciatic nerve of rats showed good biocompatibility, selectivity and stable stimulation thresholds. Significance. Established medical grade materials can be used for intrafascicular nerve electrode arrays when laser structuring defines structure size in the micro-scale. Design flexibility reduces re-design cycle time and material certificates are beneficial support for safety studies on the way to clinical trials.

  18. Striving for safety: communicating and deciding in sociotechnical systems

    PubMed Central

    Flach, John M.; Carroll, John S.; Dainoff, Marvin J.; Hamilton, W. Ian

    2015-01-01

    How do communications and decisions impact the safety of sociotechnical systems? This paper frames this question in the context of a dynamic system of nested sub-systems. Communications are related to the construct of observability (i.e. how components integrate information to assess the state with respect to local and global constraints). Decisions are related to the construct of controllability (i.e. how component sub-systems act to meet local and global safety goals). The safety dynamics of sociotechnical systems are evaluated as a function of the coupling between observability and controllability across multiple closed-loop components. Two very different domains (nuclear power and the limited service food industry) provide examples to illustrate how this framework might be applied. While the dynamical systems framework does not offer simple prescriptions for achieving safety, it does provide guides for exploring specific systems to consider the potential fit between organisational structures and work demands, and for generalising across different systems regarding how safety can be managed. Practitioner Summary: While offering no simple prescriptions about how to achieve safety in sociotechnical systems, this paper develops a theoretical framework based on dynamical systems theory as a practical guide for generalising from basic research to work domains and for generalising across alternative work domains to better understand how patterns of communication and decision-making impact system safety. PMID:25761155

  19. Scale development of safety management system evaluation for the airline industry.

    PubMed

    Chen, Ching-Fu; Chen, Shu-Chuan

    2012-07-01

    The airline industry relies on the implementation of Safety Management System (SMS) to integrate safety policies and augment safety performance at both organizational and individual levels. Although there are various degrees of SMS implementation in practice, a comprehensive scale measuring the essential dimensions of SMS is still lacking. This paper thus aims to develop an SMS measurement scale from the perspective of aviation experts and airline managers to evaluate the performance of company's safety management system, by adopting Schwab's (1980) three-stage scale development procedure. The results reveal a five-factor structure consisting of 23 items. The five factors include documentation and commands, safety promotion and training, executive management commitment, emergency preparedness and response plan and safety management policy. The implications of this SMS evaluation scale for practitioners and future research are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. A 1064 nm dispersive Raman spectral imaging system for food safety and quality evaluation

    USDA-ARS?s Scientific Manuscript database

    Raman spectral imaging is an effective method to analyze and evaluate chemical composition and structure of a sample, and has many applications for food safety and quality research. This study developed a 1064 nm Raman spectral imaging system for surface and subsurface analysis of food samples. A 10...

  1. Acoustic Techniques for Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Frankenstein, B.; Augustin, J.; Hentschel, D.; Schubert, F.; Köhler, B.; Meyendorf, N.

    2008-02-01

    Future safety and maintenance strategies for industrial components and vehicles are based on combinations of monitoring systems that are permanently attached to or embedded in the structure, and periodic inspections. The latter belongs to conventional nondestructive evaluation (NDE) and can be enhanced or partially replaced by structural health monitoring systems. However, the main benefit of this technology for the future will consist of systems that can be differently designed based on improved safety philosophies, including continuous monitoring. This approach will increase the efficiency of inspection procedures at reduced inspection times. The Fraunhofer IZFP Dresden Branch has developed network nodes, miniaturized transmitter and receiver systems for active and passive acoustical techniques and sensor systems that can be attached to or embedded into components or structures. These systems have been used to demonstrate intelligent sensor networks for the monitoring of aerospace structures, railway systems, wind energy generators, piping system and other components. Material discontinuities and flaws have been detected and monitored during full scale fatigue testing. This paper will discuss opportunities and future trends in nondestructive evaluation and health monitoring based on new sensor principles and advanced microelectronics. It will outline various application examples of monitoring systems based on acoustic techniques and will indicate further needs for research and development.

  2. Making Patient Risk Visible: Implementation of a Nursing Document Information System to Improve Patient Safety.

    PubMed

    Wang, Panfeng; Zhang, Hongjun; Li, Baohua; Lin, Keke

    2016-01-01

    The aims of this study were to develop a nursing information system (NIS), enhance the visibility of patient risk, and identify challenges and facilitators to adoption of the NIS risk assessment system for nurse leaders. This article describes the function of a nursing risk assessment information system, and the results of a survey on the risk assessment system. The results suggested that quality of information processing in nursing significantly improved patient safety. Nurses surveyed demonstrated a high degree of satisfaction, with saving time and improving safety. The nursing document information system described was introduced to improve patient safety and decrease risk. The application of the system has greatly enhanced the efficiency of nursing work, and guides the nurses to make an accurate, comprehensive and objective assessment of patient information, contributing significantly to further improvement in care standards and care decisions.

  3. 340 Facility secondary containment and leak detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bendixsen, R.B.

    1995-01-31

    This document presents a preliminary safety evaluation for the 340 Facility Secondary Containment and Leak Containment system, Project W-302. Project W-302 will construct Building 340-C which has been designed to replace the current 340 Building and vault tank system for collection of liquid wastes from the Pacific Northwest Laboratory buildings in the 300 Area. This new nuclear facility is Hazard Category 3. The vault tank and related monitoring and control equipment are Safety Class 2 with the remainder of the structure, systems and components as Safety Class 3 or 4.

  4. Fabrication and Testing of Ceramic Matrix Composite Rocket Propulsion Components

    NASA Technical Reports Server (NTRS)

    Effinger, M. R.; Clinton, R. C., Jr.; Dennis, J.; Elam, S.; Genge, G.; Eckel, A.; Jaskowiak, M. H.; Kiser, J. D.; Lang, J.

    2001-01-01

    NASA has established goals for Second and Third Generation Reusable Launch Vehicles. Emphasis has been placed on significantly improving safety and decreasing the cost of transporting payloads to orbit. Ceramic matrix composites (CMC) components are being developed by NASA to enable significant increases in safety and engineer performance, while reducing costs. The development of the following CMC components are being pursued by NASA: (1) Simplex CMC Blisk; (2) Cooled CMC Nozzle Ramps; (3) Cooled CMC Thrust Chambers; and (4) CMC Gas Generator. These development efforts are application oriented, but have a strong underpinning of fundamental understanding of processing-microstructure-property relationships relative to structural analyses, nondestructive characterization, and material behavior analysis at the coupon and component and system operation levels. As each effort matures, emphasis will be placed on optimizing and demonstrating material/component durability, ideally using a combined Building Block Approach and Build and Bust Approach.

  5. Modelling of energy consumption at construction of high-rise buildings

    NASA Astrophysics Data System (ADS)

    Korol, Elena; Korol, Oleg

    2018-03-01

    High-rise building structures in the course of its erection suppose primary use of methods provided for erection, concrete and external finishing works. Erection works do not differ significantly from usual ones: traditional equipment, accessories and techniques are used which are based on erection of structures in project position using a crane. Structures to be assembled in building frame include steel columns and beams, wall panels, form elements of columns, walls and floor structures. We can note heightened attention to operational control for quality of erection, but it is attributable to all works in the course of high-rise construction. During high-rise erection by means of cast in-situ reinforced concrete all formworks to be used do not have any special differences except systems specially designed for high-rise erection using sliding formwork or vertical traveling forms. In these systems special attention is paid to safety of elevated works. Working methods of placement and curing of concrete and structures as a whole remain traditional - the requirements for controlling such operations become toughened. The most evident differences in high-rise erection with regard to equipment, machinery and accessories used are in means provided for load transportation and safety of works at heights. Particularity of internal finishing works which are also obligatory during construction of skyscrapers allows not considering them in as technological differences from usual construction as far as the «height» of its execution is limited by height of particular floor and determined by price and building class.

  6. Design an optimum safety policy for personnel safety management - A system dynamic approach

    NASA Astrophysics Data System (ADS)

    Balaji, P.

    2014-10-01

    Personnel safety management (PSM) ensures that employee's work conditions are healthy and safe by various proactive and reactive approaches. Nowadays it is a complex phenomenon because of increasing dynamic nature of organisations which results in an increase of accidents. An important part of accident prevention is to understand the existing system properly and make safety strategies for that system. System dynamics modelling appears to be an appropriate methodology to explore and make strategy for PSM. Many system dynamics models of industrial systems have been built entirely for specific host firms. This thesis illustrates an alternative approach. The generic system dynamics model of Personnel safety management was developed and tested in a host firm. The model was undergone various structural, behavioural and policy tests. The utility and effectiveness of model was further explored through modelling a safety scenario. In order to create effective safety policy under resource constraint, DOE (Design of experiment) was used. DOE uses classic designs, namely, fractional factorials and central composite designs. It used to make second order regression equation which serve as an objective function. That function was optimized under budget constraint and optimum value used for safety policy which shown greatest improvement in overall PSM. The outcome of this research indicates that personnel safety management model has the capability for acting as instruction tool to improve understanding of safety management and also as an aid to policy making.

  7. A patient safety objective structured clinical examination.

    PubMed

    Singh, Ranjit; Singh, Ashok; Fish, Reva; McLean, Don; Anderson, Diana R; Singh, Gurdev

    2009-06-01

    There are international calls for improving education for health care workers around certain core competencies, of which patient safety and quality are integral and transcendent parts. Although relevant teaching programs have been developed, little is known about how best to assess their effectiveness. The objective of this work was to develop and implement an objective structured clinical examination (OSCE) to evaluate the impact of a patient safety curriculum. The curriculum was implemented in a family medicine residency program with 47 trainees. Two years after commencing the curriculum, a patient safety OSCE was developed and administered at this program and, for comparison purposes, to incoming residents at the same program and to residents at a neighboring residency program. All 47 residents exposed to the training, all 16 incoming residents, and 10 of 12 residents at the neighboring program participated in the OSCE. In a standardized patient case, error detection and error disclosure skills were better among trained residents. In a chart-based case, trained residents showed better performance in identifying deficiencies in care and described more appropriate means of addressing them. Third year residents exposed to a "Systems Approach" course performed better at system analysis and identifying system-based solutions after the course than before. Results suggest increased systems thinking and inculcation of a culture of safety among residents exposed to a patient safety curriculum. The main weaknesses of the study are its small size and suboptimal design. Much further investigation is needed into the effectiveness of patient safety curricula.

  8. Modelling runway incursion severity.

    PubMed

    Wilke, Sabine; Majumdar, Arnab; Ochieng, Washington Y

    2015-06-01

    Analysis of the causes underlying runway incursions is fundamental for the development of effective mitigation measures. However, there are significant weaknesses in the current methods to model these factors. This paper proposes a structured framework for modelling causal factors and their relationship to severity, which includes a description of the airport surface system architecture, establishment of terminological definitions, the determination and collection of appropriate data, the analysis of occurrences for severity and causes, and the execution of a statistical analysis framework. It is implemented in the context of U.S. airports, enabling the identification of a number of priority interventions, including the need for better investigation and causal factor capture, recommendations for airfield design, operating scenarios and technologies, and better training for human operators in the system. The framework is recommended for the analysis of runway incursions to support safety improvements and the methodology is transferable to other areas of aviation safety risk analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Improving Performance of the System Safety Function at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Kiessling, Ed; Tippett, Donald D.; Shivers, Herb

    2004-01-01

    The Columbia Accident Investigation Board (CAIB) determined that organizational and management issues were significant contributors to the loss of Space Shuttle Columbia. In addition, the CAIB observed similarities between the organizational and management climate that preceded the Challenger accident and the climate that preceded the Columbia accident. To prevent recurrence of adverse organizational and management climates, effective implementation of the system safety function is suggested. Attributes of an effective system safety program are presented. The Marshall Space Flight Center (MSFC) system safety program is analyzed using the attributes. Conclusions and recommendations for improving the MSFC system safety program are offered in this case study.

  10. Problem of unity of measurements in ensuring safety of hydraulic structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kheifits, V.Z.; Markov, A.I.; Braitsev, V.V.

    1994-07-01

    Ensuring the safety of hydraulic structures (HSs) is not only an industry but also a national and global concern, since failure of large water impounding structures can entail large losses of lives and enormous material losses related to destruction downstream. The main information on the degree of safety of a structure is obtained by comparing information about the actual state of the structure obtained on the basis of measurements in key zones of the structure with the predicted state on basis of the design model used when designing the structure for given conditions of external actions. Numerous, from hundreds tomore » thousands, string type transducers are placed in large HSs. This system of transducers monitor the stress-strain rate, seepage, and thermal regimes. These measurements are supported by the State Standards Committee which certifies the accuracy of the checking methods. To improve the instrumental monitoring of HSs, the author recommends: Calibration of methods and means of reliable diagnosis for each measuring channel in the HS, improvements to reduce measurement error, support for the system software programs, and development of appropriate standards for the design and examination of HSs.« less

  11. Safety and IVHM

    NASA Technical Reports Server (NTRS)

    Goebel, Kai

    2012-01-01

    When we address safety in a book on the business case for IVHM, the question arises whether safety isn t inherently in conflict with the need of operators to run their systems as efficiently (and as cost effectively) as possible. The answer may be that the system needs to be just as safe as needed, but not significantly more. That begs the next question: How safe is safe enough? Several regulatory bodies provide guidelines for operational safety, but irrespective of that, operators do not want their systems to be known as lacking safety. We illuminate the role of safety within the context of IVHM.

  12. Overcoming dysfunctional momentum: Organizational safety as a social achievement

    Treesearch

    Michelle A. Barton; Kathleen M. Sutcliffe

    2009-01-01

    Research on organizational safety and reliability largely has emphasized system-level structures and processes neglecting the more micro-level, social processes necessary to enact organizational safety. In this qualitative study we remedy this gap by exploring these processes in the context of wildland fire management. In particular, using interview data gathered from...

  13. Obtaining Valid Safety Data for Software Safety Measurement and Process Improvement

    NASA Technical Reports Server (NTRS)

    Basili, Victor r.; Zelkowitz, Marvin V.; Layman, Lucas; Dangle, Kathleen; Diep, Madeline

    2010-01-01

    We report on a preliminary case study to examine software safety risk in the early design phase of the NASA Constellation spaceflight program. Our goal is to provide NASA quality assurance managers with information regarding the ongoing state of software safety across the program. We examined 154 hazard reports created during the preliminary design phase of three major flight hardware systems within the Constellation program. Our purpose was two-fold: 1) to quantify the relative importance of software with respect to system safety; and 2) to identify potential risks due to incorrect application of the safety process, deficiencies in the safety process, or the lack of a defined process. One early outcome of this work was to show that there are structural deficiencies in collecting valid safety data that make software safety different from hardware safety. In our conclusions we present some of these deficiencies.

  14. Patient safety culture and associated factors: A quantitative and qualitative study of healthcare workers' view in Jimma zone Hospitals, Southwest Ethiopia.

    PubMed

    Wami, Sintayehu Daba; Demssie, Amsalu Feleke; Wassie, Molla Mesele; Ahmed, Ansha Nega

    2016-09-20

    Patient safety culture is an important aspect for quality healthcare delivery and is an issue of high concern globally. In Ethiopia health system little is known and information is limited in scope about patient safety culture. Therefore, the aim of this study was to assess the level of patient safety culture and associated factors in Jimma zone Hospitals, southwest Ethiopia. Facility based cross sectional quantitative study triangulated with qualitative approaches was employed from March to April 30/2015. Stratified sampling technique was used to select 637 study participants among 4 hospitals. The standardized tool which measures 12 patient safety culture composites was used for data collection. Bivariate and multivariate linear regression analyses were performed using SPSS version 20. Significance level was obtained at 95 % CI and p-value < 0.05. Semi structured guide in depth interview was used to collect the qualitative data. Content analysis of the interview was performed. The overall level of patient safety culture was 46.7 % (95 % CI: 43.0, 51.2). Hours worked per week (β =-0.06, 95 % CI:-0.12,-0.001), reporting adverse event (β = 3.34, 95 % CI: 2.12, 4.57), good communication (β = 2.78, 95 % CI: 2.29, 3.28), teamwork within hospital (β = 1.91, 95 % CI: 1.37, 2.46), level of staffing (β = 1.32, 95 % CI: 0.89, 1.75), exchange of feedback about error (β = 1.37, 95 % CI: 0.91, 1.83) and participation in patient safety program (β = 1.3, 95 % CI: 0.57, 2.03) were factors significantly associated with the patient safety culture. The in depth interview indicated incident reporting, resources, healthcare worker attitude and patient involvement as important factors that influence patient safety culture. The overall level of patient safety culture was low. Working hours, level of staffing, teamwork, communications openness, reporting an event and exchange of feedback about error were associated with patient safety culture. Therefore, interventions of systemic approach through facilitating opportunities for communication openness, cooperation and exchange of ideas between healthcare workers are needed to improve the level of patient safety culture.

  15. Ballistic Puncture Self-Healing Polymeric Materials

    NASA Technical Reports Server (NTRS)

    Gordon, Keith L.; Siochi, Emilie J.; Yost, William T.; Bogert, Phil B.; Howell, Patricia A.; Cramer, K. Elliott; Burke, Eric R.

    2017-01-01

    Space exploration launch costs on the order of $10,000 per pound provide an incentive to seek ways to reduce structural mass while maintaining structural function to assure safety and reliability. Damage-tolerant structural systems provide a route to avoiding weight penalty while enhancing vehicle safety and reliability. Self-healing polymers capable of spontaneous puncture repair show promise to mitigate potentially catastrophic damage from events such as micrometeoroid penetration. Effective self-repair requires these materials to quickly heal following projectile penetration while retaining some structural function during the healing processes. Although there are materials known to possess this capability, they are typically not considered for structural applications. Current efforts use inexpensive experimental methods to inflict damage, after which analytical procedures are identified to verify that function is restored. Two candidate self-healing polymer materials for structural engineering systems are used to test these experimental methods.

  16. Achieving Safety through Security Management

    NASA Astrophysics Data System (ADS)

    Ridgway, John

    Whilst the achievement of safety objectives may not be possible purely through the administration of an effective Information Security Management System (ISMS), your job as safety manager will be significantly eased if such a system is in place. This paper seeks to illustrate the point by drawing a comparison between two of the prominent standards within the two disciplines of security and safety management.

  17. A bio-inspired memory model for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Zhu, Yong

    2009-04-01

    Long-term structural health monitoring (SHM) systems need intelligent management of the monitoring data. By analogy with the way the human brain processes memories, we present a bio-inspired memory model (BIMM) that does not require prior knowledge of the structure parameters. The model contains three time-domain areas: a sensory memory area, a short-term memory area and a long-term memory area. First, the initial parameters of the structural state are specified to establish safety criteria. Then the large amount of monitoring data that falls within the safety limits is filtered while the data outside the safety limits are captured instantly in the sensory memory area. Second, disturbance signals are distinguished from danger signals in the short-term memory area. Finally, the stable data of the structural balance state are preserved in the long-term memory area. A strategy for priority scheduling via fuzzy c-means for the proposed model is then introduced. An experiment on bridge tower deformation demonstrates that the proposed model can be applied for real-time acquisition, limited-space storage and intelligent mining of the monitoring data in a long-term SHM system.

  18. [Establishment and application of "multi-dimensional structure and process dynamic quality control technology system" in preparation products of traditional Chinese medicine (I)].

    PubMed

    Gu, Jun-Fei; Feng, Liang; Zhang, Ming-Hua; Wu, Chan; Jia, Xiao-Bin

    2013-11-01

    Safety is an important component of the quality control of traditional Chinese medicine (TCM) preparation products, as well as an important guarantee for clinical application. Currently, the quality control of TCMs in Chinese Pharmacopoeia mostly focuses on indicative compounds for TCM efficacy. TCM preparations are associated with multiple links, from raw materials to products, and each procedure may have impacts on the safety of preparation. We make a summary and analysis on the factors impacting safety during the preparation of TCM products, and then expound the important role of the "multi-dimensional structure and process dynamic quality control technology system" in the quality safety of TCM preparations. Because the product quality of TCM preparation is closely related to the safety, the control over safety-related material basis is an important component of the product quality control of TCM preparations. The implementation of the quality control over the dynamic process of TCM preparations from raw materials to products, and the improvement of the TCM quality safety control at the microcosmic level help lay a firm foundation for the development of the modernization process of TCM preparations.

  19. Formal Verification of Complex Systems based on SysML Functional Requirements

    DTIC Science & Technology

    2014-12-23

    Formal Verification of Complex Systems based on SysML Functional Requirements Hoda Mehrpouyan1, Irem Y. Tumer2, Chris Hoyle2, Dimitra Giannakopoulou3...requirements for design of complex engineered systems. The proposed ap- proach combines a SysML modeling approach to document and structure safety requirements...methods and tools to support the integration of safety into the design solution. 2.1. SysML for Complex Engineered Systems Traditional methods and tools

  20. Comparing safety climate for nurses working in operating theatres, critical care and ward areas in the UK: a mixed methods study

    PubMed Central

    Tarling, Maggie; Jones, Anne; Murrells, Trevor; McCutcheon, Helen

    2017-01-01

    Objectives The main aim of the study was to explore the potential sources of variation and understand the meaning of safety climate for nursing practice in acute hospital settings in the UK. Design A sequential mixed methods design included a cross-sectional survey using the Safety Climate Questionnaire (SCQ) and thematic analysis of focus group discussions. Confirmatory factor analysis (CFA) was used to validate the factor structure of the SCQ. Factor scores were compared between nurses working in operating theatres, critical care and ward areas. Results from the survey and the thematic analysis were then compared and synthesised. Setting A London University. Participants 319 registered nurses working in acute hospital settings completed the SCQ and a further 23 nurses participated in focus groups. Results CFA indicated that there was a good model fit on some criteria (χ2=1683.699, df=824, p<0.001; χ2/df=2.04; root mean square error of approximation=0.058) but a less acceptable fit on comparative fit index which is 0.804. There was a statistically significant difference between clinical specialisms in management commitment (F (4,266)=4.66, p=0.001). Nurses working in operating theatres had lower scores compared with ward areas and they also reported negative perceptions about management in their focus group. There was significant variation in scores for communication across clinical specialism (F (4,266)=2.62, p=0.035) but none of the pairwise comparisons achieved statistical significance. Thematic analysis identified themes of human factors, clinical management and protecting patients. The system and the human side of caring was identified as a meta-theme. Conclusions The results suggest that the SCQ has some utility but requires further exploration. The findings indicate that safety in nursing practice is a complex interaction between safety systems and the social and interpersonal aspects of clinical practice. PMID:29084793

  1. 10 CFR 50.36 - Technical specifications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., or component that is part of the primary success path and which functions or actuates to mitigate a... significant safety functions. Where a limiting safety system setting is specified for a variable on which a... the automatic safety system does not function as required, the licensee shall take appropriate action...

  2. Nonlinear Ultrasonic Diagnosis and Prognosis of ASR Damage in Dry Cask Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, Jianmin; Bazant, Zdenek; Jacobs, Laurence

    Alkali-silica reaction (ASR) is a deleterious chemical process that may occur in cement-based materials such as mortars and concretes, where the hydroxyl ions in the highly alkaline pore solution attack the siloxane groups in the siliceous minerals in the aggregates. The reaction produces a cross-linked alkali-silica gel. The ASR gel swells in the presence of water. Expansion of the gel results in cracking when the swelling-induced stress exceeds the fracture toughness of the concrete. As the ASR continues, cracks may grow and eventually coalesce, which results in reduced service life and a decrease safety of concrete structures. Since concrete ismore » widely used as a critical structural component in dry cask storage of used nuclear fuels, ASR damage poses a significant threat to the sustainability of long term dry cask storage systems. Therefore, techniques for effectively detecting, managing and mitigating ASR damage are needed. Currently, there are no nondestructive methods to accurately detect ASR damage in existing concrete structures. The only current way of accurately assessing ASR damage is to drill a core from an existing structure, and conduct microscopy on this drilled cylindrical core. Clearly, such a practice is not applicable to dry cask storage systems. To meet these needs, this research is aimed at developing (1) a suite of nonlinear ultrasonic quantitative nondestructive evaluation (QNDE) techniques to characterize ASR damage, and (2) a physics-based model for ASR damage evolution using the QNDE data. Outcomes of this research will provide a nondestructive diagnostic tool to evaluate the extent of the ASR damage, and a prognostic tool to estimate the future reliability and safety of the concrete structures in dry cask storage systems« less

  3. The role of leader influence tactics and safety climate in engaging employees' safety participation.

    PubMed

    Clarke, Sharon; Ward, Katie

    2006-10-01

    This study examines the effect of leader influence tactics on employee safety participation in a U.K.-based manufacturing organization, examining the role of safety climate as a mediator. Structural equation modeling showed that leader influence tactics associated with a transformational leadership style had significant relationships with safety participation that were partially mediated by the safety climate (consultation) or fully mediated by the safety climate (inspirational appeals). In addition, leader influence tactics associated with a transactional leadership style had significant relationships with safety participation: rational persuasion (partially mediated by safety climate) and coalition tactics (direct effect). Thus, leaders may encourage safety participation using a combination of influence tactics, based on rational arguments, involvement in decision making, and generating enthusiasm for safety. The influence of building trust in managers is discussed as an underlying mechanism in this relationship. Practical implications are highlighted, including the design of leadership development programs, which may be particularly suited to high-reliability organizations.

  4. Distributed Impact Detector System (DIDS) Health Monitoring System Evaluation

    NASA Technical Reports Server (NTRS)

    Prosser, William H.; Madaras, Eric I.

    2010-01-01

    Damage due to impacts from micrometeoroids and orbital debris is one of the most significant on-orbit hazards for spacecraft. Impacts to thermal protection systems must be detected and the damage evaluated to determine if repairs are needed to allow safe re-entry. To address this issue for the International Space Station Program, Langley Research Center and Johnson Space Center technologists have been working to develop and implement advanced methods for detecting impacts and resultant leaks. LaRC funded a Small Business Innovative Research contract to Invocon, Inc. to develop special wireless sensor systems that are compact, light weight, and have long battery lifetimes to enable applications to long duration space structures. These sensor systems are known as distributed impact detection systems (DIDS). In an assessment, the NASA Engineering and Safety Center procured two prototype DIDS sensor units to evaluate their capabilities in laboratory testing and field testing in an ISS Node 1 structural test article. This document contains the findings of the assessment.

  5. An Investigation for Ground State Features of Some Structural Fusion Materials

    NASA Astrophysics Data System (ADS)

    Aytekin, H.; Tel, E.; Baldik, R.; Aydin, A.

    2011-02-01

    Environmental concerns associated with fossil fuels are creating increased interest in alternative non-fossil energy sources. Nuclear fusion can be one of the most attractive sources of energy from the viewpoint of safety and minimal environmental impact. When considered in all energy systems, the requirements for performance of structural materials in a fusion reactor first wall, blanket or diverter, are arguably more demanding or difficult than for other energy system. The development of fusion materials for the safety of fusion power systems and understanding nuclear properties is important. In this paper, ground state properties for some structural fusion materials as 27Al, 51V, 52Cr, 55Mn, and 56Fe are investigated using Skyrme-Hartree-Fock method. The obtained results have been discussed and compared with the available experimental data.

  6. Defining the pharmaceutical system to support proactive drug safety.

    PubMed

    Lewis, Vicki R; Hernandez, Angelica; Meadors, Margaret

    2013-02-01

    The military, aviation, nuclear, and transportation industries have transformed their safety records by using a systems approach to safety and risk mitigation. This article creates a preliminary model of the U.S. pharmaceutical system using available literature including academic publications, policies, and guidelines established by regulatory bodies and drug industry trade publications. Drawing from the current literature, the goals, roles, and individualized processes of pharmaceutical subsystems will be defined. Defining the pharmaceutical system provides a vehicle to assess and address known problems within the system, and provides a means to conduct proactive risk analyses, which would create significant pharmaceutical safety advancement.

  7. A systematic review of the safety climate intervention literature: Past trends and future directions.

    PubMed

    Lee, Jin; Huang, Yueng-Hsiang; Cheung, Janelle H; Chen, Zhuo; Shaw, William S

    2018-04-26

    Safety climate represents the meaningfulness of safety and how safety is valued in an organization. The contributions of safety climate to organizational safety have been well documented. There is a dearth of empirical research, however, on specific safety climate interventions and their effectiveness. The present study aims at examining the trend of safety climate interventions and offering compiled information for designing and implementing evidence-based safety climate interventions. Our literature search yielded 384 titles that were inspected by three examiners. Using a stepwise process that allowed for assessment of interobserver agreement, 19 full articles were selected and reviewed. Results showed that 10 out of the 19 articles (52.6%) were based on a quasi-experimental pre- and postintervention design, whereas 42.1% (n = 8) studies were based on a mixed-design approach (including both between- and within-subject design). All interventions in these 19 studies involved either safety-/health-related communication or education/training. Improvement of safety leadership was also a common component of safety climate interventions. According to the socio-technical systems classification of intervention strategies, all studies were categorized as interventions focusing on improving organizational and managerial structure as well as the personnel subsystem; four of them also aimed at improving technological aspects of work, and five of them aimed at improving the physical work subsystem. In general, a vast majority of the studies (89.5%, n = 17) showed a statistically significant improvement in safety climate across their organizations postintervention. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  8. Design an optimum safety policy for personnel safety management - A system dynamic approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balaji, P.

    2014-10-06

    Personnel safety management (PSM) ensures that employee's work conditions are healthy and safe by various proactive and reactive approaches. Nowadays it is a complex phenomenon because of increasing dynamic nature of organisations which results in an increase of accidents. An important part of accident prevention is to understand the existing system properly and make safety strategies for that system. System dynamics modelling appears to be an appropriate methodology to explore and make strategy for PSM. Many system dynamics models of industrial systems have been built entirely for specific host firms. This thesis illustrates an alternative approach. The generic system dynamicsmore » model of Personnel safety management was developed and tested in a host firm. The model was undergone various structural, behavioural and policy tests. The utility and effectiveness of model was further explored through modelling a safety scenario. In order to create effective safety policy under resource constraint, DOE (Design of experiment) was used. DOE uses classic designs, namely, fractional factorials and central composite designs. It used to make second order regression equation which serve as an objective function. That function was optimized under budget constraint and optimum value used for safety policy which shown greatest improvement in overall PSM. The outcome of this research indicates that personnel safety management model has the capability for acting as instruction tool to improve understanding of safety management and also as an aid to policy making.« less

  9. The private healtcare systems in europe. What can we learn from Russia?

    PubMed

    Akulin, Igor M; Chesnokova, Ekaterina A; Genovese2, Umberto; Amato, Simona; Ragazzoni, Massimo Gabriele

    2014-01-01

    The European healthcare system is characterized by different kinds of funding: public, insurance-based, and mixed. In Italy, the prolonged economic crisis and the need for a cost reduction in the public administrations make necessary a cut in expenditure, which has a significant impact also on the funding of the healthcare system. The comparison of different European healthcare systems may offer useful insights for a better definition of the European and / or national healthcare provision strategies, which would be economically and financially sustainable but also capable to protect the population health. In this regard, it is worth to analyze the Russian healthcare system, which in the last years has undergone significant changes in its structure and in the way healthcare services are supplied. The peculiarity of the Russian healthcare system, which is quite different from the European standards for both professional requirements and theoretical knowledge, makes Russia an absolutely interesting partner for a future joint venture research. This paper describes the Russian national healthcare system highlights the differences in the demographic and socio-economic structures relatively to the Italian model. The paper supports a reflection on the sustainability of the health care systems and on the organizational forms that would guarantee the supply of better healthcare services in terms of quality, appropriateness and safety, compatibly with its economic sustainability.

  10. Study on ( n,t) Reactions of Zr, Nb and Ta Nuclei

    NASA Astrophysics Data System (ADS)

    Tel, E.; Yiğit, M.; Tanır, G.

    2012-04-01

    The world faces serious energy shortages in the near future. To meet the world energy demand, the nuclear fusion with safety, environmentally acceptability and economic is the best suited. Fusion is attractive as an energy source because of the virtually inexhaustible supply of fuel, the promise of minimal adverse environmental impact, and its inherent safety. Fusion will not produce CO2 or SO2 and thus will not contribute to global warming or acid rain. Furthermore, there are not radioactive nuclear waste problems in the fusion reactors. Although there have been significant research and development studies on the inertial and magnetic fusion reactor technology, there is still a long way to go to penetrate commercial fusion reactors to the energy market. Because, tritium self-sufficiency must be maintained for a commercial power plant. For self-sustaining (D-T) fusion driver tritium breeding ratio should be greater than 1.05. And also, the success of fusion power system is dependent on performance of the first wall, blanket or divertor systems. So, the performance of structural materials for fusion power systems, understanding nuclear properties systematic and working out of ( n,t) reaction cross sections are very important. Zirconium (Zr), Niobium (Nb) and Tantal (Ta) containing alloys are important structural materials for fusion reactors, accelerator-driven systems, and many other fields. In this study, ( n,t) reactions for some structural fusion materials such as 88,90,92,94,96Zr, 93,94,95Nb and 179,181Ta have been investigated. The calculated results are discussed andcompared with the experimental data taken from the literature.

  11. Racial/ethnic differences in obesity and comorbidities between safety-net- and non safety-net integrated health systems

    PubMed Central

    Balasubramanian, Bijal A.; Garcia, Michael P.; Corley, Douglas A.; Doubeni, Chyke A.; Haas, Jennifer S.; Kamineni, Aruna; Quinn, Virginia P.; Wernli, Karen; Zheng, Yingye; Skinner, Celette Sugg

    2017-01-01

    Abstract Previous research shows that patients in integrated health systems experience fewer racial disparities compared with more traditional healthcare systems. Little is known about patterns of racial/ethnic disparities between safety-net and non safety-net integrated health systems. We evaluated racial/ethnic differences in body mass index (BMI) and the Charlson comorbidity index from 3 non safety-net- and 1 safety-net integrated health systems in a cross-sectional study. Multinomial logistic regression modeled comorbidity and BMI on race/ethnicity and health care system type adjusting for age, sex, insurance, and zip-code-level income The study included 1.38 million patients. Higher proportions of safety-net versus non safety-net patients had comorbidity score of 3+ (11.1% vs. 5.0%) and BMI ≥35 (27.7% vs. 15.8%). In both types of systems, blacks and Hispanics were more likely than whites to have higher BMIs. Whites were more likely than blacks or Hispanics to have higher comorbidity scores in a safety net system, but less likely to have higher scores in the non safety-nets. The odds of comorbidity score 3+ and BMI 35+ in blacks relative to whites were significantly lower in safety-net than in non safety-net settings. Racial/ethnic differences were present within both safety-net and non safety-net integrated health systems, but patterns differed. Understanding patterns of racial/ethnic differences in health outcomes in safety-net and non safety-net integrated health systems is important to tailor interventions to eliminate racial/ethnic disparities in health and health care. PMID:28296752

  12. IMPLEMENTATION OF DEFENSE NUCLEAR FACILITY SAFETY BOARD RECOMMENDATION 2000-2 AT WIPP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, K.; Wu, C.

    2002-02-26

    The Defense Nuclear Safeties Board (DNFSB) issued Recommendation 2000-2 on March 8, 2000, concerning the degrading conditions of vital safety systems, or systems important to nuclear safety, at DOE sites across the nation. The Board recommended that the DOE take action to assess the condition of its nuclear systems to ensure continued operational readiness of vital safety systems that are important for safely accomplishing the DOE's mission. To verify the readiness of vital safety systems, a two-phased approach was established. Phase I consisted of a qualitative assessment to approved criteria of the defined vital safety systems by operating contractor personnel,more » overseen by Federal field office personnel. Based on Phase I Assessment results, vital safety systems with significant deficiencies would be further assessed in Phase II, a more extensive quantitative assessment, by a contractor and Federal team, using a second set of criteria. In addition, Defense Nuclear Facility Safety Board Recommendation 2000-2 concluded that the degradation of confinement ventilation systems was of major concern, and issued a separate set of criteria to perform a Phase II Assessment on confinement ventilation systems.« less

  13. Light-frame wall and floor systems : analysis and performance

    Treesearch

    G. Sherwood; R. C. Moody

    1989-01-01

    This report describes methods of predicting the performance of light-frame wood structures with emphasis on floor and wall systems. Methods of predicting structural performance, fire safety, and environmental concerns including thermal, moisture, and acoustic performance are addressed in the three major sections.

  14. Design and implementation of an identification system in construction site safety for proactive accident prevention.

    PubMed

    Yang, Huanjia; Chew, David A S; Wu, Weiwei; Zhou, Zhipeng; Li, Qiming

    2012-09-01

    Identifying accident precursors using real-time identity information has great potential to improve safety performance in construction industry, which is still suffering from day to day records of accident fatality and injury. Based on the requirements analysis for identifying precursor and the discussion of enabling technology solutions for acquiring and sharing real-time automatic identification information on construction site, this paper proposes an identification system design for proactive accident prevention to improve construction site safety. Firstly, a case study is conducted to analyze the automatic identification requirements for identifying accident precursors in construction site. Results show that it mainly consists of three aspects, namely access control, training and inspection information and operation authority. The system is then designed to fulfill these requirements based on ZigBee enabled wireless sensor network (WSN), radio frequency identification (RFID) technology and an integrated ZigBee RFID sensor network structure. At the same time, an information database is also designed and implemented, which includes 15 tables, 54 queries and several reports and forms. In the end, a demonstration system based on the proposed system design is developed as a proof of concept prototype. The contributions of this study include the requirement analysis and technical design of a real-time identity information tracking solution for proactive accident prevention on construction sites. The technical solution proposed in this paper has a significant importance in improving safety performance on construction sites. Moreover, this study can serve as a reference design for future system integrations where more functions, such as environment monitoring and location tracking, can be added. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Relationship between preventable hospital deaths and other measures of safety: an exploratory study.

    PubMed

    Hogan, Helen; Healey, Frances; Neale, Graham; Thomson, Richard; Vincent, Charles; Black, Nick

    2014-06-01

    To explore associations between the proportion of hospital deaths that are preventable and other measures of safety. Retrospective case record review to provide estimates of preventable death proportions. Simple monotonic correlations using Spearman's rank correlation coefficient to establish the relationship with eight other measures of patient safety. Ten English acute hospital trusts. One thousand patients who died during 2009. The proportion of preventable deaths varied between hospitals (3-8%) but was not statistically significant (P = 0.94). Only one of the eight measures of safety (Methicillin-resistant Staphylococcus aureus bacteraemia rate) was clinically and statistically significantly associated with preventable death proportion (r = 0.73; P < 0.02). There were no significant associations with the other measures including hospital standardized mortality ratios (r = -0.01). There was a suggestion that preventable deaths may be more strongly associated with some other measures of outcome than with process or with structure measures. The exploratory nature of this study inevitably limited its power to provide definitive results. The observed relationships between safety measures suggest that a larger more powerful study is needed to establish the inter-relationship of different measures of safety (structure, process and outcome), in particular the widely used standardized mortality ratios. © The Author 2014. Published by Oxford University Press in association with the International Society for Quality in Health Care; all rights reserved.

  16. Increasing Safety of a Robotic System for Inner Ear Surgery Using Probabilistic Error Modeling Near Vital Anatomy

    PubMed Central

    Dillon, Neal P.; Siebold, Michael A.; Mitchell, Jason E.; Blachon, Gregoire S.; Balachandran, Ramya; Fitzpatrick, J. Michael; Webster, Robert J.

    2017-01-01

    Safe and effective planning for robotic surgery that involves cutting or ablation of tissue must consider all potential sources of error when determining how close the tool may come to vital anatomy. A pre-operative plan that does not adequately consider potential deviations from ideal system behavior may lead to patient injury. Conversely, a plan that is overly conservative may result in ineffective or incomplete performance of the task. Thus, enforcing simple, uniform-thickness safety margins around vital anatomy is insufficient in the presence of spatially varying, anisotropic error. Prior work has used registration error to determine a variable-thickness safety margin around vital structures that must be approached during mastoidectomy but ultimately preserved. In this paper, these methods are extended to incorporate image distortion and physical robot errors, including kinematic errors and deflections of the robot. These additional sources of error are discussed and stochastic models for a bone-attached robot for otologic surgery are developed. An algorithm for generating appropriate safety margins based on a desired probability of preserving the underlying anatomical structure is presented. Simulations are performed on a CT scan of a cadaver head and safety margins are calculated around several critical structures for planning of a robotic mastoidectomy. PMID:29200595

  17. Increasing safety of a robotic system for inner ear surgery using probabilistic error modeling near vital anatomy

    NASA Astrophysics Data System (ADS)

    Dillon, Neal P.; Siebold, Michael A.; Mitchell, Jason E.; Blachon, Gregoire S.; Balachandran, Ramya; Fitzpatrick, J. Michael; Webster, Robert J.

    2016-03-01

    Safe and effective planning for robotic surgery that involves cutting or ablation of tissue must consider all potential sources of error when determining how close the tool may come to vital anatomy. A pre-operative plan that does not adequately consider potential deviations from ideal system behavior may lead to patient injury. Conversely, a plan that is overly conservative may result in ineffective or incomplete performance of the task. Thus, enforcing simple, uniform-thickness safety margins around vital anatomy is insufficient in the presence of spatially varying, anisotropic error. Prior work has used registration error to determine a variable-thickness safety margin around vital structures that must be approached during mastoidectomy but ultimately preserved. In this paper, these methods are extended to incorporate image distortion and physical robot errors, including kinematic errors and deflections of the robot. These additional sources of error are discussed and stochastic models for a bone-attached robot for otologic surgery are developed. An algorithm for generating appropriate safety margins based on a desired probability of preserving the underlying anatomical structure is presented. Simulations are performed on a CT scan of a cadaver head and safety margins are calculated around several critical structures for planning of a robotic mastoidectomy.

  18. The NATO Unmanned Aircraft System Human Systems Integration Guidebook

    DTIC Science & Technology

    2012-11-01

    Stakeholders HSI Management Activity Goals Project SMEs HCR Acceptance Methods & Criteria Figure 2. Overarching HSI Goal Structure ...88ABW Clear 10/21/2013; 88ABW-2013-4442 55 N NATO North Atlantic Treaty Organisation NTSB National Transportation Safety Board S SME Subject...support the organisation Personnel trained to support safety Operational Concepts HSI Technical Activity Goals Allocation of Functions

  19. Plant-derived virus-like particles as vaccines

    PubMed Central

    Chen, Qiang; Lai, Huafang

    2013-01-01

    Virus-like particles (VLPs) are self-assembled structures derived from viral antigens that mimic the native architecture of viruses but lack the viral genome. VLPs have emerged as a premier vaccine platform due to their advantages in safety, immunogenicity, and manufacturing. The particulate nature and high-density presentation of viral structure proteins on their surface also render VLPs as attractive carriers for displaying foreign epitopes. Consequently, several VLP-based vaccines have been licensed for human use and achieved significant clinical and economical success. The major challenge, however, is to develop novel production platforms that can deliver VLP-based vaccines while significantly reducing production times and costs. Therefore, this review focuses on the essential role of plants as a novel, speedy and economical production platform for VLP-based vaccines. The advantages of plant expression systems are discussed in light of their distinctive posttranslational modifications, cost-effectiveness, production speed, and scalability. Recent achievements in the expression and assembly of VLPs and their chimeric derivatives in plant systems as well as their immunogenicity in animal models are presented. Results of human clinical trials demonstrating the safety and efficacy of plant-derived VLPs are also detailed. Moreover, the promising implications of the recent creation of “humanized” glycosylation plant lines as well as the very recent approval of the first plant-made biologics by the U. S. Food and Drug Administration (FDA) for plant production and commercialization of VLP-based vaccines are discussed. It is speculated that the combined potential of plant expression systems and VLP technology will lead to the emergence of successful vaccines and novel applications of VLPs in the near future. PMID:22995837

  20. Renovated Korean nuclear safety and security system: A review and suggestions to successful settlement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, W. S.; Yun, S. W.; Lee, D. S.

    2012-07-01

    Questions of whether past nuclear regulatory body of Korea is not a proper system to monitor and check the country's nuclear energy policy and utilization have been raised. Moreover, a feeling of insecurity regarding nuclear safety after the nuclear accident in Japan has spread across the public. This has stimulated a renovation of the nuclear safety regime in Korea. The Nuclear Safety and Security Commission (NSSC) was launched on October 26, 2011 as a regulatory body directly under the President in charge of strengthening independence and nuclear safety. This was a meaningful event as the NSSC it is a muchmore » more independent regulatory system for Korea. However, the NSSC itself does not guarantee an enhanced public acceptance of the nuclear policy and stable use nuclear energy. This study introduces the new NSSC system and its details in terms of organization structure, appropriateness of specialty, budget stability, and management system. (authors)« less

  1. [Patient safety and a culture of responsibility in ambulatory care: strategies for improving practice].

    PubMed

    Lichte, Thomas; Klement, Andreas; Herrmann, Markus

    2009-01-01

    The development of a medical safety culture is spreading beyond the hospital into the ambulatory setting. Patient safety defined as "absence of unwanted events" (primum non nocere) can serve as a starting point for the advancement of our ambulatory medical care system. Error analyses conducted in GP and specialist practices will identify gaps and traps in the system and provide ideas for the development and implementation of new safety strategies in ambulatory patient care. In the light of the structures and processes of GP medical care aspects of patient safety will be correlated to the outcome quality and examples will be discussed. Possible strategies for the improvement of patient safety in GP practice will be presented from the perspective of both patient- and practice individuality.

  2. A Difference-In-Differences Study of the Effects of a New Abandoned Building Remediation Strategy on Safety

    Treesearch

    Michelle C. Kondo; Danya Keene; Bernadette C. Hohl; John M. MacDonald; Charles C. Branas

    2015-01-01

    Vacant and abandoned buildings pose significant challenges to the health and safety of communities. In 2011 the City of Philadelphia began enforcing a Doors and Windows Ordinance that required property owners of abandoned buildings to install working doors and windows in all structural openings or face significant fines. We tested the effects of the new ordinance on...

  3. An Interoperability Platform Enabling Reuse of Electronic Health Records for Signal Verification Studies

    PubMed Central

    Yuksel, Mustafa; Gonul, Suat; Laleci Erturkmen, Gokce Banu; Sinaci, Ali Anil; Invernizzi, Paolo; Facchinetti, Sara; Migliavacca, Andrea; Bergvall, Tomas; Depraetere, Kristof; De Roo, Jos

    2016-01-01

    Depending mostly on voluntarily sent spontaneous reports, pharmacovigilance studies are hampered by low quantity and quality of patient data. Our objective is to improve postmarket safety studies by enabling safety analysts to seamlessly access a wide range of EHR sources for collecting deidentified medical data sets of selected patient populations and tracing the reported incidents back to original EHRs. We have developed an ontological framework where EHR sources and target clinical research systems can continue using their own local data models, interfaces, and terminology systems, while structural interoperability and Semantic Interoperability are handled through rule-based reasoning on formal representations of different models and terminology systems maintained in the SALUS Semantic Resource Set. SALUS Common Information Model at the core of this set acts as the common mediator. We demonstrate the capabilities of our framework through one of the SALUS safety analysis tools, namely, the Case Series Characterization Tool, which have been deployed on top of regional EHR Data Warehouse of the Lombardy Region containing about 1 billion records from 16 million patients and validated by several pharmacovigilance researchers with real-life cases. The results confirm significant improvements in signal detection and evaluation compared to traditional methods with the missing background information. PMID:27123451

  4. Brief history of patient safety culture and science.

    PubMed

    Ilan, Roy; Fowler, Robert

    2005-03-01

    The science of safety is well established in such disciplines as the automotive and aviation industry. In this brief history of safety science as it pertains to patient care, we review remote and recent publications that have guided the maturation of this field that has particular relevance to the complex structure of systems, personnel, and therapies involved in caring for the critically ill.

  5. Children's Hospitals' Solutions for Patient Safety Collaborative Impact on Hospital-Acquired Harm.

    PubMed

    Lyren, Anne; Brilli, Richard J; Zieker, Karen; Marino, Miguel; Muething, Stephen; Sharek, Paul J

    2017-09-01

    To determine if an improvement collaborative of 33 children's hospitals focused on reliable best practice implementation and culture of safety improvements can reduce hospital-acquired conditions (HACs) and serious safety events (SSEs). A 3-year prospective cohort study design with a 12-month historical control population was completed by the Children's Hospitals' Solutions for Patient Safety collaborative. Identification and dissemination of best practices related to 9 HACs and SSE reduction focused on key process and culture of safety improvements. Individual hospital improvement teams leveraged the resources of a large, structured children's hospital collaborative using electronic, virtual, and in-person interactions. Thirty-three children's hospitals from across the United States volunteered to be part of the Children's Hospitals' Solutions for Patient Safety collaborative. Thirty-two met all the data submission eligibility requirements for the HAC improvement objective of this study, and 21 participated in the high-reliability culture work aimed at reducing SSEs. Significant harm reduction occurred in 8 of 9 common HACs (range 9%-71%; P < .005 for all). The mean monthly SSE rate decreased 32% (from 0.77 to 0.52; P < .001). The 12-month rolling average SSE rate decreased 50% (from 0.82 to 0.41; P < .001). Participation in a structured collaborative dedicated to implementing HAC-related best-practice prevention bundles and culture of safety interventions designed to increase the use of high-reliability organization practices resulted in significant HAC and SSE reductions. Structured collaboration and rapid sharing of evidence-based practices and tools are effective approaches to decreasing hospital-acquired harm. Copyright © 2017 by the American Academy of Pediatrics.

  6. 44 CFR 206.434 - Eligibility.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... been repetitive, or a problem that poses a significant risk to public health and safety if left... wetlands management practices; and (ii) No new structure(s) will be built on the property except as...

  7. Reliability enhancement of APR + diverse protection system regarding common cause failures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Y. G.; Kim, Y. M.; Yim, H. S.

    2012-07-01

    The Advanced Power Reactor Plus (APR +) nuclear power plant design has been developed on the basis of the APR1400 (Advanced Power Reactor 1400 MWe) to further enhance safety and economics. For the mitigation of Anticipated Transients Without Scram (ATWS) as well as Common Cause Failures (CCF) within the Plant Protection System (PPS) and the Emergency Safety Feature - Component Control System (ESF-CCS), several design improvement features have been implemented for the Diverse Protection System (DPS) of the APR + plant. As compared to the APR1400 DPS design, the APR + DPS has been designed to provide the Safety Injectionmore » Actuation Signal (SIAS) considering a large break LOCA accident concurrent with the CCF. Additionally several design improvement features, such as channel structure with redundant processing modules, and changes of system communication methods and auto-system test methods, are introduced to enhance the functional reliability of the DPS. Therefore, it is expected that the APR + DPS can provide an enhanced safety and reliability regarding possible CCF in the safety-grade I and C systems as well as the DPS itself. (authors)« less

  8. In-vehicle low-cost signing system

    NASA Astrophysics Data System (ADS)

    Greneker, Eugene F.

    1997-02-01

    There are approximately 20 million police radar detectors used on the highways of the United States daily. A highway hazard safety warning system has been developed by the Georgia Tech Research Institute, working under the sponsorship of the radar detector industry, to communicate highway safety alerts to the driver of any vehicle equipped with a police radar detector. In addition, the system causes the new generation of detectors that are already available to display a safety warning message on an alpha-numeric display. The Safety Warning SystemTM consists of a transmitter and a radar detector receiver or stand-alone safety warning receiver/display system. The transmitter can be mounted on police cars, emergency vehicles, utility vehicles, highly repair vehicles, and on stationary structures at fixed locations along the highway. The reception range of the transmitted signal is between 0.5 and 1.0 miles, depending on terrain. The system to be described may be one of the first applications of in-vehicle signing in the Intelligent Transportation System to be implemented, because the required infrastructure of receivers already exists.

  9. Taking ownership of safety. What are the active ingredients of safety coaching and how do they impact safety outcomes in critical offshore working environments?

    PubMed

    Krauesslar, Victoria; Avery, Rachel E; Passmore, Jonathan

    2015-01-01

    Safety coaching interventions have become a common feature in the safety critical offshore working environments of the North Sea. Whilst the beneficial impact of coaching as an organizational tool has been evidenced, there remains a question specifically over the use of safety coaching and its impact on behavioural change and producing safe working practices. A series of 24 semi-structured interviews were conducted with three groups of experts in the offshore industry: safety coaches, offshore managers and HSE directors. Using a thematic analysis approach, several significant themes were identified across the three expert groups including connecting with and creating safety ownership in the individual, personal significance and humanisation, ingraining safety and assessing and measuring a safety coach's competence. Results suggest clear utility of safety coaching when applied by safety coaches with appropriate coach training and understanding of safety issues in an offshore environment. The current work has found that the use of safety coaching in the safety critical offshore oil and gas industry is a powerful tool in managing and promoting a culture of safety and care.

  10. Outcomes associated with breach and fulfillment of the psychological contract of safety.

    PubMed

    Walker, Arlene

    2013-12-01

    The study investigated the outcomes associated with breach and fulfillment of the psychological contract of safety. The psychological contract of safety is defined as the beliefs of individuals about reciprocal employer and employee safety obligations inferred from implicit or explicit promises. When employees perceive that safety obligations promised by the employer have not been met, a breach of the psychological contract occurs, termed employer breach of obligations. The extent to which employees fulfill their safety obligations to the employer is termed employee fulfillment of obligations. Structural equation modeling was used to test a model of safety that investigated the positive and negative outcomes associated with breach and fulfillment of the psychological contract of safety. Participants were 424 health care workers recruited from two hospitals in the State of Victoria, Australia. Following slight modification of the hypothesized model, a good fitting model resulted. Being injured in the workplace was found to lower perceptions of trust in the employer and increase perceptions of employer breach of safety obligations. Trust in the employer significantly influenced perceived employer breach of safety obligations such that lowered trust resulted in higher perceptions of breach. Perceptions of employer breach significantly impacted employee fulfillment of safety obligations with high perceptions of breach resulting in low employee fulfillment of obligations. Trust and perceptions of breach significantly influenced safety attitudes, but not safety behavior. Fulfillment of employee safety obligations significantly impacted safety behavior, but not safety attitudes. Implications of these findings for safety and psychological contract research are explored. A positive emphasis on social exchange relationships in organizations will have positive outcomes for safety climate and safety behavior. © 2013.

  11. Mechanical behavior and shape optimization of lining structure for subsea tunnel excavated in weathered slot

    NASA Astrophysics Data System (ADS)

    Li, Peng-fei; Zhou, Xiao-jun

    2015-12-01

    Subsea tunnel lining structures should be designed to sustain the loads transmitted from surrounding ground and groundwater during excavation. Extremely high pore-water pressure reduces the effective strength of the country rock that surrounds a tunnel, thereby lowering the arching effect and stratum stability of the structure. In this paper, the mechanical behavior and shape optimization of the lining structure for the Xiang'an tunnel excavated in weathered slots are examined. Eight cross sections with different geometric parameters are adopted to study the mechanical behavior and shape optimization of the lining structure. The hyperstatic reaction method is used through finite element analysis software ANSYS. The mechanical behavior of the lining structure is evidently affected by the geometric parameters of crosssectional shape. The minimum safety factor of the lining structure elements is set to be the objective function. The efficient tunnel shape to maximize the minimum safety factor is identified. The minimum safety factor increases significantly after optimization. The optimized cross section significantly improves the mechanical characteristics of the lining structure and effectively reduces its deformation. Force analyses of optimization process and program are conducted parametrically so that the method can be applied to the optimization design of other similar structures. The results obtained from this study enhance our understanding of the mechanical behavior of the lining structure for subsea tunnels. These results are also beneficial to the optimal design of lining structures in general.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Z.; Zweibaum, N.; Shao, M.

    The University of California, Berkeley (UCB) is performing thermal hydraulics safety analysis to develop the technical basis for design and licensing of fluoride-salt-cooled, high-temperature reactors (FHRs). FHR designs investigated by UCB use natural circulation for emergency, passive decay heat removal when normal decay heat removal systems fail. The FHR advanced natural circulation analysis (FANCY) code has been developed for assessment of passive decay heat removal capability and safety analysis of these innovative system designs. The FANCY code uses a one-dimensional, semi-implicit scheme to solve for pressure-linked mass, momentum and energy conservation equations. Graph theory is used to automatically generate amore » staggered mesh for complicated pipe network systems. Heat structure models have been implemented for three types of boundary conditions (Dirichlet, Neumann and Robin boundary conditions). Heat structures can be composed of several layers of different materials, and are used for simulation of heat structure temperature distribution and heat transfer rate. Control models are used to simulate sequences of events or trips of safety systems. A proportional-integral controller is also used to automatically make thermal hydraulic systems reach desired steady state conditions. A point kinetics model is used to model reactor kinetics behavior with temperature reactivity feedback. The underlying large sparse linear systems in these models are efficiently solved by using direct and iterative solvers provided by the SuperLU code on high performance machines. Input interfaces are designed to increase the flexibility of simulation for complicated thermal hydraulic systems. In conclusion, this paper mainly focuses on the methodology used to develop the FANCY code, and safety analysis of the Mark 1 pebble-bed FHR under development at UCB is performed.« less

  13. [Safety culture in the context of work intensification--development in Germany over the last 10 years].

    PubMed

    Lauterberg, Jörg

    2009-01-01

    This article tries to review the development of patient safety culture in the German healthcare system over the last decade. Since the use of standardized questionnaires and other instruments to measure safety culture in Germany has only just begun there are no representative and longitudinal data. Therefore a set of indicators and clues is chosen to characterise the safety culture development on the micro-, meso- and macro-level of the healthcare system in four areas. Is patient safety an issue of the healthcare debates and especially of research? Have dedicated structures and processes been implemented to support clinical risk management? What are the objective outcomes of healthcare and treatment in regard to patient safety? In summary, there are a lot of signs that patient safety issues in Germany are gaining more and more importance on all levels of the healthcare system. To date there have been single evidence-based studies only indicating a causal or close temporal relationship between patient safety outcomes and the increasing efforts of hospitals, outpatient and long-term care facilities.

  14. DASHBOARDS & CONTROL CHARTS EXPERIENCES IN IMPROVING SAFETY AT HANFORD WASHINGTON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PREVETTE, S.S.

    2006-02-27

    The aim of this paper is to demonstrate the integration of safety methodology, quality tools, leadership, and teamwork at Hanford and their significant positive impact on safe performance of work. Dashboards, Leading Indicators, Control charts, Pareto Charts, Dr. W. Edward Deming's Red Bead Experiment, and Dr. Deming's System of Profound Knowledge have been the principal tools and theory of an integrated management system. Coupled with involved leadership and teamwork, they have led to significant improvements in worker safety and protection, and environmental restoration at one of the nation's largest nuclear cleanup sites.

  15. Probabilistic safety analysis of earth retaining structures during earthquakes

    NASA Astrophysics Data System (ADS)

    Grivas, D. A.; Souflis, C.

    1982-07-01

    A procedure is presented for determining the probability of failure of Earth retaining structures under static or seismic conditions. Four possible modes of failure (overturning, base sliding, bearing capacity, and overall sliding) are examined and their combined effect is evaluated with the aid of combinatorial analysis. The probability of failure is shown to be a more adequate measure of safety than the customary factor of safety. As Earth retaining structures may fail in four distinct modes, a system analysis can provide a single estimate for the possibility of failure. A Bayesian formulation of the safety retaining walls is found to provide an improved measure for the predicted probability of failure under seismic loading. The presented Bayesian analysis can account for the damage incurred to a retaining wall during an earthquake to provide an improved estimate for its probability of failure during future seismic events.

  16. Development of CO2 laser Doppler instrumentation for detection of clear air turbulence, volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    Harris, C. E.; Jelalian, A. V.

    1979-01-01

    Analyses of the mounting and mount support systems of the clear air turbulence transmitters verify that satisfactory shock and vibration isolation are attained. The mount support structure conforms to flight crash safety requirements with high margins of safety. Restraint cables reinforce the mounts in the critical loaded forward direction limiting maximum forward system deflection to 1 1/4 inches.

  17. Food safety knowledge and hygiene practices among veterinary medicine students at Trakia University, Bulgaria.

    PubMed

    Stratev, Deyan; Odeyemi, Olumide A; Pavlov, Alexander; Kyuchukova, Ralica; Fatehi, Foad; Bamidele, Florence A

    The results from the first survey on food safety knowledge, attitudes and hygiene practices (KAP) among veterinary medicine students in Bulgaria are reported in this study. It was designed and conducted from September to December 2015 using structured questionnaires on food safety knowledge, attitudes and practices. Data were collected from 100 undergraduate veterinary medicine students from the Trakia University, Bulgaria. It was observed that the age and the gender did not affect food safety knowledge, attitudes and practices. There was no significant difference (p>0.05) on food safety knowledge and practices among students based on the years of study. A high level of food safety knowledge was observed among the participants (85.06%), however, the practice of food safety was above average (65.28%) while attitude toward food safety was high (70%). Although there was a significant awareness of food safety knowledge among respondents, there is a need for improvement on food safety practices, interventions on food safety and foodborne diseases. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. SLUDGE TREATMENT PROJECT KOP CONCEPTUAL DESIGN CONTROL DECISION REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CARRO CA

    2010-03-09

    This control decision addresses the Knock-Out Pot (KOP) Disposition KOP Processing System (KPS) conceptual design. The KPS functions to (1) retrieve KOP material from canisters, (2) remove particles less than 600 {micro}m in size and low density materials from the KOP material, (3) load the KOP material into Multi-Canister Overpack (MCO) baskets, and (4) stage the MCO baskets for subsequent loading into MCOs. Hazard and accident analyses of the KPS conceptual design have been performed to incorporate safety into the design process. The hazard analysis is documented in PRC-STP-00098, Knock-Out Pot Disposition Project Conceptual Design Hazard Analysis. The accident analysismore » is documented in PRC-STP-CN-N-00167, Knock-Out Pot Disposition Sub-Project Canister Over Lift Accident Analysis. Based on the results of these analyses, and analyses performed in support of MCO transportation and MCO processing and storage activities at the Cold Vacuum Drying Facility (CVDF) and Canister Storage Building (CSB), control decision meetings were held to determine the controls required to protect onsite and offsite receptors and facility workers. At the conceptual design stage, these controls are primarily defined by their safety functions. Safety significant structures, systems, and components (SSCs) that could provide the identified safety functions have been selected for the conceptual design. It is anticipated that some safety SSCs identified herein will be reclassified based on hazard and accident analyses performed in support of preliminary and detailed design.« less

  19. The effect of governance mechanisms on food safety in the supply chain: Evidence from the Lebanese dairy sector.

    PubMed

    Abebe, Gumataw K; Chalak, Ali; Abiad, Mohamad G

    2017-07-01

    Food safety is a key public health issue worldwide. This study aims to characterise existing governance mechanisms - governance structures (GSs) and food safety management systems (FSMSs) - and analyse the alignment thereof in detecting food safety hazards, based on empirical evidence from Lebanon. Firm-to-firm and public baseline are the dominant FSMSs applied in a large-scale, while chain-wide FSMSs are observed only in a small-scale. Most transactions involving farmers are relational and market-based in contrast to (large-scale) processors, which opt for hierarchical GSs. Large-scale processors use a combination of FSMSs and GSs to minimise food safety hazards albeit potential increase in coordination costs; this is an important feature of modern food supply chains. The econometric analysis reveals contract period, on-farm inspection and experience having significant effects in minimising food safety hazards. However, the potential to implement farm-level FSMS is influenced by formality of the contract, herd size, trading partner choice, and experience. Public baseline FSMSs appear effective in controlling food safety hazards; however, this may not be viable due to the scarcity of public resources. We suggest public policies to focus on long-lasting governance mechanisms by introducing incentive schemes and farm-level FSMSs by providing loans and education to farmers. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  20. Safety culture: analysis of the causal relationships between its key dimensions.

    PubMed

    Fernández-Muñiz, Beatriz; Montes-Peón, José Manuel; Vázquez-Ordás, Camilo José

    2007-01-01

    Several fields are showing increasing interest in safety culture as a means of reducing accidents in the workplace. The literature shows that safety culture is a multidimensional concept. However, considerable confusion surrounds this concept, about which little consensus has been reached. This study proposes a model for a positive safety culture and tests this on a sample of 455 Spanish companies, using the structural equation modeling statistical technique. Results show the important role of managers in the promotion of employees' safe behavior, both directly, through their attitudes and behaviors, and indirectly, by developing a safety management system. This paper identifies the key dimensions of safety culture. In addition, a measurement scale for the safety management system is validated. This will assist organizations in defining areas where they need to progress if they wish to improve their safety. Also, we stress that managers need to be wholly committed to and personally involved in safety activities, thereby conveying the importance the firm attaches to these issues.

  1. A safety management system for an offshore Azerbaijan Caspian Sea Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brasic, M.F.; Barber, S.W.; Hill, A.S.

    1996-11-01

    This presentation will describe the Safety Management System that Azerbaijan International Operating Company (AIOC) has structured to assure that Company activities are performed in a manner that protects the public, the environment, contractors and AIOC employees. The Azerbaijan International Oil Company is a consortium of oil companies that includes Socar, the state oil company of Azerbaijan, a number of major westem oil companies, and companies from Russia, Turkey and Saudi Arabia. The Consortium was formed to develop and produce a group of large oil fields in the Caspian Sea. The Management of AIOC, in starting a new operation in Azerbaijan,more » recognized the need for a formal HSE management system to ensure that their HSE objectives for AIOC activities were met. As a consortium of different partners working together in a unique operation, no individual partner company HSE Management system was appropriate. Accordingly AIOC has utilized the E & P Forum {open_quotes}Guidelines for the Development and Application of Health Safety and Environmental Management Systems{close_quotes} as the framework document for the development of the new AIOC system. Consistent with this guideline, AIOC has developed 19 specific HSE Management System Expectations for implementing its HSE policy and objectives. The objective is to establish and continue to maintain operational integrity in all AIOC activities and site operations. An important feature is the use of structured Safety Cases for the design engineering activity. The basis for the Safety Cases is API RP 75 and 14 J for offshore facilities and API RP 750 for onshore facilities both complimented by {open_quotes}Best International Oilfield Practice{close_quotes}. When viewed overall, this approach provides a fully integrated system of HSE management from design into operation.« less

  2. Demonstration of a Safety Analysis on a Complex System

    NASA Technical Reports Server (NTRS)

    Leveson, Nancy; Alfaro, Liliana; Alvarado, Christine; Brown, Molly; Hunt, Earl B.; Jaffe, Matt; Joslyn, Susan; Pinnell, Denise; Reese, Jon; Samarziya, Jeffrey; hide

    1997-01-01

    For the past 17 years, Professor Leveson and her graduate students have been developing a theoretical foundation for safety in complex systems and building a methodology upon that foundation. The methodology includes special management structures and procedures, system hazard analyses, software hazard analysis, requirements modeling and analysis for completeness and safety, special software design techniques including the design of human-machine interaction, verification, operational feedback, and change analysis. The Safeware methodology is based on system safety techniques that are extended to deal with software and human error. Automation is used to enhance our ability to cope with complex systems. Identification, classification, and evaluation of hazards is done using modeling and analysis. To be effective, the models and analysis tools must consider the hardware, software, and human components in these systems. They also need to include a variety of analysis techniques and orthogonal approaches: There exists no single safety analysis or evaluation technique that can handle all aspects of complex systems. Applying only one or two may make us feel satisfied, but will produce limited results. We report here on a demonstration, performed as part of a contract with NASA Langley Research Center, of the Safeware methodology on the Center-TRACON Automation System (CTAS) portion of the air traffic control (ATC) system and procedures currently employed at the Dallas/Fort Worth (DFW) TRACON (Terminal Radar Approach CONtrol). CTAS is an automated system to assist controllers in handling arrival traffic in the DFW area. Safety is a system property, not a component property, so our safety analysis considers the entire system and not simply the automated components. Because safety analysis of a complex system is an interdisciplinary effort, our team included system engineers, software engineers, human factors experts, and cognitive psychologists.

  3. Shock spectra applications to a class of multiple degree-of-freedom structures system

    NASA Technical Reports Server (NTRS)

    Hwang, Shoi Y.

    1988-01-01

    The demand on safety performance of launching structure and equipment system from impulsive excitations necessitates a study which predicts the maximum response of the system as well as the maximum stresses in the system. A method to extract higher modes and frequencies for a class of multiple degree-of-freedom (MDOF) Structure system is proposed. And, along with the shock spectra derived from a linear oscillator model, a procedure to obtain upper bound solutions for maximum displacement and maximum stresses in the MDOF system is presented.

  4. Retrieval medicine: a review and guide for UK practitioners. Part 2: safety in patient retrieval systems

    PubMed Central

    Hearns, S; Shirley, P J

    2006-01-01

    Retrieval and transfer of critically ill and injured patients is a high risk activity. Risk can be minimised with robust safety and clinical governance systems in place. This article describes the various governance systems that can be employed to optimise safety and efficiency in retrieval services. These include operating procedure development, equipment management, communications procedures, crew resource management, significant event analysis, audit and training. PMID:17130608

  5. Evaluation of the Quality of Occupational Health and Safety Management Systems Based on Key Performance Indicators in Certified Organizations.

    PubMed

    Mohammadfam, Iraj; Kamalinia, Mojtaba; Momeni, Mansour; Golmohammadi, Rostam; Hamidi, Yadollah; Soltanian, Alireza

    2017-06-01

    Occupational Health and Safety Management Systems are becoming more widespread in organizations. Consequently, their effectiveness has become a core topic for researchers. This paper evaluates the performance of the Occupational Health and Safety Assessment Series 18001 specification in certified companies in Iran. The evaluation is based on a comparison of specific criteria and indictors related to occupational health and safety management practices in three certified and three noncertified companies. Findings indicate that the performance of certified companies with respect to occupational health and safety management practices is significantly better than that of noncertified companies. Occupational Health and Safety Assessment Series 18001-certified companies have a better level of occupational health and safety; this supports the argument that Occupational Health and Safety Management Systems play an important strategic role in health and safety in the workplace.

  6. The complexity of patient safety reporting systems in UK dentistry.

    PubMed

    Renton, T; Master, S

    2016-10-21

    Since the 'Francis Report', UK regulation focusing on patient safety has significantly changed. Healthcare workers are increasingly involved in NHS England patient safety initiatives aimed at improving reporting and learning from patient safety incidents (PSIs). Unfortunately, dentistry remains 'isolated' from these main events and continues to have a poor record for reporting and learning from PSIs and other events, thus limiting improvement of patient safety in dentistry. The reasons for this situation are complex.This paper provides a review of the complexities of the existing systems and procedures in relation to patient safety in dentistry. It highlights the conflicting advice which is available and which further complicates an overly burdensome process. Recommendations are made to address these problems with systems and procedures supporting patient safety development in dentistry.

  7. Cold Vacuum Drying facility civil structural system design description (SYS 06)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PITKOFF, C.C.

    This document describes the Cold Vacuum Drying (CVD) Facility civil - structural system. This system consists of the facility structure, including the administrative and process areas. The system's primary purpose is to provide for a facility to house the CVD process and personnel and to provide a tertiary level of containment. The document provides a description of the facility and demonstrates how the design meets the various requirements imposed by the safety analysis report and the design requirements document.

  8. Detecting of foreign object debris on airfield pavement using convolution neural network

    NASA Astrophysics Data System (ADS)

    Cao, Xiaoguang; Gu, Yufeng; Bai, Xiangzhi

    2017-11-01

    It is of great practical significance to detect foreign object debris (FOD) timely and accurately on the airfield pavement, because the FOD is a fatal threaten for runway safety in airport. In this paper, a new FOD detection framework based on Single Shot MultiBox Detector (SSD) is proposed. Two strategies include making the detection network lighter and using dilated convolution, which are proposed to better solve the FOD detection problem. The advantages mainly include: (i) the network structure becomes lighter to speed up detection task and enhance detection accuracy; (ii) dilated convolution is applied in network structure to handle smaller FOD. Thus, we get a faster and more accurate detection system.

  9. DARPA/USAF/USN J-UCAS X-45A System Demonstration Program: A Review of Flight Test Site Processes and Personnel

    NASA Technical Reports Server (NTRS)

    Cosentino, Gary B.

    2008-01-01

    The Joint Unmanned Combat Air Systems (J-UCAS) program is a collaborative effort between the Defense Advanced Research Project Agency (DARPA), the US Air Force (USAF) and the US Navy (USN). Together they have reviewed X-45A flight test site processes and personnel as part of a system demonstration program for the UCAV-ATD Flight Test Program. The goal was to provide a disciplined controlled process for system integration and testing and demonstration flight tests. NASA's Dryden Flight Research Center (DFRC) acted as the project manager during this effort and was tasked with the responsibilities of range and ground safety, the provision of flight test support and infrastructure and the monitoring of technical and engineering tasks. DFRC also contributed their engineering knowledge through their contributions in the areas of autonomous ground taxi control development, structural dynamics testing and analysis and the provision of other flight test support including telemetry data, tracking radars, and communications and control support equipment. The Air Force Flight Test Center acted at the Deputy Project Manager in this effort and was responsible for the provision of system safety support and airfield management and air traffic control services, among other supporting roles. The T-33 served as a J-UCAS surrogate aircraft and demonstrated flight characteristics similar to that of the the X-45A. The surrogate served as a significant risk reduction resource providing mission planning verification, range safety mission assessment and team training, among other contributions.

  10. Solid Rocket Booster (SRB) Flight System Integration at Its Best

    NASA Technical Reports Server (NTRS)

    Wood, T. David; Kanner, Howard S.; Freeland, Donna M.; Olson, Derek T.

    2011-01-01

    The Solid Rocket Booster (SRB) element integrates all the subsystems needed for ascent flight, entry, and recovery of the combined Booster and Motor system. These include the structures, avionics, thrust vector control, pyrotechnic, range safety, deceleration, thermal protection, and retrieval systems. This represents the only human-rated, recoverable and refurbishable solid rocket ever developed and flown. Challenges included subsystem integration, thermal environments and severe loads (including water impact), sometimes resulting in hardware attrition. Several of the subsystems evolved during the program through design changes. These included the thermal protection system, range safety system, parachute/recovery system, and others. Because the system was recovered, the SRB was ideal for data and imagery acquisition, which proved essential for understanding loads, environments and system response. The three main parachutes that lower the SRBs to the ocean are the largest parachutes ever designed, and the SRBs are the largest structures ever to be lowered by parachutes. SRB recovery from the ocean was a unique process and represented a significant operational challenge; requiring personnel, facilities, transportation, and ground support equipment. The SRB element achieved reliability via extensive system testing and checkout, redundancy management, and a thorough postflight assessment process. However, the in-flight data and postflight assessment process revealed the hardware was affected much more strongly than originally anticipated. Assembly and integration of the booster subsystems required acceptance testing of reused hardware components for each build. Extensive testing was done to assure hardware functionality at each level of stage integration. Because the booster element is recoverable, subsystems were available for inspection and testing postflight, unique to the Shuttle launch vehicle. Problems were noted and corrective actions were implemented as needed. The postflight assessment process was quite detailed and a significant portion of flight operations. The SRBs provided fully redundant critical systems including thrust vector control, mission critical pyrotechnics, avionics, and parachute recovery system. The design intent was to lift off with full redundancy. On occasion, the redundancy management scheme was needed during flight operations. This paper describes some of the design challenges and technical issues, how the design evolved with time, and key areas where hardware reusability contributed to improved system level understanding.

  11. Structural equation modeling of pesticide poisoning, depression, safety, and injury.

    PubMed

    Beseler, Cheryl L; Stallones, Lorann

    2013-01-01

    The role of pesticide poisoning in risk of injuries may operate through a link between pesticide-induced depressive symptoms and reduced engagement in safety behaviors. The authors conducted structural equation modeling of cross-sectional data to examine the pattern of associations between pesticide poisoning, depressive symptoms, safety knowledge, safety behaviors, and injury. Interviews of 1637 Colorado farm operators and their spouses from 964 farms were conducted during 1993-1997. Pesticide poisoning was assessed based on a history of ever having been poisoned. The Center for Epidemiologic Studies-Depression scale was used to assess depressive symptoms. Safety knowledge and safety behaviors were assessed using ten items for each latent variable. Outcomes were safety behaviors and injuries. A total of 154 injuries occurred among 1604 individuals with complete data. Pesticide poisoning, financial problems, health, and age predicted negative affect/somatic depressive symptoms with similar effect sizes; sex did not. Depression was more strongly associated with safety behavior than was safety knowledge. Two safety behaviors were significantly associated with an increased risk of injury. This study emphasizes the importance of financial problems and health on depression, and provides further evidence for the link between neurological effects of past pesticide poisoning on risk-taking behaviors and injury.

  12. Fe model predicting the increase in seismic resistance induced by the progressive FRP strengthening on already damaged masonry arches subjected to settlement

    NASA Astrophysics Data System (ADS)

    Stockdale, G.; Milani, G.

    2017-11-01

    In seismic regions, the retrofitting of masonry structures subjected to differential foundation settlements is of the upmost importance. This practice however poses significant challenges, most notably in the consideration of historical monuments where the integrity of the original structure must be weighted alongside public safety. Fiber reinforced polymers (FRPs), when appropriately applied, provide the potential to balance this duality of heritage preservation and modern safety. Using an advanced FE point of view, this work studies the seismic response of a progressive reinforcement strategy aimed at strengthening and controlling the failure mechanism for masonry arches that exist in a damaged state induced through a differential abutment settlement. A heterogeneous FE approach of a semi-circular block and mortar arch on continuously spreading supports is examined. In this model hinge formation is obtained by assigning a damage plasticity behavior to the mortar joints. Strategically placed FRPs, designed through the utilization of the Italian CNR recommendations for externally bonded FRP systems, are applied through the Abaqus birth and death approach and introduced to the spreading support model after settlement. Finally, the structural behavior of the reinforced and unreinforced models are examined for a seismic response.

  13. Safety perception referents of permanent and temporary employees: safety climate boundaries in the industrial workplace.

    PubMed

    Luria, Gil; Yagil, Dana

    2010-09-01

    To explore the significant referents of safety perceptions among permanent and temporary employees in order to identify the boundaries of safety climate in a heterogeneous workforce. Collection of data from semi-structured interviews with employees in manufacturing organizations, using a combination of qualitative and quantitative methods to identify basic safety perceptions. Independent raters used content analysis to examine the data. Analysis of the data revealed differences between safety themes at organization, group and individual levels. Themes relating to the individual were more prevalent among temporary employees, while those relating to the group and the organization prevailed among permanent employees. Permanent employees view organizational and group levels as significant referents of safety perceptions, while temporary employees focus on the individual level. The results challenge the current view of safety climate as a uniform concept for all employees and prescribe boundary conditions for safety climate. It is suggested that organizations should implement "tailor-made" safety-climate practices according to the referents of employee sub-groups. 2009 Elsevier Ltd. All rights reserved.

  14. The President’s Budget: Overview of Structure and Timing of Submission to Congress

    DTIC Science & Technology

    2013-07-25

    Nuclear Facilities Safety Board, Securities and Exchange Commission, and National Transportation Safety Board) are required by statute to submit...Research Service 4 Governors of the Federal Reserve System, and Federal National Mortgage Association).22 Additionally, certain agencies (e.g., Defense

  15. 75 FR 27428 - Safety Standards for Steel Erection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-17

    ... in National Highway System construction projects to comply with a number of standards, policies, and...://www.fhwa.dot.gov/bridge/lrfd/index.htm .) For projects involving bridge construction (e.g., temporary... of these requirements will enhance the safety of employees operating on or near structural steel...

  16. Exposure to fall hazards and safety climate in the aircraft maintenance industry.

    PubMed

    Neitzel, Richard L; Seixas, Noah S; Harris, Michael J; Camp, Janice

    2008-01-01

    Falls represent a significant occupational hazard, particularly in industries with dynamic work environments. This paper describes rates of noncompliance with fall hazard prevention requirements, perceived safety climate and worker knowledge and beliefs, and the association between fall exposure and safety climate measures in commercial aircraft maintenance activities. Walkthrough observations were conducted on aircraft mechanics at two participating facilities (Sites A and B) to ascertain the degree of noncompliance. Mechanics at each site completed questionnaires concerning fall hazard knowledge, personal safety beliefs, and safety climate. Questionnaire results were summarized into safety climate and belief scores by workgroup and site. Noncompliance rates observed during walkthroughs were compared to the climate-belief scores, and were expected to be inversely associated. Important differences were seen in fall safety performance between the sites. The study provided a characterization of aircraft maintenance fall hazards, and also demonstrated the effectiveness of an objective hazard assessment methodology. Noncompliance varied by height, equipment used, location of work on the aircraft, shift, and by safety system. Although the expected relationship between safety climate and noncompliance was seen for site-average climate scores, workgroups with higher safety climate scores had greater observed noncompliance within Site A. Overall, use of engineered safety systems had a significant impact on working safely, while safety beliefs and climate also contributed, though inconsistently. The results of this study indicate that safety systems are very important in reducing noncompliance with fall protection requirements in aircraft maintenance facilities. Site-level fall safety compliance was found to be related to safety climate, although an unexpected relationship between compliance and safety climate was seen at the workgroup level within site. Finally, observed fall safety compliance was found to differ from self-reported compliance.

  17. Application of a support vector machine algorithm to the safety precaution technique of medium-low pressure gas regulators

    NASA Astrophysics Data System (ADS)

    Hao, Xuejun; An, Xaioran; Wu, Bo; He, Shaoping

    2018-02-01

    In the gas pipeline system, safe operation of a gas regulator determines the stability of the fuel gas supply, and the medium-low pressure gas regulator of the safety precaution system is not perfect at the present stage in the Beijing Gas Group; therefore, safety precaution technique optimization has important social and economic significance. In this paper, according to the running status of the medium-low pressure gas regulator in the SCADA system, a new method for gas regulator safety precaution based on the support vector machine (SVM) is presented. This method takes the gas regulator outlet pressure data as input variables of the SVM model, the fault categories and degree as output variables, which will effectively enhance the precaution accuracy as well as save significant manpower and material resources.

  18. Magnetically coupled resonance wireless charging technology principles and transfer mechanisms

    NASA Astrophysics Data System (ADS)

    Zhou, Jiehua; Wan, Jian; Ma, Yinping

    2017-05-01

    With the tenure of Electric-Vehicle rising around the world, the charging methods have been paid more and more attention, the current charging mode mainly has the charging posts and battery swapping station. The construction of the charging pile or battery swapping station not only require lots of manpower, material costs but the bare conductor is also easy to generate electric spark hidden safety problems, still occupies large space. Compared with the wired charging, wireless charging mode is flexible, unlimited space and location factors and charging for vehicle safety and quickly. It complements the traditional charging methods in adaptability and the independent charge deficiencies. So the researching the wireless charging system have an important practical significance and application value. In this paper, wireless charging system designed is divided into three parts: the primary side, secondary side and resonant coupling. The main function of the primary side is to generate high-frequency alternating current, so selecting CLASS-E amplifier inverter structure through the research on full bridge, half-bridge and power amplification circuit. Addition, the wireless charging system is susceptible to outside interference, frequency drift phenomenon. Combined with the wireless energy transmission characteristics, resonant parts adopt resonant coupling energy transmission scheme and the Series-Series coupling compensation structure. For the electric vehicle charging power and voltage requirements, the main circuit is a full bridge inverter and Boost circuit used as the secondary side.

  19. Long-Term Structural Health Monitoring System for a High-Speed Railway Bridge Structure.

    PubMed

    Ding, You-Liang; Wang, Gao-Xin; Sun, Peng; Wu, Lai-Yi; Yue, Qing

    2015-01-01

    Nanjing Dashengguan Bridge, which serves as the shared corridor crossing Yangtze River for both Beijing-Shanghai high-speed railway and Shanghai-Wuhan-Chengdu railway, is the first 6-track high-speed railway bridge with the longest span throughout the world. In order to ensure safety and detect the performance deterioration during the long-time service of the bridge, a Structural Health Monitoring (SHM) system has been implemented on this bridge by the application of modern techniques in sensing, testing, computing, and network communication. The SHM system includes various sensors as well as corresponding data acquisition and transmission equipment for automatic data collection. Furthermore, an evaluation system of structural safety has been developed for the real-time condition assessment of this bridge. The mathematical correlation models describing the overall structural behavior of the bridge can be obtained with the support of the health monitoring system, which includes cross-correlation models for accelerations, correlation models between temperature and static strains of steel truss arch, and correlation models between temperature and longitudinal displacements of piers. Some evaluation results using the mean value control chart based on mathematical correlation models are presented in this paper to show the effectiveness of this SHM system in detecting the bridge's abnormal behaviors under the varying environmental conditions such as high-speed trains and environmental temperature.

  20. Clinical Relation Extraction Toward Drug Safety Surveillance Using Electronic Health Record Narratives: Classical Learning Versus Deep Learning.

    PubMed

    Munkhdalai, Tsendsuren; Liu, Feifan; Yu, Hong

    2018-04-25

    Medication and adverse drug event (ADE) information extracted from electronic health record (EHR) notes can be a rich resource for drug safety surveillance. Existing observational studies have mainly relied on structured EHR data to obtain ADE information; however, ADEs are often buried in the EHR narratives and not recorded in structured data. To unlock ADE-related information from EHR narratives, there is a need to extract relevant entities and identify relations among them. In this study, we focus on relation identification. This study aimed to evaluate natural language processing and machine learning approaches using the expert-annotated medical entities and relations in the context of drug safety surveillance, and investigate how different learning approaches perform under different configurations. We have manually annotated 791 EHR notes with 9 named entities (eg, medication, indication, severity, and ADEs) and 7 different types of relations (eg, medication-dosage, medication-ADE, and severity-ADE). Then, we explored 3 supervised machine learning systems for relation identification: (1) a support vector machines (SVM) system, (2) an end-to-end deep neural network system, and (3) a supervised descriptive rule induction baseline system. For the neural network system, we exploited the state-of-the-art recurrent neural network (RNN) and attention models. We report the performance by macro-averaged precision, recall, and F1-score across the relation types. Our results show that the SVM model achieved the best average F1-score of 89.1% on test data, outperforming the long short-term memory (LSTM) model with attention (F1-score of 65.72%) as well as the rule induction baseline system (F1-score of 7.47%) by a large margin. The bidirectional LSTM model with attention achieved the best performance among different RNN models. With the inclusion of additional features in the LSTM model, its performance can be boosted to an average F1-score of 77.35%. It shows that classical learning models (SVM) remains advantageous over deep learning models (RNN variants) for clinical relation identification, especially for long-distance intersentential relations. However, RNNs demonstrate a great potential of significant improvement if more training data become available. Our work is an important step toward mining EHRs to improve the efficacy of drug safety surveillance. Most importantly, the annotated data used in this study will be made publicly available, which will further promote drug safety research in the community. ©Tsendsuren Munkhdalai, Feifan Liu, Hong Yu. Originally published in JMIR Public Health and Surveillance (http://publichealth.jmir.org), 25.04.2018.

  1. Clinical Relation Extraction Toward Drug Safety Surveillance Using Electronic Health Record Narratives: Classical Learning Versus Deep Learning

    PubMed Central

    Munkhdalai, Tsendsuren; Liu, Feifan

    2018-01-01

    Background Medication and adverse drug event (ADE) information extracted from electronic health record (EHR) notes can be a rich resource for drug safety surveillance. Existing observational studies have mainly relied on structured EHR data to obtain ADE information; however, ADEs are often buried in the EHR narratives and not recorded in structured data. Objective To unlock ADE-related information from EHR narratives, there is a need to extract relevant entities and identify relations among them. In this study, we focus on relation identification. This study aimed to evaluate natural language processing and machine learning approaches using the expert-annotated medical entities and relations in the context of drug safety surveillance, and investigate how different learning approaches perform under different configurations. Methods We have manually annotated 791 EHR notes with 9 named entities (eg, medication, indication, severity, and ADEs) and 7 different types of relations (eg, medication-dosage, medication-ADE, and severity-ADE). Then, we explored 3 supervised machine learning systems for relation identification: (1) a support vector machines (SVM) system, (2) an end-to-end deep neural network system, and (3) a supervised descriptive rule induction baseline system. For the neural network system, we exploited the state-of-the-art recurrent neural network (RNN) and attention models. We report the performance by macro-averaged precision, recall, and F1-score across the relation types. Results Our results show that the SVM model achieved the best average F1-score of 89.1% on test data, outperforming the long short-term memory (LSTM) model with attention (F1-score of 65.72%) as well as the rule induction baseline system (F1-score of 7.47%) by a large margin. The bidirectional LSTM model with attention achieved the best performance among different RNN models. With the inclusion of additional features in the LSTM model, its performance can be boosted to an average F1-score of 77.35%. Conclusions It shows that classical learning models (SVM) remains advantageous over deep learning models (RNN variants) for clinical relation identification, especially for long-distance intersentential relations. However, RNNs demonstrate a great potential of significant improvement if more training data become available. Our work is an important step toward mining EHRs to improve the efficacy of drug safety surveillance. Most importantly, the annotated data used in this study will be made publicly available, which will further promote drug safety research in the community. PMID:29695376

  2. Developing a Web-Based Advisory Expert System for Implementing Traffic Calming Strategies

    PubMed Central

    Falamarzi, Amir; Borhan, Muhamad Nazri; Rahmat, Riza Atiq O. K.

    2014-01-01

    Lack of traffic safety has become a serious issue in residential areas. In this paper, a web-based advisory expert system for the purpose of applying traffic calming strategies on residential streets is described because there currently lacks a structured framework for the implementation of such strategies. Developing an expert system can assist and advise engineers for dealing with traffic safety problems. This expert system is developed to fill the gap between the traffic safety experts and people who seek to employ traffic calming strategies including decision makers, engineers, and students. In order to build the expert system, examining sources related to traffic calming studies as well as interviewing with domain experts have been carried out. The system includes above 150 rules and 200 images for different types of measures. The system has three main functions including classifying traffic calming measures, prioritizing traffic calming strategies, and presenting solutions for different traffic safety problems. Verifying, validating processes, and comparing the system with similar works have shown that the system is consistent and acceptable for practical uses. Finally, some recommendations for improving the system are presented. PMID:25276861

  3. Developing a web-based advisory expert system for implementing traffic calming strategies.

    PubMed

    Falamarzi, Amir; Borhan, Muhamad Nazri; Rahmat, Riza Atiq O K

    2014-01-01

    Lack of traffic safety has become a serious issue in residential areas. In this paper, a web-based advisory expert system for the purpose of applying traffic calming strategies on residential streets is described because there currently lacks a structured framework for the implementation of such strategies. Developing an expert system can assist and advise engineers for dealing with traffic safety problems. This expert system is developed to fill the gap between the traffic safety experts and people who seek to employ traffic calming strategies including decision makers, engineers, and students. In order to build the expert system, examining sources related to traffic calming studies as well as interviewing with domain experts have been carried out. The system includes above 150 rules and 200 images for different types of measures. The system has three main functions including classifying traffic calming measures, prioritizing traffic calming strategies, and presenting solutions for different traffic safety problems. Verifying, validating processes, and comparing the system with similar works have shown that the system is consistent and acceptable for practical uses. Finally, some recommendations for improving the system are presented.

  4. A Review of Safety and Design Requirements of the Artificial Pancreas.

    PubMed

    Blauw, Helga; Keith-Hynes, Patrick; Koops, Robin; DeVries, J Hans

    2016-11-01

    As clinical studies with artificial pancreas systems for automated blood glucose control in patients with type 1 diabetes move to unsupervised real-life settings, product development will be a focus of companies over the coming years. Directions or requirements regarding safety in the design of an artificial pancreas are, however, lacking. This review aims to provide an overview and discussion of safety and design requirements of the artificial pancreas. We performed a structured literature search based on three search components-type 1 diabetes, artificial pancreas, and safety or design-and extended the discussion with our own experiences in developing artificial pancreas systems. The main hazards of the artificial pancreas are over- and under-dosing of insulin and, in case of a bi-hormonal system, of glucagon or other hormones. For each component of an artificial pancreas and for the complete system we identified safety issues related to these hazards and proposed control measures. Prerequisites that enable the control algorithms to provide safe closed-loop control are accurate and reliable input of glucose values, assured hormone delivery and an efficient user interface. In addition, the system configuration has important implications for safety, as close cooperation and data exchange between the different components is essential.

  5. 76 FR 5651 - Practice and Procedure; Amendment of CORES Registration System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-01

    ..., including the Antenna Structure Registration System (``ASR'') (managed by the Commission's Wireless... Wireless Telecommunications Bureau and the Public Safety and Homeland Security Bureau). Among other things...

  6. NASA Requirements for Ground-Based Pressure Vessels and Pressurized Systems (PVS). Revision C

    NASA Technical Reports Server (NTRS)

    Greulich, Owen Rudolf

    2017-01-01

    The purpose of this document is to ensure the structural integrity of PVS through implementation of a minimum set of requirements for ground-based PVS in accordance with this document, NASA Policy Directive (NPD) 8710.5, NASA Safety Policy for Pressure Vessels and Pressurized Systems, NASA Procedural Requirements (NPR) 8715.3, NASA General Safety Program Requirements, applicable Federal Regulations, and national consensus codes and standards (NCS).

  7. Solid Rocket Booster (SRB) - Evolution and Lessons Learned During the Shuttle Program

    NASA Technical Reports Server (NTRS)

    Kanner, Howard S.; Freeland, Donna M.; Olson, Derek T.; Wood, T. David; Vaccaro, Mark V.

    2011-01-01

    The Solid Rocket Booster (SRB) element integrates all the subsystems needed for ascent flight, entry, and recovery of the combined Booster and Motor system. These include the structures, avionics, thrust vector control, pyrotechnic, range safety, deceleration, thermal protection, and retrieval systems. This represents the only human-rated, recoverable and refurbishable solid rocket ever developed and flown. Challenges included subsystem integration, thermal environments and severe loads (including water impact), sometimes resulting in hardware attrition. Several of the subsystems evolved during the program through design changes. These included the thermal protection system, range safety system, parachute/recovery system, and others. Obsolescence issues occasionally required component recertification. Because the system was recovered, the SRB was ideal for data and imagery acquisition, which proved essential for understanding loads and system response. The three main parachutes that lower the SRBs to the ocean are the largest parachutes ever designed, and the SRBs are the largest structures ever to be lowered by parachutes. SRB recovery from the ocean was a unique process and represented a significant operational challenge; requiring personnel, facilities, transportation, and ground support equipment. The SRB element achieved reliability via extensive system testing and checkout, redundancy management, and a thorough postflight assessment process. Assembly and integration of the booster subsystems was a unique process and acceptance testing of reused hardware components was required for each build. Extensive testing was done to assure hardware functionality at each level of stage integration. Because the booster element is recoverable, subsystems were available for inspection and testing postflight, unique to the Shuttle launch vehicle. Problems were noted and corrective actions were implemented as needed. The postflight assessment process was quite detailed and a significant portion of flight operations. The SRBs provided fully redundant critical systems including thrust vector control, mission critical pyrotechnics, avionics, and parachute recovery system. The design intent was to lift off with full redundancy. On occasion, the redundancy management scheme was needed during flight operations. This paper describes some of the design challenges, how the design evolved with time, and key areas where hardware reusability contributed to improved system level understanding.

  8. The design of the intelligent monitoring system for dam safety

    NASA Astrophysics Data System (ADS)

    Yuan, Chun-qiao; Jiang, Chen-guang; Wang, Guo-hui

    2008-12-01

    Being a vital manmade water-control structure, a dam plays a very important role in the living and production of human being. To make a dam run safely, the best design and the superior construction quality are paramount; moreover, with working periods increasing, various dynamic, alternative and bad loads generate little by little various distortions on the dam structure inevitably, which shall lead to potential safety problems or further a disaster (dam burst). There are many signs before the occurrence of a dam accident, so the timely and effective surveying on the distortion of a dam is important. On the basis of the cause supra, two intelligent (automatic) monitoring systems about the dam's safety based on the RTK-GPS technology and the measuring robot has been developed. The basic principle, monitoring method and monitoring process of these two intelligent (automatic) monitoring systems are introduced. It presents examples of monitor and puts forward the basic rule of dam warning based on data of actual monitor.

  9. Implementation of safety management systems in Hong Kong construction industry - A safety practitioner's perspective.

    PubMed

    Yiu, Nicole S N; Sze, N N; Chan, Daniel W M

    2018-02-01

    In the 1980s, the safety management system (SMS) was introduced in the construction industry to mitigate against workplaces hazards, reduce the risk of injuries, and minimize property damage. Also, the Factories and Industrial Undertakings (Safety Management) Regulation was introduced on 24 November 1999 in Hong Kong to empower the mandatory implementation of a SMS in certain industries including building construction. Therefore, it is essential to evaluate the effectiveness of the SMS in improving construction safety and identify the factors that influence its implementation in Hong Kong. A review of the current state-of-the-practice helped to establish the critical success factors (CSFs), benefits, and difficulties of implementing the SMS in the construction industry, while structured interviews were used to establish the key factors of the SMS implementation. Results of the state-of-the-practice review and structured interviews indicated that visible senior commitment, in terms of manpower and cost allocation, and competency of safety manager as key drivers for the SMS implementation. More so, reduced accident rates and accident costs, improved organization framework, and increased safety audit ratings were identified as core benefits of implementing the SMS. Meanwhile, factors such as insufficient resources, tight working schedule, and high labor turnover rate were the key challenges to the effective SMS implementation in Hong Kong. The findings of the study were consistent and indicative of the future development of safety management practice and the sustainable safety improvement of Hong Kong construction industry in the long run. Copyright © 2018 National Safety Council and Elsevier Ltd. All rights reserved.

  10. Parametric study of track response

    DOT National Transportation Integrated Search

    1977-12-01

    This report was prepared as part of the Improved Track Structures Research Program : managed by the Transportation Systems Center. This program is sponsored by the : Office of Rail Safety Research, Improved Track Structures Research Division, of : th...

  11. 76 FR 8316 - Special Conditions: Gulfstream Model GVI Airplane; Interaction of Systems and Structures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-14

    ... considered in isolation but should be included in the overall safety evaluation of the airplane. These... forced structural vibrations (oscillatory failures) must not produce loads that could result in...

  12. Measurable improvement in patient safety culture: A departmental experience with incident learning.

    PubMed

    Kusano, Aaron S; Nyflot, Matthew J; Zeng, Jing; Sponseller, Patricia A; Ermoian, Ralph; Jordan, Loucille; Carlson, Joshua; Novak, Avrey; Kane, Gabrielle; Ford, Eric C

    2015-01-01

    Rigorous use of departmental incident learning is integral to improving patient safety and quality of care. The goal of this study was to quantify the impact of a high-volume, departmental incident learning system on patient safety culture. A prospective, voluntary, electronic incident learning system was implemented in February 2012 with the intent of tracking near-miss/no-harm incidents. All incident reports were reviewed weekly by a multiprofessional team with regular department-wide feedback. Patient safety culture was measured at baseline with validated patient safety culture survey questions. A repeat survey was conducted after 1 and 2 years of departmental incident learning. Proportional changes were compared by χ(2) or Fisher exact test, where appropriate. Between 2012 and 2014, a total of 1897 error/near-miss incidents were reported, representing an average of 1 near-miss report per patient treated. Reports were filed by a cross section of staff, with the majority of incidents reported by therapists, dosimetrists, and physicists. Survey response rates at baseline and 1 and 2 years were 78%, 80%, and 80%, respectively. Statistically significant and sustained improvements were noted in several safety metrics, including belief that the department was openly discussing ways to improve safety, the sense that reports were being used for safety improvement, and the sense that changes were being evaluated for effectiveness. None of the surveyed dimensions of patient safety culture worsened. Fewer punitive concerns were noted, with statistically significant decreases in the worry of embarrassment in front of colleagues and fear of getting colleagues in trouble. A comprehensive incident learning system can identify many areas for improvement and is associated with significant and sustained improvements in patient safety culture. These data provide valuable guidance as incident learning systems become more widely used in radiation oncology. Copyright © 2015 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  13. An autonomous structural health monitoring system for Waiau interchange.

    DOT National Transportation Integrated Search

    2013-03-01

    Bridge infrastructure is a critical element of the transportation system which makes maintaining its safety and : performance vital to a healthy society. However, the civil infrastructure systems in the United States are decaying : at an accelerated ...

  14. Integrated deterministic and probabilistic safety analysis for safety assessment of nuclear power plants

    DOE PAGES

    Di Maio, Francesco; Zio, Enrico; Smith, Curtis; ...

    2015-07-06

    The present special issue contains an overview of the research in the field of Integrated Deterministic and Probabilistic Safety Assessment (IDPSA) of Nuclear Power Plants (NPPs). Traditionally, safety regulation for NPPs design and operation has been based on Deterministic Safety Assessment (DSA) methods to verify criteria that assure plant safety in a number of postulated Design Basis Accident (DBA) scenarios. Referring to such criteria, it is also possible to identify those plant Structures, Systems, and Components (SSCs) and activities that are most important for safety within those postulated scenarios. Then, the design, operation, and maintenance of these “safety-related” SSCs andmore » activities are controlled through regulatory requirements and supported by Probabilistic Safety Assessment (PSA).« less

  15. [Principle directions for the creation and organization of the system of sanitary-epidemiological safety during the preparations for the XXII Olympic Winter Games and XI Paralympic Winter Games 2014 in Sochi].

    PubMed

    Onishchenko, G G; Bragina, I V; Ezhlova, E B; Demina, V P; Gorskiĭ, A A; Gus'kov, A S; Aksenova, O I; Ivanov, G E; Klindukhov, V P; Nikolaevich, P N; Grechanaia, T B; Kulichenko, A N; Maletskaia, O V; Manin, E A; Parkhomenko, V V; Kulichenko, O A

    2015-01-01

    The paper generalizes the experience of formation of protection system against biological threats and ensuring sanitary and epidemiological welfare during preparation for the XXII Olympic Winter Games and XI Paralympic Winter Games of 2014 in Sochi. The basic steps for creating this system, since 2007, participation and role of Rospotrebnadzor in this process are shown. The paper deals with such questions as the governmental and administrative structures with federal agencies interaction, development of a regulatory framework governing the safety system of the Olympic Games, development of algorithms of information exchange and management decisions, biological safety in developing infrastructure in Sochi.

  16. Quality management and perceptions of teamwork and safety climate in European hospitals.

    PubMed

    Kristensen, Solvejg; Hammer, Antje; Bartels, Paul; Suñol, Rosa; Groene, Oliver; Thompson, Caroline A; Arah, Onyebuchi A; Kutaj-Wasikowska, Halina; Michel, Philippe; Wagner, Cordula

    2015-12-01

    This study aimed to investigate the associations of quality management systems with teamwork and safety climate, and to describe and compare differences in perceptions of teamwork climate and safety climate among clinical leaders and frontline clinicians. We used a multi-method, cross-sectional approach to collect survey data of quality management systems and perceived teamwork and safety climate. Our data analyses included descriptive and multilevel regression methods. Data on implementation of quality management system from seven European countries were evaluated including patient safety culture surveys from 3622 clinical leaders and 4903 frontline clinicians. Perceived teamwork and safety climate. Teamwork climate was reported as positive by 67% of clinical leaders and 43% of frontline clinicians. Safety climate was perceived as positive by 54% of clinical leaders and 32% of frontline clinicians. We found positive associations between implementation of quality management systems and teamwork and safety climate. Our findings, which should be placed in a broader clinical quality improvement context, point to the importance of quality management systems as a supportive structural feature for promoting teamwork and safety climate. To gain a deeper understanding of this association, further qualitative and quantitative studies using longitudinally collected data are recommended. The study also confirms that more clinical leaders than frontline clinicians have a positive perception of teamwork and safety climate. Such differences should be accounted for in daily clinical practice and when tailoring initiatives to improve teamwork and safety climate. © The Author 2015. Published by Oxford University Press in association with the International Society for Quality in Health Care; all rights reserved.

  17. Certification of highly complex safety-related systems.

    PubMed

    Reinert, D; Schaefer, M

    1999-01-01

    The BIA has now 15 years of experience with the certification of complex electronic systems for safety-related applications in the machinery sector. Using the example of machining centres this presentation will show the systematic procedure for verifying and validating control systems using Application Specific Integrated Circuits (ASICs) and microcomputers for safety functions. One section will describe the control structure of machining centres with control systems using "integrated safety." A diverse redundant architecture combined with crossmonitoring and forced dynamization is explained. In the main section the steps of the systematic certification procedure are explained showing some results of the certification of drilling machines. Specification reviews, design reviews with test case specification, statistical analysis, and walk-throughs are the analytical measures in the testing process. Systematic tests based on the test case specification, Electro Magnetic Interference (EMI), and environmental testing, and site acceptance tests on the machines are the testing measures for validation. A complex software driven system is always undergoing modification. Most of the changes are not safety-relevant but this has to be proven. A systematic procedure for certifying software modifications is presented in the last section of the paper.

  18. Seismic isolation device having charging function by a transducer

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Takashi; Miura, Nanako; Takahashi, Masaki

    2016-04-01

    In late years, many base isolated structures are planned as the seismic design, because they suppress vibration response significantly against large earthquake. To achieve greater safety, semi-active or active vibration control system is installed in the structures as earthquake countermeasures. Semi-active and active vibration control systems are more effective than passive vibration control system to large earthquake in terms of vibration reduction. However semi-active and active vibration control system cannot operate as required when external power supply is cut off. To solve the problem of energy consumption, we propose a self-powered active seismic isolation floor which achieve active control system using regenerated vibration energy. This device doesn't require external energy to produce control force. The purpose of this study is to propose the seismic isolation device having charging function and to optimize the control system and passive elements such as spring coefficients and damping coefficients using genetic algorithm. As a result, optimized model shows better performance in terms of vibration reduction and electric power regeneration than the previous model. At the end of this paper, the experimental specimen of the proposed isolation device is shown.

  19. Comparison of AIHA ISO 9001-based occupational health and safety management system guidance document with a manufacturer's occupational health and safety assessment instrument.

    PubMed

    Dyjack, D T; Levine, S P; Holtshouser, J L; Schork, M A

    1998-06-01

    Numerous manufacturing and service organizations have integrated or are considering integration of their respective occupational health and safety management and audit systems into the International Organization for Standardization-based (ISO) audit-driven Quality Management Systems (ISO 9000) or Environmental Management Systems (ISO 14000) models. Companies considering one of these options will likely need to identify and evaluate several key factors before embarking on such efforts. The purpose of this article is to identify and address the key factors through a case study approach. Qualitative and quantitative comparisons of the key features of the American Industrial Hygiene Association ISO-9001 harmonized Occupational Health and Safety Management System with The Goodyear Tire & Rubber Co. management and audit system were conducted. The comparisons showed that the two management systems and their respective audit protocols, although structured differently, were not substantially statistically dissimilar in content. The authors recommend that future studies continue to evaluate the advantages and disadvantages of various audit protocols. Ideally, these studies would identify those audit outcome measures that can be reliably correlated with health and safety performance.

  20. 47 CFR 90.241 - Radio call box operations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Safety Pool for operation of radio call boxes to be used by the public to request fire, police, ambulance... Public Safety Pool for highway call box systems subject to the following requirements: (1) Call box...) above the ground, the natural formation, or the existing man-made structure (other than an antenna...

  1. 47 CFR 90.241 - Radio call box operations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Safety Pool for operation of radio call boxes to be used by the public to request fire, police, ambulance... Public Safety Pool for highway call box systems subject to the following requirements: (1) Call box...) above the ground, the natural formation, or the existing man-made structure (other than an antenna...

  2. System safety engineering in the development of advanced surface transportation vehicles

    NASA Technical Reports Server (NTRS)

    Arnzen, H. E.

    1971-01-01

    Applications of system safety engineering to the development of advanced surface transportation vehicles are described. As a pertinent example, the paper describes a safety engineering efforts tailored to the particular design and test requirements of the Tracked Air Cushion Research Vehicle (TACRV). The test results obtained from this unique research vehicle provide significant design data directly applicable to the development of future tracked air cushion vehicles that will carry passengers in comfort and safety at speeds up to 300 miles per hour.

  3. Impact of Performance Obstacles on Intensive Care Nurses‘ Workload, Perceived Quality and Safety of Care, and Quality of Working Life

    PubMed Central

    Gurses, Ayse P; Carayon, Pascale; Wall, Melanie

    2009-01-01

    Objectives To study the impact of performance obstacles on intensive care nurses‘ workload, quality and safety of care, and quality of working life (QWL). Performance obstacles are factors that hinder nurses‘ capacity to perform their job and that are closely associated with their immediate work system. Data Sources/Study Setting Data were collected from 265 nurses in 17 intensive care units (ICUs) between February and August 2004 via a structured questionnaire, yielding a response rate of 80 percent. Study Design A cross-sectional study design was used. Data were analyzed by correlation analyses and structural equation modeling. Principal Findings Performance obstacles were found to affect perceived quality and safety of care and QWL of ICU nurses. Workload mediated the impact of performance obstacles with the exception of equipment-related issues on perceived quality and safety of care as well as QWL. Conclusions Performance obstacles in ICUs are a major determinant of nursing workload, perceived quality and safety of care, and QWL. In general, performance obstacles increase nursing workload, which in turn negatively affect perceived quality and safety of care and QWL. Redesigning the ICU work system to reduce performance obstacles may improve nurses‘ work. PMID:19207589

  4. [Managment system in safety and health at work organization. An Italian example in public sector: Inps].

    PubMed

    Di Loreto, G; Felicioli, G

    2010-01-01

    The Istituto Nazionale della Previdenza Sociale (Inps) is one of the biggest Public Sector organizations in Italy; about 30.000 people work in his structures. Fifteen years ago, Inps launched a long term project with the objective to create a complex and efficient safety and health at work organization. Italian law contemplates a specific kind of physician working on safety and health at work, called "Medico competente", and 85 Inps's physicians work also as "Medico competente". This work describes how IT improved coordination and efficiency in this occupational health's management system.

  5. A guide to structural factors for advanced composites used on spacecraft

    NASA Technical Reports Server (NTRS)

    Vanwagenen, Robert

    1989-01-01

    The use of composite materials in spacecraft systems is constantly increasing. Although the areas of composite design and fabrication are maturing, they remain distinct from the same activities performed using conventional materials and processes. This has led to some confusion regarding the precise meaning of the term 'factor of safety' as it applies to these structures. In addition, composite engineering introduces terms such as 'knock-down factors' to further modify material properties for design purposes. This guide is intended to clarify these terms as well as their use in the design of composite structures for spacecraft. It is particularly intended to be used by the engineering community not involved in the day-to-day composites design process. An attempt is also made to explain the wide range of factors of safety encountered in composite designs as well as their relationship to the 1.4 factor of safety conventionally applied to metallic structures.

  6. Safety management in a relationship-oriented culture.

    PubMed

    Hsu, Shang Hwa; Lee, Chun-Chia

    2012-01-01

    A relationship-oriented culture predominates in the Greater China region, where it is more important than in Western countries. Some characteristics of this culture influence strongly the organizational structure and interactions among members in an organization. This study aimed to explore the possible influence of relationships on safety management in relationship-oriented cultures. We hypothesized that organizational factors (management involvement and harmonious relationships) within a relationship-oriented culture would influence supervisory work (ongoing monitoring and task instructions), the reporting system (selective reporting), and teamwork (team communication and co-ordination) in safety management at a group level, which would in turn influence individual reliance complacency, risk awareness, and practices. We distributed a safety climate questionnaire to the employees of Taiwanese high-risk industries. The results of structural equation modeling supported the hypothesis. This article also discusses the findings and implications for safety improvement in countries with a relationship-oriented culture.

  7. Evaluation of the AHRQ Patient Safety Initiative: Synthesis of Findings

    PubMed Central

    Farley, Donna O; Damberg, Cheryl L

    2009-01-01

    Objective To present overall findings from the 4-year evaluation of the national patient safety initiative operated by the Agency for Healthcare Research and Quality (AHRQ). Data Sources Interviews with AHRQ staff, grantees, and other patient safety stakeholders; published materials; and internal AHRQ documents. Study Design The evaluation was structured to address a system framework of five components involved in improving safety. The initiative's contributions to improving each system component were assessed qualitatively, comparing results from three separate analyses—AHRQ's achievement of its patient safety goals, our own assessment of the initiative's activities, and independent stakeholder ratings of AHRQ's contributions. Findings and Conclusions AHRQ has faced a daunting challenge for improving patient safety, given the complex problems of the U.S. health care system and the limited resources AHRQ has had to address them. The patient safety initiative achieved strongest progress for its contributions to knowledge of patient safety epidemiology and effective practices, where AHRQ has considerable experience, and to strengthening infrastructure to support adoption of safe practices. Progress was slower in establishing a national monitoring capability and dissemination of safe practices for adoption. AHRQ needs to expand efforts to apply new knowledge for stimulating use of safe practices in the field. PMID:21456115

  8. Safety management as a foundation for evidence-based aeromedical standards and reporting of medical events.

    PubMed

    Evans, Anthony D; Watson, Dougal B; Evans, Sally A; Hastings, John; Singh, Jarnail; Thibeault, Claude

    2009-06-01

    The different interpretations by States (countries) of the aeromedical standards established by the International Civil Aviation Organization has resulted in a variety of approaches to the development of national aeromedical policy, and consequently a relative lack of harmonization. However, in many areas of aviation, safety management systems have been recently introduced and may represent a way forward. A safety management system can be defined as "A systematic approach to managing safety, including the necessary organizational structures, accountabilities, policies, and procedures" (1). There are four main areas where, by applying safety management principles, it may be possible to better use aeromedical data to enhance flight safety. These are: 1) adjustment of the periodicity and content of routine medical examinations to more accurately reflect aeromedical risk; 2) improvement in reporting and analysis of routine medical examination data; 3) improvement in reporting and analysis of in-flight medical events; and 4) support for improved reporting of relevant aeromedical events through the promotion of an appropriate culture by companies and regulatory authorities. This paper explores how the principles of safety management may be applied to aeromedical systems to improve their contribution to safety.

  9. ESA Human rating Requirements:Status

    NASA Astrophysics Data System (ADS)

    Trujillo, M.; Sgobba, T.

    2012-01-01

    The European Space Agency (ESA) human rating safety requirements are based on heritage requirements of the International Space Station as well as the knowledge and experience derived from European participation on international partnerships. This expertise in conjunction with recommendations derived from past accidents (i.e.: Columbia) and lessons learned have led to the identification of m inimum core safety tech nical requirements for hum an rated space syst ems. These requirements apply to th e crewed space vehicle, integrated space system (i.e.: cre wed vehicle on its launcher) and its interfaces with control centres, la unch pad, etc. In 2009, a first draft was issued. Then, in the summer of 2010, ESA established a working group comprised of more than twenty experts (from disciplines including propulsion, pyrotechnics, structures, avionics, human factors and life support among others) across the Agency to review this draft. This paper provides an overview of ESA "Safety technical re quirements for human rated s pace systems" document, its scope a nd structure, as well as the planned steps for verification of these requirements in term s of achieving the identified safety objectives for crew safety in t erms of a quantitative risk evaluation.

  10. Identification of emergent off-nominal operational requirements during conceptual architecting of the more electric aircraft

    NASA Astrophysics Data System (ADS)

    Armstrong, Michael James

    Increases in power demands and changes in the design practices of overall equipment manufacturers has led to a new paradigm in vehicle systems definition. The development of unique power systems architectures is of increasing importance to overall platform feasibility and must be pursued early in the aircraft design process. Many vehicle systems architecture trades must be conducted concurrent to platform definition. With an increased complexity introduced during conceptual design, accurate predictions of unit level sizing requirements must be made. Architecture specific emergent requirements must be identified which arise due to the complex integrated effect of unit behaviors. Off-nominal operating scenarios present sizing critical requirements to the aircraft vehicle systems. These requirements are architecture specific and emergent. Standard heuristically defined failure mitigation is sufficient for sizing traditional and evolutionary architectures. However, architecture concepts which vary significantly in terms of structure and composition require that unique failure mitigation strategies be defined for accurate estimations of unit level requirements. Identifying of these off-nominal emergent operational requirements require extensions to traditional safety and reliability tools and the systematic identification of optimal performance degradation strategies. Discrete operational constraints posed by traditional Functional Hazard Assessment (FHA) are replaced by continuous relationships between function loss and operational hazard. These relationships pose the objective function for hazard minimization. Load shedding optimization is performed for all statistically significant failures by varying the allocation of functional capability throughout the vehicle systems architecture. Expressing hazards, and thereby, reliability requirements as continuous relationships with the magnitude and duration of functional failure requires augmentations to the traditional means for system safety assessment (SSA). The traditional two state and discrete system reliability assessment proves insufficient. Reliability is, therefore, handled in an analog fashion: as a function of magnitude of failure and failure duration. A series of metrics are introduced which characterize system performance in terms of analog hazard probabilities. These include analog and cumulative system and functional risk, hazard correlation, and extensions to the traditional component importance metrics. Continuous FHA, load shedding optimization, and analog SSA constitute the SONOMA process (Systematic Off-Nominal Requirements Analysis). Analog system safety metrics inform both architecture optimization (changes in unit level capability and reliability) and architecture augmentation (changes in architecture structure and composition). This process was applied for two vehicle systems concepts (conventional and 'more-electric') in terms of loss/hazard relationships with varying degrees of fidelity. Application of this process shows that the traditional assumptions regarding the structure of the function loss vs. hazard relationship apply undue design bias to functions and components during exploratory design. This bias is illustrated in terms of inaccurate estimations of the system and function level risk and unit level importance. It was also shown that off-nominal emergent requirements must be defined specific to each architecture concept. Quantitative comparisons of architecture specific off-nominal performance were obtained which provide evidence to the need for accurate definition of load shedding strategies during architecture exploratory design. Formally expressing performance degradation strategies in terms of the minimization of a continuous hazard space enhances the system architects ability to accurately predict sizing critical emergent requirements concurrent to architecture definition. Furthermore, the methods and frameworks generated here provide a structured and flexible means for eliciting these architecture specific requirements during the performance of architecture trades.

  11. [Study on "multi-dimensional structure and process dynamics quality control system" of Danshen infusion solution based on component structure theory].

    PubMed

    Feng, Liang; Zhang, Ming-Hua; Gu, Jun-Fei; Wang, Gui-You; Zhao, Zi-Yu; Jia, Xiao-Bin

    2013-11-01

    As traditional Chinese medicine (TCM) preparation products feature complex compounds and multiple preparation processes, the implementation of quality control in line with the characteristics of TCM preparation products provides a firm guarantee for the clinical efficacy and safety of TCM preparation products. Danshen infusion solution is a preparation commonly used in clinic, but its quality control is restricted to indexes of finished products, which can not guarantee its inherent quality. Our study group has proposed "multi-dimensional structure and process dynamics quality control system" on the basis of "component structure theory", for the purpose of controlling the quality of Danshen infusion solution at multiple levels and in multiple links from the efficacy-related material basis, the safety-related material basis, the characteristics of dosage form to the preparation process. This article, we bring forth new ideas and models to the quality control of TCM preparation products.

  12. Estimation of Inherent Safety Margins in Loaded Commercial Spent Nuclear Fuel Casks

    DOE PAGES

    Banerjee, Kaushik; Robb, Kevin R.; Radulescu, Georgeta; ...

    2016-06-15

    We completed a novel assessment to determine the unquantified and uncredited safety margins (i.e., the difference between the licensing basis and as-loaded calculations) available in as-loaded spent nuclear fuel (SNF) casks. This assessment was performed as part of a broader effort to assess issues and uncertainties related to the continued safety of casks during extended storage and transportability following extended storage periods. Detailed analyses crediting the actual as-loaded cask inventory were performed for each of the casks at three decommissioned pressurized water reactor (PWR) sites to determine their characteristics relative to regulatory safety criteria for criticality, thermal, and shielding performance.more » These detailed analyses were performed in an automated fashion by employing a comprehensive and integrated data and analysis tool—Used Nuclear Fuel-Storage, Transportation & Disposal Analysis Resource and Data System (UNF-ST&DARDS). Calculated uncredited criticality margins from 0.07 to almost 0.30 Δk eff were observed; calculated decay heat margins ranged from 4 to almost 22 kW (as of 2014); and significant uncredited transportation dose rate margins were also observed. The results demonstrate that, at least for the casks analyzed here, significant uncredited safety margins are available that could potentially be used to compensate for SNF assembly and canister structural performance related uncertainties associated with long-term storage and subsequent transportation. The results also suggest that these inherent margins associated with how casks are loaded could support future changes in cask licensing to directly or indirectly credit the margins. Work continues to quantify the uncredited safety margins in the SNF casks loaded at other nuclear reactor sites.« less

  13. 14 CFR Section 03 - Definitions for Purposes of This System of Accounts and Reports

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... equipment, land, structures, and other tangible property; extensions of fuel, water, and oil distribution equipment; additions to buildings and other structures; and additional safety devices applied to equipment.... Equipment. Tangible property other than land, structures, and improvements. Equity security. Any instrument...

  14. System safety management lessons learned from the US Army acquisition process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piatt, J.A.

    1989-05-01

    The Assistant Secretary of the Army for Research, Development and Acquisition directed the Army Safety Center to provide an audit of the causes of accidents and safety of use restrictions on recently fielded systems by tracking residual hazards back through the acquisition process. The objective was to develop lessons learned'' that could be applied to the acquisition process to minimize mishaps in fielded systems. System safety management lessons learned are defined as Army practices or policies, derived from past successes and failures, that are expected to be effective in eliminating or reducing specific systemic causes of residual hazards. They aremore » broadly applicable and supportive of the Army structure and acquisition objectives. Pacific Northwest Laboratory (PNL) was given the task of conducting an independent, objective appraisal of the Army's system safety program in the context of the Army materiel acquisition process by focusing on four fielded systems which are products of that process. These systems included the Apache helicopter, the Bradley Fighting Vehicle (BFV), the Tube Launched, Optically Tracked, Wire Guided (TOW) Missile and the High Mobility Multipurpose Wheeled Vehicle (HMMWV). The objective of this study was to develop system safety management lessons learned associated with the acquisition process. The first step was to identify residual hazards associated with the selected systems. Since it was impossible to track all residual hazards through the acquisition process, certain well-known, high visibility hazards were selected for detailed tracking. These residual hazards illustrate a variety of systemic problems. Systemic or process causes were identified for each residual hazard and analyzed to determine why they exist. System safety management lessons learned were developed to address related systemic causal factors. 29 refs., 5 figs.« less

  15. Towards Measurement of Confidence in Safety Cases

    NASA Technical Reports Server (NTRS)

    Denney, Ewen; Paim Ganesh J.; Habli, Ibrahim

    2011-01-01

    Arguments in safety cases are predominantly qualitative. This is partly attributed to the lack of sufficient design and operational data necessary to measure the achievement of high-dependability targets, particularly for safety-critical functions implemented in software. The subjective nature of many forms of evidence, such as expert judgment and process maturity, also contributes to the overwhelming dependence on qualitative arguments. However, where data for quantitative measurements is systematically collected, quantitative arguments provide far more benefits over qualitative arguments, in assessing confidence in the safety case. In this paper, we propose a basis for developing and evaluating integrated qualitative and quantitative safety arguments based on the Goal Structuring Notation (GSN) and Bayesian Networks (BN). The approach we propose identifies structures within GSN-based arguments where uncertainties can be quantified. BN are then used to provide a means to reason about confidence in a probabilistic way. We illustrate our approach using a fragment of a safety case for an unmanned aerial system and conclude with some preliminary observations

  16. Co-worker characteristics and nurses' safety-climate perceptions.

    PubMed

    Abrahamson, Kathleen; Ramanujam, Rangaraj; Anderson, James G

    2013-01-01

    Previous research indicates that nurses' safety-climate perceptions are influenced by individual nurse characteristics, leadership, staffing levels and workplace structure. No literature was identified that explored the relationship between nurses' safety climate perceptions and staffing composition in a particular hospital unit. This paper aims to fill some of the gaps in the research in this area. Data supplied by 430 registered nurses working in two Midwestern US hospitals were analyzed to co-worker characteristics such as education, licensure, experience and full- or part-time status. Registered nurses working in hospitals with proportionally more-experienced nurses perceived their workplaces to be significantly safer for patients. Surprisingly, co-worker licensure, education and full- or part-time status did not significantly influence nurses' safety climate perceptions. Findings indicate that safety-climate perceptions vary significantly between hospital units and experienced nurses may act as a resource that promotes a positive safety climate. Hospitals retaining experienced nurses may potentially reduce errors. The paper illustrates that the results highlight the importance of providing nurses with an environment that encourages retention and creates a workplace where experienced nurses' skills are best utilized.

  17. Best practices to promote occupational safety and satisfaction: a comparison of three North American hospitals.

    PubMed

    McCaughey, Deirdre; DelliFraine, Jami; Erwin, Cathleen O

    2015-01-01

    Hospitals in North America consistently have employee injury rates ranking among the highest of all industries. Organizations that mandate workplace safety training and emphasize safety compliance tend to have lower injury rates and better employee safety perceptions. However, it is unclear if the work environment in different national health care systems (United States vs. Canada) is associated with different employee safety perceptions or injury rates. This study examines occupational safety and workplace satisfaction in two different countries with employees working for the same organization. Survey data were collected from environmental services employees (n = 148) at three matched hospitals (two in Canada and one in the United States). The relationships that were examined included: (1) safety leadership and safety training with individual/unit safety perceptions; (2) supervisor and coworker support with individual job satisfaction and turnover intention; and (3) unit turnover, labor usage, and injury rates. Hierarchical regression analysis and ANO VA found safety leadership and safety training to be positively related to individual safety perceptions, and unit safety grade and effects were similar across all hospitals. Supervisor and coworker support were found to be related to individual and organizational outcomes and significant differences were found across the hospitals. Significant differences were found in injury rates, days missed, and turnover across the hospitals. This study offers support for occupational safety training as a viable mechanism to reduce employee injury rates and that a codified training program translates across national borders. Significant differences were found.between the hospitals with respect to employee and organizational outcomes (e.g., turnover). These findings suggest that work environment differences are reflective of the immediate work group and environment, and may reflect national health care system differences.

  18. Structuring Formal Control Systems Specifications for Reuse: Surviving Hardware Changes

    NASA Technical Reports Server (NTRS)

    Thompson, Jeffrey M.; Heimdahl, Mats P. E.; Erickson, Debra M.

    2000-01-01

    Formal capture and analysis of the required behavior of control systems have many advantages. For instance, it encourages rigorous requirements analysis, the required behavior is unambiguously defined, and we can assure that various safety properties are satisfied. Formal modeling is, however, a costly and time consuming process and if one could reuse the formal models over a family of products, significant cost savings would be realized. In an ongoing project we are investigating how to structure state-based models to achieve a high level of reusability within product families. In this paper we discuss a high-level structure of requirements models that achieves reusability of the desired control behavior across varying hardware platforms in a product family. The structuring approach is demonstrated through a case study in the mobile robotics domain where the desired robot behavior is reused on two diverse platforms-one commercial mobile platform and one build in-house. We use our language RSML (-e) to capture the control behavior for reuse and our tool NIMBUS to demonstrate how the formal specification can be validated and used as a prototype on the two platforms.

  19. Construction of Traceability System for Quality Safety of Cereal and Oil Products

    NASA Astrophysics Data System (ADS)

    Zheng, Huoguo; Liu, Shihong; Meng, Hong; Hu, Haiyan

    After several significant food safety incident, global food industry and governments in many countries are putting increasing emphasis on establishment of food traceability systems. Food traceability has become an effective way in food quality and safety management. The traceability system for quality safety of cereal and oil products was designed and implemented with HACCP and FMECA method, encoding, information processing, and hardware R&D technology etc, according to the whole supply chain of cereal and oil products. Results indicated that the system provide not only the management in origin, processing, circulating and consuming for enterprise, but also tracing service for customers and supervisor by means of telephone, internet, SMS, touch machine and mobile terminal.

  20. Cabin fuselage structural design with engine installation and control system

    NASA Technical Reports Server (NTRS)

    Balakrishnan, Tanapaal; Bishop, Mike; Gumus, Ilker; Gussy, Joel; Triggs, Mike

    1994-01-01

    Design requirements for the cabin, cabin system, flight controls, engine installation, and wing-fuselage interface that provide adequate interior volume for occupant seating, cabin ingress and egress, and safety are presented. The fuselage structure must be sufficient to meet the loadings specified in the appropriate sections of Federal Aviation Regulation Part 23. The critical structure must provide a safe life of 10(exp 6) load cycles and 10,000 operational mission cycles. The cabin seating and controls must provide adjustment to account for various pilot physiques and to aid in maintenance and operation of the aircraft. Seats and doors shall not bind or lockup under normal operation. Cabin systems such as heating and ventilation, electrical, lighting, intercom, and avionics must be included in the design. The control system will consist of ailerons, elevator, and rudders. The system must provide required deflections with a combination of push rods, bell cranks, pulleys, and linkages. The system will be free from slack and provide smooth operation without binding. Environmental considerations include variations in temperature and atmospheric pressure, protection against sand, dust, rain, humidity, ice, snow, salt/fog atmosphere, wind and gusts, and shock and vibration. The following design goals were set to meet the requirements of the statement of work: safety, performance, manufacturing and cost. To prevent the engine from penetrating the passenger area in the event of a crash was the primary safety concern. Weight and the fuselage aerodynamics were the primary performance concerns. Commonality and ease of manufacturing were major considerations to reduce cost.

  1. Structural Health Monitoring Using High-Density Fiber Optic Strain Sensor and Inverse Finite Element Methods

    NASA Technical Reports Server (NTRS)

    Vazquez, Sixto L.; Tessler, Alexander; Quach, Cuong C.; Cooper, Eric G.; Parks, Jeffrey; Spangler, Jan L.

    2005-01-01

    In an effort to mitigate accidents due to system and component failure, NASA s Aviation Safety has partnered with industry, academia, and other governmental organizations to develop real-time, on-board monitoring capabilities and system performance models for early detection of airframe structure degradation. NASA Langley is investigating a structural health monitoring capability that uses a distributed fiber optic strain system and an inverse finite element method for measuring and modeling structural deformations. This report describes the constituent systems that enable this structural monitoring function and discusses results from laboratory tests using the fiber strain sensor system and the inverse finite element method to demonstrate structural deformation estimation on an instrumented test article

  2. Study on high reliability safety valve for railway vehicle

    NASA Astrophysics Data System (ADS)

    Zhang, Xuan; Chen, Ruikun; Zhang, Shixi; Xu, BuDu

    2017-09-01

    Now, the realization of most of the functions of the railway vehicles rely on compressed air, so the demand for compressed air is growing higher and higher. This safety valve is a protection device for pressure limitation and pressure relief in an air supply system of railway vehicles. I am going to introduce the structure, operating principle, research and development process of the safety valve designed by our company in this document.

  3. 18 CFR 1304.410 - Navigation restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., structures, land based or water use, shall not be located within the limits of safety harbors and landings established for commercial navigation. (b) Structures shall not be located in such a way as to block the... OF CONSTRUCTION IN THE TENNESSEE RIVER SYSTEM AND REGULATION OF STRUCTURES AND OTHER ALTERATIONS...

  4. 18 CFR 1304.410 - Navigation restrictions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., structures, land based or water use, shall not be located within the limits of safety harbors and landings established for commercial navigation. (b) Structures shall not be located in such a way as to block the... OF CONSTRUCTION IN THE TENNESSEE RIVER SYSTEM AND REGULATION OF STRUCTURES AND OTHER ALTERATIONS...

  5. 10 CFR 830 Major Modification Determination for the ATR Diesel Bus (E-3) and Switchgear Replacement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noel Duckwtiz

    2011-05-01

    Near term replacement of aging and obsolescent original ATR equipment has become important to ensure ATR capability in support of NE’s long term national missions. To that end, a mission needs statement has been prepared for a non-major system acquisition which is comprised of three interdependent subprojects. The first project, subject of this determination, will replace the existent diesel-electrical bus (E-3) and associated switchgear. More specifically, INL proposes transitioning ATR to 100% commercial power with appropriate emergency backup to include: • Provide commercial power as the normal source of power to the ATR loads currently supplied by diesel-electric power. •more » Provide backup power to the critical ATR loads in the event of a loss of commercial power. • Replace obsolescent critical ATR power distribution equipment, e.g., switchgear, transformers, motor control centers, distribution panels. Completion of this and two other age-related projects (primary coolant pump and motor replacement and emergency firewater injection system replacement) will resolve major age related operational issues plus make a significant contribution in sustaining the ATR safety and reliability profile. The major modification criteria evaluation of the project pre-conceptual design identified several issues make the project a major modification: 1. Evaluation Criteria #2 (Footprint change). The addition of a new PC-4 structure to the ATR Facility to house safety-related SSCs requires careful attention to maintaining adherence to applicable engineering and nuclear safety design criteria (e.g., structural qualification, fire suppression) to ensure no adverse impacts to the safety-related functions of the housed equipment. 2. Evaluation Criteria #3 (Change of existing process). The change to the strategy for providing continuous reliable power to the safety-related emergency coolant pumps requires careful attention and analysis to ensure it meets a project primary object to maintain or reduce CDF and does not negatively affect the efficacy of the currently approved strategy. 3. Evaluation Criteria #5 (Create the need for new or revised safety SSCs). The change to the strategy for providing continuous reliable power to the safety-related emergency coolant pumps, based on the pre-conceptual design, will require the addition of two quick start diesel generators, their associated power coordination/distribution controls, and a UPS to the list of safety-related SSCs. Similarly to item 1 above, the addition of these active SSCs to the list of safety-related SSCs and replacement of the E-3 bus requires careful attention to maintaining adherence to applicable engineering and nuclear safety design criteria (e.g., seismic qualification, isolation of redundant trains from common fault failures) to ensure no adverse impacts to the safety-related functions.« less

  6. Distributed Space System Technology Demonstrations with the Emerald Nanosatellite

    NASA Technical Reports Server (NTRS)

    Twiggs, Robert

    2002-01-01

    A viewgraph presentation of Distributed Space System Technologies utilizing the Emerald Nanosatellite is shown. The topics include: 1) Structure Assembly; 2) Emerald Mission; 3) Payload and Mission Operations; 4) System and Subsystem Description; and 5) Safety Integration and Testing.

  7. Medford viaduct ice detection system : final report.

    DOT National Transportation Integrated Search

    1984-12-01

    The Medford Viaduct is a 3230 foot long structure which carries Interstate 5 across Bear Creek and several city streets. Two ice related accidents which occurred on the structure in December of 1984 prompted concern about its safety during subfreezin...

  8. Puncture Self-Healing Polymers for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Gordon, Keith L.; Penner, Ronald K.; Bogert, Phil B.; Yost, W. T.; Siochi, Emilie J.

    2011-01-01

    Space exploration launch costs on the order of $10K per pound provide ample incentive to seek innovative, cost-effective ways to reduce structural mass without sacrificing safety and reliability. Damage-tolerant structural systems can provide a route to avoiding weight penalty while enhancing vehicle safety and reliability. Self-healing polymers capable of spontaneous puncture repair show great promise to mitigate potentially catastrophic damage from events such as micrometeoroid penetration. Effective self-repair requires these materials to heal instantaneously following projectile penetration while retaining structural integrity. Poly(ethylene-co-methacrylic acid) (EMMA), also known as Surlyn is an ionomer-based copolymer that undergoes puncture reversal (self-healing) following high impact puncture at high velocities. However EMMA is not a structural engineering polymer, and will not meet the demands of aerospace applications requiring self-healing engineering materials. Current efforts to identify candidate self-healing polymer materials for structural engineering systems are reported. Rheology, high speed thermography, and high speed video for self-healing semi-crystalline and amorphous polymers will be reported.

  9. Structural equation modeling of the relationships between pesticide poisoning, depressive symptoms and safety behaviors among Colorado farm residents.

    PubMed

    Beseler, Cheryl Lynn; Stallones, Lorann

    2006-01-01

    To use structural equation modeling (SEM) to test the theory that a past pesticide poisoning may act as a mediator in the relationship between depression and safety practices. Depression has been associated with pesticide poisoning and was more strongly associated with safety behaviors than workload, social support or health status of farm residents in a previously published report. A cross-sectional survey of farmers and their spouses was conducted in eight counties in northeastern Colorado. Depressive symptoms were assessed using the Center for Epidemiologic Studies-Depression (CES-D) scale. Exploratory and confirmatory factor analyses were used to identify symptoms most correlated with risk factors for depression and safety practices. SEM was used to examine theoretical causal models of the relationship between depression and poor health, financial difficulties, a history of pesticide poisoning, and safety practices. Exploratory factor analysis identified three factors in the CES-D scale. The SEM showed that poor health, financial difficulties and a history of pesticide poisoning significantly explained the depressive symptoms. Models with an excellent fit for the safety behaviors resulted when modeling the probability that the pesticide poisoning preceded depression, but no fit was possible when reversing the direction and modeling depression preceding pesticide poisoning. Specific depressive symptoms appeared to be significantly associated with primarily animal handling and farm machinery. The order of events, based on SEM results, was a pesticide poisoning preceding depressed mood in relation to safety behaviors.

  10. Health management and controls for Earth-to-orbit propulsion systems

    NASA Astrophysics Data System (ADS)

    Bickford, R. L.

    1995-03-01

    Avionics and health management technologies increase the safety and reliability while decreasing the overall cost for Earth-to-orbit (ETO) propulsion systems. New ETO propulsion systems will depend on highly reliable fault tolerant flight avionics, advanced sensing systems and artificial intelligence aided software to ensure critical control, safety and maintenance requirements are met in a cost effective manner. Propulsion avionics consist of the engine controller, actuators, sensors, software and ground support elements. In addition to control and safety functions, these elements perform system monitoring for health management. Health management is enhanced by advanced sensing systems and algorithms which provide automated fault detection and enable adaptive control and/or maintenance approaches. Aerojet is developing advanced fault tolerant rocket engine controllers which provide very high levels of reliability. Smart sensors and software systems which significantly enhance fault coverage and enable automated operations are also under development. Smart sensing systems, such as flight capable plume spectrometers, have reached maturity in ground-based applications and are suitable for bridging to flight. Software to detect failed sensors has reached similar maturity. This paper will discuss fault detection and isolation for advanced rocket engine controllers as well as examples of advanced sensing systems and software which significantly improve component failure detection for engine system safety and health management.

  11. The effect of nurses' empowerment perceptions on job safety behaviours: a research study in Turkey.

    PubMed

    Yıldız, Ahmet; Kaya, Sıdıka; Teleş, Mesut; Korku, Cahit

    2018-05-03

    This study aimed to investigate the effect of nurses' empowerment perceptions on job safety behaviours. A survey of 377 nurses working in five hospitals in Turkey was conducted using the conditions of work effectiveness questionnaire, psychological empowerment instrument, universal precautions compliance scale and occupational health and safety obligations compliance scale. Relations between variables were tested using Pearson's correlation and path analysis. There was a moderate and statistically significant relationship between psychological and structural empowerment and complying with universal safety measures and meeting occupational health and safety obligations. Also, an increase of 1 unit on the level of psychological empowerment was found to correspond to an increase of 0.37 units on the level of universal precautions compliance and to an increase of 0.46 units on the level of occupational health and safety obligations compliance. As such, an increase of 1 unit in structural empowerment corresponds to an increase of 0.53 units on the level of universal precautions compliance and to an increase of 0.36 units (total effect) on the level of occupational health and safety obligations compliance. The findings reveal that empowerment is a valuable tool for nurses' positive job safety behaviours.

  12. Analysis of dynamical response of air blast loaded safety device

    NASA Astrophysics Data System (ADS)

    Tropkin, S. N.; Tlyasheva, R. R.; Bayazitov, M. I.; Kuzeev, I. R.

    2018-03-01

    Equipment of many oil and gas processing plants in the Russian Federation is considerably worn-out. This causes the decrease of reliability and durability of equipment and rises the accident rate. An air explosion is the one of the most dangerous cases for plants in oil and gas industry, usually caused by uncontrolled emission and inflammation of oil products. Air explosion can lead to significant danger for life and health of plant staff, so it necessitates safety device usage. A new type of a safety device is designed. Numerical simulation is necessary to analyse design parameters and performance of the safety device, subjected to air blast loading. Coupled fluid-structure interaction analysis is performed to determine strength of the protective device and its performance. The coupled Euler-Lagrange method, allowable in Abaqus by SIMULIA, is selected as the most appropriate analysis tool to study blast wave interaction with the safety device. Absorption factors of blast wave are evaluated for the safety device. This factors allow one to assess efficiency of the safety device, and its main structural component – dampener. Usage of CEL allowed one to model fast and accurately the dampener behaviour, and to develop the parametric model to determine safety device sizes.

  13. Evaluating the Performance of the NASA LaRC CMF Motion Base Safety Devices

    NASA Technical Reports Server (NTRS)

    Gupton, Lawrence E.; Bryant, Richard B., Jr.; Carrelli, David J.

    2006-01-01

    This paper describes the initial measured performance results of the previously documented NASA Langley Research Center (LaRC) Cockpit Motion Facility (CMF) motion base hardware safety devices. These safety systems are required to prevent excessive accelerations that could injure personnel and damage simulator cockpits or the motion base structure. Excessive accelerations may be caused by erroneous commands or hardware failures driving an actuator to the end of its travel at high velocity, stepping a servo valve, or instantly reversing servo direction. Such commands may result from single order failures of electrical or hydraulic components within the control system itself, or from aggressive or improper cueing commands from the host simulation computer. The safety systems must mitigate these high acceleration events while minimizing the negative performance impacts. The system accomplishes this by controlling the rate of change of valve signals to limit excessive commanded accelerations. It also aids hydraulic cushion performance by limiting valve command authority as the actuator approaches its end of travel. The design takes advantage of inherent motion base hydraulic characteristics to implement all safety features using hardware only solutions.

  14. A dynamical systems model for nuclear power plant risk

    NASA Astrophysics Data System (ADS)

    Hess, Stephen Michael

    The recent transition to an open access generation marketplace has forced nuclear plant operators to become much more cost conscious and focused on plant performance. Coincidentally, the regulatory perspective also is in a state of transition from a command and control framework to one that is risk-informed and performance-based. Due to these structural changes in the economics and regulatory system associated with commercial nuclear power plant operation, there is an increased need for plant management to explicitly manage nuclear safety risk. Application of probabilistic risk assessment techniques to model plant hardware has provided a significant contribution to understanding the potential initiating events and equipment failures that can lead to core damage accidents. Application of the lessons learned from these analyses has supported improved plant operation and safety over the previous decade. However, this analytical approach has not been nearly as successful in addressing the impact of plant processes and management effectiveness on the risks of plant operation. Thus, the research described in this dissertation presents a different approach to address this issue. Here we propose a dynamical model that describes the interaction of important plant processes among themselves and their overall impact on nuclear safety risk. We first provide a review of the techniques that are applied in a conventional probabilistic risk assessment of commercially operating nuclear power plants and summarize the typical results obtained. The limitations of the conventional approach and the status of research previously performed to address these limitations also are presented. Next, we present the case for the application of an alternative approach using dynamical systems theory. This includes a discussion of previous applications of dynamical models to study other important socio-economic issues. Next, we review the analytical techniques that are applicable to analysis of these models. Details of the development of the mathematical risk model are presented. This includes discussion of the processes included in the model and the identification of significant interprocess interactions. This is followed by analysis of the model that demonstrates that its dynamical evolution displays characteristics that have been observed at commercially operating plants. The model is analyzed using the previously described techniques from dynamical systems theory. From this analysis, several significant insights are obtained with respect to the effective control of nuclear safety risk. Finally, we present conclusions and recommendations for further research.

  15. Underlying influence of perception of management leadership on patient safety climate in healthcare organizations - A mediation analysis approach.

    PubMed

    Weng, Shao-Jen; Kim, Seung-Hwan; Wu, Chieh-Liang

    2017-02-01

    We aim to draw insights on how medical staff's perception of management leadership affects safety climate with key safety related dimensions-teamwork climate, job satisfaction and working conditions. A cross-sectional survey using Safety Attitude Questionnaire (SAQ) was performed in a medical center in Taichung City, Taiwan. The relationships among the dimensions in SAQ were then analyzed by structural equation modeling with a mediation analysis. 2205 physicians and nurses of the medical center participated in the survey. Because not all questions in the survey are suitable for entire hospital staff, only the valid responses (n = 1596, response rate of 72%) were extracted for analysis. Key measures are the direct and indirect effects of teamwork climate, job satisfaction, perception of management leadership, and working conditions on safety climate. Outcomes show that effect of perception of management leadership on safety climate is significant (standardized indirect effect of 0.892 with P-value 0.002) and fully mediated by other dimensions, where 66.9% is mediated through teamwork climate, 24.1% through working conditions and 9.0% through job satisfaction. Our findings point to the importance of management leadership and the mechanism of its influence on safety climate. To improve safety climate, the implication is that commitment by management on leading safety improvement needs to be demonstrated when it implements daily supportive actions for other safety dimensions. For future improvement, development of a management system that can facilitate two-way trust between management and staff over the long term is recommended. © The Author 2016. Published by Oxford University Press in association with the International Society for Quality in Health Care. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  16. Best practices for quality management of stormwater pipe construction : [summary].

    DOT National Transportation Integrated Search

    2014-02-01

    Although largely unseen, stormwater pipe : systems are integral and important features : of the transportation network. Stormwater : systems support the safety and integrity of : roadways by directing stormwater away from : roadway structures to disc...

  17. Long-Term Structural Health Monitoring System for a High-Speed Railway Bridge Structure

    PubMed Central

    Wu, Lai-Yi

    2015-01-01

    Nanjing Dashengguan Bridge, which serves as the shared corridor crossing Yangtze River for both Beijing-Shanghai high-speed railway and Shanghai-Wuhan-Chengdu railway, is the first 6-track high-speed railway bridge with the longest span throughout the world. In order to ensure safety and detect the performance deterioration during the long-time service of the bridge, a Structural Health Monitoring (SHM) system has been implemented on this bridge by the application of modern techniques in sensing, testing, computing, and network communication. The SHM system includes various sensors as well as corresponding data acquisition and transmission equipment for automatic data collection. Furthermore, an evaluation system of structural safety has been developed for the real-time condition assessment of this bridge. The mathematical correlation models describing the overall structural behavior of the bridge can be obtained with the support of the health monitoring system, which includes cross-correlation models for accelerations, correlation models between temperature and static strains of steel truss arch, and correlation models between temperature and longitudinal displacements of piers. Some evaluation results using the mean value control chart based on mathematical correlation models are presented in this paper to show the effectiveness of this SHM system in detecting the bridge's abnormal behaviors under the varying environmental conditions such as high-speed trains and environmental temperature. PMID:26451387

  18. Safety Metrics for Human-Computer Controlled Systems

    NASA Technical Reports Server (NTRS)

    Leveson, Nancy G; Hatanaka, Iwao

    2000-01-01

    The rapid growth of computer technology and innovation has played a significant role in the rise of computer automation of human tasks in modem production systems across all industries. Although the rationale for automation has been to eliminate "human error" or to relieve humans from manual repetitive tasks, various computer-related hazards and accidents have emerged as a direct result of increased system complexity attributed to computer automation. The risk assessment techniques utilized for electromechanical systems are not suitable for today's software-intensive systems or complex human-computer controlled systems.This thesis will propose a new systemic model-based framework for analyzing risk in safety-critical systems where both computers and humans are controlling safety-critical functions. A new systems accident model will be developed based upon modem systems theory and human cognitive processes to better characterize system accidents, the role of human operators, and the influence of software in its direct control of significant system functions Better risk assessments will then be achievable through the application of this new framework to complex human-computer controlled systems.

  19. Certification Strategies using Run-Time Safety Assurance for Part 23 Autopilot Systems

    NASA Technical Reports Server (NTRS)

    Hook, Loyd R.; Clark, Matthew; Sizoo, David; Skoog, Mark A.; Brady, James

    2016-01-01

    Part 23 aircraft operation, and in particular general aviation, is relatively unsafe when compared to other common forms of vehicle travel. Currently, there exists technologies that could increase safety statistics for these aircraft; however, the high burden and cost of performing the requisite safety critical certification processes for these systems limits their proliferation. For this reason, many entities, including the Federal Aviation Administration, NASA, and the US Air Force, are considering new options for certification for technologies that will improve aircraft safety. Of particular interest, are low cost autopilot systems for general aviation aircraft, as these systems have the potential to positively and significantly affect safety statistics. This paper proposes new systems and techniques, leveraging run-time verification, for the assurance of general aviation autopilot systems, which would be used to supplement the current certification process and provide a viable path for near-term low-cost implementation. In addition, discussions on preliminary experimentation and building the assurance case for a system, based on these principles, is provided.

  20. Systems pharmacology augments drug safety surveillance

    PubMed Central

    Lorberbaum, Tal; Nasir, Mavra; Keiser, Michael J.; Vilar, Santiago; Hripcsak, George; Tatonetti, Nicholas P.

    2014-01-01

    Small molecule drugs are the foundation of modern medical practice yet their use is limited by the onset of unexpected and severe adverse events (AEs). Regulatory agencies rely on post-marketing surveillance to monitor safety once drugs are approved for clinical use. Despite advances in pharmacovigilance methods that address issues of confounding bias, clinical data of AEs are inherently noisy. Systems pharmacology– the integration of systems biology and chemical genomics – can illuminate drug mechanisms of action. We hypothesize that these data can improve drug safety surveillance by highlighting drugs with a mechanistic connection to the target phenotype (enriching true positives) and filtering those that do not (depleting false positives). We present an algorithm, the modular assembly of drug safety subnetworks (MADSS), to combine systems pharmacology and pharmacovigilance data and significantly improve drug safety monitoring for four clinically relevant adverse drug reactions. PMID:25670520

  1. Westinghouse Small Modular Reactor balance of plant and supporting systems design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Memmott, M. J.; Stansbury, C.; Taylor, C.

    2012-07-01

    The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor (iPWR), in which all of the components typically associated with the nuclear steam supply system (NSSS) of a nuclear power plant are incorporated within a single reactor pressure vessel. This paper is the second in a series of four papers which describe the design and functionality of the Westinghouse SMR. It focuses, in particular, upon the supporting systems and the balance of plant (BOP) designs of the Westinghouse SMR. Several Westinghouse SMR systems are classified as safety, and are critical to the safe operationmore » of the Westinghouse SMR. These include the protection and monitoring system (PMS), the passive core cooling system (PXS), and the spent fuel cooling system (SFS) including pools, valves, and piping. The Westinghouse SMR safety related systems include the instrumentation and controls (I and C) as well as redundant and physically separated safety trains with batteries, electrical systems, and switch gears. Several other incorporated systems are non-safety related, but provide functions for plant operations including defense-in-depth functions. These include the chemical volume control system (CVS), heating, ventilation and cooling (HVAC) systems, component cooling water system (CCS), normal residual heat removal system (RNS) and service water system (SWS). The integrated performance of the safety-related and non-safety related systems ensures the safe and efficient operation of the Westinghouse SMR through various conditions and transients. The turbine island consists of the turbine, electric generator, feedwater and steam systems, moisture separation systems, and the condensers. The BOP is designed to minimize assembly time, shipping challenges, and on-site testing requirements for all structures, systems, and components. (authors)« less

  2. The new structure and contents of employers' juridical responsibility for workers' health and safety in the post-industrial system.

    PubMed

    Ichino, P

    2006-01-01

    1. The enlargement of the labour law application area in the post-industrial system. 2. The enormous growth of differences in productivity between workers and its consequences on the employer's safety obligation. 3. Depressive disorders as a typical professional risk in the post-industrial system and the employer's prevention responsibility. 4. Harassment in the work-place as a typical pathologic consequence of the de-standardization of jobs. The specific employer's prevention responsibility in this field. 5. A conclusive remark.

  3. Aeroelastic Control of a Segmented Trailing Edge Using Fiber Optic Strain Sensing Technology

    NASA Technical Reports Server (NTRS)

    Graham, Corbin Jay; Martins, Benjamin; Suppanade, Nathan

    2014-01-01

    Currently, design of aircraft structures incorporate a safety factor which is essentially an over design to mitigate the risk of structure failure during operation. Typically this safety factor is to design the structure to withstand loads much greater than what is expected to be experienced during flight. NASA Dryden Flight Research Centers has developed a Fiber Optic Strain Sensing (FOSS) system which can measure strain values in real-time. The Aeroelastics Lab at the AERO Institute is developing a segmented trailing edged wing with multiple control surfaces that can utilize the data from the FOSS system, in conjunction with an adaptive controller to redistribute the lift across a wing. This redistribution can decrease the amount of strain experienced by the wing as well as be used to dampen vibration and reduce flutter.

  4. A historical perspective of remote operations and robotics in nuclear facilities. Robotics and Intelligent Systems Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herndon, J.N.

    1992-12-31

    The field of remote technology is continuing to evolve to support man`s efforts to perform tasks in hostile environments. The technology which we recognize today as remote technology has evolved over the last 45 years to support human operations in hostile environments such as nuclear fission and fusion, space, underwater, hazardous chemical, and hazardous manufacturing. The four major categories of approach to remote technology have been (1) protective clothing and equipment for direct human entry, (2) extended reach tools using distance for safety, (3) telemanipulators with barriers for safety, and (4) teleoperators incorporating mobility with distance and/or barriers for safety.more » The government and commercial nuclear industry has driven the development of the majority of the actual teleoperator hardware available today. This hardware has been developed largely due to the unsatisfactory performance of the protective-clothing approach in many hostile applications. Manipulation systems which have been developed include crane/impact wrench systems, unilateral power manipulators, mechanical master/slaves, and servomanipulators. Viewing systems have included periscopes, shield windows, and television systems. Experience over the past 45 years indicates that maintenance system flexibility is essential to typical repair tasks because they are usually not repetitive, structured, or planned. Fully remote design (manipulation, task provisions, remote tooling, and facility synergy) is essential to work task efficiency. Work for space applications has been primarily research oriented with relatively few successful space applications, although the shuttle`s remote manipulator system has been quite successful. In the last decade, underwater applications have moved forward significantly, with the offshore oil industry and military applications providing the primary impetus.« less

  5. The research of distributed interactive simulation based on HLA in coal mine industry inherent safety

    NASA Astrophysics Data System (ADS)

    Dou, Zhi-Wu

    2010-08-01

    To solve the inherent safety problem puzzling the coal mining industry, analyzing the characteristic and the application of distributed interactive simulation based on high level architecture (DIS/HLA), a new method is proposed for developing coal mining industry inherent safety distributed interactive simulation adopting HLA technology. Researching the function and structure of the system, a simple coal mining industry inherent safety is modeled with HLA, the FOM and SOM are developed, and the math models are suggested. The results of the instance research show that HLA plays an important role in developing distributed interactive simulation of complicated distributed system and the method is valid to solve the problem puzzling coal mining industry. To the coal mining industry, the conclusions show that the simulation system with HLA plays an important role to identify the source of hazard, to make the measure for accident, and to improve the level of management.

  6. Integrated modeling and analysis of a space-truss article

    NASA Technical Reports Server (NTRS)

    Stockwell, Alan E.; Perez, Sharon E.; Pappa, Richard S.

    1990-01-01

    MSC/NASTRAN is being used in the Controls-Structures Interaction (CSI) program at NASA Langley Research Center as a key analytical tool for structural analysis as well as the basis for control law development, closed-loop performance evaluation, and system safety checks. Guest investigators from academia and industry are performing dynamics and control experiments on a flight-like deployable space truss called Mini-Mast to determine the effectiveness of various active-vibration control laws. MSC/NASTRAN was used to calculate natural frequencies and mode shapes below 100 Hz to describe the dynamics of the 20-meter-long lightweight Mini-Mast structure. Gravitational effects contribute significantly to structural stiffness and are accounted for through a two-phase solution in which the differential stiffness matrix is calculated and then used in the eigensolution. Reduced modal models are extracted for control law design and evaluation of closed-loop system performance. Predicted actuator forces from controls simulations are then applied to the extended model to predict member loads and stresses. These pre-test analyses reduce risks associated with the structural integrity of the test article, which is a major concern in closed-loop control experiments due to potential instabilities.

  7. Effect of a Publicly Accessible Disclosure System on Food Safety Inspection Scores in Retail and Food Service Establishments.

    PubMed

    Choi, Jihee; Scharff, Robert L

    2017-07-01

    The increased frequency with which people are dining out coupled with an increase in the publicity of foodborne disease outbreaks has led the public to an increased awareness of food safety issues associated with food service establishments. To accommodate consumer needs, local health departments have increasingly publicized food establishments' health inspection scores. The objective of this study was to estimate the effect of the color-coded inspection score disclosure system in place since 2006 in Columbus, OH, by controlling for several confounding factors. This study incorporated cross-sectional time series data from food safety inspections performed from the Columbus Public Health Department. An ordinary least squares regression was used to assess the effect of the new inspection regime. The introduction of the new color-coded food safety inspection disclosure system increased inspection scores for all types of establishments and for most types of inspections, although significant differences were found in the degree of improvement. Overall, scores increased significantly by 1.14 points (of 100 possible). An exception to the positive results was found for inspections in response to foodborne disease complaints. Scores for these inspections declined significantly by 10.2 points. These results should be useful for both food safety researchers and public health decision makers.

  8. A Conceptual Aerospace Vehicle Structural System Modeling, Analysis and Design Process

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    2007-01-01

    A process for aerospace structural concept analysis and design is presented, with examples of a blended-wing-body fuselage, a multi-bubble fuselage concept, a notional crew exploration vehicle, and a high altitude long endurance aircraft. Aerospace vehicle structures must withstand all anticipated mission loads, yet must be designed to have optimal structural weight with the required safety margins. For a viable systems study of advanced concepts, these conflicting requirements must be imposed and analyzed early in the conceptual design cycle, preferably with a high degree of fidelity. In this design process, integrated multidisciplinary analysis tools are used in a collaborative engineering environment. First, parametric solid and surface models including the internal structural layout are developed for detailed finite element analyses. Multiple design scenarios are generated for analyzing several structural configurations and material alternatives. The structural stress, deflection, strain, and margins of safety distributions are visualized and the design is improved. Over several design cycles, the refined vehicle parts and assembly models are generated. The accumulated design data is used for the structural mass comparison and concept ranking. The present application focus on the blended-wing-body vehicle structure and advanced composite material are also discussed.

  9. [Topical issues of biological safety under current conditions. Part 2. Conceptual, terminological, and definitive framework of biological safety].

    PubMed

    Onishchenko, G G; Smolenskiĭ, V Iu; Ezhlova, E B; Demina, Iu V; Toporkov, V P; Toporkov, A V; Liapin, M N; Kutyrev, V V

    2013-01-01

    In accordance with the established conceptual base for the up-to-date broad interpretation of biological safety, and IHR (2005), developed is the notional, terminological, and definitive framework, comprising 33 elements. Key item of the nomenclature is the biological safety that is identified as population safety (individual, social, national) from direct and (or) human environment mediated (occupational, socio-economic, geopolitical infrastructures, ecological system) exposures to hazardous biological factors. Ultimate objective of the biological safety provision is to prevent and liquidate aftermaths of emergency situations of biological character either of natural or human origin (anthropogenic) arising from direct and indirect impact of the biological threats to the public health compatible with national and international security hazard. Elaborated terminological framework allows for the construction of self-sufficient semantic content for biological safety provision, subject to formalization in legislative, normative and methodological respects and indicative of improvement as regards organizational and structural-functional groundwork of the Russian Federation National chemical and biological safety system, which is to become topical issue of Part 3.

  10. Patient safety goals for the proposed Federal Health Information Technology Safety Center.

    PubMed

    Sittig, Dean F; Classen, David C; Singh, Hardeep

    2015-03-01

    The Office of the National Coordinator for Health Information Technology is expected to oversee creation of a Health Information Technology (HIT) Safety Center. While its functions are still being defined, the center is envisioned as a public-private entity focusing on promotion of HIT related patient safety. We propose that the HIT Safety Center leverages its unique position to work with key administrative and policy stakeholders, healthcare organizations (HCOs), and HIT vendors to achieve four goals: (1) facilitate creation of a nationwide 'post-marketing' surveillance system to monitor HIT related safety events; (2) develop methods and governance structures to support investigation of major HIT related safety events; (3) create the infrastructure and methods needed to carry out random assessments of HIT related safety in complex HCOs; and (4) advocate for HIT safety with government and private entities. The convening ability of a federally supported HIT Safety Center could be critically important to our transformation to a safe and effective HIT enabled healthcare system. © The Author 2014. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Facilitated Nurse Medication-Related Event Reporting to Improve Medication Management Quality and Safety in Intensive Care Units.

    PubMed

    Xu, Jie; Reale, Carrie; Slagle, Jason M; Anders, Shilo; Shotwell, Matthew S; Dresselhaus, Timothy; Weinger, Matthew B

    Medication safety presents an ongoing challenge for nurses working in complex, fast-paced, intensive care unit (ICU) environments. Studying ICU nurse's medication management-especially medication-related events (MREs)-provides an approach to analyze and improve medication safety and quality. The goal of this study was to explore the utility of facilitated MRE reporting in identifying system deficiencies and the relationship between MREs and nurses' work in the ICUs. We conducted 124 structured 4-hour observations of nurses in three different ICUs. Each observation included measurement of nurse's moment-to-moment activity and self-reports of workload and negative mood. The observer then obtained MRE reports from the nurse using a structured tool. The MREs were analyzed by three experts. MREs were reported in 35% of observations. The 60 total MREs included four medication errors and seven adverse drug events. Of the 49 remaining MREs, 65% were associated with negative patient impact. Task/process deficiencies were the most common contributory factor for MREs. MRE occurrence was correlated with increased total task volume. MREs also correlated with increased workload, especially during night shifts. Most of these MREs would not be captured by traditional event reporting systems. Facilitated MRE reporting provides a robust information source about potential breakdowns in medication management safety and opportunities for system improvement.

  12. Educating preschoolers about sun safety.

    PubMed Central

    Loescher, L J; Emerson, J; Taylor, A; Christensen, D H; McKinney, M

    1995-01-01

    OBJECTIVES. This feasibility study examined whether a sun safety curriculum designed for and administered to preschoolers affects their cognition (knowledge, comprehension, application) regarding sun safety. METHODS. Twelve classes of 4- to 5-year-olds were recruited from local preschools and randomly assigned to an intervention group or a control group. The intervention group received an investigator-developed sun safety curriculum; the control group did not. Children in both groups were tested at the beginning of the study about their cognition related to sun safety. They then received posttests 2 and 7 weeks following the pretest. RESULTS. The curriculum had a significant effect on the knowledge (P = .01) and comprehension (P = .006) components of cognition. The application component of cognition was not significantly changed by the curriculum. CONCLUSIONS. A structured curriculum was found to be an efficacious means of enhancing knowledge and comprehension of sun safety in preschool children. At the preoperational developmental stage, however, children may not be able to apply such knowledge and comprehension. PMID:7604917

  13. An artificial intelligence-based structural health monitoring system for aging aircraft

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Tang, Stanley S.; Chen, K. L.

    1993-01-01

    To reduce operating expenses, airlines are now using the existing fleets of commercial aircraft well beyond their originally anticipated service lives. The repair and maintenance of these 'aging aircraft' has therefore become a critical safety issue, both to the airlines and the Federal Aviation Administration. This paper presents the results of an innovative research program to develop a structural monitoring system that will be used to evaluate the integrity of in-service aerospace structural components. Currently in the final phase of its development, this monitoring system will indicate when repair or maintenance of a damaged structural component is necessary.

  14. Supervisor vs. employee safety perceptions and association with future injury in US limited-service restaurant workers.

    PubMed

    Huang, Yueng-Hsiang; Verma, Santosh K; Chang, Wen-Ruey; Courtney, Theodore K; Lombardi, David A; Brennan, Melanye J; Perry, Melissa J

    2012-07-01

    Many studies have found management commitment to safety to be an important construct of safety climate. This study examined the association between supervisor and employee (shared and individual) perceptions of management commitment to safety and the rate of future injuries in limited-service restaurant workers. A total of 453 participants (34 supervisors/managers and 419 employees) from 34 limited-service restaurants participated in a prospective cohort study. Employees' and managers' perceptions of management commitment to safety and demographic variables were collected at the baseline. The survey questions were made available in three languages: English, Spanish, and Portuguese. For the following 12 weeks, participants reported their injury experience and weekly work hours. A multivariate negative binomial generalized estimating equation model with compound symmetry covariance structure was used to assess the association between the rate of self-reported injuries and measures of safety perceptions. There were no significant relationships between supervisor and either individual or shared employee perceptions of management commitment to safety. Only individual employee perceptions were significantly associated with future employee injury experience but not supervisor safety perceptions or shared employee perceptions. Individual employee perception of management commitment to safety is a significant predictor for future injuries in restaurant environments. A study focusing on employee perceptions would be more predictive of injury outcomes than supervisor/manager perceptions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Strategies to curb structural changes of lithium/transition metal oxide cathode materials & the changes' effects on thermal & cycling stability

    DOE PAGES

    Yu, Xiqian; Hu, Enyuan; Bak, Seongmin; ...

    2015-12-07

    Structural transformation behaviors of several typical oxide cathode materials during a heating process are reviewed in detail to provide in-depth understanding of the key factors governing the thermal stability of these materials. Furthermore, we also discuss applying the information about heat induced structural evolution in the study of electrochemically induced structural changes. All these discussions are expected to provide valuable insights for designing oxide cathode materials with significantly improved structural stability for safe, long-life lithium ion batteries, as the safety of lithium-ion batteries is a critical issue. As a result, it is widely accepted that the thermal instability of themore » cathodes is one of the most critical factors in thermal runaway and related safety problems.« less

  16. Optimal Design of Integrated Systems Health Management (ISHM) Systems for improving safety in NASA's Exploration Vehicles: A Two-Level Multidisciplinary Design Approach

    NASA Technical Reports Server (NTRS)

    Tumer, Irem; Mehr, Ali Farhang

    2005-01-01

    In this paper, a two-level multidisciplinary design approach is described to optimize the effectiveness of ISHM s. At the top level, the overall safety of the mission consists of system-level variables, parameters, objectives, and constraints that are shared throughout the system and by all subsystems. Each subsystem level will then comprise of these shared values in addition to subsystem-specific variables, parameters, objectives and constraints. A hierarchical structure will be established to pass up or down shared values between the two levels with system-level and subsystem-level optimization routines.

  17. An integrative model of organizational safety behavior.

    PubMed

    Cui, Lin; Fan, Di; Fu, Gui; Zhu, Cherrie Jiuhua

    2013-06-01

    This study develops an integrative model of safety management based on social cognitive theory and the total safety culture triadic framework. The purpose of the model is to reveal the causal linkages between a hazardous environment, safety climate, and individual safety behaviors. Based on primary survey data from 209 front-line workers in one of the largest state-owned coal mining corporations in China, the model is tested using structural equation modeling techniques. An employee's perception of a hazardous environment is found to have a statistically significant impact on employee safety behaviors through a psychological process mediated by the perception of management commitment to safety and individual beliefs about safety. The integrative model developed here leads to a comprehensive solution that takes into consideration the environmental, organizational and employees' psychological and behavioral aspects of safety management. Copyright © 2013 National Safety Council and Elsevier Ltd. All rights reserved.

  18. Urban street structure and traffic safety.

    PubMed

    Mohan, Dinesh; Bangdiwala, Shrikant I; Villaveces, Andres

    2017-09-01

    This paper reports the influence of road type and junction density on road traffic fatality rates in U.S. cities. The Fatality Analysis Reporting System (FARS) files were used to obtain fatality rates for all cities for the years 2005-2010. A stratified random sample of 16 U.S. cities was taken, and cities with high and low road traffic fatality rates were compared on their road layout details (TIGER maps were used). Statistical analysis was done to determine the effect of junction density and road type on road traffic fatality rates. The analysis of road network and road traffic crash fatality rates in these randomly selected U.S. cities shows that, (a) higher number of junctions per road length was significantly associated with a lower motor- vehicle crash and pedestrian mortality rates, and, (b) increased number of kilometers of roads of any kind was associated with higher fatality rates, but an additional kilometer of main arterial road was associated with a significantly higher increase in total fatalities. When compared to non-arterial roads, the higher the ratio of highways and main arterial roads, there was an association with higher fatality rates. These results have important implications for road safety professionals. They suggest that once the road and street structure is put in place, that will influence whether a city has low or high traffic fatality rates. A city with higher proportion of wider roads and large city blocks will tend to have higher traffic fatality rates, and therefore in turn require much more efforts in police enforcement and other road safety measures. Urban planners need to know that smaller block size with relatively less wide roads will result in lower traffic fatality rates and this needs to be incorporated at the planning stage. Copyright © 2017 National Safety Council and Elsevier Ltd. All rights reserved.

  19. Modeling and analyzing traffic safety perceptions: An application to the speed limit reduction pilot project in Edmonton, Alberta.

    PubMed

    El-Basyouny, Karim; El-Bassiouni, Mohamed Yahia

    2013-03-01

    To address the speeding problem in residential areas, the City of Edmonton initiated a pilot project to reduce the posted speed limit from 50km/h to 40km/h within six residential communities. This paper investigates the community perceptions of traffic safety within the six pilot communities in two phases: prior to project initiation (pre-pilot) and following the end of the project (post-pilot). This objective was accomplished by analyzing the results of two random dialing telephone surveys comprising 300 residents each. A preliminary analysis showed compatible demographic configurations for the two samples and confirmed that the residents were aware of both the posted speed limits and the adopted speed management controls. For the confirmatory factor analysis (CFA), a two-group (pre-pilot and post-pilot) three-factor model was used to assess the residents' perceptions of the speeding behavior (Speeding), their concerns about traffic safety issues (Concerns), and their perceptions of traffic safety (Safety). Comparing the CFA results of the post-pilot survey versus those of the pre-pilot survey, it was evident that there was a significant decrease in Speeding and Concerns accompanied by a significant increase in Safety. A structural equations model (SEM) was also fitted to the data in order to assess the impact of Speeding and Concerns on Safety. The results showed that Concerns increase significantly with Speeding, and that both factors have significant negative impacts on Safety. However, while the impact of Concerns on Safety was direct, that of Speeding on Safety was largely indirect (i.e., mediated through Concerns). Overall, the multivariate analysis has demonstrated that the pilot project was successful in improving the residents' perceptions of traffic safety in their community. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  20. 75 FR 62436 - Notice of Issuance of Regulatory Guide

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-08

    ... Power Plants,'' includes in its scope safety- related structures, systems, and components (SSCs) that... monitor the effectiveness of maintenance for protective coatings within its scope (as discrete systems or... and Management System (ADAMS) under Accession No. ML102230359. Electronic copies of Regulatory Guide 1...

  1. Development of Structural Health Management Technology for Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Prosser, W. H.

    2003-01-01

    As part of the overall goal of developing Integrated Vehicle Health Management (IVHM) systems for aerospace vehicles, NASA has focused considerable resources on the development of technologies for Structural Health Management (SHM). The motivations for these efforts are to increase the safety and reliability of aerospace structural systems, while at the same time decreasing operating and maintenance costs. Research and development of SHM technologies has been supported under a variety of programs for both aircraft and spacecraft including the Space Launch Initiative, X-33, Next Generation Launch Technology, and Aviation Safety Program. The major focus of much of the research to date has been on the development and testing of sensor technologies. A wide range of sensor technologies are under consideration including fiber-optic sensors, active and passive acoustic sensors, electromagnetic sensors, wireless sensing systems, MEMS, and nanosensors. Because of their numerous advantages for aerospace applications, most notably being extremely light weight, fiber-optic sensors are one of the leading candidates and have received considerable attention.

  2. Use of read-across and computer-based predictive analysis for the safety assessment of PEG cocamines.

    PubMed

    Skare, Julie A; Blackburn, Karen; Wu, Shengde; Re, Thomas A; Duche, Daniel; Ringeissen, Stephanie; Bjerke, Donald L; Srinivasan, Viny; Eisenmann, Carol

    2015-04-01

    In the European Union animal testing has been eliminated for cosmetic ingredients while the US Cosmetic Ingredient Review Expert Panel may request data from animal studies. The use of read-across and predictive toxicology provides a path for filling data gaps without additional animal testing. The PEG cocamines are tertiary amines with an alkyl group derived from coconut fatty acids and two PEG chains of varying length. Toxicology data gaps for the PEG cocamines can be addressed by read-across based on structure-activity relationship using the framework described by Wu et al. (2010) for identifying suitable structural analogs. Data for structural analogs supports the conclusion that the PEG cocamines are non-genotoxic and not expected to exhibit systemic or developmental/reproductive toxicity with use in cosmetics. Due to lack of reliable dermal sensitization data for suitable analogs, this endpoint was addressed using predictive software (TIMES SS) as a first step (Laboratory of Mathematical Chemistry). The prediction for PEG cocamines was the same as that for PEGs, which have been concluded to not present a significant concern for dermal sensitization. This evaluation for PEG cocamines demonstrates the utility of read-across and predictive toxicology tools to assess the safety of cosmetic ingredients. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Comparing Occupational Health and Safety Management System Programming with Injury Rates in Poultry Production.

    PubMed

    Autenrieth, Daniel A; Brazile, William J; Douphrate, David I; Román-Muñiz, Ivette N; Reynolds, Stephen J

    2016-01-01

    Effective methods to reduce work-related injuries and illnesses in animal production agriculture are sorely needed. One approach that may be helpful for agriculture producers is the adoption of occupational health and safety management systems. In this replication study, the authors compared the injury rates on 32 poultry growing operations with the level of occupational health and safety management system programming at each farm. Overall correlations between injury rates and programming level were determined, as were correlations between individual management system subcomponents to ascertain which parts might be the most useful for poultry producers. It was found that, in general, higher levels of occupational health and safety management system programming were associated with lower rates of workplace injuries and illnesses, and that Management Leadership was the system subcomponent with the strongest correlation. The strength and significance of the observed associations were greater on poultry farms with more complete management system assessments. These findings are similar to those from a previous study of the dairy production industry, suggesting that occupational health and safety management systems may hold promise as a comprehensive way for producers to improve occupational health and safety performance. Further research is needed to determine the effectiveness of such systems to reduce farm work injuries and illnesses. These results are timely given the increasing focus on occupational safety and health management systems.

  4. Plutonium Finishing Plant (PFP) HVAC System Component Index

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DICK, J.D.

    2000-02-28

    The Plutonium Finishing Plant (PFP) WAC System includes sub-systems 25A through 25K. Specific system boundaries and justifications are contained in HNF-SD-CP-SDD-005, ''Definition and Means of Maintaining the Ventilation System Confinement Portion of the PFP Safety Envelope.'' The procurement requirements associated with the system necessitates procurement of some system equipment as Commercial Grade Items in accordance with HNF-PRO-268, ''Control of Purchased Items and Services.'' This document lists safety class and safety significant components for the Heating Ventilation Air Conditioning and specifies the critical characteristics for Commercial Grade Items, as required by HNF-PRO-268 and HNF-PRO-1819. These are the minimum specifications that themore » equipment must meet in order to properly perform its safety function. There may be several manufacturers or models that meet the critical characteristics for any one item.« less

  5. Automated Mixed Traffic Vehicle (AMTV) technology and safety study

    NASA Technical Reports Server (NTRS)

    Johnston, A. R.; Peng, T. K. C.; Vivian, H. C.; Wang, P. K.

    1978-01-01

    Technology and safety related to the implementation of an Automated Mixed Traffic Vehicle (AMTV) system are discussed. System concepts and technology status were reviewed and areas where further development is needed are identified. Failure and hazard modes were also analyzed and methods for prevention were suggested. The results presented are intended as a guide for further efforts in AMTV system design and technology development for both near term and long term applications. The AMTV systems discussed include a low speed system, and a hybrid system consisting of low speed sections and high speed sections operating in a semi-guideway. The safety analysis identified hazards that may arise in a properly functioning AMTV system, as well as hardware failure modes. Safety related failure modes were emphasized. A risk assessment was performed in order to create a priority order and significant hazards and failure modes were summarized. Corrective measures were proposed for each hazard.

  6. Intranet-based safety documentation in management of major hazards and occupational health and safety.

    PubMed

    Leino, Antti

    2002-01-01

    In the European Union, Council Directive 96/82/EC requires operators producing, using, or handling significant amounts of dangerous substances to improve their safety management systems in order to better manage the major accident potentials deriving from human error. A new safety management system for the Viikinmäki wastewater treatment plant in Helsinki, Finland, was implemented in this study. The system was designed to comply with both the new safety liabilities and the requirements of OHSAS 18001 (British Standards Institute, 1999). During the implementation phase experiences were gathered from the development processes in this small organisation. The complete documentation was placed in the intranet of the plant. Hyperlinks between documents were created to ensure convenience of use. Documentation was made accessible for all workers from every workstation.

  7. Using mental mapping to unpack perceived cycling risk.

    PubMed

    Manton, Richard; Rau, Henrike; Fahy, Frances; Sheahan, Jerome; Clifford, Eoghan

    2016-03-01

    Cycling is the most energy-efficient mode of transport and can bring extensive environmental, social and economic benefits. Research has highlighted negative perceptions of safety as a major barrier to the growth of cycling. Understanding these perceptions through the application of novel place-sensitive methodological tools such as mental mapping could inform measures to increase cyclist numbers and consequently improve cyclist safety. Key steps to achieving this include: (a) the design of infrastructure to reduce actual risks and (b) targeted work on improving safety perceptions among current and future cyclists. This study combines mental mapping, a stated-preference survey and a transport infrastructure inventory to unpack perceptions of cycling risk and to reveal both overlaps and discrepancies between perceived and actual characteristics of the physical environment. Participants translate mentally mapped cycle routes onto hard-copy base-maps, colour-coding road sections according to risk, while a transport infrastructure inventory captures the objective cycling environment. These qualitative and quantitative data are matched using Geographic Information Systems and exported to statistical analysis software to model the individual and (infra)structural determinants of perceived cycling risk. This method was applied to cycling conditions in Galway City (Ireland). Participants' (n=104) mental maps delivered data-rich perceived safety observations (n=484) and initial comparison with locations of cycling collisions suggests some alignment between perception and reality, particularly relating to danger at roundabouts. Attributing individual and (infra)structural characteristics to each observation, a Generalised Linear Mixed Model statistical analysis identified segregated infrastructure, road width, the number of vehicles as well as gender and cycling experience as significant, and interactions were found between individual and infrastructural variables. The paper concludes that mental mapping is a highly useful tool for assessing perceptions of cycling risk with a strong visual aspect and significant potential for public participation. This distinguishes it from more traditional cycling safety assessment tools that focus solely on the technical assessment of cycling infrastructure. Further development of online mapping tools is recommended as part of bicycle suitability measures to engage cyclists and the general public and to inform 'soft' and 'hard' cycling policy responses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Retaining Low-Income Minority Cancer Patients in a Depression Treatment Intervention Trial: Lessons Learned.

    PubMed

    Wells, Anjanette A; Palinkas, Lawrence A; Williams, Sha-Lai L; Ell, Kathleen

    2015-08-01

    Previously published work finds significant benefit from medical and behavioral health team care among safety-net patients with major depression. This qualitative study assessed clinical social worker, psychiatrist and patient navigator strategies to increase depression treatment among low-income minority cancer patients participating in the ADAPt-C clinical depression trial. Patient care retention strategies were elicited through in-depth, semi-structured interviews with nine behavioral health providers. Using grounded theory, concepts from the literature and dropout barriers identified by patients, guided interview prompts. Retention strategies clustered around five dropout barriers: (1) informational, (2) instrumental, (3) provider-patient therapeutic alliance, (4) clinic setting, and (5) depression treatment. All strategies emphasized the importance of communication between providers and patients. Findings suggest that strong therapeutic alliance and telephone facilitates collaborative team provider communication and depression treatment retention among patients in safety-net oncology care systems.

  9. Helping safeguard Veterans Affairs' hospital buildings by advanced earthquake monitoring

    USGS Publications Warehouse

    Kalkan, Erol; Banga, Krishna; Ulusoy, Hasan S.; Fletcher, Jon Peter B.; Leith, William S.; Blair, James L.

    2012-01-01

    In collaboration with the U.S. Department of Veterans Affairs (VA), the National Strong Motion Project of the U.S. Geological Survey has recently installed sophisticated seismic systems that will monitor the structural integrity of hospital buildings during earthquake shaking. The new systems have been installed at more than 20 VA medical campuses across the country. These monitoring systems, which combine sensitive accelerometers and real-time computer calculations, are capable of determining the structural health of each structure rapidly after an event, helping to ensure the safety of patients and staff.

  10. Control of Suspect/Counterfeit and Defective Items

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheriff, Marnelle L.

    2013-09-03

    This procedure implements portions of the requirements of MSC-MP-599, Quality Assurance Program Description. It establishes the Mission Support Alliance (MSA) practices for minimizing the introduction of and identifying, documenting, dispositioning, reporting, controlling, and disposing of suspect/counterfeit and defective items (S/CIs). employees whose work scope relates to Safety Systems (i.e., Safety Class [SC] or Safety Significant [SS] items), non-safety systems and other applications (i.e., General Service [GS]) where engineering has determined that their use could result in a potential safety hazard. MSA implements an effective Quality Assurance (QA) Program providing a comprehensive network of controls and verification providing defense-in-depth by preventingmore » the introduction of S/CIs through the design, procurement, construction, operation, maintenance, and modification of processes. This procedure focuses on those safety systems, and other systems, including critical load paths of lifting equipment, where the introduction of S/CIs would have the greatest potential for creating unsafe conditions.« less

  11. Justification of system of assessment of ecological safety degree of housing construction objects

    NASA Astrophysics Data System (ADS)

    Kankhva, Vadim

    2017-10-01

    In article characteristics and properties of competitiveness of housing construction objects are investigated, criteria and points of national systems of ecological building’s standardization are structured, the compliance assessment form on stages of life cycle of a capital construction project is developed. The main indicators of level of ecological safety considering requirements of the international ISO standards 9000 and ISO 14000 and which are based on the basic principles of general quality management (TQM) are presented.

  12. Comparative Safety and Tolerability of Anti-VEGF therapy in Age-Related Macular Degeneration

    PubMed Central

    Modi, Yasha S.; Tanchon, Carley; Ehlers, Justis P

    2015-01-01

    Neovascular age-related macular degeneration (NVAMD) is one of the leading causes of blindness. Over the last decade, the treatment of NVAMD has been revolutionized by the development intravitreal anti-vascular endothelial growth factor (VEGF) therapies. Several anti-VEGF medications are used for the treatment of NVAMD. The safety and tolerability of these medications deserve review given the high prevalence of NVAMD and the significant utilization of these medications. Numerous large randomized clinical trials have not shown any definitive differential safety relative to ocular or systemic safety of these medications. Intravitreal anti-VEGF therapy does appear to impact systemic VEGF levels, but the implications of these changes remain unclear. One unique safety concern relates drug compounding and the potential risks of contamination, specifically for bevacizumab. Continued surveillance for systemic safety concerns, particularly for rare events is merited. Overall these medications are well tolerated and effective in the treatment of NVAMD. PMID:25700714

  13. Discussion on runoff purification technology of highway bridge deck based on water quality safety

    NASA Astrophysics Data System (ADS)

    Tan, Sheng-guang; Liu, Xue-xin; Zou, Guo-ping; Xiong, Xin-zhu; Tao, Shuang-cheng

    2018-06-01

    Aiming at the actual problems existing, including a poor purification effect of highway bridge runoff collection and treatment system across sensitive water and necessary manual emergency operation, three kinds of technology, three pools system of bridge runoff purification, the integral pool of bridge runoff purification and ecological planting tank, are put forward by optimizing the structure of purification unit and system setting. At the same time, we come up with an emergency strategy for hazardous material leakage basing on automatic identification and remote control of traffic accidents. On the basis of combining these with the optimized pool structure, sensitive water safety can be guaranteed and water pollution, from directly discharging of bridge runoff, can be decreased. For making up for the shortages of green highway construction technology, the technique has important reference value.

  14. Seismic Fragility Analysis of a Degraded Condensate Storage Tank

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nie, J.; Braverman, J.; Hofmayer, C.

    2011-05-16

    The Korea Atomic Energy Research Institute (KAERI) and Brookhaven National Laboratory are conducting a collaborative research project to develop seismic capability evaluation technology for degraded structures and components in nuclear power plants (NPPs). One of the goals of this collaboration endeavor is to develop seismic fragility analysis methods that consider the potential effects of age-related degradation of structures, systems, and components (SSCs). The essential part of this collaboration is aimed at achieving a better understanding of the effects of aging on the performance of SSCs and ultimately on the safety of NPPs. A recent search of the degradation occurrences ofmore » structures and passive components (SPCs) showed that the rate of aging related degradation in NPPs was not significantly large but increasing, as the plants get older. The slow but increasing rate of degradation of SPCs can potentially affect the safety of the older plants and become an important factor in decision making in the current trend of extending the operating license period of the plants (e.g., in the U.S. from 40 years to 60 years, and even potentially to 80 years). The condition and performance of major aged NPP structures such as the containment contributes to the life span of a plant. A frequent misconception of such low degradation rate of SPCs is that such degradation may not pose significant risk to plant safety. However, under low probability high consequence initiating events, such as large earthquakes, SPCs that have slowly degraded over many years could potentially affect plant safety and these effects need to be better understood. As part of the KAERI-BNL collaboration, a condensate storage tank (CST) was analyzed to estimate its seismic fragility capacities under various postulated degradation scenarios. CSTs were shown to have a significant impact on the seismic core damage frequency of a nuclear power plant. The seismic fragility capacity of the CST was developed for five cases: (1) a baseline analysis where the design condition (undegraded) is assumed, (2) a scenario with degraded stainless steel tank shell, (3) a scenario with degraded anchor bolts, (4) a scenario with anchorage concrete cracking, and (5) a perfect correlation of the above three degradation scenarios. This paper will present the methodology for the time-dependent fragility calculation and discuss the insights drawn from this study. To achieve a better understanding of the effects of aging on the performance of structures and passive components (SPCs) in nuclear power plants (NPPs), the Korea Atomic Energy Research Institute (KAERI) and Brookhaven National Laboratory (BNL) are collaborating to develop seismic fragility analysis methods that consider age-related degradation of SPCs. The rate of age-related degradation of SPCs was not found to be significantly large, but increasing as the plants get older. The slow but increasing rate of degradation of SPCs can potentially affect the safety of the older plants and become an important factor in decision making in the current trend of extending the operating license period of the plants (e.g., in the U.S. from 40 years to 60 years, and even potentially to 80 years). In this paper, a condensate storage tank (CST) was analyzed to estimate its seismic fragility capacities under various postulated degradation scenarios. This paper will present the methodology for the time-dependent fragility calculation and discuss the insights drawn from this study.« less

  15. Linking Nurses' Clinical Leadership to Patient Care Quality: The Role of Transformational Leadership and Workplace Empowerment.

    PubMed

    Boamah, Sheila

    2018-03-01

    Background While improving patient safety requires strong nursing leadership, there has been little empirical research that has examined the mechanisms by which leadership influences patient safety outcomes. Aim To test a model examining relationships among transformational leadership, structural empowerment, staff nurse clinical leadership, and nurse-assessed adverse patient outcomes. Methods A cross-sectional survey was conducted with a randomly selected sample of 378 registered nurses working in direct patient care in acute care hospitals across Ontario, Canada. Structural equation modeling was used to test the hypothesized model. Results The model had an acceptable fit, and all paths were significant. Transformational leadership was significantly associated with decreased adverse patient outcomes through structural empowerment and staff nurse clinical leadership. Discussion This study highlights the importance of transformational leadership in creating empowering practice environments that foster high-quality care. The findings indicate that a more complete understanding of what drives desired patient outcomes warrants the need to focus on how to empower nurses and foster clinical leadership practices at the point of care. Conclusion In planning safety strategies, managers must demonstrate transformational leadership behaviors in order to modify the work environment to create better defenses for averting adverse events.

  16. Improving cardiac surgical care: a work systems approach.

    PubMed

    Wiegmann, Douglas A; Eggman, Ashley A; Elbardissi, Andrew W; Parker, Sarah Henrickson; Sundt, Thoralf M

    2010-09-01

    Over the past 50 years, significant improvements in cardiac surgical care have been achieved. Nevertheless, surgical errors that significantly impact patient safety continue to occur. In order to further improve surgical outcomes, patient safety programs must focus on rectifying work system factors in the operating room (OR) that negatively impact the delivery of reliable surgical care. The goal of this paper is to provide an integrative review of specific work system factors in the OR that may directly impact surgical care processes, as well as the subsequent recommendations that have been put forth to improve surgical outcomes and patient safety. The important role that surgeons can play in facilitating work system changes in the OR is also discussed. The paper concludes with a discussion of the challenges involved in assessing the impact that interventions have on improving surgical care. Opportunities for future research are also highlighted throughout the paper. 2010 Elsevier Ltd. All rights reserved.

  17. Safe design of healthcare facilities

    PubMed Central

    Reiling, J

    2006-01-01

    The physical environment has a significant impact on health and safety; however, hospitals have not been designed with the explicit goal of enhancing patient safety through facility design. In April 2002, St Joseph's Community Hospital of West Bend, a member of SynergyHealth, brought together leaders in healthcare and systems engineering to develop a set of safety‐driven facility design recommendations and principles that would guide the design of a new hospital facility focused on patient safety. By introducing safety‐driven innovations into the facility design process, environmental designers and healthcare leaders will be able to make significant contributions to patient safety. PMID:17142606

  18. [Organizational and management companies models].

    PubMed

    Tomei, G; Tomei, F; Fiaschetti, M; De Sio, S; Tria, M; Schifano, M P; Monti, C; Tasciotti, Z; Panfili, T; Caciari, A; Sancini, A

    2010-01-01

    With the legislative decree 81/08 and s.m.i. it's explicitly defined a model of management and corporate organization that can contribute to prevent security risks in work environments. The realization of the model is not obligatory, but desirable because the result of its implementation is a decrease of company's risks and costs for safety. Our study group has developed the structure of an organizational and management model for corporate safety and the tools necessary for its realization. The realization of a model is structured in various phases: initial exam, safety policy, planification, implementation, monitoring, system retest and improvement. Such a model, in continuous evolution, is based on the responsibilities of the different corporate figures through an accurate analysis of the measured risks and the measures adopted.

  19. A new SMART sensing system for aerospace structures

    NASA Astrophysics Data System (ADS)

    Zhang, David C.; Yu, Pin; Beard, Shawn; Qing, Peter; Kumar, Amrita; Chang, Fu-Kuo

    2007-04-01

    It is essential to ensure the safety and reliability of in-service structures such as unmanned vehicles by detecting structural cracking, corrosion, delamination, material degradation and other types of damage in time. Utilization of an integrated sensor network system can enable automatic inspection of such damages ultimately. Using a built-in network of actuators and sensors, Acellent is providing tools for advanced structural diagnostics. Acellent's integrated structural health monitoring system consists of an actuator/sensor network, supporting signal generation and data acquisition hardware, and data processing, visualization and analysis software. This paper describes the various features of Acellent's latest SMART sensing system. The new system is USB-based and is ultra-portable using the state-of-the-art technology, while delivering many functions such as system self-diagnosis, sensor diagnosis, through-transmission mode and pulse-echo mode of operation and temperature measurement. Performance of the new system was evaluated for assessment of damage in composite structures.

  20. The Role of Probabilistic Design Analysis Methods in Safety and Affordability

    NASA Technical Reports Server (NTRS)

    Safie, Fayssal M.

    2016-01-01

    For the last several years, NASA and its contractors have been working together to build space launch systems to commercialize space. Developing commercial affordable and safe launch systems becomes very important and requires a paradigm shift. This paradigm shift enforces the need for an integrated systems engineering environment where cost, safety, reliability, and performance need to be considered to optimize the launch system design. In such an environment, rule based and deterministic engineering design practices alone may not be sufficient to optimize margins and fault tolerance to reduce cost. As a result, introduction of Probabilistic Design Analysis (PDA) methods to support the current deterministic engineering design practices becomes a necessity to reduce cost without compromising reliability and safety. This paper discusses the importance of PDA methods in NASA's new commercial environment, their applications, and the key role they can play in designing reliable, safe, and affordable launch systems. More specifically, this paper discusses: 1) The involvement of NASA in PDA 2) Why PDA is needed 3) A PDA model structure 4) A PDA example application 5) PDA link to safety and affordability.

  1. Comparative health and safety assessment of the SPS and alternative electrical generation systems

    NASA Astrophysics Data System (ADS)

    Habegger, L. J.; Gasper, J. R.; Brown, C. D.

    1980-07-01

    A comparative analysis of health and safety risks is presented for the Satellite Power System and five alternative baseload electrical generation systems: a low-Btu coal gasification system with an open-cycle gas turbine combined with a steam topping cycle; a light water fission reactor system without fuel reprocessing; a liquid metal fast breeder fission reactor system; a central station terrestrial photovoltaic system; and a first generation fusion system with magnetic confinement. For comparison, risk from a decentralized roof-top photovoltaic system with battery storage is also evaluated. Quantified estimates of public and occupational risks within ranges of uncertainty were developed for each phase of the energy system. The potential significance of related major health and safety issues that remain unquantitied are also discussed.

  2. Comparative health and safety assessment of the SPS and alternative electrical generation systems

    NASA Technical Reports Server (NTRS)

    Habegger, L. J.; Gasper, J. R.; Brown, C. D.

    1980-01-01

    A comparative analysis of health and safety risks is presented for the Satellite Power System and five alternative baseload electrical generation systems: a low-Btu coal gasification system with an open-cycle gas turbine combined with a steam topping cycle; a light water fission reactor system without fuel reprocessing; a liquid metal fast breeder fission reactor system; a central station terrestrial photovoltaic system; and a first generation fusion system with magnetic confinement. For comparison, risk from a decentralized roof-top photovoltaic system with battery storage is also evaluated. Quantified estimates of public and occupational risks within ranges of uncertainty were developed for each phase of the energy system. The potential significance of related major health and safety issues that remain unquantitied are also discussed.

  3. 75 FR 45173 - Notice of Issuance of Regulatory Guide

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-02

    ... coolant system for measuring process variables (e.g., pressure, level, and flow). The term ``safety- related'' refers to those structures, systems, and components necessary to ensure (1) the integrity of the... are located in the NRC's Agencywide Documents Access and Management System (ADAMS) under Accession No...

  4. Patient Safety Learning Systems: A Systematic Review and Qualitative Synthesis.

    PubMed

    2017-01-01

    A patient safety learning system (sometimes called a critical incident reporting system) refers to structured reporting, collation, and analysis of critical incidents. To inform a provincial working group's recommendations for an Ontario Patient Safety Event Learning System, a systematic review was undertaken to determine design features that would optimize its adoption into the health care system and would inform implementation strategies. The objective of this review was to address two research questions: (a) what are the barriers to and facilitators of successful adoption of a patient safety learning system reported by health professionals and (b) what design components maximize successful adoption and implementation? To answer the first question, we used a published systematic review. To answer the second question, we used scoping study methodology. Common barriers reported in the literature by health care professionals included fear of blame, legal penalties, the perception that incident reporting does not improve patient safety, lack of organizational support, inadequate feedback, lack of knowledge about incident reporting systems, and lack of understanding about what constitutes an error. Common facilitators included a non-accusatory environment, the perception that incident reporting improves safety, clarification of the route of reporting and of how the system uses reports, enhanced feedback, role models (such as managers) using and promoting reporting, legislated protection of those who report, ability to report anonymously, education and training opportunities, and clear guidelines on what to report. Components of a patient safety learning system that increased successful adoption and implementation were emphasis on a blame-free culture that encourages reporting and learning, clear guidelines on how and what to report, making sure the system is user-friendly, organizational development support for data analysis to generate meaningful learning outcomes, and multiple mechanisms to provide feedback through routes to reporters and the wider community (local meetings, email alerts, bulletins, paper contributions, etc.). The design of a patient safety learning system can be optimized by an awareness of the barriers to and facilitators of successful adoption and implementation identified by health care professionals. Evaluation of the effectiveness of a patient safety learning system is needed to refine its design.

  5. Teams communicating through STEPPS.

    PubMed

    Stead, Karen; Kumar, Saravana; Schultz, Timothy J; Tiver, Sue; Pirone, Christy J; Adams, Robert J; Wareham, Conrad A

    2009-06-01

    To evaluate the effectiveness of the implementation of a TeamSTEPPS (Team Strategies and Tools to Enhance Performance and Patient Safety) program at an Australian mental health facility. TeamSTEPPS is an evidence-based teamwork training system developed in the United States. Five health care sites in South Australia implemented TeamSTEPPS using a train-the-trainer model over an 8-month intervention period commencing January 2008 and concluding September 2008. A team of senior clinical staff was formed at each site to drive the improvement process. Independent researchers used direct observation and questionnaire surveys to evaluate the effectiveness of the implementation in three outcome areas: observed team behaviours; staff attitudes and opinions; and clinical performance and outcome. The results reported here focus on one site, an inpatient mental health facility. Team knowledge, skills and attitudes; patient safety culture; incident reporting rates; seclusion rates; observation for the frequency of use of TeamSTEPPS tools. Outcomes included restructuring of multidisciplinary meetings and the introduction of structured communication tools. The evaluation of patient safety culture and of staff knowledge, skills and attitudes (KSA) to teamwork and communication indicated a significant improvement in two dimensions of patient safety culture (frequency of event reporting, and organisational learning) and a 6.8% increase in the total KSA score. Clinical outcomes included reduced rates of seclusion. TeamSTEPPS implementation had a substantial impact on patient safety culture, teamwork and communication at an Australian mental health facility. It encouraged a culture of learning from patient safety incidents and making continuous improvements.

  6. Does perceived neighborhood walkability and safety mediate the association between education and meeting physical activity guidelines?

    PubMed

    Pratt, Michael; Yin, Shaoman; Soler, Robin; Njai, Rashid; Siegel, Paul Z; Liao, Youlian

    2015-04-09

    The role of neighborhood walkability and safety in mediating the association between education and physical activity has not been quantified. We used data from the 2010 and 2012 Communities Putting Prevention to Work Behavioral Risk Factor Surveillance System and structural equation modeling to estimate how much of the effect of education level on physical activity was mediated by perceived neighborhood walkability and safety. Neighborhood walkability accounts for 11.3% and neighborhood safety accounts for 6.8% of the effect. A modest proportion of the important association between education and physical activity is mediated by perceived neighborhood walkability and safety, suggesting that interventions focused on enhancing walkability and safety could reduce the disparity in physical activity associated with education level.

  7. The impact of fire suppression tasks on firefighter hydration: a critical review with consideration of the utility of reported hydration measures.

    PubMed

    Walker, Adam; Pope, Rodney; Orr, Robin Marc

    2016-01-01

    Firefighting is a highly stressful occupation with unique physical challenges, apparel and environments that increase the potential for dehydration. Dehydration leaves the firefighter at risk of harm to their health, safety and performance. The purpose of this review was to critically analyse the current literature investigating the impact of fighting 'live' fires on firefighter hydration. A systematic search was performed of four electronic databases for relevant published studies investigating the impact of live fire suppression on firefighter hydration. Study eligibility was assessed using strict inclusion and exclusion criteria. The included studies were critically appraised using the Downs and Black protocol and graded according to the Kennelly grading system. Ten studies met the eligibility criteria for this review. The average score for methodological quality was 55 %, ranging from 50 % ('fair' quality) to 61 % ('good' quality) with a 'substantial agreement' between raters ( k  = .772). Wildfire suppression was considered in five studies and structural fire suppression in five studies. Results varied across the studies, reflecting variations in outcome measures, hydration protocols and interventions. Three studies reported significant indicators of dehydration resulting from structural fire suppression, while two studies found mixed results, with some measures indicating dehydration and other measures an unchanged hydration status. Three studies found non-significant changes in hydration resulting from wildfire firefighting and two studies found significant improvements in markers of hydration. Ad libitum fluid intake was a common factor across the studies finding no, or less severe, dehydration. The evidence confirms that structural and wildfire firefighting can cause dehydration. Ad libitum drinking may be sufficient to maintain hydration in many wildfire environments but possibly not during intense, longer duration, hot structural fire operations. Future high quality research better quantifying the effects of these influences on the degree of dehydration is required to inform policies and procedures that ensure firefighter health and safety.

  8. NASA's Spaceliner Investment Area Technology Activities

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe; Lyles, Garry M. (Technical Monitor)

    2001-01-01

    NASA's has established long term goals for access-to-space. The third generation launch systems are to be fully reusable and operational around 2025. The goals for the third generation launch system are to significantly reduce cost and improve safety over current conditions. The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop space transportation technologies. Within ASTP, under the Spaceliner Investment Area, third generation technologies are being pursued in the areas of propulsion, airframes, integrated vehicle health management (IVHM), avionics, power, operations, and range. The ASTP program will mature these technologies through both ground and flight system testing. The Spaceliner Investment Area plans to mature vehicle technologies to reduce the implementation risks for future commercially developed reusable launch vehicles (RLV). The plan is to substantially increase the design and operating margins of the third generation RLV (the Space Shuttle is the first generation) by incorporating advanced technologies in propulsion, materials, structures, thermal protection systems, avionics, and power. Advancements in design tools and better characterization of the operational environment will allow improvements in design margins. Improvements in operational efficiencies will be provided through use of advanced integrated health management, operations, and range technologies. The increase in margins will allow components to operate well below their design points resulting in improved component operating life, reliability, and safety which in turn reduces both maintenance and refurbishment costs. These technologies have the potential of enabling horizontal takeoff by reducing the takeoff weight and achieving the goal of airline-like operation. These factors in conjunction with increased flight rates from an expanding market will result in significant improvements in safety and reductions in operational costs of future vehicles. The paper describes current status, future plans and technologies that are being matured by the Spaceliner Investment Area under the Advanced Space Transportation Program Office.

  9. The growth of partnerships to support patient safety practice adoption.

    PubMed

    Mendel, Peter; Damberg, Cheryl L; Sorbero, Melony E S; Varda, Danielle M; Farley, Donna O

    2009-04-01

    To document the numbers and types of interorganizational partnerships within the national patient safety domain, changes over time in these networks, and their potential for disseminating patient safety knowledge and practices. Self-reported information gathered from representatives of national-level organizations active in promoting patient safety. Social network analysis was used to examine the structure and composition of partnership networks and changes between 2004 and 2006. Two rounds of structured telephone interviews (n=35 organizations in 2004 and 55 in 2006). Patient safety partnerships expanded between 2004 and 2006. The average number of partnerships per interviewed organization increased 40 percent and activities per reported partnership increased over 50 percent. Partnerships increased in all activity domains, particularly dissemination and tools development. Fragmentation of the overall partnership network decreased and potential for information flow increased. Yet network centralization increased, suggesting vulnerability to partnership failure if key participants disengage. Growth in partnerships signifies growing strength in the capacity to disseminate and implement patient safety advancements in the U.S. health care system. The centrality of AHRQ in these networks of partnerships bodes well for its leadership role in disseminating information, tools, and practices generated by patient safety research projects.

  10. Design and application of a tool for structuring, capitalizing and making more accessible information and lessons learned from accidents involving machinery.

    PubMed

    Sadeghi, Samira; Sadeghi, Leyla; Tricot, Nicolas; Mathieu, Luc

    2017-12-01

    Accident reports are published in order to communicate the information and lessons learned from accidents. An efficient accident recording and analysis system is a necessary step towards improvement of safety. However, currently there is a shortage of efficient tools to support such recording and analysis. In this study we introduce a flexible and customizable tool that allows structuring and analysis of this information. This tool has been implemented under TEEXMA®. We named our prototype TEEXMA®SAFETY. This tool provides an information management system to facilitate data collection, organization, query, analysis and reporting of accidents. A predefined information retrieval module provides ready access to data which allows the user to quickly identify the possible hazards for specific machines and provides information on the source of hazards. The main target audience for this tool includes safety personnel, accident reporters and designers. The proposed data model has been developed by analyzing different accident reports.

  11. Employee engagement, boredom and frontline construction workers feeling safe in their workplace.

    PubMed

    Whiteoak, John W; Mohamed, Sherif

    2016-08-01

    Systems thinking is a philosophy currently prevalent within construction safety literature that is applied to understand and improve safety in sociotechnical systems. Among systems, the site-project organizational system is of particular interest to this paper. Using focus group and survey feedback research to learn about how safety incidents effect levels of construction workers engagement this paper reveals how a safety incident provides an opportunity to create a potential quality (productivity) upgrade within an organization. The research approach involved a qualitative study involving 27 frontline supervisors and a follow-up survey completed by 207 frontline workers in the Australian Asphalt and Pavement Industry. The focus group interviews supported the articulation of the concepts of tacit safety, explicit safety, situational awareness, foresight ability, practical intelligence and crew synergy. Our findings indicate that having regular shift changes and other job site workers being fatigued are influential on perceptions of tacit safety. An individual's foresight ability was found to be the most potent predictor of worker perceptions of work engagement. The paper explains that relatively small improvements in worker perceptions of safety can bring about significant improvements in employee engagement and productivity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Pressure Safety Program Implementation at ORNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lower, Mark; Etheridge, Tom; Oland, C. Barry

    2013-01-01

    The Oak Ridge National Laboratory (ORNL) is a US Department of Energy (DOE) facility that is managed by UT-Battelle, LLC. In February 2006, DOE promulgated worker safety and health regulations to govern contractor activities at DOE sites. These regulations, which are provided in 10 CFR 851, Worker Safety and Health Program, establish requirements for worker safety and health program that reduce or prevent occupational injuries, illnesses, and accidental losses by providing DOE contractors and their workers with safe and healthful workplaces at DOE sites. The regulations state that contractors must achieve compliance no later than May 25, 2007. According tomore » 10 CFR 851, Subpart C, Specific Program Requirements, contractors must have a structured approach to their worker safety and health programs that at a minimum includes provisions for pressure safety. In implementing the structured approach for pressure safety, contractors must establish safety policies and procedures to ensure that pressure systems are designed, fabricated, tested, inspected, maintained, repaired, and operated by trained, qualified personnel in accordance with applicable sound engineering principles. In addition, contractors must ensure that all pressure vessels, boilers, air receivers, and supporting piping systems conform to (1) applicable American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (2004) Sections I through XII, including applicable code cases; (2) applicable ASME B31 piping codes; and (3) the strictest applicable state and local codes. When national consensus codes are not applicable because of pressure range, vessel geometry, use of special materials, etc., contractors must implement measures to provide equivalent protection and ensure a level of safety greater than or equal to the level of protection afforded by the ASME or applicable state or local codes. This report documents the work performed to address legacy pressure vessel deficiencies and comply with pressure safety requirements in 10 CFR 851. It also describes actions taken to develop and implement ORNL’s Pressure Safety Program.« less

  13. Adverse Housing Conditions and Early-Onset Delinquency.

    PubMed

    Jackson, Dylan B; Newsome, Jamie; Lynch, Kellie R

    2017-09-01

    Housing constitutes an important health resource for children. Research has revealed that, when housing conditions are unfavorable, they can interfere with child health, academic performance, and cognition. Little to no research, however, has considered whether adverse housing conditions and early-onset delinquency are significantly associated with one another. This study explores the associations between structural and non-structural housing conditions and delinquent involvement during childhood. Data from the Fragile Families and Child Wellbeing Study (FFCWS) were employed in this study. Each adverse housing condition was significantly associated with early-onset delinquency. Even so, disarray and deterioration were only significantly linked to early delinquent involvement in the presence of health/safety hazards. The predicted probability of early-onset delinquency among children exposed to housing risks in the presence of health/safety hazards was nearly three times as large as the predicted probability of early-onset delinquency among children exposed only to disarray and/or deterioration, and nearly four times as large as the predicted probability of early-onset delinquency among children exposed to none of the adverse housing conditions. The findings suggest that minimizing housing-related health/safety hazards among at-risk subsets of the population may help to alleviate other important public health concerns-particularly early-onset delinquency. Addressing household health/safety hazards may represent a fruitful avenue for public health programs aimed at the prevention of early-onset delinquency. © Society for Community Research and Action 2017.

  14. The outcomes of recent patient safety education interventions for trainee physicians and medical students: a systematic review

    PubMed Central

    Kirkman, Matthew A; Sevdalis, Nick; Arora, Sonal; Baker, Paul; Vincent, Charles; Ahmed, Maria

    2015-01-01

    Objective To systematically review the latest evidence for patient safety education for physicians in training and medical students, updating, extending and improving on a previous systematic review on this topic. Design A systematic review. Data sources Embase, Ovid Medline and PsycINFO databases. Study selection Studies including an evaluation of patient safety training interventions delivered to trainees/residents and medical students published between January 2009 and May 2014. Data extraction The review was performed using a structured data capture tool. Thematic analysis also identified factors influencing successful implementation of interventions. Results We identified 26 studies reporting patient safety interventions: 11 involving students and 15 involving trainees/residents. Common educational content included a general overview of patient safety, root cause/systems-based analysis, communication and teamwork skills, and quality improvement principles and methodologies. The majority of courses were well received by learners, and improved patient safety knowledge, skills and attitudes. Moreover, some interventions were shown to result in positive behaviours, notably subsequent engagement in quality improvement projects. No studies demonstrated patient benefit. Availability of expert faculty, competing curricular/service demands and institutional culture were important factors affecting implementation. Conclusions There is an increasing trend for developing educational interventions in patient safety delivered to trainees/residents and medical students. However, significant methodological shortcomings remain and additional evidence of impact on patient outcomes is needed. While there is some evidence of enhanced efforts to promote sustainability of such interventions, further work is needed to encourage their wider adoption and spread. PMID:25995240

  15. Modelling and simulation of complex sociotechnical systems: envisioning and analysing work environments

    PubMed Central

    Hettinger, Lawrence J.; Kirlik, Alex; Goh, Yang Miang; Buckle, Peter

    2015-01-01

    Accurate comprehension and analysis of complex sociotechnical systems is a daunting task. Empirically examining, or simply envisioning the structure and behaviour of such systems challenges traditional analytic and experimental approaches as well as our everyday cognitive capabilities. Computer-based models and simulations afford potentially useful means of accomplishing sociotechnical system design and analysis objectives. From a design perspective, they can provide a basis for a common mental model among stakeholders, thereby facilitating accurate comprehension of factors impacting system performance and potential effects of system modifications. From a research perspective, models and simulations afford the means to study aspects of sociotechnical system design and operation, including the potential impact of modifications to structural and dynamic system properties, in ways not feasible with traditional experimental approaches. This paper describes issues involved in the design and use of such models and simulations and describes a proposed path forward to their development and implementation. Practitioner Summary: The size and complexity of real-world sociotechnical systems can present significant barriers to their design, comprehension and empirical analysis. This article describes the potential advantages of computer-based models and simulations for understanding factors that impact sociotechnical system design and operation, particularly with respect to process and occupational safety. PMID:25761227

  16. Influence of different safety shoes on gait and plantar pressure: a standardized examination of workers in the automotive industry

    PubMed Central

    Ochsmann, Elke; Noll, Ulrike; Ellegast, Rolf; Hermanns, Ingo; Kraus, Thomas

    2016-01-01

    Objective: Working conditions, such as walking and standing on hard surfaces, can increase the development of musculoskeletal complaints. At the interface between flooring and musculoskeletal system, safety shoes may play an important role in the well-being of employees. The aim of this study was to evaluate the effects of different safety shoes on gait and plantar pressure distributions on industrial flooring. Methods: Twenty automotive workers were individually fitted out with three different pairs of safety shoes ( "normal" shoes, cushioned shoes, and midfoot bearing shoes). They walked at a given speed of 1.5 m/s. The CUELA measuring system and shoe insoles were used for gait analysis and plantar pressure measurements, respectively. Statistical analysis was conducted by ANOVA analysis for repeated measures. Results: Walking with cushioned safety shoes or a midfoot bearing safety shoe led to a significant decrease of the average trunk inclination (p<0.005). Furthermore, the average hip flexion angle decreased for cushioned shoes as well as midfoot bearing shoes (p<0.002). The range of motion of the knee joint increased for cushioned shoes. As expected, plantar pressure distributions varied significantly between cushioned or midfoot bearing shoes and shoes without ergonomic components. Conclusion: The overall function of safety shoes is the avoidance of injury in case of an industrial accident, but in addition, safety shoes could be a long-term preventive instrument for maintaining health of the employees' musculoskeletal system, as they are able to affect gait parameters. Further research needs to focus on safety shoes in working situations. PMID:27488038

  17. Influence of different safety shoes on gait and plantar pressure: a standardized examination of workers in the automotive industry.

    PubMed

    Ochsmann, Elke; Noll, Ulrike; Ellegast, Rolf; Hermanns, Ingo; Kraus, Thomas

    2016-09-30

    Working conditions, such as walking and standing on hard surfaces, can increase the development of musculoskeletal complaints. At the interface between flooring and musculoskeletal system, safety shoes may play an important role in the well-being of employees. The aim of this study was to evaluate the effects of different safety shoes on gait and plantar pressure distributions on industrial flooring. Twenty automotive workers were individually fitted out with three different pairs of safety shoes ( "normal" shoes, cushioned shoes, and midfoot bearing shoes). They walked at a given speed of 1.5 m/s. The CUELA measuring system and shoe insoles were used for gait analysis and plantar pressure measurements, respectively. Statistical analysis was conducted by ANOVA analysis for repeated measures. Walking with cushioned safety shoes or a midfoot bearing safety shoe led to a significant decrease of the average trunk inclination (p<0.005). Furthermore, the average hip flexion angle decreased for cushioned shoes as well as midfoot bearing shoes (p<0.002). The range of motion of the knee joint increased for cushioned shoes. As expected, plantar pressure distributions varied significantly between cushioned or midfoot bearing shoes and shoes without ergonomic components. The overall function of safety shoes is the avoidance of injury in case of an industrial accident, but in addition, safety shoes could be a long-term preventive instrument for maintaining health of the employees' musculoskeletal system, as they are able to affect gait parameters. Further research needs to focus on safety shoes in working situations.

  18. Workflow interruptions, cognitive failure and near-accidents in health care.

    PubMed

    Elfering, Achim; Grebner, Simone; Ebener, Corinne

    2015-01-01

    Errors are frequent in health care. A specific model was tested that affirms failure in cognitive action regulation to mediate the influence of nurses' workflow interruptions and safety conscientiousness on near-accidents in health care. One hundred and sixty-five nurses from seven Swiss hospitals participated in a questionnaire survey. Structural equation modelling confirmed the hypothesised mediation model. Cognitive failure in action regulation significantly mediated the influence of workflow interruptions on near-accidents (p < .05). An indirect path from conscientiousness to near-accidents via cognitive failure in action regulation was also significant (p < .05). Compliance with safety regulations was significantly related to cognitive failure and near-accidents; moreover, cognitive failure mediated the association between compliance and near-accidents (p < .05). Contrary to expectations, compliance with safety regulations was not related to workflow interruptions. Workflow interruptions caused by colleagues, patients and organisational constraints are likely to trigger errors in nursing. Work redesign is recommended to reduce cognitive failure and improve safety of nurses and patients.

  19. A hierarchical factor analysis of a safety culture survey.

    PubMed

    Frazier, Christopher B; Ludwig, Timothy D; Whitaker, Brian; Roberts, D Steve

    2013-06-01

    Recent reviews of safety culture measures have revealed a host of potential factors that could make up a safety culture (Flin, Mearns, O'Connor, & Bryden, 2000; Guldenmund, 2000). However, there is still little consensus regarding what the core factors of safety culture are. The purpose of the current research was to determine the core factors, as well as the structure of those factors that make up a safety culture, and establish which factors add meaningful value by factor analyzing a widely used safety culture survey. A 92-item survey was constructed by subject matter experts and was administered to 25,574 workers across five multi-national organizations in five different industries. Exploratory and hierarchical confirmatory factor analyses were conducted revealing four second-order factors of a Safety Culture consisting of Management Concern, Personal Responsibility for Safety, Peer Support for Safety, and Safety Management Systems. Additionally, a total of 12 first-order factors were found: three on Management Concern, three on Personal Responsibility, two on Peer Support, and four on Safety Management Systems. The resulting safety culture model addresses gaps in the literature by indentifying the core constructs which make up a safety culture. This clarification of the major factors emerging in the measurement of safety cultures should impact the industry through a more accurate description, measurement, and tracking of safety cultures to reduce loss due to injury. Copyright © 2013 National Safety Council and Elsevier Ltd. All rights reserved.

  20. Impact of the introduction of electronic prescribing on staff perceptions of patient safety and organizational culture.

    PubMed

    Davies, James; Pucher, Philip H; Ibrahim, Heba; Stubbs, Ben

    2017-05-15

    Electronic prescribing (EP) systems are online technology platforms by which medicines can be prescribed, administered, and stock controlled. The actual impact of EP on patient safety is not truly understood. This study seeks to assess the impact of the implementation of an EP system on safety culture, as well as assessing differences between clinical respondent groups and considering their implications. Staff completed a modified Safety Attitudes Questionnaire survey, 6 weeks following the introduction of EP across surgical services in a hospital in Dorset, England. Responses were assessed and differences between respondent groups compared. Rates of self-reported adverse events were compared before and after implementation. Overall response rate was 34.5%. There was no significant difference between usage patterns and previous experience with EP between user groups. Overall safety was felt to have been reduced by the introduction of EP. Significant differences between clinician and nonclinicians were seen in ability to discuss errors (3.23 ± 0.5 versus 2.8 ± 0.69, P = 0.004), drug chart access, and ease of medication prescribing. Regression analysis did not identify any confounding factors. Despite a significant reduction in the adverse event rate in other divisions of the hospital that did not implement EP at the same time, this same reduction was not seen in the surgical department. This is the first study to assess the impact of EP on safety culture using a validated assessment tool (Safety Attitudes Questionnaire). Overall safety culture deteriorated following introduction of EP. Problems with system usability/intuitiveness, nonstandardized implementation, and competence assessment strategies may have all contributed to this result. Centers seeking to implement EP in future must consider these factors to ensure a positive impact on patient safety and outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1984-01-01

    An assessment of NASA's safety performance for 1983 affirms that NASA Headquarters and Center management teams continue to hold the safety of manned flight to be their prime concern, and that essential effort and resources are allocated for maintaining safety in all of the development and operational programs. Those conclusions most worthy of NASA management concentration are given along with recommendations for action concerning; product quality and utility; space shuttle main engine; landing gear; logistics and management; orbiter structural loads, landing speed, and pitch control; the shuttle processing contractor; and the safety of flight operations. It appears that much needs to be done before the Space Transportation System can achieve the reliability necessary for safe, high rate, low cost operations.

  2. Validation of Safety-Critical Systems for Aircraft Loss-of-Control Prevention and Recovery

    NASA Technical Reports Server (NTRS)

    Belcastro, Christine M.

    2012-01-01

    Validation of technologies developed for loss of control (LOC) prevention and recovery poses significant challenges. Aircraft LOC can result from a wide spectrum of hazards, often occurring in combination, which cannot be fully replicated during evaluation. Technologies developed for LOC prevention and recovery must therefore be effective under a wide variety of hazardous and uncertain conditions, and the validation framework must provide some measure of assurance that the new vehicle safety technologies do no harm (i.e., that they themselves do not introduce new safety risks). This paper summarizes a proposed validation framework for safety-critical systems, provides an overview of validation methods and tools developed by NASA to date within the Vehicle Systems Safety Project, and develops a preliminary set of test scenarios for the validation of technologies for LOC prevention and recovery

  3. Reducing non-collision injuries in special transportation services by enhanced safety culture.

    PubMed

    Wretstrand, Anders; Petzäll, Jan; Bylund, Per-Olof; Falkmer, Torbjörn

    2010-04-01

    Previous research has pointed out that non-collision injuries occur among wheelchair users in Special Transportation Services (STS - a demand-responsive transport mode). The organization of such modes is also quite complex, involving both stakeholders and key personnel at different levels. Our objective was therefore to qualitatively explore the state of safety, as perceived and discussed within a workplace context. Focus groups were held with drivers of both taxi companies and bus companies. The results indicated that passengers run the risk of being injured without being involved in a vehicle collision. The pertinent organizational and corporate culture did not prioritize safety. The drivers identified some relatively clear-cut safety threats, primarily before and after a ride, at vehicle standstill. The driver's work place seemed to be surrounded with a reactive instead of proactive structure. We conclude that not only vehicle and wheelchair technical safety must be considered in STS, but also system safety. Instead of viewing drivers' error as a cause, it should be seen as a symptom of systems failure. Human error is connected to aspects of tools, tasks, and operating environment. Enhanced understanding and influence of these connections within STS and accessible public transport systems will promote safety for wheelchair users. Copyright 2009 IPEM. Published by Elsevier Ltd. All rights reserved.

  4. 78 FR 41434 - Proposed Revisions to Design of Structures, Components, Equipment and Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-10

    ..., Components, Equipment and Systems AGENCY: Nuclear Regulatory Commission. ACTION: Standard review plan-draft... Systems, Piping Components and their Associated Supports,'' of NUREG-0800, ``Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants: LWR Edition.'' DATES: Submit comments by...

  5. Safety climate and safety behaviors in the construction industry: The importance of co-workers commitment to safety.

    PubMed

    Schwatka, Natalie V; Rosecrance, John C

    2016-06-16

    There is growing empirical evidence that as safety climate improves work site safety practice improve. Safety climate is often measured by asking workers about their perceptions of management commitment to safety. However, it is less common to include perceptions of their co-workers commitment to safety. While the involvement of management in safety is essential, working with co-workers who value and prioritize safety may be just as important. To evaluate a concept of safety climate that focuses on top management, supervisors and co-workers commitment to safety, which is relatively new and untested in the United States construction industry. Survey data was collected from a cohort of 300 unionized construction workers in the United States. The significance of direct and indirect (mediation) effects among safety climate and safety behavior factors were evaluated via structural equation modeling. Results indicated that safety climate was associated with safety behaviors on the job. More specifically, perceptions of co-workers commitment to safety was a mediator between both management commitment to safety climate factors and safety behaviors. These results support workplace health and safety interventions that build and sustain safety climate and a commitment to safety amongst work teams.

  6. Structural health monitoring feature design by genetic programming

    NASA Astrophysics Data System (ADS)

    Harvey, Dustin Y.; Todd, Michael D.

    2014-09-01

    Structural health monitoring (SHM) systems provide real-time damage and performance information for civil, aerospace, and other high-capital or life-safety critical structures. Conventional data processing involves pre-processing and extraction of low-dimensional features from in situ time series measurements. The features are then input to a statistical pattern recognition algorithm to perform the relevant classification or regression task necessary to facilitate decisions by the SHM system. Traditional design of signal processing and feature extraction algorithms can be an expensive and time-consuming process requiring extensive system knowledge and domain expertise. Genetic programming, a heuristic program search method from evolutionary computation, was recently adapted by the authors to perform automated, data-driven design of signal processing and feature extraction algorithms for statistical pattern recognition applications. The proposed method, called Autofead, is particularly suitable to handle the challenges inherent in algorithm design for SHM problems where the manifestation of damage in structural response measurements is often unclear or unknown. Autofead mines a training database of response measurements to discover information-rich features specific to the problem at hand. This study provides experimental validation on three SHM applications including ultrasonic damage detection, bearing damage classification for rotating machinery, and vibration-based structural health monitoring. Performance comparisons with common feature choices for each problem area are provided demonstrating the versatility of Autofead to produce significant algorithm improvements on a wide range of problems.

  7. Ending on a positive: Examining the role of safety leadership decisions, behaviours and actions in a safety critical situation.

    PubMed

    Donovan, Sarah-Louise; Salmon, Paul M; Horberry, Timothy; Lenné, Michael G

    2018-01-01

    Safety leadership is an important factor in supporting safe performance in the workplace. The present case study examined the role of safety leadership during the Bingham Canyon Mine high-wall failure, a significant mining incident in which no fatalities or injuries were incurred. The Critical Decision Method (CDM) was used in conjunction with a self-reporting approach to examine safety leadership in terms of decisions, behaviours and actions that contributed to the incidents' safe outcome. Mapping the analysis onto Rasmussen's Risk Management Framework (Rasmussen, 1997), the findings demonstrate clear links between safety leadership decisions, and emergent behaviours and actions across the work system. Communication and engagement based decisions featured most prominently, and were linked to different leadership practices across the work system. Further, a core sub-set of CDM decision elements were linked to the open flow and exchange of information across the work system, which was critical to supporting the safe outcome. The findings provide practical implications for the development of safety leadership capability to support safety within the mining industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Shared Learning and the Drive to Improve Patient Safety: Lessons Learned from the Pittsburgh Regional Healthcare Initiative

    DTIC Science & Technology

    2005-01-01

    the environmental, cultural, and infrastructure changes in health care that will be necessary to achieve significant, widespread patient safety...to improved patient outcomes. Achievement of improved patient safety requires enhanced health care leadership commitment and learning systems that... health care organizations and practitioners to work together to identify and solve patient safety problems. Providing safe care requires a learning

  9. NASA's Nuclear Thermal Propulsion Project

    NASA Technical Reports Server (NTRS)

    Houts, Mike; Mitchell, Sonny; Kim, Tony; Borowski, Stan; Power, Kevin; Scott, John; Belvin, Anthony; Clement, Steve

    2015-01-01

    HEOMD's (Human Exploration and Operations Mission Directorate) AES (Advanced Exploration Systems) Nuclear Thermal Propulsion (NTP) project is making significant progress. First of four FY 2015 milestones achieved this month. Safety is the highest priority for NTP (as with other space systems). After safety comes affordability. No centralized capability for developing, qualifying, and utilizing an NTP system. Will require a strong, closely integrated team. Tremendous potential benefits from NTP and other space fission systems. No fundamental reason these systems cannot be developed and utilized in a safe, affordable fashion.

  10. Application of the SEIPS Model to Analyze Medication Safety in a Crisis Residential Center.

    PubMed

    Steele, Maria L; Talley, Brenda; Frith, Karen H

    2018-02-01

    Medication safety and error reduction has been studied in acute and long-term care settings, but little research is found in the literature regarding mental health settings. Because mental health settings are complex, medication administration is vulnerable to a variety of errors from transcription to administration. The purpose of this study was to analyze critical factors related to a mental health work system structure and processes that threaten safe medication administration practices. The Systems Engineering Initiative for Patient Safety (SEIPS) model provides a framework to analyze factors affecting medication safety. The model approach analyzes the work system concepts of technology, tasks, persons, environment, and organization to guide the collection of data. In the study, the Lean methodology tools were used to identify vulnerabilities in the system that could be targeted later for improvement activities. The project director completed face-to-face interviews, asked nurses to record disruptions in a log, and administered a questionnaire to nursing staff. The project director also conducted medication chart reviews and recorded medication errors using a standardized taxonomy for errors that allowed categorization of the prevalent types of medication errors. Results of the study revealed disruptions during the medication process, pharmacology training needs, and documentation processes as the primary opportunities for improvement. The project engaged nurses to identify sustainable quality improvement strategies to improve patient safety. The mental health setting carries challenges for safe medication administration practices. Through analysis of the structure, process, and outcomes of medication administration, opportunities for quality improvement and sustainable interventions were identified, including minimizing the number of distractions during medication administration, training nurses on psychotropic medications, and improving the documentation system. A task force was created to analyze the descriptive data and to establish objectives aimed at improving efficiency of the work system and care process involved in medication administration at the end of the project. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Influence of workplace demands on nurses' perception of patient safety.

    PubMed

    Ramanujam, Rangaraj; Abrahamson, Kathleen; Anderson, James G

    2008-06-01

    Patient safety is an ongoing challenge in the design and delivery of health-care services. As registered nurses play an integral role in patient safety, further examination of the link between nursing work and patient safety is warranted. The present study examines the relationship between nurses' perceptions of job demands and nurses' perceptions of patient safety. Structural equation modeling is used to analyze the data collected from a survey of 430 registered nurses at two community hospitals in the USA. As hypothesized, nurses' perception of patient safety decreases as the job demands increase. The level of personal control over practice directly affects nurses' perception of the ability to assure patient well-being. Nurses who work full-time and are highly educated have a decreased perception of patient safety, as well. The significant relationship between job demands and patient safety confirms that nurses make a connection between their working conditions and the ability to deliver safe care.

  12. Making work safer: testing a model of social exchange and safety management.

    PubMed

    DeJoy, David M; Della, Lindsay J; Vandenberg, Robert J; Wilson, Mark G

    2010-04-01

    This study tests a conceptual model that focuses on social exchange in the context of safety management. The model hypothesizes that supportive safety policies and programs should impact both safety climate and organizational commitment. Further, perceived organizational support is predicted to partially mediate both of these relationships. Study outcomes included traditional outcomes for both organizational commitment (e.g., withdrawal behaviors) as well as safety climate (e.g., self-reported work accidents). Questionnaire responses were obtained from 1,723 employees of a large national retailer. Using structural equation modeling (SEM) techniques, all of the model's hypothesized relationships were statistically significant and in the expected directions. The results are discussed in terms of social exchange in organizations and research on safety climate. Maximizing safety is a social-technical enterprise. Expectations related to social exchange and reciprocity figure prominently in creating a positive climate for safety within the organization. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. An Examination of Safety Management Systems and Aviation Technologies in the Helicopter Emergency Medical Services Industry

    NASA Astrophysics Data System (ADS)

    Buckner, Steven A.

    The Helicopter Emergency Medical Service (HEMS) industry has a significant role in the transportation of injured patients, but has experienced more accidents than all other segments of the aviation industry combined. With the objective of addressing this discrepancy, this study assesses the effect of safety management systems implementation and aviation technologies utilization on the reduction of HEMS accident rates. Participating were 147 pilots from Federal Aviation Regulations Part 135 HEMS operators, who completed a survey questionnaire based on the Safety Culture and Safety Management System Survey (SCSMSS). The study assessed the predictor value of SMS implementation and aviation technologies to the frequency of HEMS accident rates with correlation and multiple linear regression. The correlation analysis identified three significant positive relationships. HEMS years of experience had a high significant positive relationship with accident rate (r=.90; p<.05); SMS had a moderate significant positive relationship to Night Vision Goggles (NVG) (r=.38; p<.05); and SMS had a slight significant positive relationship with Terrain Avoidance Warning System (TAWS) (r=.234; p<.05). Multiple regression analysis suggested that when combined with NVG, TAWS, and SMS, HEMS years of experience explained 81.4% of the variance in accident rate scores (p<.05), and HEMS years of experience was found to be a significant predictor of accident rates (p<.05). Additional quantitative regression analysis was recommended to replicate the results of this study and to consider the influence of these variables for continued reduction of HEMS accidents, and to induce execution of SMS and aviation technologies from a systems engineering application. Recommendations for practice included the adoption of existing regulatory guidance for a SMS program. A qualitative analysis was also recommended for future study SMS implementation and HEMS accident rate from the pilot's perspective. A quantitative longitudinal study would further explore inferential relationships between the study variables. Current strategies should include the increased utilization of available aviation technology resources as this proactive stance may be beneficial for the establishment of an effective safety culture within the HEMS industry.

  14. 49 CFR 193.2401 - Scope.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Equipment § 193.2401 Scope. After March 31, 2000, each new, replaced, relocated or significantly altered vaporization equipment, liquefaction equipment, and control systems must be...

  15. 76 FR 41041 - Special Conditions: Gulfstream Aerospace LP (GALP) Model G250 Airplane, Interaction of Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ... performance. They cannot be considered in isolation but should be included in the overall safety evaluation of.... 25.629(b)(2) are maintained. (4) Failures of the system that result in forced structural vibrations...

  16. 46 CFR 175.540 - Equivalents.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... safety management system is in place on board a vessel. The Commandant will consider the size and corporate structure of a vessel's company when determining the acceptability of an equivalent system... require engineering evaluations and tests to demonstrate the equivalence of the substitute. (b) The...

  17. Structural health monitoring using wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Sreevallabhan, K.; Nikhil Chand, B.; Ramasamy, Sudha

    2017-11-01

    Monitoring and analysing health of large structures like bridges, dams, buildings and heavy machinery is important for safety, economical, operational, making prior protective measures, and repair and maintenance point of view. In recent years there is growing demand for such larger structures which in turn make people focus more on safety. By using Microelectromechanical Systems (MEMS) Accelerometer we can perform Structural Health Monitoring by studying the dynamic response through measure of ambient vibrations and strong motion of such structures. By using Wireless Sensor Networks (WSN) we can embed these sensors in wireless networks which helps us to transmit data wirelessly thus we can measure the data wirelessly at any remote location. This in turn reduces heavy wiring which is a cost effective as well as time consuming process to lay those wires. In this paper we developed WSN based MEMS-accelerometer for Structural to test the results in the railway bridge near VIT University, Vellore campus.

  18. A cross-cultural study of organizational factors on safety: Japanese vs. Taiwanese oil refinery plants.

    PubMed

    Hsu, Shang Hwa; Lee, Chun-Chia; Wu, Muh-Cherng; Takano, Kenichi

    2008-01-01

    This study attempts to identify idiosyncrasies of organizational factors on safety and their influence mechanisms in Taiwan and Japan. Data were collected from employees of Taiwanese and Japanese oil refinery plants. Results show that organizational factors on safety differ in the two countries. Organizational characteristics in Taiwanese plants are highlighted as: higher level of management commitment to safety, harmonious interpersonal relationship, more emphasis on safety activities, higher devotion to supervision, and higher safety self-efficacy, as well as high quality of safety performance. Organizational characteristics in Japanese plants are highlighted as: higher level of employee empowerment and attitude towards continuous improvement, more emphasis on systematic safety management approach, efficient reporting system and teamwork, and high quality of safety performance. The casual relationships between organizational factors and workers' safety performance were investigated using structural equation modeling (SEM). Results indicate that the influence mechanisms of organizational factors in Taiwan and Japan are different. These findings provide insights into areas of safety improvement in emerging countries and developed countries respectively.

  19. Statechart Analysis with Symbolic PathFinder

    NASA Technical Reports Server (NTRS)

    Pasareanu, Corina S.

    2012-01-01

    We report here on our on-going work that addresses the automated analysis and test case generation for software systems modeled using multiple Statechart formalisms. The work is motivated by large programs such as NASA Exploration, that involve multiple systems that interact via safety-critical protocols and are designed with different Statechart variants. To verify these safety-critical systems, we have developed Polyglot, a framework for modeling and analysis of model-based software written using different Statechart formalisms. Polyglot uses a common intermediate representation with customizable Statechart semantics and leverages the analysis and test generation capabilities of the Symbolic PathFinder tool. Polyglot is used as follows: First, the structure of the Statechart model (expressed in Matlab Stateflow or Rational Rhapsody) is translated into a common intermediate representation (IR). The IR is then translated into Java code that represents the structure of the model. The semantics are provided as "pluggable" modules.

  20. Factors Influencing Implementation of OHSAS 18001 in Indian Construction Organizations: Interpretive Structural Modeling Approach

    PubMed Central

    Rajaprasad, Sunku Venkata Siva; Chalapathi, Pasupulati Venkata

    2015-01-01

    Background Construction activity has made considerable breakthroughs in the past two decades on the back of increases in development activities, government policies, and public demand. At the same time, occupational health and safety issues have become a major concern to construction organizations. The unsatisfactory safety performance of the construction industry has always been highlighted since the safety management system is neglected area and not implemented systematically in Indian construction organizations. Due to a lack of enforcement of the applicable legislation, most of the construction organizations are forced to opt for the implementation of Occupational Health Safety Assessment Series (OHSAS) 18001 to improve safety performance. Methods In order to better understand factors influencing the implementation of OHSAS 18001, an interpretive structural modeling approach has been applied and the factors have been classified using matrice d'impacts croises-multiplication appliqué a un classement (MICMAC) analysis. The study proposes the underlying theoretical framework to identify factors and to help management of Indian construction organizations to understand the interaction among factors influencing in implementation of OHSAS 18001. Results Safety culture, continual improvement, morale of employees, and safety training have been identified as dependent variables. Safety performance, sustainable construction, and conducive working environment have been identified as linkage variables. Management commitment and safety policy have been identified as the driver variables. Conclusion Management commitment has the maximum driving power and the most influential factor is safety policy, which states clearly the commitment of top management towards occupational safety and health. PMID:26929828

  1. Modeling joint restoration strategies for interdependent infrastructure systems.

    PubMed

    Zhang, Chao; Kong, Jingjing; Simonovic, Slobodan P

    2018-01-01

    Life in the modern world depends on multiple critical services provided by infrastructure systems which are interdependent at multiple levels. To effectively respond to infrastructure failures, this paper proposes a model for developing optimal joint restoration strategy for interdependent infrastructure systems following a disruptive event. First, models for (i) describing structure of interdependent infrastructure system and (ii) their interaction process, are presented. Both models are considering the failure types, infrastructure operating rules and interdependencies among systems. Second, an optimization model for determining an optimal joint restoration strategy at infrastructure component level by minimizing the economic loss from the infrastructure failures, is proposed. The utility of the model is illustrated using a case study of electric-water systems. Results show that a small number of failed infrastructure components can trigger high level failures in interdependent systems; the optimal joint restoration strategy varies with failure occurrence time. The proposed models can help decision makers to understand the mechanisms of infrastructure interactions and search for optimal joint restoration strategy, which can significantly enhance safety of infrastructure systems.

  2. Reliability analysis of the F-8 digital fly-by-wire system

    NASA Technical Reports Server (NTRS)

    Brock, L. D.; Goodman, H. A.

    1981-01-01

    The F-8 Digital Fly-by-Wire (DFBW) flight test program intended to provide the technology for advanced control systems, giving aircraft enhanced performance and operational capability is addressed. A detailed analysis of the experimental system was performed to estimated the probabilities of two significant safety critical events: (1) loss of primary flight control function, causing reversion to the analog bypass system; and (2) loss of the aircraft due to failure of the electronic flight control system. The analysis covers appraisal of risks due to random equipment failure, generic faults in design of the system or its software, and induced failure due to external events. A unique diagrammatic technique was developed which details the combinatorial reliability equations for the entire system, promotes understanding of system failure characteristics, and identifies the most likely failure modes. The technique provides a systematic method of applying basic probability equations and is augmented by a computer program written in a modular fashion that duplicates the structure of these equations.

  3. Multi-level Bayesian safety analysis with unprocessed Automatic Vehicle Identification data for an urban expressway.

    PubMed

    Shi, Qi; Abdel-Aty, Mohamed; Yu, Rongjie

    2016-03-01

    In traffic safety studies, crash frequency modeling of total crashes is the cornerstone before proceeding to more detailed safety evaluation. The relationship between crash occurrence and factors such as traffic flow and roadway geometric characteristics has been extensively explored for a better understanding of crash mechanisms. In this study, a multi-level Bayesian framework has been developed in an effort to identify the crash contributing factors on an urban expressway in the Central Florida area. Two types of traffic data from the Automatic Vehicle Identification system, which are the processed data capped at speed limit and the unprocessed data retaining the original speed were incorporated in the analysis along with road geometric information. The model framework was proposed to account for the hierarchical data structure and the heterogeneity among the traffic and roadway geometric data. Multi-level and random parameters models were constructed and compared with the Negative Binomial model under the Bayesian inference framework. Results showed that the unprocessed traffic data was superior. Both multi-level models and random parameters models outperformed the Negative Binomial model and the models with random parameters achieved the best model fitting. The contributing factors identified imply that on the urban expressway lower speed and higher speed variation could significantly increase the crash likelihood. Other geometric factors were significant including auxiliary lanes and horizontal curvature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Meteorological Satellites (METSAT) and Earth Observing System (EOS) Advanced Microwave Sounding Unit-A (AMSU-A) Stress Analysis Report

    NASA Technical Reports Server (NTRS)

    Heffner, Robert

    1996-01-01

    Stress analysis of the primary structure of the Meteorological Satellites Project (METSAT) Advanced Microwave Sounding Units-A, A1 Module using static loads is presented. The structural margins of safety and natural frequency predictions for the METSAT design are reported.

  5. Earth Observing System (EOS)/Advanced Microwave Sounding Unit-A (AMSU-A) Stress Analysis Report, A1 Module. Addendum 1

    NASA Technical Reports Server (NTRS)

    Ely, W.

    1996-01-01

    This addendum reports the structural margins of safety and natural frequency predictions for the design following the EOS AMSU-A1 Mechanical/Structural Subsystem Critical Design Review (CDR), based on a new and more refined finite element model.

  6. Safety behavior: Job demands, job resources, and perceived management commitment to safety.

    PubMed

    Hansez, Isabelle; Chmiel, Nik

    2010-07-01

    The job demands-resources model posits that job demands and resources influence outcomes through job strain and work engagement processes. We test whether the model can be extended to effort-related "routine" safety violations and "situational" safety violations provoked by the organization. In addition we test more directly the involvement of job strain than previous studies which have used burnout measures. Structural equation modeling provided, for the first time, evidence of predicted relationships between job strain and "routine" violations and work engagement with "routine" and "situational" violations, thereby supporting the extension of the job demands-resources model to safety behaviors. In addition our results showed that a key safety-specific construct 'perceived management commitment to safety' added to the explanatory power of the job demands-resources model. A predicted path from job resources to perceived management commitment to safety was highly significant, supporting the view that job resources can influence safety behavior through both general motivational involvement in work (work engagement) and through safety-specific processes.

  7. From striving to thriving: systems thinking, strategy, and the performance of safety net hospitals.

    PubMed

    Clark, Jonathan; Singer, Sara; Kane, Nancy; Valentine, Melissa

    2013-01-01

    Safety net hospitals (SNH) have, on average, experienced declining financial margins and faced an elevated risk of closure over the past decade. Despite these challenges, not all SNHs are weakening and some are prospering. These higher-performing SNHs provide substantial care to safety net populations and produce sustainable financial returns. Drawing on the alternative structural positioning and resource-based views, we explore strategic management as a source of performance differences across SNHs. We employ a mixed-method design, blending quantitative and qualitative data and analysis. We measure financial performance using hospital operating margin and quantitatively evaluate its relationship with a limited set of well-defined structural positions. We further evaluate these structures and also explore the internal resources of SNHs based on nine in-depth case studies developed from site visits and extensive interviews. Quantitative results suggest that structural positions alone are not related to performance. Comparative case studies suggest that higher-performing SNH differ in four respects: (1) coordinating patient flow across the care continuum, (2) engaging in partnerships with other providers, (3) managing scope of services, and (4) investing in human capital. On the basis of these findings, we propose a model of strategic action related to systems thinking--the ability to see wholes and interrelationships rather than individual parts alone. Our exploratory findings suggest the need to move beyond generic strategies alone and acknowledge the importance of underlying managerial capabilities. Specifically, our findings suggest that effective strategy is a function of both the internal resources (e.g., managers' systems-thinking capability) and structural positions (e.g., partnerships) of organizations. From this perspective, framing resources and positioning as distinct alternatives misses the nuances of how strategic advantage is actually achieved.

  8. Relationships among Safety Climate, Safety Behavior, and Safety Outcomes for Ethnic Minority Construction Workers.

    PubMed

    Lyu, Sainan; Hon, Carol K H; Chan, Albert P C; Wong, Francis K W; Javed, Arshad Ali

    2018-03-09

    In many countries, it is common practice to attract and employ ethnic minority (EM) or migrant workers in the construction industry. This primarily occurs in order to alleviate the labor shortage caused by an aging workforce with a lack of new entrants. Statistics show that EM construction workers are more likely to have occupational fatal and nonfatal injuries than their local counterparts; however, the mechanism underlying accidents and injuries in this vulnerable population has been rarely examined. This study aims to investigate relationships among safety climate, safety behavior, and safety outcomes for EM construction workers. To this end, a theoretical research model was developed based on a comprehensive review of the current literature. In total, 289 valid questionnaires were collected face-to-face from 223 Nepalese construction workers and 56 Pakistani construction workers working on 15 construction sites in Hong Kong. Structural equation modelling was employed to validate the constructs and test the hypothesized model. Results show that there were significant positive relationships between safety climate and safety behaviors, and significant negative relationships between safety behaviors and safety outcomes for EM construction workers. This research contributes to the literature regarding EM workers by providing empirical evidence of the mechanisms by which safety climate affects safety behaviors and outcomes. It also provides insights in order to help the key stakeholders formulate safety strategies for EM workers in many areas where numerous EM workers are employed, such as in the U.S., the UK, Australia, Singapore, Malaysia, and the Middle East.

  9. Contractor-, steward-, and coworker-safety practice: associations with musculoskeletal pain and injury-related absence among construction apprentices.

    PubMed

    Kim, Seung-Sup; Dutra, Lauren M; Okechukwu, Cassandra A

    2014-07-01

    This paper sought to assess organizational safety practices at three different levels of hierarchical workplace structure and to examine their association with injury outcomes among construction apprentices. Using a cross-sectional sample of 1,775 construction apprentices, three measures of organizational safety practice were assessed: contractor-, steward-, and coworker-safety practice. Each safety practice measure was assessed using three similar questions (i.e., on-the-job safety commitment, following required or recommended safe work practices, and correcting unsafe work practices); the summed average of the responses ranged from 1 to 4, with a higher score indicating poorer safety practice. Outcome variables included the prevalence of four types of musculoskeletal pain (i.e., neck, shoulder, hand, and back pain) and injury-related absence. In adjusted analyses, contractor-safety practice was associated with both hand pain (OR: 1.27, 95 % CI: 1.04, 1.54) and back pain (OR: 1.40, 95 % CI: 1.17, 1.68); coworker-safety practice was related to back pain (OR: 1.42, 95 % CI: 1.18, 1.71) and injury-related absence (OR: 1.36, 95 % CI: 1.11, 1.67). In an analysis that included all three safety practice measures simultaneously, the association between coworker-safety practice and injury-related absence remained significant (OR: 1.68, 95 % CI: 1.20, 2.37), whereas all other associations became non-significant. This study suggests that organizational safety practice, particularly coworker-safety practice, is associated with injury outcomes among construction apprentices.

  10. Applications of Advanced Nondestructive Measurement Techniques to Address Safety of Flight Issues on NASA Spacecraft

    NASA Technical Reports Server (NTRS)

    Prosser, Bill

    2016-01-01

    Advanced nondestructive measurement techniques are critical for ensuring the reliability and safety of NASA spacecraft. Techniques such as infrared thermography, THz imaging, X-ray computed tomography and backscatter X-ray are used to detect indications of damage in spacecraft components and structures. Additionally, sensor and measurement systems are integrated into spacecraft to provide structural health monitoring to detect damaging events that occur during flight such as debris impacts during launch and assent or from micrometeoroid and orbital debris, or excessive loading due to anomalous flight conditions. A number of examples will be provided of how these nondestructive measurement techniques have been applied to resolve safety critical inspection concerns for the Space Shuttle, International Space Station (ISS), and a variety of launch vehicles and unmanned spacecraft.

  11. HFE safety reviews of advanced nuclear power plant control rooms

    NASA Technical Reports Server (NTRS)

    Ohara, John

    1994-01-01

    Advanced control rooms (ACR's) will utilize human-system interface (HSI) technologies that may have significant implications for plant safety in that they will affect the operator's overall role and means of interacting with the system. The Nuclear Regulatory Commission (NRC) reviews the human factors engineering (HFE) aspects of HSI's to ensure that they are designed to good HFE principles and support performance and reliability in order to protect public health and safety. However, the only available NRC guidance was developed more than ten years ago, and does not adequately address the human performance issues and technology changes associated with ACR's. Accordingly, a new approach to ACR safety reviews was developed based upon the concept of 'convergent validity'. This approach to ACR safety reviews is described.

  12. An introduction to structural health monitoring.

    PubMed

    Farrar, Charles R; Worden, Keith

    2007-02-15

    The process of implementing a damage identification strategy for aerospace, civil and mechanical engineering infrastructure is referred to as structural health monitoring (SHM). Here, damage is defined as changes to the material and/or geometric properties of these systems, including changes to the boundary conditions and system connectivity, which adversely affect the system's performance. A wide variety of highly effective local non-destructive evaluation tools are available for such monitoring. However, the majority of SHM research conducted over the last 30 years has attempted to identify damage in structures on a more global basis. The past 10 years have seen a rapid increase in the amount of research related to SHM as quantified by the significant escalation in papers published on this subject. The increased interest in SHM and its associated potential for significant life-safety and economic benefits has motivated the need for this theme issue. This introduction begins with a brief history of SHM technology development. Recent research has begun to recognize that the SHM problem is fundamentally one of the statistical pattern recognition (SPR) and a paradigm to address such a problem is described in detail herein as it forms the basis for organization of this theme issue. In the process of providing the historical overview and summarizing the SPR paradigm, the subsequent articles in this theme issue are cited in an effort to show how they fit into this overview of SHM. In conclusion, technical challenges that must be addressed if SHM is to gain wider application are discussed in a general manner.

  13. Does Perceived Neighborhood Walkability and Safety Mediate the Association Between Education and Meeting Physical Activity Guidelines?

    PubMed Central

    Yin, Shaoman; Soler, Robin; Njai, Rashid; Siegel, Paul Z.; Liao, Youlian

    2015-01-01

    The role of neighborhood walkability and safety in mediating the association between education and physical activity has not been quantified. We used data from the 2010 and 2012 Communities Putting Prevention to Work Behavioral Risk Factor Surveillance System and structural equation modeling to estimate how much of the effect of education level on physical activity was mediated by perceived neighborhood walkability and safety. Neighborhood walkability accounts for 11.3% and neighborhood safety accounts for 6.8% of the effect. A modest proportion of the important association between education and physical activity is mediated by perceived neighborhood walkability and safety, suggesting that interventions focused on enhancing walkability and safety could reduce the disparity in physical activity associated with education level. PMID:25855989

  14. Integration of car-body flexibility into train-track coupling system dynamics analysis

    NASA Astrophysics Data System (ADS)

    Ling, Liang; Zhang, Qing; Xiao, Xinbiao; Wen, Zefeng; Jin, Xuesong

    2018-04-01

    The resonance vibration of flexible car-bodies greatly affects the dynamics performances of high-speed trains. In this paper, we report a three-dimensional train-track model to capture the flexible vibration features of high-speed train carriages based on the flexible multi-body dynamics approach. The flexible car-body is modelled using both the finite element method (FEM) and the multi-body dynamics (MBD) approach, in which the rigid motions are obtained by using the MBD theory and the structure deformation is calculated by the FEM and the modal superposition method. The proposed model is applied to investigate the influence of the flexible vibration of car-bodies on the dynamics performances of train-track systems. The dynamics performances of a high-speed train running on a slab track, including the car-body vibration behaviour, the ride comfort, and the running safety, calculated by the numerical models with rigid and flexible car-bodies are compared in detail. The results show that the car-body flexibility not only significantly affects the vibration behaviour and ride comfort of rail carriages, but also can has an important influence on the running safety of trains. The rigid car-body model underestimates the vibration level and ride comfort of rail vehicles, and ignoring carriage torsional flexibility in the curving safety evaluation of trains is conservative.

  15. Memorial Hermann: high reliability from board to bedside.

    PubMed

    Shabot, M Michael; Monroe, Douglas; Inurria, Juan; Garbade, Debbi; France, Anne-Claire

    2013-06-01

    In 2006 the Memorial Hermann Health System (MHHS), which includes 12 hospitals, began applying principles embraced by high reliability organizations (HROs). Three factors support its HRO journey: (1) aligned organizational structure with transparent management systems and compressed reporting processes; (2) Robust Process Improvement (RPI) with high-reliability interventions; and (3) cultural establishment, sustainment, and evolution. The Quality and Safety strategic plan contains three domains, each with a specific set of measures that provide goals for performance: (1) "Clinical Excellence;" (2) "Do No Harm;" and (3) "Saving Lives," as measured by the Serious Safety Event rate. MHHS uses a uniform approach to performance improvement--RPI, which includes Six Sigma, Lean, and change management, to solve difficult safety and quality problems. The 9 acute care hospitals provide multiple opportunities to integrate high-reliability interventions and best practices across MHHS. For example, MHHS partnered with the Joint Commission Center for Transforming Healthcare in its inaugural project to establish reliable hand hygiene behaviors, which improved MHHS's average hand hygiene compliance rate from 44% to 92% currently. Soon after compliance exceeded 85% at all 12 hospitals, the average rate of central line-associated bloodstream and ventilator-associated pneumonias decreased to essentially zero. MHHS's size and diversity require a disciplined approach to performance improvement and systemwide achievement of measurable success. The most significant cultural change at MHHS has been the expectation for 100% compliance with evidence-based quality measures and 0% incidence of patient harm.

  16. Patient-Reported Safety Information: A Renaissance of Pharmacovigilance?

    PubMed

    Härmark, Linda; Raine, June; Leufkens, Hubert; Edwards, I Ralph; Moretti, Ugo; Sarinic, Viola Macolic; Kant, Agnes

    2016-10-01

    The role of patients as key contributors in pharmacovigilance was acknowledged in the new EU pharmacovigilance legislation. This contains several efforts to increase the involvement of the general public, including making patient adverse drug reaction (ADR) reporting systems mandatory. Three years have passed since the legislation was introduced and the key question is: does pharmacovigilance yet make optimal use of patient-reported safety information? Independent research has shown beyond doubt that patients make an important contribution to pharmacovigilance signal detection. Patient reports provide first-hand information about the suspected ADR and the circumstances under which it occurred, including medication errors, quality failures, and 'near misses'. Patient-reported safety information leads to a better understanding of the patient's experiences of the ADR. Patients are better at explaining the nature, personal significance and consequences of ADRs than healthcare professionals' reports on similar associations and they give more detailed information regarding quality of life including psychological effects and effects on everyday tasks. Current methods used in pharmacovigilance need to optimise use of the information reported from patients. To make the most of information from patients, the systems we use for collecting, coding and recording patient-reported information and the methodologies applied for signal detection and assessment need to be further developed, such as a patient-specific form, development of a severity grading and evolution of the database structure and the signal detection methods applied. It is time for a renaissance of pharmacovigilance.

  17. Automated low-cost and real-time truck parking information system : [research summary].

    DOT National Transportation Integrated Search

    2013-11-01

    Overnight truck parking is a significant safety problem nationwide. Commercial drivers : seeking to comply with the Federal Motor Carrier Safety Administrations Hours of : Service regulations often park illegally on freeway shoulders and ramps whe...

  18. Quality and Safety in Health Care, Part XII: The Work System, Testing, and Clinical Reasoning.

    PubMed

    Harolds, Jay A

    2016-07-01

    Donabedian felt the 3 major components affecting quality were process, structure, and outcome. Later investigators often substitute the word "structure" for a broader concept called the "work system." One component of the latter is the people involved, and for diagnosis, this often is best done with a diagnostic team. The work system in diagnosis has many obstacles to achieve optimum performance. There are also important problems with how tests are ordered and interpreted and clinical reasoning and biases.

  19. Stability, structure and scale: improvements in multi-modal vessel extraction for SEEG trajectory planning.

    PubMed

    Zuluaga, Maria A; Rodionov, Roman; Nowell, Mark; Achhala, Sufyan; Zombori, Gergely; Mendelson, Alex F; Cardoso, M Jorge; Miserocchi, Anna; McEvoy, Andrew W; Duncan, John S; Ourselin, Sébastien

    2015-08-01

    Brain vessels are among the most critical landmarks that need to be assessed for mitigating surgical risks in stereo-electroencephalography (SEEG) implantation. Intracranial haemorrhage is the most common complication associated with implantation, carrying significantly associated morbidity. SEEG planning is done pre-operatively to identify avascular trajectories for the electrodes. In current practice, neurosurgeons have no assistance in the planning of electrode trajectories. There is great interest in developing computer-assisted planning systems that can optimise the safety profile of electrode trajectories, maximising the distance to critical structures. This paper presents a method that integrates the concepts of scale, neighbourhood structure and feature stability with the aim of improving robustness and accuracy of vessel extraction within a SEEG planning system. The developed method accounts for scale and vicinity of a voxel by formulating the problem within a multi-scale tensor voting framework. Feature stability is achieved through a similarity measure that evaluates the multi-modal consistency in vesselness responses. The proposed measurement allows the combination of multiple images modalities into a single image that is used within the planning system to visualise critical vessels. Twelve paired data sets from two image modalities available within the planning system were used for evaluation. The mean Dice similarity coefficient was 0.89 ± 0.04, representing a statistically significantly improvement when compared to a semi-automated single human rater, single-modality segmentation protocol used in clinical practice (0.80 ± 0.03). Multi-modal vessel extraction is superior to semi-automated single-modality segmentation, indicating the possibility of safer SEEG planning, with reduced patient morbidity.

  20. Ventilator-Related Adverse Events: A Taxonomy and Findings From 3 Incident Reporting Systems.

    PubMed

    Pham, Julius Cuong; Williams, Tamara L; Sparnon, Erin M; Cillie, Tam K; Scharen, Hilda F; Marella, William M

    2016-05-01

    In 2009, researchers from Johns Hopkins University's Armstrong Institute for Patient Safety and Quality; public agencies, including the FDA; and private partners, including the Emergency Care Research Institute and the University HealthSystem Consortium (UHC) Safety Intelligence Patient Safety Organization, sought to form a public-private partnership for the promotion of patient safety (P5S) to advance patient safety through voluntary partnerships. The study objective was to test the concept of the P5S to advance our understanding of safety issues related to ventilator events, to develop a common classification system for categorizing adverse events related to mechanical ventilators, and to perform a comparison of adverse events across different adverse event reporting systems. We performed a cross-sectional analysis of ventilator-related adverse events reported in 2012 from the following incident reporting systems: the Pennsylvania Patient Safety Authority's Patient Safety Reporting System, UHC's Safety Intelligence Patient Safety Organization database, and the FDA's Manufacturer and User Facility Device Experience database. Once each organization had its dataset of ventilator-related adverse events, reviewers read the narrative descriptions of each event and classified it according to the developed common taxonomy. A Pennsylvania Patient Safety Authority, FDA, and UHC search provided 252, 274, and 700 relevant reports, respectively. The 3 event types most commonly reported to the UHC and the Pennsylvania Patient Safety Authority's Patient Safety Reporting System databases were airway/breathing circuit issue, human factor issues, and ventilator malfunction events. The top 3 event types reported to the FDA were ventilator malfunction, power source issue, and alarm failure. Overall, we found that (1) through the development of a common taxonomy, adverse events from 3 reporting systems can be evaluated, (2) the types of events reported in each database were related to the purpose of the database and the source of the reports, resulting in significant differences in reported event categories across the 3 systems, and (3) a public-private collaboration for investigating ventilator-related adverse events under the P5S model is feasible. Copyright © 2016 by Daedalus Enterprises.

  1. Editorial: emerging issues in sociotechnical systems thinking and workplace safety.

    PubMed

    Noy, Y Ian; Hettinger, Lawrence J; Dainoff, Marvin J; Carayon, Pascale; Leveson, Nancy G; Robertson, Michelle M; Courtney, Theodore K

    2015-01-01

    The burden of on-the-job accidents and fatalities and the harm of associated human suffering continue to present an important challenge for safety researchers and practitioners. While significant improvements have been achieved in recent decades, the workplace accident rate remains unacceptably high. This has spurred interest in the development of novel research approaches, with particular interest in the systemic influences of social/organisational and technological factors. In response, the Hopkinton Conference on Sociotechnical Systems and Safety was organised to assess the current state of knowledge in the area and to identify research priorities. Over the course of several months prior to the conference, leading international experts drafted collaborative, state-of-the-art reviews covering various aspects of sociotechnical systems and safety. These papers, presented in this special issue, cover topics ranging from the identification of key concepts and definitions to sociotechnical characteristics of safe and unsafe organisations. This paper provides an overview of the conference and introduces key themes and topics. Sociotechnical approaches to workplace safety are intended to draw practitioners' attention to the critical influence that systemic social/organisational and technological factors exert on safety-relevant outcomes. This paper introduces major themes addressed in the Hopkinton Conference within the context of current workplace safety research and practice challenges.

  2. Editorial: emerging issues in sociotechnical systems thinking and workplace safety

    PubMed Central

    Noy, Y. Ian; Hettinger, Lawrence J.; Dainoff, Marvin J.; Carayon, Pascale; Leveson, Nancy G.; Robertson, Michelle M.; Courtney, Theodore K.

    2015-01-01

    The burden of on-the-job accidents and fatalities and the harm of associated human suffering continue to present an important challenge for safety researchers and practitioners. While significant improvements have been achieved in recent decades, the workplace accident rate remains unacceptably high. This has spurred interest in the development of novel research approaches, with particular interest in the systemic influences of social/organisational and technological factors. In response, the Hopkinton Conference on Sociotechnical Systems and Safety was organised to assess the current state of knowledge in the area and to identify research priorities. Over the course of several months prior to the conference, leading international experts drafted collaborative, state-of-the-art reviews covering various aspects of sociotechnical systems and safety. These papers, presented in this special issue, cover topics ranging from the identification of key concepts and definitions to sociotechnical characteristics of safe and unsafe organisations. This paper provides an overview of the conference and introduces key themes and topics. Practitioner Summary: Sociotechnical approaches to workplace safety are intended to draw practitioners' attention to the critical influence that systemic social/organisational and technological factors exert on safety-relevant outcomes. This paper introduces major themes addressed in the Hopkinton Conference within the context of current workplace safety research and practice challenges. PMID:25819595

  3. [Cannabis: Effects in the Central Nervous System. Therapeutic, societal and legal consequences].

    PubMed

    Rivera-Olmos, Víctor Manuel; Parra-Bernal, Marisela C

    2016-01-01

    The consumption of marijuana extracted from Cannabis sativa and indica plants involves an important cultural impact in Mexico. Their psychological stimulatory effect is widely recognized; their biochemical and molecular components interact with CB1 and CB2 (endocannabinoid system) receptors in various central nervous system structures (CNS) and immune cells. The psychoactive element Δ-9-tetrahydrocannabinol (THC) can be reproduced synthetically. Systematic reviews show evidence of therapeutic effectiveness of therapeutic marijuana only for certain symptoms of multiple sclerosis (spasticity, spasms and pain), despite attempts for its widespread use, including refractory childhood epilepsy. Evidence indicates significant adverse effects of smoked marijuana on the structure, functioning and brain connectivity. Cannabis exposure during pregnancy affects fetal brain development, potentially leading to later behavioral problems in children. Neuropsychological tests and advanced imaging techniques show involvement in the learning process in adolescents with substance use. Also, marijuana increases the cognitive impairment in patients with multiple sclerosis. Social and ethical consequences to legally free marijuana for recreational use may be deleterious transcendentally. The medicinal or psychoactive cannabinol no addictive effect requires controlled proven efficacy and safety before regulatory approval studies.

  4. Overall requirements for an advanced underground coal extraction system. [environment effects, miner health and safety, production cost, and coal conservation

    NASA Technical Reports Server (NTRS)

    Goldsmith, M.; Lavin, M. L.

    1980-01-01

    Underground mining systems suitable for coal seams expoitable in the year 2000 are examined with particular relevance to the resources of Central Appalachia. Requirements for such systems may be summarized as follows: (1) production cost; (2)miner safety; (3) miner health; (4) environmental impact; and (5) coal conservation. No significant trade offs between production cost and other performance indices were found.

  5. Maintenance and Safety Practices of Escalator in Commercial Buildings

    NASA Astrophysics Data System (ADS)

    Afida Isnaini Janipha, Nurul; Nur Aina Syed Alwee, Sharifah; Ariff, Raihan Mohd; Ismail, Faridah

    2018-02-01

    The escalator is very crucial to transport a person from one place to another. Nevertheless, there are many cases recorded the accidents in relation to escalator. These may occur due to lack of maintenance which leads to systems breakdown, poor safety practices, wear and tear, users’ negligence and others. Thus, proper maintenance systems need to be improvised to prevent and reduce escalator accident in future. This research was aimed to determine the escalator maintenance activities and safety practices in a commercial building. Three case studies were selected within Selangor area. Semi-structured interviews were conducted for collecting data from these three case studies. To achieve the aim of this research, the study was carried out on the maintenance activities, safety practices and cost related to escalator maintenance. As one of the important means of access in building, it is very crucial to increase effectiveness of escalator particularly in commercial building. It is expected that readers will get clear information on the maintenance activities and safety practices of escalator in commercial building.

  6. Highway Safety Information System guidebook for the Minnesota state data files. Volume 1 : SAS file formats

    DOT National Transportation Integrated Search

    2001-02-01

    The Minnesota data system includes the following basic files: Accident data (Accident File, Vehicle File, Occupant File); Roadlog File; Reference Post File; Traffic File; Intersection File; Bridge (Structures) File; and RR Grade Crossing File. For ea...

  7. 33 CFR 183.554 - Fittings, joints, and connections.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Manufacturer Requirements § 183.554 Fittings, joints, and connections. Each fuel system fitting, joint, and connection must be arranged so that it can be reached for inspection, removal, or maintenance without removal of permanent boat structure. ...

  8. 10 CFR 963.13 - Preclosure suitability evaluation method.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of the structures, systems, components, equipment, and operator actions intended to mitigate or... and the criteria in § 963.14. DOE will consider the performance of the system in terms of the criteria... protection standard. (b) The preclosure safety evaluation method, using preliminary engineering...

  9. 25 CFR 900.70 - What elements are included in the compensation for a lease entered into between the Secretary and...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Fire safety system; (vii) Security system; and (viii) Roof, foundation, walls, floors. (12) Unscheduled...) Monitoring and preventive maintenance of building structures and systems, including but not limited to: (i..., repainting); (14) Security services; (15) Management fees; and (16) Other reasonable and necessary operation...

  10. Systems Analysis of NASA Aviation Safety Program: Final Report

    NASA Technical Reports Server (NTRS)

    Jones, Sharon M.; Reveley, Mary S.; Withrow, Colleen A.; Evans, Joni K.; Barr, Lawrence; Leone, Karen

    2013-01-01

    A three-month study (February to April 2010) of the NASA Aviation Safety (AvSafe) program was conducted. This study comprised three components: (1) a statistical analysis of currently available civilian subsonic aircraft data from the National Transportation Safety Board (NTSB), the Federal Aviation Administration (FAA), and the Aviation Safety Information Analysis and Sharing (ASIAS) system to identify any significant or overlooked aviation safety issues; (2) a high-level qualitative identification of future safety risks, with an assessment of the potential impact of the NASA AvSafe research on the National Airspace System (NAS) based on these risks; and (3) a detailed, top-down analysis of the NASA AvSafe program using an established and peer-reviewed systems analysis methodology. The statistical analysis identified the top aviation "tall poles" based on NTSB accident and FAA incident data from 1997 to 2006. A separate examination of medical helicopter accidents in the United States was also conducted. Multiple external sources were used to develop a compilation of ten "tall poles" in future safety issues/risks. The top-down analysis of the AvSafe was conducted by using a modification of the Gibson methodology. Of the 17 challenging safety issues that were identified, 11 were directly addressed by the AvSafe program research portfolio.

  11. Towards a global system of vigilance and surveillance in unrelated donors of haematopoietic progenitor cells for transplantation.

    PubMed

    Shaw, B E; Chapman, J; Fechter, M; Foeken, L; Greinix, H; Hwang, W; Phillips-Johnson, L; Korhonen, M; Lindberg, B; Navarro, W H; Szer, J

    2013-11-01

    Safety of living donors is critical to the success of blood, tissue and organ transplantation. Structured and robust vigilance and surveillance systems exist as part of some national entities, but historically no global systems are in place to ensure conformity, harmonisation and the recognition of rare adverse events (AEs). The World Health Assembly has recently resolved to require AE/reaction (AE/R) reporting both nationally and globally. The World Marrow Donor Association (WMDA) is an international organisation promoting the safety of unrelated donors and progenitor cell products for use in haematopoietic progenitor cell (HPC) transplantation. To address this issue, we established a system for collecting, collating, analysing, distributing and reacting to serious adverse events and reactions (SAE/R) in unrelated HPC donors. The WMDA successfully instituted this reporting system with 203 SAE/R reported in 2011. The committee generated two rapid reports, reacting to specific SAE/R, resulting in practice changing policies. The system has a robust governance structure, formal feedback to the WMDA membership and transparent information flows to other agencies, specialist physicians and transplant programs and the general public.

  12. Visit from JAXA to NASA MSFC: The Engines Element & Ideas for Collaboration

    NASA Technical Reports Server (NTRS)

    Greene, William D.

    2013-01-01

    System Design, Development, and Fabrication: Design, develop, and fabricate or procure MB-60 component hardware compliant with the imposed technical requirements and in sufficient quantities to fulfill the overall MB-60 development effort. System Development, Assembly, and Test: Manage the scope of the development, assembly, and test-related activities for MB-60 development. This scope includes engine-level development planning, engine assembly and disassembly, test planning, engine testing, inspection, anomaly resolution, and development of necessary ground support equipment and special test equipment. System Integration: Provide coordinated integration in the realms of engineering, safety, quality, and manufacturing disciplines across the scope of the MB-60 design and associated products development Safety and Mission Assurance, structural design, fracture control, materials and processes, thermal analysis. Systems Engineering and Analysis: Manage and perform Systems Engineering and Analysis to provide rigor and structure to the overall design and development effort for the MB-60. Milestone reviews, requirements management, system analysis, program management support Program Management: Manage, plan, and coordinate the activities across all portions of the MB-60 work scope by providing direction for program administration, business management, and supplier management.

  13. The Impact of Transformational Leadership on Safety Climate and Individual Safety Behavior on Construction Sites.

    PubMed

    Shen, Yuzhong; Ju, Chuanjing; Koh, Tas Yong; Rowlinson, Steve; Bridge, Adrian J

    2017-01-05

    Unsafe acts contribute dominantly to construction accidents, and increasing safety behavior is essential to reduce accidents. Previous research conceptualized safety behavior as an interaction between proximal individual differences (safety knowledge and safety motivation) and distal contextual factors (leadership and safety climate). However, relatively little empirical research has examined this conceptualization in the construction sector. Given the cultural background of the sample, this study makes a slight modification to the conceptualization and views transformational leadership as an antecedent of safety climate. Accordingly, this study establishes a multiple mediator model showing the mechanisms through which transformational leadership translates into safety behavior. The multiple mediator model is estimated by the structural equation modeling (SEM) technique, using individual questionnaire responses from a random sample of construction personnel based in Hong Kong. As hypothesized, transformational leadership has a significant impact on safety climate which is mediated by safety-specific leader-member exchange (LMX), and safety climate in turn impacts safety behavior through safety knowledge. The results suggest that future safety climate interventions should be more effective if supervisors exhibit transformational leadership, encourage construction personnel to voice safety concerns without fear of retaliation, and repeatedly remind them about safety on the job.

  14. The Impact of Transformational Leadership on Safety Climate and Individual Safety Behavior on Construction Sites

    PubMed Central

    Shen, Yuzhong; Ju, Chuanjing; Koh, Tas Yong; Rowlinson, Steve; Bridge, Adrian J.

    2017-01-01

    Unsafe acts contribute dominantly to construction accidents, and increasing safety behavior is essential to reduce accidents. Previous research conceptualized safety behavior as an interaction between proximal individual differences (safety knowledge and safety motivation) and distal contextual factors (leadership and safety climate). However, relatively little empirical research has examined this conceptualization in the construction sector. Given the cultural background of the sample, this study makes a slight modification to the conceptualization and views transformational leadership as an antecedent of safety climate. Accordingly, this study establishes a multiple mediator model showing the mechanisms through which transformational leadership translates into safety behavior. The multiple mediator model is estimated by the structural equation modeling (SEM) technique, using individual questionnaire responses from a random sample of construction personnel based in Hong Kong. As hypothesized, transformational leadership has a significant impact on safety climate which is mediated by safety-specific leader–member exchange (LMX), and safety climate in turn impacts safety behavior through safety knowledge. The results suggest that future safety climate interventions should be more effective if supervisors exhibit transformational leadership, encourage construction personnel to voice safety concerns without fear of retaliation, and repeatedly remind them about safety on the job. PMID:28067775

  15. Fault Management Design Strategies

    NASA Technical Reports Server (NTRS)

    Day, John C.; Johnson, Stephen B.

    2014-01-01

    Development of dependable systems relies on the ability of the system to determine and respond to off-nominal system behavior. Specification and development of these fault management capabilities must be done in a structured and principled manner to improve our understanding of these systems, and to make significant gains in dependability (safety, reliability and availability). Prior work has described a fundamental taxonomy and theory of System Health Management (SHM), and of its operational subset, Fault Management (FM). This conceptual foundation provides a basis to develop framework to design and implement FM design strategies that protect mission objectives and account for system design limitations. Selection of an SHM strategy has implications for the functions required to perform the strategy, and it places constraints on the set of possible design solutions. The framework developed in this paper provides a rigorous and principled approach to classifying SHM strategies, as well as methods for determination and implementation of SHM strategies. An illustrative example is used to describe the application of the framework and the resulting benefits to system and FM design and dependability.

  16. An Approach to Establishing System Benefits for Technology in NASA's Hypersonics Investment Area

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe; Pannell, Bill; Cook, Stephen (Technical Monitor)

    2001-01-01

    NASA's has established long term goals for access-to-space. The third generation launch systems are to be fully reusable and operational around 2025. The goals for the third generation launch system are to significantly reduce cost and improve safety over current systems. The Advanced Space Transportation Program (ASTP) Office at the NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop space transportation technologies. Within ASTP, under the Hypersonics Investment Area, third generation technologies are being pursued. The Hypersonics Investment Area's primary objective is to mature vehicle technologies to enable substantial increases in the design and operating margins of third generation RLVs (current Space Shuttle is considered the first generation RLV) by incorporating advanced propulsion systems, materials, structures, thermal protection systems, power, and avionics technologies. The paper describes the system process, tools and concepts used to determine the technology benefits. Preliminary results will be presented along with the current technology investments that are being made by ASTP's Hypersonics Investment Area.

  17. Reliability, Safety and Error Recovery for Advanced Control Software

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.

    2003-01-01

    For long-duration automated operation of regenerative life support systems in space environments, there is a need for advanced integration and control systems that are significantly more reliable and safe, and that support error recovery and minimization of operational failures. This presentation outlines some challenges of hazardous space environments and complex system interactions that can lead to system accidents. It discusses approaches to hazard analysis and error recovery for control software and challenges of supporting effective intervention by safety software and the crew.

  18. Software for occupational health and safety risk analysis based on a fuzzy model.

    PubMed

    Stefanovic, Miladin; Tadic, Danijela; Djapan, Marko; Macuzic, Ivan

    2012-01-01

    Risk and safety management are very important issues in healthcare systems. Those are complex systems with many entities, hazards and uncertainties. In such an environment, it is very hard to introduce a system for evaluating and simulating significant hazards. In this paper, we analyzed different types of hazards in healthcare systems and we introduced a new fuzzy model for evaluating and ranking hazards. Finally, we presented a developed software solution, based on the suggested fuzzy model for evaluating and monitoring risk.

  19. Strategies to curb structural changes of lithium/transition metal oxide cathode materials & the changes’ effects on thermal & cycling stability

    NASA Astrophysics Data System (ADS)

    Xiqian, Yu; Enyuan, Hu; Seongmin, Bak; Yong-Ning, Zhou; Xiao-Qing, Yang

    2016-01-01

    Structural transformation behaviors of several typical oxide cathode materials during a heating process are reviewed in detail to provide in-depth understanding of the key factors governing the thermal stability of these materials. We also discuss applying the information about heat induced structural evolution in the study of electrochemically induced structural changes. All these discussions are expected to provide valuable insights for designing oxide cathode materials with significantly improved structural stability for safe, long-life lithium ion batteries, as the safety of lithium-ion batteries is a critical issue; it is widely accepted that the thermal instability of the cathodes is one of the most critical factors in thermal runaway and related safety problems. Project supported by the U.S. Department of Energy, the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies (Grant No. DE-SC0012704).

  20. Risk management in the North sea offshore industry: History, status and challenges

    NASA Astrophysics Data System (ADS)

    Smith, E. J.

    1995-10-01

    There have been major changes in the UK and Norwegian offshore safety regimes in the last decade. On the basis of accumulated experience (including some major accidents), there has been a move away from a rigid, prescriptive approach to setting safety standards; it is now recognised that a more flexible, "goal-setting" approach is more suited to achieving cost-effective solutions to offshore safety. In order to adapt to this approach, offshore operators are increasingly using Quantitative Risk Assessment (QRA) techniques as part of their risk management programmes. Structured risk assessment can be used at all stages of a project life-cycle. In the design stages (concept and detailed design), these techniques are valuable tools in ensuring that money is wisely spent on safety-related systems. In the operational stage, QRA can aid the development of procedures. High quality Safety Management Systems (SMSs), covering issues such as training, inspection, and emergency planning, are crucial to maintain "asdesigned" levels of safety and reliability. Audits of SMSs should be carried out all through the operational phase to ensure that risky conditions do not accumulate.

  1. Technology and Tool Development to Support Safety and Mission Assurance

    NASA Technical Reports Server (NTRS)

    Denney, Ewen; Pai, Ganesh

    2017-01-01

    The Assurance Case approach is being adopted in a number of safety-mission-critical application domains in the U.S., e.g., medical devices, defense aviation, automotive systems, and, lately, civil aviation. This paradigm refocuses traditional, process-based approaches to assurance on demonstrating explicitly stated assurance goals, emphasizing the use of structured rationale, and concrete product-based evidence as the means for providing justified confidence that systems and software are fit for purpose in safely achieving mission objectives. NASA has also been embracing assurance cases through the concepts of Risk Informed Safety Cases (RISCs), as documented in the NASA System Safety Handbook, and Objective Hierarchies (OHs) as put forth by the Agency's Office of Safety and Mission Assurance (OSMA). This talk will give an overview of the work being performed by the SGT team located at NASA Ames Research Center, in developing technologies and tools to engineer and apply assurance cases in customer projects pertaining to aviation safety. We elaborate how our Assurance Case Automation Toolset (AdvoCATE) has not only extended the state-of-the-art in assurance case research, but also demonstrated its practical utility. We have successfully developed safety assurance cases for a number of Unmanned Aircraft Systems (UAS) operations, which underwent, and passed, scrutiny both by the aviation regulator, i.e., the FAA, as well as the applicable NASA boards for airworthiness and flight safety, flight readiness, and mission readiness. We discuss our efforts in expanding AdvoCATE capabilities to support RISCs and OHs under a project recently funded by OSMA under its Software Assurance Research Program. Finally, we speculate on the applicability of our innovations beyond aviation safety to such endeavors as robotic, and human spaceflight.

  2. Exploring the Influence of Nurse Work Environment and Patient Safety Culture on Attitudes Toward Incident Reporting.

    PubMed

    Yoo, Moon Sook; Kim, Kyoung Ja

    2017-09-01

    The aim of this study was to explore the influence of nurse work environments and patient safety culture on attitudes toward incident reporting. Patient safety culture had been known as a factor of incident reporting by nurses. Positive work environment could be an important influencing factor for the safety behavior of nurses. A cross-sectional survey design was used. The structured questionnaire was administered to 191 nurses working at a tertiary university hospital in South Korea. Nurses' perception of work environment and patient safety culture were positively correlated with attitudes toward incident reporting. A regression model with clinical career, work area and nurse work environment, and patient safety culture against attitudes toward incident reporting was statistically significant. The model explained approximately 50.7% of attitudes toward incident reporting. Improving nurses' attitudes toward incident reporting can be achieved with a broad approach that includes improvements in work environment and patient safety culture.

  3. Space-planning and structural solutions of low-rise buildings: Optimal selection methods

    NASA Astrophysics Data System (ADS)

    Gusakova, Natalya; Minaev, Nikolay; Filushina, Kristina; Dobrynina, Olga; Gusakov, Alexander

    2017-11-01

    The present study is devoted to elaboration of methodology used to select appropriately the space-planning and structural solutions in low-rise buildings. Objective of the study is working out the system of criteria influencing the selection of space-planning and structural solutions which are most suitable for low-rise buildings and structures. Application of the defined criteria in practice aim to enhance the efficiency of capital investments, energy and resource saving, create comfortable conditions for the population considering climatic zoning of the construction site. Developments of the project can be applied while implementing investment-construction projects of low-rise housing at different kinds of territories based on the local building materials. The system of criteria influencing the optimal selection of space-planning and structural solutions of low-rise buildings has been developed. Methodological basis has been also elaborated to assess optimal selection of space-planning and structural solutions of low-rise buildings satisfying the requirements of energy-efficiency, comfort and safety, and economical efficiency. Elaborated methodology enables to intensify the processes of low-rise construction development for different types of territories taking into account climatic zoning of the construction site. Stimulation of low-rise construction processes should be based on the system of approaches which are scientifically justified; thus it allows enhancing energy efficiency, comfort, safety and economical effectiveness of low-rise buildings.

  4. Autonomous Assembly of Modular Structures in Space and on Extraterrestrial Locations

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C.

    2005-01-01

    The fulfillment of the new US. National Vision for Space Exploration requires many new enabling technologies to accomplish the goal of utilizing space for commercial activities and for returning humans to the moon and extraterrestrial environments. Traditionally, flight structures are manufactured as complete systems and require humans to complete the integration and assembly in orbit. These structures are bulky and require the use of heavy launch vehicles to send the units to the desired location, e.g. International Space Station (ISS). This method requires a high degree of safety, numerous space walks and significant cost for the humans to perform the assembly in orbit. For example, for assembly and maintenance of the ISS, 52 Extravehicular Activities (EVA's) have been performed so far with a total EVA time of approximately 322 hours. Sixteen (16) shuttle flights haw been to the ISS to perform these activities with an approximate cost of $450M per mission. For future space missions, costs have to be reduced to reasonably achieve the exploration goals. One concept that has been proposed is the autonomous assembly of space structures. This concept is an affordable, reliable solution to in-space and extraterrestrial assembly operations. Assembly is autonomously performed when two components containing onboard electronics join after recognizing that the joint is appropriate and in the precise position and orientation required for assembly. The mechanism only activates when the specifications are correct and m a nominal range. After assembly, local sensors and electronics monitor the integrity of the joint for feedback to a master controller. To achieve this concept will require a shift in the methods for designing space structures. In addition, innovative techniques will be required to perform the assembly autonomously. Monitoring of the assembled joint will be necessary for safety and structural integrity. If a very large structure is to be assembled in orbit, then the number of integrity sensors will be significant. Thus simple, low cost sensors are integral to the success of this concept. This paper will address these issues and will propose a novel concept for assembling space structures autonomously. The paper will present Several autonomous assembly methods. Core technologies required to achieve in space assembly will be discussed and novel techniques for communicating, sensing, docking and assembly will be detailed. These core technologies are critical to the goal of utilizing space in a cost efficient and safe manner. Finally, these technologies can also be applied to other systems both on earth and extraterrestrial environments.

  5. Psychometrics of the AAN Caregiver Driving Safety Questionnaire and contributors to caregiver concern about driving safety in older adults.

    PubMed

    Carvalho, Janessa O; Springate, Beth; Bernier, Rachel A; Davis, Jennifer

    2018-03-01

    ABSTRACTBackground:The American Academy of Neurology (AAN) updated their practice parameters in the evaluation of driving risk in dementia and developed a Caregiver Driving Safety Questionnaire, detailed in their original manuscript (Iverson Gronseth, Reger, Classen, Dubinsky, & Rizzo, 2010). They described four factors associated with decreased driving ability in dementia patients: history of crashes or citations, informant-reported concerns, reduced mileage, and aggressive driving. An informant-reported AAN Caregiver Driving Safety Questionnaire was designed with these elements, and the current study was the first to explore the factor structure of this questionnaire. Additionally, we examined associations between these factors and cognitive and behavioral measures in patients with mild cognitive impairment or early Alzheimer's disease and their informants. Exploratory factor analysis revealed a four-component structure, consistent with the theory behind the AAN scale composition. These four factor scores also were significantly associated with performance on cognitive screening instruments and informant reported behavioral dysfunction. Regressions revealed that behavioral dysfunction predicted caregiver concerns about driving safety beyond objective patient cognitive dysfunction. In this first known quantitative exploration of the scale, our results support continued use of this scale in office driving safety assessments. Additionally, patient behavioral changes predicted caregiver concerns about driving safety over and above cognitive status, which suggests that caregivers may benefit from psychoeducation about cognitive factors that may negatively impact driving safety.

  6. A red-flag-based approach to risk management of EHR-related safety concerns.

    PubMed

    Sittig, Dean F; Singh, Hardeep

    2013-01-01

    Although electronic health records (EHRs) have a significant potential to improve patient safety, EHR-related safety concerns have begun to emerge. Based on 369 responses to a survey sent to the memberships of the American Society for Healthcare Risk Management and the American Health Lawyers Association and supplemented by our previous work in EHR-related patient safety, we identified the following common EHR-related safety concerns: (1) incorrect patient identification; (2) extended EHR unavailability (either planned or unplanned); (3) failure to heed a computer-generated warning or alert; (4) system-to-system interface errors; (5) failure to identify, find, or use the most recent patient data; (6) misunderstandings about time; (7) incorrect item selected from a list of items; and (8) open or incomplete orders. In this article, we present a "red-flag"-based approach that can be used by risk managers to identify potential EHR safety concerns in their institutions. An organization that routinely conducts EHR-related surveillance activities, such as the ones proposed here, can significantly reduce risks associated with EHR implementation and use. © 2013 American Society for Healthcare Risk Management of the American Hospital Association.

  7. Quality assessment of occupational health and safety management at the level of business units making up the organizational structure of a coal mine: a case study.

    PubMed

    Korban, Zygmunt

    2015-01-01

    The audit of the health and safety management system is understood as a form and tool of controlling. The objective of the audit is to define whether the undertaken measures and the obtained results are in conformity with the predicted assumptions or plans, whether the agreed decisions have been implemented and whether they are suitable in view of the accepted health and safety policy. This paper presents the results of an audit examination carried out on the system of health and safety management between 2002 and 2012 on a group of respondents, the employees of two mining departments (G-1 and G-2) of Jan, a coal mine. The audit was carried out using the questionnaire developed by the author based on the MERIT-APBK survey.

  8. Integrating Safety Assessment Methods using the Risk Informed Safety Margins Characterization (RISMC) Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis Smith; Diego Mandelli

    Safety is central to the design, licensing, operation, and economics of nuclear power plants (NPPs). As the current light water reactor (LWR) NPPs age beyond 60 years, there are possibilities for increased frequency of systems, structures, and components (SSC) degradations or failures that initiate safety significant events, reduce existing accident mitigation capabilities, or create new failure modes. Plant designers commonly “over-design” portions of NPPs and provide robustness in the form of redundant and diverse engineered safety features to ensure that, even in the case of well-beyond design basis scenarios, public health and safety will be protected with a very highmore » degree of assurance. This form of defense-in-depth is a reasoned response to uncertainties and is often referred to generically as “safety margin.” Historically, specific safety margin provisions have been formulated primarily based on engineering judgment backed by a set of conservative engineering calculations. The ability to better characterize and quantify safety margin is important to improved decision making about LWR design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margin management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. In addition, as research and development (R&D) in the LWR Sustainability (LWRS) Program and other collaborative efforts yield new data, sensors, and improved scientific understanding of physical processes that govern the aging and degradation of plant SSCs needs and opportunities to better optimize plant safety and performance will become known. To support decision making related to economics, readability, and safety, the RISMC Pathway provides methods and tools that enable mitigation options known as margins management strategies. The purpose of the RISMC Pathway R&D is to support plant decisions for risk-informed margin management with the aim to improve economics, reliability, and sustain safety of current NPPs. As the lead Department of Energy (DOE) Laboratory for this Pathway, the Idaho National Laboratory (INL) is tasked with developing and deploying methods and tools that support the quantification and management of safety margin and uncertainty.« less

  9. Hybrid optical security system using photonic crystals and MEMS devices

    NASA Astrophysics Data System (ADS)

    Ciosek, Jerzy; Ostrowski, Roman

    2017-10-01

    An important issue in security systems is that of selection of the appropriate detectors or sensors, whose sensitivity guarantees functional reliability whilst avoiding false alarms. Modern technology enables the optimization of sensor systems, tailored to specific risk factors. In optical security systems, one of the safety parameters considered is the spectral range in which the excitation signal is associated with a risk factor. Advanced safety systems should be designed taking into consideration the possible occurrence of, often multiple, complex risk factors, which can be identified individually. The hazards of concern in this work are chemical warfare agents and toxic industrial compounds present in the forms of gases and aerosols. The proposed sensor solution is a hybrid optical system consisting of a multi-spectral structure of photonic crystals associated with a MEMS (Micro Electro-Mechanical System) resonator. The crystallographic structures of carbon present in graphene rings and graphenecarbon nanotube nanocomposites have properties which make them desirable for use in detectors. The advantage of this system is a multi-spectral sensitivity at the same time as narrow-band selectivity for the identification of risk factors. It is possible to design a system optimized for detecting specified types of risk factor from very complex signals.

  10. Does a quality management system improve quality in primary care practices in Switzerland? A longitudinal study.

    PubMed

    Goetz, Katja; Hess, Sigrid; Jossen, Marianne; Huber, Felix; Rosemann, Thomas; Brodowski, Marc; Künzi, Beat; Szecsenyi, Joachim

    2015-04-21

    To examine the effectiveness of the quality management programme--European Practice Assessment--in primary care in Switzerland. Longitudinal study with three points of measurement. Primary care practices in Switzerland. In total, 45 of 91 primary care practices completed European Practice Assessment three times. The interval between each assessment was around 36 months. A variance analyses for repeated measurements were performed for all 129 quality indicators from the domains: 'infrastructure', 'information', 'finance', and 'quality and safety' to examine changes over time. Significant improvements were found in three of four domains: 'quality and safety' (F=22.81, p<0.01), 'information' (F=27.901, p<0.01) and 'finance' (F=4.073, p<0.02). The 129 quality indicators showed a significant improvement within the three points of measurement (F=33.864, p<0.01). The European Practice Assessment for primary care practices thus provides a functioning quality management programme, focusing on the sustainable improvement of structural and organisational aspects to promote high quality of primary care. The implementation of a quality management system which also includes a continuous improvement process would give added value to provide good care. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  11. Does lean management improve patient safety culture? An extensive evaluation of safety culture in a radiotherapy institute.

    PubMed

    Simons, Pascale A M; Houben, Ruud; Vlayen, Annemie; Hellings, Johan; Pijls-Johannesma, Madelon; Marneffe, Wim; Vandijck, Dominique

    2015-02-01

    The importance of a safety culture to maximize safety is no longer questioned. However, achieving sustainable culture improvements are less evident. Evidence is growing for a multifaceted approach, where multiple safety interventions are combined. Lean management is such an integral approach to improve safety, quality and efficiency and therefore, could be expected to improve the safety culture. This paper presents the effects of lean management activities on the patient safety culture in a radiotherapy institute. Patient safety culture was evaluated over a three year period using triangulation of methodologies. Two surveys were distributed three times, workshops were performed twice, data from an incident reporting system (IRS) was monitored and results were explored using structured interviews with professionals. Averages, chi-square, logistical and multi-level regression were used for analysis. The workshops showed no changes in safety culture, whereas the surveys showed improvements on six out of twelve dimensions of safety climate. The intention to report incidents not reaching patient-level decreased in accordance with the decreasing number of reports in the IRS. However, the intention to take action in order to prevent future incidents improved (factorial survey presented β: 1.19 with p: 0.01). Due to increased problem solving and improvements in equipment, the number of incidents decreased. Although the intention to report incidents not reaching patient-level decreased, employees experienced sustained safety awareness and an increased intention to structurally improve. The patient safety culture improved due to the lean activities combined with an organizational restructure, and actual patient safety outcomes might have improved as well. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. A safety monitoring system for taxi based on CMOS imager

    NASA Astrophysics Data System (ADS)

    Liu, Zhi

    2005-01-01

    CMOS image sensors now become increasingly competitive with respect to their CCD counterparts, while adding advantages such as no blooming, simpler driving requirements and the potential of on-chip integration of sensor, analogue circuitry, and digital processing functions. A safety monitoring system for taxi based on cmos imager that can record field situation when unusual circumstance happened is described in this paper. The monitoring system is based on a CMOS imager (OV7120), which can output digital image data through parallel pixel data port. The system consists of a CMOS image sensor, a large capacity NAND FLASH ROM, a USB interface chip and a micro controller (AT90S8515). The structure of whole system and the test data is discussed and analyzed in detail.

  13. Forward Skirt Structural Testing on the Space Launch System (SLS) Program

    NASA Technical Reports Server (NTRS)

    Lohrer, J. D.; Wright, R. D.

    2016-01-01

    Structural testing was performed to evaluate heritage forward skirts from the Space Shuttle program for use on the NASA Space Launch System (SLS) program. Testing was needed because SLS ascent loads are 35% higher than Space Shuttle loads. Objectives of testing were to determine margins of safety, demonstrate reliability, and validate analytical models. Testing combined with analysis was able to show heritage forward skirts were acceptable to use on the SLS program.

  14. Transforming the Morbidity and Mortality Conference to Promote Safety and Quality in a PICU.

    PubMed

    Cifra, Christina L; Bembea, Melania M; Fackler, James C; Miller, Marlene R

    2016-01-01

    Determine the effectiveness of a structured systems-oriented morbidity and mortality conference in improving the process of reviewing and responding to adverse events in a PICU. Prospective time series analysis before and after implementation of a systems-oriented morbidity and mortality conference. Single tertiary referral PICU in Baltimore, MD. Thirty-three patients discussed before and 31 patients after implementation of a systems-oriented morbidity and mortality conference over a total of 20 morbidity and mortality conferences, from April 2013 to March 2014. Systems-oriented morbidity and mortality conference incorporating elements of medical incident analysis. There was a significant increase in meeting attendance (mean, 12 vs 31 attendees per morbidity and mortality conference; p < 0.001) after the systems-oriented morbidity and mortality conference was instituted. There was no significant difference in the mean number of cases suggested (4.2 vs 4.6) or discussed (3.3 vs 3.1) per morbidity and mortality conference. There was also no significant difference in the mean number of adverse events identified per morbidity and mortality conference (3.4 vs 4.3). However, there was an increase in the proportion of cases discussed using a standard case review tool, but this did not reach statistical significance (27% vs 45%; p = 0.231). Nevertheless, we observed a significant increase in the mean number of quality improvement interventions suggested (2.4 vs 5.6; p < 0.001) and implemented (1.7 vs 4.4; p < 0.001) per morbidity and mortality conference. All adverse event categories identified had corresponding interventions suggested after the systems-oriented morbidity and mortality conference was instituted compared with before (80% vs 100%). Intervention-to-adverse event ratios per category were also higher (mean, 0.6 vs 1.5). A structured systems-oriented PICU morbidity and mortality conference incorporating elements of medical incident analysis improves the process of reviewing and responding to adverse events by significantly increasing quality improvement interventions suggested and implemented. Future work would involve testing locally adapted versions of the systems-oriented morbidity and mortality conference in multiple inpatient settings.

  15. Evaluation of Selected Chemical Processes for Production of Low-cost Silicon, Phase 3

    NASA Technical Reports Server (NTRS)

    Blocher, J. M.; Browning, M. F.

    1979-01-01

    Refinements of the design of the 50 MT/year Experimental Process System Development Unit were made and competitive bids were received from mechanical, electrical, and structural contractors. Bids on most of the equipment were received and cataloged. Emergency procedures were defined to counter a variety of contingencies disclosed in operations and safety reviews. Experimental work with an electrolytic cell for zinc chloride disclosed no significant increase in power efficiency by steps taken to increase electrolyte circulation. On the basis of materials compatibility and permeability tests, 310 stainless steel was chosen for the shell of the fluidized-bed reactor and SiC-coated graphite for the liner.

  16. Control Oriented Modeling and Validation of Aeroservoelastic Systems

    NASA Technical Reports Server (NTRS)

    Crowder, Marianne; deCallafon, Raymond (Principal Investigator)

    2002-01-01

    Lightweight aircraft design emphasizes the reduction of structural weight to maximize aircraft efficiency and agility at the cost of increasing the likelihood of structural dynamic instabilities. To ensure flight safety, extensive flight testing and active structural servo control strategies are required to explore and expand the boundary of the flight envelope. Aeroservoelastic (ASE) models can provide online flight monitoring of dynamic instabilities to reduce flight time testing and increase flight safety. The success of ASE models is determined by the ability to take into account varying flight conditions and the possibility to perform flight monitoring under the presence of active structural servo control strategies. In this continued study, these aspects are addressed by developing specific methodologies and algorithms for control relevant robust identification and model validation of aeroservoelastic structures. The closed-loop model robust identification and model validation are based on a fractional model approach where the model uncertainties are characterized in a closed-loop relevant way.

  17. Providing Nuclear Criticality Safety Analysis Education through Benchmark Experiment Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John D. Bess; J. Blair Briggs; David W. Nigg

    2009-11-01

    One of the challenges that today's new workforce of nuclear criticality safety engineers face is the opportunity to provide assessment of nuclear systems and establish safety guidelines without having received significant experience or hands-on training prior to graduation. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and/or the International Reactor Physics Experiment Evaluation Project (IRPhEP) provides students and young professionals the opportunity to gain experience and enhance critical engineering skills.

  18. A web-based incident reporting system and multidisciplinary collaborative projects for patient safety in a Japanese hospital

    PubMed Central

    Nakajima, K; Kurata, Y; Takeda, H

    2005-01-01

    

Problem: When patient safety programs were mandated for Japanese health care institutions, a safety culture, a tool for collecting incident reports, an organizational arrangement for multidisciplinary collaboration, and interventional methods for improvement had to be established. Design: Observational study of effects of new patient safety programs. Setting: Osaka University Hospital, a large government-run teaching hospital. Strategy for change: A voluntary and anonymous web-based incident reporting system was introduced. For the new organizational structure a clinical risk management committee, a department of clinical quality management, and area clinical risk managers were established with their respective roles clearly defined to advance the plan-do-study-act cycle and to integrate efforts. For preventive action, alert procedures, staff education, ward rounds by peers, a system oriented approach for reducing errors, and various feedback channels were introduced. Effects of change: Continuous incident reporting by all hospital staff has been observed since the introduction of the new system. Several error inducing situations have been improved: wrong choice of drug in computer prescribing, maladministration of drugs due to a look-alike appearance or confusion about the manipulation of a medical device, and poor after hours service of the blood transfusion unit. Staff participation in educational seminars has been dramatically improved. Ward rounds have detected problematic procedures which needed to be dealt with. Lessons learnt: Patient safety programs based on a web-based incident reporting system, responsible persons, staff education, and a variety of feedback procedures can help promote a safety culture, multidisciplinary collaboration, and strong managerial leadership resulting in system oriented improvement. PMID:15805458

  19. 29 CFR 1926.758 - Systems-engineered metal buildings.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.758... systems-engineered metal buildings except §§ 1926.755 (column anchorage) and 1926.757 (open web steel... hoisting equipment is released. (d) Construction loads shall not be placed on any structural steel...

  20. 29 CFR 1926.758 - Systems-engineered metal buildings.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.758... systems-engineered metal buildings except §§ 1926.755 (column anchorage) and 1926.757 (open web steel... hoisting equipment is released. (d) Construction loads shall not be placed on any structural steel...

  1. 29 CFR 1926.758 - Systems-engineered metal buildings.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.758... systems-engineered metal buildings except §§ 1926.755 (column anchorage) and 1926.757 (open web steel... hoisting equipment is released. (d) Construction loads shall not be placed on any structural steel...

  2. New research opportunities for roadside safety barriers improvement

    NASA Astrophysics Data System (ADS)

    Cantisani, Giuseppe; Di Mascio, Paola; Polidori, Carlo

    2017-09-01

    Among the major topics regarding the protection of roads, restraint systems still represent a big opportunity in order to increase safety performances. When accidents happen, in fact, the infrastructure can substantially contribute to the reduction of consequences if its marginal spaces are well designed and/or effective restraint systems are installed there. Nevertheless, basic concepts and technology of road safety barriers have not significantly changed for the last two decades. The paper proposes a new approach to the study aimed to define possible enhancements of restraint safety systems performances, by using new materials and defining innovative design principles. In particular, roadside systems can be developed with regard to vehicle-barrier interaction, vehicle-oriented design (included low-mass and extremely low-mass vehicles), traffic suitability, user protection, working width reduction. In addition, thanks to sensors embedded into the barriers, it is also expected to deal with new challenges related to the guidance of automatic vehicles and I2V communication.

  3. Flat H Frangible Joint Evolution

    NASA Technical Reports Server (NTRS)

    Diegelman, Thomas E.; Hinkel, Todd J.; Benjamin, Andrew; Rochon, Brian V.; Brown, Christopher W.

    2016-01-01

    Space vehicle staging and separation events require pyrotechnic devices. They are single-use mechanisms that cannot be tested, nor can failure-tolerant performance be demonstrated in actual flight articles prior to flight use. This necessitates the implementation of a robust design and test approach coupled with a fully redundant, failure-tolerant explosive mechanism to ensure that the system functions even in the event of a single failure. Historically, NASA has followed the single failure-tolerant (SFT) design philosophy for all human-rated spacecraft, including the Space Shuttle Program. Following the end of this program, aerospace companies proposed building the next generation human-rated vehicles with off-the-shelf, non-redundant, zero-failure-tolerant (ZFT) separation systems. Currently, spacecraft and launch vehicle providers for both the Orion and Commercial Crew Programs (CCPs) plan to deviate from the heritage safety approach and NASA's SFT human rating requirements. Both programs' partners have base-lined ZFT frangible joints for vehicle staging and fairing separation. These joints are commercially available from pyrotechnic vendors. Non-human-rated missions have flown them numerous times. The joints are relatively easy to integrate structurally within the spacecraft. In addition, the separation event is debris free, and the resultant pyro shock is lower than that of other design solutions. It is, however, a serious deficiency to lack failure tolerance. When used for critical applications on human-rated vehicles, a single failure could potentially lead to loss of crew (LOC) or loss of mission (LOM)). The Engineering and Safety & Mission Assurance directorates within the NASA Johnson Space Center took action to address this safety issue by initiating a project to develop a fully redundant, SFT frangible joint design, known as the Flat H. Critical to the ability to retrofit on launch vehicles being developed, the SFT mechanisms must fit within the same three-dimensional envelope as current designs as well as meet structural loads requirements. There is increased mass associated with the redundant design, and the goal is to minimize the weight impact as much as possible. These requirements presented significant challenges, both technically and financially; these challenges will be explored in this paper. Perhaps greater than the technical issues confronted during this design process, were the financial considerations. These were a significant part of the story of this design and development plan. Insufficient financial and labor resources were formidable barriers to completing this project. Nevertheless, JSC personnel successfully conducted several test series at JSC with very useful results. The many lessons learned drove design improvements, performance efficiency, and increased functional reliability. This paper examines the significant technical and financial challenges that these requirements posed to the project team. It discusses the evolution of the SFT frangible joint design, including optimization, testing, and successful partnering of the Johnson Space Center (JSC) engineering and JSC safety organizations, to enhance the flight safety margin for America's next generation of human-rated space vehicles.

  4. Structural interaction with transportation and handling systems

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Problems involved in the handling and transportation of finished space vehicles from the factory to the launch site are presented, in addition to recommendations for properly accounting for in space vehicle structural design, adverse interactions during transportation. Emphasis is given to the protection of vehicle structures against those environments and loads encountered during transportation (including temporary storage) which would exceed the levels that the vehicle can safely withstand. Current practices for verifying vehicle safety are appraised, and some of the capabilities and limitations of transportation and handling systems are summarized.

  5. 47 CFR 27.56 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Antenna structures; air navigation safety. 27... SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.56 Antenna structures; air navigation safety. A licensee that owns its antenna structure(s) must not allow such antenna structure(s) to...

  6. 47 CFR 27.56 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Antenna structures; air navigation safety. 27... SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.56 Antenna structures; air navigation safety. A licensee that owns its antenna structure(s) must not allow such antenna structure(s) to...

  7. 47 CFR 27.56 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Antenna structures; air navigation safety. 27... SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.56 Antenna structures; air navigation safety. A licensee that owns its antenna structure(s) must not allow such antenna structure(s) to...

  8. 47 CFR 27.56 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Antenna structures; air navigation safety. 27... SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.56 Antenna structures; air navigation safety. A licensee that owns its antenna structure(s) must not allow such antenna structure(s) to...

  9. Probabilistic assessment of dynamic system performance. Part 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belhadj, Mohamed

    1993-01-01

    Accurate prediction of dynamic system failure behavior can be important for the reliability and risk analyses of nuclear power plants, as well as for their backfitting to satisfy given constraints on overall system reliability, or optimization of system performance. Global analysis of dynamic systems through investigating the variations in the structure of the attractors of the system and the domains of attraction of these attractors as a function of the system parameters is also important for nuclear technology in order to understand the fault-tolerance as well as the safety margins of the system under consideration and to insure a safemore » operation of nuclear reactors. Such a global analysis would be particularly relevant to future reactors with inherent or passive safety features that are expected to rely on natural phenomena rather than active components to achieve and maintain safe shutdown. Conventionally, failure and global analysis of dynamic systems necessitate the utilization of different methodologies which have computational limitations on the system size that can be handled. Using a Chapman-Kolmogorov interpretation of system dynamics, a theoretical basis is developed that unifies these methodologies as special cases and which can be used for a comprehensive safety and reliability analysis of dynamic systems.« less

  10. 24 CFR 3280.903 - General requirements for designing the structure to withstand transportation shock and vibration.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HOME CONSTRUCTION AND SAFETY STANDARDS Transportation § 3280.903 General requirements for designing the... manufactured home shall be designed, in terms of its structural, plumbing, mechanical and electrical systems... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false General requirements for designing...

  11. Pediatric hospitalist comanagement of surgical patients: structural, quality, and financial considerations.

    PubMed

    Rappaport, David I; Rosenberg, Rebecca E; Shaughnessy, Erin E; Schaffzin, Joshua K; O'Connor, Katherine M; Melwani, Anjna; McLeod, Lisa M

    2014-11-01

    Comanagement of surgical patients is occurring more commonly among adult and pediatric patients. These systems of care can vary according to institution type, comanagement structure, and type of patient. Comanagement can impact quality, safety, and costs of care. We review these implications for pediatric surgical patients. © 2014 Society of Hospital Medicine.

  12. 30 CFR 56.14130 - Roll-over protective structures (ROPS) and seat belts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Mining Machines,”, 1986; or (2) SAE J1194, “Roll-Over Protective Structures (ROPS) for Wheeled... when operating graders from a standing position, the grader operator shall wear safety lines and a... meet the requirement of SAE J386, “Operator Restraint System for Off-Road Work Machines” (1985, 1993...

  13. 30 CFR 56.14130 - Roll-over protective structures (ROPS) and seat belts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Mining Machines,”, 1986; or (2) SAE J1194, “Roll-Over Protective Structures (ROPS) for Wheeled... when operating graders from a standing position, the grader operator shall wear safety lines and a... meet the requirement of SAE J386, “Operator Restraint System for Off-Road Work Machines” (1985, 1993...

  14. 30 CFR 56.14130 - Roll-over protective structures (ROPS) and seat belts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Mining Machines,”, 1986; or (2) SAE J1194, “Roll-Over Protective Structures (ROPS) for Wheeled... when operating graders from a standing position, the grader operator shall wear safety lines and a... meet the requirement of SAE J386, “Operator Restraint System for Off-Road Work Machines” (1985, 1993...

  15. 30 CFR 56.14130 - Roll-over protective structures (ROPS) and seat belts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Mining Machines,”, 1986; or (2) SAE J1194, “Roll-Over Protective Structures (ROPS) for Wheeled... when operating graders from a standing position, the grader operator shall wear safety lines and a... meet the requirement of SAE J386, “Operator Restraint System for Off-Road Work Machines” (1985, 1993...

  16. 30 CFR 56.14130 - Roll-over protective structures (ROPS) and seat belts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Mining Machines,”, 1986; or (2) SAE J1194, “Roll-Over Protective Structures (ROPS) for Wheeled... when operating graders from a standing position, the grader operator shall wear safety lines and a... meet the requirement of SAE J386, “Operator Restraint System for Off-Road Work Machines” (1985, 1993...

  17. Intelligent MONitoring System for antiviral pharmacotherapy in patients with chronic hepatitis C (SiMON-VC).

    PubMed

    Margusino-Framiñán, Luis; Cid-Silva, Purificación; Mena-de-Cea, Álvaro; Sanclaudio-Luhía, Ana Isabel; Castro-Castro, José Antonio; Vázquez-González, Guillermo; Martín-Herranz, Isabel

    2017-01-01

    Two out of six strategic axes of pharmaceutical care in our hospital are quality and safety of care, and the incorporation of information technologies. Based on this, an information system was developed in the outpatient setting for pharmaceutical care of patients with chronic hepatitis C, SiMON-VC, which would improve the quality and safety of their pharmacotherapy. The objective of this paper is to describe requirements, structure and features of Si- MON-VC. Requirements demanded were that the information system would enter automatically all critical data from electronic clinical records at each of the visits to the Outpatient Pharmacy Unit, allowing the generation of events and alerts, documenting the pharmaceutical care provided, and allowing the use of data for research purposes. In order to meet these requirements, 5 sections were structured for each patient in SiMON-VC: Main Record, Events, Notes, Monitoring Graphs and Tables, and Follow-up. Each section presents a number of tabs with those coded data needed to monitor patients in the outpatient unit. The system automatically generates alerts for assisted prescription validation, efficacy and safety of using antivirals for the treatment of this disease. It features a completely versatile Indicator Control Panel, where temporary monitoring standards and alerts can be set. It allows the generation of reports, and their export to the electronic clinical record. It also allows data to be exported to the usual operating systems, through Big Data and Business Intelligence. Summing up, we can state that SiMON-VC improves the quality of pharmaceutical care provided in the outpatient pharmacy unit to patients with chronic hepatitis C, increasing the safety of antiviral therapy. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  18. Towards an International Classification for Patient Safety: a Delphi survey.

    PubMed

    Thomson, Richard; Lewalle, Pierre; Sherman, Heather; Hibbert, Peter; Runciman, William; Castro, Gerard

    2009-02-01

    Interpretation and comparison of patient safety information have been compromised by the lack of a common understanding of the concepts involved. The World Alliance set out to develop an International Classification for Patient Safety (ICPS) to address this, and to test the relevance and acceptability of the draft ICPS and progressively refine it prior to field testing. Two-stage Delphi survey. Quantitative and qualitative analyses informed the review of the ICPS. International web-based survey of expert opinion. Experts in the fields of patient safety, health policy, reporting systems, safety and quality control, classification theory and development, health informatics, consumer advocacy, law and medicine; 253 responded to the first round survey, 30% of whom responded to the second round. In the first round, 14% felt that the conceptual framework was missing at least one class, although it was apparent that most respondents were actually referring to concepts they felt should be included within the classes rather than the classes themselves. There was a need for clarification of several components of the classification, particularly its purpose, structure and depth. After revision and feedback, round 2 results were more positive, but further significant changes were made to the conceptual framework and to the major classes in response to concerns about terminology and relationships between classes. The Delphi approach proved invaluable, as both a consensus-building exercise and consultation process, in engaging stakeholders to support completion of the final draft version of the ICPS. Further refinement will occur.

  19. Towards an International Classification for Patient Safety: a Delphi survey

    PubMed Central

    Thomson, Richard; Lewalle, Pierre; Sherman, Heather; Hibbert, Peter; Runciman, William; Castro, Gerard

    2009-01-01

    Objective Interpretation and comparison of patient safety information have been compromised by the lack of a common understanding of the concepts involved. The World Alliance set out to develop an International Classification for Patient Safety (ICPS) to address this, and to test the relevance and acceptability of the draft ICPS and progressively refine it prior to field testing. Design Two-stage Delphi survey. Quantitative and qualitative analyses informed the review of the ICPS. Setting International web-based survey of expert opinion. Participants Experts in the fields of patient safety, health policy, reporting systems, safety and quality control, classification theory and development, health informatics, consumer advocacy, law and medicine; 253 responded to the first round survey, 30% of whom responded to the second round. Results In the first round, 14% felt that the conceptual framework was missing at least one class, although it was apparent that most respondents were actually referring to concepts they felt should be included within the classes rather than the classes themselves. There was a need for clarification of several components of the classification, particularly its purpose, structure and depth. After revision and feedback, round 2 results were more positive, but further significant changes were made to the conceptual framework and to the major classes in response to concerns about terminology and relationships between classes. Conclusions The Delphi approach proved invaluable, as both a consensus-building exercise and consultation process, in engaging stakeholders to support completion of the final draft version of the ICPS. Further refinement will occur. PMID:19147596

  20. Engineering Hematopoietic Cells for Cancer Immunotherapy: Strategies to Address Safety and Toxicity Concerns.

    PubMed

    Resetca, Diana; Neschadim, Anton; Medin, Jeffrey A

    2016-09-01

    Advances in cancer immunotherapies utilizing engineered hematopoietic cells have recently generated significant clinical successes. Of great promise are immunotherapies based on chimeric antigen receptor-engineered T (CAR-T) cells that are targeted toward malignant cells expressing defined tumor-associated antigens. CAR-T cells harness the effector function of the adaptive arm of the immune system and redirect it against cancer cells, overcoming the major challenges of immunotherapy, such as breaking tolerance to self-antigens and beating cancer immune system-evasion mechanisms. In early clinical trials, CAR-T cell-based therapies achieved complete and durable responses in a significant proportion of patients. Despite clinical successes and given the side effect profiles of immunotherapies based on engineered cells, potential concerns with the safety and toxicity of various therapeutic modalities remain. We discuss the concerns associated with the safety and stability of the gene delivery vehicles for cell engineering and with toxicities due to off-target and on-target, off-tumor effector functions of the engineered cells. We then overview the various strategies aimed at improving the safety of and resolving toxicities associated with cell-based immunotherapies. Integrating failsafe switches based on different suicide gene therapy systems into engineered cells engenders promising strategies toward ensuring the safety of cancer immunotherapies in the clinic.

  1. [Analysis of foreign experience of usage of automation systems of medication distribution in prevention and treatment facilities].

    PubMed

    Miroshnichenko, Iu V; Umarov, S Z

    2012-12-01

    One of the ways of increase of effectiveness and safety of patients medication supplement is the use of automated systems of distribution, through which substantially increases the efficiency and safety of patients' medication supplement, achieves significant economy of material and financial resources for medication assistance and possibility of systematical improvement of its accessibility and quality.

  2. Li Anode Technology for Improved Performance

    NASA Technical Reports Server (NTRS)

    Chen, Tuqiang

    2011-01-01

    A novel, low-cost approach to stabilization of Li metal anodes for high-performance rechargeable batteries was developed. Electrolyte additives are selected and used in Li cell electrolyte systems, promoting formation of a protective coating on Li metal anodes for improved cycle and safety performance. Li batteries developed from the new system will show significantly improved battery performance characteristics, including energy/power density, cycle/ calendar life, cost, and safety.

  3. Are some health professionals more cognizant of clinical governance development concepts than others? Findings from a New Zealand study.

    PubMed

    Gauld, Robin; Horsburgh, Simon

    2016-06-01

    Clinical governance has been promoted in recent years as core to improving patient safety. Effective clinical governance requires partnerships between 'management' and health professionals as well as equal involvement of all professional groups. Professionals must also be willing to engage in clinical governance activities such as working to improve care systems and patient safety. There is limited research into the relative understanding of core clinical governance concepts amongst different professional groups or the extent to which professionals are prepared to take up opportunities to 'change the system'. A 2012 national survey study of health professionals employed in New Zealand health boards sought to probe understanding of and commitment to clinical governance following introduction of a 2009 policy. Respondent data showed only limited policy implementation had occurred. Regression analyses revealed statistically significant differences in perceptions of knowledge of clinical governance concepts and structures by gender, age, experience and profession, as well as in seeking opportunities to change the system. These findings have implications for policy makers in terms of ensuring that clinical governance implementation provides equal opportunity for engendering involvement of different health professionals. © The Author 2015. Published by Oxford University Press on behalf of Faculty of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. In-space propellant logistics and safety

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Preliminary guidelines for the basic delivery system and safety aspects of the space shuttle configuration in connection with the transport, handling, storage, and transfer of propellants are developed. It is shown that propellants are the major shuttle space load and influence shuttle traffic modeling significantly.

  5. Electrical deaths in the US construction: an analysis of fatality investigations.

    PubMed

    Zhao, Dong; Thabet, Walid; McCoy, Andrew; Kleiner, Brian

    2014-01-01

    Electrocution is among the 'fatal four' in US construction according to the Occupational Safety and Health Administration. Learning from failures is believed to be an effective path to success, with deaths being the most serious system failures. This paper examined the failures in electrical safety by analysing all electrical fatality investigations (N = 132) occurring between 1989 and 2010 from the Fatality Assessment and Control Evaluation programme that is completed by the National Institute of Occupational Safety and Health. Results reveal the features of the electrical fatalities in construction and disclose the most common electrical safety challenges on construction sites. This research also suggests the sociotechnical system breakdowns and the less effectiveness of current safety training programmes may significantly contribute to worker's unsafe behaviours and electrical fatality occurrences.

  6. A hybrid multi-objective imperialist competitive algorithm and Monte Carlo method for robust safety design of a rail vehicle

    NASA Astrophysics Data System (ADS)

    Nejlaoui, Mohamed; Houidi, Ajmi; Affi, Zouhaier; Romdhane, Lotfi

    2017-10-01

    This paper deals with the robust safety design optimization of a rail vehicle system moving in short radius curved tracks. A combined multi-objective imperialist competitive algorithm and Monte Carlo method is developed and used for the robust multi-objective optimization of the rail vehicle system. This robust optimization of rail vehicle safety considers simultaneously the derailment angle and its standard deviation where the design parameters uncertainties are considered. The obtained results showed that the robust design reduces significantly the sensitivity of the rail vehicle safety to the design parameters uncertainties compared to the determinist one and to the literature results.

  7. Medication exposure during pregnancy: a pilot pharmacovigilance system using health and demographic surveillance platform.

    PubMed

    Mosha, Dominic; Mazuguni, Festo; Mrema, Sigilbert; Abdulla, Salim; Genton, Blaise

    2014-09-15

    There is limited safety information on most drugs used during pregnancy. This is especially true for medication against tropical diseases because pharmacovigilance systems are not much developed in these settings. The aim of the present study was to demonstrate feasibility of using Health and Demographic Surveillance System (HDSS) as a platform to monitor drug safety in pregnancy. Pregnant women with gestational age below 20 weeks were recruited from Reproductive and Child Health (RCH) clinics or from monthly house visits carried out for the HDSS. A structured questionnaire was used to interview pregnant women. Participants were followed on monthly basis to record any new drug used as well as pregnancy outcome. 1089 pregnant women were recruited; 994 (91.3%) completed the follow-up until delivery. 98% women reported to have taken at least one medication during pregnancy, mainly those used in antenatal programmes. Other most reported drugs were analgesics (24%), antibiotics (17%), and antimalarial (15%), excluding IPTp. Artemether-lumefantrine (AL) was the most used antimalarial for treating illness by nearly 3/4 compared to other groups of malaria drugs. Overall, antimalarial and antibiotic exposures in pregnancy were not significantly associated with adverse pregnancy outcome. Iron and folic acid supplementation were associated with decreased risk of miscarriage/stillbirth (OR 0.1; 0.08-0.3). Almost all women were exposed to medication during pregnancy. Exposure to iron and folic acid had a beneficial effect on pregnancy outcome. HDSS proved to be a useful platform to establish a reliable pharmacovigilance system in resource-limited countries. Widening drug safety information is essential to facilitate evidence based risk-benefit decision for treatment during pregnancy, a major challenge with newly marketed medicines.

  8. Imaginable Technologies for Human Missions to Mars

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.

    2007-01-01

    The thesis of the present discussion is that the simultaneous cost and inherent safety issues of human on-site exploration of Mars will require advanced-to-revolutionary technologies. The major crew safety issues as currently identified include reduced gravity, radiation, potentially extremely toxic dust and the requisite reliability for years-long missions. Additionally, this discussion examines various technological areas which could significantly impact Human-Mars cost and safety. Cost reductions for space access is a major metric, including approaches to significantly reduce the overall up-mass. Besides fuel, propulsion and power systems, the up-mass consists of the infrastructure and supplies required to keep humans healthy and the equipment for executing exploration mission tasks. Hence, the major technological areas of interest for potential cost reductions include propulsion, in-space and on-planet power, life support systems, materials and overall architecture, systems, and systems-of-systems approaches. This discussion is specifically offered in response to and as a contribution to goal 3 of the Presidential Exploration Vision: "Develop the Innovative Technologies Knowledge and Infrastructures both to explore and to support decisions about the destinations for human exploration".

  9. Topological design of all-ceramic dental bridges for enhancing fracture resistance.

    PubMed

    Zhang, Zhongpu; Chen, Junning; Li, Eric; Li, Wei; Swain, Michael; Li, Qing

    2016-06-01

    Layered all-ceramic systems have been increasingly adopted in major dental prostheses. However, ceramics are inherently brittle, and they often subject to premature failure under high occlusion forces especially in the posterior region. This study aimed to develop mechanically sound novel topological designs for all-ceramic dental bridges by minimizing the fracture incidence under given loading conditions. A bi-directional evolutionary structural optimization (BESO) technique is implemented within the extended finite element method (XFEM) framework. Extended finite element method allows modeling crack initiation and propagation inside all-ceramic restoration systems. Following this, BESO searches the optimum distribution of two different ceramic materials, namely porcelain and zirconia, for minimizing fracture incidence. A performance index, as per a ratio of peak tensile stress to material strength, is used as a design objective. In this study, the novel XFEM based BESO topology optimization significantly improved structural strength by minimizing performance index for suppressing fracture incidence in the structures. As expected, the fracture resistance and factor of safety of fixed partial dentures structure increased upon redistributing zirconia and porcelain in the optimal topological configuration. Dental CAD/CAM systems and the emerging 3D printing technology were commercially available to facilitate implementation of such a computational design, exhibiting considerable potential for clinical application in the future. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  10. 47 CFR 22.365 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Antenna structures; air navigation safety. 22... Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a hazard to air navigation. In general, antenna structure owners are...

  11. 47 CFR 22.365 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Antenna structures; air navigation safety. 22... Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a hazard to air navigation. In general, antenna structure owners are...

  12. 47 CFR 22.365 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Antenna structures; air navigation safety. 22... Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a hazard to air navigation. In general, antenna structure owners are...

  13. 47 CFR 22.365 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Antenna structures; air navigation safety. 22... Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a hazard to air navigation. In general, antenna structure owners are...

  14. 47 CFR 22.365 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Antenna structures; air navigation safety. 22... Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a hazard to air navigation. In general, antenna structure owners are...

  15. Relationships among Safety Climate, Safety Behavior, and Safety Outcomes for Ethnic Minority Construction Workers

    PubMed Central

    Lyu, Sainan; Chan, Albert P. C.; Wong, Francis K. W.

    2018-01-01

    In many countries, it is common practice to attract and employ ethnic minority (EM) or migrant workers in the construction industry. This primarily occurs in order to alleviate the labor shortage caused by an aging workforce with a lack of new entrants. Statistics show that EM construction workers are more likely to have occupational fatal and nonfatal injuries than their local counterparts; however, the mechanism underlying accidents and injuries in this vulnerable population has been rarely examined. This study aims to investigate relationships among safety climate, safety behavior, and safety outcomes for EM construction workers. To this end, a theoretical research model was developed based on a comprehensive review of the current literature. In total, 289 valid questionnaires were collected face-to-face from 223 Nepalese construction workers and 56 Pakistani construction workers working on 15 construction sites in Hong Kong. Structural equation modelling was employed to validate the constructs and test the hypothesized model. Results show that there were significant positive relationships between safety climate and safety behaviors, and significant negative relationships between safety behaviors and safety outcomes for EM construction workers. This research contributes to the literature regarding EM workers by providing empirical evidence of the mechanisms by which safety climate affects safety behaviors and outcomes. It also provides insights in order to help the key stakeholders formulate safety strategies for EM workers in many areas where numerous EM workers are employed, such as in the U.S., the UK, Australia, Singapore, Malaysia, and the Middle East. PMID:29522503

  16. Contractor-, steward-, and coworker-safety practice: associations with musculoskeletal pain and injury-related absence among construction apprentices

    PubMed Central

    Dutra, Lauren M.; Okechukwu, Cassandra A.

    2013-01-01

    Objectives This paper sought to assess organizational safety practices at three different levels of hierarchical workplace structure and to examine their association with injury outcomes among construction apprentices. Methods Using a cross-sectional sample of 1,775 construction apprentices, three measures of organizational safety practice were assessed: contractor-, steward-, and coworker-safety practice. Each safety practice measure was assessed using three similar questions (i.e., on-the-job safety commitment, following required or recommended safe work practices, and correcting unsafe work practices); the summed average of the responses ranged from 1 to 4, with a higher score indicating poorer safety practice. Outcome variables included the prevalence of four types of musculoskeletal pain (i.e., neck, shoulder, hand, and back pain) and injury-related absence. Results In adjusted analyses, contractor-safety practice was associated with both hand pain (OR: 1.27, 95 % CI: 1.04, 1.54) and back pain (OR: 1.40, 95 % CI: 1.17, 1.68); coworker-safety practice was related to back pain (OR: 1.42, 95 % CI: 1.18, 1.71) and injury-related absence (OR: 1.36, 95 % CI: 1.11, 1.67). In an analysis that included all three safety practice measures simultaneously, the association between coworker-safety practice and injury-related absence remained significant (OR: 1.68, 95 % CI: 1.20, 2.37), whereas all other associations became non-significant. Conclusions This study suggests that organizational safety practice, particularly coworker-safety practice, is associated with injury outcomes among construction apprentices. PMID:23748366

  17. Developing Probabilistic Safety Performance Margins for Unknown and Underappreciated Risks

    NASA Technical Reports Server (NTRS)

    Benjamin, Allan; Dezfuli, Homayoon; Everett, Chris

    2015-01-01

    Probabilistic safety requirements currently formulated or proposed for space systems, nuclear reactor systems, nuclear weapon systems, and other types of systems that have a low-probability potential for high-consequence accidents depend on showing that the probability of such accidents is below a specified safety threshold or goal. Verification of compliance depends heavily upon synthetic modeling techniques such as PRA. To determine whether or not a system meets its probabilistic requirements, it is necessary to consider whether there are significant risks that are not fully considered in the PRA either because they are not known at the time or because their importance is not fully understood. The ultimate objective is to establish a reasonable margin to account for the difference between known risks and actual risks in attempting to validate compliance with a probabilistic safety threshold or goal. In this paper, we examine data accumulated over the past 60 years from the space program, from nuclear reactor experience, from aircraft systems, and from human reliability experience to formulate guidelines for estimating probabilistic margins to account for risks that are initially unknown or underappreciated. The formulation includes a review of the safety literature to identify the principal causes of such risks.

  18. Structural Design Methodology Based on Concepts of Uncertainty

    NASA Technical Reports Server (NTRS)

    Lin, K. Y.; Du, Jiaji; Rusk, David

    2000-01-01

    In this report, an approach to damage-tolerant aircraft structural design is proposed based on the concept of an equivalent "Level of Safety" that incorporates past service experience in the design of new structures. The discrete "Level of Safety" for a single inspection event is defined as the compliment of the probability that a single flaw size larger than the critical flaw size for residual strength of the structure exists, and that the flaw will not be detected. The cumulative "Level of Safety" for the entire structure is the product of the discrete "Level of Safety" values for each flaw of each damage type present at each location in the structure. Based on the definition of "Level of Safety", a design procedure was identified and demonstrated on a composite sandwich panel for various damage types, with results showing the sensitivity of the structural sizing parameters to the relative safety of the design. The "Level of Safety" approach has broad potential application to damage-tolerant aircraft structural design with uncertainty.

  19. Implementation of Recommendations from the One System Comparative Evaluation of the Hanford Tank Farms and Waste Treatment Plant Safety Bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrett, Richard L.; Niemi, Belinda J.; Paik, Ingle K.

    2013-11-07

    A Comparative Evaluation was conducted for One System Integrated Project Team to compare the safety bases for the Hanford Waste Treatment and Immobilization Plant Project (WTP) and Tank Operations Contract (TOC) (i.e., Tank Farms) by an Expert Review Team. The evaluation had an overarching purpose to facilitate effective integration between WTP and TOC safety bases. It was to provide One System management with an objective evaluation of identified differences in safety basis process requirements, guidance, direction, procedures, and products (including safety controls, key safety basis inputs and assumptions, and consequence calculation methodologies) between WTP and TOC. The evaluation identified 25more » recommendations (Opportunities for Integration). The resolution of these recommendations resulted in 16 implementation plans. The completion of these implementation plans will help ensure consistent safety bases for WTP and TOC along with consistent safety basis processes. procedures, and analyses. and should increase the likelihood of a successful startup of the WTP. This early integration will result in long-term cost savings and significant operational improvements. In addition, the implementation plans lead to the development of eight new safety analysis methodologies that can be used at other U.S. Department of Energy (US DOE) complex sites where URS Corporation is involved.« less

  20. 10 CFR 50.69 - Risk-informed categorization and treatment of structures, systems and components for nuclear...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., systems and components for nuclear power reactors. 50.69 Section 50.69 Energy NUCLEAR REGULATORY..., systems and components for nuclear power reactors. (a) Definitions. Risk-Informed Safety Class (RISC)-1... holder of a license to operate a light water reactor (LWR) nuclear power plant under this part; a holder...

  1. 10 CFR 50.69 - Risk-informed categorization and treatment of structures, systems and components for nuclear...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., systems and components for nuclear power reactors. 50.69 Section 50.69 Energy NUCLEAR REGULATORY..., systems and components for nuclear power reactors. (a) Definitions. Risk-Informed Safety Class (RISC)-1... holder of a license to operate a light water reactor (LWR) nuclear power plant under this part; a holder...

  2. 10 CFR 50.69 - Risk-informed categorization and treatment of structures, systems and components for nuclear...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., systems and components for nuclear power reactors. 50.69 Section 50.69 Energy NUCLEAR REGULATORY..., systems and components for nuclear power reactors. (a) Definitions. Risk-Informed Safety Class (RISC)-1... holder of a license to operate a light water reactor (LWR) nuclear power plant under this part; a holder...

  3. A cloud medication safety support system using QR code and Web services for elderly outpatients.

    PubMed

    Tseng, Ming-Hseng; Wu, Hui-Ching

    2014-01-01

    Drug is an important part of disease treatment, but medication errors happen frequently and have significant clinical and financial consequences. The prevalence of prescription medication use among the ambulatory adult population increases with advancing age. Because of the global aging society, outpatients need to improve medication safety more than inpatients. The elderly with multiple chronic conditions face the complex task of medication management. To reduce the medication errors for the elder outpatients with chronic diseases, a cloud medication safety supporting system is designed, demonstrated and evaluated. The proposed system is composed of a three-tier architecture: the front-end tier, the mobile tier and the cloud tier. The mobile tier will host the personalized medication safety supporting application on Android platforms that provides some primary functions including reminders for medication, assistance with pill-dispensing, recording of medications, position of medications and notices of forgotten medications for elderly outpatients. Finally, the hybrid technology acceptance model is employed to understand the intention and satisfaction level of the potential users to use this mobile medication safety support application system. The result of the system acceptance testing indicates that this developed system, implementing patient-centered services, is highly accepted by the elderly. This proposed M-health system could assist elderly outpatients' homecare in preventing medication errors and improving their medication safety.

  4. Surface Transportation Weather Decision Support Requirements - Executive Summary, Version 1.0

    DOT National Transportation Integrated Search

    1999-12-16

    WEATHER: IT AFFECTS THE VISIBILITY, TRACTABILITY, MANEUVERABILITY, VEHICLE STABILITY, EXHAUST EMISSIONS AND STRUCTURAL INTEGRITY OF THE SURFACE TRANSPORTATION SYSTEM. THEREBY WEATHER AFFECTS THE SAFETY, MOBILITY, PRODUCTIVITY AND ENVIRONMENTAL IMPACT...

  5. Price regulation, new entry, and information shock on pharmaceutical market in Taiwan: a nationwide data-based study from 2001 to 2004

    PubMed Central

    2010-01-01

    Background Using non-steroidal anti-inflammatory drugs (NSAIDs) as a case, we used Taiwan's National Health Insurance (NHI) database, to empirically explore the association between policy interventions (price regulation, new drug entry, and an information shock) and drug expenditures, utilization, and market structure between 2001 and 2004. Methods All NSAIDs prescribed in ambulatory visits in the NHI system during our study period were included and aggregated quarterly. Segmented regression analysis for interrupted time series was used to examine the associations between two price regulations, two new drug entries (cyclooxygennase-2 inhibitors) and the rofecoxib safety signal and expenditures and utilization of all NSAIDs. Herfindahl index (HHI) was applied to further examine the association between these interventions and market structure of NSAIDs. Results New entry was the only variable that was significantly correlated with changes of expenditures (positive change, p = 0.02) and market structure of the NSAIDs market in the NHI system. The correlation between price regulation (first price regulation, p = 0.62; second price regulation, p = 0.26) and information shock (p = 0.31) and drug expenditure were not statistically significant. There was no significant change in the prescribing volume of NSAIDs per rheumatoid arthritis (RA) or osteoarthritis (OA) ambulatory visit during the observational period. The market share of NSAIDs had also been largely substituted by these new drugs up to 50%, in a three-year period and resulted in a more concentrated market structure (HHI 0.17). Conclusions Our empirical study found that new drug entry was the main driving force behind escalating drug spending, especially by altering the market share. PMID:20653979

  6. A hybrid design methodology for structuring an Integrated Environmental Management System (IEMS) for shipping business.

    PubMed

    Celik, Metin

    2009-03-01

    The International Safety Management (ISM) Code defines a broad framework for the safe management and operation of merchant ships, maintaining high standards of safety and environmental protection. On the other hand, ISO 14001:2004 provides a generic, worldwide environmental management standard that has been utilized by several industries. Both the ISM Code and ISO 14001:2004 have the practical goal of establishing a sustainable Integrated Environmental Management System (IEMS) for shipping businesses. This paper presents a hybrid design methodology that shows how requirements from both standards can be combined into a single execution scheme. Specifically, the Analytic Hierarchy Process (AHP) and Fuzzy Axiomatic Design (FAD) are used to structure an IEMS for ship management companies. This research provides decision aid to maritime executives in order to enhance the environmental performance in the shipping industry.

  7. Design Analysis and Thermo-Mechanical Fatigue of a Polyimide Composite for Combustion Chamber Support

    NASA Technical Reports Server (NTRS)

    Thesken, J. C.; Melis, M.; Shin, E.; Sutter, J.; Burke, Chris

    2004-01-01

    Polyimide composites are being evaluated for use in lightweight support structures designed to preserve the ideal flow geometry within thin shell combustion chambers of future space launch propulsion systems. Principles of lightweight design and innovative manufacturing techniques have yielded a sandwich structure with an outer face sheet of carbon fiber polyimide matrix composite. While the continuous carbon fiber enables laminated skin of high specific stiffness; the polyimide matrix materials ensure that the rigidity and durability is maintained at operation temperatures of 316 C. Significant weight savings over all metal support structures are expected. The protypical structure is the result of ongoing collaboration, between Boeing and NASA-GRC seeking to introduce polyimide composites to the harsh environmental and loads familiar to space launch propulsion systems. Design trade analyses were carried out using relevant closed form solutions, approximations for sandwich beams/panels and finite element analysis. Analyses confirm the significant thermal stresses exist when combining materials whose coefficients of thermal expansion (CTEs) differ by a factor of about 10 for materials such as a polymer composite and metallic structures. The ramifications on design and manufacturing alternatives are reviewed and discussed. Due to stringent durability and safety requirements, serious consideration is being given to the synergistic effects of temperature and mechanical loads. The candidate structure operates at 316 C, about 80% of the glass transition temperature T(sub g). Earlier thermomechanical fatigue (TMF) investigations of chopped fiber polyimide composites made this near to T(sub g), showed that cyclic temperature and stress promoted excessive creep damage and strain accumulation. Here it is important to verify that such response is limited in continuous fiber laminates.

  8. Feasibility of advanced vehicle control systems for transit buses

    DOT National Transportation Integrated Search

    1997-01-01

    In the course of developing automated vehicle-roadway systems, opportunities to deploy vehicle control systems at intermediate stages of development may emerge. Some of these systems may provide a significant efficiency or safety enhancement to exist...

  9. Are automatic systems the future of motorcycle safety? A novel methodology to prioritize potential safety solutions based on their projected effectiveness.

    PubMed

    Gil, Gustavo; Savino, Giovanni; Piantini, Simone; Baldanzini, Niccolò; Happee, Riender; Pierini, Marco

    2017-11-17

    Motorcycle riders are involved in significantly more crashes per kilometer driven than passenger car drivers. Nonetheless, the development and implementation of motorcycle safety systems lags far behind that of passenger cars. This research addresses the identification of the most effective motorcycle safety solutions in the context of different countries. A knowledge-based system of motorcycle safety (KBMS) was developed to assess the potential for various safety solutions to mitigate or avoid motorcycle crashes. First, a set of 26 common crash scenarios was identified from the analysis of multiple crash databases. Second, the relative effectiveness of 10 safety solutions was assessed for the 26 crash scenarios by a panel of experts. Third, relevant information about crashes was used to weigh the importance of each crash scenario in the region studied. The KBMS method was applied with an Italian database, with a total of more than 1 million motorcycle crashes in the period 2000-2012. When applied to the Italian context, the KBMS suggested that automatic systems designed to compensate for riders' or drivers' errors of commission or omission are the potentially most effective safety solution. The KBMS method showed an effective way to compare the potential of various safety solutions, through a scored list with the expected effectiveness of each safety solution for the region to which the crash data belong. A comparison of our results with a previous study that attempted a systematic prioritization of safety systems for motorcycles (PISa project) showed an encouraging agreement. Current results revealed that automatic systems have the greatest potential to improve motorcycle safety. Accumulating and encoding expertise in crash analysis from a range of disciplines into a scalable and reusable analytical tool, as proposed with the use of KBMS, has the potential to guide research and development of effective safety systems. As the expert assessment of the crash scenarios is decoupled from the regional crash database, the expert assessment may be reutilized, thereby allowing rapid reanalysis when new crash data become available. In addition, the KBMS methodology has potential application to injury forecasting, driver/rider training strategies, and redesign of existing road infrastructure.

  10. Applicability of the Common Safety Method for Risk Evaluation and Assessment (CSM-RA) to the Space Domain

    NASA Astrophysics Data System (ADS)

    Moreira, Francisco; Silva, Nuno

    2016-08-01

    Safety systems require accident avoidance. This is covered by application standards, processes, techniques and tools that support the identification, analysis, elimination or reduction to an acceptable level of system risks and hazards. Ideally, a safety system should be free of hazards. However, both industry and academia have been struggling to ensure appropriate risk and hazard analysis, especially in what concerns completeness of the hazards, formalization, and timely analysis in order to influence the specifications and the implementation. Such analysis is also important when considering a change to an existing system. The Common Safety Method for Risk Evaluation and Assessment (CSM- RA) is a mandatory procedure whenever any significant change is proposed to the railway system in a European Member State. This paper provides insights on the fundamentals of CSM-RA based and complemented with Hazard Analysis. When and how to apply them, and the relation and similarities of these processes with industry standards and the system life cycles is highlighted. Finally, the paper shows how CSM-RA can be the basis of a change management process, guiding the identification and management of the hazards helping ensuring the similar safety level as the initial system. This paper will show how the CSM-RA principles can be used in other domains particularly for space system evolution.

  11. Optimal Remote Sensing with Small Unmanned Aircraft Systems and Risk Management

    NASA Astrophysics Data System (ADS)

    Stark, Brandon

    Over the past decade, the rapid rise of Unmanned Aircraft Systems (UASs) has blossomed into a new component of the aviation industry. Though regulations within the United States lagged, the promise of the ability of Small Unmanned Aircraft Systems (SUASs), or those UAS that weigh less than 55 lbs, has driven significant advances in small scale aviation technology. The dream of a small, low-cost aerial platform that can fly anywhere and keep humans safely away from the `dull, dangerous and dirty' jobs, has encouraged many to examine the possibilities of utilizing SUAS in new and transformative ways, especially as a new tool in remote sensing. However, as with any new tool, there remains significant challenges in realizing the full potential of SUAS-based remote sensing. Within this dissertation, two specific challenges are addressed: validating the use of SUAS as a remote sensing platform and improving the safety and management of SUAS. The use of SUAS in remote sensing is a relatively new challenge and while it has many similarities to other remote sensing platforms, the dynamic nature of its operation makes it unique. In this dissertation, a closer look at the methodology of using SUAS reveals that while many view SUAS as an alternative to satellite imagery, this is an incomplete view and that the current common implementation introduces a new source of error that has significant implications on the reliability of the data collected. It can also be seen that a new approach to remote sensing with an SUAS can be developed by addressing the spatial, spectral and temporal factors that can now be more finely adjusted with the use of SUAS. However, to take the full advantage of the potential of SUAS, they must uphold the promise of improved safety. This is not a trivial challenge, especially for the integration into the National Airspace System (NAS) and for the safety management and oversight of diverse UAS operations. In this dissertation, the challenge of integrating SUAS in the NAS is addressed by presenting an analysis of enabling flight operations at night, developing a swarm safety management system for improving SUAS robustness, investigating the use of new technology on SUAS to improve air safety, and developing a novel framework to better understand human-SUAS interaction. Addressing the other side of safety, this dissertation discusses the struggle of large diverse organizations to balance acceptance, safety and oversight for UAS operations and the development of a novel implementation of a UAS Safety Management System.

  12. Framework for the Intelligent Transportation System (ITS) Evaluation : ITS Integration Activities

    DOT National Transportation Integrated Search

    2006-08-01

    Intelligent Transportation Systems (ITS) represent a significant opportunity to improve the efficiency and safety of the surface transportation system. ITS includes technologies to support information processing, communications, surveillance and cont...

  13. Food safety systems in a small dairy factory: implementation, major challenges, and assessment of systems' performances.

    PubMed

    Cusato, Sueli; Gameiro, Augusto H; Corassin, Carlos H; Sant'ana, Anderson S; Cruz, Adriano G; Faria, José de Assis F; de Oliveira, Carlos Augusto F

    2013-01-01

    The present study describes the implementation of a food safety system in a dairy processing plant located in the State of São Paulo, Brazil, and the challenges found during the process. In addition, microbiological indicators have been used to assess system's implementation performance. The steps involved in the implementation of a food safety system included a diagnosis of the prerequisites, implementation of the good manufacturing practices (GMPs), sanitation standard operating procedures (SSOPs), training of the food handlers, and hazard analysis and critical control point (HACCP). In the initial diagnosis, conformity with 70.7% (n=106) of the items analyzed was observed. A total of 12 critical control points (CCPs) were identified: (1) reception of the raw milk, (2) storage of the raw milk, (3 and 4) reception of the ingredients and packaging, (5) milk pasteurization, (6 and 7) fermentation and cooling, (8) addition of ingredients, (9) filling, (10) storage of the finished product, (11) dispatching of the product, and (12) sanitization of the equipment. After implementation of the food safety system, a significant reduction in the yeast and mold count was observed (p<0.05). The main difficulties encountered for the implementation of food safety system were related to the implementation of actions established in the flow chart and to the need for constant training/adherence of the workers to the system. Despite this, the implementation of the food safety system was shown to be challenging, but feasible to be reached by small-scale food industries.

  14. Incorporating organisational safety culture within ergonomics practice.

    PubMed

    Bentley, Tim; Tappin, David

    2010-10-01

    This paper conceptualises organisational safety culture and considers its relevance to ergonomics practice. Issues discussed in the paper include the modest contribution that ergonomists and ergonomics as a discipline have made to this burgeoning field of study and the significance of safety culture to a systems approach. The relevance of safety culture to ergonomics work with regard to the analysis, design, implementation and evaluation process, and implications for participatory ergonomics approaches, are also discussed. A potential user-friendly, qualitative approach to assessing safety culture as part of ergonomics work is presented, based on a recently published conceptual framework that recognises the dynamic and multi-dimensional nature of safety culture. The paper concludes by considering the use of such an approach, where an understanding of different aspects of safety culture within an organisation is seen as important to the success of ergonomics projects. STATEMENT OF RELEVANCE: The relevance of safety culture to ergonomics practice is a key focus of this paper, including its relationship with the systems approach, participatory ergonomics and the ergonomics analysis, design, implementation and evaluation process. An approach to assessing safety culture as part of ergonomics work is presented.

  15. Innovative Forms Supporting Safe Methods of Work in Safety Engineering for the Development of Intelligent Specializations

    NASA Astrophysics Data System (ADS)

    Gembalska-Kwiecień, Anna

    2016-12-01

    The article discusses innovative forms of participation of employees in the work safety system. It also presents the advantages of these forms of employees' involvement. The aim of empirical studies was the analysis of their behavior and attitude towards health and safety at work. The issues considered in the article have a significant impact on the improvement of methods of prevention related to work safety and aided the creation of a healthy society.

  16. Embedding 'speaking up' into systems for safe healthcare product development and marketing surveillance.

    PubMed

    Edwards, Brian; Hugman, Bruce; Tobin, Mary; Whalen, Matthew

    2012-04-01

    Robust, active cooperation, and effective, open communication between all stakeholders is essential for ensuring regulatory compliance and healthcare product safety; avoiding the necessity for whistle-blowing; and, most essentially, meeting the transparency requirements of public trust.The focus here is on what can be done within a healthcare product organization (HPO) to achieve actionable, sustainable policies and practices such as leadership, management, and supervision role-modelling of best practice; ongoing process review and improvements in every department; protection of those who report concerns through robust policies endorsed at Board level throughout an organization to eliminate the fear of retaliation; training in open, non-defensive team-working principles; and mediation structure and process for resolution of differences of opinion or interpretation of contradictory and volatile data.Based on analyses of other safety systems, workplace silence and interpersonal breakdowns are warning signs of defective systems underlying poor compliance and compromising safety. Remedying the situation requires attention to the root causes underlying such symptoms of dysfunction, especially the human factor, i.e. those factors that influence human performance. It is essential that leadership and management listen to employees' concerns about systems and processes, assess them impartially and reward contributions that improve safety.Fundamentally, the safety, transparency, and trustworthiness of HPOs, both commercial and regulatory, can be judged by the extent of the freedom of their staff to 'speak up' when the time is right. This, in turn, consolidates the trust of external stakeholders in the safety of a system and its products. The promotion of 'speaking up' in an organization provides an important safeguard against the risk of poor compliance and the undermining of societal confidence in the safety of healthcare products.

  17. A systems engineering perspective on the human-centered design of health information systems.

    PubMed

    Samaras, George M; Horst, Richard L

    2005-02-01

    The discipline of systems engineering, over the past five decades, has used a structured systematic approach to managing the "cradle to grave" development of products and processes. While elements of this approach are typically used to guide the development of information systems that instantiate a significant user interface, it appears to be rare for the entire process to be implemented. In fact, a number of authors have put forth development lifecycle models that are subsets of the classical systems engineering method, but fail to include steps such as incremental hazard analysis and post-deployment corrective and preventative actions. In that most health information systems have safety implications, we argue that the design and development of such systems would benefit by implementing this systems engineering approach in full. Particularly with regard to bringing a human-centered perspective to the formulation of system requirements and the configuration of effective user interfaces, this classical systems engineering method provides an excellent framework for incorporating human factors (ergonomics) knowledge and integrating ergonomists in the interdisciplinary development of health information systems.

  18. Design and implementation of smart sensor nodes for wireless disaster monitoring systems

    NASA Astrophysics Data System (ADS)

    Chen, Yih-Fan; Wu, Wen-Jong; Chen, Chun-Kuang; Wen, Chih-Min; Jin, Ming-Hui; Gau, Chung-Yun; Chang, Chih-Chie; Lee, Chih-Kung

    2004-07-01

    A newly developed smart sensor node that can monitor the safety of temporary structures such as scaffolds at construction sites is detailed in this paper. The design methodology and its trade-offs, as well as its influence on the optimization of sensor networks, is examined. The potential impact on civil engineering construction sites, environmental and natural disaster pre-warning issues, etc., all of which are foundations of smart sensor nodes and corresponding smart sensor networks, is also presented. To minimize the power requirements in order to achieve a true wireless system both in terms of signal and power, a sensor node was designed by adopting an 8051-based micro-controller, an ISM band RF transceiver, and an auto-balanced strain gage signal conditioner. With the built-in RF transceiver, all measurement data can be transmitted to a local control center for data integrity, security, central monitoring, and full-scale analysis. As a battery is the only well-established power source and there is a strong desire to eliminate the need to install bulky power lines, this system designed includes a battery-powered core with optimal power efficiency. To further extend the service life of the built-in power source, a power control algorithm has been embedded in the microcontroller of each sensor node. The entire system has been verified by experimental tests on full-scale scaffold monitoring. The results show that this system provides a practical method to monitor the structure safety in real time and possesses the potential of reducing maintenance costs significantly. The design of the sensor node, central control station, and the integration of several kinds of wireless communication protocol, all of which are successfully integrated to demonstrate the capabilities of this newly developed system, are detailed. Potential impact to the network topology is briefly examined as well.

  19. A Methodology for Validating Safety Heuristics Using Clinical Simulations: Identifying and Preventing Possible Technology-Induced Errors Related to Using Health Information Systems

    PubMed Central

    Borycki, Elizabeth; Kushniruk, Andre; Carvalho, Christopher

    2013-01-01

    Internationally, health information systems (HIS) safety has emerged as a significant concern for governments. Recently, research has emerged that has documented the ability of HIS to be implicated in the harm and death of patients. Researchers have attempted to develop methods that can be used to prevent or reduce technology-induced errors. Some researchers are developing methods that can be employed prior to systems release. These methods include the development of safety heuristics and clinical simulations. In this paper, we outline our methodology for developing safety heuristics specific to identifying the features or functions of a HIS user interface design that may lead to technology-induced errors. We follow this with a description of a methodological approach to validate these heuristics using clinical simulations. PMID:23606902

  20. Seismic assessment of Technical Area V (TA-V).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medrano, Carlos S.

    The Technical Area V (TA-V) Seismic Assessment Report was commissioned as part of Sandia National Laboratories (SNL) Self Assessment Requirement per DOE O 414.1, Quality Assurance, for seismic impact on existing facilities at Technical Area-V (TA-V). SNL TA-V facilities are located on an existing Uniform Building Code (UBC) Seismic Zone IIB Site within the physical boundary of the Kirtland Air Force Base (KAFB). The document delineates a summary of the existing facilities with their safety-significant structure, system and components, identifies DOE Guidance, conceptual framework, past assessments and the present Geological and Seismic conditions. Building upon the past information and themore » evolution of the new seismic design criteria, the document discusses the potential impact of the new standards and provides recommendations based upon the current International Building Code (IBC) per DOE O 420.1B, Facility Safety and DOE G 420.1-2, Guide for the Mitigation of Natural Phenomena Hazards for DOE Nuclear Facilities and Non-Nuclear Facilities.« less

  1. Air Vehicle Integration and Technology Research (AVIATR). Task Order 0003: Condition-Based Maintenance Plus Structural Integrity (CBM+SI) Demonstration (April 2011 to August 2011)

    DTIC Science & Technology

    2011-08-01

    investigated. Implementation of this technology into the maintenance framework depends on several factors, including safety of the structural system, cost... Maintenance Parameters The F-15 Program has indicated that, in practice , maintenance actions are generally performed on flight hour multiples of 200...Risk Analysis or the Perform Cost Benefit Analysis sections of the flowchart. 4.6. Determine System Configurations The current maintenance practice

  2. Regulations as Prevention Strategies for Shiftwork Problems.

    PubMed

    Jeppesen; Bøggild; Larsen

    1997-07-01

    The study examines how the Danish system of regulations stemming from collective agreements and legislation and its associated participatory structures operate at the local level in relation to shiftwork and health and safety issues in a regional hospital system consisting of seven hospitals. The study analyzed ward reports of each employee's employment and working hours, local agreements about working time for deviations from legislation, and accounts from meetings in Co-operation Committees and Health and Safety Committees with respect to shiftwork issues from 1980 to 1994. The results showed that part-time employment, especially for those working on fixed evening and night shifts, was a dominant feature in the shiftwork arrangements. A majority of wards were found to have mixtures of employees working rotating or fixed shifts. Each hospital had local agreements that extended the number of work days between periods with days off and reduced the daily resting period to its minimum. None of the meetings of the Health and Safety Committees dealt with shiftwork, and when shiftwork and working time were on the agendas of the Co-operation Committees, health and safety aspects did not feature in the conclusions. The absence of consideration of health and safety aspects is discussed in relation to the uncertainty of the general regulatory principles for work organization and scheduling. The paper concludes that in order to utilize the potential af the participatory structures in developing prevention strategies for shiftwork problems, it is important to clarify responsibilities and cooperation between the two participatory committees.

  3. Technical highlights in general aviation

    NASA Technical Reports Server (NTRS)

    Stickle, J. W.

    1977-01-01

    Improvements in performance, safety, efficiency, and emissions control in general aviation craft are reviewed. While change is slow, the U.S. industries still account for the bulk (90%) of the world's general aviation fleet. Advances in general aviation aerodynamics, structures and materials, acoustics, avionics, and propulsion are described. Supercritical airfoils, drag reduction design, stall/spin studies, crashworthiness and passenger safety, fiberglass materials, flight noise abatement, interior noise and vibration reduction, navigation systems, quieter and cleaner (reciprocating, turboprop, turbofan) engines, and possible benefits of the Global Position Satellite System to general aviation navigation are covered in the discussion. Some of the developments are illustrated.

  4. Safety considerations in the design and operation of large wind turbines

    NASA Technical Reports Server (NTRS)

    Reilly, D. H.

    1979-01-01

    The engineering and safety techniques used to assure the reliable and safe operation of large wind turbine generators utilizing the Mod 2 Wind Turbine System Program as an example is described. The techniques involve a careful definition of the wind turbine's natural and operating environments, use of proven structural design criteria and analysis techniques, an evaluation of potential failure modes and hazards, and use of a fail safe and redundant component engineering philosophy. The role of an effective quality assurance program, tailored to specific hardware criticality, and the checkout and validation program developed to assure system integrity are described.

  5. International SAMPE Symposium and Exhibition, 35th, Anaheim, CA, Apr. 2-5, 1990, Proceedings. Books 1 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janicki, G.; Bailey, V.; Schjelderup, H.

    The present conference discusses topics in the fields of ultralightweight structures, producibility of thermoplastic composites, innovation in sandwich structures, composite failure processes, toughened materials, metal-matrix composites, advanced materials for future naval systems, thermoplastic polymers, automated composites manufacturers, advanced adhesives, emerging processes for aerospace component fabrication, and modified resin systems. Also discussed are matrix behavior for damage tolerance, composite materials repair, testing for damage tolerance, composite strength analyses, materials workplace health and safety, cost-conscious composites, bismaleimide systems, and issues facing advanced composite materials suppliers.

  6. Transsphenoidal pituitary resection with intraoperative MR guidance: preliminary results

    NASA Astrophysics Data System (ADS)

    Pergolizzi, Richard S., Jr.; Schwartz, Richard B.; Hsu, Liangge; Wong, Terence Z.; Black, Peter M.; Martin, Claudia; Jolesz, Ferenc A.

    1999-05-01

    The use of intraoperative MR image guidance has the potential to improve the precision, extent and safety of transsphenoidal pituitary resections. At Brigham and Women's Hospital, an open-bore configuration 0.5T MR system (SIGNA SP, GE Medical Systems, Milwaukee, WI) has been used to provide image guidance for nine transsphenoidal pituitary adenoma resections. The intraoperative MR system allowed the radiologist to direct the surgeon toward the sella turcica successfully while avoiding the cavernous sinus, optic chiasm and other sensitive structures. Imaging performed during the surgery monitored the extent of resection and allowed for removal of tumor beyond the surgeon's view in five cases. Dynamic MR imaging was used to distinguish residual tumor from normal gland and postoperative changes permitting more precise tumor localization. A heme-sensitive long TE gradient echo sequence was used to evaluate for the presence of hemorrhagic debris. All patients tolerated the procedure well without significant complications.

  7. An aspect-oriented approach for designing safety-critical systems

    NASA Astrophysics Data System (ADS)

    Petrov, Z.; Zaykov, P. G.; Cardoso, J. P.; Coutinho, J. G. F.; Diniz, P. C.; Luk, W.

    The development of avionics systems is typically a tedious and cumbersome process. In addition to the required functions, developers must consider various and often conflicting non-functional requirements such as safety, performance, and energy efficiency. Certainly, an integrated approach with a seamless design flow that is capable of requirements modelling and supporting refinement down to an actual implementation in a traceable way, may lead to a significant acceleration of development cycles. This paper presents an aspect-oriented approach supported by a tool chain that deals with functional and non-functional requirements in an integrated manner. It also discusses how the approach can be applied to development of safety-critical systems and provides experimental results.

  8. Implementation of a patient safety program at a tertiary health system: A longitudinal analysis of interventions and serious safety events.

    PubMed

    Cropper, Douglas P; Harb, Nidal H; Said, Patricia A; Lemke, Jon H; Shammas, Nicolas W

    2018-04-01

    We hypothesize that implementation of a safety program based on high reliability organization principles will reduce serious safety events (SSE). The safety program focused on 7 essential elements: (a) safety rounding, (b) safety oversight teams, (c) safety huddles, (d) safety coaches, (e) good catches/safety heroes, (f) safety education, and (g) red rule. An educational curriculum was implemented focusing on changing high-risk behaviors and implementing critical safety policies. All unusual occurrences were captured in the Midas system and investigated by risk specialists, the safety officer, and the chief medical officer. A multidepartmental committee evaluated these events, and a root cause analysis (RCA) was performed. Events were tabulated and serious safety event (SSE) recorded and plotted over time. Safety success stories (SSSs) were also evaluated over time. A steady drop in SSEs was seen over 9 years. Also a rise in SSSs was evident, reflecting on staff engagement in the program. The parallel change in SSEs, SSSs, and the implementation of various safety interventions highly suggest that the program was successful in achieving its goals. A safety program based on high-reliability organization principles and made a core value of the institution can have a significant positive impact on reducing SSEs. © 2018 American Society for Healthcare Risk Management of the American Hospital Association.

  9. Innovative Operations Measures and Nutritional Support for Mass Endurance Events.

    PubMed

    Chiampas, George T; Goyal, Anita V

    2015-11-01

    Endurance and sporting events have increased in popularity and participation in recent years worldwide, and with this comes the need for medical directors to apply innovative operational strategies and nutritional support to meet such demands. Mass endurance events include sports such as cycling and running half, full and ultra-marathons with over 1000 participants. Athletes, trainers and health care providers can all agree that both participant outcomes and safety are of the utmost importance for any race or sporting event. While demand has increased, there is relatively less published guidance in this area of sports medicine. This review addresses public safety, operational systems, nutritional support and provision of medical care at endurance events. Significant medical conditions in endurance sports include heat illness, hyponatraemia and cardiac incidents. These conditions can differ from those typically encountered by clinicians or in the setting of low-endurance sports, and best practices in their management are discussed. Hydration and nutrition are critical in preventing these and other race-related morbidities, as they can impact both performance and medical outcomes on race day. Finally, the command and communication structures of an organized endurance event are vital to its safety and success, and such strategies and concepts are reviewed for implementation. The nature of endurance events increasingly relies on medical leaders to balance safety and prevention of morbidity while trying to help optimize athlete performance.

  10. Full-scale Transport Controlled Impact Demonstration Program

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Federal Aviation Administration (FAA) and NASA conducted a full-scale air-to-surface impact-survivable impact demonstration with a remotely piloted transport aircraft on 1 December 1984, at Edwards Air Force Base, California. The test article consisted of experiments, special equipment, and supporting systems, such as antimisting kerosene (AMK), crashworthiness structural/restraint, analytical modeling, cabin fire safety, flight data recorders, post-impact investigation, instrumentation/data acquisition systems, remotely piloted vehicle/flight control systems, range and flight safety provisions, etc. This report describes the aircraft, experiments, systems, activities, and events which lead up to the Controlled Impact Demonstration (CID). An overview of the final unmanned remote control flight and sequence of impact events are delineated. Preliminary post CID observations are presented.

  11. Report to the NASA Administrator by the Aerospace Safety Advisory Panel on the Space Shuttle Program. Part 1: Observations and Conclusions

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Each system was chosen on the basis of its importance with respect to crew safety and mission success. An overview of the systems management is presented. The space shuttle main engine, orbiter thermal protection system, avionics, external tanks and solid rocket boosters were examined. The ground test and ground support equipment programs were studied. Program management was found to have an adequate understanding of the significant ground and flight risks involved.

  12. Reliability and Maintainability Engineering - A Major Driver for Safety and Affordability

    NASA Technical Reports Server (NTRS)

    Safie, Fayssal M.

    2011-01-01

    The United States National Aeronautics and Space Administration (NASA) is in the midst of an effort to design and build a safe and affordable heavy lift vehicle to go to the moon and beyond. To achieve that, NASA is seeking more innovative and efficient approaches to reduce cost while maintaining an acceptable level of safety and mission success. One area that has the potential to contribute significantly to achieving NASA safety and affordability goals is Reliability and Maintainability (R&M) engineering. Inadequate reliability or failure of critical safety items may directly jeopardize the safety of the user(s) and result in a loss of life. Inadequate reliability of equipment may directly jeopardize mission success. Systems designed to be more reliable (fewer failures) and maintainable (fewer resources needed) can lower the total life cycle cost. The Department of Defense (DOD) and industry experience has shown that optimized and adequate levels of R&M are critical for achieving a high level of safety and mission success, and low sustainment cost. Also, lessons learned from the Space Shuttle program clearly demonstrated the importance of R&M engineering in designing and operating safe and affordable launch systems. The Challenger and Columbia accidents are examples of the severe impact of design unreliability and process induced failures on system safety and mission success. These accidents demonstrated the criticality of reliability engineering in understanding component failure mechanisms and integrated system failures across the system elements interfaces. Experience from the shuttle program also shows that insufficient Reliability, Maintainability, and Supportability (RMS) engineering analyses upfront in the design phase can significantly increase the sustainment cost and, thereby, the total life cycle cost. Emphasis on RMS during the design phase is critical for identifying the design features and characteristics needed for time efficient processing, improved operational availability, and optimized maintenance and logistic support infrastructure. This paper discusses the role of R&M in a program acquisition phase and the potential impact of R&M on safety, mission success, operational availability, and affordability. This includes discussion of the R&M elements that need to be addressed and the R&M analyses that need to be performed in order to support a safe and affordable system design. The paper also provides some lessons learned from the Space Shuttle program on the impact of R&M on safety and affordability.

  13. Minutes of the 23rd Eplosives Safety Seminar, volume 2

    NASA Astrophysics Data System (ADS)

    1988-08-01

    Some areas of discussion at this seminar were: Hazards and risks of the disposal of chemical munitions using a cryogenic process; Special equipment for demilitarization of lethal chemical agent filled munitions; explosive containment room (ECR) repair Johnston Atoll chemical agent disposal system; Sympathetic detonation testing; Blast loads, external and internal; Structural reponse testing of walls, doors, and valves; Underground explosion effects, external airblast; Explosives shipping, transportation safety and port licensing; Explosive safety management; Underground explosion effects, model test and soil rock effects; Chemical risk and protection of workers; and Full scale explosives storage test.

  14. Effect of Community Engagement Interventions on Patient Safety and Risk Reduction Efforts in Primary Health Facilities: Evidence from Ghana

    PubMed Central

    Alhassan, Robert Kaba; Nketiah-Amponsah, Edward; Spieker, Nicole; Arhinful, Daniel Kojo; Ogink, Alice; van Ostenberg, Paul; Rinke de Wit, Tobias F.

    2015-01-01

    Background Patient safety and quality care remain major challenges to Ghana’s healthcare system. Like many health systems in Africa, this is largely because demand for healthcare is outstripping available human and material resource capacity of healthcare facilities and new investment is insufficient. In the light of these demand and supply constraints, systematic community engagement (SCE) in healthcare quality assessment can be a feasible and cost effective option to augment existing quality improvement interventions. SCE entails structured use of existing community groups to assess healthcare quality in health facilities. Identified quality gaps are discussed with healthcare providers, improvements identified and rewards provided if the quality gaps are closed. Purpose This paper evaluates whether or not SCE, through the assessment of health service quality, improves patient safety and risk reduction efforts by staff in healthcare facilities. Methods A randomized control trail was conducted in 64 primary healthcare facilities in the Greater Accra and Western regions of Ghana. Patient risk assessments were conducted in 32 randomly assigned intervention and control facilities. Multivariate multiple regression test was used to determine effect of the SCE interventions on staff efforts towards reducing patient risk. Spearman correlation test was used to ascertain associations between types of community groups engaged and risk assessment scores of healthcare facilities. Findings Clinic staff efforts towards increasing patient safety and reducing risk improved significantly in intervention facilities especially in the areas of leadership/accountability (Coef. = 10.4, p<0.05) and staff competencies (Coef. = 7.1, p<0.05). Improvement in service utilization and health resources could not be attributed to the interventions because these were outside the control of the study and might have been influenced by institutional or national level developments between the baseline and follow-up period. Community groups that were gender balanced, religious/faith-based, and had structured leadership appeared to be better options for effective SCE in healthcare quality assessment. Conclusion Community engagement in healthcare quality assessment is a feasible client-centered quality improvement option that should be discussed for possible scale-up in Ghana and other resource poor countries in Africa. PMID:26619143

  15. Effect of Community Engagement Interventions on Patient Safety and Risk Reduction Efforts in Primary Health Facilities: Evidence from Ghana.

    PubMed

    Alhassan, Robert Kaba; Nketiah-Amponsah, Edward; Spieker, Nicole; Arhinful, Daniel Kojo; Ogink, Alice; van Ostenberg, Paul; Rinke de Wit, Tobias F

    2015-01-01

    Patient safety and quality care remain major challenges to Ghana's healthcare system. Like many health systems in Africa, this is largely because demand for healthcare is outstripping available human and material resource capacity of healthcare facilities and new investment is insufficient. In the light of these demand and supply constraints, systematic community engagement (SCE) in healthcare quality assessment can be a feasible and cost effective option to augment existing quality improvement interventions. SCE entails structured use of existing community groups to assess healthcare quality in health facilities. Identified quality gaps are discussed with healthcare providers, improvements identified and rewards provided if the quality gaps are closed. This paper evaluates whether or not SCE, through the assessment of health service quality, improves patient safety and risk reduction efforts by staff in healthcare facilities. A randomized control trail was conducted in 64 primary healthcare facilities in the Greater Accra and Western regions of Ghana. Patient risk assessments were conducted in 32 randomly assigned intervention and control facilities. Multivariate multiple regression test was used to determine effect of the SCE interventions on staff efforts towards reducing patient risk. Spearman correlation test was used to ascertain associations between types of community groups engaged and risk assessment scores of healthcare facilities. Clinic staff efforts towards increasing patient safety and reducing risk improved significantly in intervention facilities especially in the areas of leadership/accountability (Coef. = 10.4, p<0.05) and staff competencies (Coef. = 7.1, p<0.05). Improvement in service utilization and health resources could not be attributed to the interventions because these were outside the control of the study and might have been influenced by institutional or national level developments between the baseline and follow-up period. Community groups that were gender balanced, religious/faith-based, and had structured leadership appeared to be better options for effective SCE in healthcare quality assessment. Community engagement in healthcare quality assessment is a feasible client-centered quality improvement option that should be discussed for possible scale-up in Ghana and other resource poor countries in Africa.

  16. Probabilistic modeling of condition-based maintenance strategies and quantification of its benefits for airliners

    NASA Astrophysics Data System (ADS)

    Pattabhiraman, Sriram

    Airplane fuselage structures are designed with the concept of damage tolerance, wherein small damage are allowed to remain on the airplane, and damage that otherwise affect the safety of the structure are repaired. The damage critical to the safety of the fuselage are repaired by scheduling maintenance at pre-determined intervals. Scheduling maintenance is an interesting trade-off between damage tolerance and cost. Tolerance of larger damage would require less frequent maintenance and hence, a lower cost, to maintain a certain level of reliability. Alternatively, condition-based maintenance techniques have been developed using on-board sensors, which track damage continuously and request maintenance only when the damage size crosses a particular threshold. This effects a tolerance of larger damage than scheduled maintenance, leading to savings in cost. This work quantifies the savings of condition-based maintenance over scheduled maintenance. The work also quantifies converting the cost savings into weight savings. Structural health monitoring will need time to be able to establish itself as a stand-alone system for maintenance, due to concerns on its diagnosis accuracy and reliability. This work also investigates the effect of synchronizing structural health monitoring system with scheduled maintenance. This work uses on-board SHM equipment skip structural airframe maintenance (a subsect of scheduled maintenance), whenever deemed unnecessary while maintain a desired level of safety of structure. The work will also predict the necessary maintenance for a fleet of airplanes, based on the current damage status of the airplanes. The work also analyses the possibility of false alarm, wherein maintenance is being requested with no critical damage on the airplane. The work use SHM as a tool to identify lemons in a fleet of airplanes. Lemons are those airplanes that would warrant more maintenance trips than the average behavior of the fleet.

  17. Investigation of structural factors of safety for the space shuttle

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A study was made of the factors governing the structural design of the fully reusable space shuttle booster to establish a rational approach to select optimum structural factors of safety. The study included trade studies of structural factors of safety versus booster service life, weight, cost, and reliability. Similar trade studies can be made on other vehicles using the procedures developed. The major structural components of a selected baseline booster were studied in depth, each being examined to determine the fatigue life, safe-life, and fail-safe capabilities of the baseline design. Each component was further examined to determine its reliability and safety requirements, and the change of structural weight with factors of safety. The apparent factors of safety resulting from fatigue, safe-life, proof test, and fail-safe requirements were identified. The feasibility of reduced factors of safety for design loads such as engine thrust, which are well defined, was examined.

  18. Safety and Environment aspects of Tokamak- type Fusion Power Reactor- An Overview

    NASA Astrophysics Data System (ADS)

    Doshi, Bharat; Reddy, D. Chenna

    2017-04-01

    Naturally occurring thermonuclear fusion reaction (of light atoms to form a heavier nucleus) in the sun and every star in the universe, releases incredible amounts of energy. Demonstrating the controlled and sustained reaction of deuterium-tritium plasma should enable the development of fusion as an energy source here on Earth. The promising fusion power reactors could be operated on the deuterium-tritium fuel cycle with fuel self-sufficiency. The potential impact of fusion power on the environment and the possible risks associated with operating large-scale fusion power plants is being studied by different countries. The results show that fusion can be a very safe and sustainable energy source. A fusion power plant possesses not only intrinsic advantages with respect to safety compared to other sources of energy, but also a negligible long term impact on the environment provided certain precautions are taken in its design. One of the important considerations is in the selection of low activation structural materials for reactor vessel. Selection of the materials for first wall and breeding blanket components is also important from safety issues. It is possible to fully benefit from the advantages of fusion energy if safety and environmental concerns are taken into account when considering the conceptual studies of a reactor design. The significant safety hazards are due to the tritium inventory and energetic neutron fluence induced activity in the reactor vessel, first wall components, blanket system etc. The potential of release of radioactivity under operational and accident conditions needs attention while designing the fusion reactor. Appropriate safety analysis for the quantification of the risk shall be done following different methods such as FFMEA (Functional Failure Modes and Effects Analysis) and HAZOP (Hazards and operability). Level of safety and safety classification such as nuclear safety and non-nuclear safety is very important for the FPR (Fusion Power Reactor). This paper describes an overview of safety and environmental merits of fusion power reactor, issues and design considerations and need for R&D on safety and environmental aspects of Tokamak type fusion reactor.

  19. Structural health monitoring methodology for aircraft condition-based maintenance

    NASA Astrophysics Data System (ADS)

    Saniger, Jordi; Reithler, Livier; Guedra-Degeorges, Didier; Takeda, Nobuo; Dupuis, Jean Pierre

    2001-06-01

    Reducing maintenance costs while keeping a constant level of safety is a major issue for Air Forces and airlines. The long term perspective is to implement condition based maintenance to guarantee a constant safety level while decreasing maintenance costs. On this purpose, the development of a generalized Structural Health Monitoring System (SHMS) is needed. The objective of such a system is to localize the damages and to assess their severity, with enough accuracy to allow low cost corrective actions. The present paper describes a SHMS based on acoustic emission technology. This choice was driven by its reliability and wide use in the aerospace industry. The described SHMS uses a new learning methodology which relies on the generation of artificial acoustic emission events on the structure and an acoustic emission sensor network. The calibrated acoustic emission events picked up by the sensors constitute the knowledge set that the system relies on. With this methodology, the anisotropy of composite structures is taken into account, thus avoiding the major cause of errors of classical localization methods. Moreover, it is adaptive to different structures as it does not rely on any particular model but on measured data. The acquired data is processed and the event's location and corrected amplitude are computed. The methodology has been demonstrated and experimental tests on elementary samples presented a degree of accuracy of 1cm.

  20. What Happened, and Why: Toward an Understanding of Human Error Based on Automated Analyses of Incident Reports. Volume 1

    NASA Technical Reports Server (NTRS)

    Maille, Nicolas P.; Statler, Irving C.; Ferryman, Thomas A.; Rosenthal, Loren; Shafto, Michael G.; Statler, Irving C.

    2006-01-01

    The objective of the Aviation System Monitoring and Modeling (ASMM) project of NASA s Aviation Safety and Security Program was to develop technologies that will enable proactive management of safety risk, which entails identifying the precursor events and conditions that foreshadow most accidents. This presents a particular challenge in the aviation system where people are key components and human error is frequently cited as a major contributing factor or cause of incidents and accidents. In the aviation "world", information about what happened can be extracted from quantitative data sources, but the experiential account of the incident reporter is the best available source of information about why an incident happened. This report describes a conceptual model and an approach to automated analyses of textual data sources for the subjective perspective of the reporter of the incident to aid in understanding why an incident occurred. It explores a first-generation process for routinely searching large databases of textual reports of aviation incident or accidents, and reliably analyzing them for causal factors of human behavior (the why of an incident). We have defined a generic structure of information that is postulated to be a sound basis for defining similarities between aviation incidents. Based on this structure, we have introduced the simplifying structure, which we call the Scenario as a pragmatic guide for identifying similarities of what happened based on the objective parameters that define the Context and the Outcome of a Scenario. We believe that it will be possible to design an automated analysis process guided by the structure of the Scenario that will aid aviation-safety experts to understand the systemic issues that are conducive to human error.

  1. Prevalence, source and severity of work-related injuries among "foreign" construction workers in a large Malaysian organisation: a cross-sectional study.

    PubMed

    Zerguine, Haroun; Tamrin, Shamsul Bahri Mohd; Jalaludin, Juliana

    2018-06-01

    Malaysian construction sector is regarded as critical in the field of health because of the high rates of accidents and fatalities. This research aimed to determine the prevalence, sources and severity of injuries and its association with commitment to safety among foreign construction workers. A cross-sectional study was conducted among 323 foreign construction workers from six construction projects of a large organization in Malaysia, using a simple random sampling method. Data was collected using a structured questionnaire to assess work-related injuries and safety commitment. The collected data was analysed by SPSS 22.0 using descriptive statistics and χ 2 test. The prevalence of work-related injuries in a one year period was 22.6%, where most of the injuries were of moderate severity (39.7%) and falls from heights represented the main source (31.5%). The majority of the foreign construction workers had perceived between moderate and high safety commitment, which was significantly associated with work-related injuries. The results also showed a significant association of work-related injuries with the company's interest in Safety and Health, Safety and Health training, and safety equipment. Thus, the implementation of new procedures and providing relevant trainings and safety equipment; will lead to a decrease in injury rates in construction sites.

  2. 47 CFR 24.55 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Antenna structures; air navigation safety. 24... SERVICES PERSONAL COMMUNICATIONS SERVICES Technical Standards § 24.55 Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a...

  3. 47 CFR 24.55 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Antenna structures; air navigation safety. 24... SERVICES PERSONAL COMMUNICATIONS SERVICES Technical Standards § 24.55 Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a...

  4. 47 CFR 24.55 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Antenna structures; air navigation safety. 24... SERVICES PERSONAL COMMUNICATIONS SERVICES Technical Standards § 24.55 Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a...

  5. 47 CFR 24.55 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Antenna structures; air navigation safety. 24... SERVICES PERSONAL COMMUNICATIONS SERVICES Technical Standards § 24.55 Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a...

  6. 47 CFR 24.55 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Antenna structures; air navigation safety. 24... SERVICES PERSONAL COMMUNICATIONS SERVICES Technical Standards § 24.55 Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a...

  7. Safety, tolerability, efficacy and pharmacodynamics of the selective JAK1 inhibitor GSK2586184 in patients with systemic lupus erythematosus.

    PubMed

    Kahl, L; Patel, J; Layton, M; Binks, M; Hicks, K; Leon, G; Hachulla, E; Machado, D; Staumont-Sallé, D; Dickson, M; Condreay, L; Schifano, L; Zamuner, S; van Vollenhoven, R F

    2016-11-01

    We aimed to evaluate the pharmacodynamics, efficacy, safety and tolerability of the JAK1 inhibitor GSK2586184 in adults with systemic lupus erythematosus (SLE). In this adaptive, randomized, double-blind, placebo-controlled study, patients received oral GSK2586184 50-400 mg, or placebo twice daily for 12 weeks. Primary endpoints included interferon-mediated messenger RNA transcription over time, changes in Safety of Estrogen in Lupus National Assessment-SLE Disease Activity Index score, and number/severity of adverse events. A pre-specified interim analysis was performed when ≥ 5 patients per group completed 2 weeks of treatment. In total, 84-92% of patients were high baseline expressors of the interferon transcriptional biomarkers evaluated. At interim analysis, GSK2586184 showed no significant effect on mean interferon transcriptional biomarker expression (all panels). The study was declared futile and recruitment was halted at 50 patients. Shortly thereafter, significant safety data were identified, including elevated liver enzymes in six patients (one confirmed and one suspected case of Drug Reaction with Eosinophilia and Systemic Symptoms), leading to immediate dosing cessation. Safety of Estrogen in Lupus National Assessment-SLE Disease Activity Index scores were not analysed due to the small number of patients completing the study. The study futility and safety data described for GSK2586184 do not support further evaluation in patients with SLE. Study identifiers: GSK Study JAK115919; ClinicalTrials.gov identifier: NCT01777256.

  8. Final Technical Report on Quantifying Dependability Attributes of Software Based Safety Critical Instrumentation and Control Systems in Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smidts, Carol; Huang, Funqun; Li, Boyuan

    With the current transition from analog to digital instrumentation and control systems in nuclear power plants, the number and variety of software-based systems have significantly increased. The sophisticated nature and increasing complexity of software raises trust in these systems as a significant challenge. The trust placed in a software system is typically termed software dependability. Software dependability analysis faces uncommon challenges since software systems’ characteristics differ from those of hardware systems. The lack of systematic science-based methods for quantifying the dependability attributes in software-based instrumentation as well as control systems in safety critical applications has proved itself to be amore » significant inhibitor to the expanded use of modern digital technology in the nuclear industry. Dependability refers to the ability of a system to deliver a service that can be trusted. Dependability is commonly considered as a general concept that encompasses different attributes, e.g., reliability, safety, security, availability and maintainability. Dependability research has progressed significantly over the last few decades. For example, various assessment models and/or design approaches have been proposed for software reliability, software availability and software maintainability. Advances have also been made to integrate multiple dependability attributes, e.g., integrating security with other dependability attributes, measuring availability and maintainability, modeling reliability and availability, quantifying reliability and security, exploring the dependencies between security and safety and developing integrated analysis models. However, there is still a lack of understanding of the dependencies between various dependability attributes as a whole and of how such dependencies are formed. To address the need for quantification and give a more objective basis to the review process -- therefore reducing regulatory uncertainty -- measures and methods are needed to assess dependability attributes early on, as well as throughout the life-cycle process of software development. In this research, extensive expert opinion elicitation is used to identify the measures and methods for assessing software dependability. Semi-structured questionnaires were designed to elicit expert knowledge. A new notation system, Causal Mechanism Graphing, was developed to extract and represent such knowledge. The Causal Mechanism Graphs were merged, thus, obtaining the consensus knowledge shared by the domain experts. In this report, we focus on how software contributes to dependability. However, software dependability is not discussed separately from the context of systems or socio-technical systems. Specifically, this report focuses on software dependability, reliability, safety, security, availability, and maintainability. Our research was conducted in the sequence of stages found below. Each stage is further examined in its corresponding chapter. Stage 1 (Chapter 2): Elicitation of causal maps describing the dependencies between dependability attributes. These causal maps were constructed using expert opinion elicitation. This chapter describes the expert opinion elicitation process, the questionnaire design, the causal map construction method and the causal maps obtained. Stage 2 (Chapter 3): Elicitation of the causal map describing the occurrence of the event of interest for each dependability attribute. The causal mechanisms for the “event of interest” were extracted for each of the software dependability attributes. The “event of interest” for a dependability attribute is generally considered to be the “attribute failure”, e.g. security failure. The extraction was based on the analysis of expert elicitation results obtained in Stage 1. Stage 3 (Chapter 4): Identification of relevant measurements. Measures for the “events of interest” and their causal mechanisms were obtained from expert opinion elicitation for each of the software dependability attributes. The measures extracted are presented in this chapter. Stage 4 (Chapter 5): Assessment of the coverage of the causal maps via measures. Coverage was assessed to determine whether the measures obtained were sufficient to quantify software dependability, and what measures are further required. Stage 5 (Chapter 6): Identification of “missing” measures and measurement approaches for concepts not covered. New measures, for concepts that had not been covered sufficiently as determined in Stage 4, were identified using supplementary expert opinion elicitation as well as literature reviews. Stage 6 (Chapter 7): Building of a detailed quantification model based on the causal maps and measurements obtained. Ability to derive such a quantification model shows that the causal models and measurements derived from the previous stages (Stage 1 to Stage 5) can form the technical basis for developing dependability quantification models. Scope restrictions have led us to prioritize this demonstration effort. The demonstration was focused on a critical system, i.e. the reactor protection system. For this system, a ranking of the software dependability attributes by nuclear stakeholders was developed. As expected for this application, the stakeholder ranking identified safety as the most critical attribute to be quantified. A safety quantification model limited to the requirements phase of development was built. Two case studies were conducted for verification. A preliminary control gate for software safety for the requirements stage was proposed and applied to the first case study. The control gate allows a cost effective selection of the duration of the requirements phase.« less

  9. The work environment and empowerment as predictors of patient safety culture in Turkey.

    PubMed

    Dirik, Hasan Fehmi; Intepeler, Seyda Seren

    2017-05-01

    As scant research based information is available regarding the work environment, empowerment and patient safety culture, this study from a developing country (Turkey) in which health care institutions are in a state of transition, aimed to investigate further the relationships between these three variables. A cross-sectional descriptive design was employed. The sample comprised 274 nurse participants working in a university hospital located in Izmir (Turkey). In data evaluation, descriptive statistics and hierarchical regression analyses were applied. The work environment and structural empowerment were related to the patient safety culture and explained 55% of the variance in patient safety culture perceptions. 'Support for optimal patient care', 'nurse/physician relationships' and 'staff involvement in organisational affairs' were the significant predictors. An enhancement of the work environment and providing access to empowerment structures may help health care organisations improve the patient safety culture. In light of the findings, the following actions can be recommended to inform health care leaders: providing necessary resources for nursing practise, encouraging nurses' participation in decision-making, strengthening communication within the team and giving nurses the opportunities to cope with challenging work problems to learn and grow. © 2017 John Wiley & Sons Ltd.

  10. 30 CFR 57.14130 - Roll-over protective structures (ROPS) and seat belts for surface equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protective Structures (ROPS) for Construction, Earthmoving, Forestry, and Mining Machines,”, 1986; or (2) SAE... operating graders from a standing position, the grader operator shall wear safety lines and a harness in... requirement of SAE J386, “Operator Restraint System for Off-Road Work Machines” (1985, 1993, or 1997), or SAE...

  11. 30 CFR 57.14130 - Roll-over protective structures (ROPS) and seat belts for surface equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Protective Structures (ROPS) for Construction, Earthmoving, Forestry, and Mining Machines,”, 1986; or (2) SAE... operating graders from a standing position, the grader operator shall wear safety lines and a harness in... requirement of SAE J386, “Operator Restraint System for Off-Road Work Machines” (1985, 1993, or 1997), or SAE...

  12. 30 CFR 57.14130 - Roll-over protective structures (ROPS) and seat belts for surface equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Protective Structures (ROPS) for Construction, Earthmoving, Forestry, and Mining Machines,”, 1986; or (2) SAE... operating graders from a standing position, the grader operator shall wear safety lines and a harness in... requirement of SAE J386, “Operator Restraint System for Off-Road Work Machines” (1985, 1993, or 1997), or SAE...

  13. 30 CFR 57.14130 - Roll-over protective structures (ROPS) and seat belts for surface equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Protective Structures (ROPS) for Construction, Earthmoving, Forestry, and Mining Machines,”, 1986; or (2) SAE... operating graders from a standing position, the grader operator shall wear safety lines and a harness in... requirement of SAE J386, “Operator Restraint System for Off-Road Work Machines” (1985, 1993, or 1997), or SAE...

  14. 30 CFR 57.14130 - Roll-over protective structures (ROPS) and seat belts for surface equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Protective Structures (ROPS) for Construction, Earthmoving, Forestry, and Mining Machines,”, 1986; or (2) SAE... operating graders from a standing position, the grader operator shall wear safety lines and a harness in... requirement of SAE J386, “Operator Restraint System for Off-Road Work Machines” (1985, 1993, or 1997), or SAE...

  15. [Blood transfusion and supply chain management safety].

    PubMed

    Quaranta, Jean-François; Caldani, Cyril; Cabaud, Jean-Jacques; Chavarin, Patricia; Rochette-Eribon, Sandrine

    2015-02-01

    The level of safety attained in blood transfusion now makes this a discipline better managed care activities. This was achieved both by scientific advances and policy decisions regulating and supervising the activity, as well as by the quality system, which we recall that affects the entire organizational structure, responsibilities, procedures, processes and resources in place to achieve quality management. So, an effective quality system provides a framework within which activities are established, performed in a quality-focused way and continuously monitored to improve outcomes. This system quality has to irrigate all the actors of the transfusion, just as much the establishments of blood transfusion than the health establishments. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  16. Design of 3D simulation engine for oilfield safety training

    NASA Astrophysics Data System (ADS)

    Li, Hua-Ming; Kang, Bao-Sheng

    2015-03-01

    Aiming at the demand for rapid custom development of 3D simulation system for oilfield safety training, this paper designs and implements a 3D simulation engine based on script-driven method, multi-layer structure, pre-defined entity objects and high-level tools such as scene editor, script editor, program loader. A scripting language been defined to control the system's progress, events and operating results. Training teacher can use this engine to edit 3D virtual scenes, set the properties of entity objects, define the logic script of task, and produce a 3D simulation training system without any skills of programming. Through expanding entity class, this engine can be quickly applied to other virtual training areas.

  17. Advanced vehicle dynamics of heavy trucks with the perspective of road safety

    NASA Astrophysics Data System (ADS)

    Trigell, Annika Stensson; Rothhämel, Malte; Pauwelussen, Joop; Kural, Karel

    2017-10-01

    This paper presents state-of-the art within advanced vehicle dynamics of heavy trucks with the perspective of road safety. The most common accidents with heavy trucks involved are truck against passenger cars. Safety critical situations are for example loss of control (such as rollover and lateral stability) and a majority of these occur during speed when cornering. Other critical situations are avoidance manoeuvre and road edge recovery. The dynamic behaviour of heavy trucks have significant differences compared to passenger cars and as a consequence, successful application of vehicle dynamic functions for enhanced safety of trucks might differ from the functions in passenger cars. Here, the differences between vehicle dynamics of heavy trucks and passenger cars are clarified. Advanced vehicle dynamics solutions with the perspective of road safety of trucks are presented, beginning with the topic vehicle stability, followed by the steering system, the braking system and driver assistance systems that differ in some way from that of passenger cars as well.

  18. Improving Health Care Workers for Seasonal Influenza Vaccination at University Health System: A Paradigm for Closing the Quality Chasm

    PubMed Central

    Patterson, Jan E.; Cadena, Jose; Prigmore, Teresa; Bowling, Jason; Ayala, Beth Ann; Kirkman, Leni; Parekh, Amruta; Scepanski, Theresa

    2011-01-01

    Significant gaps in quality and patient safety in the US health-care system have been identified and were reported in the past decade by the Institute of Medicine. Despite recognition of these gaps in “knowing versus doing,” change in health care is slow and difficult. The quality improvement and clinical safety movement is increasing among US medical centers. Our health science center implemented the UT System Clinical Safety and Effectiveness course, providing project-based teaching of quality-improvement tools and principles of patient safety. A quality-improvement project that increased healthcare workers' influenza vaccination rate by 17.8% from that in 2008 to a rate of 76.6% in 2009 serves as a paradigm of how physicians can lead quality-improvement project teams to narrow the quality chasm (1). Local efforts to narrow the chasm are discussed in the present paper, including inter-professional education in quality improvement and clinical safety. PMID:21686222

  19. A performance improvement case study in aircraft maintenance and its implications for hazard identification.

    PubMed

    Ward, Marie; McDonald, Nick; Morrison, Rabea; Gaynor, Des; Nugent, Tony

    2010-02-01

    Aircraft maintenance is a highly regulated, safety critical, complex and competitive industry. There is a need to develop innovative solutions to address process efficiency without compromising safety and quality. This paper presents the case that in order to improve a highly complex system such as aircraft maintenance, it is necessary to develop a comprehensive and ecologically valid model of the operational system, which represents not just what is meant to happen, but what normally happens. This model then provides the backdrop against which to change or improve the system. A performance report, the Blocker Report, specific to aircraft maintenance and related to the model was developed gathering data on anything that 'blocks' task or check performance. A Blocker Resolution Process was designed to resolve blockers and improve the current check system. Significant results were obtained for the company in the first trial and implications for safety management systems and hazard identification are discussed. Statement of Relevance: Aircraft maintenance is a safety critical, complex, competitive industry with a need to develop innovative solutions to address process and safety efficiency. This research addresses this through the development of a comprehensive and ecologically valid model of the system linked with a performance reporting and resolution system.

  20. Architecture design of a generic centralized adjudication module integrated in a web-based clinical trial management system.

    PubMed

    Zhao, Wenle; Pauls, Keith

    2016-04-01

    Centralized outcome adjudication has been used widely in multicenter clinical trials in order to prevent potential biases and to reduce variations in important safety and efficacy outcome assessments. Adjudication procedures could vary significantly among different studies. In practice, the coordination of outcome adjudication procedures in many multicenter clinical trials remains as a manual process with low efficiency and high risk of delay. Motivated by the demands from two large clinical trial networks, a generic outcome adjudication module has been developed by the network's data management center within a homegrown clinical trial management system. In this article, the system design strategy and database structure are presented. A generic database model was created to transfer different adjudication procedures into a unified set of sequential adjudication steps. Each adjudication step was defined by one activate condition, one lock condition, one to five categorical data items to capture adjudication results, and one free text field for general comments. Based on this model, a generic outcome adjudication user interface and a generic data processing program were developed within a homegrown clinical trial management system to provide automated coordination of outcome adjudication. By the end of 2014, this generic outcome adjudication module had been implemented in 10 multicenter trials. A total of 29 adjudication procedures were defined with the number of adjudication steps varying from 1 to 7. The implementation of a new adjudication procedure in this generic module took an experienced programmer 1 or 2 days. A total of 7336 outcome events had been adjudicated and 16,235 adjudication step activities had been recorded. In a multicenter trial, 1144 safety outcome event submissions went through a three-step adjudication procedure and reported a median of 3.95 days from safety event case report form submission to adjudication completion. In another trial, 277 clinical outcome events were adjudicated by a six-step procedure and took a median of 23.84 days from outcome event case report form submission to adjudication procedure completion. A generic outcome adjudication module integrated in the clinical trial management system made the automated coordination of efficacy and safety outcome adjudication a reality. © The Author(s) 2015.

Top