Sample records for sagebrush habitat mitigation

  1. L-325 Sagebrush Habitat Mitigation Project: FY2009 Compensation Area Monitoring Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durham, Robin E.; Sackschewsky, Michael R.

    2009-09-29

    Annual monitoring in support of the Fluor Daniel Hanford Company (Fluor) Mitigation Action Plan (MAP) for Project L-325, Electrical Utility Upgrades was conducted in June 2009. MAP guidelines defined mitigation success for this project as 3000 established sagebrush transplants on a 4.5 ha mitigation site after five monitoring years. Annual monitoring results suggest that an estimated 2130 sagebrush transplants currently grow on the site. Additional activities in support of this project included gathering sagebrush seed and securing a local grower to produce between 2250 and 2500 10-in3 tublings for outplanting during the early winter months of FY2010. If the minimummore » number of seedlings grown for this planting meets quality specifications, and planting conditions are favorable, conservative survival estimates indicate the habitat mitigation goals outlined in the MAP will be met in FY2014.« less

  2. Seeding considerations in restoring big sagebrush habitat

    Treesearch

    Scott M. Lambert

    2005-01-01

    This paper describes methods of managing or seeding to restore big sagebrush communities for wildlife habitat. The focus is on three big sagebrush subspecies, Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis), basin big sagebrush (Artemisia tridentata ssp. tridentata), and mountain...

  3. CONTRASTING HABITAT ASSOCIATIONS OF SAGEBRUSH-STEPPE SONGBIRDS IN THE INTERMOUNTAIN WEST

    PubMed Central

    MILLER, ROBERT A.; BOND, LAURA; MIGAS, PATRICK N.; CARLISLE, JAY D.; KALTENECKER, GREGORY S.

    2017-01-01

    Sagebrush (Artemisia spp.) steppe is one of North America’s most imperiled ecosystems, as the result of many factors including grazing, development, fire, and invasion of exotic plants. Threats to sagebrush steppe are expected to increase because of climate change and further human development. Many songbirds use sagebrush steppe opportunistically, but a few obligate species are dependent on it. To quantify the habitat associations of three sagebrush obligates, the Sage Thrasher (Oreoscoptes montanus), Sagebrush Sparrow (Artemisiospiza nevadensis), and Brewer’s Sparrow (Spizella breweri), and nine other songbird species that use this habitat, we surveyed across a broad region of Idaho. At each of 104 sites, we selected three plots, one each in relatively poor, moderate, and good condition, defined qualitatively by the cover of native shrubs. We quantified bird abundance by point counts, described the habitat at these points by a line-intercept method, and at each plot calculated the fraction of a circle (radius 1 km) covered in shrubs or grassland. We compared two-scale occupancy models based on these data by the information-theoretic approach. According to the models, our qualitative assessment of habitat condition within a site distinguished birds’ use of relatively good habitat from their use of poor habitats only, not from those in moderate condition. Thus the sagebrush-obligate species may tolerate some local habitat degradation, at least up to some unidentified threshold. Occurrence of all three sagebrush obligates correlated well with one or more characteristics of sagebrush such as its cover, height, or heterogeneity in height. They differed in the Sage Thrasher being most sensitive to sagebrush cover, the Sagebrush Sparrow being found more often at lower elevations, and the Brewer’s Sparrow being less sensitive to ground cover. The nine other species evaluated were less or negatively associated with attributes of sagebrush. On the basis of these

  4. Multiscale sagebrush rangeland habitat modeling in southwest Wyoming

    USGS Publications Warehouse

    Homer, Collin G.; Aldridge, Cameron L.; Meyer, Debra K.; Coan, Michael J.; Bowen, Zachary H.

    2009-01-01

    Sagebrush-steppe ecosystems in North America have experienced dramatic elimination and degradation since European settlement. As a result, sagebrush-steppe dependent species have experienced drastic range contractions and population declines. Coordinated ecosystem-wide research, integrated with monitoring and management activities, would improve the ability to maintain existing sagebrush habitats. However, current data only identify resource availability locally, with rigorous spatial tools and models that accurately model and map sagebrush habitats over large areas still unavailable. Here we report on an effort to produce a rigorous large-area sagebrush-habitat classification and inventory with statistically validated products and estimates of precision in the State of Wyoming. This research employs a combination of significant new tools, including (1) modeling sagebrush rangeland as a series of independent continuous field components that can be combined and customized by any user at multiple spatial scales; (2) collecting ground-measured plot data on 2.4-meter imagery in the same season the satellite imagery is acquired; (3) effective modeling of ground-measured data on 2.4-meter imagery to maximize subsequent extrapolation; (4) acquiring multiple seasons (spring, summer, and fall) of an additional two spatial scales of imagery (30 meter and 56 meter) for optimal large-area modeling; (5) using regression tree classification technology that optimizes data mining of multiple image dates, ratios, and bands with ancillary data to extrapolate ground training data to coarser resolution sensors; and (6) employing rigorous accuracy assessment of model predictions to enable users to understand the inherent uncertainties. First-phase results modeled eight rangeland components (four primary targets and four secondary targets) as continuous field predictions. The primary targets included percent bare ground, percent herbaceousness, percent shrub, and percent litter. The

  5. Teetering on the edge or too late? Conservation and research issues for avifauna of sagebrush habitats

    USGS Publications Warehouse

    Knick, Steven T.; Dobkin, David S.; Rotenberry, John T.; Schroeder, Michael A.; Vander Haegen, W. Matthew; van Riper, Charles

    2003-01-01

    Degradation, fragmentation, and loss of native sagebrush (Artemisia spp.) landscapes have imperiled these habitats and their associated avifauna. Historically, this vast piece of the Western landscape has been undervalued: even though more than 70% of all remaining sagebrush habitat in the United States is publicly owned, <3% of it is protected as federal reserves or national parks. We review the threats facing birds in sagebrush habitats to emphasize the urgency for conservation and research actions, and synthesize existing information that forms the foundation for recommended research directions. Management and conservation of birds in sagebrush habitats will require more research into four major topics: (1) identification of primary land-use practices and their influence on sagebrush habitats and birds, (2) better understanding of bird responses to habitat components and disturbance processes of sagebrush ecosystems, (3) improved hierarchical designs for surveying and monitoring programs, and (4) linking bird movements and population changes during migration and wintering periods to dynamics on the sagebrush breeding grounds. This research is essential because we already have seen that sagebrush habitats can be altered by land use, spread of invasive plants, and disrupted disturbance regimes beyond a threshold at which natural recovery is unlikely. Research on these issues should be instituted on lands managed by state or federal agencies because most lands still dominated by sagebrush are owned publicly. In addition to the challenge of understanding shrubsteppe bird-habitat dynamics, conservation of sagebrush landscapes depends on our ability to recognize and communicate their intrinsic value and on our resolve to conserve them.

  6. The role of fire in structuring sagebrush habitats and bird communities

    USGS Publications Warehouse

    Knick, S.T.; Holmes, A.L.; Miller, R.F.; Saab, Victoria A.; Powell, Hugo D.W.

    2005-01-01

    Fire is a dominant and highly visible disturbance in sagebrush (Artemisia spp.) ecosystems. In lower elevation, xeric sagebrush communities, the role of fire has changed in recent decades from an infrequent disturbance maintaining a landscape mosaic and facilitating community processes to frequent events that alter sagebrush communities to exotic vegetation, from which restoration is unlikely. Because of cheatgrass invasion, fire-return intervals in these sagebrush ecosystems have decreased from an historical pattern (pre-European settlement) of 30 to >100 yr to 5-15 yr. In other sagebrush communities, primarily higher elevation ecosystems, the lack of fire has allowed transitions to greater dominance by sagebrush, loss of herbaceous understory, and expansion of juniper-pinyon woodlands. Response by birds living in sagebrush habitats to fire was related to the frequency, size, complexity (or patchiness), and severity of the burns. Small-scale fires that left patchy distributions of sagebrush did not influence bird populations. However, large-scale fires that resulted in large grassland expanses and isolated existing sagebrush patches reduced the probability of occupancy by sagebrush-obligate species. Populations of birds also declined in sagebrush ecosystems with increasing dominance by juniper (Juniperus spp.) and pinyon (Pinus spp.) woodlands. Our understanding of the effects of fire on sagebrush habitats and birds in these systems is limited. Almost all studies of fire effects on birds have been opportunistic, correlative, and lacking controls. We recommend using the large number of prescribed burns to develop strong inferences about cause-and-effect relationships. Prescribed burning is complicated and highly contentious, particularly in low-elevation, xeric sagebrush communities. Therefore, we need to use the unique opportunities provided by planned burns to understand the spatial and temporal influence of fire on sagebrush landscapes and birds. In particular

  7. Multiscale sagebrush rangeland habitat modeling in the Gunnison Basin of Colorado

    USGS Publications Warehouse

    Homer, Collin G.; Aldridge, Cameron L.; Meyer, Debra K.; Schell, Spencer J.

    2013-01-01

    North American sagebrush-steppe ecosystems have decreased by about 50 percent since European settlement. As a result, sagebrush-steppe dependent species, such as the Gunnison sage-grouse, have experienced drastic range contractions and population declines. Coordinated ecosystem-wide research, integrated with monitoring and management activities, is needed to help maintain existing sagebrush habitats; however, products that accurately model and map sagebrush habitats in detail over the Gunnison Basin in Colorado are still unavailable. The goal of this project is to provide a rigorous large-area sagebrush habitat classification and inventory with statistically validated products and estimates of precision across the Gunnison Basin. This research employs a combination of methods, including (1) modeling sagebrush rangeland as a series of independent objective components that can be combined and customized by any user at multiple spatial scales; (2) collecting ground measured plot data on 2.4-meter QuickBird satellite imagery in the same season the imagery is acquired; (3) modeling of ground measured data on 2.4-meter imagery to maximize subsequent extrapolation; (4) acquiring multiple seasons (spring, summer, and fall) of Landsat Thematic Mapper imagery (30-meter) for optimal modeling; (5) using regression tree classification technology that optimizes data mining of multiple image dates, ratios, and bands with ancillary data to extrapolate ground training data to coarser resolution Landsat Thematic Mapper; and 6) employing accuracy assessment of model predictions to enable users to understand their dependencies. Results include the prediction of four primary components including percent bare ground, percent herbaceous, percent shrub, and percent litter, and four secondary components including percent sagebrush (Artemisia spp.), percent big sagebrush (Artemisia tridentata), percent Wyoming sagebrush (Artemisia tridentata wyomingensis), and shrub height (centimeters

  8. Sagebrush in western North America: habitats and species in jeopardy.

    Treesearch

    Jonathan Thompson

    2007-01-01

    Sagebrush habitats are declining rapidly across western North America, with over 350 associated plant and animal species at risk of local or regional extirpation. The sagebrush ecosystem is one of the largest in the United States, and it is vulnerable to a litany of threats. Chief among them is invasion of cheatgrass into the understory, followed by high-severity fires...

  9. The Influence of Mitigation on Sage-Grouse Habitat Selection within an Energy Development Field

    PubMed Central

    Fedy, Bradley C.; Kirol, Christopher P.; Sutphin, Andrew L.; Maechtle, Thomas L.

    2015-01-01

    Growing global energy demands ensure the continued growth of energy development. Energy development in wildlife areas can significantly impact wildlife populations. Efforts to mitigate development impacts to wildlife are on-going, but the effectiveness of such efforts is seldom monitored or assessed. Greater sage-grouse (Centrocercus urophasianus) are sensitive to energy development and likely serve as an effective umbrella species for other sagebrush-steppe obligate wildlife. We assessed the response of birds within an energy development area before and after the implementation of mitigation action. Additionally, we quantified changes in habitat distribution and abundance in pre- and post-mitigation landscapes. Sage-grouse avoidance of energy development at large spatial scales is well documented. We limited our research to directly within an energy development field in order to assess the influence of mitigation in close proximity to energy infrastructure. We used nest-location data (n = 488) within an energy development field to develop habitat selection models using logistic regression on data from 4 years of research prior to mitigation and for 4 years following the implementation of extensive mitigation efforts (e.g., decreased activity, buried powerlines). The post-mitigation habitat selection models indicated less avoidance of wells (well density β = 0.18 ± 0.08) than the pre-mitigation models (well density β = -0.09 ± 0.11). However, birds still avoided areas of high well density and nests were not found in areas with greater than 4 wells per km2 and the majority of nests (63%) were located in areas with ≤ 1 well per km2. Several other model coefficients differed between the two time periods and indicated stronger selection for sagebrush (pre-mitigation β = 0.30 ± 0.09; post-mitigation β = 0.82 ± 0.08) and less avoidance of rugged terrain (pre-mitigation β = -0.35 ± 0.12; post-mitigation β = -0.05 ± 0.09). Mitigation efforts implemented may

  10. The influence of mitigation on sage-grouse habitat selection within an energy development field.

    PubMed

    Fedy, Bradley C; Kirol, Christopher P; Sutphin, Andrew L; Maechtle, Thomas L

    2015-01-01

    Growing global energy demands ensure the continued growth of energy development. Energy development in wildlife areas can significantly impact wildlife populations. Efforts to mitigate development impacts to wildlife are on-going, but the effectiveness of such efforts is seldom monitored or assessed. Greater sage-grouse (Centrocercus urophasianus) are sensitive to energy development and likely serve as an effective umbrella species for other sagebrush-steppe obligate wildlife. We assessed the response of birds within an energy development area before and after the implementation of mitigation action. Additionally, we quantified changes in habitat distribution and abundance in pre- and post-mitigation landscapes. Sage-grouse avoidance of energy development at large spatial scales is well documented. We limited our research to directly within an energy development field in order to assess the influence of mitigation in close proximity to energy infrastructure. We used nest-location data (n = 488) within an energy development field to develop habitat selection models using logistic regression on data from 4 years of research prior to mitigation and for 4 years following the implementation of extensive mitigation efforts (e.g., decreased activity, buried powerlines). The post-mitigation habitat selection models indicated less avoidance of wells (well density β = 0.18 ± 0.08) than the pre-mitigation models (well density β = -0.09 ± 0.11). However, birds still avoided areas of high well density and nests were not found in areas with greater than 4 wells per km2 and the majority of nests (63%) were located in areas with ≤ 1 well per km2. Several other model coefficients differed between the two time periods and indicated stronger selection for sagebrush (pre-mitigation β = 0.30 ± 0.09; post-mitigation β = 0.82 ± 0.08) and less avoidance of rugged terrain (pre-mitigation β = -0.35 ± 0.12; post-mitigation β = -0.05 ± 0.09). Mitigation efforts implemented may

  11. Sagebrush ecosystems: current status and trends.

    USGS Publications Warehouse

    Beever, E.A.; Connelly, J.W.; Knick, S.T.; Schroeder, M.A.; Stiver, S. J.

    2004-01-01

    The sagebrush (Artemisia spp.) biome has changed since settlement by Europeans. The current distribution, composition and dynamics, and disturbance regimes of sagebrush ecosystems have been altered by interactions among disturbance, land use, and invasion of exotic plants. In this chapter, we present the dominant factors that have influenced habitats across the sagebrush biome. Using a large-scale analysis, we identified regional changes and patterns in “natural disturbance”, invasive exotic species, and influences of land use in sagebrush systems. Number of fires and total area burned has increased since 1980 across much of the sagebrush biome. Juniper (Juniperus spp.) and pinyon (Pinus spp.) woodlands have expanded into sagebrush habitats at higher elevations. Cheatgrass (Bromus tectorum), an exotic annual grass, has invaded much of lower elevation, more xeric sagebrush landscapes across the western portion of the biome. Consequently, synergistic feedbacks between habitats and disturbance (natural and human-caused) have altered disturbance regimes, plant community dynamics and contributed to loss of sagebrush habitats and change in plant communities. Habitat conversion to agriculture has occurred in the highly productive regions of the sagebrush biome and influenced up to 56% of the Conservation Assessment area. Similarly, urban areas, and road, railroad, and powerline networks fragment habitats, facilitate predator movements, and provide corridors for spread of exotic species across the entire sagebrush biome. Livestock grazing has altered sagebrush habitats; the effects of overgrazing combined with drought on plant communities in the late 1880s and early 1900s still influences current habitats. Management of livestock grazing has influenced sagebrush ecosystems by habitat treatments to increase forage and reduce sagebrush and other plant species unpalatable to livestock. Fences, roads, and water developments to manage livestock movements have further

  12. L-325 Sagebrush Habitat Mitigation Project: FY2008 Compensation Area Monitoring Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durham, Robin E.; Sackschewsky, Michael R.

    2008-09-30

    This document provides a review and status of activities conducted in support of the Fluor Daniel Hanford Company (Fluor) Mitigation Action Plan (MAP) for Project L-325, Electrical Utility Upgrades. It includes time-zero monitoring results for planting activities conducted in January 2008, annual survival monitoring for all planting years (2007 and 2008), and recommendations for the successful completion of DOE habitat mitigation commitments for this project.

  13. Should ranchers value sagebrush? Why we need sagebrush

    USDA-ARS?s Scientific Manuscript database

    Sagebrush is an important native species that has potential benefits to ranchers who desire multiple services from their lands. Here, we outline how sagebrush benefits other range plants, improves forage and habitat for wildlife, and can be valuable for winter livestock grazing and revegetation....

  14. Restoring and rehabilitating sagebrush habitats

    USGS Publications Warehouse

    Pyke, David A.; Knick, S.T.; Connelly, J.W.

    2011-01-01

    Less than half of the original habitat of the Greater Sage-Grouse (Centrocercus uropha-sianus) currently exists. Some has been perma-nently lost to farms and urban areas, but the remaining varies in condition from high quality to no longer adequate. Restoration of sagebrush (Artemisia spp.) grassland ecosystems may be pos-sible for resilient lands. However, Greater Sage-Grouse require a wide variety of habitats over large areas to complete their life cycle. Effective restoration will require a regional approach for prioritizing and identifying appropriate options across the landscape. A landscape triage method is recommended for prioritizing lands for restora-tion. Spatial models can indicate where to protect and connect intact quality habitat with other simi-lar habitat via restoration. The ecological site con-cept of land classification is recommended for characterizing potential habitat across the region along with their accompanying state and transi-tion models of plant community dynamics. These models assist in identifying if passive, manage-ment-based or active, vegetation manipulation?based restoration might accomplish the goals of improved Greater Sage-Grouse habitat. A series of guidelines help formulate questions that manag-ers might consider when developing restoration plans: (1) site prioritization through a landscape triage; (2) soil verification and the implications of soil features on plant establishment success; (3) a comparison of the existing plant community to the potential for the site using ecological site descriptions; (4) a determination of the current successional status of the site using state and transition models to aid in predicting if passive or active restoration is necessary; and (5) implemen-tation of post-treatment monitoring to evaluate restoration effectiveness and post-treatment man-agement implications to restoration success.

  15. Restoration handbook for sagebrush steppe ecosystems with emphasis on greater sage-grouse habitat - Part 1

    Treesearch

    David A. Pyke; Jeanne C. Chambers; Mike Pellant; Steven T. Knick; Richard F. Miller; Jeffrey L. Beck; Paul S. Doescher; Eugene W. Schupp; Bruce A. Roundy; Mark Brunson; James D. McIver

    2015-01-01

    Sagebrush steppe ecosystems in the United States currently occur on only about one-half of their historical land area because of changes in land use, urban growth, and degradation of land, including invasions of non-native plants. The existence of many animal species depends on the existence of sagebrush steppe habitat. The greater sage-grouse (Centrocercus...

  16. Classification and capabilities of woody sagebrush communities of Western North America with emphasis on sage-grouse habitat

    Treesearch

    Sherel Goodrich

    2005-01-01

    This paper deals with diversity, classification, and capabilities of different sagebrush (Artemisia spp.) communities. Capabilities of sagebrush communities in terms of production, plant diversity, potential for ground cover and sage-grouse (Centrocercus urophasianus) habitat are discussed. Reaction to fire and relationships with...

  17. Native Perennial Forb Variation Between Mountain Big Sagebrush and Wyoming Big Sagebrush Plant Communities

    NASA Astrophysics Data System (ADS)

    Davies, Kirk W.; Bates, Jon D.

    2010-09-01

    Big sagebrush ( Artemisia tridentata Nutt.) occupies large portions of the western United States and provides valuable wildlife habitat. However, information is lacking quantifying differences in native perennial forb characteristics between mountain big sagebrush [ A. tridentata spp. vaseyana (Rydb.) Beetle] and Wyoming big sagebrush [ A. tridentata spp. wyomingensis (Beetle & A. Young) S.L. Welsh] plant communities. This information is critical to accurately evaluate the quality of habitat and forage that these communities can produce because many wildlife species consume large quantities of native perennial forbs and depend on them for hiding cover. To compare native perennial forb characteristics on sites dominated by these two subspecies of big sagebrush, we sampled 106 intact big sagebrush plant communities. Mountain big sagebrush plant communities produced almost 4.5-fold more native perennial forb biomass and had greater native perennial forb species richness and diversity compared to Wyoming big sagebrush plant communities ( P < 0.001). Nonmetric multidimensional scaling (NMS) and the multiple-response permutation procedure (MRPP) demonstrated that native perennial forb composition varied between these plant communities ( P < 0.001). Native perennial forb composition was more similar within plant communities grouped by big sagebrush subspecies than expected by chance ( A = 0.112) and composition varied between community groups ( P < 0.001). Indicator analysis did not identify any perennial forbs that were completely exclusive and faithful, but did identify several perennial forbs that were relatively good indicators of either mountain big sagebrush or Wyoming big sagebrush plant communities. Our results suggest that management plans and habitat guidelines should recognize differences in native perennial forb characteristics between mountain and Wyoming big sagebrush plant communities.

  18. Seral stage classification and monitoring model for big sagebrush/western wheatgrass/blue grama habitat

    Treesearch

    Lakhdar Benkobi; Daniel W. Uresk

    1996-01-01

    An ecological classification model for seral stages was developed for big sagebrush (Artemisia tridentata) shrub steppe habitat in Thunder Basin National Grassland, Wyoming. Four seral stages (early to late succession) were defined in this habitat type. Ecological seral stages were quantitatively identified with an estimated 92% level of accuracy...

  19. Restoring Wyoming big sagebrush

    Treesearch

    Cindy R. Lysne

    2005-01-01

    The widespread occurrence of big sagebrush can be attributed to many adaptive features. Big sagebrush plays an essential role in its communities by providing wildlife habitat, modifying local environmental conditions, and facilitating the reestablishment of native herbs. Currently, however, many sagebrush steppe communities are highly fragmented. As a result, restoring...

  20. A conservation paradox in the Great Basin—Altering sagebrush landscapes with fuel breaks to reduce habitat loss from wildfire

    USGS Publications Warehouse

    Shinneman, Douglas J.; Aldridge, Cameron L.; Coates, Peter S.; Germino, Matthew J.; Pilliod, David S.; Vaillant, Nicole M.

    2018-03-15

    Interactions between fire and nonnative, annual plant species (that is, “the grass/fire cycle”) represent one of the greatest threats to sagebrush (Artemisia spp.) ecosystems and associated wildlife, including the greater sage-grouse (Centrocercus urophasianus). In 2015, U.S. Department of the Interior called for a “science-based strategy to reduce the threat of large-scale rangeland fire to habitat for the greater sage-grouse and the sagebrush-steppe ecosystem.” An associated guidance document, the “Integrated Rangeland Fire Management Strategy Actionable Science Plan,” identified fuel breaks as high priority areas for scientific research. Fuel breaks are intended to reduce fire size and frequency, and potentially they can compartmentalize wildfire spatial distribution in a landscape. Fuel breaks are designed to reduce flame length, fireline intensity, and rates of fire spread in order to enhance firefighter access, improve response times, and provide safe and strategic anchor points for wildland fire-fighting activities. To accomplish these objectives, fuel breaks disrupt fuel continuity, reduce fuel accumulation, and (or) increase plants with high moisture content through the removal or modification of vegetation in strategically placed strips or blocks of land.Fuel breaks are being newly constructed, enhanced, or proposed across large areas of the Great Basin to reduce wildfire risk and to protect remaining sagebrush ecosystems (including greater sage-grouse habitat). These projects are likely to result in thousands of linear miles of fuel breaks that will have direct ecological effects across hundreds of thousands of acres through habitat loss and conversion. These projects may also affect millions of acres indirectly because of edge effects and habitat fragmentation created by networks of fuel breaks. Hence, land managers are often faced with a potentially paradoxical situation: the need to substantially alter sagebrush habitats with fuel breaks

  1. Invertebrate biomass: Associations with lesser prairie-chicken habitat use and sand sagebrush density in southwestern Kansas

    USGS Publications Warehouse

    Jamison, B.E.; Robel, R.J.; Pontius, J.S.; Applegate, R.D.

    2002-01-01

    Invertebrates are important food sources for lesser prairie-chicken (Tympanuchus pallidicinctus) adults and broods. We compared invertebrate biomass in areas used and not used by lesser prairie-chicken adults and broods. We used radiotelemetry to determine use and non-use areas in sand sagebrush (Artemisia filifolia) prairie in southwestern Kansas and sampled invertebrate populations during summer 1998 and 1999. Sweepnet-collected biomass of short-horned grasshoppers (Acrididae) and total invertebrate biomass generally were greater in habitats used by lesser prairie-chickens than in paired non-use areas. We detected no differences in pitfall-collected biomass of Acrididae (P=0.81) or total invertebrate biomass (P=0.93) among sampling areas with sand sagebrush canopy cover of 0 to 10%, 11 to 30%, and >30%. Results of multivariate analysis and regression model selection suggested that forbs were more strongly associated with invertebrate biomass than shrubs, grasses, or bare ground. We could not separate lesser prairie-chicken selection for areas of forb cover from selection of areas with greater invertebrate biomass associated with forb cover. Regardless of whether the effects of forbs were direct or indirect, their importance in sand sagebrush habitat has management implications. Practices that maintain or increase forb cover likely will increase invertebrate biomass and habitat quality in southwestern Kansas.

  2. Invertebrate biomass: associations with lesser prairie-chicken habitat use and sand sagebrush density in southwestern Kansas

    USGS Publications Warehouse

    Jamison, B.; Robel, R.J.; Pontius, J.S.; Applegate, R.D.

    2002-01-01

    Invertebrates are important food sources for lesser prairie-chicken (Tympanuchus pallidicinctus) adults and broods. We compared invertebrate biomass in areas used and not used by lesser prairie-chicken adults and broods. We used radiotelemetry to determine use and non-use areas in sand sagebrush (Artemisia filifolia) prairie in southwestern Kansas and sampled invertebrate populations during summer 1998 and 1999. Sweepnet-collected biomass of short-horned grasshoppers (Acrididae) and total invertebrate biomass generally were greater in habitats used by lesser prairie-chickens than in paired non-use areas. We detected no differences in pitfall-collected biomass of Acrididae (P=0.81) or total invertebrate biomass (P=0.93) among sampling areas with sand sagebrush canopy cover of 0 to 10%, 11 to 30%, and >30%. Results of multivariate analysis and regression model selection suggested that forbs were more strongly associated with invertebrate biomass than shrubs, grasses, or bare ground. We could not separate lesser prairie-chicken selection for areas of forb cover from selection of areas with greater invertebrate biomass associated with forb cover. Regardless of whether the effects of forbs were direct or indirect, their importance in sand sagebrush habitat has management implications. Practices that maintain or increase forb cover likely will increase invertebrate biomass and habitat quality in southwestern Kansas.

  3. Assessing long-term variations in sagebrush habitat: characterization of spatial extents and distribution patterns using multi-temporal satellite remote-sensing data

    USGS Publications Warehouse

    Xian, George; Homer, Collin G.; Aldridge, Cameron L.

    2012-01-01

    An approach that can generate sagebrush habitat change estimates for monitoring large-area sagebrush ecosystems has been developed and tested in southwestern Wyoming, USA. This prototype method uses a satellite-based image change detection algorithm and regression models to estimate sub-pixel percentage cover for five sagebrush habitat components: bare ground, herbaceous, litter, sagebrush and shrub. Landsat images from three different months in 1988, 1996 and 2006 were selected to identify potential landscape change during these time periods using change vector (CV) analysis incorporated with an image normalization algorithm. Regression tree (RT) models were used to estimate percentage cover for five components on all change areas identified in 1988 and 1996, using unchanged 2006 baseline data as training for both estimates. Over the entire study area (24 950 km2), a net increase of 98.83 km2, or 0.7%, for bare ground was measured between 1988 and 2006. Over the same period, the other four components had net losses of 20.17 km2, or 0.6%, for herbaceous vegetation; 30.16 km2, or 0.7%, for litter; 32.81 km2, or 1.5%, for sagebrush; and 33.34 km2, or 1.2%, for shrubs. The overall accuracy for shrub vegetation change between 1988 and 2006 was 89.56%. Change patterns within sagebrush habitat components differ spatially and quantitatively from each other, potentially indicating unique responses by these components to disturbances imposed upon them.

  4. Forecasting sagebrush ecosystem components and greater sage-grouse habitat for 2050: learning from past climate patterns and Landsat imagery to predict the future

    USGS Publications Warehouse

    Homer, Collin G.; Xian, George Z.; Aldridge, Cameron L.; Meyer, Debra K.; Loveland, Thomas R.; O'Donnell, Michael S.

    2015-01-01

    urophasianus) habitat models to evaluate the effects of potential climate-induced habitat change. Under the 2050 IPCC A1B scenario, 11.6% of currently identified nesting habitat was lost, and 0.002% of new potential habitat was gained, with 4% of summer habitat lost and 0.039% gained. Our results demonstrate the successful ability of remote sensing based sagebrush components, when coupled with precipitation, to forecast future component response using IPCC precipitation scenarios. Our approach also enables future quantification of greater sage-grouse habitat under different precipitation scenarios, and provides additional capability to identify regional precipitation influence on sagebrush component response.

  5. Restoration handbook for sagebrush steppe ecosystems with emphasis on greater sage-grouse habitat - Part 2: Landscape level restoration decisions

    Treesearch

    David A. Pyke; Steven T. Knick; Jeanne C. Chambers; Mike Pellant; Richard F. Miller; Jeffrey L. Beck; Paul S. Doescher; Eugene W. Schupp; Bruce A. Roundy; Mark Brunson; James D. McIver

    2015-01-01

    Sagebrush steppe ecosystems in the United States currently (2015) occur on only about one-half of their historical land area because of changes in land use, urban growth, and degradation of land, including invasions of non-native plants. The existence of many animal species depends on the existence of sagebrush steppe habitat. The greater sage-grouse (...

  6. Restoration handbook for sagebrush steppe ecosystems with emphasis on greater sage-grouse habitat - Part 3: Site level restoration decisions

    Treesearch

    David A. Pyke; Jeanne C. Chambers; Mike Pellant; Richard F. Miller; Jeffrey L. Beck; Paul S. Doescher; Bruce A. Roundy; Eugene W. Schupp; Steven T. Knick; Mark Brunson; James D. McIver

    2017-01-01

    Sagebrush steppe ecosystems in the United States currently (2016) occur on only about one-half of their historical land area because of changes in land use, urban growth, and degradation of land, including invasions of non-native plants. The existence of many animal species depends on the existence of sagebrush steppe habitat. The greater sage-grouse (Centrocercus...

  7. Seed bank and big sagebrush plant community composition in a range margin for big sagebrush

    USGS Publications Warehouse

    Martyn, Trace E.; Bradford, John B.; Schlaepfer, Daniel R.; Burke, Ingrid C.; Laurenroth, William K.

    2016-01-01

    The potential influence of seed bank composition on range shifts of species due to climate change is unclear. Seed banks can provide a means of both species persistence in an area and local range expansion in the case of increasing habitat suitability, as may occur under future climate change. However, a mismatch between the seed bank and the established plant community may represent an obstacle to persistence and expansion. In big sagebrush (Artemisia tridentata) plant communities in Montana, USA, we compared the seed bank to the established plant community. There was less than a 20% similarity in the relative abundance of species between the established plant community and the seed bank. This difference was primarily driven by an overrepresentation of native annual forbs and an underrepresentation of big sagebrush in the seed bank compared to the established plant community. Even though we expect an increase in habitat suitability for big sagebrush under future climate conditions at our sites, the current mismatch between the plant community and the seed bank could impede big sagebrush range expansion into increasingly suitable habitat in the future.

  8. Influence of changes in sagebrush on Gunnison sage grouse in Southwestern Colorado

    USGS Publications Warehouse

    Oyler-McCance, S.J.; Burnham, K.P.; Braun, C.E.

    2001-01-01

    The decline in abundance of the newly recognized Gunnison sage grouse (Centrocercus minimus) in southwestern Colorado is thought to be linked to loss and fragmentation of its habitat, sagebrush (Artemisia) vegetation. We documented changes in sagebrush-dominated areas between the 1950s and 1990s by comparing low level aerial photographs taken in these time periods. We documented a loss of 20% or 155,673 ha of sagebrush-dominated areas in southwestern Colorado between 1958 and 1993. The amount of sagebrush-dominated area was much higher and loss rates were much lower in the Gunnison Basin. We also found that 37% of plots sampled underwent substantial fragmentation of sagebrush vegetation. If current trends of habitat loss and fragmentation continue, Gunnison sage grouse (and perhaps other sagebrush-steppe obligates) may become extinct. Protecting the remaining habitat from further loss and fragmentation is paramount to the survival of this species.

  9. Mitigation effectiveness for improving nesting success of greater sage-grouse influenced by energy development

    USGS Publications Warehouse

    Kirol, Christopher P.; Sutphin, Andrew L.; Bond, Laura S.; Fuller, Mark R.; Maechtle, Thomas L.

    2015-01-01

    Sagebrush Artemisia spp. habitats being developed for oil and gas reserves are inhabited by sagebrush obligate species — including the greater sage-grouse Centrocercus urophasianus (sage-grouse) that is currently being considered for protection under the U.S. Endangered Species Act. Numerous studies suggest increasing oil and gas development may exacerbate species extinction risks. Therefore, there is a great need for effective on-site mitigation to reduce impacts to co-occurring wildlife such as sage-grouse. Nesting success is a primary factor in avian productivity and declines in nesting success are also thought to be an important contributor to population declines in sage-grouse. From 2008 to 2011 we monitored 296 nests of radio-marked female sage-grouse in a natural gas (NG) field in the Powder River Basin, Wyoming, USA, and compared nest survival in mitigated and non-mitigated development areas and relatively unaltered areas to determine if specific mitigation practices were enhancing nest survival. Nest survival was highest in relatively unaltered habitats followed by mitigated, and then non-mitigated NG areas. Reservoirs used for holding NG discharge water had the greatest support as having a direct relationship to nest survival. Within a 5-km2 area surrounding a nest, the probability of nest failure increased by about 15% for every 1.5 km increase in reservoir water edge. Reducing reservoirs was a mitigation focus and sage-grouse nesting in mitigated areas were exposed to almost half of the amount of water edge compared to those in non-mitigated areas. Further, we found that an increase in sagebrush cover was positively related to nest survival. Consequently, mitigation efforts focused on reducing reservoir construction and reducing surface disturbance, especially when the surface disturbance results in sagebrush removal, are important to enhancing sage-grouse nesting success.

  10. Mitigation effectiveness for improving nesting success of greater sage-grouse influenced by energy development.

    PubMed

    Kirol, Christopher P; Sutphin, Andrew L; Bond, Laura; Fuller, Mark R; Maechtle, Thomas L

    Sagebrush ( Artemisia spp.) habitats being developed for oil and gas reserves are inhabited by sagebrush obligate species-including the greater sage-grouse ( Centrocercus urophasianus ; sage-grouse) that is currently being considered for protection under the U.S. Endangered Species Act. Numerous studies suggest increasing oil and gas development may exacerbate species extinction risks. Therefore, there is a great need for effective on-site mitigation to reduce impacts to co-occurring wildlife such as sage-grouse. Nesting success is a primary factor in avian productivity and declines in nesting success are also thought to be an important contributor to population declines in sage-grouse. From 2008 to 2011 we monitored 296 nests of radio-marked female sage-grouse in a natural gas (NG) field in the Powder River Basin, Wyoming, USA and compared nest survival in mitigated and non-mitigated development areas and relatively unaltered areas to determine if specific mitigation practices were enhancing nest survival. Nest survival was highest in relatively unaltered habitats followed by mitigated, and then non-mitigated NG areas. Reservoirs used for holding NG discharge water had the greatest support as having a direct relationship to nest survival. Within a 5 km 2 area surrounding a nest, the probability of nest failure increased by about 15% for every 1.5 km increase in reservoir water edge. Reducing reservoirs was a mitigation focus and sage-grouse nesting in mitigated areas were exposed to almost half of the amount of water edge compared to those in non-mitigated areas. Further, we found that an increase in sagebrush cover was positively related to nest survival. Consequently, mitigation efforts focused on reducing reservoir construction and reducing surface disturbance, especially when the surface disturbance results in sagebrush removal, are important to enhancing sage-grouse nesting success.

  11. Mitigation effectiveness for improving nesting success of greater sage-grouse influenced by energy development

    PubMed Central

    Kirol, Christopher P.; Sutphin, Andrew L.; Bond, Laura; Fuller, Mark R.; Maechtle, Thomas L.

    2015-01-01

    Sagebrush (Artemisia spp.) habitats being developed for oil and gas reserves are inhabited by sagebrush obligate species—including the greater sage-grouse (Centrocercus urophasianus; sage-grouse) that is currently being considered for protection under the U.S. Endangered Species Act. Numerous studies suggest increasing oil and gas development may exacerbate species extinction risks. Therefore, there is a great need for effective on-site mitigation to reduce impacts to co-occurring wildlife such as sage-grouse. Nesting success is a primary factor in avian productivity and declines in nesting success are also thought to be an important contributor to population declines in sage-grouse. From 2008 to 2011 we monitored 296 nests of radio-marked female sage-grouse in a natural gas (NG) field in the Powder River Basin, Wyoming, USA and compared nest survival in mitigated and non-mitigated development areas and relatively unaltered areas to determine if specific mitigation practices were enhancing nest survival. Nest survival was highest in relatively unaltered habitats followed by mitigated, and then non-mitigated NG areas. Reservoirs used for holding NG discharge water had the greatest support as having a direct relationship to nest survival. Within a 5 km2 area surrounding a nest, the probability of nest failure increased by about 15% for every 1.5 km increase in reservoir water edge. Reducing reservoirs was a mitigation focus and sage-grouse nesting in mitigated areas were exposed to almost half of the amount of water edge compared to those in non-mitigated areas. Further, we found that an increase in sagebrush cover was positively related to nest survival. Consequently, mitigation efforts focused on reducing reservoir construction and reducing surface disturbance, especially when the surface disturbance results in sagebrush removal, are important to enhancing sage-grouse nesting success. PMID:26366042

  12. Restoration of Mountain Big Sagebrush Steppe Following Prescribed Burning to Control Western Juniper

    NASA Astrophysics Data System (ADS)

    Davies, K. W.; Bates, J. D.; Madsen, M. D.; Nafus, A. M.

    2014-05-01

    Western juniper ( Juniperus occidentalis ssp. occidentalis Hook) encroachment into mountain big sagebrush ( Artemisia tridentata spp. vaseyana (Rydb.) Beetle) steppe has reduced livestock forage production, increased erosion risk, and degraded sagebrush-associated wildlife habitat. Western juniper has been successfully controlled with partial cutting followed by prescribed burning the next fall, but the herbaceous understory and sagebrush may be slow to recover. We evaluated the effectiveness of seeding perennial herbaceous vegetation and sagebrush at five sites where juniper was controlled by partially cutting and prescribed burning. Treatments tested at each site included an unseeded control, herbaceous seed mix (aerially seeded), and the herbaceous seed mix plus sagebrush seed. In the third year post-treatment, perennial grass cover and density were twice as high in plots receiving the herbaceous seed mix compared to the control plots. Sagebrush cover and density in the sagebrush seeded plots were between 74- and 290-fold and 62- and 155-fold greater than the other treatments. By the third year after treatment, sagebrush cover was as high as 12 % in the sagebrush seeded plots and between 0 % and 0.4 % where it was not seeded. These results indicate that aerial seeding perennial herbaceous vegetation can accelerate the recovery of perennial grasses which likely stabilize the site. Our results also suggest that seeding mountain big sagebrush after prescribed burning encroaching juniper can rapidly recover sagebrush cover and density. In areas where sagebrush habitat is limited, seeding sagebrush after juniper control may increase sagebrush habitat and decrease the risks to sagebrush-associated species.

  13. Restoration of mountain big sagebrush steppe following prescribed burning to control western juniper.

    PubMed

    Davies, K W; Bates, J D; Madsen, M D; Nafus, A M

    2014-05-01

    Western juniper (Juniperus occidentalis ssp. occidentalis Hook) encroachment into mountain big sagebrush (Artemisia tridentata spp. vaseyana (Rydb.) Beetle) steppe has reduced livestock forage production, increased erosion risk, and degraded sagebrush-associated wildlife habitat. Western juniper has been successfully controlled with partial cutting followed by prescribed burning the next fall, but the herbaceous understory and sagebrush may be slow to recover. We evaluated the effectiveness of seeding perennial herbaceous vegetation and sagebrush at five sites where juniper was controlled by partially cutting and prescribed burning. Treatments tested at each site included an unseeded control, herbaceous seed mix (aerially seeded), and the herbaceous seed mix plus sagebrush seed. In the third year post-treatment, perennial grass cover and density were twice as high in plots receiving the herbaceous seed mix compared to the control plots. Sagebrush cover and density in the sagebrush seeded plots were between 74- and 290-fold and 62- and 155-fold greater than the other treatments. By the third year after treatment, sagebrush cover was as high as 12 % in the sagebrush seeded plots and between 0 % and 0.4 % where it was not seeded. These results indicate that aerial seeding perennial herbaceous vegetation can accelerate the recovery of perennial grasses which likely stabilize the site. Our results also suggest that seeding mountain big sagebrush after prescribed burning encroaching juniper can rapidly recover sagebrush cover and density. In areas where sagebrush habitat is limited, seeding sagebrush after juniper control may increase sagebrush habitat and decrease the risks to sagebrush-associated species.

  14. Sagebrush Ecosystems Under Fire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Downs, Janelle L.

    Since settlement of the western United States began, sagebrush (Artemisia L. spp.) ecosystems have decreased both in quantity and quality. Originally encompassing up to 150 million acres in the West, the “interminable fields” of sage described by early explorers (Fremont 1845) have been degraded and often eliminated by conversion to agriculture, urbanization, livestock grazing, invasion by alien plants, and alteration of wildfire cycles (Hann et al. 1997; West 1999). More than half of the original sagebrush steppe ecosystems in Washington have been converted to agriculture and many of the remaining stands of sagebrush are degraded by invasion of exotic annualsmore » such as cheatgrass (Bromus tectorum L.). Today, sagebrush ecosystems are considered to be one of the most imperiled in the United States (Noss, LeRoe and Scott 1995), and more than 350 sagebrush-associated plants and animals have been identified as species of conservation concern (Suring et al. 2005; Wisdom et al. 2005). The increasing frequency of wildfire in sagebrush-dominated landscapes is one of the greatest threats to these habitats and also presents one of the most difficult to control.« less

  15. Effect of aspect on sagebrush steppe recovery post-fire juniper woodlands

    USDA-ARS?s Scientific Manuscript database

    Restoration of sagebrush after controlling encroaching western juniper with fire in mountain big sagebrush communities is needed to improve wildlife habitat. We evaluated seeding mountain and Wyoming big sagebrush on north and south aspects after juniper control with prescribed burning. We included...

  16. Quantifying and predicting fuels and the effects of reduction treatments along successional and invasion gradients in sagebrush habitats

    USGS Publications Warehouse

    Shinneman, Douglas; Pilliod, David S.; Arkle, Robert; Glenn, Nancy F.

    2015-01-01

    Sagebrush shrubland ecosystems in the Great Basin are prime examples of how altered successional trajectories can create dynamic fuel conditions and, thus, increase uncertainty about fire risk and behavior. Although fire is a natural disturbance in sagebrush, post-fire environments are highly susceptible to conversion to an invasive grass-fire regime (often referred to as a “grass-fire cycle”). After fire, native shrub-steppe plants are often slow to regenerate, whereas nonnative annuals, especially cheatgrass (Bromus tectorum) and medusahead (Taeniatherum caput-medusae), can establish quickly and outcompete native species. Once fire-prone annuals become established, fire occurrences increase, further promoting dominance of nonnative species. The invasive grass-fire regime also alters nutrient and hydrologic cycles, pushing ecosystems beyond ecological thresholds toward steady-state, fire-prone, nonnative communities. These changes affect millions of hectares in the Great Basin and increase fire risk, decrease habitat quality and biodiversity, accelerate soil erosion, and degrade rangeland resources for livestock production. In many sagebrush landscapes, constantly changing plant communities and fuel conditions hinder attempts by land managers to predict and control fire behavior, restore native communities, and provide ecosystem services (e.g., forage production for livestock). We investigated successional and nonnative plant invasion states and associated fuel loads in degraded sagebrush habitat in a focal study area, the Morley Nelson Snake River Birds of Prey National Conservation Area (hereafter the NCA), in the Snake River Plain Ecoregion of southern Idaho. We expanded our inference by comparing our findings to similar data collected throughout seven major land resource areas (MLRAs) across the Great Basin (JFSP Project “Fire Rehabilitation Effectiveness: A Chronosequence Approach for the Great Basin” [09-S-02-1]). 4 We used a combination of field

  17. Restoring mountain big sagebrush communities after prescribed fire in juniper encroached rangelands

    USDA-ARS?s Scientific Manuscript database

    Western juniper encroachment into sagebrush steppe communities has reduced livestock forage production, increased erosion and runoff risk, and degraded sagebrush-associated wildlife habitat. We evaluated seeding perennial herbaceous vegetation and sagebrush at five sites where juniper was controlle...

  18. Sagebrush ecosystem conservation and management: Ecoregional assessment tools and models for the Wyoming Basins

    USGS Publications Warehouse

    Hanser, S.E.; Leu, M.; Knick, S.T.; Aldridge, Cameron L.

    2011-01-01

    The Wyoming Basins are one of the remaining strongholds of the sagebrush ecosystem. However, like most sagebrush habitats, threats to this region are numerous. This book adds to current knowledge about the regional status of the sagebrush ecosystem, the distribution of habitats, the threats to the ecosystem, and the influence of threats and habitat conditions on occurrence and abundance of sagebrush associated fauna and flora in the Wyoming Basins. Comprehensive methods are outlined for use in data collection and monitoring of wildlife and plant populations. Field and spatial data are integrated into a spatially explicit analytical framework to develop models of species occurrence and abundance for the egion. This book provides significant new information on distributions, abundances, and habitat relationships for a number of species of conservation concern that depend on sagebrush in the region. The tools and models presented in this book increase our understanding of impacts from land uses and can contribute to the development of comprehensive management and conservation strategies.

  19. Greater sage-grouse as an umbrella species for sagebrush-associated vertebrates

    USGS Publications Warehouse

    Rowland, M.M.; Wisdom, M.J.; Suring, L.H.; Meinke, C.W.

    2006-01-01

    Widespread degradation of the sagebrush ecosystem in the western United States, including the invasion of cheatgrass, has prompted resource managers to consider a variety of approaches to restore and conserve habitats for sagebrush-associated species. One such approach involves the use of greater sage-grouse, a species of prominent conservation interest, as an umbrella species. This shortcut approach assumes that managing habitats to conserve sage-grouse will simultaneously benefit other species of conservation concern. The efficacy of using sage-grouse as an umbrella species for conservation management, however, has not been fully evaluated. We tested that concept by comparing: (1) commonality in land-cover associations, and (2) spatial overlap in habitats between sage-grouse and 39 other sagebrush-associated vertebrate species of conservation concern in the Great Basin ecoregion. Overlap in species' land-cover associations with those of sage-grouse, based on the ?? (phi) correlation coefficient, was substantially greater for sagebrush obligates (x??=0.40) than non-obligates (x??=0.21). Spatial overlap between habitats of target species and those associated with sage-grouse was low (mean ?? = 0.23), but somewhat greater for habitats at high risk of displacement by cheatgrass (mean ?? = 0.33). Based on our criteria, management of sage-grouse habitats likely would offer relatively high conservation coverage for sagebrush obligates such as pygmy rabbit (mean ?? = 0.84), but far less for other species we addressed, such as lark sparrow (mean ?? = 0.09), largely due to lack of commonality in land-cover affinity and geographic ranges of these species and sage-grouse.

  20. Columbia River Wildlife Mitigation Habitat Evaluation Procedures Report / Scotch Creek Wildlife Area, Berg Brothers, and Douglas County Pygmy Rabbit Projects.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashley, Paul R.

    1997-01-01

    This Habitat Evaluation Procedure study was conducted to determine baseline habitat units (HUs) on the Scotch Creek, Mineral Hill, Pogue Mountain, Chesaw and Tunk Valley Habitat Areas (collectively known as the Scotch Creek Wildlife Area) in Okanogan County, Sagebrush Flat and the Dormaler property in Douglas County, and the Berg Brothers ranch located in Okanogan County within the Colville Reservation. A HEP team comprised of individuals from the Washington Department of Fish and Wildlife, the Confederated Tribes of the Colville Reservation, and the Natural Resources Conservation Service (Appendix A) conducted baseline habitat surveys using the following HEP evaluation species: mulemore » deer (Odocoileus hemionus), sharp-tailed grouse (Tympanuchus phasianellus), pygmy rabbit (Brachylagus idahoensis), white-tailed deer (Odocoileus virginiana), mink (Mustela vison), Canada goose (Branta canadensis), downy woodpecker (Picoides pubescens), Lewis woodpecker (Melanerpes lewis), and Yellow warbler (Dendroica petechia). Results of the HEP analysis are listed below. General ratings (poor, marginal, fair, etc.,) are described in Appendix B. Mule deer habitat was marginal lacking diversity and quantify of suitable browse species. Sharp-tailed grouse habitat was marginal lacking residual nesting cover and suitable winter habitat Pygmy rabbit habitat was in fair condition except for the Dormaier property which was rated marginal due to excessive shrub canopy closure at some sites. This report is an analysis of baseline habitat conditions on mitigation project lands and provides estimated habitat units for mitigation crediting purposes. In addition, information from this document could be used by wildlife habitat managers to develop management strategies for specific project sites.« less

  1. Susceptibility and antibody response of Vesper Sparrows (Pooecetes gramineus) to West Nile virus: A potential amplification host in sagebrush-grassland habitat

    USGS Publications Warehouse

    Hofmeister, Erik K.; Dusek, Robert J.; Fassbinder-Orth, Carol; Owen, Benjamin; Franson, J. Christian

    2016-01-01

    West Nile virus (WNV) spread to the US western plains states in 2003, when a significant mortality event attributed to WNV occurred in Greater Sage-grouse ( Centrocercus urophasianus ). The role of avian species inhabiting sagebrush in the amplification of WNV in arid and semiarid regions of the North America is unknown. We conducted an experimental WNV challenge study in Vesper Sparrows ( Pooecetes gramineus ), a species common to sagebrush and grassland habitats found throughout much of North America. We found Vesper Sparrows to be moderately susceptible to WNV, developing viremia considered sufficient to transmit WNV to feeding mosquitoes, but the majority of birds were capable of surviving infection and developing a humoral immune response to the WNV nonstructural 1 and envelope proteins. Despite clearance of viremia, after 6 mo, WNV was detected molecularly in three birds and cultured from one bird. Surviving Vesper Sparrows were resistant to reinfection 6 mo after the initial challenge. Vesper sparrows could play a role in the amplification of WNV in sagebrush habitat and other areas of their range, but rapid clearance of WNV may limit their importance as competent amplification hosts of WNV.

  2. Restoring mountain big sagebrush steppe habitat after western juniper control

    USDA-ARS?s Scientific Manuscript database

    Western juniper is being controlled across large acreages in the northern Great Basin to restore sagebrush steppe plant communities. One of the most common control methods is prescribed burning. After burning juniper stands, sagebrush is absent from the community and the herbaceous understory may ...

  3. Landscape alterations influence differential habitat use of nesting buteos and ravens within sagebrush ecosystem: implications for transmission line development

    USGS Publications Warehouse

    Coates, Peter S.; Howe, Kristy B.; Casazza, Michael L.; Delehanty, David J.

    2014-01-01

    A goal in avian ecology is to understand factors that influence differences in nesting habitat and distribution among species, especially within changing landscapes. Over the past 2 decades, humans have altered sagebrush ecosystems as a result of expansion in energy production and transmission. Our primary study objective was to identify differences in the use of landscape characteristics and natural and anthropogenic features by nesting Common Ravens (Corvus corax) and 3 species of buteo (Swainson's Hawk [Buteo swainsoni], Red-tailed Hawk [B. jamaicensis], and Ferruginous Hawk [B. regalis]) within a sagebrush ecosystem in southeastern Idaho. During 2007–2009, we measured multiple environmental factors associated with 212 nest sites using data collected remotely and in the field. We then developed multinomial models to predict nesting probabilities by each species and predictive response curves based on model-averaged estimates. We found differences among species related to nesting substrate (natural vs. anthropogenic), agriculture, native grassland, and edge (interface of 2 cover types). Most important, ravens had a higher probability of nesting on anthropogenic features (0.80) than the other 3 species (Artemisia spp.), favoring increased numbers of nesting ravens and fewer nesting Ferruginous Hawks. Our results indicate that habitat alterations, fragmentation, and forthcoming disturbances anticipated with continued energy development in sagebrush steppe ecosystems can lead to predictable changes in raptor and raven communities.

  4. Loss of sagebrush ecosystems and declining bird populations in the Intermountain West: Priority research issues and information needs

    USGS Publications Warehouse

    ,

    2002-01-01

    Sagebrush lands in the Intermountain West are declining rapidly in quality and extent. Consequently, populations of many bird species dependent on these ecosystems also are declining. The greater sage-grouse has been petitioned for listing as a threatened and endangered species, and other species of sagebrush-obligate birds have special conservation status in most states. We identified the primary issues and information needs during a multi-agency workshop, conducted in response to concerns by management agencies related to declining bird population trends in sagebrush habitats. Priority needs were to (1) obtain a better understanding of bird response to habitat and landscape features, (2) develop monitoring designs to sample habitats and bird populations, (3) determine the effects of land use on sagebrush habitats and dependent bird species, and (4) identify linkages between breeding and wintering ranges. This agenda will identify causes and mechanisms of population declines in birds dependent on sagebrush ecosystems and will lead to better management of the ecosystems upon which they depend.

  5. Investigating Seed Longevity of Big Sagebrush (Artemisia tridentata)

    USGS Publications Warehouse

    Wijayratne, Upekala C.; Pyke, David A.

    2009-01-01

    The Intermountain West is dominated by big sagebrush communities (Artemisia tridentata subspecies) that provide habitat and forage for wildlife, prevent erosion, and are economically important to recreation and livestock industries. The two most prominent subspecies of big sagebrush in this region are Wyoming big sagebrush (A. t. ssp. wyomingensis) and mountain big sagebrush (A. t. ssp. vaseyana). Increased understanding of seed bank dynamics will assist with sustainable management and persistence of sagebrush communities. For example, mountain big sagebrush may be subjected to shorter fire return intervals and prescribed fire is a tool used often to rejuvenate stands and reduce tree (Juniperus sp. or Pinus sp.) encroachment into these communities. A persistent seed bank for mountain big sagebrush would be advantageous under these circumstances. Laboratory germination trials indicate that seed dormancy in big sagebrush may be habitat-specific, with collections from colder sites being more dormant. Our objective was to investigate seed longevity of both subspecies by evaluating viability of seeds in the field with a seed retrieval experiment and sampling for seeds in situ. We chose six study sites for each subspecies. These sites were dispersed across eastern Oregon, southern Idaho, northwestern Utah, and eastern Nevada. Ninety-six polyester mesh bags, each containing 100 seeds of a subspecies, were placed at each site during November 2006. Seed bags were placed in three locations: (1) at the soil surface above litter, (2) on the soil surface beneath litter, and (3) 3 cm below the soil surface to determine whether dormancy is affected by continued darkness or environmental conditions. Subsets of seeds were examined in April and November in both 2007 and 2008 to determine seed viability dynamics. Seed bank samples were taken at each site, separated into litter and soil fractions, and assessed for number of germinable seeds in a greenhouse. Community composition data

  6. Restoration handbook for sagebrush steppe ecosystems with emphasis on greater sage-grouse habitat—Part 1. Concepts for understanding and applying restoration

    USGS Publications Warehouse

    Pyke, David A.; Chambers, Jeanne C.; Pellant, Mike; Knick, Steven T.; Miller, Richard F.; Beck, Jeffrey L.; Doescher, Paul S.; Schupp, Eugene W.; Roundy, Bruce A.; Brunson, Mark; McIver, James D.

    2015-10-26

    Sagebrush steppe ecosystems in the United States currently occur on only about one-half of their historical land area because of changes in land use, urban growth, and degradation of land, including invasions of non-native plants. The existence of many animal species depends on the existence of sagebrush steppe habitat. The greater sage-grouse (Centrocercus urophasianus) is a landscape-dependent bird that requires intact habitat and combinations of sagebrush and perennial grasses to exist. In addition, other sagebrush-obligate animals also have similar requirements and restoration of landscapes for greater sage-grouse also will benefit these animals. Once sagebrush lands are degraded, they may require restoration actions to make those lands viable habitat for supporting sagebrushobligate animals. This restoration handbook is the first in a three-part series on restoration of sagebrush ecosystems. In Part 1, we discuss concepts surrounding landscape and restoration ecology of sagebrush ecosystems and greater sage-grouse that habitat managers and restoration practitioners need to know to make informed decisions regarding where and how to restore specific areas. We will describe the plant dynamics of sagebrush steppe ecosystems and their responses to major disturbances, fire, and defoliation. We will introduce the concepts of ecosystem resilience to disturbances and resistance to invasions of annual grasses within sagebrush steppe. An introduction to soils and ecological site information will provide insights into the specific plants that can be restored in a location. Soil temperature and moisture regimes are described as a tool for determining resilience and resistance and the potential for various restoration actions. Greater sage-grouse are considered landscape birds that require large areas of intact sagebrush steppe; therefore, we describe concepts of landscape ecology that aid our decisions regarding habitat restoration. We provide a brief overview of

  7. Science framework for conservation and restoration of the sagebrush biome: Linking the Department of the Interior’s Integrated Rangeland Fire Management Strategy to long-term strategic conservation actions, Part 1. Science basis and applications

    USGS Publications Warehouse

    Chambers, Jeanne C.; Beck, Jeffrey L.; Bradford, John B.; Bybee, Jared; Campbell, Steve; Carlson, John; Christiansen, Thomas J; Clause, Karen J.; Collins, Gail; Crist, Michele R.; Dinkins, Jonathan B.; Doherty, Kevin E.; Edwards, Fred; Espinosa, Shawn; Griffin, Kathleen A.; Griffin, Paul; Haas, Jessica R.; Hanser, Steven E.; Havlina, Douglas W.; Henke, Kenneth F.; Hennig, Jacob D.; Joyce, Linda A; Kilkenny, Francis F.; Kulpa, Sarah M; Kurth, Laurie L; Maestas, Jeremy D; Manning, Mary E.; Mayer, Kenneth E.; Mealor, Brian A.; McCarthy, Clinton; Pellant, Mike; Perea, Marco A.; Prentice, Karen L.; Pyke, David A.; Wiechman , Lief A.; Wuenschel, Amarina

    2017-01-01

    The Science Framework is intended to link the Department of the Interior’s Integrated Rangeland Fire Management Strategy with long-term strategic conservation actions in the sagebrush biome. The Science Framework provides a multiscale approach for prioritizing areas for management and determining effective management strategies within the sagebrush biome. The emphasis is on sagebrush (Artemisia spp.) ecosystems and Greater sage-grouse (Centrocercus urophasianus). The approach provided in the Science Framework links sagebrush ecosystem resilience to disturbance and resistance to nonnative, invasive plant species to species habitat information based on the distribution and abundance of focal species. A geospatial process is presented that overlays information on ecosystem resilience and resistance, species habitats, and predominant threats and that can be used at the mid-scale to prioritize areas for management. A resilience and resistance habitat matrix is provided that can help decisionmakers evaluate risks and determine appropriate management strategies. Prioritized areas and management strategies can be refined by managers and stakeholders at the local scale based on higher resolution data and local knowledge. Decision tools are discussed for determining appropriate management actions for areas that are prioritized for management. Geospatial data, maps, and models are provided through the U.S. Geological Survey (USGS) ScienceBase and Bureau of Land Management (BLM) Landscape Approach Data Portal. The Science Framework is intended to be adaptive and will be updated as additional data become available on other values and species at risk. It is anticipated that the Science Framework will be widely used to: (1) inform emerging strategies to conserve sagebrush ecosystems, sagebrush dependent species, and human uses of the sagebrush system, and (2) assist managers in prioritizing and planning on-the-ground restoration and mitigation actions across the sagebrush biome.

  8. IDF Sagebrush Habitat Mitigation Project: FY2008 Compensation Area Monitoring Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durham, Robin E.; Sackschewsky, Michael R.

    This document provides a review and status of activities conducted in support of the CH2MHill Hanford Group (CHG) Compensatory Mitigation Implementation Plan (MIP) for the Integrated Disposal Facility (IDF). It includes time-zero monitoring results for planting activities conducted in December 2007, annual survival monitoring for all planting years, a summary of artificial burrow observations, and recommendations for the successful completion of DOE mitigation commitments for this project.

  9. Sagebrush, greater sage-grouse, and the occurrence and importance of forbs

    USGS Publications Warehouse

    Pennington, Victoria E.; Schlaepfer, Daniel R.; Beck, Jeffrey L.; Bradford, John B.; Palmquist, Kyle A.; Lauenroth, William K.

    2016-01-01

    Big sagebrush (Artemisia tridentata Nutt.) ecosystems provide habitat for sagebrush-obligate wildlife species such as the Greater Sage-Grouse (Centrocercus urophasianus). The understory of big sagebrush plant communities is composed of grasses and forbs that are important sources of cover and food for wildlife. The grass component is well described in the literature, but the composition, abundance, and habitat role of forbs in these communities is largely unknown. Our objective was to synthesize information about forbs and their importance to Greater Sage-Grouse diets and habitats, how rangeland management practices affect forbs, and how forbs respond to changes in temperature and precipitation. We also sought to identify research gaps and needs concerning forbs in big sagebrush plant communities. We searched for relevant literature including journal articles and state and federal agency reports. Our results indicated that in the spring and summer, Greater Sage-Grouse diets consist of forbs (particularly species in the Asteraceae family), arthropods, and lesser amounts of sagebrush. The diets transition to sagebrush in fall and winter. Forbs provide cover for Greater Sage-Grouse individuals at their lekking, nesting, and brood-rearing sites, and the species has a positive relationship with arthropod presence. The effect of grazing on native forbs may be compounded by invasion of nonnative species and differs depending on grazing intensity. The effect of fire on forbs varies greatly and may depend on time elapsed since burning. In addition, chemical and mechanical treatments affect annual and perennial forbs differently. Temperature and precipitation influence forb phenology, biomass, and abundance differently among species. Our review identified several uncertainties and research needs about forbs in big sagebrush ecosystems. First, in many cases the literature about forbs is reported only at the genus or functional type level. Second, information about forb

  10. Land use and habitat conditions across the southwestern Wyoming sagebrush steppe: development impacts, management effectiveness and the distribution of invasive plants

    USGS Publications Warehouse

    Manier, Daniel J.; Aldridge, Cameron L.; Anderson, Patrick; Chong, Geneva; Homer, Collin G.; O'Donnell, Michael S.; Schell, Spencer

    2011-01-01

    For the past several years, USGS has taken a multi-faceted approach to investigating the condition and trends in sagebrush steppe ecosystems. This recent effort builds upon decades of work in semi-arid ecosystems providing a specific, applied focus on the cumulative impacts of expanding human activities across these landscapes. Here, we discuss several on-going projects contributing to these efforts: (1) mapping and monitoring the distribution and condition of shrub steppe communities with local detail at a regional scale, (2) assessing the relationships between specific, land-use features (for example, roads, transmission lines, industrial pads) and invasive plants, including their potential (environmentally defined) distribution across the region, and (3) monitoring the effects of habitat treatments on the ecosystem, including wildlife use and invasive plant abundance. This research is focused on the northern sagebrush steppe, primarily in Wyoming, but also extending into Montana, Colorado, Utah and Idaho. The study area includes a range of sagebrush types (including, Artemisia tridentata ssp. tridentata, Artemisia tridentata ssp. wyomingensis, Artemisia tridentata ssp. vaseyana, Artemisia nova) and other semi-arid shrubland types (for example, Sarcobatus vermiculatus, Atriplex confertifolia, Atriplex gardneri), impacted by extensive interface between steppe ecosystems and industrial energy activities resulting in a revealing multiple-variable analysis. We use a combination of remote sensing (AWiFS (1 Any reference to platforms, data sources, equipment, software, patented or trade-marked methods is for information purposes only. It does not represent endorsement of the U.S.D.I., U.S.G.S. or the authors), Landsat and Quickbird platforms), Geographic Information System (GIS) design and data management, and field-based, replicated sampling to generate multiple scales of data representing the distribution of shrub communities for the habitat inventory. Invasive plant

  11. Greater sage-grouse as an umbrella species for sagebrush-associated vertebrates.

    Treesearch

    Mary M. Rowland; Michael J. Wisdom; Lowell Suring; Cara W. Meinke

    2006-01-01

    Widespread degradation of the sagebrush ecosystem in the western United States, including the invasion of cheatgrass, has prompted resource managers to consider a variety of approaches to restore and conserve habitats for sagebrush-associated species. One such approach involves the use of greater sage-grouse, a species of prominent conservation interest, as an umbrella...

  12. A spatial model to prioritize sagebrush landscapes in the intermountain west (U.S.A.) for restoration

    USGS Publications Warehouse

    Meinke, C.W.; Knick, S.T.; Pyke, D.A.

    2009-01-01

    The ecological integrity of Sagebrush (Artemisia spp.) ecosystems in the Intermountain West (U.S.A.) has been diminished by synergistic relationships among human activities, spread of invasive plants, and altered disturbance regimes. An aggressive effort to restore Sagebrush habitats is necessary if we are to stabilize or improve current habitat trajectories and reverse declining population trends of dependent wildlife. Existing economic resources, technical impediments, and logistic difficulties limit our efforts to a fraction of the extensive area undergoing fragmentation, degradation, and loss. We prioritized landscapes for restoring Sagebrush habitats within the intermountain western region of the United States using geographic information system (GIS) modeling techniques to identify areas meeting a set of conditions based on (1) optimum abiotic and biotic conditions favorable for revegetation of Sagebrush; (2) potential to increase connectivity of Sagebrush habitats in the landscape to benefit wildlife; (3) location of population strongholds for Greater Sage-Grouse (Centrocercus urophasianus, a species of conservation concern); and (4) potential impediments to successful restoration created by Cheatgrass (Bromus tectorum, an invasive exotic annual grass). Approximately 5.8 million ha in southwestern Idaho, northern Nevada, and eastern Oregon met our criteria for restoring Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis) and 5.1 million ha had high priority for restoring Mountain big sagebrush (A. tridentata ssp. vaseyana). Our results represent an integral component in a hierarchical framework after which site-specific locations for treatments can be focused within high-priority areas. Using this approach, long-term restoration strategies can be implemented that combine local-scale treatments and objectives with large-scale ecological processes and priorities. ?? 2008 Society for Ecological Restoration International.

  13. Photo series for quantifying natural fuels. Volume XI: eastern Oregon sagebrush-steppe and spotted owl nesting habitat in the Pacific Northwest

    Treesearch

    Clinton S. Wright; Robert E. Vihnanek; Joseph C. Restaino; Jon E. Dvorak

    2012-01-01

    Three series of photographs display a range of natural conditions and fuel loadings for sagebrush-steppe types that are ecotonal with grasses, western juniper, and ponderosa pine in eastern Oregon, and one series of photographs displays a range of natural conditions and fuel loadings for northern spotted owl nesting habitat in forest types in Washington and Oregon....

  14. Restoring big sagebrush after controlling encroaching western juniper with fire: aspect and subspecies effects

    USDA-ARS?s Scientific Manuscript database

    The need for restoration of shrubs is increasingly recognized around the world. In the western USA, restoration of mountain big sagebrush (Artemisia tridentata Nutt. ssp. vaseyana (Rydb.) Beetle) after controlling encroaching conifers is a priority to improve sagebrush-associated wildlife habitat. ...

  15. Conserving and restoring habitat for Greater Sage-Grouse and other sagebrush-obligate wildlife: The crucial link of forbs and sagebrush diversity

    Treesearch

    Kas Dumroese; Tara Luna; Bryce A. Richardson; Francis F. Kilkenny; Justin B. Runyon

    2015-01-01

    In the western US, Greater Sage-Grouse (Centrocercus urophasianus Bonaparte [Phasianidae]) have become an indicator species of the overall health of the sagebrush (Artemisia L. [Asteraceae]) dominated communities that support a rich diversity of flora and fauna. This species has an integral association with sagebrush, its understory forbs and grasses, and the...

  16. Forb, Insect, and Soil Response to Burning and Mowing Wyoming Big Sagebrush in Greater Sage-Grouse Breeding Habitat

    NASA Astrophysics Data System (ADS)

    Hess, Jennifer E.; Beck, Jeffrey L.

    2014-04-01

    Wyoming big sagebrush ( Artemisia tridentata wyomingensis A. t. Nutt. ssp. wyomingensis Beetle and Young) communities provide structure and forbs and insects needed by greater sage-grouse ( Centrocercus urophasianus) for growth and survival. We evaluated forb, insect, and soil responses at six mowed and 19 prescribed burned sites compared to 25, paired and untreated reference sites. Sites were classified by treatment type, soil type, season, and decade of treatment (sites burned during 1990-1999 and sites burned or mowed during 2000-2006). Our objective was to evaluate differences in ten habitat attributes known to influence sage-grouse nesting and brood rearing to compare responses among treatment scenarios. Contrary to desired outcomes, treating Wyoming big sagebrush through prescribed burning or mowing may not stimulate cover or increase nutrition in food forbs, or increase insect abundance or indicators of soil quality compared with reference sites. In some cases, prescribed burning showed positive results compared with mowing such as greater forb crude protein content (%), ant (Hymenoptera; no./trap), beetle (Coleoptera/no./trap), and grasshopper abundance (Orthoptera; no./sweep), and total (%) soil carbon and nitrogen, but of these attributes, only grasshopper abundance was enhanced at burned sites compared with reference sites in 2008. Mowing did not promote a statistically significant increase in sage-grouse nesting or early brood-rearing habitat attributes such as cover or nutritional quality of food forbs, or counts of ants, beetles, or grasshoppers compared with reference sites.

  17. Forb, insect, and soil response to burning and mowing Wyoming big sagebrush in greater sage-grouse breeding habitat.

    PubMed

    Hess, Jennifer E; Beck, Jeffrey L

    2014-04-01

    Wyoming big sagebrush (Artemisia tridentata wyomingensis A. t. Nutt. ssp. wyomingensis Beetle and Young) communities provide structure and forbs and insects needed by greater sage-grouse (Centrocercus urophasianus) for growth and survival. We evaluated forb, insect, and soil responses at six mowed and 19 prescribed burned sites compared to 25, paired and untreated reference sites. Sites were classified by treatment type, soil type, season, and decade of treatment (sites burned during 1990-1999 and sites burned or mowed during 2000-2006). Our objective was to evaluate differences in ten habitat attributes known to influence sage-grouse nesting and brood rearing to compare responses among treatment scenarios. Contrary to desired outcomes, treating Wyoming big sagebrush through prescribed burning or mowing may not stimulate cover or increase nutrition in food forbs, or increase insect abundance or indicators of soil quality compared with reference sites. In some cases, prescribed burning showed positive results compared with mowing such as greater forb crude protein content (%), ant (Hymenoptera; no./trap), beetle (Coleoptera/no./trap), and grasshopper abundance (Orthoptera; no./sweep), and total (%) soil carbon and nitrogen, but of these attributes, only grasshopper abundance was enhanced at burned sites compared with reference sites in 2008. Mowing did not promote a statistically significant increase in sage-grouse nesting or early brood-rearing habitat attributes such as cover or nutritional quality of food forbs, or counts of ants, beetles, or grasshoppers compared with reference sites.

  18. Greater sage-grouse winter habitat use on the eastern edge of their range

    USGS Publications Warehouse

    Swanson, Christopher C.; Rumble, Mark A.; Grovenburg, Troy W.; Kaczor, Nicholas W.; Klaver, Robert W.; Herman-Brunson, Katie M.; Jenks, Jonathan A.; Jensen, Kent C.

    2013-01-01

    Greater sage-grouse (Centrocercus urophasianus) at the western edge of the Dakotas occur in the transition zone between sagebrush and grassland communities. These mixed sagebrush (Artemisia sp.) and grasslands differ from those habitats that comprise the central portions of the sage-grouse range; yet, no information is available on winter habitat selection within this region of their distribution. We evaluated factors influencing greater sage-grouse winter habitat use in North Dakota during 2005–2006 and 2006–2007 and in South Dakota during 2006–2007 and 2007–2008. We captured and radio-marked 97 breeding-age females and 54 breeding-age males from 2005 to 2007 and quantified habitat selection for 98 of these birds that were alive during winter. We collected habitat measurements at 340 (177 ND, 163 SD) sage-grouse use sites and 680 random (340 each at 250 m and 500 m from locations) dependent sites. Use sites differed from random sites with greater percent sagebrush cover (14.75% use vs. 7.29% random; P 2 use vs. 0.94 plants/m2 random; P ≤ 0.001), but lesser percent grass cover (11.76% use vs. 16.01% random; P ≤ 0.001) and litter cover (4.34% use vs. 5.55% random; P = 0.001) and lower sagebrush height (20.02 cm use vs. 21.35 cm random; P = 0.13) and grass height (21.47 cm use vs. 23.21 cm random; P = 0.15). We used conditional logistic regression to estimate winter habitat selection by sage-grouse on continuous scales. The model sagebrush cover + sagebrush height + sagebrush cover × sagebrush height (wi = 0.60) was the most supported of the 13 models we considered, indicating that percent sagebrush cover strongly influenced selection. Logistic odds ratios indicated that the probability of selection by sage-grouse increased by 1.867 for every 1% increase in sagebrush cover (95% CI = 1.627–2.141) and by 1.041 for every 1 cm increase in sagebrush height (95% CI = 1.002–1.082). The

  19. Conservation of priority birds in sagebrush ecosystems

    Treesearch

    Terrell D. Rich; Michael J. Wisdom; Victoria A. Saab

    2005-01-01

    Sagebrush ecosystems occupy over 62,000,000 ha of the western US. However, they have been degraded or completely eliminated by agricultural conversion, overgrazing by domestic livestock, invasion of exotic plants, expansion of pinyon and juniper woodlands, uncharacteristic wildfires, and fragmentation. This habitat loss has led to an increasing number of special status...

  20. Genetic and environmental effects on seed weight in subspecies of big sagebrush: Applications for restoration

    Treesearch

    Bryce A. Richardson; Hector G. Ortiz; Stephanie L. Carlson; Deidre M. Jaeger; Nancy L. Shaw

    2015-01-01

    The sagebrush steppe is a patchwork of species and subspecies occupying distinct environmental niches across the intermountain regions of western North America. These ecosystems face degradation from disturbances and exotic weeds. Using sagebrush seed that is matched to its appropriate niche is a critical component to successful restoration, improving habitat for the...

  1. Habitat Evaluation Procedures (HEP) Report : Grand Coulee Dam Mitigation, 1996-1999 Technical Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kieffer, B.; Singer, Kelly; Abrahamson, Twa-le

    1999-07-01

    The purpose of this Habitat Evaluation Procedures (HEP) study was to determine baseline habitat units and to estimate future habitat units for Bonneville Power Administration (BPA) mitigation projects on the Spokane Indian Reservation. The mitigation between BPA and the Spokane Tribe of Indians (STOI) is for wildlife habitat losses on account of the construction of Grand Coulee Dam. Analysis of the HEP survey data will assist in mitigation crediting and appropriate management of the mitigation lands.

  2. Science framework for the conservation and restoration strategy of DOI secretarial order 3336: Utilizing resilience and resistance concepts to assess threats to sagebrush ecosystems and greater sage-grouse, prioritize conservation and restoration actions, and inform management strategies

    USGS Publications Warehouse

    Chambers, Jeanne C.; Campbell, Steve; Carlson, John; Beck, Jeffrey L.; Clause, Karen J.; Dinkins, Jonathan B.; Doherty, Kevin E.; Espinosa, Shawn; Griffin, Kathleen A.; Christiansen, Thomas J.; Crist, Michele R.; Hanser, Steven E.; Havlina, Douglas W.; Henke, Kenneth F.; Hennig, Jacob D.; Kurth, Laurie L.; Maestas, Jeremy D.; Mayer, Kenneth E.; Manning, Mary E.; Mealor, Brian A.; McCarthy, Clinton; Pellant, Mike; Prentice, Karen L.; Perea, Marco A.; Pyke, David A.; Wiechman , Lief A.; Wuenschel, Amarina

    2016-01-01

    The Science Framework for the Conservation and Restoration Strategy of the Department of the Interior, Secretarial Order 3336 (SO 3336), Rangeland Fire Prevention, Management and Restoration, provides a strategic, multiscale approach for prioritizing areas for management and determining effective management strategies across the sagebrush biome. The emphasis of this version is on sagebrush ecosystems and greater sage-grouse. The Science Framework uses a six step process in which sagebrush ecosystem resilience to disturbance and resistance to nonnative, invasive annual grasses is linked to species habitat information based on the distribution and abundance of focal species. The predominant ecosystem and anthropogenic threats are assessed, and a habitat matrix is developed that helps decision makers evaluate risks and determine appropriate management strategies at regional and local scales. Areas are prioritized for management action using a geospatial approach that overlays resilience and resistance, species habitat information, and predominant threats. Decision tools are discussed for determining the suitability of priority areas for management and the most appropriate management actions at regional to local scales. The Science Framework and geospatial crosscut are intended to complement the mitigation strategies associated with the Greater Sage-Grouse Land Use Plan amendments for the Department of the Interior Bureaus, such as the Bureau of Land Management, and the U.S. Forest Service.

  3. Transcriptome characterization and polymorphism detection between subspecies of big sagebrush (Artemisia tridentata)

    Treesearch

    Prabin Bajgain; Bryce A. Richardson; Jared C. Price; Richard C. Cronn; Joshua A. Udall

    2011-01-01

    Big sagebrush (Artemisia tridentata) is one of the most widely distributed and ecologically important shrub species in western North America. This species serves as a critical habitat and food resource for many animals and invertebrates. Habitat loss due to a combination of disturbances followed by establishment of invasive plant species is a serious threat to big...

  4. Influence of habitat on behavior of Towndsend's ground squirrels (Spermophilus townsendii)

    USGS Publications Warehouse

    Sharpe, Peter B.; Van Horne, Beatrice

    1998-01-01

    Trade-offs between foraging and predator avoidance may affect an animal's survival and reproduction. These trade-offs may be influenced by differences in vegetative cover, especially if foraging profitability and predation risk differ among habitats. We examined above-ground activity of Townsend's ground squirrels (Spermophilus townsendii) in four habitats in the Snake River Birds of Prey National Conservation Area in southwestern Idaho to determine if behavior of ground squirrels varied among habitats, and we assessed factors that might affect perceived predation risk (i. e. predator detectability, predation pressure, population density). The proportion of time spent in vigilance by ground squirrels in winterfat (Krascheninnikovia lanata) and mosaic habitats of winterfat-sagebrush (Artemisia tridentata) was more than twice that of ground squirrels in burned and unburned sagebrush habitats. We found no evidence for the 'many-eyes' hypothesis as an explanation for differences in vigilance among habitats. Instead, environmental heterogeneity, especially vegetation structure, likely influenced activity budgets of ground squirrels. Differences in vigilance may have been caused by differences in predator detectability and refuge availability, because ground squirrels in the winterfat and mosaic habitats also spent more time in upright vigilant postures than ground squirrels in burned-sagebrush or sagebrush habitats. Such postures may enhance predator detection in low-growing winterfat.

  5. Using resistance and resilience concepts to reduce impacts of annual grasses and altered fire regimes on the sagebrush ecosystem and sage-grouse- A strategic multi-scale approach

    USGS Publications Warehouse

    Chambers, Jeanne C.; Pyke, David A.; Maestas, Jeremy D.; Boyd, Chad S.; Campbell, Steve; Espinosa, Shawn; Havlina, Doug; Mayer, Kenneth F.; Wuenschel, Amarina

    2014-01-01

    This Report provides a strategic approach for conservation of sagebrush ecosystems and Greater Sage- Grouse (sage-grouse) that focuses specifically on habitat threats caused by invasive annual grasses and altered fire regimes. It uses information on factors that influence (1) sagebrush ecosystem resilience to disturbance and resistance to invasive annual grasses and (2) distribution, relative abundance, and persistence of sage-grouse populations to develop management strategies at both landscape and site scales. A sage-grouse habitat matrix links relative resilience and resistance of sagebrush ecosystems with sage-grouse habitat requirements for landscape cover of sagebrush to help decision makers assess risks and determine appropriate management strategies at landscape scales. Focal areas for management are assessed by overlaying matrix components with sage-grouse Priority Areas for Conservation (PACs), breeding bird densities, and specific habitat threats. Decision tools are discussed for determining the suitability of focal areas for treatment and the most appropriate management treatments.

  6. Sage-grouse habitat selection during winter in Alberta

    USGS Publications Warehouse

    Carpenter, Jennifer L.; Aldridge, Cameron L.; Boyce, Mark S.

    2010-01-01

    Greater sage-grouse (Centrocercus urophasianus) are dependent on sagebrush (Artemisia spp.) for food and shelter during winter, yet few studies have assessed winter habitat selection, particularly at scales applicable to conservation planning. Small changes to availability of winter habitats have caused drastic reductions in some sage-grouse populations. We modeled winter habitat selection by sage-grouse in Alberta, Canada, by using a resource selection function. Our purpose was to 1) generate a robust winter habitat-selection model for Alberta sage-grouse; 2) spatially depict habitat suitability in a Geographic Information System to identify areas with a high probability of selection and thus, conservation importance; and 3) assess the relative influence of human development, including oil and gas wells, in landscape models of winter habitat selection. Terrain and vegetation characteristics, sagebrush cover, anthropogenic landscape features, and energy development were important in top Akaike's Information Criterionselected models. During winter, sage-grouse selected dense sagebrush cover and homogenous less rugged areas, and avoided energy development and 2-track truck trails. Sage-grouse avoidance of energy development highlights the need for comprehensive management strategies that maintain suitable habitats across all seasons. ?? 2010 The Wildlife Society.

  7. Restoration handbook for sagebrush steppe ecosystems with emphasis on greater sage-grouse habitat—Part 3. Site level restoration decisions

    USGS Publications Warehouse

    Pyke, David A.; Chambers, Jeanne C.; Pellant, Mike; Miller, Richard F.; Beck, Jeffrey L.; Doescher, Paul S.; Roundy, Bruce A.; Schupp, Eugene W.; Knick, Steven T.; Brunson, Mark; McIver, James D.

    2017-02-14

    Sagebrush steppe ecosystems in the United States currently (2016) occur on only about one-half of their historical land area because of changes in land use, urban growth, and degradation of land, including invasions of non-native plants. The existence of many animal species depends on the existence of sagebrush steppe habitat. The greater sage-grouse (Centrocercus urophasianus) depends on large landscapes of intact habitat of sagebrush and perennial grasses for their existence. In addition, other sagebrush-obligate animals have similar requirements and restoration of landscapes for greater sage-grouse also will benefit these animals. Once sagebrush lands are degraded, they may require restoration actions to make those lands viable habitat for supporting sagebrush-obligate animals, livestock, and wild horses, and to provide ecosystem services for humans now and for future generations.When a decision is made on where restoration treatments should be applied, there are a number of site-specific decisions managers face before selecting the appropriate type of restoration. This site-level decision tool for restoration of sagebrush steppe ecosystems is organized in nine steps.Step 1 describes the process of defining site-level restoration objectives.Step 2 describes the ecological site characteristics of the restoration site. This covers soil chemistry and texture, soil moisture and temperature regimes, and the vegetation communities the site is capable of supporting.Step 3 compares the current vegetation to the plant communities associated with the site State and Transition models.Step 4 takes the manager through the process of current land uses and past disturbances that may influence restoration success.Step 5 is a brief discussion of how weather before and after treatments may impact restoration success.Step 6 addresses restoration treatment types and their potential positive and negative impacts on the ecosystem and on habitats, especially for greater sage

  8. Northwest Montana Wildlife Mitigation Habitat Protection : Advance Design : Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Marilyn A.

    1993-02-01

    This report summarizes the habitat protection process developed to mitigate for certain wildlife and wildlife habitat losses due to construction of Hungry Horse and Libby dams in northwestern Montana.

  9. Transcriptome sequencing, characterization, and polymorphism detection in subspecies of big sagebrush (Artemisa tridentata)

    Treesearch

    Prabin Bajgain

    2011-01-01

    Big sagebrush (Artemisia tridentata) is one of the ecologically most important shrub species in western North America. The species serves as a major source of food and habitat for the nearthreatened sage grouse and various other fauna. Habitat loss due to a combination of disturbances followed by establishment of invasive plant species is considered as a serious threat...

  10. Historical fire regimes, reconstructed from land-survey data, led to complexity and fluctuation in sagebrush landscapes.

    PubMed

    Bukowski, Beth E; Baker, William L

    2013-04-01

    Sagebrush landscapes provide habitat for Sage-Grouse and other sagebrush obligates, yet historical fire regimes and the structure of historical sagebrush landscapes are poorly known, hampering ecological restoration and management. To remedy this, General Land Office Survey (GLO) survey notes were used to reconstruct over two million hectares of historical vegetation for four sagebrush-dominated (Artemisia spp.) study areas in the western United States. Reconstructed vegetation was analyzed for fire indicators used to identify historical fires and reconstruct historical fire regimes. Historical fire-size distributions were inverse-J shaped, and one fire > 100 000 ha was identified. Historical fire rotations were estimated at 171-342 years for Wyoming big sagebrush (A. tridentata ssp. wyomingensis) and 137-217 years for mountain big sagebrush (A. tridentata ssp. vaseyana). Historical fire and patch sizes were significantly larger in Wyoming big sagebrush than mountain big sagebrush, and historical fire rotations were significantly longer in Wyoming big sagebrush than mountain big sagebrush. Historical fire rotations in Wyoming were longer than those in other study areas. Fine-scale mosaics of burned and unburned area and larger unburned inclusions within fire perimeters were less common than in modern fires. Historical sagebrush landscapes were dominated by large, contiguous areas of sagebrush, though large grass-dominated areas and finer-scale mosaics of grass and sagebrush were also present in smaller amounts. Variation in sagebrush density was a common source of patchiness, and areas classified as "dense" made up 24.5% of total sagebrush area, compared to 16.3% for "scattered" sagebrush. Results suggest significant differences in historical and modern fire regimes. Modern fire rotations in Wyoming big sagebrush are shorter than historical fire rotations. Results also suggest that historical sagebrush landscapes would have fluctuated, because of infrequent

  11. Livestock grazing and sage-grouse habitat: impacts and opportunities

    USDA-ARS?s Scientific Manuscript database

    Sage-grouse obtain resources from sagebrush communities for breeding, summer, and winter life stages. Grazing changes the productivity, composition, and structure of herbaceous plants in sagebrush communities, thus directly influencing the productivity of nesting and early brood-rearing habitats. In...

  12. Short-term influence of tank tracks on vegetation and microphytic crusts in shrubsteppe habitat

    USGS Publications Warehouse

    Watts, Stephen E.

    1998-01-01

    Artemisia tridentata Nutt.) habitat within the Idaho Army National Guard Orchard Training Area in southwestern Idaho. The purpose of this study was to determine the short-term (1a??2 years) influence of tank tracks on vegetation and microphytic crusts in shrubsteppe habitat. The two types of tank tracks studied were divots (area where one track has been stopped or slowed to make a sharp turn) and straight-line tracks. Divots generally had a stronger influence on vegetation and microphytic crusts than did straight-line tracks. Tank tracks increased cover of bare ground, litter, and exotic annuals, and reduced cover of vegetation, perennial native grasses, sagebrush, and microphytic crusts. Increased bare ground and reduced cover of vegetation and microphytic crusts caused by tank tracks increase the potential for soil erosion and may reduce ecosystem productivity. Reduced sagebrush cover caused by tank tracks may reduce habitat quality for rodents. Tank tracks may also facilitate the invasion of exotic annuals into sagebrush habitat, increasing the potential for wildfire and subsequent habitat degradation. Thus, creation of divots and movement through sagebrush habitat by tanks should be minimized.

  13. Greater sage-grouse winter habitat use on the eastern edge of their range

    Treesearch

    Christopher C. Swanson; Mark A. Rumble; Nicholas W. Kaczor; Robert W. Klaver; Katie M. Herman-Brunson; Jonathan A. Jenks; Kent C. Jensen

    2013-01-01

    Greater sage-grouse (Centrocercus urophasianus) at the western edge of the Dakotas occur in the transition zone between sagebrush and grassland communities. These mixed sagebrush (Artemisia sp.) and grasslands differ from those habitats that comprise the central portions of the sage-grouse range; yet, no information is available on winter habitat selection within this...

  14. U.S. Geological Survey sage-grouse and sagebrush ecosystem research annual report for 2017

    USGS Publications Warehouse

    Hanser, Steven E.

    2017-09-08

    The sagebrush (Artemisia spp.) ecosystem extends across a large portion of the Western United States, and the greater sage-grouse (Centrocercus urophasianus) is one of the iconic species of this ecosystem. Greater sage-grouse populations occur in 11 States and are dependent on relatively large expanses of sagebrush-dominated habitat. Sage-grouse populations have been experiencing long-term declines owing to multiple stressors, including interactions among fire, exotic plant invasions, and human land uses, which have resulted in significant loss, fragmentation, and degradation of landscapes once dominated by sagebrush. In addition to the sage-grouse, over 350 species of plants and animals are dependent on the sagebrush ecosystem.Increasing knowledge about how these species and the sagebrush ecosystem respond to these stressors and to management actions can inform and improve strategies to maintain existing areas of intact sagebrush and restore degraded landscapes. The U.S. Geological Survey (USGS) has a broad research program focused on providing the science needed to inform these strate-gies and to help land and resource managers at the Federal, State, Tribal, and local levels as they work towards sustainable sage-grouse populations and restored landscapes for the broad range of uses critical to stakeholders in the Western United States.USGS science has provided a foundation for major land and resource management decisions including those that precluded the need to list the greater sage-grouse under the Endangered Species Act. The USGS is continuing to build on that foundation to inform science-based decisions to help support local economies and the continued conservation, management, and restoration of the sagebrush ecosystem.This report contains descriptions of USGS sage-grouse and sagebrush ecosystem research projects that are ongoing or were active during 2017 and is organized into five thematic areas: Fire, Invasive Species, Restoration, Sagebrush and Sage

  15. Transcriptome characterization and polymorphism detection between subspecies of big sagebrush (Artemisia tridentata)

    PubMed Central

    2011-01-01

    Background Big sagebrush (Artemisia tridentata) is one of the most widely distributed and ecologically important shrub species in western North America. This species serves as a critical habitat and food resource for many animals and invertebrates. Habitat loss due to a combination of disturbances followed by establishment of invasive plant species is a serious threat to big sagebrush ecosystem sustainability. Lack of genomic data has limited our understanding of the evolutionary history and ecological adaptation in this species. Here, we report on the sequencing of expressed sequence tags (ESTs) and detection of single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers in subspecies of big sagebrush. Results cDNA of A. tridentata sspp. tridentata and vaseyana were normalized and sequenced using the 454 GS FLX Titanium pyrosequencing technology. Assembly of the reads resulted in 20,357 contig consensus sequences in ssp. tridentata and 20,250 contigs in ssp. vaseyana. A BLASTx search against the non-redundant (NR) protein database using 29,541 consensus sequences obtained from a combined assembly resulted in 21,436 sequences with significant blast alignments (≤ 1e-15). A total of 20,952 SNPs and 119 polymorphic SSRs were detected between the two subspecies. SNPs were validated through various methods including sequence capture. Validation of SNPs in different individuals uncovered a high level of nucleotide variation in EST sequences. EST sequences of a third, tetraploid subspecies (ssp. wyomingensis) obtained by Illumina sequencing were mapped to the consensus sequences of the combined 454 EST assembly. Approximately one-third of the SNPs between sspp. tridentata and vaseyana identified in the combined assembly were also polymorphic within the two geographically distant ssp. wyomingensis samples. Conclusion We have produced a large EST dataset for Artemisia tridentata, which contains a large sample of the big sagebrush leaf transcriptome. SNP

  16. Assessing greater sage-grouse breeding habitat with aerial and ground imagery

    USDA-ARS?s Scientific Manuscript database

    Anthropogenic disturbances, wildfires, and weedy-plant invasions have destroyed and fragmented sagebrush (Artemisia L. spp.) habitats. Sagebrush-dependent species like greater sage-grouse (Centrocercus urophasianus; hereafter, sage-grouse) are vulnerable to these changes, emphasizing the importance ...

  17. The importance of floristics to sagebrush breeding birds of the south Okanagan and Similkameen Valleys, British Columbia

    Treesearch

    Susan Paczek; Pam Krannitz

    2005-01-01

    Habitat associations were determined for five species of songbirds breeding in sagebrush habitat of the South Okanagan and Similkameen valleys, British Columbia. We examined the relative importance of plant species versus “total forbs” and “total grasses” at a local level (<100 m) with point counts and vegetation survey...

  18. Fire Effects on Cover and Dietary Resources of Sage-grouse Habitat

    USDA-ARS?s Scientific Manuscript database

    Prescribed fire in big sagebrush (Artemisia tridentata Nutt.) steppe to enhance habitat characteristics for greater sage-grouse (Centrocercus urophasianus Bonaparte), a sagebrush obligate species, has been a subject of increased research emphasis and management concern. We evaluated early successio...

  19. Sage-grouse habitat assessment framework: multi-scale habitat assessment tool

    USDA-ARS?s Scientific Manuscript database

    This document provides policymakers, resource managers, and specialists with a comprehensive framework for assessing sage-grouse habitat in the sagebrush ecosystem. Four pillars form the foundation for the success of this approach: science, effective conservation policy, implementation, and adapti...

  20. Mechanistic understanding of the effects of natural gas development on sagebrush-obligate songbird nest predation rates

    NASA Astrophysics Data System (ADS)

    Hethcoat, Matthew G.

    Natural gas development has rapidly increased within sagebrush ( Artemisia spp.) dominated landscapes of the Intermountain West. Prior research in the Upper Green River Basin, Wyoming demonstrated increased nest predation of sagebrush-obligate songbirds with higher densities of natural gas wells. To better understand the mechanisms underlying this pattern, I assessed this commonly used index of oil and gas development intensity (well density) for estimating habitat transformation and predicting nest survival for songbirds breeding in energy fields during 2008- 2009 and 2011-2012. We calculated landscape metrics (habitat loss, amount of edge, patch shape complexity, and mean patch size) to identify the aspect of landscape transformation most captured by well density. Well density was most positively associated with the amount of habitat loss within 1 square kilometer. Daily nest survival was relatively invariant with respect to well density for all three species. In contrast, nest survival rates of all three species consistently decreased with increased surrounding habitat loss due to energy development. Thus, although well density and habitat loss were strongly correlated, at times they provided contrasting estimates of nest survival probability. Additionally, we tested the hypothesis that surrounding habitat loss influenced local nest predation rates via increased predator activity. During 2011- 2012, we surveyed predators and monitored songbird nests at twelve sites in western Wyoming. Nine species, representing four mammalian and three avian families, were video-recorded depredating eggs and nestlings. Approximately 75% of depredation events were caused by rodents. While chipmunk (Tamias minimus) detections were negatively associated with increased habitat loss, mice (Peromyscus maniculatus and Reithrodontomys megalotis) and ground squirrels (Ictidomys tridecemlineatus and Urocitellus armatus) increased with greater surrounding habitat loss. Consistent with our

  1. Countering misinformation concerning big sagebrush

    Treesearch

    Bruce L Welch; Craig Criddle

    2003-01-01

    This paper examines the scientific merits of eight axioms of range or vegetative management pertaining to big sagebrush. These axioms are: (1) Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis) does not naturally exceed 10 percent canopy cover and mountain big sagebrush (A. t. ssp. vaseyana) does not naturally exceed 20 percent canopy...

  2. Simulated big sagebrush regeneration supports predicted changes at the trailing and leading edges of distribution shifts

    USGS Publications Warehouse

    Schlaepfer, Daniel R.; Taylor, Kyle A.; Pennington, Victoria E.; Nelson, Kellen N.; Martin, Trace E.; Rottler, Caitlin M.; Lauenroth, William K.; Bradford, John B.

    2015-01-01

    Many semi-arid plant communities in western North America are dominated by big sagebrush. These ecosystems are being reduced in extent and quality due to economic development, invasive species, and climate change. These pervasive modifications have generated concern about the long-term viability of sagebrush habitat and sagebrush-obligate wildlife species (notably greater sage-grouse), highlighting the need for better understanding of the future big sagebrush distribution, particularly at the species' range margins. These leading and trailing edges of potential climate-driven sagebrush distribution shifts are likely to be areas most sensitive to climate change. We used a process-based regeneration model for big sagebrush, which simulates potential germination and seedling survival in response to climatic and edaphic conditions and tested expectations about current and future regeneration responses at trailing and leading edges that were previously identified using traditional species distribution models. Our results confirmed expectations of increased probability of regeneration at the leading edge and decreased probability of regeneration at the trailing edge below current levels. Our simulations indicated that soil water dynamics at the leading edge became more similar to the typical seasonal ecohydrological conditions observed within the current range of big sagebrush ecosystems. At the trailing edge, an increased winter and spring dryness represented a departure from conditions typically supportive of big sagebrush. Our results highlighted that minimum and maximum daily temperatures as well as soil water recharge and summer dry periods are important constraints for big sagebrush regeneration. Overall, our results confirmed previous predictions, i.e., we see consistent changes in areas identified as trailing and leading edges; however, we also identified potential local refugia within the trailing edge, mostly at sites at higher elevation. Decreasing

  3. Ecosystem engineering of harvester ants: effects on vegetation in a sagebrush-steppe ecosystem

    USGS Publications Warehouse

    Gosselin, Elyce N; Holbrook, Joseph D.; Huggler, Katey; Brown, Emily; Vierling, Kerri T.; Arkle, Robert; Pilliod, David S.

    2016-01-01

    Harvester ants are influential in many ecosystems because they distribute and consume seeds, remove vegetation, and redistribute soil particles and nutrients. Understanding the interaction between harvester ants and plant communities is important for management and restoration efforts, particularly in systems altered by fire and invasive species such as the sagebrush-steppe. Our objective was to evaluate how vegetation cover changed as a function of distance from Owyhee harvester ant (Pogonomyrmex salinus) nests within a sagebrush-steppe ecosystem. We sampled 105 harvester ant nests within southern Idaho, USA, that occurred in different habitats: annual grassland, perennial grassland, and native shrubland. The influence of Owyhee harvester ants on vegetation was larger at the edge of ant nests, but the relationship was inconsistent among plant species. Percent cover was positively associated with distance from harvester ant nests for plant species that were considered undesirable food sources and were densely distributed. However, percent cover was negatively associated with distance-from-nests for patchily distributed and desirable plant species. For some plant species, there was no change in cover associated with distance-from-nests. Total vegetation cover was associated with distance-from-nests in the shrubland habitat but not in the 2 grasslands. The dominant plant species in the shrubland habitat was a densely distributed shrub (winterfat, Krascheninnikovia lanata) that was defoliated by harvester ants. Our results suggest that Owyhee harvester ants increase spatial heterogeneity in plant communities through plant clearing, but the direction and magnitude of effect will likely be contingent on the dominant vegetation groups. This information may inform future management and plant restoration efforts in sagebrush-steppe by directly considering the islands of influence associated with harvester ant engineering.

  4. Restoring arid western habitats: Native plants maximize wildlife conservation effectiveness

    Treesearch

    Kas Dumroese; Jeremy Pinto; Deborah M. Finch

    2016-01-01

    Greater sage-grouse (Centrocercus urophasianus) and monarch butterflies (Danaus plexippus) and other pollinating insects have garnered a lot of attention recently from federal and state wildlife officials. These two species and pollinators share dwindling sagebrush habitat in the western United States that is putting their populations at risk. Sagebrush...

  5. Nest-site selection and reproductive success of greater sage-grouse in a fire-affected habitat of northwestern Nevada

    USGS Publications Warehouse

    Lockyer, Zachary B.; Coates, Peter S.; Casazza, Michael L.; Espinosa, Shawn; Delehanty, David J.

    2015-01-01

    Identifying links between micro-habitat selection and wildlife reproduction is imperative to population persistence and recovery. This information is particularly important for landscape species such as greater sage-grouse (Centrocercus urophasianus; sage-grouse). Although this species has been widely studied, because environmental factors can affect sage-grouse populations, local and regional studies are crucial for developing viable conservation strategies. We studied the habitat-use patterns of 71 radio-marked sage-grouse inhabiting an area affected by wildfire in the Virginia Mountains of northwestern Nevada during 2009–2011 to determine the effect of micro-habitat attributes on reproductive success. We measured standard vegetation parameters at nest and random sites using a multi-scale approach (range = 0.01–15,527 ha). We used an information-theoretic modeling approach to identify environmental factors influencing nest-site selection and survival, and determine whether nest survival was a function of resource selection. Sage-grouse selected micro-sites with greater shrub canopy cover and less cheatgrass (Bromus tectorum) cover than random sites. Total shrub canopy, including sagebrush (Artemisia spp.) and other shrub species, at small spatial scales (0.8 ha and 3.1 ha) was the single contributing selection factor to higher nest survival. These results indicate that reducing the risk of wildfire to maintain important sagebrush habitats could be emphasized in sage-grouse conservation strategies in Nevada. Managers may seek to mitigate the influx of annual grass invasion by preserving large intact sagebrush-dominated stands with a mixture of other shrub species. For this area of Nevada, the results suggest that ≥40% total shrub canopy cover in sage-grouse nesting areas could yield improved reproductive success. 

  6. Artemisia L.: sagebrush

    Treesearch

    Susan E. Meyer

    2008-01-01

    Sagebrush - Artemisia L. - species are probably the most common shrubs in western North America. Big sagebrush alone occupies an estimated 60 million ha as a landscape dominant or codominant in the semiarid interior, and related species of the subgenus Tridentatae are estimated to occupy an additional 50 million ha (Beetle 1960; McArthur and Stevens in press)....

  7. Seasonal habitat requirements for sage-grouse: spring, summer, fall, and winter

    Treesearch

    Clait E. Braun; John W. Connelly; Michael A. Schroeder

    2005-01-01

    Sage-grouse (Centrocercus minimus, C. urophasianus) are dependent upon live sagebrush (Artemisia spp.) for all life processes across their entire range. This paper describes habitats used by sage-grouse as documented in the scientific literature. The leaves of sagebrush are eaten by sage-grouse throughout the...

  8. Determination of Section 404 Permit and Habitat Mitigation Requirements

    DOT National Transportation Integrated Search

    2012-09-01

    The Arizona Department of Transportation (ADOT) is committed to developing habitat, mitigation, : monitoring, and maintenance plans that replace the loss of the functions and values of an area and : are self-sustaining, thereby providing long-term co...

  9. Quantifying restoration effectiveness using multi-scale habitat models: implications for sage-grouse in the Great Basin

    USGS Publications Warehouse

    Arkle, Robert S.; Pilliod, David S.; Hanser, Steven E.; Brooks, Matthew L.; Chambers, Jeanne C.; Grace, James B.; Knutson, Kevin C.; Pyke, David A.; Welty, Justin L.

    2014-01-01

    A recurrent challenge in the conservation of wide-ranging, imperiled species is understanding which habitats to protect and whether we are capable of restoring degraded landscapes. For Greater Sage-grouse (Centrocercus urophasianus), a species of conservation concern in the western United States, we approached this problem by developing multi-scale empirical models of occupancy in 211 randomly located plots within a 40 million ha portion of the species' range. We then used these models to predict sage-grouse habitat quality at 826 plots associated with 101 post-wildfire seeding projects implemented from 1990 to 2003. We also compared conditions at restoration sites to published habitat guidelines. Sage-grouse occupancy was positively related to plot- and landscape-level dwarf sagebrush (Artemisia arbuscula, A. nova, A. tripartita) and big sagebrush steppe prevalence, and negatively associated with non-native plants and human development. The predicted probability of sage-grouse occupancy at treated plots was low on average (0.09) and not substantially different from burned areas that had not been treated. Restoration sites with quality habitat tended to occur at higher elevation locations with low annual temperatures, high spring precipitation, and high plant diversity. Of 313 plots seeded after fire, none met all sagebrush guidelines for breeding habitats, but approximately 50% met understory guidelines, particularly for perennial grasses. This pattern was similar for summer habitat. Less than 2% of treated plots met winter habitat guidelines. Restoration actions did not increase the probability of burned areas meeting most guideline criteria. The probability of meeting guidelines was influenced by a latitudinal gradient, climate, and topography. Our results suggest that sage-grouse are relatively unlikely to use many burned areas within 20 years of fire, regardless of treatment. Understory habitat conditions are more likely to be adequate than overstory

  10. Sagebrush systematics and distribution

    Treesearch

    E. Durant McArthur

    2000-01-01

    In this paper on sagebrush systematics and distribution, it is appropriate to begin by defining a few terms. Sagebrush, under my definition, are woody North American Artemisia of the subgenus Tridentatae. Tridentatae are one of four subgenera in Artemisia. Tridentatae or true...

  11. Effects of Succession on Carbon and Water Fluxes from Sagebrush Steppe

    NASA Astrophysics Data System (ADS)

    Kwon, H.; Pendall, E.; Ewers, B. E.; Bayless, M. K.; Naithani, K.

    2005-12-01

    Prescribed burning is a management tool applied to sagebrush rangelands in the western United States to reduce shrub cover, increase forage quality and improve wildlife habitat. The resulting mosaics of vegetation in different stages of recovery (succession) following fire, with patches ranging in size from ~10 to >1000 m2, have unknown impacts on the carbon and water cycles. We quantified the impact of changing contributions of mountain big sagebrush and perennial grass fluxes in south-central Wyoming to ecosystem fluxes in response to environmental dynamics through two growing seasons. We used eddy covariance to evaluate the influence of different vegetation cover on the magnitude and variability of carbon dioxide and water vapor fluxes during growing seasons of 2004 and 2005. Carbon was taken up at rates of 1 to 3 g C m-2 d-1 in June, and the ecosystem became a C source by mid- to late-July. Net C uptake occurred again in September and October following late summer rains in 2004. Peak growing season rates of C uptake (6-8 μmol m-2 s-1) and evapotranspiration (5-7 μmol m-2 s-1) compare well with fluxes measured from pure sagebrush stands in a large (4 m diameter) ecosystem gas exchange chamber. The results of this research contribute to a larger project quantifying the effects of vegetation succession on carbon sequestration and water loss in sagebrush steppe.

  12. Sagebrush defoliator outbreak in Northern California

    Treesearch

    Ralph C. Hall

    1965-01-01

    The sagebrush defoliator was responsible for varying degrees of sagebrush defoliation and mortality over a widespread area in southeastern Oregon, northeastern California, and northwestern Nevada in 1963 and 1964. Severe defoliation sometimes killed sagebrush in a single season. Indications are that the outbreak will continue at least another season. A....

  13. Habitat Evaluation Procedures (HEP) Report : Malheur River Wildlife Mitigation, 2000-2002 Technical Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez, Daniel; Wenick, Jess

    Review Panel (ISRP). Program participants are responsible for creating management plans for each of the 52 subbasins. Upon approval by the Council, the management plan is then incorporated into the Program. In 1998, the Tribe submitted two land acquisition proposals for funding through Bonneville's Wildlife Mitigation Program, the Logan Valley and Malheur River Wildlife Mitigation Projects. After several months of rigorous scrutiny and defense of its project presentations, the Tribe was awarded both acquisitions. In February of 2000, the Tribe and BPA entered into a Memorandum of Agreement (MOA) to fund the acquisition and management of Logan Valley and the Malheur River Projects. In April and November of 2000, the Tribe acquired the Logan Valley property (Project) and the Malheur River Wildlife Mitigation Project, respectively. The MOA requires the Tribe to dedicate the Project to wildlife habitat protection. Project management must be consistent with the term and conditions of the MOA and a site-specific management plan (Plan) that is to be prepared by the Tribe. The Malheur River Wildlife Mitigation Project (Denny Jones Ranch) allows the Tribe to manage 6,385 acres of meadow, wetland, and sagebrush steppe habitats along the Malheur River. The deeded property includes seven miles of the Malheur River, the largest private landholding along this waterway between Riverside and Harper. The property came with approximately 938 acres of senior water rights and 38,377 acres of federal and state grazing allotments. The project will benefit a diverse population of fish, wildlife, and plant species. Objectives include reviving and improving critical habitat for fish and wildlife populations, controlling/ eradicating weed populations, improving water quality, maintaining Bureau of Land Management (BLM) allotments, and preserving cultural resources. Before the Tribe acquired the project site, a combination of high levels of cattle stocking rates, management strategy, and a

  14. Selecting sagebrush seed sources for restoration in a variable climate: ecophysiological variation among genotypes

    USGS Publications Warehouse

    Germino, Matthew J.

    2012-01-01

    Big sagebrush (Artemisia tridentata) communities dominate a large fraction of the United States and provide critical habitat for a number of wildlife species of concern. Loss of big sagebrush due to fire followed by poor restoration success continues to reduce ecological potential of this ecosystem type, particularly in the Great Basin. Choice of appropriate seed sources for restoration efforts is currently unguided due to knowledge gaps on genetic variation and local adaptation as they relate to a changing landscape. We are assessing ecophysiological responses of big sagebrush to climate variation, comparing plants that germinated from ~20 geographically distinct populations of each of the three subspecies of big sagebrush. Seedlings were previously planted into common gardens by US Forest Service collaborators Drs. B. Richardson and N. Shaw, (USFS Rocky Mountain Research Station, Provo, Utah and Boise, Idaho) as part of the Great Basin Native Plant Selection and Increase Project. Seed sources spanned all states in the conterminous Western United States. Germination, establishment, growth and ecophysiological responses are being linked to genomics and foliar palatability. New information is being produced to aid choice of appropriate seed sources by Bureau of Land Management and USFS field offices when they are planning seed acquisitions for emergency post-fire rehabilitation projects while considering climate variability and wildlife needs.

  15. USGS mineral-resource assessment of Sagebrush Focal Areas in the western United States

    USGS Publications Warehouse

    Frank, David G.; Frost, Thomas P.; Day, Warren C.; ,

    2016-10-04

    U.S. Geological Survey (USGS) scientists have completed an assessment of the mineral-resource potential of nearly 10 million acres of Federal and adjacent lands in Idaho, Montana, Nevada, Oregon, Utah, and Wyoming. The assessment of these lands, identified as Sagebrush Focal Areas, was done at the request of the Bureau of Land Management. The assessment results will be used in the decision-making process that the Department of the Interior is pursuing toward the protection of large areas of contiguous sagebrush habitat for the greater sage-grouse (Centrocercus urophasianus) in the Western United States. The detailed results of this ambitious study are published in the five volumes of USGS Scientific Investigations Report 2016–5089 and seven accompanying data releases.

  16. Idaho Habitat Evaluation for Off-Site Mitigation Record : Annual Report 1988.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Idaho. Dept. of Fish and Game.

    1990-03-01

    The Idaho Department of Fish and Game (IDFG) has been monitoring and evaluating existing and proposed habitat improvement projects for steelhead and chinook in the Clearwater and Salmon subbasins since 1984. Projects included in the monitoring are funded by, or proposed for funding by, the Bonneville Power Administration (BPA) under the Northwest Power Planning Act as off-site mitigation for downstream hydropower development on the Snake and Columbia Rivers. This monitoring project is also funded under the same authority. A mitigation record is being developed to use actual and potential increases in smolt production as the best measures of benefit frommore » a habitat improvement project. This project is divided into two subprojects: general and intensive monitoring. Primary objectives of the general monitoring subproject are to determine natural production increases due to habitat improvement projects in terms of parr production and to determine natural production status and trends in Idaho. The second objective is accomplished by combining parr density from monitoring and evaluation of BPA habitat projects and from other IDFG management and research activities. The primary objective of the intensive monitoring subproject is to determine the relationships between spawning escapement, parr production, and smolt production in two Idaho streams; the upper Salmon River and Crooked River. Results of the intensive monitoring will be used to estimate mitigation benefits in terms of smolt production and to interpret natural production monitoring in Idaho. 30 refs., 19 figs., 34 tabs.« less

  17. Methyl jasmonate as an allelopathic agent: sagebrush inhibits germination of a neighboring tobacco, Nicotiana attenuata.

    PubMed

    Preston, Catherine A; Betts, Hazel; Baldwi, Ian T

    2002-11-01

    Artemisia tridentata ssp. tridentata is the dominant and defining shrub in the Great Basin Desert, with well-documented allelopathic tendencies that have generally been ascribed to its most abundantly released secondary metabolites. However, as a minor component, sagebrush releases a highly biologically active substance, methyljasmonate (MeJA), which is known to function as both a germination inhibitor and promoter in laboratory studies. Nicotiana attenuata is a tobacco species native to the Great Basin Desert and grows in newly burned juniper-sagebrush habitats for 2-3 yr following a fire. With a combination of field and laboratory studies, we examined the role of MeJA release from sagebrush by both air and water transport in inhibiting N. attenuata seed germination. We demonstrated that sagebrush interacts allelopathically with the seed bank of N. attenuata through its release of MeJA. In the field, seeds buried 0-40 cm from sagebrush plants for 4 months in net bags had significantly reduced germination compared to seeds buried similarly but protected in plastic bags. Moreover, germination on soils collected from underneath sagebrush plants was reduced by 60% compared to seeds placed on soils collected between sagebrush plants or outside of the sagebrush population. Exposure to A. tridentata seeds and seedlings did not affect N. attenuata germination, suggesting that established sagebrush plants only influence the tobacco's seed bank. In the laboratory, exposure of seeds to sagebrush emissions resulted in germination delays of up to 6 d. Exposure to volatile and aqueous MeJA also inhibited germination of N. attenuata seeds at quantities that are released naturally by sagebrush: 3.5 microg/hr and 1.12 microg/seed cup (56 ng/seed), respectively. A. tridentata seeds were significantly more resistant to MeJA, being inhibited at 336 microg MeJA (16.8 microg/seed), 300 times greater than the level of aqueous MeJA required to inhibit N. attenuata seeds. MeJA inhibited N

  18. Use and selection of brood-rearing habitat by Sage Grouse in south central Washington

    USGS Publications Warehouse

    Sveum, C.M.; Crawford, J.A.; Edge, W.D.

    1998-01-01

    Sage Grouse (Centrocercus urophasianus) brood-habitat use was examined during 1992 and 1993 at the Yakima Training Center in Yakima and Kittitas counties, Washington. During the 2 yr we followed 38 broods, of which 12 persisted to 1 August (x?? = approximately 1.5 chicks/brood). Food forb cover was greater at all brood locations than at random locations. Hens with broods in big sagebrush/bunchgrass habitat (Artemisia tridentata/Agropyron spicatum) selected for greater food forb cover, total forb cover, and lower shrub heights; broods in altered big sagebrush/bunchgrass habitats selected greater tall grass cover and vertical cover height; broods in grassland showed no preference for any measured vegetation characteristics. During the early rearing period (post-hatching-6 wk) each year, broods selected sagebrush/bunchgrass. Broods in 1993 made greater use of grasslands than in 1992 and selected grassland during the late brood-rearing period (7-12 wk). Broods selected for sagebrush/bunchgrass during midday, but 52% of brood locations in the afternoon were in grassland. Tall grass cover was greater at morning (0500-1000 h) and afternoon (1501-2000 h) brood locations than at midday (1001-1500 h) and random locations. Midday brood locations had greater shrub cover and height than morning and afternoon locations. Selection of habitat components was similar to the results of other studies, but habitat conditions coupled with a possible lack of 'alternate brood-rearing cover types resulted in low survival of chicks.

  19. Big sagebrush seed bank densities following wildfires

    USDA-ARS?s Scientific Manuscript database

    Big sagebrush (Artemisia spp.) is a critical shrub to many wildlife species including sage grouse (Centrocercus urophasianus), mule deer (Odocoileus hemionus), and pygmy rabbit (Brachylagus idahoensis). Big sagebrush is killed by wildfires and big sagebrush seed is generally short-lived and do not s...

  20. Using resistance and resilience concepts to reduce impacts of invasive annual grasses and altered fire regimes on the sagebrush ecosystem and greater sage-grouse: A strategic multi-scale approach

    Treesearch

    Jeanne C. Chambers; David A. Pyke; Jeremy D. Maestas; Mike Pellant; Chad S. Boyd; Steven B. Campbell; Shawn Espinosa; Douglas W. Havlina; Kenneth E. Mayer; Amarina Wuenschel

    2014-01-01

    This Report provides a strategic approach for conservation of sagebrush ecosystems and Greater Sage- Grouse (sage-grouse) that focuses specifically on habitat threats caused by invasive annual grasses and altered fire regimes. It uses information on factors that influence (1) sagebrush ecosystem resilience to disturbance and resistance to invasive annual grasses and (2...

  1. Using resilience and resistance concepts to manage threats to sagebrush ecosystems, Gunnison sage-grouse, and Greater sage-grouse in their eastern range: A strategic multi-scale approach

    USGS Publications Warehouse

    Chambers, Jeanne C.; Beck, Jeffrey L.; Campbell, Steve; Carlson, John; Christiansen, Thomas J.; Clause, Karen J.; Dinkins, Jonathan B.; Doherty, Kevin E.; Griffin, Kathleen A.; Havlina, Douglas W.; Mayer, Kenneth F.; Hennig, Jacob D.; Kurth, Laurie L.; Maestas, Jeremy D.; Manning, Mary E.; Mealor, Brian A.; McCarthy, Clinton; Perea, Marco A.; Pyke, David A.

    2016-01-01

    This report provides a strategic approach developed by a Western Association of Fish and Wildlife Agencies interagency working group for conservation of sagebrush ecosystems, Greater sage-grouse, and Gunnison sage-grouse. It uses information on (1) factors that influence sagebrush ecosystem resilience to disturbance and resistance to nonnative invasive annual grasses and (2) distribution and relative abundance of sage-grouse populations to address persistent ecosystem threats, such as invasive annual grasses and wildfire, and land use and development threats, such as oil and gas development and cropland conversion, to develop effective management strategies. A sage-grouse habitat matrix links relative resilience and resistance of sagebrush ecosystems with modeled sage-grouse breeding habitat probabilities to help decisionmakers assess risks and determine appropriate management strategies at both landscape and site scales. Areas for targeted management are assessed by overlaying matrix components with Greater sage-grouse Priority Areas for Conservation and Gunnison sage-grouse critical habitat and linkages, breeding bird concentration areas, and specific habitat threats. Decision tools are discussed for determining the suitability of target areas for management and the most appropriate management actions. A similar approach was developed for the Great Basin that was incorporated into the Federal land use plan amendments and served as the basis of a Bureau of Land Management Fire and Invasives Assessment Tool, which was used to prioritize sage-grouse habitat for targeted management activities.

  2. Quantile equivalence to evaluate compliance with habitat management objectives

    USGS Publications Warehouse

    Cade, Brian S.; Johnson, Pamela R.

    2011-01-01

    Equivalence estimated with linear quantile regression was used to evaluate compliance with habitat management objectives at Arapaho National Wildlife Refuge based on monitoring data collected in upland (5,781 ha; n = 511 transects) and riparian and meadow (2,856 ha, n = 389 transects) habitats from 2005 to 2008. Quantiles were used because the management objectives specified proportions of the habitat area that needed to comply with vegetation criteria. The linear model was used to obtain estimates that were averaged across 4 y. The equivalence testing framework allowed us to interpret confidence intervals for estimated proportions with respect to intervals of vegetative criteria (equivalence regions) in either a liberal, benefit-of-doubt or conservative, fail-safe approach associated with minimizing alternative risks. Simple Boolean conditional arguments were used to combine the quantile equivalence results for individual vegetation components into a joint statement for the multivariable management objectives. For example, management objective 2A required at least 809 ha of upland habitat with a shrub composition ≥0.70 sagebrush (Artemisia spp.), 20–30% canopy cover of sagebrush ≥25 cm in height, ≥20% canopy cover of grasses, and ≥10% canopy cover of forbs on average over 4 y. Shrub composition and canopy cover of grass each were readily met on >3,000 ha under either conservative or liberal interpretations of sampling variability. However, there were only 809–1,214 ha (conservative to liberal) with ≥10% forb canopy cover and 405–1,098 ha with 20–30%canopy cover of sagebrush ≥25 cm in height. Only 91–180 ha of uplands simultaneously met criteria for all four components, primarily because canopy cover of sagebrush and forbs was inversely related when considered at the spatial scale (30 m) of a sample transect. We demonstrate how the quantile equivalence analyses also can help refine the numerical specification of habitat objectives and explore

  3. Mountain big sagebrush (Artemisia tridentata spp vaseyana) seed production

    Treesearch

    Melissa L. Landeen

    2015-01-01

    Big sagebrush (Artemisia tridentata Nutt.) is the most widespread and common shrub in the sagebrush biome of western North America. Of the three most common subspecies of big sagebrush (Artemisia tridentata), mountain big sagebrush (ssp. vaseyana; MBS) is the most resilient to disturbance, but still requires favorable climactic conditions and a viable post-...

  4. Weather, habitat composition, and female behavior interact to modify offspring survival in Greater Sage-Grouse.

    PubMed

    Gibson, Daniel; Blomberg, Erik J; Atamian, Michael T; Sedinger, James S

    2017-01-01

    Weather is a source of environmental variation that can affect population vital rates. However, the influence of weather on individual fitness is spatially heterogeneous and can be driven by other environmental factors, such as habitat composition. Therefore, individuals can experience reduced fitness (e.g., decreased reproductive success) during poor environmental conditions through poor decisions regarding habitat selection. This requires, however, that habitat selection is adaptive and that the organism can correctly interpret the environmental cues to modify habitat use. Greater Sage-Grouse (Centrocercus urophasianus) are an obligate of the sagebrush ecosystems of western North America, relying on sagebrush for food and cover. Greater Sage-Grouse chicks, however, require foods with high nutrient content (i.e., forbs and insects), the abundance of which is both temporally and spatially dynamic and related primarily to water availability. Our goal was to assess whether nest site selection and movements of broods by females reduced the negative effect of drought on offspring survival. As predicted, chick survival was negatively influenced by drought severity. We found that sage-grouse females generally preferred to nest and raise their young in locations where their chicks would experience higher survival. We also found that use of habitats positively associated with chick survival were also positively associated with drought severity, which suggests that females reduced drought impacts on their dependent young by selecting more favorable environments during drought years. Although our findings suggest that female nest site selection and brood movement rates can reduce the negative effects of drought on early offspring survival, the influence of severe drought conditions was not completely mitigated by female behavior, and that drought conditions should be considered a threat to Greater Sage-Grouse population persistence. © 2016 by the Ecological Society of

  5. Impacts of fire on sage-grouse habitat and diet resources

    USDA-ARS?s Scientific Manuscript database

    Small (<40.5-ha) patch fires or mechanical manipulations to reduce big sagebrush (Artemisia tridentata) cover has been suggested as a management option to improve sage-grouse prenesting and brood rearing habitat and provide a diverse habitat mosaic. We evaluated the effects of prescribed fire and wi...

  6. Non-target effects on songbirds from habitat manipulation for Greater Sage-Grouse: Implications for the umbrella species concept

    USGS Publications Warehouse

    Carlisle, Jason D.; Chalfoun, Anna D.; Smith, Kurt T.; Beck, Jeffery L.

    2018-01-01

    The “umbrella species” concept is a conservation strategy in which creating and managing reserve areas to meet the needs of one species is thought to benefit other species indirectly. Broad-scale habitat protections on behalf of an umbrella species are assumed to benefit co-occurring taxa, but targeted management actions to improve local habitat suitability for the umbrella species may produce unintended effects on other species. Our objective was to quantify the effects of a common habitat treatment (mowing of big sagebrush [Artemisia tridentata]) intended to benefit a high-profile umbrella species (Greater Sage-Grouse [Centrocercus urophasianus]) on 3 sympatric songbird species of concern. We used a before–after control-impact experimental design spanning 3 yr in Wyoming, USA, to quantify the effect of mowing on the abundance, nest-site selection, nestling condition, and nest survival of 2 sagebrush-obligate songbirds (Brewer's Sparrow [Spizella breweri] and Sage Thrasher [Oreoscoptes montanus]) and one open-habitat generalist songbird (Vesper Sparrow [Pooecetes gramineus]). Mowing was associated with lower abundance of Brewer's Sparrows and Sage Thrashers but higher abundance of Vesper Sparrows. We found no Brewer's Sparrows or Sage Thrashers nesting in the mowed footprint posttreatment, which suggests complete loss of nesting habitat for these species. Mowing was associated with higher nestling condition and nest survival for Vesper Sparrows but not for the sagebrush-obligate species. Management prescriptions that remove woody biomass within a mosaic of intact habitat may be tolerated by sagebrush-obligate songbirds but are likely more beneficial for open-habitat generalist species. By definition, umbrella species conservation entails habitat protections at broad spatial scales. We caution that habitat manipulations to benefit Greater Sage-Grouse could negatively affect nontarget species of conservation concern if implemented across large spatial extents.

  7. Bird-habitat relationships in interior Columbia Basin shrubsteppe

    USGS Publications Warehouse

    Earnst, S.L.; Holmes, A.L.

    2012-01-01

    Vegetation structure is considered an important habitat feature structuring avian communities. In the sagebrush biome, both remotely-sensed and field-acquired measures of big sagebrush (Artemisia tridentata) cover have proven valuable in understanding avian abundance. Differences in structure between the exotic annual cheatgrass (Bromus tectorum) and native bunchgrasses are also expected to be important. We used avian abundance data from 318 point count stations, coupled with field vegetation measurements and a detailed vegetation map, to model abundance for four shrub- and four grassland-associated avian species in southeastern Washington shrubsteppe. Specifically, we ask whether species distinguish between bunchgrass and cheatgrass, and whether mapped, categorical cover types adequately explain species' abundance or whether fine-grained, field-measured differences in vegetation cover are also important. Results indicate that mapped cover types alone can be useful for predicting patterns of distribution and abundance within the sagebrush biome for several avian species (five of eight studied here). However, field-measured sagebrush cover was a strong positive predictor for Sage Sparrow (Amphispiza belli), the only sagebrush obligate in this study, and a strong negative predictor for two grassland associates, Horned Lark (Eremophila alpestris) and Grasshopper Sparrow (Ammodramus savannarum). Likewise, shrub associates did not differ in abundance in sagebrush with a cheatgrass vs. bunchgrass understory, but grassland associates were more common in either bunchgrass (Horned Lark and Grasshopper Sparrow) or cheatgrass grasslands (Long-billed Curlew, Numenius americanus), or tended to use sagebrush-cheatgrass less than sagebrush-bunchgrass (Horned Lark, Grasshopper Sparrow, and Savannah Sparrow, Passerculus sandwichensis).

  8. Conserving intertidal habitats: What is the potential of ecological engineering to mitigate impacts of coastal structures?

    NASA Astrophysics Data System (ADS)

    Perkins, Matthew J.; Ng, Terence P. T.; Dudgeon, David; Bonebrake, Timothy C.; Leung, Kenneth M. Y.

    2015-12-01

    Globally, coastlines are under pressure as coastal human population growth and urbanization continues, while climatic change leads to stormier seas and rising tides. These trends create a strong and sustained demand for land reclamation and infrastructure protection in coastal areas, requiring engineered coastal defence structures such as sea walls. Here, we review the nature of ecological impacts of coastal structures on intertidal ecosystems, seek to understand the extent to which ecological engineering can mitigate these impacts, and evaluate the effectiveness of mitigation as a tool to contribute to conservation of intertidal habitats. By so doing, we identify critical knowledge gaps to inform future research. Coastal structures alter important physical, chemical and biological processes of intertidal habitats, and strongly impact community structure, inter-habitat linkages and ecosystem services while also driving habitat loss. Such impacts occur diffusely across localised sites but scale to significant regional and global levels. Recent advances in ecological engineering have focused on developing habitat complexity on coastal structures to increase biodiversity. 'Soft' engineering options maximise habitat complexity through inclusion of natural materials, species and processes, while simultaneously delivering engineering objectives such as coastal protection. Soft options additionally sustain multiple services, providing greater economic benefits for society, and resilience to climatic change. Currently however, a lack of inclusion and economic undervaluation of intertidal ecosystem services may undermine best practice in coastline management. Importantly, reviewed evidence shows mitigation and even restoration do not support intertidal communities or processes equivalent to pre-disturbance conditions. Crucially, an absence of comprehensive empirical baseline biodiversity data, or data comprising additional ecological parameters such as ecosystem functions

  9. ANTIOXIDANT CAPACITY OF WYOMING BIG SAGEBRUSH (ARTEMISIA TRIDENTATA SSP. WYOMINGENSIS) VARIES SPATIALLY AND IS NOT RELATED TO THE PRESENCE OF A SAGEBRUSH DIETARY SPECIALIST

    PubMed Central

    Pu, Xinzhu; Lam, Lisa; Gehlken, Kristina; Ulappa, Amy C.; Rachlow, Janet L.; Forbey, Jennifer Sorensen

    2015-01-01

    Sagebrush (Artemisia spp.) in North America is an abundant native plant species that is ecologically and evolutionarily adapted to have a diverse array of biologically active chemicals. Several of these chemicals, specifically polyphenols, have antioxidant activity that may act as biomarkers of biotic or abiotic stress. This study investigated the spatial variation of antioxidant capacity, as well as the relationship between a mammalian herbivore and antioxidant capacity in Wyoming big sagebrush (Artemisia tridentata wyomingensis). We quantified and compared total polyphenols and antioxidant capacity of leaf extracts from sagebrush plants from different spatial scales and at different levels of browsing by a specialist mammalian herbivore, the pygmy rabbit (Brachylagus idahoensis). We found that antioxidant capacity of sagebrush extracts was positively correlated with total polyphenol content. Antioxidant capacity varied spatially within and among plants. Antioxidant capacity in sagebrush was not related to either browsing intensity or duration of association with rabbits. We propose that the patterns of antioxidant capacity observed in sagebrush may be a result of spatial variation in abiotic stress experienced by sagebrush. Antioxidants could therefore provide a biomarker of environmental stress for sagebrush that could aid in management and conservation of this plant in the threatened sagebrush steppe. PMID:26582971

  10. Response of bird community structure to habitat management in piñon-juniper woodland-sagebrush ecotones

    USGS Publications Warehouse

    Knick, Steven T.; Hanser, Steven E.; Grace, James B.; Hollenbeck, Jeff P.; Leu, Matthias

    2017-01-01

    Piñon (Pinus spp.) and juniper (Juniperus spp.) woodlands have been expanding their range across the intermountain western United States into landscapes dominated by sagebrush (Artemisia spp.) shrublands. Management actions using prescribed fire and mechanical cutting to reduce woodland cover and control expansion provided opportunities to understand how environmental structure and changes due to these treatments influence bird communities in piñon-juniper systems. We surveyed 43 species of birds and measured vegetation for 1–3 years prior to treatment and 6–7 years post-treatment at 13 locations across Oregon, California, Idaho, Nevada, and Utah. We used structural equation modeling to develop and statistically test our conceptual model that the current bird assembly at a site is structured primarily by the previous bird community with additional drivers from current and surrounding habitat conditions as well as external regional bird dynamics. Treatment reduced woodland cover by >5% at 80 of 378 survey sites. However, habitat change achieved by treatment was highly variable because actual disturbance differed widely in extent and intensity. Biological inertia in the bird community was the strongest single driver; 72% of the variation in the bird assemblage was explained by the community that existed seven years earlier. Greater net reduction in woodlands resulted in slight shifts in the bird community to one having ecotone or shrubland affinities. However, the overall influence of woodland changes from treatment were relatively small and were buffered by other extrinsic factors. Regional bird dynamics did not significantly influence the structure of local bird communities at our sites. Our results suggest that bird communities in piñon-juniper woodlands can be highly stable when management treatments are conducted in areas with more advanced woodland development and at the level of disturbance measured in our study.

  11. Wildlife habitats in managed rangelands—the Great Basin of southeastern Oregon: pronghorns.

    Treesearch

    Robert R. Kindschy; Charles S. Undstrom; James D. Yoakum

    1982-01-01

    The sagebrush steppe of the Great Basin in southeastern Oregon is peripheral habitat for pronghorns, but the quality of the habitat can be improved through rangeland management. The relationship between pronghorns and their habitat components—the availability of water, type of forage, barriers that restrict the movement of herds, and the effect of grazing by livestock-...

  12. Big sagebrush in pinyon-juniper woodlands: Using forest inventory and analysis data as a management tool for quantifying and monitoring mule deer habitat

    Treesearch

    Chris Witt; Paul L. Patterson

    2011-01-01

    We used Interior West Forest Inventory and Analysis (IW-FIA) data to identify conditions where pinyon-juniper woodlands provide security cover, thermal cover, and suitable amounts of big sagebrush (Artemisia tridentata spp.) forage to mule deer in Utah. Roughly one quarter of Utah's pinyon-juniper woodlands had a big sagebrush component in their understory....

  13. Northwest Montana Wildlife Habitat Enhancement: Hungry Horse Elk Mitigation Project: Monitoring and Evaluation Plan.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casey, Daniel; Malta, Patrick

    Portions of two important elk (Cervus elaphus) winter ranges totalling 8749 acres were lost due to the construction of the Hungry Horse Dam hydroelectric facility. This habitat loss decreased the carrying capacity of the both the elk and the mule deer (Odocoileus hemionus). In 1985, using funds from the Bonneville Power Administration (BPA) as authorized by the Northwest Power Act, the Montana Department of Fish, Wildlife and Parks (FWP) completed a wildlife mitigation plan for Hungry Horse Reservoir. This plan identified habitat enhancement of currently-occupied winter range as the most cost-efficient, easily implemented mitigation alternative available to address these large-scalemore » losses of winter range. The Columbia Basin Fish and Wildlife Program, as amended in 1987, authorized BPA to fund winter range enhancement to meet an adjusted goal of 133 additional elk. A 28-month advance design phase of the BPA-funded project was initiated in September 1987. Primary goals of this phase of the project included detailed literature review, identification of enhancement areas, baseline (elk population and habitat) data collection, and preparation of 3-year and 10-year implementation plans. This document will serve as a site-specific habitat and population monitoring plan which outlines our recommendations for evaluating the results of enhancement efforts against mitigation goals. 25 refs., 13 figs., 7 tabs.« less

  14. Eighty years of grazing by cattle modifies sagebrush and bunchgrass structure

    USDA-ARS?s Scientific Manuscript database

    Grazing by cattle is ubiquitous across the sagebrush steppe, however, little is known about its effects on sagebrush and native bunchgrass structure. Understanding the effects of long-term grazing on sagebrush and bunchgrass structure is important because sagebrush is a keystone species and bunchgra...

  15. Sagebrush Flat Wildlife Area 2008 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Dan

    The Sagebrush Flat Wildlife Area is a 12,718 acre complex located in Douglas County, Washington. Four distinct management units make up the area: Bridgeport, Chester Butte, Dormaier and Sagebrush Flat. The four Units are located across a wide geographic area within Douglas County. The Units are situated roughly along a north/south line from Bridgeport in the north to the Douglas/Grant county line in the south, 60 miles away. The wildlife area was established to conserve and enhance shrubsteppe habitat for the benefit shrubsteppe obligate and dependent wildlife species. In particular, the Sagebrush Flat Wildlife Area is managed to promote themore » recovery of three state-listed species: Columbian sharp-tailed grouse (threatened), greater sage grouse (threatened) and the pygmy rabbit (endangered). The US Fish and Wildlife Service also list the pygmy rabbit as endangered. Wildlife area staff seeded 250 acres of old agricultural fields located on the Sagebrush Flat, Dormaier and Chester Butte units. This has been a three project to reestablish high quality shrubsteppe habitat on fields that had either been abandoned (Dormaier) or were dominated by non-native grasses. A mix of 17 native grasses and forbs, most of which were locally collected and grown, was used. First year maintenance included spot spraying Dalmatian toadflax on all sites and mowing annual weeds to reduce competition. Photo points were established and will be integral to long term monitoring and evaluation. Additional monitoring and evaluation will come from existing vegetation transects. This year weed control efforts included spot treatment of noxious weeds, particularly Dalmatian toadflax, in previously restored fields on the Bridgeport Unit (150 acres). Spot treatment also took place within fields scheduled for restoration (40 acres) and in areas where toadflax infestations are small and relatively easily contained. Where toadflax is so widespread that chemical treatment would be impractical, we

  16. Natural regeneration processes in big sagebrush (Artemisia tridentata)

    USGS Publications Warehouse

    Schlaepfer, Daniel R.; Lauenroth, William K.; Bradford, John B.

    2014-01-01

    Big sagebrush, Artemisia tridentata Nuttall (Asteraceae), is the dominant plant species of large portions of semiarid western North America. However, much of historical big sagebrush vegetation has been removed or modified. Thus, regeneration is recognized as an important component for land management. Limited knowledge about key regeneration processes, however, represents an obstacle to identifying successful management practices and to gaining greater insight into the consequences of increasing disturbance frequency and global change. Therefore, our objective is to synthesize knowledge about natural big sagebrush regeneration. We identified and characterized the controls of big sagebrush seed production, germination, and establishment. The largest knowledge gaps and associated research needs include quiescence and dormancy of embryos and seedlings; variation in seed production and germination percentages; wet-thermal time model of germination; responses to frost events (including freezing/thawing of soils), CO2 concentration, and nutrients in combination with water availability; suitability of microsite vs. site conditions; competitive ability as well as seedling growth responses; and differences among subspecies and ecoregions. Potential impacts of climate change on big sagebrush regeneration could include that temperature increases may not have a large direct influence on regeneration due to the broad temperature optimum for regeneration, whereas indirect effects could include selection for populations with less stringent seed dormancy. Drier conditions will have direct negative effects on germination and seedling survival and could also lead to lighter seeds, which lowers germination success further. The short seed dispersal distance of big sagebrush may limit its tracking of suitable climate; whereas, the low competitive ability of big sagebrush seedlings may limit successful competition with species that track climate. An improved understanding of the

  17. Geology and mineral resources of the Southwestern and South-Central Wyoming Sagebrush Focal Area, Wyoming, and the Bear River Watershed Sagebrush Focal Area, Wyoming and Utah: Chapter E in Mineral resources of the Sagebrush Focal Areas of Idaho, Montana, Nevada, Oregon, Utah, and Wyoming

    USGS Publications Warehouse

    Wilson, Anna B.; Hayes, Timothy S.; Benson, Mary Ellen; Yager, Douglas B.; Anderson, Eric D.; Bleiwas, Donald I.; DeAngelo, Jacob; Dicken, Connie L.; Drake, Ronald M.; Fernette, Gregory L.; Giles, Stuart A.; Glen, Jonathan M. G.; Haacke, Jon E.; Horton, John D.; Parks, Heather L.; Rockwell, Barnaby W.; Williams, Colin F.

    2016-10-04

    SummaryThe U.S. Department of the Interior has proposed to withdraw approximately 10 million acres of Federal lands from mineral entry (subject to valid existing rights) from 12 million acres of lands defined as Sagebrush Focal Areas (SFAs) in Idaho, Montana, Nevada, Oregon, Utah, and Wyoming (for further discussion on the lands involved see Scientific Investigations Report 2016–5089–A). The purpose of the proposed action is to protect the greater sage-grouse (Centrocercus urophasianus) and its habitat from potential adverse effects of locatable mineral exploration and mining. The U.S. Geological Survey Sagebrush Mineral-Resource Assessment (SaMiRA) project was initiated in November 2015 and supported by the Bureau of Land Management to (1) assess locatable mineral-resource potential and (2) to describe leasable and salable mineral resources for the seven SFAs and Nevada additions.This chapter summarizes the current status of locatable, leasable, and salable mineral commodities and assesses the potential of locatable minerals in the Southwestern and South-Central Wyoming and Bear River Watershed, Wyoming and Utah, SFAs.

  18. Sand sagebrush response to fall and spring prescribed burns

    Treesearch

    Lance T. Vermeire; Robert B. Mitchell; Samuel D. Fuhlendorf

    2001-01-01

    Sand sagebrush (Artemisia filifolia) is a dominant shrub on sandy soils throughout the Great Plains and Southwest. Sand sagebrush is reported to reduce wind erosion and provides valuable forage and cover to numerous wildlife species. However, the fire ecology of sand sagebrush is not well understood. Our objectives were to evaluate fire-induced mortality, occurrence of...

  19. Habitat used by shrews in southeastern Montana

    Treesearch

    James G. MacCracken; Daniel W. Uresk; Richard M. Hansen

    1985-01-01

    Dwarf shrews (Sorex nanus), masked shrews (Sorex cinereus), and Merriam shrews (Sorex merriami) were most abundant in riparian and sagebrush-grass habitat types in southeastern Montana. Litter cover was greater in areas occupied by shrews than in areas without shrews. Microhabitat humidity, as related to litter...

  20. Sage-grouse habitat restoration symposium proceedings

    Treesearch

    Nancy L. Shaw; Mike Pellant; Stephen B. Monsen

    2005-01-01

    Declines in habitat of greater sage-grouse and Gunnison sage-grouse across the western United States are related to degradation, loss, and fragmentation of sagebrush ecosystems resulting from development of agricultural lands, grazing practices, changes in wildfire regimes, increased spread of invasive species, gas and oil development, and other human impacts. These...

  1. Wanaket Wildlife Area Management Plan : Five-Year Plan for Protecting, Enhancing, and Mitigating Wildlife Habitat Losses for the McNary Hydroelectric Facility.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Confederated Tribes of the Umatilla Indian Reservation Wildlife Program

    The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) propose to continue to protect, enhance, and mitigate wildlife and wildlife habitat at the Wanaket Wildlife Area. The Wanaket Wildlife Area was approved as a Columbia River Basin Wildlife Mitigation Project by the Bonneville Power Administration (BPA) and Northwest Power Planning Council (NWPPC) in 1993. This management plan will provide an update of the original management plan approved by BPA in 1995. Wanaket will contribute towards meeting BPA's obligation to compensate for wildlife habitat losses resulting from the construction of the McNary Hydroelectric facility on the Columbia River. By funding themore » enhancement and operation and maintenance of the Wanaket Wildlife Area, BPA will receive credit towards their mitigation debt. The purpose of the Wanaket Wildlife Area management plan update is to provide programmatic and site-specific standards and guidelines on how the Wanaket Wildlife Area will be managed over the next five years. This plan provides overall guidance on both short and long term activities that will move the area towards the goals, objectives, and desired future conditions for the planning area. The plan will incorporate managed and protected wildlife and wildlife habitat, including operations and maintenance, enhancements, and access and travel management. Specific project objectives are related to protection and enhancement of wildlife habitats and are expressed in terms of habitat units (HU's). Habitat units were developed by the US Fish and Wildlife Service's Habitat Evaluation Procedures (HEP), and are designed to track habitat gains and/or losses associated with mitigation and/or development projects. Habitat Units for a given species are a product of habitat quantity (expressed in acres) and habitat quality estimates. Habitat quality estimates are developed using Habitat Suitability Indices (HSI). These indices are based on quantifiable habitat features such as

  2. 75 FR 19643 - Sagebrush, a California Partnership; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-15

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL10-23-002] Sagebrush, a California Partnership; Notice of Filing April 7, 2010. Take notice that on April 5, 2010, Sagebrush, a California partnership (Sagebrush) submits for filing a revised open access transmission tariff (OATT) to...

  3. AmeriFlux US-Rls RCEW Low Sagebrush

    DOE Data Explorer

    Flerchinger, Gerald [USDA Agricultural Research Service

    2018-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Rls RCEW Low Sagebrush. Site Description - The site is located on the USDA-ARS's Reynolds Creek Experimental Watershed. It is dominated by low sagebrush on land managed by USDI Bureau of Land Management.

  4. Rainwater Wildlife Area Habitat Evaluation Procedures Report; A Columbia Basin Wildlife Mitigation Project.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childs, Allen B.

    The 8,768 acre Rainwater Wildlife Area was acquired in September 1998 by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) through an agreement with Bonneville Power Administration (BPA) to partially offset habitat losses associated with construction of the John Day and McNary hydroelectric facilities on the mainstem Columbia River. U.S. Fish and Wildlife Service (USFWS) Habitat Evaluation Procedures (HEP) were used to determine the number of habitat units credited to BPA for acquired lands. Upland and riparian forest, upland and riparian shrub, and grassland cover types are evaluated in this study. Targeted wildlife species include downy woodpecker (Picoides pubescens),more » black-capped chickadee (Parus atricopillus), blue grouse (Dendragapus obscurus), great blue heron (Ardea herodias), yellow warbler (Dendroica petechia), mink (Mustela vison), and Western meadowlark (Sturnella neglecta). Habitat surveys were conducted in 1998 and 1999 in accordance with published HEP protocols and included 65,300, 594m{sup 2}2 plots, and 112 one-tenth-acre plots. Between 153.3 and 7,187.46 acres were evaluated for each target wildlife mitigation species. Derived habitat suitability indices were multiplied by corresponding cover-type acreages to determine the number of habitat units for each species. The total baseline habitat units credited to BPA for the Rainwater Wildlife Area and its seven target species is 5,185.3 habitat units. Factors limiting habitat suitability are related to the direct, indirect, and cumulative effects of past livestock grazing, road construction, and timber harvest which have simplified the structure, composition, and diversity of native plant communities. Alternatives for protecting and improving habitat suitability include exclusion of livestock grazing, road de-commissioning/obliteration, reforestation and thinning, control of competing and unwanted vegetation (including noxious weeds), reestablishing displaced or reduced native

  5. Concept of Operations Evaluation for Mitigating Space Flight-Relevant Medical Issues in a Planetary Habitat

    NASA Technical Reports Server (NTRS)

    Barsten, Kristina; Hurst, Victor, IV; Scheuring, Richard; Baumann, David K.; Johnson-Throop, Kathy

    2010-01-01

    Introduction: Analogue environments assist the NASA Human Research Program (HRP) in developing capabilities to mitigate high risk issues to crew health and performance for space exploration. The Habitat Demonstration Unit (HDU) is an analogue habitat used to assess space-related products for planetary missions. The Exploration Medical Capability (ExMC) element at the NASA Johnson Space Center (JSC) was tasked with developing planetary-relevant medical scenarios to evaluate the concept of operations for mitigating medical issues in such an environment. Methods: Two medical scenarios were conducted within the simulated planetary habitat with the crew executing two space flight-relevant procedures: Eye Examination with a corneal injury and Skin Laceration. Remote guidance for the crew was provided by a flight surgeon (FS) stationed at a console outside of the habitat. Audio and video data were collected to capture the communication between the crew and the FS, as well as the movements of the crew executing the procedures. Questionnaire data regarding procedure content and remote guidance performance also were collected from the crew immediately after the sessions. Results: Preliminary review of the audio, video, and questionnaire data from the two scenarios conducted within the HDU indicate that remote guidance techniques from an FS on console can help crew members within a planetary habitat mitigate planetary-relevant medical issues. The content and format of the procedures were considered concise and intuitive, respectively. Discussion: Overall, the preliminary data from the evaluation suggest that use of remote guidance techniques by a FS can help HDU crew execute space exploration-relevant medical procedures within a habitat relevant to planetary missions, however further evaluations will be needed to implement this strategy into the complete concept of operations for conducting general space medicine within similar environments

  6. Big sagebrush: A sea fragmented into lakes, ponds, and puddles

    Treesearch

    Bruce L. Welch

    2005-01-01

    Pioneers traveling along the Oregon Trail from western Nebraska, through Wyoming and southern Idaho and into eastern Oregon, referred to their travel as an 800 mile journey through a sea of sagebrush, mainly big sagebrush (Artemisia tridentata). Today approximately 50 percent of the sagebrush sea has given way to agriculture, cities and towns, and...

  7. Insights into big sagebrush seedling storage practices

    Treesearch

    Emily C. Overton; Jeremiah R. Pinto; Anthony S. Davis

    2013-01-01

    Big sagebrush (Artemisia tridentata Nutt. [Asteraceae]) is an essential component of shrub-steppe ecosystems in the Great Basin of the US, where degradation due to altered fire regimes, invasive species, and land use changes have led to increased interest in the production of high-quality big sagebrush seedlings for conservation and restoration projects. Seedling...

  8. Modeling regeneration responses of big sagebrush (Artemisia tridentata) to abiotic conditions

    USGS Publications Warehouse

    Schlaepfer, Daniel R.; Lauenroth, William K.; Bradford, John B.

    2014-01-01

    Ecosystems dominated by big sagebrush, Artemisia tridentata Nuttall (Asteraceae), which are the most widespread ecosystems in semiarid western North America, have been affected by land use practices and invasive species. Loss of big sagebrush and the decline of associated species, such as greater sage-grouse, are a concern to land managers and conservationists. However, big sagebrush regeneration remains difficult to achieve by restoration and reclamation efforts and there is no regeneration simulation model available. We present here the first process-based, daily time-step, simulation model to predict yearly big sagebrush regeneration including relevant germination and seedling responses to abiotic factors. We estimated values, uncertainty, and importance of 27 model parameters using a total of 1435 site-years of observation. Our model explained 74% of variability of number of years with successful regeneration at 46 sites. It also achieved 60% overall accuracy predicting yearly regeneration success/failure. Our results identify specific future research needed to improve our understanding of big sagebrush regeneration, including data at the subspecies level and improved parameter estimates for start of seed dispersal, modified wet thermal-time model of germination, and soil water potential influences. We found that relationships between big sagebrush regeneration and climate conditions were site specific, varying across the distribution of big sagebrush. This indicates that statistical models based on climate are unsuitable for understanding range-wide regeneration patterns or for assessing the potential consequences of changing climate on sagebrush regeneration and underscores the value of this process-based model. We used our model to predict potential regeneration across the range of sagebrush ecosystems in the western United States, which confirmed that seedling survival is a limiting factor, whereas germination is not. Our results also suggested that modeled

  9. Range-wide assessment of livestock grazing across the sagebrush biome

    USGS Publications Warehouse

    Veblen, Kari E.; Pyke, David A.; Jones, Christopher A.; Casazza, Michael L.; Assal, Timothy J.; Farinha, Melissa A.

    2011-01-01

    Domestic livestock grazing occurs in virtually all sagebrush habitats and is a prominent disturbance factor. By affecting habitat condition and trend, grazing influences the resources required by, and thus, the distribution and abundance of sagebrush-obligate wildlife species (for example, sage-grouse Centrocercus spp.). Yet, the risks that livestock grazing may pose to these species and their habitats are not always clear. Although livestock grazing intensity and associated habitat condition may be known in many places at the local level, we have not yet been able to answer questions about use, condition, and trend at the landscape scale or at the range-wide scale for wildlife species. A great deal of information about grazing use, management regimes, and ecological condition exists at the local level (for individual livestock management units) under the oversight of organizations such as the Bureau of Land Management (BLM). However, the extent, quality, and types of existing data are unknown, which hinders the compilation, mapping, or analysis of these data. Once compiled, these data may be helpful for drawing conclusions about rangeland status, and we may be able to identify relationships between those data and wildlife habitat at the landscape scale. The overall objective of our study was to perform a range-wide assessment of livestock grazing effects (and the relevant supporting data) in sagebrush ecosystems managed by the BLM. Our assessments and analyses focused primarily on local-level management and data collected at the scale of BLM grazing allotments (that is, individual livestock management units). Specific objectives included the following: 1. Identify and refine existing range-wide datasets to be used for analyses of livestock grazing effects on sagebrush ecosystems. 2. Assess the extent, quality, and types of livestock grazing-related natural resource data collected by BLM range-wide (i.e., across allotments, districts and regions). 3. Compile and

  10. Big and black sagebrush landscapes [Chapter 5

    Treesearch

    Stanley G. Kitchen; E. Durant McArthur

    2007-01-01

    Perhaps no plant evokes a common vision of the semi-arid landscapes of western North America as do the sagebrushes. A collective term, sagebrush is applied to shrubby members of the mostly herbaceous genus, Artemisia L. More precisely, the moniker is usually restricted to members of subgenus Tridentatae, a collection of some 20 woody taxa endemic to North America (...

  11. Kootenai River Wildlife Habitat Enhancement Project : Long-term Bighorn Sheep/Mule Deer Winter and Spring Habitat Improvement Project : Wildlife Mitigation Project, Libby Dam, Montana : Management Plan.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yde, Chis

    1990-06-01

    The Libby hydroelectric project, located on the Kootenai River in northwestern Montana, resulted in several impacts to the wildlife communities which occupied the habitats inundated by Lake Koocanusa. Montana Department of Fish, Wildlife and Parks, in cooperation with the other management agencies, developed an impact assessment and a wildlife and wildlife habitat mitigation plan for the Libby hydroelectric facility. In response to the mitigation plan, Bonneville Power Administration funded a cooperative project between the Kootenai National Forest and Montana Department of Fish, Wildlife and Parks to develop a long-term habitat enhancement plan for the bighorn sheep and mule deer wintermore » and spring ranges adjacent to Lake Koocanusa. The project goal is to rehabilitate 3372 acres of bighorn sheep and 16,321 acres of mule deer winter and spring ranges on Kootenai National Forest lands adjacent to Lake Koocanusa and to monitor and evaluate the effects of implementing this habitat enhancement work. 2 refs.« less

  12. Native species behaviour mitigates the impact of habitat-forming invasive seaweed.

    PubMed

    Wright, Jeffrey T; Byers, James E; Koukoumaftsis, Loni P; Ralph, Peter J; Gribben, Paul E

    2010-06-01

    Habitat-forming invasive species cause large, novel changes to the abiotic environment. These changes may elicit important behavioural responses in native fauna, yet little is known about mechanisms driving this behaviour and how such trait-mediated responses influence the fitness of native species. Low dissolved oxygen is a key abiotic change created by the habitat-forming invasive seaweed, Caulerpa taxifolia, which influences an important behavioural response (burrowing depth) in the native infaunal bivalve Anadara trapezia. In Caulerpa-colonised areas, Anadara often emerged completely from the sediment, and we experimentally demonstrate that water column hypoxia beneath the Caulerpa canopy is the mechanism instigating this "pop-up" behaviour. Importantly, pop-up in Caulerpa allowed similar survivorship to that in unvegetated sediment; however, when we prevented Anadara from popping-up, they suffered >50% mortality in just 1 month. Our findings not only highlight the substantial environmental alteration by Caulerpa, but also an important role for the behaviour of native species in mitigating the effects of habitat-forming invasive species.

  13. AmeriFlux US-Rms RCEW Mountain Big Sagebrush

    DOE Data Explorer

    Flerchinger, Gerald [USDA Agricultural Research Service

    2017-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Rms RCEW Mountain Big Sagebrush. Site Description - The site is located on the USDA-ARS's Reynolds Creek Experimental Watershed. It is dominated by mountain big sagebrush on land managed by USDI Bureau of Land Management.

  14. Born of fire - restoring sagebrush steppe

    USGS Publications Warehouse

    Pyke, David A.

    2002-01-01

    Fire is a natural feature of sagebrush grasslands in the Great Basin. The invasion of exotic annual grasses, such as Bromus tectorum (cheatgrass), has changed the environment in these ecosystems. Invasive annual grasses provide a dense and continuous source of fuel that extends the season for fires and increases the frequency of fires in the region. Frequent fires eventually eliminate the native sagebrush. These annual grasses also change soil nutrients, especially carbon and nitrogen, such that invasive annual grasses are favored over the native plants. The Forest and Rangeland Ecosystem Science Center of the U.S. Geological Survey (USGS) is studying how to reduce the problems caused by these invasive annual grasses and restore native sagebrush grasslands. The areas of research include understanding disturbance regimes, especially fire, discerning the role of nutrients in restoring native plants, determining the potential to restore forbs important for wildlife, and ascertaining the past and present use of native and nonnative plants in revegetation projects.

  15. Geology and mineral resources of the North-Central Idaho Sagebrush Focal Area: Chapter C in Mineral resources of the Sagebrush Focal Areas of Idaho, Montana, Nevada, Oregon, Utah, and Wyoming

    USGS Publications Warehouse

    Lund, Karen; Zürcher, Lukas; Hofstra, Albert H.; Van Gosen, Bradley S.; Benson, Mary Ellen; Box, Stephen E.; Anderson, Eric D.; Bleiwas, Donald I.; DeAngelo, Jacob; Drake, Ronald M.; Fernette, Gregory L.; Giles, Stuart A.; Glen, Jonathan M. G.; Haacke, Jon E.; Horton, John D.; John, David A.; Robinson, Gilpin R.; Rockwell, Barnaby W.; San Juan, Carma A.; Shaffer, Brian N.; Smith, Steven M.; Williams, Colin F.

    2016-10-04

    SummaryThe U.S. Department of the Interior has proposed to withdraw approximately 10 million acres of Federal lands from mineral entry (subject to valid existing rights) from 12 million acres of lands defined as Sagebrush Focal Areas (SFAs) in Idaho, Montana, Nevada, Oregon, Utah, and Wyoming (for further discussion on the lands involved see Scientific Investigations Report 2016–5089–A). The purpose of the proposed action is to protect the greater sage-grouse (Centrocercus urophasianus) and its habitat from potential adverse effects of locatable mineral exploration and mining. The U.S. Geological Survey Sagebrush Mineral-Resource Assessment (SaMiRA) project was initiated in November 2015 and supported by the Bureau of Land Management to (1) assess locatable mineral-resource potential and (2) to describe leasable and salable mineral resources for the seven SFAs and Nevada additions.This chapter summarizes the current status of locatable, leasable, and salable mineral commodities and assesses the potential of locatable minerals in the North-Central Idaho SFA, which extends from east-central to south-central Idaho. The geologically complex area is composed of many different rock units that locally contain potential mineral resources.

  16. Geology and mineral resources of the North-Central Montana Sagebrush Focal Area: Chapter D in Mineral resources of the Sagebrush Focal Areas of Idaho, Montana, Nevada, Oregon, Utah, and Wyoming

    USGS Publications Warehouse

    Mauk, Jeffrey L.; Zientek, Michael L.; Hearn, B. Carter; Parks, Heather L.; Jenkins, M. Christopher; Anderson, Eric D.; Benson, Mary Ellen; Bleiwas, Donald I.; DeAngelo, Jacob; Denning, Paul; Dicken, Connie L.; Drake, Ronald M.; Fernette, Gregory L.; Folger, Helen W.; Giles, Stuart A.; Glen, Jonathan M. G.; Granitto, Matthew; Haacke, Jon E.; Horton, John D.; Kelley, Karen D.; Ober, Joyce A.; Rockwell, Barnaby W.; San Juan, Carma A.; Sangine, Elizabeth S.; Schweitzer, Peter N.; Shaffer, Brian N.; Smith, Steven M.; Williams, Colin F.; Yager, Douglas B.

    2016-10-04

    SummaryThe U.S. Department of the Interior has proposed to withdraw approximately 10 million acres of Federal lands from mineral entry (subject to valid existing rights) from 12 million acres of lands defined as Sagebrush Focal Areas (SFAs) in Idaho, Montana, Nevada, Oregon, Utah, and Wyoming (for further discussion on the lands involved see Scientific Investigations Report 2016–5089–A). The purpose of the proposed action is to protect the greater sage-grouse (Centrocercus urophasianus) and its habitat from potential adverse effects of locatable mineral exploration and mining. The U.S. Geological Survey Sagebrush Mineral-Resource Assessment (SaMiRA) project was initiated in November 2015 and supported by the Bureau of Land Management to (1) assess locatable mineral-resource potential and (2) to describe leasable and salable mineral resources for the seven SFAs and Nevada additions.This chapter summarizes the current status of locatable, leasable, and salable mineral commodities and assesses the potential of locatable minerals in the North-Central Montana SFA. The proposed withdrawal area that is evaluated in this report is located in north-central Montana, and includes parts of Fergus, Petroleum, Phillips, and Valley Counties.

  17. Fuel and fire behavior prediction in big sagebrush

    Treesearch

    James K. Brown

    1982-01-01

    Relationships between height of big sagebrush and crown area, fuel loading, bulk density, size distribution of foliage and stemwood, and fraction dead stemwood are presented. Based upon these relationships, modeled rate-of-fire spread and fireline intensity are shown for sagebrush ranging in height from 20 to 120 em and in coverage from 10 to 40 percent. Verification...

  18. Cattle grazing and vegetation succession on burned sagebrush steppe

    USDA-ARS?s Scientific Manuscript database

    There is limited information on the effects of cattle grazing to longer-term plant community composition and productivity following fire in big sagebrush steppe. This study evaluated vegetation response to cattle grazing over seven years (2007-2013) on burned Wyoming big sagebrush (Artemisia triden...

  19. Sagebrush identification, ecology, and palatability relative to sage-grouse

    Treesearch

    Roger Rosentreter

    2005-01-01

    Basic identification keys and comparison tables for 23 low and big sagebrush (Artemisia) taxa are presented. Differences in sagebrush ecology, soil temperature regimes, geographic range, palatability, mineralogy, and chemistry are discussed. Coumarin, a chemical produced in the glands of some Artemisia species, causes UV-light fluorescence of the...

  20. Effect of fungicides on Wyoming big sagebrush seed germination

    Treesearch

    Robert D. Cox; Lance H. Kosberg; Nancy L. Shaw; Stuart P. Hardegree

    2011-01-01

    Germination tests of Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle & Young [Asteraceae]) seeds often exhibit fungal contamination, but the use of fungicides should be avoided because fungicides may artificially inhibit germination. We tested the effect of seed-applied fungicides on germination of Wyoming big sagebrush at 2 different...

  1. AmeriFlux US-Rws Reynolds Creek Wyoming big sagebrush

    DOE Data Explorer

    Flerchinger, Gerald [USDA Agricultural Research Service

    2017-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Rws Reynolds Creek Wyoming big sagebrush. Site Description - The site is located on the USDA-ARS's Reynolds Creek Experimental Watershed. It is dominated by Wyoming big sagebrush on land managed by USDI Bureau of Land Management.

  2. Comparison of postfire seeding practices for Wyoming big sagebrush

    Treesearch

    Jeffrey E. Ott; Robert D. Cox; Nancy L. Shaw

    2017-01-01

    Wildfires in the Great Basin have resulted in widespread loss of Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle & Young), an ecologically important shrub that has proven difficult to establish from seed.We sought to identify optimal seeding practices forWyoming big sagebrush in the context of postfire seeding operations involving...

  3. Sagebrush-ungulate relationships on the Northern Yellowstone Winter Range

    Treesearch

    Carl L. Wambolt

    2005-01-01

    Sagebrush (Artemisia) taxa have historically been the landscape dominants over much of the Northern Yellowstone Winter Range (NYWR). Their importance to the unnaturally large ungulate populations on the NYWR throughout the twentieth century has been recognized since the 1920s. Sagebrush-herbivore ecology has been the focus of research on the NYWR for...

  4. Longer-term evaluation of revegetation of medusahead-invaded sagebrush steppe

    USDA-ARS?s Scientific Manuscript database

    Medusahead (Taeniatherum caput-medusae (L.) Nevski) and other exotic annual grasses have invaded millions of hectares of sagebrush (Artemisia L.) steppe. Revegetation of medusahead-invaded sagebrush steppe with perennial vegetation is critically needed to restore productivity and decrease the risk o...

  5. Vegetation responses to sagebrush-reduction treatments measured by satellites

    USGS Publications Warehouse

    Johnston, Aaron; Beever, Erik; Merkle, Jerod A.; Chong, Geneva W.

    2018-01-01

    Time series of vegetative indices derived from satellite imagery constitute tools to measure ecological effects of natural and management-induced disturbances to ecosystems. Over the past century, sagebrush-reduction treatments have been applied widely throughout western North America to increase herbaceous vegetation for livestock and wildlife. We used indices from satellite imagery to 1) quantify effects of prescribed-fire, herbicide, and mechanical treatments on vegetative cover, productivity, and phenology, and 2) describe how vegetation changed over time following these treatments. We hypothesized that treatments would increase herbaceous cover and accordingly shift phenologies towards those typical of grass-dominated systems. We expected prescribed burns would lead to the greatest and most-prolonged effects on vegetative cover and phenology, followed by herbicide and mechanical treatments. Treatments appeared to increase herbaceous cover and productivity, which coincided with signs of earlier senescence − signals expected of grass-dominated systems, relative to sagebrush-dominated systems. Spatial heterogeneity for most phenometrics was lower in treated areas relative to controls, which suggested treatment-induced homogenization of vegetative communities. Phenometrics that explain spring migrations of ungulates mostly were unaffected by sagebrush treatments. Fire had the strongest effect on vegetative cover, and yielded the least evidence for sagebrush recovery. Overall, treatment effects were small relative to those reported from field-based studies for reasons most likely related to sagebrush recovery, treatment specification, and untreated patches within mosaicked treatment applications. Treatment effects were also small relative to inter-annual variation in phenology and productivity that was explained by temperature, snowpack, and growing-season precipitation. Our results indicated that cumulative NDVI, late-season phenometrics, and spatial

  6. Linking occurrence and fitness to persistence: Habitat-based approach for endangered Greater Sage-Grouse

    USGS Publications Warehouse

    Aldridge, Cameron L.; Boyce, Mark S.

    2007-01-01

    Detailed empirical models predicting both species occurrence and fitness across a landscape are necessary to understand processes related to population persistence. Failure to consider both occurrence and fitness may result in incorrect assessments of habitat importance leading to inappropriate management strategies. We took a two-stage approach to identifying critical nesting and brood-rearing habitat for the endangered Greater Sage-Grouse (Centrocercus urophasianus) in Alberta at a landscape scale. First, we used logistic regression to develop spatial models predicting the relative probability of use (occurrence) for Sage-Grouse nests and broods. Secondly, we used Cox proportional hazards survival models to identify the most risky habitats across the landscape. We combined these two approaches to identify Sage-Grouse habitats that pose minimal risk of failure (source habitats) and attractive sink habitats that pose increased risk (ecological traps). Our models showed that Sage-Grouse select for heterogeneous patches of moderate sagebrush cover (quadratic relationship) and avoid anthropogenic edge habitat for nesting. Nests were more successful in heterogeneous habitats, but nest success was independent of anthropogenic features. Similarly, broods selected heterogeneous high-productivity habitats with sagebrush while avoiding human developments, cultivated cropland, and high densities of oil wells. Chick mortalities tended to occur in proximity to oil and gas developments and along riparian habitats. For nests and broods, respectively, approximately 10% and 5% of the study area was considered source habitat, whereas 19% and 15% of habitat was attractive sink habitat. Limited source habitats appear to be the main reason for poor nest success (39%) and low chick survival (12%). Our habitat models identify areas of protection priority and areas that require immediate management attention to enhance recruitment to secure the viability of this population. This novel

  7. Cold hardiness in Wyoming big sagebrush seedlings: implications for nursery production and outplanting

    Treesearch

    Kayla R. Herriman; Anthony S. Davis

    2012-01-01

    Throughout much of the interior western United States, Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis) is a keystone species, serving an important ecological role in sagebrush steppe and Great Basin sagebrush vegetation types (Lysne 2005, Lambrecht et al. 2007). Over the past century, these ecosystems have been degraded by fire, invasive species, and...

  8. Modeling the effectiveness of tree planting to mitigate habitat loss in blue oak woodlands

    Treesearch

    Richard B. Standiford; Douglas McCreary; William Frost

    2002-01-01

    Many local conservation policies have attempted to mitigate the loss of oak woodland habitat resulting from conversion to urban or intensive agricultural land uses through tree planting. This paper models the development of blue oak (Quercus douglasii) stand structure attributes over 50 years after planting. The model uses a single tree, distance...

  9. Native and exotic plants of fragments of sagebrush steppe produced by geomorphic processes versus land use

    USGS Publications Warehouse

    Huntly, N.; Bangert, R.; Hanser, S.E.

    2011-01-01

    Habitat fragmentation and invasion by exotic species are regarded as major threats to the biodiversity of many ecosystems. We surveyed the plant communities of two types of remnant sagebrush-steppe fragments from nearby areas on the Snake River Plain of southeastern Idaho, USA. One type resulted from land use (conversion to dryland agriculture; hereafter AG Islands) and the other from geomorphic processes (Holocene volcanism; hereafter kipukas). We assessed two predictions for the variation in native plant species richness of these fragments, using structural equation models (SEM). First, we predicted that the species richness of native plants would follow the MacArthur-Wilson (M-W) hypothesis of island biogeography, as often is expected for the communities of habitat fragments. Second, we predicted a negative relationship between native and exotic plants, as would be expected if exotic plants are decreasing the diversity of native plants. Finally, we assessed whether exotic species were more strongly associated with the fragments embedded in the agricultural landscape, as would be expected if agriculture had facilitated the introduction and naturalization of non-native species, and whether the communities of the two types of fragments were distinct. Species richness of native plants was not strongly correlated with M-W characteristics for either the AG Islands or the **kipukas. The AG Islands had more species and higher cover of exotics than the kipukas, and exotic plants were good predictors of native plant species richness. Our results support the hypothesis that proximity to agriculture can increase the diversity and abundance of exotic plants in native habitat. In combination with other information, the results also suggest that agriculture and exotic species have caused loss of native diversity and reorganization of the sagebrush-steppe plant community. ?? 2011 Springer Science+Business Media B.V.

  10. Habitat Evaluation Procedures (HEP) Report; Iskuulpa Wildlife Mitigation and Watershed Project, Technical Report 1998-2003.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quaempts, Eric

    U.S. Fish and Wildlife Service (USFWS) Habitat Evaluation Procedures (HEP) were used to determine the number of habitat units credited to evaluate lands acquired and leased in Eskuulpa Watershed, a Confederated Tribes of the Umatilla Indian Reservation watershed and wildlife mitigation project. The project is designed to partially credit habitat losses incurred by BPA for the construction of the John Day and McNary hydroelectric facilities on the Columbia River. Upland and riparian forest, upland and riparian shrub, and grasslands cover types were included in the evaluation. Indicator species included downy woodpecker (Picuides puhescens), black-capped chickadee (Pams atricopillus), blue grouse (Beadragapusmore » obscurus), great blue heron (Ardea herodias), yellow warbler (Dendroica petschia), mink (Mustela vison), and Western meadowlark (Sturnello neglects). Habitat surveys were conducted in 1998 and 1999 in accordance with published HEP protocols and included 55,500 feet of transects, 678 m2 plots, and 243 one-tenth-acre plots. Between 123.9 and f 0,794.4 acres were evaluated for each indicator species. Derived habitat suitability indices were multiplied by corresponding cover-type acreages to determine the number of habitat units for each species. The total habitat units credited to BPA for the Iskuulpa Watershed Project and its seven indicator species is 4,567.8 habitat units. Factors limiting habitat suitability are related to the direct, indirect, and cumulative effects of past livestock grazing, road construction, and timber harvest, which have simplified the structure, composition, and diversity of native plant communities. Alternatives for protecting and improving habitat suitability include exclusion of livestock grazing or implementation of restoration grazing schemes, road de-commissioning, reforestation, large woody debris additions to floodplains, control of competing and unwanted vegetation, reestablishing displaced or reduced native vegetation

  11. Big sagebrush (Artemisia tridentata) communities: Ecology, importance and restoration potential

    Treesearch

    Stephen B. Monsen; Nancy L. Shaw

    2000-01-01

    Big sagebrush (Artemisia tridentata Nutt.) is the most common and widespread sagebrush species in the Intermountain region. Climatic patterns, elevation gradients, soil characteristics and fire are among the factors regulating the distribution of its three major subspecies. Each of these subspecies is considered a topographic climax dominant....

  12. Conversion of sagebrush shrublands to exotic annual grasslands negatively impacts small mammal communities

    USGS Publications Warehouse

    Ostoja, S.M.; Schupp, E.W.

    2009-01-01

    Aim The exotic annual cheatgrass (Bromus tectorum) is fast replacing sagebrush (Artemisia tridentata) communities throughout the Great Basin Desert and nearby regions in the Western United States, impacting native plant communities and altering fire regimes, which contributes to the long-term persistence of this weedy species. The effect of this conversion on native faunal communities remains largely unexamined. We assess the impact of conversion from native perennial to exotic annual plant communities on desert rodent communities. Location Wyoming big sagebrush shrublands and nearby sites previously converted to cheatgrass-dominated annual grasslands in the Great Basin Desert, Utah, USA. Methods At two sites in Tooele County, Utah, USA, we investigated with Sherman live trapping whether intact sagebrush vegetation and nearby converted Bromus tectorum-dominated vegetation differed in rodent abundance, diversity and community composition. Results Rodent abundance and species richness were considerably greater in sagebrush plots than in cheatgrass-dominated plots. Nine species were captured in sagebrush plots; five of these were also trapped in cheatgrass plots, all at lower abundances than in the sagebrush. In contrast, cheatgrass-dominated plots had no species that were not found in sagebrush. In addition, the site that had been converted to cheatgrass longer had lower abundances of rodents than the site more recently converted to cheatgrass-dominated plots. Despite large differences in abundances and species richness, Simpson's D diversity and Shannon-Wiener diversity and Brillouin evenness indices did not differ between sagebrush and cheatgrass-dominated plots. Main conclusions This survey of rodent communities in native sagebrush and in converted cheatgrass-dominated vegetation suggests that the abundances and community composition of rodents may be shifting, potentially at the larger spatial scale of the entire Great Basin, where cheatgrass continues to invade

  13. Bird counts in stands of big sagebrush and greasewood

    Treesearch

    Bruce L. Welch

    2005-01-01

    Total numbers of birds and numbers of bird species were significantly (p=0.05 percent) higher in stands of big sagebrush than in stands of greasewood. This was especially true for Brewer’s sparrow, lark sparrow, and mourning dove. The big sagebrush ecosystem appears to support greater number of birds and more species of birds than does the greasewood ecosystem.

  14. The importance of maintaining perennial bunchgrass in the sagebrush steppe

    USDA-ARS?s Scientific Manuscript database

    The sagebrush steppe is generally described as an ecosystem at great risk from encroachment of invasive annual grasses and conifer woodlands, land use changes, climate shifts and fragmentation in general. A great deal of attention has been focused on sage-grouse and need for sagebrush cover and for...

  15. A cross-scale approach to understand drought-induced variability of sagebrush ecosystem productivity

    NASA Astrophysics Data System (ADS)

    Assal, T.; Anderson, P. J.

    2016-12-01

    Sagebrush (Artemisia spp.) mortality has recently been reported in the Upper Green River Basin (Wyoming, USA) of the sagebrush steppe of western North America. Numerous causes have been suggested, but recent drought (2012-13) is the likely mechanism of mortality in this water-limited ecosystem which provides critical habitat for many species of wildlife. An understanding of the variability in patterns of productivity with respect to climate is essential to exploit landscape scale remote sensing for detection of subtle changes associated with mortality in this sparse, uniformly vegetated ecosystem. We used the standardized precipitation index to characterize drought conditions and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery (250-m resolution) to characterize broad characteristics of growing season productivity. We calculated per-pixel growing season anomalies over a 16-year period (2000-2015) to identify the spatial and temporal variability in productivity. Metrics derived from Landsat satellite imagery (30-m resolution) were used to further investigate trends within anomalous areas at local scales. We found evidence to support an initial hypothesis that antecedent winter drought was most important in explaining reduced productivity. The results indicate drought effects were inconsistent over space and time. MODIS derived productivity deviated by more than four standard deviations in heavily impacted areas, but was well within the interannual variability in other areas. Growing season anomalies highlighted dramatic declines in productivity during the 2012 and 2013 growing seasons. However, large negative anomalies persisted in other areas during the 2014 growing season, indicating lag effects of drought. We are further investigating if the reduction in productivity is mediated by local biophysical properties. Our analysis identified spatially explicit patterns of ecosystem properties altered by severe drought which are consistent with

  16. Habitat associations of vertebrate prey within the controlled area study zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marr, N.V.; Brandt, C.A.; Fitzner, R.E.

    1988-03-01

    Twelve study locations were established in nine habitat types in the vicinity of the proposed reference repository location. Eight species of small mammals were captured. Great Basin pocket mice (Perognathus parvus) comprised the majority of individuals captured, followed by deer mice (Peromyscus maniculatus), Northern pocket gopher (Thomomys talpoides), Western harvest mouse (Reithrodontomys megalotus), Grasshopper mouse (Onychomys leucogaster), Montane vole, (Microtus montanus), House mouse (Mus musculus), and the Bushy-tailed woodrat (Neotoma cinerea). Pocket mice were captured in all habitats sampled; deer mice were obtained in all habitats save hopsage and nearly pure cheatgrass stands. The highese capture rates were found inmore » bitterbrush and riparian habitats. Capture sex ratios for both pocket mice and deer mice were significantly different from equality. Body weights for deer mice and pocket mice exhibited a great deal of heterogeneity across trap sites, although only the heterogeneity for pocket mice was significant. In general, body weights for both species were greater in the sagebrush habitats than elsewhere. These differences are interpreted in light of habitat evaluation methodologies. Six species of reptiles and one species of amphibian were captured. Side-blotched lizards (Uta stansburiana) were by far the most frequently captured species. The predominant snakes captured were the yellow-bellied racer (Coluber constrictor) and the Great Basin gopher snake (Pituophis melanoleucus). Two Great Basin spadefoot toads (Scaphiopus intermontanus) captured at the Rattlesnake Springs trap site. Species diversity was quite low (Shannon-Wiener H )equals) 1.03). Side-blotched lizards were found in all habitats save near the talus on Gable Mountain and on the gravel pad site. The only other lizard species (northern sagebrush lizard (Sceloporus graciosus) and short-horned lizard (Phrynosoma douglasii)) were obtained in bitterbrush habitat. 20 refs., 1 fig

  17. Influence of container size on Wyoming big sagebrush seedling morphology and cold hardiness

    Treesearch

    Kayla R. Herriman; Anthony S. Davis; R. Kasten Dumroese

    2009-01-01

    Wyoming big sagebrush (Artemisia tridentata) is a key component of sagebrush steppe ecosystems and is a dominant shrub throughout the western United States. Our objective was to identify the effect of container size on plant morphology of Wyoming big sagebrush. We used three different stocktypes (45/340 ml [20 in3], 60/250 ml [15 in3], 112/105 ml [6....

  18. Great Basin sagebrush ecosystems

    Treesearch

    Jeanne C. Chambers

    2008-01-01

    Sagebrush ecosystems exhibit widespread degradation due to a variety of causes, including invasion by exotic plants, expansion of pinyon and juniper, altered fire regimes, excessive livestock grazing, urbanization and land development, conversion to agriculture, road development and use, mining, and energy development. These ecosystems have been identified as the most...

  19. Genotype, soil type, and locale effects on reciprocal transplant vigor, endophyte growth, and microbial functional diversity of a narrow sagebrush hybrid zone in Salt Creek Canyon, Utah

    USGS Publications Warehouse

    Miglia, K.J.; McArthur, E.D.; Redman, R.S.; Rodriguez, R.J.; Zak, J.C.; Freeman, D.C.

    2007-01-01

    When addressing the nature of ecological adaptation and environmental factors limiting population ranges and contributing to speciation, it is important to consider not only the plant's genotype and its response to the environment, but also any close interactions that it has with other organisms, specifically, symbiotic microorganisms. To investigate this, soils and seedlings were reciprocally transplanted into common gardens of the big sagebrush hybrid zone in Salt Creek Canyon, Utah, to determine location and edaphic effects on the fitness of parental and hybrid plants. Endophytic symbionts and functional microbial diversity of indigenous and transplanted soils and sagebrush plants were also examined. Strong selection occurred against the parental genotypes in the middle hybrid zone garden in middle hybrid zone soil; F1 hybrids had the highest fitness under these conditions. Neither of the parental genotypes had superior fitness in their indigenous soils and habitats; rather F1 hybrids with the nonindigenous maternal parent were superiorly fit. Significant garden-by-soil type interactions indicate adaptation of both plant and soil microorganisms to their indigenous soils and habitats, most notably in the middle hybrid zone garden in middle hybrid zone soil. Contrasting performances of F1 hybrids suggest asymmetrical gene flow with mountain, rather than basin, big sagebrush acting as the maternal parent. We showed that the microbial community impacted the performance of parental and hybrid plants in different soils, likely limiting the ranges of the different genotypes.

  20. Effectiveness of prescribed fire to re-establish sagebrush vegetation and ecohydrologic function on woodland-encroached sagebrush steppe, Great Basin, USA

    NASA Astrophysics Data System (ADS)

    Williams, C. J.; Pierson, F. B.; Kormos, P.; Al-Hamdan, O. Z.; Nouwakpo, S.; Weltz, M.; Vega, S.; Lindsay, K.

    2017-12-01

    Range expansion of pinyon (Pinus spp.) and juniper (Juniperus spp.) conifers into sagebrush steppe (Artemisia spp.) communities has imperiled a vast domain in the western US. Encroachment of sagebrush ecosystems by pinyon and juniper conifers has negative ramifications to ecosystem structure and function and delivery of goods and services. Scientists, land management agencies, and private land owners throughout the western US are challenged with selecting from a suite of options to reduce pinyon and juniper woody fuels and re-establish sagebrush steppe structure and function. This study evaluated the effectiveness of prescribed fire to re-establish sagebrush vegetation and ecohydrologic function over a 9 yr period. Nine years post-fire hydrologic and erosion responses reflect the combination of pre-fire site conditions, perennial grass recruitment, delayed litter cover, and inherent site characteristics. Burning initially increased bare ground, runoff, and erosion for well-vegetated areas underneath tree and shrub canopies, but had minimal impact on hydrology and erosion for degraded interspaces between plants. The degraded interspaces were primarily bare ground and exhibited high runoff and erosion rates prior to burning. Initial fire effects persisted for two years, but increased productivity of grasses improved hydrologic function of interspaces over the full 9 yr period. At the hillslope scale, grass recruitment in the intercanopy between trees reduced runoff from rainsplash, sheetflow, and concentrated overland flow at one site, but did not reduce the high levels of runoff and erosion from a more degraded site. In areas formerly occupied by trees (tree zones), burning increased invasive annual grass cover due to fire removal of limited native perennial plants and competition for resources. The invasive annual grass cover had no net effect on runoff and erosion from tree zones however. Runoff and erosion increased in tree zones at the more degraded site due to

  1. Conifer removal in the sagebrush steppe: why, when, where, and how?

    USDA-ARS?s Scientific Manuscript database

    Over the past 150 years, juniper and pine woodlands have increased in both distribution and density across the sagebrush steppe of the Intermountain West. To restore sagebrush steppe plant communities the application of mechanical and prescribed fire treatments are used to remove the influence of e...

  2. Effects of land cover and regional climate variations on long-term spatiotemporal changes in sagebrush ecosystems

    USGS Publications Warehouse

    Xian, George Z.; Homer, Collin G.; Aldridge, Cameron L.

    2012-01-01

    This research investigated the effects of climate and land cover change on variation in sagebrush ecosystems. We combined information of multi-year sagebrush distribution derived from multitemporal remote sensing imagery and climate data to study the variation patterns of sagebrush ecosystems under different potential disturbances. We found that less than 40% of sagebrush ecosystem changes involved abrupt changes directly caused by landscape transformations and over 60% of the variations involved gradual changes directly related to climatic perturbations. The primary increases in bare ground and declines in sagebrush vegetation abundance were significantly correlated with the 1996-2006 decreasing trend in annual precipitation.

  3. Wyoming big sagebrush: Efforts towards development of target plants for restoration

    Treesearch

    Kayla R. Herriman

    2009-01-01

    Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis) is a dominant shrub throughout much of the interior western United States. It is a key component of sagebrush steppe ecosystems, which have been degraded due to European settlement, improper land use, and changing fire regimes resulting from the invasion of exotic...

  4. Comparison of Unmanned Aerial Vehicle Platforms for Assessing Vegetation Cover in Sagebrush Steppe Ecosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert P. Breckenridge; Maxine Dakins; Stephen Bunting

    2011-09-01

    In this study, the use of unmanned aerial vehicles (UAVs) as a quick and safe method for monitoring biotic resources was evaluated. Vegetation cover and the amount of bare ground are important factors in understanding the sustainability of many ecosystems and assessment of rangeland health. Methods that improve speed and cost efficiency could greatly improve how biotic resources are monitored on western lands. Sagebrush steppe ecosystems provide important habitat for a variety of species (including sage grouse and pygmy rabbit). Improved methods are needed to support monitoring these habitats because there are not enough resource specialists or funds available formore » comprehensive ground evaluations. In this project, two UAV platforms, fixed wing and helicopter, were used to collect still-frame imagery to assess vegetation cover in sagebrush steppe ecosystems. This paper discusses the process for collecting and analyzing imagery from the UAVs to (1) estimate percent cover for six different vegetation types (shrub, dead shrub, grass, forb, litter, and bare ground) and (2) locate sage grouse using representative decoys. The field plots were located on the Idaho National Engineering (INL) site west of Idaho Falls, Idaho, in areas with varying amounts and types of vegetation cover. A software program called SamplePoint was used along with visual inspection to evaluate percent cover for the six cover types. Results were compared against standard field measurements to assess accuracy. The comparison of fixed-wing and helicopter UAV technology against field estimates shows good agreement for the measurement of bare ground. This study shows that if a high degree of detail and data accuracy is desired, then a helicopter UAV may be a good platform to use. If the data collection objective is to assess broad-scale landscape level changes, then the collection of imagery with a fixed-wing system is probably more appropriate.« less

  5. Guidelines for prescribed burning sagebrush-grass rangelands in the northern Great Basin

    Treesearch

    Stephen C. Bunting; Bruce M. Kilgore; Charles L. Bushey

    1987-01-01

    Summarizes recent literature on the effects of fire on sagebrush-grass vegetation. Also outlines procedures and considerations for planning and conducting prescribed fires and monitoring effects. Includes a comprehensive annotated bibliography of the fire-sagebrush-grass literature published since 1980.

  6. Herbicide treatment effects on properties of mountain big sagebrush soils after fourteen years

    NASA Technical Reports Server (NTRS)

    Burke, I. C.; Reiners, W. A.; Sturges, D. L.; Matson, P. A.

    1987-01-01

    The effects of sagebrush conversion on the soil properties of a high-elevation portion of the Western Intermountain Sagebrush Steppe (West, 1983) are described. Changes were found in only a few soil chemical properties after conversion to grassland. It was found that surface concentrations of N were lower under grass vegetation than under undisturbed vegetation. Undershrub net N mineralization rates were higher under shrubs in the sagebrush vegetation than under former shrubs in the grass vegetation.

  7. The response of big sagebrush (Artemisia tridentata) to interannual climate variation changes across its range.

    PubMed

    Kleinhesselink, Andrew R; Adler, Peter B

    2018-05-01

    Understanding how annual climate variation affects population growth rates across a species' range may help us anticipate the effects of climate change on species distribution and abundance. We predict that populations in warmer or wetter parts of a species' range should respond negatively to periods of above average temperature or precipitation, respectively, whereas populations in colder or drier areas should respond positively to periods of above average temperature or precipitation. To test this, we estimated the population sensitivity of a common shrub species, big sagebrush (Artemisia tridentata), to annual climate variation across its range. Our analysis includes 8,175 observations of year-to-year change in sagebrush cover or production from 131 monitoring sites in western North America. We coupled these observations with seasonal weather data for each site and analyzed the effects of spring through fall temperatures and fall through spring accumulated precipitation on annual changes in sagebrush abundance. Sensitivity to annual temperature variation supported our hypothesis: years with above average temperatures were beneficial to sagebrush in colder locations and detrimental to sagebrush in hotter locations. In contrast, sensitivity to precipitation did not change significantly across the distribution of sagebrush. This pattern of responses suggests that regional abundance of this species may be more limited by temperature than by precipitation. We also found important differences in how the ecologically distinct subspecies of sagebrush responded to the effects of precipitation and temperature. Our model predicts that a short-term temperature increase could produce an increase in sagebrush cover at the cold edge of its range and a decrease in cover at the warm edge of its range. This prediction is qualitatively consistent with predictions from species distribution models for sagebrush based on spatial occurrence data, but it provides new mechanistic

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duberstein, Corey A.; Simmons, Mary Ann; Sackschewsky, Michael R.

    Mitigation threshold guidelines for the Hanford Site are based on habitat requirements of the sage sparrow (Amphispiza belli) and only apply to areas with a mature sagebrush (Artemisia tridentata) overstory and a native understory. The sage sparrow habitat requirements are based on literature values and are not specific to the Hanford Site. To refine these guidelines for the Site, a multi-year study was undertaken to quantify habitat characteristics of sage sparrow territories. These characteristics were then used to develop a habitat suitability index (HSI) model which can be used to estimate the habitat value of specific locations on the Site.

  9. Biochemical processes in sagebrush ecosystems: Interactions with terrain

    NASA Technical Reports Server (NTRS)

    Matson, P. (Principal Investigator); Reiners, W.; Strong, L.

    1985-01-01

    The objectives of a biogeochemical study of sagebrush ecosystems in Wyoming and their interactions with terrain are as follows: to describe the vegetational pattern on the landscape and elucidate controlling variables, to measure the soil properties and chemical cycling properties associated with the vegetation units, to associate soil properties with vegetation properties as measured on the ground, to develop remote sensing capabilities for vegetation and surface characteristics of the sagebrush landscape, to develop a system of sensing snow cover and indexing seasonal soil to moisture; and to develop relationships between temporal Thematic Mapper (TM) data and vegetation phenological state.

  10. Implications of longer term rest from grazing in the sagebrush steppe

    Treesearch

    K.W. Davies; M. Vavra; B. Schultz; N. Rimbey

    2014-01-01

    Longer term grazing rest has occurred or been proposed in large portions of the sagebrush steppe based on the assumption that it will improve ecosystem properties. However, information regarding the influence of longer term rest from grazing is limited and has not been summarized. We synthesized the scientific literature on long-term rest in the sagebrush steppe to...

  11. Banking Wyoming big sagebrush seeds

    Treesearch

    Robert P. Karrfalt; Nancy Shaw

    2013-01-01

    Five commercially produced seed lots of Wyoming big sagebrush (Artemisia tridentata Nutt. var. wyomingensis (Beetle & Young) S.L. Welsh [Asteraceae]) were stored under various conditions for 5 y. Purity, moisture content as measured by equilibrium relative humidity, and storage temperature were all important factors to successful seed storage. Our results indicate...

  12. Libby/Hungry Horse Dams Wildlife Mitigation : Montana Wildlife Habitat Protection : Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Marilyn

    1992-12-01

    The purpose of this project was to develop and obtain information necessary to evaluate and undertake specific wildlife habitat protection/enhancement actions in northwest Montana as outlined in the Columbia River Basin Fish and Wildlife Program. Three waterfowl projects were evaluated between September 1989 and June 1990. Weaver's Slough project involved the proposed acquisition of 200 acres of irrigated farmland and a donated conservation easement on an additional 213 acres. The proposal included enhancement of the agricultural lands by conversion to upland nesting cover. This project was rated the lowest priority based on limited potential for enhancement and no further actionmore » was pursued. The Crow Creek Ranch project involved the proposed acquisition of approximately 1830 acres of grazing and dryland farming lands. The intent would be to restore drained potholes and provide adjacent upland nesting cover to increase waterfowl production. This project received the highest rating based on the immediate threat of subdivision, the opportunity to restore degraded wetlands, and the overall benefits to numerous species besides waterfowl. Ducks Unlimited was not able to participate as a cooperator on this project due to the jurisdiction concerns between State and tribal ownership. The USFWS ultimately acquired 1,550 acres of this proposed project. No mitigation funds were used. The Ashley Creek project involved acquisition of 870 acres adjacent to the Smith Lake Waterfowl Production Area. The primary goal was to create approximately 470 acres of wetland habitat with dikes and subimpoundments. This project was rated second in priority due to the lesser threat of loss. A feasibility analysis was completed by Ducks Unlimited based on a concept design. Although adequate water was available for the project, soil testing indicated that the organic soils adjacent to the creek would not support the necessary dikes. The project was determined not feasible for mitigation

  13. Mineral resources of the Sagebrush Focal Areas of Idaho, Montana, Nevada, Oregon, Utah, and Wyoming

    USGS Publications Warehouse

    Day, Warren C.; Frost, Thomas P.; Hammarstrom, Jane M.; Zientek, Michael L.

    2016-08-19

    Scientific Investigations Report 2016–5089 and accompanying data releases are the products of the U.S. Geological Survey (USGS) Sagebrush Mineral-Resource Assessment (SaMiRA). The assessment was done at the request of the Bureau of Land Management (BLM) to evaluate the mineral-resource potential of some 10 million acres of Federal and adjacent lands in Idaho, Montana, Nevada, Oregon, Utah, and Wyoming. The need for this assessment arose from the decision by the Secretary of the Interior to pursue the protection of large tracts of contiguous habitat for the greater sage-grouse (Centrocercus urophasianus) in the Western United States. One component of the Department of the Interior plan to protect the habitat areas includes withdrawing selected lands from future exploration and development of mineral and energy resources, including copper, gold, silver, rare earth elements, and other commodities used in the U.S. economy. The assessment evaluates the potential for locatable minerals such as gold, copper, and lithium and describes the nature and occurrence of leaseable and salable minerals for seven Sagebrush Focal Areas and additional lands in Nevada (“Nevada additions”) delineated by BLM. Supporting data are available in a series of USGS data releases describing mineral occurrences (the USGS Mineral Deposit Database or “USMIN”), oil and gas production and well status, previous mineral-resource assessments that covered parts of the areas studied, and a compilation of mineral-use cases based on data provided by BLM, as well as results of the locatable mineral-resource assessment in a geographic information system. The present assessment of mineral-resource potential will contribute to a better understanding of the economic and environmental trade-offs that would result from closing approximately 10 million acres of Federal lands to mineral entry.

  14. Quantifying the evidence for co-benefits between species conservation and climate change mitigation in giant panda habitats.

    PubMed

    Li, Renqiang; Xu, Ming; Powers, Ryan; Zhao, Fen; Jetz, Walter; Wen, Hui; Sheng, Qingkai

    2017-10-05

    Conservationists strive for practical, cost-effective management solutions to forest-based species conservation and climate change mitigation. However, this is compromised by insufficient information about the effectiveness of protected areas in increasing carbon storage, and the co-benefits of species and carbon conservation remain poorly understood. Here, we present the first rigorous quantitative assessment of the roles of giant panda nature reserves (NRs) in carbon sequestration, and explore the co-benefits of habitat conservation and climate change mitigation. Results show that more than 90% of the studied panda NRs are effective in increasing carbon storage, with the mean biomass carbon density of the whole NRs exhibiting a 4.2% higher growth rate compared with lands not declared as NRs over the period 1988-2012, while this effectiveness in carbon storage masks important patterns of spatial heterogeneity across the giant panda habitats. Moreover, the significant associations have been identified between biomass carbon density and panda's habitat suitability in ~85% NRs and at the NR level. These findings suggest that the planning for carbon and species conservation co-benefits would enhance the greatest return on limited conservation investments, which is a critical need for the giant panda after its conservation status has been downgraded from "endangered" to "vulnerable".

  15. Reseeding big sagebrush: Techniques and issues

    Treesearch

    Nancy L. Shaw; Ann M. DeBolt; Roger Rosentreter

    2005-01-01

    Reestablishing big sagebrush on rangelands now dominated by native perennial grasses, introduced perennial grasses, or exotic annual grasses, particularly cheatgrass (Bromus tectorum), serves to stabilize soil, improve moisture availability and nutrient recyling, increase biological diversity, and foster community stability and resiliency. A first...

  16. The economics of fuel management: Wildfire, invasive plants, and the dynamics of sagebrush rangelands in the western United States

    Treesearch

    Michael H. Taylor; Kimberly Rollins; Mimako Kobayashi; Robin J. Tausch

    2013-01-01

    In this article we develop a simulation model to evaluate the economic efficiency of fuel treatments and apply it to two sagebrush ecosystems in the Great Basin of the western United States: the Wyoming Sagebrush Steppe and Mountain Big Sagebrush ecosystems. These ecosystems face the two most prominent concerns in sagebrush ecosystems relative to wildfire: annual grass...

  17. Remote sensing of sagebrush canopy nitrogen

    USGS Publications Warehouse

    Mitchell, Jessica J.; Glenn, Nancy F.; Sankey, Temuulen T.; Derryberry, DeWayne R.; Germino, Matthew J.

    2012-01-01

    This paper presents a combination of techniques suitable for remotely sensing foliar Nitrogen (N) in semiarid shrublands – a capability that would significantly improve our limited understanding of vegetation functionality in dryland ecosystems. The ability to estimate foliar N distributions across arid and semi-arid environments could help answer process-driven questions related to topics such as controls on canopy photosynthesis, the influence of N on carbon cycling behavior, nutrient pulse dynamics, and post-fire recovery. Our study determined that further exploration into estimating sagebrush canopy N concentrations from an airborne platform is warranted, despite remote sensing challenges inherent to open canopy systems. Hyperspectral data transformed using standard derivative analysis were capable of quantifying sagebrush canopy N concentrations using partial least squares (PLS) regression with an R2 value of 0.72 and an R2 predicted value of 0.42 (n = 35). Subsetting the dataset to minimize the influence of bare ground (n = 19) increased R2 to 0.95 (R2 predicted = 0.56). Ground-based estimates of canopy N using leaf mass per unit area measurements (LMA) yielded consistently better model fits than ground-based estimates of canopy N using cover and height measurements. The LMA approach is likely a method that could be extended to other semiarid shrublands. Overall, the results of this study are encouraging for future landscape scale N estimates and represent an important step in addressing the confounding influence of bare ground, which we found to be a major influence on predictions of sagebrush canopy N from an airborne platform.

  18. Effective management strategies for sage-grouse and sagebrush: a question of triage?

    Treesearch

    Michael J. Wisdom; Mary M. Rowland; Robin J. Tausch

    2005-01-01

    The sagebrush (Artemisia spp.) ecosystem once occupied over 150 million acres of western North America (Barbour and Billings 1988). The ecosystem still occupies over 100 million acres (Connelly et al. 2004, Wisdom et al. 2005), but the abundance and condition of sagebrush communities is declining rapidly in response to a variety of detrimental land...

  19. Managing Intermountain rangelands - sagebrush-grass ranges

    Treesearch

    James P. Blaisdell; Robert B Murray; E. Durant McArthur

    1982-01-01

    This paper is a distillation of some of the most important information resulting from a half-century of research on sagebrush-grass rangelands. It has been prepared as a reference for managers and users of rangelands and as a help for planning and decisionmaking.

  20. Scales of snow depth variability in high elevation rangeland sagebrush

    NASA Astrophysics Data System (ADS)

    Tedesche, Molly E.; Fassnacht, Steven R.; Meiman, Paul J.

    2017-09-01

    In high elevation semi-arid rangelands, sagebrush and other shrubs can affect transport and deposition of wind-blown snow, enabling the formation of snowdrifts. Datasets from three field experiments were used to investigate the scales of spatial variability of snow depth around big mountain sagebrush ( Artemisia tridentata Nutt.) at a high elevation plateau rangeland in North Park, Colorado, during the winters of 2002, 2003, and 2008. Data were collected at multiple resolutions (0.05 to 25 m) and extents (2 to 1000 m). Finer scale data were collected specifically for this study to examine the correlation between snow depth, sagebrush microtopography, the ground surface, and the snow surface, as well as the temporal consistency of snow depth patterns. Variograms were used to identify the spatial structure and the Moran's I statistic was used to determine the spatial correlation. Results show some temporal consistency in snow depth at several scales. Plot scale snow depth variability is partly a function of the nature of individual shrubs, as there is some correlation between the spatial structure of snow depth and sagebrush, as well as between the ground and snow depth. The optimal sampling resolution appears to be 25-cm, but over a large area, this would require a multitude of samples, and thus a random stratified approach is recommended with a fine measurement resolution of 5-cm.

  1. Region-wide ecological responses of arid Wyoming big sagebrush communities to fuel treatments

    Treesearch

    David A. Pyke; Scott E. Shaff; Andrew I. Lindgren; Eugene W. Schupp; Paul S. Doescher; Jeanne C. Chambers; Jeffrey S. Burnham; Manuela M. Huso

    2014-01-01

    If arid sagebrush ecosystems lack resilience to disturbances or resistance to annual invasives, then alternative successional states dominated by annual invasives, especially cheatgrass (Bromus tectorum L.), are likely after fuel treatments. We identified six Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis Beetle & Young) locations (152-381 mm...

  2. Wildfire, climate, and invasive grass interactions negatively impact an indicator species by reshaping sagebrush ecosystems

    USGS Publications Warehouse

    Coates, Peter S.; Ricca, Mark; Prochazka, Brian; Brooks, Matthew L.; Doherty, Kevin E.; Kroger, Travis; Blomberg, Erik J.; Hagen, Christian A.; Casazza, Michael L.

    2016-01-01

    Iconic sagebrush ecosystems of the American West are threatened by larger and more frequent wildfires that can kill sagebrush and facilitate invasion by annual grasses, creating a cycle that alters sagebrush ecosystem recovery post disturbance. Thwarting this accelerated grass–fire cycle is at the forefront of current national conservation efforts, yet its impacts on wildlife populations inhabiting these ecosystems have not been quantified rigorously. Within a Bayesian framework, we modeled 30 y of wildfire and climatic effects on population rates of change of a sagebrush-obligate species, the greater sage-grouse, across the Great Basin of western North America. Importantly, our modeling also accounted for variation in sagebrush recovery time post fire as determined by underlying soil properties that influence ecosystem resilience to disturbance and resistance to invasion. Our results demonstrate that the cumulative loss of sagebrush to direct and indirect effects of wildfire has contributed strongly to declining sage-grouse populations over the past 30 y at large spatial scales. Moreover, long-lasting effects from wildfire nullified pulses of sage-grouse population growth that typically follow years of higher precipitation. If wildfire trends continue unabated, model projections indicate sage-grouse populations will be reduced to 43% of their current numbers over the next three decades. Our results provide a timely example of how altered fire regimes are disrupting recovery of sagebrush ecosystems and leading to substantial declines of a widespread indicator species. Accordingly, we present scenario-based stochastic projections to inform conservation actions that may help offset the adverse effects of wildfire on sage-grouse and other wildlife populations.

  3. Wildfire, climate, and invasive grass interactions negatively impact an indicator species by reshaping sagebrush ecosystems.

    PubMed

    Coates, Peter S; Ricca, Mark A; Prochazka, Brian G; Brooks, Matthew L; Doherty, Kevin E; Kroger, Travis; Blomberg, Erik J; Hagen, Christian A; Casazza, Michael L

    2016-10-25

    Iconic sagebrush ecosystems of the American West are threatened by larger and more frequent wildfires that can kill sagebrush and facilitate invasion by annual grasses, creating a cycle that alters sagebrush ecosystem recovery post disturbance. Thwarting this accelerated grass-fire cycle is at the forefront of current national conservation efforts, yet its impacts on wildlife populations inhabiting these ecosystems have not been quantified rigorously. Within a Bayesian framework, we modeled 30 y of wildfire and climatic effects on population rates of change of a sagebrush-obligate species, the greater sage-grouse, across the Great Basin of western North America. Importantly, our modeling also accounted for variation in sagebrush recovery time post fire as determined by underlying soil properties that influence ecosystem resilience to disturbance and resistance to invasion. Our results demonstrate that the cumulative loss of sagebrush to direct and indirect effects of wildfire has contributed strongly to declining sage-grouse populations over the past 30 y at large spatial scales. Moreover, long-lasting effects from wildfire nullified pulses of sage-grouse population growth that typically follow years of higher precipitation. If wildfire trends continue unabated, model projections indicate sage-grouse populations will be reduced to 43% of their current numbers over the next three decades. Our results provide a timely example of how altered fire regimes are disrupting recovery of sagebrush ecosystems and leading to substantial declines of a widespread indicator species. Accordingly, we present scenario-based stochastic projections to inform conservation actions that may help offset the adverse effects of wildfire on sage-grouse and other wildlife populations.

  4. SAGEMAP: A web-based spatial dataset for sage grouse and sagebrush steppe management in the Intermountain West

    USGS Publications Warehouse

    Knick, Steven T.; Schueck, Linda

    2002-01-01

    The Snake River Field Station of the Forest and Rangeland Ecosystem Science Center has developed and now maintains a database of the spatial information needed to address management of sage grouse and sagebrush steppe habitats in the western United States. The SAGEMAP project identifies and collects infor-mation for the region encompassing the historical extent of sage grouse distribution. State and federal agencies, the primary entities responsible for managing sage grouse and their habitats, need the information to develop an objective assessment of the current status of sage grouse populations and their habitats, or to provide responses and recommendations for recovery if sage grouse are listed as a Threatened or Endangered Species. The spatial data on the SAGEMAP website (http://SAGEMAP.wr.usgs.gov) are an important component in documenting current habitat and other environmental conditions. In addition, the data can be used to identify areas that have undergone significant changes in land cover and to determine underlying causes. As such, the database permits an analysis for large-scale and range-wide factors that may be causing declines of sage grouse populations. The spatial data contained on this site also will be a critical component guiding the decision processes for restoration of habitats in the Great Basin. Therefore, development of this database and the capability to disseminate the information carries multiple benefits for land and wildlife management.

  5. Big sagebrush response to one-way and two-way chaining in Southeastern Utah

    Treesearch

    John A. Fairchild; James N. Davis; Jack D. Brotherson

    2005-01-01

    A decadent, mixed stand of Wyoming big sagebrush, Artemisia tridentata wyomingensis, and mountain big sagebrush, Artemisia tridentata vaseyana, located north of Cisco, Utah, was subjected to one-way and two-way chaining treatments in November 1987. The effect of the treatments on plant community characteristics and shrub vigor was...

  6. Challenges of establishing big sgebrush (Artemisia tridentata) in rangeland restoration: effects of herbicide, mowing, whole-community seeding, and sagebrush seed sources

    USGS Publications Warehouse

    Brabec, Martha M.; Germino, Matthew J.; Shinneman, Douglas J.; Pilliod, David S.; McIlroy, Susan K.; Arkle, Robert S.

    2015-01-01

    The loss of big sagebrush (Artemisia tridentata Nutt.) on sites disturbed by fire has motivated restoration seeding and planting efforts. However, the resulting sagebrush establishment is often lower than desired, especially in dry areas. Sagebrush establishment may be increased by addressing factors such as seed source and condition or management of the plant community. We assessed initial establishment of seeded sagebrush and four populations of small outplants (from different geographies, climates, and cytotypes) and small sagebrush outplants in an early seral community where mowing, herbicide, and seeding of other native plants had been experimentally applied. No emergence of seeded sagebrush was detected. Mowing the site before planting seedlings led to greater initial survival probabilities for sagebrush outplants, except where seeding also occurred, and these effects were related to corresponding changes in bare soil exposure. Initial survival probabilities were > 30% greater for the local population of big sagebrush relative to populations imported to the site from typical seed transfer distances of ~320–800 km. Overcoming the high first-year mortality of outplanted or seeded sagebrush is one of the most challenging aspects of postfire restoration and rehabilitation, and further evaluation of the impacts of herb treatments and sagebrush seed sources across different site types and years is needed.

  7. Crucial nesting habitat for gunnison sage-grouse: A spatially explicit hierarchical approach

    USGS Publications Warehouse

    Aldridge, Cameron L.; Saher, D.J.; Childers, T.M.; Stahlnecker, K.E.; Bowen, Z.H.

    2012-01-01

    Gunnison sage-grouse (Centrocercus minimus) is a species of special concern and is currently considered a candidate species under Endangered Species Act. Careful management is therefore required to ensure that suitable habitat is maintained, particularly because much of the species' current distribution is faced with exurban development pressures. We assessed hierarchical nest site selection patterns of Gunnison sage-grouse inhabiting the western portion of the Gunnison Basin, Colorado, USA, at multiple spatial scales, using logistic regression-based resource selection functions. Models were selected using Akaike Information Criterion corrected for small sample sizes (AIC c) and predictive surfaces were generated using model averaged relative probabilities. Landscape-scale factors that had the most influence on nest site selection included the proportion of sagebrush cover >5%, mean productivity, and density of 2 wheel-drive roads. The landscape-scale predictive surface captured 97% of known Gunnison sage-grouse nests within the top 5 of 10 prediction bins, implicating 57% of the basin as crucial nesting habitat. Crucial habitat identified by the landscape model was used to define the extent for patch-scale modeling efforts. Patch-scale variables that had the greatest influence on nest site selection were the proportion of big sagebrush cover >10%, distance to residential development, distance to high volume paved roads, and mean productivity. This model accurately predicted independent nest locations. The unique hierarchical structure of our models more accurately captures the nested nature of habitat selection, and allowed for increased discrimination within larger landscapes of suitable habitat. We extrapolated the landscape-scale model to the entire Gunnison Basin because of conservation concerns for this species. We believe this predictive surface is a valuable tool which can be incorporated into land use and conservation planning as well the assessment of

  8. Pinyon and juniper encroachment into sagebrush ecosystems impacts distribution and survival of greater sage-grouse

    USGS Publications Warehouse

    Coates, Peter S.; Prochazka, Brian; Ricca, Mark; Gustafson, K. Ben; Ziegler, Pilar T.; Casazza, Michael L.

    2017-01-01

    In sagebrush (Artemisia spp.) ecosystems, encroachment of pinyon (Pinus spp.) and juniper (Juniperus spp.; hereafter, “pinyon-juniper”) trees has increased dramatically since European settlement. Understanding the impacts of this encroachment on behavioral decisions, distributions, and population dynamics of greater sage-grouse (Centrocercus urophasianus) and other sagebrush obligate species could help benefit sagebrush ecosystem management actions. We employed a novel two-stage Bayesian model that linked avoidance across different levels of pinyon-juniper cover to sage-grouse survival. Our analysis relied on extensive telemetry data collected across 6 yr and seven subpopulations within the Bi-State Distinct Population Segment (DPS), on the border of Nevada and California. The first model stage indicated avoidance behavior for all canopy cover classes on average, but individual grouse exhibited a high degree of heterogeneity in avoidance behavior of the lowest cover class (e.g., scattered isolated trees). The second stage modeled survival as a function of estimated avoidance parameters and indicated increased survival rates for individuals that exhibited avoidance of the lowest cover class. A post hoc frailty analysis revealed the greatest increase in hazard (i.e., mortality risk) occurred in areas with scattered isolated trees consisting of relatively high primary plant productivity. Collectively, these results provide clear evidence that local sage-grouse distributions and demographic rates are influenced by pinyon-juniper, especially in habitats with higher primary productivity but relatively low and seemingly benign tree cover. Such areas may function as ecological traps that convey attractive resources but adversely affect population vital rates. To increase sage-grouse survival, our model predictions support reducing actual pinyon-juniper cover as low as 1.5%, which is lower than the published target of 4.0%. These results may represent effects of pinyon

  9. Ecohydrology of adjacent sagebrush and lodgepole pine ecosystems: the consequences of climate change and disturbance

    USGS Publications Warehouse

    Bradford, John B.; Schlaepfer, Daniel R.; Lauenroth, William K.

    2014-01-01

    Sagebrush steppe and lodgepole pine forests are two of the most widespread vegetation types in the western United States and they play crucial roles in the hydrologic cycle of these water-limited regions. We used a process-based ecosystem water model to characterize the potential impact of climate change and disturbance (wildfire and beetle mortality) on water cycling in adjacent sagebrush and lodgepole pine ecosystems. Despite similar climatic and topographic conditions between these ecosystems at the sites examined, lodgepole pine, and sagebrush exhibited consistent differences in water balance, notably more evaporation and drier summer soils in the sagebrush and greater transpiration and less water yield in lodgepole pine. Canopy disturbances (either fire or beetle) have dramatic impacts on water balance and availability: reducing transpiration while increasing evaporation and water yield. Results suggest that climate change may reduce snowpack, increase evaporation and transpiration, and lengthen the duration of dry soil conditions in the summer, but may have uncertain effects on drainage. Changes in the distribution of sagebrush and lodgepole pine ecosystems as a consequence of climate change and/or altered disturbance regimes will likely alter ecosystem water balance.

  10. Common raven occurrence in relation to energy transmission line corridors transiting human-altered sagebrush steppe

    USGS Publications Warehouse

    Coates, Peter S.; Howe, Kristy B.; Casazza, Michael L.; Delehanty, David J.

    2014-01-01

    Energy-related infrastructure and other human enterprises within sagebrush steppe of the American West often results in changes that promote common raven (Corvus corax; hereafter, raven) populations. Ravens, a generalist predator capable of behavioral innovation, present a threat to many species of conservation concern. We evaluate the effects of detailed features of an altered landscape on the probability of raven occurrence using extensive raven survey (n= 1045) and mapping data from southern Idaho, USA. We found nonlinear relationships between raven occurrence and distances to transmission lines, roads, and facilities. Most importantly, raven occurrence was greater with presence of transmission lines up to 2.2 km from the corridor.We further explain variation in raven occurrence along anthropogenic features based on the amount of non-native vegetation and cover type edge, such that ravens select fragmented sagebrush stands with patchy, exotic vegetative introgression. Raven occurrence also increased with greater length of edge formed by the contact of big sagebrush (Artemisia tridentate spp.) with non-native vegetation cover types. In consideration of increasing alteration of sagebrush steppe, these findings will be useful for planning energy transmission corridor placement and other management activities where conservation of sagebrush obligate species is a priority.

  11. Evaluating a seed technology for sagebrush restoration across an elevation gradient: support for bet hedging

    USDA-ARS?s Scientific Manuscript database

    Big sagebrush (Artemisia tridentata Nutt.) restoration is needed across vast areas, especially after large wildfires, to restore important ecosystem services. Sagebrush restoration success is inconsistent with a high rate of seeding failures, particularly at lower elevations. Seed enhancement tech...

  12. Identifying key climate and environmental factors affecting rates of post-fire big sagebrush (Artemisia tridentata) recovery in the northern Columbia Basin, USA

    USGS Publications Warehouse

    Shinneman, Douglas; McIlroy, Susan

    2016-01-01

    Sagebrush steppe of North America is considered highly imperilled, in part owing to increased fire frequency. Sagebrush ecosystems support numerous species, and it is important to understand those factors that affect rates of post-fire sagebrush recovery. We explored recovery of Wyoming big sagebrush (Artemisia tridentata ssp.wyomingensis) and basin big sagebrush (A. tridentata ssp. tridentata) communities following fire in the northern Columbia Basin (Washington, USA). We sampled plots across 16 fires that burned in big sagebrush communities from 5 to 28 years ago, and also sampled nearby unburned locations. Mixed-effects models demonstrated that density of large–mature big sagebrush plants and percentage cover of big sagebrush were higher with time since fire and in plots with more precipitation during the winter immediately following fire, but were lower when precipitation the next winter was higher than average, especially on soils with higher available water supply, and with greater post-fire mortality of mature big sagebrush plants. Bunchgrass cover 5 to 28 years after fire was predicted to be lower with higher cover of both shrubs and non-native herbaceous species, and only slightly higher with time. Post-fire recovery of big sagebrush in the northern Columbia Basin is a slow process that may require several decades on average, but faster recovery rates may occur under specific site and climate conditions.

  13. Bird habitat relationships along a Great Basin elevational gradient

    Treesearch

    Dean E. Medin; Bruce L. Welch; Warren P. Clary

    2000-01-01

    Bird censuses were taken on 11 study plots along an elevational gradient ranging from 5,250 to 11,400 feet. Each plot represented a different vegetative type or zone: shadscale, shadscale-Wyoming big sagebrush, Wyoming big sagebrush, Wyoming big sagebrush-pinyon/juniper, pinyon/juniper, pinyon/juniper-mountain big sagebrush, mountain big sagebrush, mountain big...

  14. Fungal and bacterial contributions to nitrogen cycling in cheatgrass-invaded and uninvaded native sagebrush soils of the western USA

    USGS Publications Warehouse

    DeCrappeo, Nicole; DeLorenze, Elizabeth J.; Giguere, Andrew T; Pyke, David A.; Bottomley, Peter J.

    2017-01-01

    AimThere is interest in determining how cheatgrass (Bromus tectorum L.) modifies N cycling in sagebrush (Artemisia tridentata Nutt.) soils of the western USA.MethodsTo gain insight into the roles of fungi and bacteria in N cycling of cheatgrass-invaded and uninvaded sagebrush soils, the fungal protein synthesis inhibitor, cycloheximide (CHX), and the bacteriocidal compound, bronopol (BRO) were combined with a 15NH4+ isotope pool dilution approach.ResultsCHX reduced gross N mineralization to the same rate in both sagebrush and cheatgrass soils indicating a role for fungi in N mineralization in both soil types. In cheatgrass soils BRO completely inhibited gross N mineralization, whereas, in sagebrush soils a BRO-resistant gross N mineralization rate was detected that was slower than CHX sensitive gross N mineralization, suggesting that the microbial drivers of gross N mineralization were different in sagebrush and cheatgrass soils. Net N mineralization was stimulated to a higher rate in sagebrush than in cheatgrass soils by CHX, implying that a CHX inhibited N sink was larger in the former than the latter soils. Initial gross NH4+ consumption rates were reduced significantly by both CHX and BRO in both soil types, yet, consumption rates recovered significantly between 24 and 48 h in CHX-treated sagebrush soils. The recovery of NH4+ consumption in sagebrush soils corresponded with an increase in the rate of net nitrification.ConclusionsThese results suggest that cheatgrass invasion of sagebrush soils of the northern Great Basin reduces the capacity of the fungal N consumption sink, enhances the capacity of a CHX resistant N sink and alters the contributions of bacteria and fungi to gross N mineralization.

  15. A meta-analysis of lesser prairie-chicken nesting and brood-rearing habitats: implications for habitat management

    USGS Publications Warehouse

    Hagen, Christian A.; Grisham, Blake A.; Boal, Clint W.; Haukos, David A.

    2013-01-01

    The distribution and range of lesser prairie-chicken (Tympanuchus pallidicinctus) has been reduced by >90% since European settlement of the Great Plains of North America. Currently, lesser prairie-chickens occupy 3 general vegetation communities: sand sagebrush (Artemisia filifolia), sand shinnery oak (Quercus havardii), and mixed-grass prairies juxtaposed with Conservation Reserve Program grasslands. As a candidate for protection under the Endangered Species Act, there is a need for a synthesis that characterizes habitat structure rangewide. Thus, we conducted a meta-analysis of vegetation characteristics at nest sites and brood habitats to determine whether there was an overall effect (Hedges' d) of habitat selection and to estimate average (95% CI) habitat characteristics at use sites. We estimated effect sizes (di) from the difference between use (nests and brood sites) and random sampling sites for each study (n = 14), and derived an overall effect size (d++). There was a general effect for habitat selection as evidenced by low levels of variation in effect sizes across studies and regions. There was a small to medium effect (d++) = 0.20-0.82) of selection for greater vertical structure (visual obstruction) by nesting females in both vegetation communities, and selection against bare ground (d++ = 0.20-0.58). Females with broods exhibited less selectivity for habitat components except for vertical structure. The variation of d++ was greater during nesting than brooding periods, signifying a seasonal shift in habitat use, and perhaps a greater range of tolerance for brood-rearing habitat. The overall estimates of vegetation cover were consistent with those provided in management guidelines for the species.

  16. Effects of using winter grazing as a fuel treatment on Wyoming big sagebrush plant communities

    USDA-ARS?s Scientific Manuscript database

    More frequent wildfires and incidences of mega-fires have increased the pressure for fuel treatments in sagebrush (Artemisia) communities. Winter grazing has been one of many fuel treatments proposed for Wyoming big sagebrush (A. tridentata Nutt. subsp. wyomingensis Beetle and A. Young) communitie...

  17. Bumble bee (Hymenoptera: Apidae) community structure on two sagebrush steppe sites in southern Idaho

    Treesearch

    Stephen P. Cook; Sara M. Birch; Frank W. Merickel; Carrie Caselton Lowe; Deborah Page-Dumroese

    2011-01-01

    Although sagebrush, Artemisia spp., does not require an insect pollinator, there are several native species of bumble bees, Bombus spp. (Hymenoptera: Apidae), that are present in sagebrush steppe ecosystems where they act as pollinators for various forbs and shrubs. These native pollinators contribute to plant productivity and reproduction. We captured 12 species of...

  18. Populations and habitat relationships of Piute ground squirrels in southwest Idaho

    USGS Publications Warehouse

    Steenhof, Karen; Yensen, Eric; Kochert, Michael N.; Gage, K.

    2006-01-01

    Piute ground squirrels (Spermophilus mollis idahoensis) are normally above ground from late January until late June or early July in the Snake River Birds of Prey National Conservation Area in southwestern Idaho. In 2002 they were rarely seen above ground after early May. Because of the ecological importance of ground squirrels for nesting raptors and other species, we sought to determine the reasons for their early disappearance. We sampled 12 sites from January 2003 through March 2003 to determine if a population crash had occurred in 2002. Tests indicated that Piute ground squirrels had not been exposed to plague within the past year. The presence of yearlings in the population indicated that squirrels reproduced in 2002 and that at least some yearlings survived the winter. Both yearling and adult squirrels appeared to be reproducing at or above normal rates in 2003. The most plausible explanation for the early disappearance of Piute ground squirrels in 2002 is that squirrels entered seasonal torpor early in response to a late spring drought. In addition, the breeding chronology of squirrels may have shifted during the past 2 decades in response to climate change and/or habitat alteration. Shrub habitats provide a more favorable and stable environment for squirrels than grass habitats. Squirrel abundance was higher on live-trapping grids with sagebrush than on grids dominated by grass, and squirrel masses were higher at sites dominated by shrubs and Sandberg bluegrass (Poa secunda). Densities in big sagebrush (Artemisia tridentata) were within the ranges reported for earlier years, but densities in grass were lower than previously reported. Low densities at grassland sites in 2003 support other findings that drought affects squirrels in altered grass communities more than those in native shrub habitats. Long-term shifts in ground squirrel breeding chronology may have implications for raptors that depend on them for food.

  19. Integrating spatially explicit indices of abundance and habitat quality: an applied example for greater sage-grouse management

    USGS Publications Warehouse

    Coates, Peter S.; Casazza, Michael L.; Ricca, Mark A.; Brussee, Brianne E.; Blomberg, Erik J.; Gustafson, K. Benjamin; Overton, Cory T.; Davis, Dawn M.; Niell, Lara E.; Espinosa, Shawn P.; Gardner, Scott C.; Delehanty, David J.

    2016-01-01

    Predictive species distributional models are a cornerstone of wildlife conservation planning. Constructing such models requires robust underpinning science that integrates formerly disparate data types to achieve effective species management. Greater sage-grouse Centrocercus urophasianus, hereafter “sage-grouse” populations are declining throughout sagebrush-steppe ecosystems in North America, particularly within the Great Basin, which heightens the need for novel management tools that maximize use of available information. Herein, we improve upon existing species distribution models by combining information about sage-grouse habitat quality, distribution, and abundance from multiple data sources. To measure habitat, we created spatially explicit maps depicting habitat selection indices (HSI) informed by > 35 500 independent telemetry locations from > 1600 sage-grouse collected over 15 years across much of the Great Basin. These indices were derived from models that accounted for selection at different spatial scales and seasons. A region-wide HSI was calculated using the HSI surfaces modelled for 12 independent subregions and then demarcated into distinct habitat quality classes. We also employed a novel index to describe landscape patterns of sage-grouse abundance and space use (AUI). The AUI is a probabilistic composite of: (i) breeding density patterns based on the spatial configuration of breeding leks and associated trends in male attendance; and (ii) year-round patterns of space use indexed by the decreasing probability of use with increasing distance to leks. The continuous AUI surface was then reclassified into two classes representing high and low/no use and abundance. Synthesis and applications. Using the example of sage-grouse, we demonstrate how the joint application of indices of habitat selection, abundance, and space use derived from multiple data sources yields a composite map that can guide effective allocation of management intensity across

  20. Integrating spatially explicit indices of abundance and habitat quality: an applied example for greater sage-grouse management.

    PubMed

    Coates, Peter S; Casazza, Michael L; Ricca, Mark A; Brussee, Brianne E; Blomberg, Erik J; Gustafson, K Benjamin; Overton, Cory T; Davis, Dawn M; Niell, Lara E; Espinosa, Shawn P; Gardner, Scott C; Delehanty, David J

    2016-02-01

    Predictive species distributional models are a cornerstone of wildlife conservation planning. Constructing such models requires robust underpinning science that integrates formerly disparate data types to achieve effective species management.Greater sage-grouse Centrocercus urophasianus , hereafter 'sage-grouse' populations are declining throughout sagebrush-steppe ecosystems in North America, particularly within the Great Basin, which heightens the need for novel management tools that maximize the use of available information.Herein, we improve upon existing species distribution models by combining information about sage-grouse habitat quality, distribution and abundance from multiple data sources. To measure habitat, we created spatially explicit maps depicting habitat selection indices (HSI) informed by >35 500 independent telemetry locations from >1600 sage-grouse collected over 15 years across much of the Great Basin. These indices were derived from models that accounted for selection at different spatial scales and seasons. A region-wide HSI was calculated using the HSI surfaces modelled for 12 independent subregions and then demarcated into distinct habitat quality classes.We also employed a novel index to describe landscape patterns of sage-grouse abundance and space use (AUI). The AUI is a probabilistic composite of the following: (i) breeding density patterns based on the spatial configuration of breeding leks and associated trends in male attendance; and (ii) year-round patterns of space use indexed by the decreasing probability of use with increasing distance to leks. The continuous AUI surface was then reclassified into two classes representing high and low/no use and abundance. Synthesis and application s. Using the example of sage-grouse, we demonstrate how the joint application of indices of habitat selection, abundance and space use derived from multiple data sources yields a composite map that can guide effective allocation of management

  1. Summary of science, activities, programs, and policies that influence the rangewide conservation of Greater Sage-Grouse (Centrocercus urophasianus)

    USGS Publications Warehouse

    Manier, D.J.; Wood, David J.A.; Bowen, Z.H.; Donovan, R.M.; Holloran, M.J.; Juliusson, L.M.; Mayne, K.S.; Oyler-McCance, S.J.; Quamen, F.R.; Saher, D.J.; Titolo, A.J.

    2013-01-01

    The Greater Sage-Grouse, has been observed, hunted, and counted for decades. The sagebrush biome, home to the Greater Sage-Grouse, includes sagebrush-steppe and Great Basin sagebrush communities, interspersed with grasslands, salt flats, badlands, mountain ranges, springs, intermittent creeks and washes, and major river systems, and is one of the most widespread and enigmatic components of Western U.S. landscapes. Over time, habitat conversion, degradation, and fragmentation have accumulated across the entire range such that local conditions as well as habitat distributions at local and regional scales are negatively affecting the long-term persistence of this species. Historic patterns of human use and settlement of the sagebrush ecosystem have contributed to the current condition and status of sage-grouse populations. The accumulation of habitat loss, persistent habitat degradation, and fragmentation by industry and urban infrastructure, as indicated by U.S. Fish and Wildlife Service (USFWS) findings, presents a significant challenge for conservation of this species and sustainable management of the sagebrush ecosystem. Because of the wide variations in natural and human history across these landscapes, no single prescription for management of sagebrush ecosystems (including sage-grouse habitats) will suffice to guide the collective efforts of public and private entities to conserve the species and its habitat. This report documents and summarizes several decades of work on sage-grouse populations, sagebrush as habitat, and sagebrush community and ecosystem functions based on the recent assessment and findings of the USFWS under consideration of the Endangered Species Act. As reflected here, some of these topics receive a greater depth of discussion because of the perceived importance of the issue for sagebrush ecosystems and sage-grouse populations. Drawing connections between the direct effects on sagebrush ecosystems and the effect of ecosystem condition on

  2. Use of distance measures to assess environmental and genetic variability across sagebrush hybrid zones

    Treesearch

    D. Carl Freeman; John H. Graham; Terra Jones; Han Wang; Kathleen J. Miglia; E. Durant McArthur

    2001-01-01

    Reciprocal transplant studies in the big sagebrush hybrid zone at Salt Creek Canyon, Utah, showed that hybrids between basin (Artemisia tridentata ssp. tridentata) and mountain big sagebrush (A. t. ssp. vaseyana) are more fit than either parental taxon, but only when raised in the hybrid zone. Hybrids are less fit than the native parent when raised in the parental...

  3. Prescribed fire in a Great Basin sagebrush ecosystem: Dynamics of soil extractable nitrogen and phosphorus

    Treesearch

    B. M. Rau; R. R. Blank; J. C. Chambers; D. W. Johnson

    2007-01-01

    Pinyon and juniper have been expanding into sagebrush (Artemisia tridentata) ecosystems since settlement of the Great Basin around 1860. Herbaceous understory vegetation is eliminated as stand densities increase and the potential for catastrophic fires increases. Prescribed fire is increasingly used to remove trees and promote recovery of sagebrush...

  4. Woody fuels reduction in Wyoming big sagebrush communities

    USDA-ARS?s Scientific Manuscript database

    Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle & Young) ecosystems historically have been subject to disturbances that reduce or remove shrubs primarily by fire, although insect outbreaks and disease have also been important. Depending on site productivity, fire return in...

  5. Physical disturbance shapes vascular plant diversity more profoundly than fire in the sagebrush steppe of southeastern Idaho, U.S.A.

    PubMed

    Lavin, Matt; Brummer, Tyler J; Quire, Ryan; Maxwell, Bruce D; Rew, Lisa J

    2013-06-01

    Fire is thought to profoundly change the ecology of the sagebrush steppe. The Idaho National Laboratory provides an ideal setting to compare the effects of fire and physical disturbance on plant diversity in high-native-cover sagebrush steppe. Seventy-eight 1-hectare transects were established along paved, green-striped, gravel, and two-track roads, in overgrazed rangeland, and within sagebrush steppe involving different fire histories. Transects were sampled for the diversity and abundance of all vascular plants. Alpha, beta, and phylogenetic beta diversity were analyzed as a response to fire and physical disturbance. Postfire vegetation readily rebounds to prefire levels of alpha plant diversity. Physical disturbance, in contrast, strongly shapes patterns of alpha, beta, and especially phylogenetic beta diversity much more profoundly than fire disturbance. If fire is a concern in the sagebrush steppe then the degree of physical-disturbance should be more so. This finding is probably not specific to the study area but applicable to the northern and eastern portions of the sagebrush biome, which is characterized by a pulse of spring moisture and cold mean minimum winter temperatures. The distinction of sagebrush steppe from Great Basin sagebrush should be revised especially with regard to reseeding efforts and the control of annual grasses.

  6. Physical disturbance shapes vascular plant diversity more profoundly than fire in the sagebrush steppe of southeastern Idaho, U.S.A

    PubMed Central

    Lavin, Matt; Brummer, Tyler J; Quire, Ryan; Maxwell, Bruce D; Rew, Lisa J

    2013-01-01

    Fire is thought to profoundly change the ecology of the sagebrush steppe. The Idaho National Laboratory provides an ideal setting to compare the effects of fire and physical disturbance on plant diversity in high-native-cover sagebrush steppe. Seventy-eight 1-hectare transects were established along paved, green-striped, gravel, and two-track roads, in overgrazed rangeland, and within sagebrush steppe involving different fire histories. Transects were sampled for the diversity and abundance of all vascular plants. Alpha, beta, and phylogenetic beta diversity were analyzed as a response to fire and physical disturbance. Postfire vegetation readily rebounds to prefire levels of alpha plant diversity. Physical disturbance, in contrast, strongly shapes patterns of alpha, beta, and especially phylogenetic beta diversity much more profoundly than fire disturbance. If fire is a concern in the sagebrush steppe then the degree of physical-disturbance should be more so. This finding is probably not specific to the study area but applicable to the northern and eastern portions of the sagebrush biome, which is characterized by a pulse of spring moisture and cold mean minimum winter temperatures. The distinction of sagebrush steppe from Great Basin sagebrush should be revised especially with regard to reseeding efforts and the control of annual grasses. PMID:23789073

  7. Big sagebrush (Artemisia tridentata) in a shifting climate context: Assessment of seedling responses to climate

    Treesearch

    Martha A. Brabec

    2014-01-01

    The loss of big sagebrush (Artemisia tridentata) throughout the Great Basin Desert has motivated efforts to restore it because of fire and other disturbance effects on sagebrush-dependent wildlife and ecosystem function. Initial establishment is the first challenge to restoration, and appropriateness of seeds, climate, and weather variability are factors that may...

  8. Using state-and-transition models to project cheatgrass and juniper invasion in Southeastern Oregon sagebrush steppe

    Treesearch

    Megan K. Creutzburg; Joshua S. Halofsky; Miles A. Hemstrom

    2012-01-01

    Many threats are jeopardizing the sagebrush steppe of the Columbia Basin, including the spread of invasive species such as cheatgrass (Bromus tectorum L.) and the expansion of western juniper (Juniperus occidentalis Hook.) into historic shrub steppe. Native sagebrush steppe provides productive grazing lands and important...

  9. Resilience and resistance of sagebrush ecosystems: implications for state and transition models and management treatments

    USGS Publications Warehouse

    Chambers, Jeanne C.; Miller, Richard F.; Board, David I.; Pyke, David A.; Roundy, Bruce A.; Grace, James B.; Schupp, Eugene W.; Tausch, Robin J.

    2014-01-01

    In sagebrush ecosystems invasion of annual exotics and expansion of piñon (Pinus monophylla Torr. and Frem.) and juniper (Juniperus occidentalis Hook., J. osteosperma [Torr.] Little) are altering fire regimes and resulting in large-scale ecosystem transformations. Management treatments aim to increase resilience to disturbance and enhance resistance to invasive species by reducing woody fuels and increasing native perennial herbaceous species. We used Sagebrush Steppe Treatment Evaluation Project data to test predictions on effects of fire vs. mechanical treatments on resilience and resistance for three site types exhibiting cheatgrass (Bromus tectorum L.) invasion and/or piñon and juniper expansion: 1) warm and dry Wyoming big sagebrush (WY shrub); 2) warm and moist Wyoming big sagebrush (WY PJ); and 3) cool and moist mountain big sagebrush (Mtn PJ). Warm and dry (mesic/aridic) WY shrub sites had lower resilience to fire (less shrub recruitment and native perennial herbaceous response) than cooler and moister (frigid/xeric) WY PJ and Mtn PJ sites. Warm (mesic) WY Shrub and WY PJ sites had lower resistance to annual exotics than cool (frigid to cool frigid) Mtn PJ sites. In WY shrub, fire and sagebrush mowing had similar effects on shrub cover and, thus, on perennial native herbaceous and exotic cover. In WY PJ and Mtn PJ, effects were greater for fire than cut-and-leave treatments and with high tree cover in general because most woody vegetation was removed increasing resources for other functional groups. In WY shrub, about 20% pretreatment perennial native herb cover was necessary to prevent increases in exotics after treatment. Cooler and moister WY PJ and especially Mtn PJ were more resistant to annual exotics, but perennial native herb cover was still required for site recovery. We use our results to develop state and transition models that illustrate how resilience and resistance influence vegetation dynamics and management options.

  10. The Sagebrush Steppe Treatment Evaluation Project (SageSTEP): a test of state-and-transition theory

    Treesearch

    James D. McIver; Mark Brunson; Steve C. Bunting; Jeanne Chambers; Nora Devoe; Paul Doescher; James Grace; Dale Johnson; Steve Knick; Richard Miller; Mike Pellant; Fred Pierson; David Pyke; Kim Rollins; Bruce Roundy; Eugene Schupp; Robin Tausch; David Turner

    2010-01-01

    The Sagebrush Steppe Treatment Evaluation Project (SageSTEP) is a comprehensive, integrated, long-term study that evaluates the ecological effects of fire and fire surrogate treatments designed to reduce fuel and to restore sagebrush (Artemisia spp.) communities of the Great Basin and surrounding areas. SageSTEP has several features that make it ideal for testing...

  11. Greater sage-grouse as an umbrella species for shrubland passerine birds: a multiscale assessment

    USGS Publications Warehouse

    Hanser, Steven E.; Knick, Steven T.; Knick, Steven T.; Connelly, John W.

    2011-01-01

    Working groups and government agen-cies are planning and conducting land actions in sagebrush (Artemisia spp.) habitats to benefit Greater Sage-Grouse (Centrocercus urophasianus) populations. Managers have adopted an umbrella concept, creating habitat characteristics specific to sage-grouse requirements, in the belief that other wildlife species dependent on sagebrush will benefit. We tested the efficacy of this approach by first identifying the primary environmental gradients underlying sagebrush steppe bird com-munities (including Greater Sage-Grouse). We integrated field sampling for birds and vegetation with geographic information system (GIS) data to characterize 305 sites sampled throughout the current range of Greater Sage-Grouse in the Intermountain West, United States. The primary environmental axis defining the bird community represented a gradient from local-scale Wyoming/basin big sagebrush (A. t. ssp. wyomingensis/A. t. ssp. tridentata), and bare ground cover to local and regional grassland cover; the second axis repre-sented a transition from low-elevation Wyoming/basin big sagebrush and bare ground to mountain big sagebrush (A. t. ssp. vaseyana) and habitat edge. We identified the relative overlap of sage-grouse with 13 species of passerine birds along the multiscale gradients and estimated the width of the umbrella when applying management guidelines specific to sage-grouse. Passerine birds associated with sagebrush steppe habitats had high levels of overlap with Greater Sage-Grouse along the multiscale environmental gradients. However, the overlap of the umbrella was prima-rily a function of the broad range of sagebrush habitats used by sage-grouse. Management that focuses on creating a narrow set of plot-scale con-ditions will likely be less effective than restoration efforts that recognize landscape scale heterogene-ity and multiscale organization of habitats. These multiscale efforts may improve some sage-grouse habitats and strengthen the

  12. Seeding big sagebrush successfully on Intermountain rangelands

    Treesearch

    Susan E. Meyer; Thomas W. Warren

    2015-01-01

    Big sagebrush can be seeded successfully on climatically suitable sites in the Great Basin using the proper seeding guidelines. These guidelines include using sufficient quantities of high-quality seed of the correct subspecies and ecotype, seeding in late fall to mid-winter, making sure that the seed is not planted too deeply, and seeding into an environment...

  13. Grass seedling demography and sagebrush steppe restoration

    Treesearch

    J. J. James; M. J. Rinella; T. Svejcar

    2012-01-01

    Seeding is a key management tool for arid rangeland. In these systems, however, seeded species often fail to establish. A recent study inWyoming big sagebrush steppe suggested that over 90% of seeded native grass individuals die before seedlings emerged. This current study examines the timing and rate of seed germination, seedling emergence, and seedling death related...

  14. Hellsgate Big Game Winter Range Wildlife Mitigation Site Specific Management Plan for the Hellsgate Project.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, Matthew T.; Judd, Steven L.

    This report contains a detailed site-specific management plan for the Hellsgate Winter Range Wildlife Mitigation Project. The report provides background information about the mitigation process, the review process, mitigation acquisitions, Habitat Evaluation Procedures (HEP) and mitigation crediting, current habitat conditions, desired future habitat conditions, restoration/enhancements efforts and maps.

  15. 50 CFR 216.204 - Mitigation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Mitigation. 216.204 Section 216.204... U.S. Beaufort Sea § 216.204 Mitigation. The activity identified in § 216.200(a) must be conducted in... their habitats. When conducting operations identified in § 216.200, the mitigation measures contained in...

  16. Outplanting Wyoming big sagebrush following wldfire: stock performance and economics

    USGS Publications Warehouse

    Dettweiler-Robinson, Eva; Bakker, Jonathan D.; Evans, James R.; Newsome, Heidi; Davies, G. Matt; Wirth, Troy A.; Pyke, David A.; Easterly, Richard T.; Salstrom, Debra; Dunwiddle, Peter W.

    2013-01-01

    mycorrhizal amendments. Most mortality occurred during the first year after planting; this period is the greatest barrier to establishment of sagebrush stock. The proportion of healthy stock in Year 1 was positively related to subsequent survival to Year 3. Costs were minimized, and survival maximized, by planting container stock or bare-root stock with a hydrogel dip. Our results indicate that outplanting is an ecologically and economically effective way of establishing Wyoming big sagebrush. However, statistical analyses were limited by the fact that data about initial variables (stock quality, site conditions, weather) were often unrecorded and by the lack of a replicated experimental design. Sharing consistent data and using an experimental approach would help land managers and restoration practitioners maximize the success of outplanting efforts.

  17. Effects of spring prescribed fire in expanding pinyon-juniper woodlands on seedling establishment of sagebrush species

    Treesearch

    David I. Board; Jeanne C. Chambers; Joan G. Wright

    2011-01-01

    Pinyon and juniper trees are expanding into mountain sagebrush communities throughout their ranges. Fire is used to restore these sagebrush communities, but limited information is available on seedling establishment of native shrubs and herbs. We examined effects of spring prescribed fire in the Great Basin on emergence and survival of five species (Artemisia...

  18. Improving sustainable seed yield in Wyoming big sagebrush

    Treesearch

    Jeremiah C. Armstrong

    2007-01-01

    As part of the Great Basin Restoration Initiative, the effects of browsing, competition removal, pruning, fertilization and seed collection methods on increasing seed production in Wyoming big sagebrush (Artemisia tridentata Nutt. spp wyomingensis Beetle & Young) were studied. Study sites were located in Idaho, Nevada, and Utah. A split-plot...

  19. 23 CFR 710.513 - Environmental mitigation.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 23 Highways 1 2013-04-01 2013-04-01 false Environmental mitigation. 710.513 Section 710.513...-WAY AND REAL ESTATE Property Acquisition Alternatives § 710.513 Environmental mitigation. (a) The acquisition and maintenance of land for wetlands mitigation, wetlands banking, natural habitat, or other...

  20. 23 CFR 710.513 - Environmental mitigation.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 23 Highways 1 2014-04-01 2014-04-01 false Environmental mitigation. 710.513 Section 710.513...-WAY AND REAL ESTATE Property Acquisition Alternatives § 710.513 Environmental mitigation. (a) The acquisition and maintenance of land for wetlands mitigation, wetlands banking, natural habitat, or other...

  1. Producing fractional rangeland component predictions in a sagebrush ecosystem, a Wyoming sensitivity analysis

    USGS Publications Warehouse

    Xian, George; Homer, Collin G.; Granneman, Brian; Meyer, Debra K.

    2012-01-01

    Remote sensing information has been widely used to monitor vegetation condition and variations in a variety of ecosystems, including shrublands. Careful application of remotely sensed imagery can provide additional spatially explicit, continuous, and extensive data on the composition and condition of shrubland ecosystems. Historically, the most widely available remote sensing information has been collected by Landsat, which has offered large spatial coverage and moderate spatial resolution data globally for nearly three decades. Such medium-resolution satellite remote sensing information can quantify the distribution and variation of terrestrial ecosystems. Landsat imagery has been frequently used with other high-resolution remote sensing data to classify sagebrush components and quantify their spatial distributions (Ramsey and others, 2004; Seefeldt and Booth, 2004; Stow and others, 2008; Underwood and others, 2007). Modeling algorithms have been developed to use field measurements and satellite remote sensing data to quantify the extent and evaluate the quality of shrub ecosystem components in large geographic areas (Homer and others, 2009). The percent cover of sagebrush ecosystem components, including bare-ground, herbaceous, litter, sagebrush, and shrub, have been quantified for entire western states (Homer and others, 2012). Furthermore, research has demonstrated the use of current measurements with historical archives of Landsat imagery to quantify the variations of these components for the last two decades (Xian and others, 2012). The modeling method used to quantify the extent and spatial distribution of sagebrush components over a large area also has required considerable amounts of training data to meet targeted accuracy requirements. These training data have maintained product accuracy by ensuring that they are derived from good quality field measurements collected during appropriate ecosystem phenology and subsequently maximized by extrapolation on

  2. Insights into transcriptomes of Big and Low sagebrush

    Treesearch

    Mark D. Huynh; Justin T. Page; Bryce A. Richardson; Joshua A. Udall

    2015-01-01

    We report the sequencing and assembly of three transcriptomes from Big (Artemisia tridentatassp. wyomingensis and A. tridentatassp. tridentata) and Low (A. arbuscula ssp. arbuscula) sagebrush. The sequence reads are available in the Sequence Read Archive of NCBI. We demonstrate the utilities of these transcriptomes for gene discovery and phylogenomic analysis. An...

  3. Seeding techniques for sagebrush community restoration after fire

    Treesearch

    Jeffrey E. Ott; Anne Halford; Nancy Shaw

    2016-01-01

    Purpose: To outline important considerations and options for post-fire seeding, including the selection of seed mixes and seeding equipment for restoring sagebrush communities following fire. The emphasis is on lower-elevation communities where restoration needs are greatest. References and resources are offered for greater detail and guidance on specific...

  4. Diurnal and Seasonal Variation in Sap Flow Among Different Sagebrush Species and Subspecies Along an Elevation Gradient in a Semi-Arid Ecosystem

    NASA Astrophysics Data System (ADS)

    Sharma, H.; Reinhardt, K.; Lohse, K. A.

    2015-12-01

    Sagebrush is a widespread and locally dominant shrub across much of western North America, occupying >66 million ha. Sagebrush steppe provides many important ecosystem services including carbon (C) storage, water storage, and providing critical habitat for several threatened and endangered animal species. At the Reynolds Creek Critical Zone Observatory (RC CZO) in southwestern Idaho, sagebrush is the dominant shrub species across most of the watershed. The research objectives of RC CZO are to quantify soil carbon storage and flux, and the environmental factors governing these from pedon to landscape scales. Sagebrush-steppe ecosystems have been identified as possible future C sinks, but C storage in these water-limited systems is tightly linked to hydroclimate, which is highly variable in space and time. Quantifying soil-plant water relations is essential to understanding C storage in these systems. Stem-heat-balance sap-flow sensors were installed in June 2015 at three sites in RC CZO that had existing meteorological stations and eddy covariance towers. These sites are situated along an elevation gradient from 1417 m to 2111 m. Artemisia tridentata ssp. wyomingenesis, A. arbuscula and A. tridentata ssp. vaseyana at dominate at the lower, middle, and upper sites, respectively. At all three sites, we installed sensors on 5-6 shrubs. Preliminary results indicate greater sap flow velocity in both wyomingenesis and tridentata species than arbuscula. The mean hourly sap flow rates were 2.05±0.12 g/h, 0.33±0.01 g/h and 3.02±0.14 g/h for wyomingenesis, arbuscula, and vaseyana, respectively, during June 26th to July 22nd, 2015. Daily sap flow averaged about 61.56±5.21 g/day, 7.60±0.88 g/day, and 74.60±5.44 g/day, respectively within same time period. Lower soil water content at the middle site seemed to be the cause of lower sap flow velocities in arbuscula. Diurnal patterns in sap flow were similar in all subspecies, with maximum flow velocities recorded between 11

  5. The role of symbiotic nitrogen fixation in nitrogen availability, competition and plant invasion into the sagebrush steppe

    Treesearch

    Erin M. Goergen

    2009-01-01

    In the semi-arid sagebrush steppe of the Northeastern Sierra Nevada, resources are both spatially and temporally variable, arguably making resource availability a primary factor determining invasion success. N fixing plant species, primarily native legumes, are often relatively abundant in sagebrush steppe and can contribute to ecosystem nitrogen budgets. ...

  6. Natural recruitment of Wyoming big sagebrush in and adjacent to burned areas during an El Nino year

    USDA-ARS?s Scientific Manuscript database

    Wyoming big sagebrush is known to have episodic recruitment, but the driving factors for these recruitment events is poorly understood. Sagebrush is not fire adapted, is a mid to late seral species, and can take multiple decades to reach a similar density of unburned stands. Fire and climate regimes...

  7. Multi-scale remote sensing sagebrush characterization with regression trees over Wyoming, USA: laying a foundation for monitoring

    USGS Publications Warehouse

    Homer, Collin G.; Aldridge, Cameron L.; Meyer, Debra K.; Schell, Spencer J.

    2012-01-01

    agebrush ecosystems in North America have experienced extensive degradation since European settlement. Further degradation continues from exotic invasive plants, altered fire frequency, intensive grazing practices, oil and gas development, and climate change – adding urgency to the need for ecosystem-wide understanding. Remote sensing is often identified as a key information source to facilitate ecosystem-wide characterization, monitoring, and analysis; however, approaches that characterize sagebrush with sufficient and accurate local detail across large enough areas to support this paradigm are unavailable. We describe the development of a new remote sensing sagebrush characterization approach for the state of Wyoming, U.S.A. This approach integrates 2.4 m QuickBird, 30 m Landsat TM, and 56 m AWiFS imagery into the characterization of four primary continuous field components including percent bare ground, percent herbaceous cover, percent litter, and percent shrub, and four secondary components including percent sagebrush (Artemisia spp.), percent big sagebrush (Artemisia tridentata), percent Wyoming sagebrush (Artemisia tridentata Wyomingensis), and shrub height using a regression tree. According to an independent accuracy assessment, primary component root mean square error (RMSE) values ranged from 4.90 to 10.16 for 2.4 m QuickBird, 6.01 to 15.54 for 30 m Landsat, and 6.97 to 16.14 for 56 m AWiFS. Shrub and herbaceous components outperformed the current data standard called LANDFIRE, with a shrub RMSE value of 6.04 versus 12.64 and a herbaceous component RMSE value of 12.89 versus 14.63. This approach offers new advancements in sagebrush characterization from remote sensing and provides a foundation to quantitatively monitor these components into the future.

  8. Predicting Forage Foodscapes with Spectroscopy and UAV Imagery

    NASA Astrophysics Data System (ADS)

    Mitchell, J. J.; Olsoy, P.; Forbey, J.; Glenn, N. F.; Burgess, M. A.; Rachlow, J. L.; Shipley, L. A.

    2013-12-01

    A major goal in conservation biology is to predict habitat use by animals. This goal requires methods for identifying and mapping habitat quality features such as concealment, nitrogen (N) and chemical defenses across different spatial scales. Remote sensing has been used for landscape-scale analysis of habitat features to explain the spatial use and selection of habitat by large herbivores. However, studies that directly link specific parameters of habitat quality to selection by wildlife are needed at the microsite-scale before landscape-scale mapping can be validated. Herbivores appear to make foraging decisions based on the nutritional quality of plants. For example, previous research has shown that sagebrush preferentially browsed by pygmy rabbits (Brachylagus idahoensis), a sagebrush specialist mammal, contain relatively higher amounts of crude protein and lower amounts of monoterpenes. Other research has shown that sage grouse (Centrocercus urophasianus) select dwarf sagebrush (Artemisia arbuscula and A. nova) over big sagebrush (A. tridentata subsp wyomingensis) for forage. In this study we examine the use of spectroscopy from the visible to shortwave infrared for predicting sagebrush nutritional quality, as measured by N (crude protein). Predictions are compared across instruments (FOSS NIRSystem 5000 and ASD FieldSpec Pro), sampling methods (i.e., dried ground leaves and fresh whole leaves), and species (dwarf and big sagebrush). We also build a foundation for spatial upscaling from whole leaf and individual shrubs to collective patches in a landscape by acquiring and classifying unmanned aerial vehicle (UAV) imagery in terms of sagebrush food types. The resultant 'foodscape' map concept will ultimately provide a tool for rapid assessment of the dietary quality of sagebrush and facilitate more effective conservation of herbivores that rely on sagebrush for food.

  9. Hungry Horse Dam Fisheries Mitigation : Fish Passage and Habitat Improvement in the Upper Flathead River Basin, 1991-1996 Progress Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knotek, W.Ladd; Deleray, Mark; Marotz, Brian L.

    1997-08-01

    In the past 50 years, dramatic changes have occurred in the Flathead Lake and River system. Degradation of fishery resources has been evident, in part due to deterioration of aquatic habitat and introduction of non-endemic fish and invertebrate species. Habitat loss has been attributed to many factors including the construction and operation of Hungry Horse Dam, unsound land use practices, urban development, and other anthropogenic and natural disturbances. Fish migration has also been limited by barriers such as dams and impassible culverts. Cumulatively, these factors have contributed to declines in the distribution and abundance of native fish populations. Recovery ofmore » fish populations requires that a watershed approach be developed that incorporates long-term aquatic habitat needs and promotes sound land use practices and cooperation among natural resource management agencies. In this document, the authors (1) describe completed and ongoing habitat improvement and fish passage activities under the Hungry Horse Fisheries Mitigation Program, (2) describe recently identified projects that are in the planning stage, and (3) develop a framework for identifying prioritizing, implementing, and evaluating future fish habitat improvement and passage projects.« less

  10. A synopsis of short-term response to alternative restoration treatments in Sagebrush-Steppe: The SageSTEP Project

    Treesearch

    James McIver; Mark Brunson; Steve Bunting; Jeanne Chambers; Paul Doescher; James Grace; April Hulet; Dale Johnson; Steve Knick; Richard Miller; Mike Pellant; Fred Pierson; David Pyke; Benjamin Rau; Kim Rollins; Bruce Roundy; Eugene Schupp; Robin Tausch; Jason Williams

    2014-01-01

    The Sagebrush Steppe Treatment Evaluation Project (SageSTEP) is an integrated long-term study that evaluates ecological effects of alternative treatments designed to reduce woody fuels and to stimulate the herbaceous understory of sagebrush steppe communities of the Intermountain West. This synopsis summarizes results through 3 yr posttreatment. Woody vegetation...

  11. Wyoming big sagebrush associations of eastern Oregon; vegetation attributes

    USDA-ARS?s Scientific Manuscript database

    This report provides a synopsis of several vegetative characteristics for the Wyoming big sagebrush complex in eastern Oregon covering the High Desert , Snake River, and Owyhee Ecological Provinces in Harney, Lake, and Malheur Counties. The complex has been grouped into six associations defined by t...

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walston, L. J.; Cantwell, B. L.; Krummel, J. R.

    Energy development has been occurring in the intermountain western United States for over a century, yet few studies have attempted to spatially quantify the impacts of this disturbance on native ecosystems. We used temporal remotely sensed data for the Pinedale Anticline Project Area (PAPA) in western Wyoming, a region that has experienced increased natural gas development within the past 10 yr, to quantify the spatiotemporal distribution of Wyoming big sagebrush Artemisia tridentata, natural gas development, and other landcover types. Our analyses included 5 Landsat Thematic Mapper (TM) images of the PAPA over a 22-yr period (1985-2006). We determined whether Wyomingmore » big sagebrush spatiotemporal patterns were associated with natural gas development or other landcover types. We also developed a footprint model to determine the direct and indirect impacts of natural gas development on the distribution of Wyoming big sagebrush habitats. Over the 22-yr period, we observed an inverse relationship between the amount of Wyoming big sagebrush habitat and natural gas development. During this time, Wyoming big sagebrush habitat declined linearly at a rate of 0.2% yr-1 (4.5% total net loss), whereas natural gas development increased exponentially at a rate of 20% yr-1 (4800% total net increase). Our evaluation indicated that, by 2006, natural gas development directly impacted 2.7% (1750 ha) of original Wyoming big sagebrush habitat. Indirect impacts, quantified to account for degraded habitat quality, affected as much as 58.5% (assuming 1000-m buffers) of the original Wyoming big sagebrush habitat. Integrating assessments of the direct and indirect impacts will yield a better elucidation of the overall effects of disturbances on ecosystem function and quality.« less

  13. Models for predicting fuel consumption in sagebrush-dominated ecosystems

    Treesearch

    Clinton S. Wright

    2013-01-01

    Fuel consumption predictions are necessary to accurately estimate or model fire effects, including pollutant emissions during wildland fires. Fuel and environmental measurements on a series of operational prescribed fires were used to develop empirical models for predicting fuel consumption in big sagebrush (Artemisia tridentate Nutt.) ecosystems....

  14. 23 CFR 777.9 - Mitigation of impacts.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... IMPACTS TO WETLANDS AND NATURAL HABITAT § 777.9 Mitigation of impacts. (a) Actions eligible for Federal... wetlands or natural habitats. The following actions qualify for Federal-aid highway funding: (1) Avoidance and minimization of impacts to wetlands or natural habitats through realignment and special design...

  15. 23 CFR 777.9 - Mitigation of impacts.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... IMPACTS TO WETLANDS AND NATURAL HABITAT § 777.9 Mitigation of impacts. (a) Actions eligible for Federal... wetlands or natural habitats. The following actions qualify for Federal-aid highway funding: (1) Avoidance and minimization of impacts to wetlands or natural habitats through realignment and special design...

  16. 23 CFR 777.9 - Mitigation of impacts.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... IMPACTS TO WETLANDS AND NATURAL HABITAT § 777.9 Mitigation of impacts. (a) Actions eligible for Federal... wetlands or natural habitats. The following actions qualify for Federal-aid highway funding: (1) Avoidance and minimization of impacts to wetlands or natural habitats through realignment and special design...

  17. Establishing big sagebrush and other shrubs from planting stock

    Treesearch

    Nancy L. Shaw; Anne Halford; J. Kent McAdoo

    2015-01-01

    Bareroot or container seedlings can be used to quickly re-establish big sagebrush and other native shrubs in situations where direct seeding is not feasible or unlikely to succeed. Guidelines are provided for developing a planting plan and timeline, arranging for seedling production, and installing and managing outplantings.

  18. Sagebrush and grasshopper responses to atmospheric carbon dioxide concentration.

    PubMed

    Johnson, R H; Lincoln, D E

    1990-08-01

    Seed- and clonally-propagated plants of Big Sagebrush (Artemisia tridentata var.tridentata) were grown under atmospheric carbon dioxide regimes of 270, 350 and 650 μl l -1 and fed toMelanoplus differentialis andM. sanguinipes grasshoppers. Total shrub biomass significantly increased as carbon dioxide levels increased, as did the weight and area of individual leaves. Plants grown from seed collected in a single population exhibited a 3-5 fold variation in the concentration of leaf volatile mono- and sesquiterpenes, guaianolide sesquiterpene lactones, coumarins and flavones within each CO 2 treatment. The concentration of leaf allelochemicals did not differ significantly among CO 2 treatments for these seed-propagated plants. Further, when genotypic variation was controlled by vegetative propagation, allelochemical concentrations also did not differ among carbon dioxide treatments. On the other hand, overall leaf nitrogen concentration declined significantly with elevated CO 2 . Carbon accumulation was seen to dilute leaf nitrogen as the balance of leaf carbon versus nitrogen progressively increased as CO 2 growth concentration increased. Grasshopper feeding was highest on sagebrush leaves grown under 270 and 650 μl l -1 CO 2 , but varied widely within treatments. Leaf nitrogen concentration was an important positive factor in grasshopper relative growth but had no overall effect on consumption. Potential compensatory consumption by these generalist grasshoppers was apparently limited by the sagebrush allelochemicals. Insects with a greater ability to feed on chemically defended host plants under carbon dioxide enrichment may ultimately consume leaves with a lower nitrogen concentration but the same concentration of allelochemicals. Compensatory feeding may potentially increase the amount of dietary allelochemicals ingested for each unit of nitrogen consumed.

  19. Northeast Oregon Wildlife Mitigation Project : Final Environmental Assessment.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    United States. Bonneville Power Administration; Nez Perce Tribe

    1996-08-01

    Development of the hydropower system in the Columbia River Basin has had far-reaching effects on many species of wildlife. The Bonneville Power Administration (BPA) is responsible for mitigating the loss of wildlife habitat caused by the Federal portion of this system, as allocated to the purpose of power production. BPA needs to mitigate for loss of wildlife habitat in the Snake River Subbasin.

  20. Use of Landsat data to evaluate lesser prairie chicken habitats in western Oklahoma

    USGS Publications Warehouse

    Cannon, R. W.; Knopf, Fritz L.; Pettinger, Lawrence R.

    1982-01-01

    Landsat digital data were used to evaluate lesser prairie chicken (Tympanuchus pallidicinctus) habitats in western Oklahoma. Data for 7 (4,144 ha) study areas, 4 in shinnery oak (Quercus havardii), and 3 in sand sagebrush (Artemisia filifolia) rangeland, were analyzed using the Interactive Digital Image Manipulation System at the EROS Center. In shinnery oak rangeland, density of displaying males was correlated positively with percentage of area in grassland classes and negatively correlated with the percentage in brushland classes. In sand sagebrush rangeland, density of displaying males was negatively, but not significantly correlated with percentage of area in bare soil and grassland classes, and positively, but not significantly correlated with percentage of area in brushland classes. The trends found between density of displaying males and the Landsat-generated resource classes closely parallel similar relationships found with field sampling techniques. Analysis of the Landsat digital data for this study cost 13.8 cents/ha. Because larger areas could have been analyzed with the same digital data, the unit cost for analysis would decline with increasingly larger areas.

  1. Does Wyoming's Core Area Policy Protect Winter Habitats for Greater Sage-Grouse?

    PubMed

    Smith, Kurt T; Beck, Jeffrey L; Pratt, Aaron C

    2016-10-01

    Conservation reserves established to protect important habitat for wildlife species are used world-wide as a wildlife conservation measure. Effective reserves must adequately protect year-round habitats to maintain wildlife populations. Wyoming's Sage-Grouse Core Area policy was established to protect breeding habitats for greater sage-grouse (Centrocercus urophasianus). Protecting only one important seasonal habitat could result in loss or degradation of other important habitats and potential declines in local populations. The purpose of our study was to identify the timing of winter habitat use, the extent which individuals breeding in Core Areas used winter habitats, and develop resource selection functions to assess effectiveness of Core Areas in conserving sage-grouse winter habitats in portions of 5 Core Areas in central and north-central Wyoming during winters 2011-2015. We found that use of winter habitats occured over a longer period than current Core Area winter timing stipulations and a substantial amount of winter habitat outside of Core Areas was used by individuals that bred in Core Areas, particularly in smaller Core Areas. Resource selection functions for each study area indicated that sage-grouse were selecting habitats in response to landscapes dominated by big sagebrush and flatter topography similar to other research on sage-grouse winter habitat selection. The substantial portion of sage-grouse locations and predicted probability of selection during winter outside small Core Areas illustrate that winter requirements for sage-grouse are not adequately met by existing Core Areas. Consequently, further considerations for identifying and managing important winter sage-grouse habitats under Wyoming's Core Area Policy are warranted.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doherty, K.E.; Naugle, D.E.; Walker, B.L.

    Recent energy development has resulted in rapid and large-scale changes to western shrub-steppe ecosystems without a complete understanding of its potential impacts on wildlife populations. We modeled winter habitat use by female greater sage-grouse (Centrocercus urophasianus) in the Powder River Basin (PRB) of Wyoming and Montana, USA, to 1) identify landscape features that influenced sage-grouse habitat selection, 2) assess the scale at which selection occurred, 3) spatially depict winter habitat quality in a Geographic Information System, and 4) assess the effect of coal-bed natural gas (CBNG) development on winter habitat selection. We developed a model of winter habitat selection basedmore » on 435 aerial relocations of 200 radiomarked female sage-grouse obtained during the winters of 2005 and 2006. Percent sagebrush (Artemisia spp.) cover on the landscape was an important predictor of use by sage-grouse in winter. Sage-grouse were 1.3 times more likely to occupy sagebrush habitats that lacked CBNG wells within a 4-km{sup 2} area, compared to those that had the maximum density of 12.3 wells per 4 km{sup 2} allowed on federal lands. We validated the model with 74 locations from 74 radiomarked individuals obtained during the winters of 2004 and 2007. This winter habitat model based on vegetation, topography, and CBNG avoidance was highly predictive (validation R{sup 2} = 0.984). Our spatially explicit model can be used to identify areas that provide the best remaining habitat for wintering sage-grouse in the PRB to mitigate impacts of energy development.« less

  3. Relative Abundance of and Composition within Fungal Orders Differ between Cheatgrass (Bromus tectorum) and Sagebrush (Artemisia tridentata)-Associated Soils

    PubMed Central

    Weber, Carolyn F.; King, Gary M.; Aho, Ken

    2015-01-01

    Nonnative Bromus tectorum (cheatgrass) is decimating sagebrush steppe, one of the largest ecosystems in the Western United States, and is causing regional-scale shifts in the predominant plant-fungal interactions. Sagebrush, a native perennial, hosts arbuscular mycorrhizal fungi (AMF), whereas cheatgrass, a winter annual, is a relatively poor host of AMF. This shift is likely intertwined with decreased carbon (C)-sequestration in cheatgrass-invaded soils and alterations in overall soil fungal community composition and structure, but the latter remain unresolved. We examined soil fungal communities using high throughput amplicon sequencing (ribosomal large subunit gene) in the 0–4 cm and 4–8 cm depth intervals of six cores from cheatgrass- and six cores from sagebrush-dominated soils. Sagebrush core surfaces (0–4 cm) contained higher nitrogen and total C than cheatgrass core surfaces; these differences mirrored the presence of glomalin related soil proteins (GRSP), which has been associated with AMF activity and increased C-sequestration. Fungal richness was not significantly affected by vegetation type, depth or an interaction of the two factors. However, the relative abundance of seven taxonomic orders was significantly affected by vegetation type or the interaction between vegetation type and depth. Teloschistales, Spizellomycetales, Pezizales and Cantharellales were more abundant in sagebrush libraries and contain mycorrhizal, lichenized and basal lineages of fungi. Only two orders (Coniochaetales and Sordariales), which contain numerous economically important pathogens and opportunistic saprotrophs, were more abundant in cheatgrass libraries. Pleosporales, Agaricales, Helotiales and Hypocreales were most abundant across all libraries, but the number of genera detected within these orders was as much as 29 times lower in cheatgrass relative to sagebrush libraries. These compositional differences between fungal communities associated with cheatgrass- and

  4. Quantifying phenology metrics from Great Basin plant communities and their relationship to seasonal water availability

    USDA-ARS?s Scientific Manuscript database

    Background/Question/Methods Sagebrush steppe is critical habitat in the Great Basin for wildlife and provides important ecosystem goods and services. Expansion of pinyon (Pinus spp.) and juniper (Juniperus spp.) in the Great Basin has reduced the extent of sagebrush steppe causing habitat, fire, and...

  5. Biomass consumption during prescribed fires in big sagebrush ecosystems

    Treesearch

    Clinton S. Wright; Susan J. Prichard

    2006-01-01

    Big sagebrush (Artemisia tridentata) ecosystems typically experience stand replacing fires during which some or all of the ignited biomass is consumed. Biomass consumption is directly related to the energy released during a fire, and is an important factor that determines smoke production and the effects of fire on other resources. Consumption of...

  6. Seasonal Habitat Use by Greater Sage-Grouse (Centrocercus urophasianus) on a Landscape with Low Density Oil and Gas Development.

    PubMed

    Rice, Mindy B; Rossi, Liza G; Apa, Anthony D

    2016-01-01

    Fragmentation of the sagebrush (Artemisia spp.) ecosystem has led to concern about a variety of sagebrush obligates including the greater sage-grouse (Centrocercus urophasianus). Given the increase of energy development within greater sage-grouse habitats, mapping seasonal habitats in pre-development populations is critical. The North Park population in Colorado is one of the largest and most stable in the state and provides a unique case study for investigating resource selection at a relatively low level of energy development compared to other populations both within and outside the state. We used locations from 117 radio-marked female greater sage-grouse in North Park, Colorado to develop seasonal resource selection models. We then added energy development variables to the base models at both a landscape and local scale to determine if energy variables improved the fit of the seasonal models. The base models for breeding and winter resource selection predicted greater use in large expanses of sagebrush whereas the base summer model predicted greater use along the edge of riparian areas. Energy development variables did not improve the winter or the summer models at either scale of analysis, but distance to oil/gas roads slightly improved model fit at both scales in the breeding season, albeit in opposite ways. At the landscape scale, greater sage-grouse were closer to oil/gas roads whereas they were further from oil/gas roads at the local scale during the breeding season. Although we found limited effects from low level energy development in the breeding season, the scale of analysis can influence the interpretation of effects. The lack of strong effects from energy development may be indicative that energy development at current levels are not impacting greater sage-grouse in North Park. Our baseline seasonal resource selection maps can be used for conservation to help identify ways of minimizing the effects of energy development.

  7. Investigating impacts of oil and gas development on greater sage-grouse

    USGS Publications Warehouse

    Green, Adam; Aldridge, Cameron L.; O'Donnell, Michael

    2017-01-01

    The sagebrush (Artemisia spp.) ecosystem is one of the largest ecosystems in western North America providing habitat for species found nowhere else. Sagebrush habitats have experienced dramatic declines since the 1950s, mostly due to anthropogenic disturbances. The greater sage-grouse (Centrocercus urophasianus) is a sagebrush-obligate species that has experienced population declines over the last several decades, which are attributed to a variety of disturbances including the more recent threat of oil and gas development. We developed a hierarchical, Bayesian state-space model to investigate the impacts of 2 measures of oil and gas development, and environmental and habitat conditions, on sage-grouse populations in Wyoming, USA using male lek counts from 1984 to 2008. Lek attendance of male sage-grouse declined by approximately 2.5%/year and was negatively related to oil and gas well density. We found little support for the influence of sagebrush cover and precipitation on changes in lek counts. Our results support those of other studies reporting negative impacts of oil and gas development on sage-grouse populations and our modeling approach allowed us to make inference to a longer time scale and larger spatial extent than in previous studies. In addition to sage-grouse, development may also negatively affect other sagebrush-obligate species, and active management of sagebrush habitats may be necessary to maintain some species. 

  8. Comparison of radionuclide levels in soil, sagebrush, plant litter, cryptogams, and small mammals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landeen, D.S.

    1994-09-01

    Soil, sagebrush, plant litter, cryptogam, and small mammal samples were collected and analyzed for cesium-137, strontium-90, plutonium-238, plutonium 239/240, technetium-99, and iodine-129 from 1981 to 1986 at the US Department of Energy Hanford Site in southeastern Washington State as part of site characterization and environmental monitoring activities. Samples were collected on the 200 Areas Plateau, downwind from ongoing waste management activities. Plant litter, cryptogams, and small mammals are media that are not routinely utilized in monitoring or characterization efforts for determination of radionuclide concentrations. Studies at Hanford, other US Department of Energy sites, and in eastern Europe have indicated thatmore » plant litter and cryptogams may serve as effective ``natural`` monitors of air quality. Plant litter in this study consists of fallen leaves from sagebrush and ``cryptogams`` describes that portion of the soil crust composed of mosses, lichens, algae, and fungi. Comparisons of cesium-137 and strontium-90 concentrations in the soil, sagebrush, litter, and cryptogams revealed significantly higher (p<0.05) levels in plant litter and cryptogams. Technetium-99 values were the highest in sagebrush and litter. Plutonium-238 and 239/40 and iodine-129 concentrations never exceeded 0.8 pCi/gm in all media. No evidence of any significant amounts of any radionuclides being incorporated into the small mammal community was discovered. The data indicate that plant litter and cryptogams may be better, indicators of environmental quality than soil or vegetation samples. Augmenting a monitoring program with samples of litter and cryptogams may provide a more accurate representation of radionuclide environmental uptake and/or contamination levels in surrounding ecosystems. The results of this study may be applied directly to other radioecological monitoring conducted at other nuclear sites and to the monitoring of other pollutants.« less

  9. Container configuration influences western larch and big sagebrush seedling development

    Treesearch

    Matthew Mehdi Aghai

    2012-01-01

    Big sagebrush (Artemisia tridentata Nutt.), a woody shrub, and western larch (Larix occidentalis Nutt.), a deciduous conifer, are among many western North American species that have suffered a decline in presence and natural regeneration across their native ranges. These species are economically, ecologically, and intrinsically valuable, therefore many current...

  10. Using resilience and resistance concepts to manage persistent threats to sagebrush ecosystems and greater sage-grouse

    USGS Publications Warehouse

    Chambers, Jeanne C.; Maestas, Jeremy D.; Pyke, David A.; Boyd, Chad S.; Pellant, Mike; Wuenschel, Amarina

    2017-01-01

    Conservation of imperiled species often demands addressing a complex suite of threats that undermine species viability. Regulatory approaches, such as the US Endangered Species Act (1973), tend to focus on anthropogenic threats through adoption of policies and regulatory mechanisms. However, persistent ecosystem-based threats, such as invasive species and altered disturbance regimes, remain critical issues for most at-risk species considered to be conservation-reliant. We describe an approach for addressing persistent ecosystem threats to at-risk species based on ecological resilience and resistance concepts that is currently being used to conserve greater sage-grouse (Centrocercus urophasianus)and sagebrush ecosystems. The approach links biophysical indicators of ecosystem resilience and resistance with species-specific population and habitat requisites in a risk-based framework to identify priority areas for management and guide allocation of resources to manage persistent ecosystem-based threats. US federal land management and natural resource agencies have adopted this framework as a foundation for prioritizing sage-grouse conservation resources and determining effective restoration and management strategies. Because threats and strategies to address them cross-cut program areas, an integrated approach that includes wildland fire operations, postfire rehabilitation, fuels management, and habitat restoration is being used. We believe this approach is applicable to species conservation in other largely intact ecosystems with persistent, ecosystem-based threats.

  11. Trend of mountain big Sagebrush crown cover and ground cover on burned sites, Uinta Mountains and West Tavaputs Plateau, Utah

    Treesearch

    Sherel Goodrich; Allen Huber; Brian Monroe

    2008-01-01

    Photography and notes on file at the Supervisors Office, Ashley National Forest make it possible to date many fires in mountain big sagebrush (Artemisia tridentata ssp. vaseyana) communities on this National Forest. Crown cover of mountain big sagebrush and other shrubs was measured in repeat visits to many burned sites. Burned...

  12. Brush management effects on soil carbon sequestration in sagebrush-dominated rangelands

    USDA-ARS?s Scientific Manuscript database

    Scientific information regarding soil organic carbon (SOC) sequestration in western rangelands, especially those with a sagebrush (Artemisia spp.) component and in lower rainfall areas (<350 mm), remains a major knowledge gap in understanding the effects of land management. We sampled soils from two...

  13. 23 CFR 777.9 - Mitigation of impacts.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... existing degraded or historic wetlands or natural habitats through restoration or enhancement on or off... or natural habitats on or off site. Restoration of wetlands is generally preferable to enhancement or... transportation planning processes. (d) Mitigation or restoration of historic impacts to wetlands and natural...

  14. 23 CFR 777.9 - Mitigation of impacts.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... existing degraded or historic wetlands or natural habitats through restoration or enhancement on or off... or natural habitats on or off site. Restoration of wetlands is generally preferable to enhancement or... transportation planning processes. (d) Mitigation or restoration of historic impacts to wetlands and natural...

  15. Insects of the Idaho National Laboratory: A compilation and review

    Treesearch

    Nancy Hampton

    2005-01-01

    Large tracts of important sagebrush (Artemisia L.) habitat in southeastern Idaho, including thousands of acres at the Idaho National Laboratory (INL), continue to be lost and degraded through wildland fire and other disturbances. The roles of most insects in sagebrush ecosystems are not well understood, and the effects of habitat loss and alteration...

  16. Albeni Falls Wildlife Mitigation : Annual Report 2002.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terra-Berns, Mary

    The Albeni Falls Interagency Work Group continued to actively engage in implementing wildlife mitigation actions in 2002. Regular Work Group meetings were held to discuss budget concerns affecting the Albeni Falls Wildlife Mitigation Program, to present potential acquisition projects, and to discuss and evaluate other issues affecting the Work Group and Project. Work Group members protected 1,386.29 acres of wildlife habitat in 2002. To date, the Albeni Falls project has protected approximately 5,914.31 acres of wildlife habitat. About 21% of the total wildlife habitat lost has been mitigated. Administrative activities have increased as more properties are purchased and continue tomore » center on restoration, operation and maintenance, and monitoring. In 2001, Work Group members focused on development of a monitoring and evaluation program as well as completion of site-specific management plans. This year the Work Group began implementation of the monitoring and evaluation program performing population and plant surveys, data evaluation and storage, and map development as well as developing management plans. Assuming that the current BPA budget restrictions will be lifted in the near future, the Work Group expects to increase mitigation properties this coming year with several potential projects.« less

  17. Narrow hybrid zone between two subspecies of big sagebrush (Artemisia tridentata: Asteraceae): XI. Plant-insect interactions in reciprocal transplant gardens

    Treesearch

    John H. Graham; E. Durant McArthur; D. Carl Freeman

    2001-01-01

    Basin big sagebrush (Artemisia tridentata ssp. tridentata) and mountain big sagebrush (A. t. ssp. vaseyana) hybridize in a narrow zone near Salt Creek, Utah. Reciprocal transplant experiments in this hybrid zone demonstrate that hybrids are more fit than either parental subspecies, but only in the hybrid zone. Do hybrids experience greater, or lesser, use by...

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardenas, A.; Lewinsohn, J.; Auger, C.

    The Hanford Site contains one of the few remaining contiguous areas of shrub-steppe habitat left in Washington State. This habitat is home to many native plant and wildlife species, some of which are threatened with extinction or are unique to the Site. The importance of the Hanford Site increases as other lands surrounding the Site are developed, and these native species and habitats are lost. Stands of Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis) on the Site are a particularly important component of shrub-steppe habitat, because a number of wildlife require big sagebrush for food and cover. Since 1993, researchersmore » and field biologists have made anecdotal observations of dying and declining sagebrush in stands of shrubs near the 100 Areas. This study was initiated to delineate and document the general boundary where sagebrush stands appear to be declining. We mapped the areal extent of the die-off using a global positioning system and found that the central portion of the die-off encompasses 280 hectares. Shrub stand defoliation was estimated to be near or greater than 80% in this area. The remainder of the die-off area exhibits varying mixtures of completely defoliated, partially defoliated, and healthy-looking stands. Declining sagebrush stands comprise a total of 1776 hectares.« less

  19. Albeni Falls Wildlife Protection, Mitigation, and Enhancement Plan, Final Report 1987.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Robert C.

    1988-08-01

    A wildlife impact assessment and mitigation plan has been developed for the US Army Corps of Engineers Albeni Falls Project in northern Idaho. The Habitat Evaluation Procedure (HEP) was used to evaluate pre- and post-construction habitat conditions at the Albeni Falls Project. There were 6617 acres of wetlands converted to open water due to development and operation of the project. Eight evaluation species were selected with impacts expressed in numbers of Habitat Units (HU's). For a given species, one HU is equivalent to one acre of prime habitat. The Albeni Falls Project resulted in estimated losses of 5985 mallard HU's,more » 4699 Canada goose HU's, 3379 redhead HU's, 4508 breeding bald eagle HU's, 4365 wintering bald eagle HU's, 2286 black-capped chickadee HU's, 1680 white-tailed deer HU's, and 1756 muskrat HU's. The yellow warbler gained 71 HU's. Therefore, total target species estimated impacts were 28,587 HU's. Impacts on peregrine falcons were not quantified in terms of HU's. Projects have been proposed by an interagency team of biologists to mitigate the impacts of Albeni Falls on wildlife. The HEP was used to estimate benefits of proposed mitigation projects to target species. Through a series of proposed protection and enhancement actions, the mitigation plan will provide benefits of an estimated 28,590 target species HU's to mitigate Albeni Falls wildlife habitat values lost. 52 refs., 9 figs., 14 tabs.« less

  20. Mechanical mastication of Utah juniper encroaching sagebrush steppe increases inorganic soil N

    USDA-ARS?s Scientific Manuscript database

    Juniper (Juniperus spp.) has encroached millions of hectares of sagebrush (Artemisia spp.) steppe. Juniper mechanical mastication increases cover of understory species, but could increase resource availability and subsequently invasive plant species. We quantified the effects of juniper mastication ...

  1. Winter habitat use and survival of lesser prairie-chickens in West Texas

    USGS Publications Warehouse

    Pirius, Nicholas E.; Boal, Clint W.; Haukos, David A.; Wallace, M.C.

    2013-01-01

    The lesser prairie-chicken (Tympanuchus pallidicinctus) has experienced declines in population and occupied range since the late 1800s and is currently proposed for Federal protection under the Endangered Species Act. Populations and the distribution of lesser prairie-chickens in Texas, USA, are thought to be at or near all-time lows. Currently, there is a paucity of data on the wintering ecology of the species. We measured home range, habitat use, and survival of lesser prairie-chickens during the non-breeding seasons (1 Sep-28 Feb) of 2008-2009, 2009-2010, and 2010-2011 in sand shinnery oak (Quercus havardii) landscapes in the West Texas panhandle region. Home range size did not differ among years or between females (503 ha) andmales (489 ha). Over 97% of locations of both male and female prairie-chickens were within 3.2 km of the lek of capture, and 99.9% were within 3.2 km of an available water source (i.e., livestock water tank). Habitat cover types were not used proportional to occurrence within the home ranges; grassland-dominated areas with co-occurring sand shinnery oak were used more than available, but sand sagebrush (Artemisia filifolia)-dominated areas with grassland and sand sagebrush-dominated areas with bare ground were both used less than available. Survival rates during the first 2 non-breeding seasons (>80%) were among the highest reported for the species. However, survival during the third non-breeding season was only 57%, resulting in a 3-year average of 72%. It does not appear that non-breeding season mortality is a strong limiting factor in lesser prairie-chicken persistence in the study area.

  2. Hungry Horse Dam Fisheries Mitigation, 1992-1993 Progress Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DosSantos, Joe; Vashro, Jim; Lockard, Larry

    1994-06-01

    In February of 1900, over forty agency representatives and interested citizens began development of the 1991 Mitigation Plan. This effort culminated in the 1993 Implementation Plan for mitigation of fish losses attributable to the construction and operation of Hungry Horse Dam. The primary purpose of this biennial report is to inform the public of the status of ongoing mitigation activities resulting from those planning efforts. A habitat improvement project is underway to benefit bull trout in Big Creek in the North Fork drainage of the Flathead River and work is planned in Hay Creek, another North Fork tributary. Bull troutmore » redd counts have been expanded and experimental programs involving genetic evaluation, outmigrant monitoring, and hatchery studies have been initiated, Cutthroat mitigation efforts have focused on habitat improvements in Elliott Creek and Taylor`s Outflow and improvements have been followed by imprint plants of hatchery fish and/or eyed eggs in those streams. Rogers Lake west of Kalispell and Lion Lake, near Hungry Horse, were chemically rehabilitated. Cool and warm water fish habitat has been improved in Halfmoon Lake and Echo Lake. Public education and public interest is important to the future success of mitigation activities. As part of the mitigation team`s public awareness responsibility we have worked with numerous volunteer groups, public agencies, and private landowners to stimulate interest and awareness of mitigation activities and the aquatic ecosystem. The purpose of this biennial report is to foster public awareness of, and support for, mitigation activities as we move forward in implementing the Hungry Horse Dam Fisheries Mitigation Implementation Plan.« less

  3. Fiddler crabs facilitate Spartina alterniflora growth, mitigating periwinkle overgrazing of marsh habitat.

    PubMed

    Gittman, Rachel K; Keller, Danielle A

    2013-12-01

    Ecologists have long been interested in identifying and testing factors that drive top-down or bottom-up regulation of communities. Most studies have focused on factors that directly exert top-down (e.g., grazing) or bottom-up (e.g., nutrient availability) control on primary production. For example, recent studies in salt marshes have demonstrated that fronts of Littoraria irrorata periwinkles can overgraze Spartina alterniflora and convert marsh to mudflat. The importance of indirect, bottom-up effects, particularly facilitation, in enhancing primary production has also recently been explored. Previous field studies separately revealed that fiddler crabs, which burrow to depths of more than 30 cm, can oxygenate marsh sediments and redistribute nutrients, thereby relieving the stress of anoxia and enhancing S. alterniflora growth. However, to our knowledge, no studies to date have explored how nontrophic facilitators can mediate top-down effects (i.e., grazing) on primary-producer biomass. We conducted a field study testing whether fiddler crabs can facilitate S. alterniflora growth sufficiently to mitigate overgrazing by periwinkles and thus sustain S. alterniflora marsh. As inferred from contrasts to experimental plots lacking periwinkles and fiddler crabs, periwinkles alone exerted top-down control of total aboveground biomass and net growth of S. alterniflora. When fiddler crabs were included, they counteracted the effects of periwinkles on net S. alterniflora growth. Sediment oxygen levels were greater and S. alterniflora belowground biomass was lower where fiddler crabs were present, implying that fiddler crab burrowing enhanced S. alterniflora growth. Consequently, in the stressful interior S. alterniflora marsh, where subsurface soil anoxia is widespread, fiddler crab facilitation can mitigate top-down control by periwinkles and can limit and possibly prevent loss of biogenically structured marsh habitat and its ecosystem services.

  4. Greater sage-grouse of Grand Teton National Park: where do they roam?

    USGS Publications Warehouse

    Chong, G.W.; Wetzel, W.C.; Holloran, M.J.

    2011-01-01

    Greater sage-grouse (Centrocercus urophasianus) population declines may be caused by range-wide degradation of sagebrush (woody Artemisia spp.) steppe ecosystems. Understanding how greater sage-grouse use the landscape is essential for successful management. We assessed greater sage-grouse habitat selection on a landscape level in Jackson Hole, Wyoming. We used a Geographic Information System (GIS) and radio-collared sage-grouse to compare habitat used and the total available landscape. Greater sage-grouse selected mountain big sagebrush (A. tridentata var. vaseyana) communities or mixed mountain big sagebrush–antelope bitterbrush (Purshia tridentata) communities and avoided low-sagebrush (A. arbuscula) dwarf shrubland. In spring and summer, sage-grouse primarily used sagebrush-dominated habitats on the valley floor and did not concentrate in mesic areas later in the summer as is typical of the species. The diversity of habitats used in winter exceeds that reported in the literature. In winter, Jackson Hole greater sage-grouse moved to hills, where they used various communities in proportion to their availability, including tall deciduous shrublands, cottonwood (Populus angustifolia) stands, exposed hillsides, and aspen (P. tremuloides) stands. Because seasonal habitat selection is not necessarily consistent across populations residing in different landscapes, habitat management should be specific to each population and landscape. This sage-grouse population provides an example that may offer insight into other species with seasonal habitat needs.

  5. Identifying Impacts of Hydropower Regulation on Salmonid Habitats to Guide River Restoration for Existing Schemes and Mitigate Adverse Effects of Future Developments

    NASA Astrophysics Data System (ADS)

    Buddendorf, B.; Geris, J.; Malcolm, I.; Wilkinson, M.; Soulsby, C.

    2015-12-01

    A decrease in longitudinal connectivity in riverine ecosystems resulting from the construction of transverse barriers has been identified as a major threat to biodiversity. For example, Atlantic Salmon (Salmo salar) have a seasonal variety of hydraulic habitat requirements for their different life stages. However, hydropower impoundments impact the spatial and temporal connectivity of natural habitat along many salmon rivers in ways that are not fully understood. Yet, these changes may affect the sustainability of habitat at local and regional scales and so ultimately the conservation of the species. Research is therefore needed both to aid the restoration and management of rivers impacted by previous hydropower development and guide new schemes to mitigate potentially adverse effects. To this end we assessed the effects of hydropower development on the flow related habitat conditions for different salmon life stages in Scottish rivers at different spatial scales. We used GIS techniques to map the changes in structural connectivity at regional scales, applying a weighting for habitat quality. Next, we used hydrological models to simulate past and present hydrologic conditions that in turn drive reach-scale hydraulic models to assess the impacts of regulation on habitat suitability in both space and time. Preliminary results indicate that: 1) impacts on connectivity depend on the location of the barrier within the river network; 2) multiple smaller barriers may have a potentially lower impact than a single larger barrier; 3) there is a relationship between habitat and connectivity where losing less but more suitable habitat potentially has a disproportionally large impact; 4) the impact of flow regulation can lead to a deterioration of habitat quality, though the effects are spatially variable and the extent of the impact depends on salmon life stage. This work can form a basis for using natural processes to perform targeted and cost-effective restoration of rivers.

  6. Albeni Falls Wildlife Mitigation Project; Idaho Department of Fish and Game 2007 Final Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cousins, Katherine

    The Idaho Department of Fish and Game maintained a total of about 2,743 acres of wildlife mitigation habitat in 2007, and protected another 921 acres. The total wildlife habitat mitigation debt has been reduced by approximately two percent (598.22 HU) through the Department's mitigation activities in 2007. Implementation of the vegetative monitoring and evaluation program continued across protected lands. For the next funding cycle, the IDFG is considering a package of restoration projects and habitat improvements, conservation easements, and land acquisitions in the project area.

  7. An Ecosystem-Based Approach to Valley Oak Mitigation

    Treesearch

    Marcus S. Rawlings; Daniel A. Airola

    1997-01-01

    The Contra Costa Water District’s (CCWD’s) Los Vaqueros Reservoir Project will inundate 180 acres of valley oak habitats. Instead of using replacement ratios to identify mitigation needs, we designed an approach that would efficiently replace lost ecological values. We developed a habitat quality index model to assess the value of lost wildlife habitat and...

  8. Protocols for sagebrush seed processing and seedling production at the Lucky Peak Nursery

    Treesearch

    Clark D. Fleege

    2010-01-01

    This paper presents the production protocols currently practiced at the USDA Forest Service Lucky Peak Nursery (Boise, ID) for seed processing and bareroot and container seedling production for three subspecies of big sagebrush (Artemisia tridentata).

  9. Range-wide patterns of greater sage-grouse persistence

    USGS Publications Warehouse

    Aldridge, Cameron L.; Nielsen, Scott E.; Beyer, Hawthorne L.; Boyce, Mark S.; Connelly, John W.; Knick, Steven T.; Schroeder, Michael A.

    2008-01-01

    Aim: Greater sage-grouse (Centrocercus urophasianus), a shrub-steppe obligate species of western North America, currently occupies only half its historical range. Here we examine how broad-scale, long-term trends in landscape condition have affected range contraction. Location: Sagebrush biome of the western USA. Methods: Logistic regression was used to assess persistence and extirpation of greater sage-grouse range based on landscape conditions measured by human population (density and population change), vegetation (percentage of sagebrush habitat), roads (density of and distance to roads), agriculture (cropland, farmland and cattle density), climate (number of severe and extreme droughts) and range periphery. Model predictions were used to identify areas where future extirpations can be expected, while also explaining possible causes of past extirpations. Results: Greater sage-grouse persistence and extirpation were significantly related to sagebrush habitat, cultivated cropland, human population density in 1950, prevalence of severe droughts and historical range periphery. Extirpation of sage-grouse was most likely in areas having at least four persons per square kilometre in 1950, 25% cultivated cropland in 2002 or the presence of three or more severe droughts per decade. In contrast, persistence of sage-grouse was expected when at least 30 km from historical range edge and in habitats containing at least 25% sagebrush cover within 30 km. Extirpation was most often explained (35%) by the combined effects of peripherality (within 30 km of range edge) and lack of sagebrush cover (less than 25% within 30 km). Based on patterns of prior extirpation and model predictions, we predict that 29% of remaining range may be at risk. Main Conclusions: Spatial patterns in greater sage-grouse range contraction can be explained by widely available landscape variables that describe patterns of remaining sagebrush habitat and loss due to cultivation, climatic trends, human

  10. Impacts of feral horse use on riparian vegetation within the sagebrush steppe

    USDA-ARS?s Scientific Manuscript database

    Feral horses inhabit rangeland ecosystems around the world, but their impacts on riparian ecosystems are poorly understood. We characterized impacts of a free-ranging horse population on the structure and composition of riparian plant communities in the sagebrush steppe ecosystem in the western US....

  11. Assessment of habitat threats to shrublands in the Great Basin: a case study

    Treesearch

    Mary M. Rowland; Lowell H. Suring; Michael J. Wisdom

    2010-01-01

    The sagebrush (Artemisia spp.) ecosystem is one of the most imperiled in the United States. In the Great Basin ecoregion and elsewhere, catastrophic wildland fires are often followed by the invasion of cheatgrass (Bromus tectorum L.), eliminating or altering millions of hectares of sagebrush and other shrublands. Sagebrush in...

  12. Seed production estimation for mountain big sagebrush (Artemisia tridentata ssp. vaseyana)

    Treesearch

    Melissa L. Landeen; Loreen Allphin; Stanley G. Kitchen; Steven L. Petersen

    2017-01-01

    Seed production is an essential component of postdisturbance recovery for mountain big sagebrush (Artemisia tridentata Nutt. ssp vaseyana [Rydb] Beetle; MBS). We tested a method for rapid estimation of MBS seed production using measurements of inflorescence morphology. We measured total stem length, stem length from first branchlet to stem tip, stem diameter, fresh...

  13. Modeling erosion on steep sagebrush rangeland before and after prescribed fire

    Treesearch

    Corey A. Moffet; Frederick B. Pierson; Kenneth E. Spaeth

    2007-01-01

    Fire in sagebrush rangelands significantly alters canopy cover, ground cover, and soil properties that influence runoff and erosion processes. Runoff is generated more quickly and a larger volume of runoff is produced following prescribed fire. The result is increased risk of severe erosion and downstream flooding. The Water Erosion Prediction Project (WEPP), developed...

  14. Ecological mitigation measures in English Environmental Impact Assessment.

    PubMed

    Drayson, Katherine; Thompson, Stewart

    2013-04-15

    Built development is one of the main drivers of biodiversity loss in the UK. Major built developments usually require an Environmental Impact Assessment (EIA) to be conducted, which frequently includes an Ecological Impact Assessment (EcIA) chapter. By identifying the flaws in EcIA mitigation measure proposals and their implementation in completed developments, it may be possible to develop measures to reduce biodiversity loss and help meet the UK's EU obligation to halt biodiversity loss by 2020. A review of 112 English EcIAs from 2000 onwards was conducted to provide a broad-scale overview of the information provision and detail of ecological mitigation measures. Audits of seven EIA development case study sites provided finer-scale detail of mitigation measure implementation, and the effectiveness of their grassland and marginal habitat creation and management measures was assessed using standard NVC methodology. Despite higher than expected levels of mitigation measure implementation in completed developments, EcIA mitigation proposal information and detail has seen little improvement since a 1997 review, and the effectiveness of the habitat mitigation measures studied was poor. This suggests that measures to improve ecological mitigation measures are best targeted at ecological consultants. A recommendation for EcIA-specific training of Competent Authorities is also made. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Greenhouse gas mitigation can reduce sea-ice loss and increase polar bear persistence.

    PubMed

    Amstrup, Steven C; Deweaver, Eric T; Douglas, David C; Marcot, Bruce G; Durner, George M; Bitz, Cecilia M; Bailey, David A

    2010-12-16

    On the basis of projected losses of their essential sea-ice habitats, a United States Geological Survey research team concluded in 2007 that two-thirds of the world's polar bears (Ursus maritimus) could disappear by mid-century if business-as-usual greenhouse gas emissions continue. That projection, however, did not consider the possible benefits of greenhouse gas mitigation. A key question is whether temperature increases lead to proportional losses of sea-ice habitat, or whether sea-ice cover crosses a tipping point and irreversibly collapses when temperature reaches a critical threshold. Such a tipping point would mean future greenhouse gas mitigation would confer no conservation benefits to polar bears. Here we show, using a general circulation model, that substantially more sea-ice habitat would be retained if greenhouse gas rise is mitigated. We also show, with Bayesian network model outcomes, that increased habitat retention under greenhouse gas mitigation means that polar bears could persist throughout the century in greater numbers and more areas than in the business-as-usual case. Our general circulation model outcomes did not reveal thresholds leading to irreversible loss of ice; instead, a linear relationship between global mean surface air temperature and sea-ice habitat substantiated the hypothesis that sea-ice thermodynamics can overcome albedo feedbacks proposed to cause sea-ice tipping points. Our outcomes indicate that rapid summer ice losses in models and observations represent increased volatility of a thinning sea-ice cover, rather than tipping-point behaviour. Mitigation-driven Bayesian network outcomes show that previously predicted declines in polar bear distribution and numbers are not unavoidable. Because polar bears are sentinels of the Arctic marine ecosystem and trends in their sea-ice habitats foreshadow future global changes, mitigating greenhouse gas emissions to improve polar bear status would have conservation benefits throughout

  16. Greenhouse gas mitigation can reduce sea-ice loss and increase polar bear persistence

    USGS Publications Warehouse

    Amstrup, Steven C.; Deweaver, E.T.; Douglas, David C.; Marcot, B.G.; Durner, George M.; Bitz, C.M.; Bailey, D.A.

    2010-01-01

    On the basis of projected losses of their essential sea-ice habitats, a United States Geological Survey research team concluded in 2007 that two-thirds of the worlds polar bears (Ursus maritimus) could disappear by mid-century if business-as-usual greenhouse gas emissions continue. That projection, however, did not consider the possible benefits of greenhouse gas mitigation. A key question is whether temperature increases lead to proportional losses of sea-ice habitat, or whether sea-ice cover crosses a tipping point and irreversibly collapses when temperature reaches a critical threshold. Such a tipping point would mean future greenhouse gas mitigation would confer no conservation benefits to polar bears. Here we show, using a general circulation model, that substantially more sea-ice habitat would be retained if greenhouse gas rise is mitigated. We also show, with Bayesian network model outcomes, that increased habitat retention under greenhouse gas mitigation means that polar bears could persist throughout the century in greater numbers and more areas than in the business-as-usual case. Our general circulation model outcomes did not reveal thresholds leading to irreversible loss of ice; instead, a linear relationship between global mean surface air temperature and sea-ice habitat substantiated the hypothesis that sea-ice thermodynamics can overcome albedo feedbacks proposed to cause sea-ice tipping points. Our outcomes indicate that rapid summer ice losses in models and observations represent increased volatility of a thinning sea-ice cover, rather than tipping-point behaviour. Mitigation-driven Bayesian network outcomes show that previously predicted declines in polar bear distribution and numbers are not unavoidable. Because polar bears are sentinels of the Arctic marine ecosystem and trends in their sea-ice habitats foreshadow future global changes, mitigating greenhouse gas emissions to improve polar bear status would have conservation benefits throughout

  17. USGS: providing scientific understanding of the sagebrush biome

    USGS Publications Warehouse

    ,

    2005-01-01

    Early explorers wrote about the vast sea of sagebrush that stretched in front of them. Today, the consequences of land-use practices, invasion by exotic plants, and altered disturbance regimes have touched virtually all of these seemingly endless expanses. Increasing human populations in the western United States, the infrastructure necessary to support these populations, and a growing demand for natural resources exert a large influence. Changes within the biome have resulted in its designation as one of the most endangered ecosystems in North America.

  18. Hungry Horse Mitigation; Flathead Lake, 2001-2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Barry

    2003-06-09

    The Confederated Salish and Kootenai Tribes (CSKT) and Montana Fish Wildlife and Parks (MFWP) wrote ''Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam'' in March 1991 to define the fisheries losses, mitigation alternatives and recommendations to protect, mitigate and enhance resident fish and aquatic habitat affected by Hungry Horse Dam. On November 12, 1991, the Northwest Power Planning Council (NPPC) approved the mitigation plan with minor modifications, called for a detailed implementation plan, and amended measures 903(h)(1) through (7). A long-term mitigation plan was submitted in August 1992, was approved by the Councilmore » in 1993, and the first contract for this project was signed on November 11, 1993. The problem this project addresses is the loss of habitat, both in quality and quantity, in the interconnected Flathead Lake and River basin resulting from the construction and operation of Hungry Horse Dam. The purpose of the project is to both implement mitigation measures and monitor the biological responses to those measures including those implemented by Project Numbers 9101903 and 9101904. Goals and objectives of the 1994 Fish and Wildlife Program (Section 10.1) addressed by this project are the rebuilding to sustainable levels weak, but recoverable, native populations injured by the hydropower system. The project mitigates the blockage of spawning runs by Hungry Horse Dam by restoring and even creating spawning habitats within direct drainages to Flathead Lake. The project also addresses the altered habitat within Flathead Lake resulting from species shifts and consequent dominance of new species that restricts the potential success of mitigation measures. Specific goals of this project are to create and restore habitat and quantitatively monitor changes in fish populations to verify the efficacy of our mitigation measures. The project consists of three components: monitoring, restoration and

  19. Native bunchgrass response to prescribed fire in ungrazed Mountain Big Sagebrush ecosystems

    Treesearch

    Lisa M. Ellsworth; J. Boone Kauffman

    2010-01-01

    Fire was historically a dominant ecological process throughout mountain big sagebrush (Artemisia tridentata Nutt. ssp. vaseyana [Rydb.] Beetle) ecosystems of western North America, and the native biota have developed many adaptations to persist in a regime typified by frequent fires. Following spring and fall prescribed fires...

  20. Mountain big sagebrush age distribution and relationships on the northern Yellowstone Winter Range

    Treesearch

    Carl L. Wambolt; Trista L. Hoffman

    2001-01-01

    This study was conducted within the Gardiner Basin, an especially critical wintering area for native ungulates utilizing the Northern Yellowstone Winter Range. Mountain big sagebrush plants on 33 sites were classified as large (≥22 cm canopy cover), small (

  1. Evaluating winter/spring seeding of a native perennial bunchgrass in the sagebrush steppe

    USDA-ARS?s Scientific Manuscript database

    Sagebrush (Artemisia tridentata Nutt.) plant communities in the US Great Basin region are being severely impacted by increasingly frequent wildfires in association with the expansion of exotic annual grasses. Maintenance of native perennial bunchgrasses is key to controlling annual grass expansion,...

  2. Characteristics of western juniper encroachment into sagebrush communities in central Oregon

    Treesearch

    Mary M. Rowland; Lowell H. Suring; Robin J. Tausch; Susan Geer; Michael J. Wisdom

    2008-01-01

    Western juniper (Juniperus occidentalis) woodlands in Oregon have expanded four-fold from 600,000 ha in 1930 to > 2.6 million ha, often resulting in the reduction and fragmentation of sagebrush (Artemisia spp.) communities. We documented dynamics of western juniper across the John Day Ecological Province in central Oregon by recording size class and growth form at...

  3. Future habitat loss and extinctions driven by land-use change in biodiversity hotspots under four scenarios of climate-change mitigation.

    PubMed

    Jantz, Samuel M; Barker, Brian; Brooks, Thomas M; Chini, Louise P; Huang, Qiongyu; Moore, Rachel M; Noel, Jacob; Hurtt, George C

    2015-08-01

    Numerous species have been pushed into extinction as an increasing portion of Earth's land surface has been appropriated for human enterprise. In the future, global biodiversity will be affected by both climate change and land-use change, the latter of which is currently the primary driver of species extinctions. How societies address climate change will critically affect biodiversity because climate-change mitigation policies will reduce direct climate-change impacts; however, these policies will influence land-use decisions, which could have negative impacts on habitat for a substantial number of species. We assessed the potential impact future climate policy could have on the loss of habitable area in biodiversity hotspots due to associated land-use changes. We estimated past extinctions from historical land-use changes (1500-2005) based on the global gridded land-use data used for the Intergovernmental Panel on Climate Change Fifth Assessment Report and habitat extent and species data for each hotspot. We then estimated potential extinctions due to future land-use changes under alternative climate-change scenarios (2005-2100). Future land-use changes are projected to reduce natural vegetative cover by 26-58% in the hotspots. As a consequence, the number of additional species extinctions, relative to those already incurred between 1500 and 2005, due to land-use change by 2100 across all hotspots ranged from about 220 to 21000 (0.2% to 16%), depending on the climate-change mitigation scenario and biological factors such as the slope of the species-area relationship and the contribution of wood harvest to extinctions. These estimates of potential future extinctions were driven by land-use change only and likely would have been higher if the direct effects of climate change had been considered. Future extinctions could potentially be reduced by incorporating habitat preservation into scenario development to reduce projected future land-use changes in hotspots or by

  4. Fine-scale analysis of Mount Graham red squirrel habitat following disturbance

    Treesearch

    David J. A. Wood; Sam Drake; Steve P. Rushton; Doug Rautenkranz; Peter W. W. Lurz; John L. Koprowski

    2007-01-01

    Habitat destruction and degradation are major factors in reducing abundance, placing populations and species in jeopardy. Monitoring changes to habitat and identifying locations of habitat for a species, after disturbance, can assist mitigation of the effects of humancaused or -amplified habitat disturbance. Like many areas in the western United States, the Pinaleno...

  5. Hungry Horse Mitigation : Flathead Lake : Annual Progress Report 2007.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Barry; Evarts, Les

    2008-12-22

    The Confederated Salish and Kootenai Tribes (CSKT) and Montana Fish Wildlife and Parks (MFWP) wrote the 'Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam' in March 1991 to define the fisheries losses, mitigation alternatives and recommendations to protect, mitigate and enhance resident fish and aquatic habitat affected by Hungry Horse Dam. On November 12, 1991, the Northwest Power Planning Council (NPPC) approved the mitigation plan with minor modifications, called for a detailed implementation plan, and amended measures 903(h)(1) through (7). A long-term mitigation plan was submitted in August 1992, was approved by themore » Council in 1993, and the first contract for this project was signed on November 11, 1993. The problem this project addresses is the loss of habitat, both in quality and quantity, in the Flathead Lake and River basin resulting from the construction and operation of Hungry Horse Dam. The purpose of the project is to both implement mitigation measures and monitor the biological responses to those measures including those implemented by Project Numbers 9101903 and 9101904. Goals and objectives of the 1994 Fish and Wildlife Program (Section 10.1) addressed by this project are the rebuilding to sustainable levels weak, but recoverable, native populations injured by the hydropower system. The project mitigates the blockage of spawning runs by Hungry Horse Dam by restoring and even creating spawning habitats within direct drainages to Flathead Lake. The project also addresses the altered habitat within Flathead Lake resulting from species shifts and consequent dominance of new species that restricts the potential success of mitigation measures. Specific goals of this project are to create and restore habitat and quantitatively monitor changes in fish populations to verify the efficacy of our mitigation measures. The project consists of three components: monitoring, restoration and research

  6. Hungry Horse Mitigation; Flathead Lake, 2004-2005 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Barry; Evarts, Les

    2006-06-01

    The Confederated Salish and Kootenai Tribes (CSKT) and Montana Fish Wildlife and Parks (MFWP) wrote the ''Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam'' in March 1991 to define the fisheries losses, mitigation alternatives and recommendations to protect, mitigate and enhance resident fish and aquatic habitat affected by Hungry Horse Dam. On November 12, 1991, the Northwest Power Planning Council (NPPC) approved the mitigation plan with minor modifications, called for a detailed implementation plan, and amended measures 903(h)(1) through (7). A long-term mitigation plan was submitted in August 1992, was approved by themore » Council in 1993, and the first contract for this project was signed on November 11, 1993. The problem this project addresses is the loss of habitat, both in quality and quantity, in the Flathead Lake and River basin resulting from the construction and operation of Hungry Horse Dam. The purpose of the project is to both implement mitigation measures and monitor the biological responses to those measures including those implemented by Project Numbers 9101903 and 9101904. Goals and objectives of the 1994 Fish and Wildlife Program (Section 10.1) addressed by this project are the rebuilding to sustainable levels weak, but recoverable, native populations injured by the hydropower system. The project mitigates the blockage of spawning runs by Hungry Horse Dam by restoring and even creating spawning habitats within direct drainages to Flathead Lake. The project also addresses the altered habitat within Flathead Lake resulting from species shifts and consequent dominance of new species that restricts the potential success of mitigation measures. Specific goals of this project are to create and restore habitat and quantitatively monitor changes in fish populations to verify the efficacy of our mitigation measures. The project consists of three components: monitoring, restoration and research

  7. Hungry Horse Mitigation : Flathead Lake : Annual Progress Report 2008.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Barry; Evarts, Les

    2009-08-06

    The Confederated Salish and Kootenai Tribes (CSKT) and Montana Fish Wildlife and Parks (MFWP) wrote the 'Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam' in March 1991 to define the fisheries losses, mitigation alternatives and recommendations to protect, mitigate and enhance resident fish and aquatic habitat affected by Hungry Horse Dam. On November 12, 1991, the Northwest Power Planning Council (NPPC) approved the mitigation plan with minor modifications, called for a detailed implementation plan, and amended measures 903(h)(1) through (7). A long-term mitigation plan was submitted in August 1992, was approved by themore » Council in 1993, and the first contract for this project was signed on November 11, 1993. The problem this project addresses is the loss of habitat, both in quality and quantity, in the Flathead Lake and River basin resulting from the construction and operation of Hungry Horse Dam. The purpose of the project is to both implement mitigation measures and monitor the biological responses to those measures including those implemented by Project Numbers 9101903 and 9101904. Goals and objectives of the 1994 Fish and Wildlife Program (Section 10.1) addressed by this project are the rebuilding to sustainable levels weak, but recoverable, native populations injured by the hydropower system. The project mitigates the blockage of spawning runs by Hungry Horse Dam by restoring and even creating spawning habitats within direct drainages to Flathead Lake. The project also addresses the altered habitat within Flathead Lake resulting from species shifts and consequent dominance of new species that restricts the potential success of mitigation measures. Specific goals of this project are to create and restore habitat and quantitatively monitor changes in fish populations to verify the efficacy of our mitigation measures. The project consists of three components: monitoring, restoration and research

  8. Hungry Horse Mitigation; Flathead Lake, 2003-2004 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Barry; Evarts, Les

    2005-06-01

    The Confederated Salish and Kootenai Tribes (CSKT) and Montana Fish Wildlife and Parks (MFWP) wrote the ''Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam'' in March 1991 to define the fisheries losses, mitigation alternatives and recommendations to protect, mitigate and enhance resident fish and aquatic habitat affected by Hungry Horse Dam. On November 12, 1991, the Northwest Power Planning Council (NPPC) approved the mitigation plan with minor modifications, called for a detailed implementation plan, and amended measures 903(h)(1) through (7). A long-term mitigation plan was submitted in August 1992, was approved by themore » Council in 1993, and the first contract for this project was signed on November 11, 1993. The problem this project addresses is the loss of habitat, both in quality and quantity, in the Flathead Lake and River basin resulting from the construction and operation of Hungry Horse Dam. The purpose of the project is to both implement mitigation measures and monitor the biological responses to those measures including those implemented by Project Numbers 9101903 and 9101904. Goals and objectives of the 1994 Fish and Wildlife Program (Section 10.1) addressed by this project are the rebuilding to sustainable levels weak, but recoverable, native populations injured by the hydropower system. The project mitigates the blockage of spawning runs by Hungry Horse Dam by restoring and even creating spawning habitats within direct drainages to Flathead Lake. The project also addresses the altered habitat within Flathead Lake resulting from species shifts and consequent dominance of new species that restricts the potential success of mitigation measures. Specific goals of this project are to create and restore habitat and quantitatively monitor changes in fish populations to verify the efficacy of our mitigation measures. The project consists of three components: monitoring, restoration and research

  9. Sagebrush steppe recovery after fire varies by development phase of Juniperus occidentalis woodland

    USDA-ARS?s Scientific Manuscript database

    Pinus-Juniperus L. (Piñon- juniper) woodlands have expanded into Artemisia tridentata Beetle (big sagebrush) steppe of the western United States primarily as a result of reduced fire disturbances. Woodland control measures, including prescribed fire, have been increasingly employed to restore sagebr...

  10. Sagebrush wildfire effects on surface soil nutrient availability: A temporal and spatial study

    USDA-ARS?s Scientific Manuscript database

    Wildfires occurring in Artemisia (sagebrush) ecosystems can temporarily increase soil nutrient availability in surface soil. Less is known, however, on how soil nutrient availability changes over time and microsite location post-wildfire. In Oct., 2013 a wildfire approximately 30 km north of Reno, N...

  11. Predicting fire-based perennial bunchgrass mortality in low elevation big sagebrush plant communities

    USDA-ARS?s Scientific Manuscript database

    Maintenance and post-fire rehabilitation of perennial bunchgrasses is important for reducing the spread of annual grass species in low elevation big sagebrush plant communities. Post-fire rehabilitation decisions are hampered by a lack of tools for determining extent of fire-induced perennial grass...

  12. Habitat prioritization across large landscapes, multiple seasons, and novel areas: an example using greater sage-grouse in Wyoming

    USGS Publications Warehouse

    Fedy, Bradley C.; Doherty, Kevin E.; Aldridge, Cameron L.; O'Donnell, Michael S.; Beck, Jeffrey L.; Bedrosian, Bryan; Gummer, David; Holloran, Matthew J.; Johnson, Gregory D.; Kaczor, Nicholas W.; Kirol, Christopher P.; Mandich, Cheryl A.; Marshall, David; McKee, Gwyn; Olson, Chad; Pratt, Aaron C.; Swanson, Christopher C.; Walker, Brett L.

    2014-01-01

    Animal habitat selection is an important and expansive area of research in ecology. In particular, the study of habitat selection is critical in habitat prioritization efforts for species of conservation concern. Landscape planning for species is happening at ever-increasing extents because of the appreciation for the role of landscape-scale patterns in species persistence coupled to improved datasets for species and habitats, and the expanding and intensifying footprint of human land uses on the landscape. We present a large-scale collaborative effort to develop habitat selection models across large landscapes and multiple seasons for prioritizing habitat for a species of conservation concern. Greater sage-grouse (Centrocercus urophasianus, hereafter sage-grouse) occur in western semi-arid landscapes in North America. Range-wide population declines of this species have been documented, and it is currently considered as “warranted but precluded” from listing under the United States Endangered Species Act. Wyoming is predicted to remain a stronghold for sage-grouse populations and contains approximately 37% of remaining birds. We compiled location data from 14 unique radiotelemetry studies (data collected 1994–2010) and habitat data from high-quality, biologically relevant, geographic information system (GIS) layers across Wyoming. We developed habitat selection models for greater sage-grouse across Wyoming for 3 distinct life stages: 1) nesting, 2) summer, and 3) winter. We developed patch and landscape models across 4 extents, producing statewide and regional (southwest, central, northeast) models for Wyoming. Habitat selection varied among regions and seasons, yet preferred habitat attributes generally matched the extensive literature on sage-grouse seasonal habitat requirements. Across seasons and regions, birds preferred areas with greater percentage sagebrush cover and avoided paved roads, agriculture, and forested areas. Birds consistently preferred

  13. Historical cover trends in a sagebrush steppe ecosystem from 1985 to 2013: Links with climate, disturbance, and management

    USGS Publications Warehouse

    Shi, Hua; Rigge, Matthew B.; Homer, Collin G.; Xian, George Z.; Meyer, Debbie; Bunde, Brett

    2017-01-01

    Understanding the causes and consequences of component change in sagebrush steppe is crucial for evaluating ecosystem sustainability. The sagebrush (Artemisia spp.) steppe ecosystem of the northwest USA has been impacted by the invasion of exotic grasses, increasing fire return intervals, changing land management practices, and fragmentation, often lowering the overall resilience to change. We utilized contemporary and historical Landsat imagery, field data, and regression tree models to produce fractional cover maps of rangeland components (shrub, sagebrush, herbaceous, bare ground, and litter) through the last 30 years. Our main goals were to (1) investigate rangeland component trends over 30 years, (2) evaluate the magnitude and direction of trends in components and climate drivers and their relationship, and (3) assess component trends influenced by climate. Results indicated that over the study period, shrub, sage, herbaceous, and litter cover decreased, while bare ground cover increased. Measured rates of change ranged from − 0.14% decade−1 for shrub cover to 0.05% decade−1 for bare ground, whereas herbaceous and litter cover trends were negligible. Net landscape cover changes were consistent with expectations of climate change and disturbance producing a loss of biotic cover, and converting a portion of shrub and sagebrush to herbaceous cover. Overall, fire and related successional recovery was the greatest change agent for all components in terms of area and cover change, while increasing minimum temperature, at a rate of 0.66°C decade−1, was found to be the most significant climate driver.

  14. Annual Adaptive Management Report for Compensatory Mitigation at Keyport Lagoon: Mitigation of Pier B Development at the Bremerton Naval Facilities - Compensatory Mitigation at Keyport Lagoon - Naval Underwater Warfare Center Division - Keyport, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vavrinec, John; Borde, Amy B.; Woodruff, Dana L.

    Unites States Navy capital improvement projects are designed to modernize and improve mission capacity. Such capital improvement projects often result in unavoidable environmental impacts by increasing over-water structures, which results in a loss of subtidal habitat within industrial areas of Navy bases. In the Pacific Northwest, compensatory mitigation often targets alleviating impacts to Endangered Species Act-listed salmon species. The complexity of restoring large systems requires limited resources to target successful and more coordinated mitigation efforts to address habitat loss and improvements in water quality that will clearly contribute to an improvement at the site scale and can then be linkedmore » to a cumulative net ecosystem improvement.« less

  15. Analyze the Impact of Habitat Patches on Wildlife Road-Kill

    NASA Astrophysics Data System (ADS)

    Seok, S.; Lee, J.

    2015-10-01

    The ecosystem fragmentation due to transportation infrastructure causes a road-kill phenomenon. When making policies for mitigating road-kill it is important to select target-species in order to enhance its efficiency. However, many wildlife crossing structures have been questioned regarding their effectiveness due to lack of considerations such as target-species selection, site selection, management, etc. The purpose of this study is to analyse the impact of habitat patches on wildlife road-kill and to suggest that spatial location of habitat patches should be considered as one of the important factors when making policies for mitigating road-kill. Habitat patches were presumed from habitat variables and a suitability index on target-species that was chosen by literature review. The road-kill hotspot was calculated using Getis-Ord Gi*. After that, we performed a correlation analysis between Gi Z-score and the distance from habitat patches to the roads. As a result, there is a low negative correlation between two variables and it increases the Gi Z-score if the habitat patches and the roads become closer.

  16. Geology and mineral resources of the Sheldon-Hart Mountain National Wildlife Refuge Complex (Oregon and Nevada), the Southeastern Oregon and North-Central Nevada, and the Southern Idaho and Northern Nevada (and Utah) Sagebrush Focal Areas: Chapter B in Mineral resources of the Sagebrush Focal Areas of Idaho, Montana, Nevada, Oregon, Utah, and Wyoming

    USGS Publications Warehouse

    Vikre, Peter G.; Benson, Mary Ellen; Bleiwas, Donald I.; Colgan, Joseph P.; Cossette, Pamela M.; DeAngelo, Jacob; Dicken, Connie L.; Drake, Ronald M.; du Bray, Edward A.; Fernette, Gregory L.; Glen, Jonathan M.G.; Haacke, Jon E.; Hall, Susan M.; Hofstra, Albert H.; John, David A.; Ludington, Stephen; Mihalasky, Mark J.; Rytuba, James J.; Shaffer, Brian N.; Stillings, Lisa L.; Wallis, John C.; Williams, Colin F.; Yager, Douglas B.; Zürcher, Lukas

    2016-10-04

    SummaryThe U.S. Department of the Interior has proposed to withdraw approximately 10 million acres of Federal lands from mineral entry (subject to valid existing rights) from 12 million acres of lands defined as Sagebrush Focal Areas (SFAs) in Idaho, Montana, Nevada, Oregon, Utah, and Wyoming (for further discussion on the lands involved see Scientific Investigations Report 2016–5089–A). The purpose of the proposed action is to protect the greater sage-grouse (Centrocercus urophasianus) and its habitat from potential adverse effects of locatable mineral exploration and mining. The U.S. Geological Survey Sagebrush Mineral-Resource Assessment (SaMiRA) project was initiated in November 2015 and supported by the Bureau of Land Management to (1) assess locatable mineral-resource potential and (2) to describe leasable and salable mineral resources for the seven SFAs and Nevada additions.This chapter summarizes the current status of locatable, leasable, and salable mineral commodities and assesses the potential of selected locatable minerals in lands proposed for withdrawal that span the Nevada, Oregon, Idaho, and Utah borders. In this report, the four study areas evaluated were (1) the Sheldon-Hart Mountain National Wildlife Refuge Complex SFA in Washoe County, Nevada, and Harney and Lake Counties, Oregon; (2) the Southeastern Oregon and North-Central Nevada SFA in Humboldt County, Nevada, and Harney and Malheur Counties, Oregon; (3) the Southern Idaho and Northern Nevada SFA in Cassia, Owyhee, and Twin Falls Counties, Idaho, Elko County, Nevada, and Box Elder County, Utah; and (4) the Nevada additions in Humboldt and Elko Counties, Nevada.

  17. Attempting to restore mountain big sagebrush (Artemisia tridentata ssp. vaseyana) four years after fire

    USDA-ARS?s Scientific Manuscript database

    Restoration of shrubs is increasingly needed throughout the world because of altered fire regimes, anthropogenic disturbance, and over-utilization. The native shrub mountain big sagebrush (Artemisia tridentata Nutt. ssp. vaseyana (Rydb.) Beetle) is a restoration priority in western North America be...

  18. Variation in sagebrush communities historically seeded with crested wheatgrass in the eastern great basin

    USDA-ARS?s Scientific Manuscript database

    Although crested wheatgrass (CWG; Agropyron cristatum [L.] Gaertn.) has been one of the most commonly seeded exotic species in the western United States, long-term successional trajectories of seeded sites are poorly characterized, especially for big sagebrush (Artemisia tridentana Nutt.) ecosystems...

  19. Short-term regeneration dynamics of Wyoming big sagebrush at two sites in northern Utah

    USDA-ARS?s Scientific Manuscript database

    The herbicide tebuthiuron has been used historically to control cover of Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis - complete taxonomic designation), a widespread shrub across the western United States, with the intent of increasing herbaceous plant cover. Although the tebuthiur...

  20. Influence of land-use legacies following shrub reduction and seeding of big sagebrush sites

    USDA-ARS?s Scientific Manuscript database

    Big sagebrush (Artemisia tridentata Nutt.) plant communities provide important economic and ecosystem values, but often require management to reduce shrub density and rehabilitate understory vegetation. We studied vegetation structure and plant community responses to a two-way chain harrow treatment...

  1. 50 CFR 216.124 - Mitigation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., DEPARTMENT OF COMMERCE MARINE MAMMALS REGULATIONS GOVERNING THE TAKING AND IMPORTING OF MARINE MAMMALS Taking Of Marine Mammals Incidental To Space Vehicle And Test Flight Activities § 216.124 Mitigation. (a... extent practicable, adverse impacts on marine mammals and their habitats. When conducting operations...

  2. 50 CFR 216.124 - Mitigation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., DEPARTMENT OF COMMERCE MARINE MAMMALS REGULATIONS GOVERNING THE TAKING AND IMPORTING OF MARINE MAMMALS Taking Of Marine Mammals Incidental To Space Vehicle And Test Flight Activities § 216.124 Mitigation. (a... extent practicable, adverse impacts on marine mammals and their habitats. When conducting operations...

  3. Seasonal soil CO2 flux under big sagebrush (Artemisia tridentata Nutt.)

    Treesearch

    Michael C. Amacher; Cheryl L. Mackowiak

    2011-01-01

    Soil respiration is a major contributor to atmospheric CO2, but accurate landscape-scale estimates of soil CO2 flux for many ecosystems including shrublands have yet to be established. We began a project to measure, with high spatial and temporal resolution, soil CO2 flux in a stand (11 x 25 m area) of big sagebrush (Artemisia tridentata Nutt.) at the Logan, Utah,...

  4. Impacts of fire on hydrology and erosion in steep mountain big sagebrush communities

    Treesearch

    Frederick B. Pierson; Peter R. Robichaud; Kenneth E. Spaeth; Corey A. Moffet

    2003-01-01

    Wildfire is an important ecological process and management issue on western rangelands. Major unknowns associated with wildfire are its affects on vegetation and soil conditions that influence hydrologic processes including infiltration, surface runoff, erosion, sediment transport, and flooding. Post wildfire hydrologic response was studied in big sagebrush plant...

  5. Postfire shrub-cover dynamics: a 70-year fire history in big sagebrush communities.

    USDA-ARS?s Scientific Manuscript database

    Land managers use prescribed fire to meet rangeland management objectives. This study was conducted to quantify, from present conditions, the effect of time since last burn (TSLB) on shrub cover over 70 yr of fire history. We sampled mountain big sagebrush communities at the USDA, ARS, U.S. Sheep ...

  6. West Foster Creek 2007 Follow-up Habitat Evaluation Procedures (HEP) Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashley, Paul R.

    A follow-up habitat evaluation procedures (HEP) analysis was conducted on the West Foster Creek (Smith acquisition) wildlife mitigation site in May 2007 to determine the number of additional habitat units to credit Bonneville Power Administration (BPA) for providing funds to enhance and maintain the project site as partial mitigation for habitat losses associated with construction of Grand Coulee Dam. The West Foster Creek 2007 follow-up HEP survey generated 2,981.96 habitat units (HU) or 1.51 HUs per acre for a 34% increase (+751.34 HUs) above baseline HU credit (the 1999 baseline HEP survey generated 2,230.62 habitat units or 1.13 HUs permore » acre). The 2007 follow-up HEP analysis yielded 1,380.26 sharp-tailed grouse (Tympanuchus phasianellus) habitat units, 879.40 mule deer (Odocoileus hemionus) HUs, and 722.29 western meadowlark (Sturnella neglecta) habitat units. Mule deer and sharp-tailed grouse habitat units increased by 346.42 HUs and 470.62 HUs respectively over baseline (1999) survey results due largely to cessation of livestock grazing and subsequent passive restoration. In contrast, the western meadowlark generated slightly fewer habitat units in 2007 (-67.31) than in 1999, because of increased shrub cover, which lowers habitat suitability for that species.« less

  7. Dynamics of western juniper woodland expansion into sagebrush communities in central Oregon

    Treesearch

    Mary M. Rowland; Lowell H. Suring; Robin J. Tausch; Susan Greer; Michael J. Wisdom

    2011-01-01

    Western juniper (Juniperus occidentalis) woodlands in Oregon have expanded four-fold from 600,000 ha in 1930 to > 2.6 million ha, often resulting in the reduction and fragmentation of sagebrush (Artemisia spp.) communities. We documented dynamics of western juniper across the John Day Ecological Province in central Oregon by recording size class and growth form at...

  8. Soil organic matter of high-elevation wetlands in a sagebrush ecosystem: Fence-line contrasts

    USDA-ARS?s Scientific Manuscript database

    Scientific information regarding soil organic carbon (SOC) sequestration in western rangelands, especially those with a sagebrush (Artemisia spp.) component and in lower rainfall areas (<350 mm), remains a major knowledge gap in understanding the effects of land management. We sampled soils from two...

  9. 2007 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. A. Gano; C. T. Lindsey

    2007-09-27

    The purpose of this report is to document the status of revegetation projects and natural resources mitigation efforts that have been conducted for remediated waste sites and other activities associated with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) cleanup of National Priorities List waste sites at Hanford. This report documents the results of revegetation and mitigation monitoring conducted in 2007 and includes 11 revegetation/restoration projects, one revegetation/mitigation project, and 3 bat habitat mitigation projects.

  10. 2008 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. T. Lindsey; K. A. Gano

    2008-09-30

    The purpose of this report is to document the status of revegetation projects and natural resources mitigation efforts that have been conducted for remediated waste sites and other activities associated with the Comprehensive Environmental Response, Compensation, and Liability Act cleanup of National Priorities List waste sites at Hanford. This report documents the results of revegetation and mitigation monitoring conducted in 2008 and includes 22 revegetation/restoration projects, one revegetation/mitigation project, and two bat habitat mitigation projects.

  11. Mercury distribution in two Sierran forest and one desert sagebrush steppe ecosystems and the effects of fire.

    PubMed

    Engle, Mark A; Sexauer Gustin, Mae; Johnson, Dale W; Murphy, James F; Miller, Wally W; Walker, Roger F; Wright, Joan; Markee, Melissa

    2006-08-15

    Mercury (Hg) concentration, reservoir mass, and Hg reservoir size were determined for vegetation components, litter, and mineral soil for two Sierran forest sites and one desert sagebrush steppe site. Mercury was found to be held primarily in the mineral soil (maximum depth of 60 to 100 cm), which contained more than 90% of the total ecosystem reservoir. However, Hg in foliage, bark, and litter plays a more dominant role in Hg cycling than the mineral soil. Mercury partitioning into ecosystem components at the Sierran forest sites was similar to that observed for other US forest sites. Vegetation and litter Hg reservoirs were significantly smaller in the sagebrush steppe system because of lower biomass. Data collected from these ecosystems after wildfire and prescribed burns showed a significant decrease in the Hg pool from certain reservoirs. No loss from mineral soil was observed for the study areas but data from fire severity points suggested that Hg in the upper few millimeters of surface soil may be volatilized due to exposure to elevated temperatures. Comparison of data from burned and unburned plots suggested that the only significant source of atmospheric Hg from the prescribed burn was combustion of litter. Differences in unburned versus burned Hg reservoirs at the forest wildfire site demonstrated that drastic reduction in the litter and above ground live biomass Hg reservoirs after burning had occurred. Sagebrush and litter were absent in the burned plots after a wildfire suggesting that both reservoirs were released during the fire. Mercury emissions due to fire from the forest prescribed burn, forest wildfire, and sagebrush steppe wildfire sites were roughly estimated at 2.0 to 5.1, 2.2 to 4.9, and 0.36+/-0.13 g ha(-1), respectively, with litter and vegetation being the most important sources.

  12. Legacy effects of no-analogue disturbances alter plant community diversity and composition in semi-arid sagebrush steppe

    USGS Publications Warehouse

    Ripplinger, Julie; Franklin, Janet; Edwards, Thomas C.

    2015-01-01

    Questions(i) What role does the type of managed disturbance play in structuring sagebrush steppe plant communities? (ii) How does the composition of post-disturbance plant communities change with time since disturbance? (iii) Does plant community diversity change over time following managed disturbance?LocationField study within the sagebrush steppe ecosystem. Rich County, Utah, USA.MethodsWe developed a chronosequence spanning up to 50 yrs post-treatment to study sagebrush steppe vegetation dynamics. Direct ordination was used to examine plant community composition by managed disturbance type and time since disturbance, and factorial analysis of covariance was used to examine diversity dynamics following disturbance. Indicator species values were calculated in order to identify characteristic species for each disturbance type.ResultsPlant communities experienced a shift toward distinct community composition for each of the three managed disturbance types, and gave no indication of returning to untreated community composition or diversity. Small post-disturbance increases in the number of non-native grass species were observed in the treatments relative to reference, with native forb species making the largest contribution to altered composition. On fire- and chemically-treated sites the proportional native forb species richness increased over time since disturbance, while the proportional contribution of non-native forbs to total species richness decreased. For all three treatment types, native grasses contributed less on average to total richness than on reference sites, while non-native grasses made up a higher proportion of total richness.ConclusionsCommon shrubland management techniques have legacy effects on the composition and diversity of sagebrush steppe plant communities, and no-analogue disturbances, such as chemical or mechanical treatments, have more pronounced legacy effects than treatments similar to natural disturbance regimes (fire). This study

  13. A synopsis of short-term response to alternative restoration treatments in sagebrush-steppe: the SageSTEP project

    USGS Publications Warehouse

    McIver, James; Brunson, Mark; Bunting, Steve; Chambers, Jeanne; Doescher, Paul; Grace, James; Hulet, April; Johnson, Dale; Knick, Steven T.; Miller, Richard; Pellant, Mike; Pierson, Fred; Pyke, David; Rau, Benjamin; Rollins, Kim; Roundy, Bruce; Schupp, Eugene; Tausch, Robin; Williams, Jason

    2014-01-01

    The Sagebrush Steppe Treatment Evaluation Project (SageSTEP) is an integrated long-term study that evaluates ecological effects of alternative treatments designed to reduce woody fuels and to stimulate the herbaceous understory of sagebrush steppe communities of the Intermountain West. This synopsis summarizes results through 3 yr posttreatment. Woody vegetation reduction by prescribed fire, mechanical treatments, or herbicides initiated a cascade of effects, beginning with increased availability of nitrogen and soil water, followed by increased growth of herbaceous vegetation. Response of butterflies and magnitudes of runoff and erosion closely followed herbaceous vegetation recovery. Effects on shrubs, biological soil crust, tree cover, surface woody fuel loads, and sagebrush-obligate bird communities will take longer to be fully expressed. In the short term, cool wet sites were more resilient than warm dry sites, and resistance was mostly dependent on pretreatment herbaceous cover. At least 10 yr of posttreatment time will likely be necessary to determine outcomes for most sites. Mechanical treatments did not serve as surrogates for prescribed fire in how each influenced the fuel bed, the soil, erosion, and sage-obligate bird communities. Woody vegetation reduction by any means resulted in increased availability of soil water, higher herbaceous cover, and greater butterfly numbers. We identified several trade-offs (desirable outcomes for some variables, undesirable for others), involving most components of the study system. Trade-offs are inevitable when managing complex natural systems, and they underline the importance of asking questions about the whole system when developing management objectives. Substantial spatial and temporal heterogeneity in sagebrush steppe ecosystems emphasizes the point that there will rarely be a “recipe” for choosing management actions on any specific area. Use of a consistent evaluation process linked to monitoring may be the

  14. Tapping soil survey information for rapid assessment of sagebrush ecosystem resilience and resistance

    Treesearch

    Jeremy D. Maestas; Steven B. Campbell; Jeanne C. Chambers; Mike Pellant; Richard F. Miller

    2016-01-01

    A new ecologically-based approach to risk abatement has emerged that can aid land managers in grappling with escalating impacts of large-scale wildfire and invasive annual grasses in sagebrush ecosystems, particularly in the Great Basin. Specifically, ecosystem resilience and resistance (R&R) concepts have been more fully operationalized from regional...

  15. Spatial variability in cost and success of revegetation in a Wyoming big sagebrush community.

    PubMed

    Boyd, Chad S; Davies, Kirk W

    2012-09-01

    The ecological integrity of the Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle and A. Young) alliance is being severely interrupted by post-fire invasion of non-native annual grasses. To curtail this invasion, successful post-fire revegetation of perennial grasses is required. Environmental factors impacting post-fire restoration success vary across space within the Wyoming big sagebrush alliance; however, most restorative management practices are applied uniformly. Our objectives were to define probability of revegetation success over space using relevant soil-related environmental factors, use this information to model cost of successful revegetation and compare the importance of vegetation competition and soil factors to revegetation success. We studied a burned Wyoming big sagebrush landscape in southeast Oregon that was reseeded with perennial grasses. We collected soil and vegetation data at plots spaced at 30 m intervals along a 1.5 km transect in the first two years post-burn. Plots were classified as successful (>5 seedlings/m(2)) or unsuccessful based on density of seeded species. Using logistic regression we found that abundance of competing vegetation correctly predicted revegetation success on 51 % of plots, and soil-related variables correctly predicted revegetation performance on 82.4 % of plots. Revegetation estimates varied from $167.06 to $43,033.94/ha across the 1.5 km transect based on probability of success, but were more homogenous at larger scales. Our experimental protocol provides managers with a technique to identify important environmental drivers of restoration success and this process will be of value for spatially allocating logistical and capital expenditures in a variable restoration environment.

  16. Quantifying spatial habitat loss from hydrocarbon development through assessing habitat selection patterns of mule deer.

    PubMed

    Northrup, Joseph M; Anderson, Charles R; Wittemyer, George

    2015-11-01

    Extraction of oil and natural gas (hydrocarbons) from shale is increasing rapidly in North America, with documented impacts to native species and ecosystems. With shale oil and gas resources on nearly every continent, this development is set to become a major driver of global land-use change. It is increasingly critical to quantify spatial habitat loss driven by this development to implement effective mitigation strategies and develop habitat offsets. Habitat selection is a fundamental ecological process, influencing both individual fitness and population-level distribution on the landscape. Examinations of habitat selection provide a natural means for understanding spatial impacts. We examined the impact of natural gas development on habitat selection patterns of mule deer on their winter range in Colorado. We fit resource selection functions in a Bayesian hierarchical framework, with habitat availability defined using a movement-based modeling approach. Energy development drove considerable alterations to deer habitat selection patterns, with the most substantial impacts manifested as avoidance of well pads with active drilling to a distance of at least 800 m. Deer displayed more nuanced responses to other infrastructure, avoiding pads with active production and roads to a greater degree during the day than night. In aggregate, these responses equate to alteration of behavior by human development in over 50% of the critical winter range in our study area during the day and over 25% at night. Compared to other regions, the topographic and vegetative diversity in the study area appear to provide refugia that allow deer to behaviorally mediate some of the impacts of development. This study, and the methods we employed, provides a template for quantifying spatial take by industrial activities in natural areas and the results offer guidance for policy makers, mangers, and industry when attempting to mitigate habitat loss due to energy development. © 2015 The Authors

  17. Application of Habitat Equivalency Analysis to USACE Projects

    DTIC Science & Technology

    2009-04-01

    reef, open - water bay bottoms, and water column habitats. Of the four case studies, Craney Island is the only one where the logic behind the choice of...Act (NEPA) of 1969, the Federal Water Pollution Act (Clean Water Act) of 1972, and the Water Resources Development Act (WRDA) of 1986, as well as...mitigation. These habitats support a diverse assemblage of sponges, algae , and soft and hard corals, provide habitat for larval fish, and are considered

  18. Plant and soil consequences of shrub management in a big sagebrush-dominated rangeland ecosystem

    USDA-ARS?s Scientific Manuscript database

    Soil organic carbon (SOC) responses to shrub management in western US rangelands, especially those dominated by Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle & Young) in low rainfall areas (<300 mm), remains a major knowledge gap. We sampled vegetation and soils in 2009 ...

  19. Climate drives adaptive genetic responses associated with survival in big sagebrush (Artemisia tridentata)

    Treesearch

    Lindsay Chaney; Bryce A. Richardson; Matthew J. Germino

    2016-01-01

    A genecological approach was used to explore genetic variation for survival in Artemisia tridentata (big sagebrush). Artemisia tridentata is a widespread and foundational shrub species in western North America. This species has become extremely fragmented, to the detriment of dependent wildlife, and efforts to restore it are now a land management priority. Common-...

  20. Impact of tebuthiuron on biodiversity of high elevation mountain big sagebrush communities

    Treesearch

    Barbara A. Wachocki; Mohammad Sondossi; Stewart C. Sanderson; Bruce L. Webb; E. Durant McArthur

    2001-01-01

    The objectives of this study were to determine tebuthiuron’s (1) effectiveness at low application rates in thinning dense, high elevation stands of mountain big sagebrush, (2) impact on understory herbaceous plants and soil microflora, and (3) movement and stability in soil. Four study sites were established in the Fish Lake National Forest and adjacent Bureau of Land...

  1. Albeni Falls Wildlife Mitigation Project, 2008 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soults, Scott

    The Albeni Falls Interagency Work Group (AFIWG) was actively involved in implementing wildlife mitigation activities in late 2007, but due to internal conflicts, the AFIWG members has fractionated into a smaller group. Implementation of the monitoring and evaluation program continued across protected lands. As of 2008, The Albeni Falls Interagency Work Group (Work Group) is a coalition comprised of wildlife managers from three tribal entities (Kalispel Tribe, Kootenai Tribe, Coeur d Alene Tribe) and the US Army Corps of Engineers. The Work Group directs where wildlife mitigation implementation occurs in the Kootenai, Pend Oreille and Coeur d Alene subbasins. Themore » Work Group is unique in the Columbia Basin. The Columbia Basin Fish and Wildlife Authority (CBFWA) wildlife managers in 1995, approved what was one of the first two project proposals to implement mitigation on a programmatic basis. The maintenance of this kind of approach through time has allowed the Work Group to implement an effective and responsive habitat protection program by reducing administrative costs associated with site-specific project proposals. The core mitigation entities maintain approximately 9,335 acres of wetland/riparian habitats in 2008.« less

  2. Habitat Evaluation Procedures (HEP) Report : Hellsgate Project, 1999-2000 Technical Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, Matthew

    2000-05-01

    A Habitat Evaluation Procedure (HEP) study was conducted on lands acquired and/or managed (4,568 acres total) by the Hellsgate Big Game Winter Range Wildlife Mitigation Project (Hellsgate project) to mitigate some of the losses associated with the original construction and operation of Grand Coulee Dam and inundation of habitats behind the dams. Three separate properties, totaling 2,224 acres were purchased in 1998. One property composed of two separate parcels, mostly grassland lies southeast of the town of Nespelem in Okanogan County (770 acres) and was formerly called the Hinman property. The former Hinman property lies within an area the Tribesmore » have set aside for the protection and preservation of the sharp-tailed grouse (Agency Butte unit). This special management area minus the Hinman acquisition contains 2,388 acres in a long-term lease with the Tribes. The second property lies just south of the Silver Creek turnoff (Ferry County) and is bisected by the Hellsgate Road (part of the Friedlander unit). This parcel contains 60 acres of riparian and conifer forest cover. The third property (now named the Sand Hills unit) acquired for mitigation (1,394 acres) lies within the Hellsgate Reserve in Ferry County. This new acquisition links two existing mitigation parcels (the old Sand Hills parcels and the Lundstrum Flat parcel, all former Kuehne purchases) together forming one large unit. HEP team members included individuals from the Colville Confederated Tribes Fish and Wildlife Department (CTCR), Washington Department of Fish and Wildlife (WDFW), and Bureau of Land Management (BLM). The HEP team conducted a baseline habitat survey using the following HEP species models: mule deer (Odocoileus hemionus), mink (Mustela vison), downy woodpecker (Picoides pubescens), bobcat (Lynx rufus), yellow warbler (Dendroica petechia), and sharp-tailed grouse (Tympanuchus phasianellus columbianus). HEP analysis and results are discussed within the body of the text. The

  3. Two subspecies and a hybrid of big sagebrush: Comparison of respiration and growth characteristics

    Treesearch

    L. D. Hansen; L. K. Farnsworth; N. K. Itoga; A. Nicholson; H. L. Summers; M. C. Whitsitt; E. D. McArthur

    2008-01-01

    Environmental temperatures and growth and respiratory characteristics of natural populations of two subspecies and a hybrid of sagebrush (Artemisia tridentata) that grow on a single hillside were measured to test a hypothesis that adaptation to microclimate temperature patterns restricts these taxa to their native locations and that plant-endophyte...

  4. Spatially explicit modeling of annual and seasonal habitat for greater sage-grouse (Centrocercus urophasianus) in Nevada and Northeastern California—An updated decision-support tool for management

    USGS Publications Warehouse

    Coates, Peter S.; Casazza, Michael L.; Brussee, Brianne E.; Ricca, Mark A.; Gustafson, K. Benjamin; Sanchez-Chopitea, Erika; Mauch, Kimberly; Niell, Lara; Gardner, Scott; Espinosa, Shawn; Delehanty, David J.

    2016-05-20

    Successful adaptive management hinges largely upon integrating new and improved sources of information as they become available. As a timely example of this tenet, we updated a management decision support tool that was previously developed for greater sage-grouse (Centrocercus urophasianus, hereinafter referred to as “sage-grouse”) populations in Nevada and California. Specifically, recently developed spatially explicit habitat maps derived from empirical data played a key role in the conservation of this species facing listing under the Endangered Species Act. This report provides an updated process for mapping relative habitat suitability and management categories for sage-grouse in Nevada and northeastern California (Coates and others, 2014, 2016). These updates include: (1) adding radio and GPS telemetry locations from sage-grouse monitored at multiple sites during 2014 to the original location dataset beginning in 1998; (2) integrating output from high resolution maps (1–2 m2) of sagebrush and pinyon-juniper cover as covariates in resource selection models; (3) modifying the spatial extent of the analyses to match newly available vegetation layers; (4) explicit modeling of relative habitat suitability during three seasons (spring, summer, winter) that corresponded to critical life history periods for sage-grouse (breeding, brood-rearing, over-wintering); (5) accounting for differences in habitat availability between more mesic sagebrush steppe communities in the northern part of the study area and drier Great Basin sagebrush in more southerly regions by categorizing continuous region-wide surfaces of habitat suitability index (HSI) with independent locations falling within two hydrological zones; (6) integrating the three seasonal maps into a composite map of annual relative habitat suitability; (7) deriving updated land management categories based on previously determined cut-points for intersections of habitat suitability and an updated index of sage

  5. Techniques to improve seeding success of forage kochia in exotic annual grass invaded sagebrush rangelands

    USDA-ARS?s Scientific Manuscript database

    The objectives of this study were to determine which seeding techniques are appropriate for enhancing the establishment of forage kochia, a promising revegetation species for sagebrush rangelands prone to invasion by exotic annual grasses. Specifically, we evaluated three seeding methods, two timing...

  6. Using resilience and resistance concepts to manage threats to sagebrush ecosystems, Gunnison sage-grouse, and Greater sage-grouse in their eastern range: A strategic multi-scale approach

    Treesearch

    Jeanne C. Chambers; Jeffrey L. Beck; Steve Campbell; John Carlson; Thomas J. Christiansen; Karen J. Clause; Jonathan B. Dinkins; Kevin E. Doherty; Kathleen A. Griffin; Douglas W. Havlina; Kenneth F. Henke; Jacob D. Hennig; Laurie L. Kurth; Jeremy D. Maestas; Mary Manning; Kenneth E. Mayer; Brian A. Mealor; Clinton McCarthy; Marco A. Perea; David A. Pyke

    2016-01-01

    This report provides a strategic approach developed by a Western Association of Fish and Wildlife Agencies interagency working group for conservation of sagebrush ecosystems, Greater sage-grouse, and Gunnison sage-grouse. It uses information on (1) factors that influence sagebrush ecosystem resilience to disturbance and resistance to nonnative invasive annual grasses...

  7. Wildlife and Wildlife Habitat Mitigation Plan for Hungry Horse Hydroelectric Project, Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bissell, Gael

    1985-01-01

    This report describes the proposed mitigation plan for wildlife losses attributable to the construction of the Hungry Horse hydroelectric project. In this report, mitigation objectives and alternatives, the recommended mitigation projects, and the crediting system for each project are described by each target species. Mitigation objectives for each species (group) were established based on the loss estimates but tailored to the recommended projects. 13 refs., 3 figs., 19 tabs.

  8. Mountain big sagebrush communities on the Bishop Conglomerate in the eastern Uinta Mountains

    Treesearch

    Sherel Goodrich; Allen Huber

    2001-01-01

    The Bishop Conglomerate forms broad, gently sloping pediments that include a mantle or veneer of coarse gravel and some cobble over underlying formations. These pediments cover large areas at the margins of the Uinta Mountains. Mountain big sagebrush (Artemisia tridentata var. pauciflora) communities cover rather large areas at the outer edge or lower end of these...

  9. Pretreatment tree dominance and conifer removal treatments affect plant succession in sagebrush communities

    Treesearch

    Rachel E. Williams; Bruce A. Roundy; April Hulet; Richard F. Miller; Robin J. Tausch; Jeanne C. Chambers; Jeffrey Matthews; Robert Schooley; Dennis Eggett

    2017-01-01

    In sagebrush (Artemisia tridentata Nutt.) ecosystems, expansion and infilling of conifers decreases the abundance of understory perennial vegetation and lowers ecosystem resilience and resistance of the once shrub grass−dominated state. We prescribed burned or cut juniper (Juniperus spp. L.) and pinyon (Pinus spp. L.) trees at 10 sites across the western United States...

  10. Gold and other metals in big sagebrush (Artemisia tridentata Nutt.) as an exploration tool, Gold Run District, Humboldt County, Nevada

    USGS Publications Warehouse

    Erdman, J.A.; Cookro, T.M.; O'Leary, R. M.; Harms, T.F.

    1988-01-01

    Big sagebrush - a cold-desert species that dominates the terrain over large parts of western United States - was sampled along several traverses that crossed thermally metamorphosed limestone, phyllitic shale, and schist of the Middle and Upper Cambrian Preble Formation that host skarn-, disseminated gold and silver-, and hot springs gold-type mineral occurrences. Patterns of detectable levels of gold (8 to 28 ppb or ng g-1) in ash of new growth were consistent with areas affected by known or suspected gold mineralization. Soils collected along one of the traverses where a selenium-indicator plant was common contained no gold above background levels of 2ppb, but were consistently high in As, Sb, and Zn, and several samples were unusually high in Se (maximum 11 ppm or ??g g-1). Sagebrush along this traverse contained Li at levels above norms for this species. We also found a puzzling geochemical anomaly at a site basinward from active hot springs along a range-front fault scarp. Sagebrush at this site contained a trace of gold and an unusually high concentration of Cd (13 ppm) and the soil had anomalous concentrations of Cd and Bi (3.2 and 6 ppm, respectively). The source of this anomaly could be either metal-rich waters from an irrigation ditch or leakage along a buried fault. Despite the limited nature of the study, we conclude that gold in sagebrush could be a cost-effective guide to drilling locations in areas where the geology seems favorable for disseminated and vein precious metals. ?? 1988.

  11. Sagebrush carrying out hydraulic lift enhances surface soil nitrogen cycling and nitrogen uptake into inflorescences.

    PubMed

    Cardon, Zoe G; Stark, John M; Herron, Patrick M; Rasmussen, Jed A

    2013-11-19

    Plant roots serve as conduits for water flow not only from soil to leaves but also from wetter to drier soil. This hydraulic redistribution through root systems occurs in soils worldwide and can enhance stomatal opening, transpiration, and plant carbon gain. For decades, upward hydraulic lift (HL) of deep water through roots into dry, litter-rich, surface soil also has been hypothesized to enhance nutrient availability to plants by stimulating microbially controlled nutrient cycling. This link has not been demonstrated in the field. Working in sagebrush-steppe, where water and nitrogen limit plant growth and reproduction and where HL occurs naturally during summer drought, we slightly augmented deep soil water availability to 14 HL+ treatment plants throughout the summer growing season. The HL+ sagebrush lifted greater amounts of water than control plants and had slightly less negative predawn and midday leaf water potentials. Soil respiration was also augmented under HL+ plants. At summer's end, application of a gas-based (15)N isotopic labeling technique revealed increased rates of nitrogen cycling in surface soil layers around HL+ plants and increased uptake of nitrogen into HL+ plants' inflorescences as sagebrush set seed. These treatment effects persisted even though unexpected monsoon rainstorms arrived during assays and increased surface soil moisture around all plants. Simulation models from ecosystem to global scales have just begun to include effects of hydraulic redistribution on water and surface energy fluxes. Results from this field study indicate that plants carrying out HL can also substantially enhance decomposition and nitrogen cycling in surface soils.

  12. The relative influence of road characteristics and habitat on adjacent lizard populations in arid shrublands

    USGS Publications Warehouse

    Hubbard, Kaylan A.; Chalfoun, Anna D.; Gerow, Kenneth G.

    2016-01-01

    As road networks continue to expand globally, indirect impacts to adjacent wildlife populations remain largely unknown. Simultaneously, reptile populations are declining worldwide and anthropogenic habitat loss and fragmentation are frequently cited causes. We evaluated the relative influence of three different road characteristics (surface treatment, width, and traffic volume) and habitat features on adjacent populations of Northern Sagebrush Lizards (Sceloporus graciosus graciosus), Plateau Fence Lizards (S. tristichus), and Greater Short-Horned Lizards (Phrynosoma hernandesi) in mixed arid shrubland habitats in southwest Wyoming. Neither odds of lizard presence nor relative abundance was significantly related to any of the assessed road characteristics, although there was a trend for higher Sceloporus spp. abundance adjacent to paved roads. Sceloporus spp. relative abundance did not vary systematically with distance to the nearest road. Rather, both Sceloporus spp. and Greater Short-Horned Lizards were associated strongly with particular habitat characteristics adjacent to roads. Sceloporus spp. presence and relative abundance increased with rock cover, relative abundance was associated positively with shrub cover, and presence was associated negatively with grass cover. Greater Short-Horned Lizard presence increased with bare ground and decreased marginally with shrub cover. Our results suggest that habitat attributes are stronger correlates of lizard presence and relative abundance than individual characteristics of adjacent roads, at least in our system. Therefore, an effective conservation approach for these species may be to consider the landscape through which new roads and their associated development would occur, and the impact that placement could have on fragment size and key habitat elements.

  13. Human recreation affects spatio-temporal habitat use patterns in red deer (Cervus elaphus)

    PubMed Central

    Coppes, Joy; Burghardt, Friedrich; Hagen, Robert; Suchant, Rudi; Braunisch, Veronika

    2017-01-01

    The rapid spread and diversification of outdoor recreation can impact on wildlife in various ways, often leading to the avoidance of disturbed habitats. To mitigate human-wildlife conflicts, spatial zonation schemes can be implemented to separate human activities from key wildlife habitats, e.g., by designating undisturbed wildlife refuges or areas with some level of restriction to human recreation and land use. However, mitigation practice rarely considers temporal differences in human-wildlife interactions. We used GPS telemetry data from 15 red deer to study the seasonal (winter vs. summer) and diurnal (day vs. night) variation in recreation effects on habitat use in a study region in south-western Germany where a spatial zonation scheme has been established. Our study aimed to determine if recreation infrastructure and spatial zonation affected red deer habitat use and whether these effects varied daily or seasonally. Recreation infrastructure did not affect home range selection in the study area, but strongly determined habitat use within the home range. The spatial zonation scheme was reflected in both of these two levels of habitat selection, with refuges and core areas being more frequently used than the border zones. Habitat use differed significantly between day and night in both seasons. Both summer and winter recreation trails, and nearby foraging habitats, were avoided during day, whereas a positive association was found during night. We conclude that human recreation has an effect on red deer habitat use, and when designing mitigation measures daily and seasonal variation in human-wildlife interactions should be taken into account. We advocate using spatial zonation in conjunction with temporal restrictions (i.e., banning nocturnal recreation activities) and the creation of suitable foraging habitats away from recreation trails. PMID:28467429

  14. Advancing nursery production of big sagebrush seedlings: Cold storage and variation in subspecies growth

    Treesearch

    Emily C. Overton

    2012-01-01

    Big sagebrush is an essential component of shrub-steppe ecosystems that is rapidly disappearing from the landscape. Recognizing this, it has become a target of restoration; however, current efforts using direct seeding have shown variable success and planting seedlings may provide a better option. Nonetheless, limited information is available on the nursery production...

  15. Effects of conifer treatments on soil nutrient availability and plant composition in sagebrush steppe

    USDA-ARS?s Scientific Manuscript database

    Piñon-juniper woodlands of the western United States have expanded 2 to 10-fold since the late 1800’s. Since the 1950’s woodland control measures using chainsaws, heavy equipment and prescribed fire have been used to reduce woodlands and restore big sagebrush steppe and decrease woody fuel loading. ...

  16. Spatial and temporal variability in minimum temperature trends in the western U.S. sagebrush steppe

    USDA-ARS?s Scientific Manuscript database

    Climate is a major driver of ecosystem dynamics. In recent years there has been considerable interest in future climate change and potential impacts on ecosystems and management options. In this paper, we analyzed minimum monthly temperature (T min) for ten rural locations in the western sagebrush...

  17. Idaho Habitat and Natural Production Monitoring Part I, 1993 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rich, Bruce A.; Petrosky, Charles E.

    The Idaho Department of Fish and Game (IDFG) has been monitoring and evaluating proposed and existing habitat improvement projects for rainbow-steelhead trout Oncorhynchus mykiss and chinook salmon O. tshawytscha in the Clearwater River and Salmon River drainages on a large scale for the past 8 years. Projects included in the evaluation are funded by, or proposed for funding by, the Bonneville Power Administration (BPA) under the Northwest Power Planning Act as off-site mitigation for downstream hydropower development on the Snake and Columbia rivers. A mitigation record is being developed using increased carrying capacity and/or survival as the best measures ofmore » benefit from a habitat enhancement project. Determination of full benefit from a project depends on completion or maturation of the project and presence of adequate numbers of fish to document actual increases in fish production. The depressed status of upriver anadromous stocks has precluded measuring full benefits of any habitat project in Idaho. Partial benefit is credited to the mitigation record in the interim period of run restoration.« less

  18. Restoration as mitigation: analysis of stream mitigation for coal mining impacts in southern Appalachia.

    PubMed

    Palmer, Margaret A; Hondula, Kelly L

    2014-09-16

    Compensatory mitigation is commonly used to replace aquatic natural resources being lost or degraded but little is known about the success of stream mitigation. This article presents a synthesis of information about 434 stream mitigation projects from 117 permits for surface mining in Appalachia. Data from annual monitoring reports indicate that the ratio of lengths of stream impacted to lengths of stream mitigation projects were <1 for many projects, and most mitigation was implemented on perennial streams while most impacts were to ephemeral and intermittent streams. Regulatory requirements for assessing project outcome were minimal; visual assessments were the most common and 97% of the projects reported suboptimal or marginal habitat even after 5 years of monitoring. Less than a third of the projects provided biotic or chemical data; most of these were impaired with biotic indices below state standards and stream conductivity exceeding federal water quality criteria. Levels of selenium known to impair aquatic life were reported in 7 of the 11 projects that provided Se data. Overall, the data show that mitigation efforts being implemented in southern Appalachia for coal mining are not meeting the objectives of the Clean Water Act to replace lost or degraded streams ecosystems and their functions.

  19. Prescribed Fire Effects on Runoff, Erosion, and Soil Water Repellency on Steeply-Sloped Sagebrush Rangeland over a Five Year Period

    NASA Astrophysics Data System (ADS)

    Williams, C. J.; Pierson, F. B.; Al-Hamdan, O. Z.

    2014-12-01

    Fire is an inherent component of sagebrush steppe rangelands in western North America and can dramatically affect runoff and erosion processes. Post-fire flooding and erosion events pose substantial threats to proximal resources, property, and human life. Yet, prescribed fire can serve as a tool to manage vegetation and fuels on sagebrush rangelands and to reduce the potential for large catastrophic fires and mass erosion events. The impact of burning on event hydrologic and erosion responses is strongly related to the degree to which burning alters vegetation, ground cover, and surface soils and the intensity and duration of precipitation. Fire impacts on hydrologic and erosion response may be intensified or reduced by inherent site characteristics such as topography and soil properties. Parameterization of these diverse conditions in predictive tools is often limited by a lack of data and/or understanding for the domain of interest. Furthermore, hydrologic and erosion functioning change as vegetation and ground cover recover in the years following burning and few studies track these changes over time. In this study, we evaluated the impacts of prescribed fire on vegetation, ground cover, soil water repellency, and hydrologic and erosion responses 1, 2, and 5 yr following burning of a mountain big sagebrush community on steep hillslopes with fine-textured soils. The study site is within the Reynolds Creek Experimental Watershed, southwestern Idaho, USA. Vegetation, ground cover, and soil properties were measured over plot scales of 0.5 m2 to 9 m2. Rainfall simulations (0.5 m2) were used to assess the impacts of fire on soil water repellency, infiltration, runoff generation, and splash-sheet erosion. Overland flow experiments (9 m2) were used to assess the effects of fire-reduced ground cover on concentrated-flow runoff and erosion processes. The study results provide insight regarding fire impacts on runoff, erosion, and soil water repellency in the immediate and

  20. Seed weight variation of Wyoming sagebrush in northern Nevada.

    PubMed

    Busso, Carlos A; Perryman, Barry L

    2005-12-01

    Seed size is a crucial plant trait that may potentially affect not only immediate seedling success but also the subsequent generation. We examined variation in seed weight of Wyoming sagebrush (Artemisia tridentata ssp. wyomingensis Beetle and Young), an excellent candidate species for rangeland restoration. The working hypothesis was that a major fraction of spatial and temporal variability in seed size (weight) of Wyoming sagebrush could be explained by variations in mean monthly temperatures and precipitation. Seed collection was conducted at Battle Mountain and Eden Valley sites in northern Nevada, USA, during November of 2002 and 2003. Frequency distributions of seed weight varied from leptokurtic to platykurtic, and from symmetry to skewness to the right for both sites and years. Mean seed weight varied by a factor of 1.4 between locations and years. Mean seed weight was greater (P < 0.05) in 2003 than in 2002 at both sites. This can partially be attributed to 55% greater precipitation in 2003 than 2002, since mean monthly temperatures were similar (P > 0.05) in all study situations. Simple linear regression showed that monthly precipitation (March to November) explained 85% of the total variation in mean seed weight (P = 0.079). Since the relationship between mean monthly temperature (June-November) and mean seed weight was not significant (r2 = 0.00, P = 0.431), this emphasizes the importance of precipitation as an important determinant of mean seed weight. Our results suggest that the precipitation regime to which the mother plant is exposed can have a significant effect on sizes of seeds produced. Hence, seasonal changes in water availability would tend to alter size distributions of produced offspring.

  1. A Mechanistic Understanding of the Role Drought-Induced Stress Play in Regulating Photosynthetic and Respiration Activities of the Sagebrush after a Precipitation Pulse Event

    NASA Astrophysics Data System (ADS)

    Mitra, B.; Mackay, D. S.; Pendall, E.; Ewers, B. E.

    2009-12-01

    Dryland ecosystems with low annual precipitation have been predicted to be susceptible to changes in precipitation pattern due to global climate change. A lot of uncertainty still remains with regard to the role soil moisture stress plays in regulating photosynthetic and soil respiration activities of the plants. Thus in order to have a better understanding of how plants in the dryland ecosystem physiologically respond to changes in water availability, an irrigation experiment was conducted in a sagebrush ecosystem in the months of July and August of 2009. Also, in order to separate heterotrophic and autotrophic respiration trench plots were established a few weeks prior to the irrigation experiment. The study site located near the town of Saratoga, Wyoming at an elevation of 2200m was dominated by Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis). A 20 mm rainfall was simulated over both the trench plots and the sagebrush plots, which were of 1 m2 dimension. We measured predawn water potential, gas exchange, soil respiration as well as del 13C of the roots and leaves of the sagebrush. All these measurements were conducted 1 day prior to and up to 7 days after the irrigation experiment. On day 7 soil samples were collected from all the plots in order to analyze for substrate induced respiration (SIR) in order to determine microbial biomass carbon in soils. Sagebrush responded to pulse event immediately after the irrigation experiment as indicated by the increase in carbon flux, and photosynthesis rate and decrease in predawn water potential, but by day 5 they returned to their pre-pulse status. A plausible explanation for this phenomenon can be attributed to the high degree of soil moisture stress which may have lead to its incomplete photosynthetic recovery from the pulse event. Heterotrophic respiration also displayed a similar response with the effect of pulse disappearing by day 5. Interestingly the irrigation experiment repeated again in August

  2. Floral guilds of bees in sagebrush steppe: Comparing bee usage of wildflowers available for postfire restoration

    USDA-ARS?s Scientific Manuscript database

    Healthy plant communities of the American sagebrush-steppe consist of mostly wind-pollinated shrubs and grasses interspersed with a diverse mix of mostly spring-blooming, herbaceous perennial wildflowers. Native, non-social bees are the common floral visitors, but their floral associations and abund...

  3. Preference of pen-reared northern bobwhite among native plant seeds of the sand sagebrush-mixed prairie

    USDA-ARS?s Scientific Manuscript database

    Adult northern bobwhite quail (Colinus virginianus) are largely granivorous, eating primarily seeds produced from grasses and forbs. The objective of this research was to determine northern bobwhite quail preference among seeds of 45 plant species associated with the sand sagebrush-mixed prairie. ...

  4. Influence of Mowing Artemisia tridentata ssp. wyomingensis on Winter Habitat for Wildlife

    NASA Astrophysics Data System (ADS)

    Davies, Kirk W.; Bates, Jonathan D.; Johnson, Dustin D.; Nafus, Aleta M.

    2009-07-01

    Mowing is commonly implemented to Artemisia tridentata ssp. wyomingensis (Beetle & A. Young) S.L. Welsh (Wyoming big sagebrush) plant communities to improve wildlife habitat, increase forage production for livestock, and create fuel breaks for fire suppression. However, information detailing the influence of mowing on winter habitat for wildlife is lacking. This information is crucial because many wildlife species depended on A. tridentata spp. wyomingensis plant communities for winter habitat and consume significant quantities of Artemisia during this time . Furthermore, information is generally limited describing the recovery of A. tridentata spp. wyomingensis to mowing and the impacts of mowing on stand structure. Stand characteristics and Artemisia leaf tissue crude protein (CP), acid detergent fiber (ADF), and neutral detergent fiber (NDF) concentrations were measured in midwinter on 0-, 2-, 4-, and 6-year-old fall-applied mechanical (mowed at 20 cm height) treatments and compared to adjacent untreated (control) areas. Mowing compared to the control decreased Artemisia cover, density, canopy volume, canopy elliptical area, and height ( P < 0.05), but all characteristics were recovering ( P < 0.05). Mowing A. tridentata spp. wyomingensis plant communities slightly increases the nutritional quality of Artemisia leaves ( P < 0.05), but it simultaneously results in up to 20 years of decrease in Artemisia structural characteristics. Because of the large reduction in A. tridentata spp. wyomingensis for potentially 20 years following mowing, mowing should not be applied in Artemisia facultative and obligate wildlife winter habitat. Considering the decline in A. tridentata spp. wyomingensis-dominated landscapes, we caution against mowing these communities.

  5. Science framework for conservation and restoration of the sagebrush biome: Linking the Department of the Interior’s Integrated Rangeland Fire Management Strategy to long-term strategic conservation actions

    Treesearch

    J.C. Chambers; J.L. Beck; J.B. Bradford; J. Bybee; S. Campbell; J. Carlson; T.J. Christiansen; K.J. Clause; G. Collins; M.R. Crist; J.B. Dinkins; K.E. Doherty; F. Edwards; S. Espinosa; K.A. Griffin; P. Griffin; J.R. Haas; S.E. Hanser; D.W. Havlina; K.F. Henke; J.D. Hennig; L.A. Joyce; F.M. Kilkenny; S.M. Kulpa; L.L. Kurth; J.D. Maestas; M. Manning; K.E. Mayer; B.A. Mealor; C. McCarthy; M. Pellant; M.A. Perea; K.L. Prentice; D.A. Pyke; L.A. Wiechman; A. Wuenschel

    2017-01-01

    The Science Framework is intended to link the Department of the Interior’s Integrated Rangeland Fire Management Strategy with long-term strategic conservation actions in the sagebrush biome. The Science Framework provides a multiscale approach for prioritizing areas for management and determining effective management strategies within the sagebrush biome. The emphasis...

  6. 77 FR 37702 - Grays Lake National Wildlife Refuge, Caribou and Bonneville Counties, ID; Comprehensive...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-22

    ... conserving wildlife and their habitats, CCPs identify compatible wildlife-dependent recreational... and objectives that will ensure the best possible approach to wildlife, plant, and habitat.... The remaining habitats are comprised of upland sagebrush, dry grass meadows, willow, and aspen. There...

  7. 2006 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. L. Johnson; K. A. Gano

    2006-10-03

    The purpose of this report is to document the status of revegetation projects and natural resources mitigation efforts that have been conducted for remediated waste sites and other activities associated with the Comprehensive Environmental Response, Compensation, and Liability Act cleanup of National Priorities List waste sites at Hanford. One of the objectives of restoration is the revegetation of remediated waste sites to stabilize the soil and restore the land to native vegetation. The report documents the results of revegetation and mitigation monitoring conducted in 2006 and includes 11 revegetation/restoration projects, one revegetation/mitigation project, and 2 bat habitat mitigation projects.

  8. Libby Mitigation Program, 2007 Annual Progress Report: Mitigation for the Construction and Operation of Libby Dam.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunnigan, James; DeShazer, J.; Garrow, L.

    Libby Reservoir was created under an International Columbia River Treaty between the United States and Canada for cooperative water development of the Columbia River Basin (Columbia River Treaty 1964). Libby Reservoir inundated 109 stream miles of the mainstem Kootenai River in the United States and Canada, and 40 miles of tributary streams in the U.S. that provided habitat for spawning, juvenile rearing, and migratory passage (Figure 1). The authorized purpose of the dam is to provide power (91.5%), flood control (8.3%), and navigation and other benefits (0.2%; Storm et al. 1982). The Pacific Northwest Power Act of 1980 recognized possiblemore » conflicts stemming from hydroelectric projects in the northwest and directed Bonneville Power Administration to 'protect, mitigate, and enhance fish and wildlife to the extent affected by the development and operation of any hydroelectric project of the Columbia River and its tributaries' (4(h)(10)(A)). Under the Act, the Northwest Power Planning Council was created and recommendations for a comprehensive fish and wildlife program were solicited from the region's federal, state, and tribal fish and wildlife agencies. Among Montana's recommendations was the proposal that research be initiated to quantify acceptable seasonal minimum pool elevations to maintain or enhance the existing fisheries (Graham et al. 1982). Research to determine how operations of Libby Dam affect the reservoir and river fishery and to suggest ways to lessen these effects began in May 1983. The framework for the Libby Reservoir Model (LRMOD) was completed in 1989. Development of Integrated Rule Curves (IRCs) for Libby Dam operation was completed in 1996 (Marotz et al. 1996). The Libby Reservoir Model and the IRCs continue to be refined (Marotz et al 1999). Initiation of mitigation projects such as lake rehabilitation and stream restoration began in 1996. The primary focus of the Libby Mitigation project now is to restore the fisheries and fish

  9. Estimation procedures for understory biomass and fuel loads in sagebrush steppe invaded by woodlands

    Treesearch

    Alicia L. Reiner; Robin J. Tausch; Roger F. Walker

    2010-01-01

    Regression equations were developed to predict biomass for 9 shrubs, 9 grasses, and 10 forbs that generally dominate sagebrush ecosystems in central Nevada. Independent variables included percent cover, average height, and plant volume. We explored 2 ellipsoid volumes: one with maximum plant height and 2 crown diameters and another with live crown height and 2 crown...

  10. Response of a depleted sagebrush steppe riparian system to grazing control and woody plantings

    Treesearch

    Warren P. Clary; Nancy L. Shaw; Jonathan G. Dudley; Victoria A. Saab; John W. Kinney; Lynda C. Smithman

    1996-01-01

    To find out if a depleted riparian system in the sagebrush steppe of eastern Oregon would respond quickly to improved management, five management treatments were applied for 7 years, ranging from ungrazed to heavily grazed treatments, including in some cases, planting of woody species. While the results varied, all treatments were too limited to significantly restore...

  11. Characteristics of modern pollen rain and the relationship to vegetation in sagebrush-steppe environments of Montana, USA

    NASA Astrophysics Data System (ADS)

    Briles, C.; Bryant, V.

    2010-12-01

    Variations in pollen production and dispersal characteristics among plant species complicate our ability to determine direct relationships between deposited pollen and actual vegetation. In order to better understand modern pollen-vegetation relationships, we analyzed pollen from 61 samples taken from sagebrush-steppe environments across Montana and compared them with the actual vegetation composition at each site. We also determined to what degree sagebrush-steppe communities can be geographically distinguished from one another based on their pollen signature. Pollen preservation was good, especially in wetter environments, with pollen degradataion ranging from 4-15%. Diploxylon Pinus was the primary contributor to the pollen rain, even in plots where pine trees did not occur or were several kilometers from the plot. Artemisia and grass pollen are underrepresented in the soils samples, while Chenopodiaceae and Juniperus pollen are overrepresented when compared to actual vegetation composition. Insect-pollinated species are present only in very minor amounts in the soil samples, even though some (e.g., Brassica) are abundant in the plots. In general, pollen spectra show significant differences between regions, however, within each region the individual spectra are not statistically significant from one another. An understanding of modern pollen-vegetation relationships and the palynological “fingerprint” of sagebrush-steppe communities aid in climatic and ecological interpretations of fossil pollen assemblages. The data also provide important control samples for forensics studies that use pollen to geolocate an object or person to a crime scene.

  12. Do container volume, site preparation, and field fertilization affect restoration potential of Wyoming big sagebrush?

    Treesearch

    Kayla R. Herriman; Anthony S. Davis; Kent G. Apostol; Olga. A. Kildisheva; Amy L. Ross-Davis; Kas Dumroese

    2016-01-01

    Land management practices, invasive species expansion, and changes in the fire regime greatly impact the distribution of native plants in natural areas. Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis), a keystone species in the Great Basin, has seen a 50% reduction in its distribution. For many dryland species, reestablishment efforts have...

  13. Resilience and resistance of sagebrush ecosystems: Implications for state and transition models and management treatments

    Treesearch

    Jeanne C. Chambers; Richard F. Miller; David I. Board; David A. Pyke; Bruce A. Roundy; James B. Grace; Eugene W. Schupp; Robin J. Tausch

    2014-01-01

    In sagebrush ecosystems invasion of annual exotics and expansion of pinon (Pinus monophylla Torr. and Frem.) and juniper (Juniperus occidentalis Hook., J. osteosperma [Torr.] Little) are altering fire regimes and resulting in large-scale ecosystem transformations. Management treatments aim to increase resilience to disturbance and enhance resistance to invasive species...

  14. Restoring habitat corridors in fragmented landscapes using optimization and percolation models

    Treesearch

    Justin C. Williams; Stephanie A. Snyder

    2005-01-01

    Landscape fragmentation and habitat loss are significant threats to the conservation of biological diversity. Creating and restoring corridors between isolated habitat patches can help mitigate or reverse the impacts of fragmentation. It is important that restoration and protection efforts be undertaken in the most efficient and effective way possible because...

  15. Influences of scale on bat habitat relationships in a forested landscape in Nicaragua

    Treesearch

    Carol L. Chambers; Samuel A. Cushman; Arnulfo Medina-Fitoria; Jose Martinez-Fonseca; Marlon Chavez-Velasquez

    2016-01-01

    Scale dependence of bat habitat selection is poorly known with few studies evaluating relationships among landscape metrics such as class versus landscape, or metrics that measure composition or configuration. This knowledge can inform conservation approaches to mitigate habitat loss and fragmentation.

  16. Avian use of scoria rock outcrops

    Treesearch

    Mark A. Rumble

    1987-01-01

    Avian use of scoria outcrop habitats was compared to use of sagebrush (Artemisia spp.)/grassland habitats. Outcrop habitats exhibited higher species richness, total population density, density of lark sparrows (Chondestres grammucus), and density of rock wrens (Salpinctes obsoetus). Western meadowlarks (Sturnella neglecta...

  17. 75 FR 77801 - Endangered and Threatened Wildlife and Plants; Endangered Status for Dunes Sagebrush Lizard

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-14

    ... December 30, 1982, we published our notice of review classifying the sand dune lizard (dunes sagebrush... listing actions for the southern Idaho ground squirrel, sand dune lizard, or Tahoe yellow cress. The court... by the common name of sand dune lizard (e.g., Degenhardt et al. 1996, p. 159); however, the currently...

  18. Mitigating Nitrogen Deposition Impacts on Biodiversity in California: Generating Funding for Weed Management

    NASA Astrophysics Data System (ADS)

    Weiss, S. B.

    2013-12-01

    The impacts of atmospheric nitrogen deposition on biodiversity are widespread and profound; N-inputs have far exceeded any historical range of variability and are altering ecosystem structure and function worldwide. Overwhelming scientific evidence documents acute threats to numerous California ecosystems and imperiled species through increased growth of invasive annual grasses and forbs, yet policy responses lag far behind the science. Since 2001, a confluence of several projects (gas-fired powerplants and highway improvements) in Santa Clara County set powerful precedents for mitigation of N-deposition impacts on ecosystems via the Endangered Species Act, with a focus on the Bay checkerspot butterfly. These projects have culminated in the Santa Clara Valley Habitat Plan, a 50-year $665,000,000 mitigation plan to conserve and manage habitat for 19 target species. Elsewhere, powerplants in San Diego and Contra Costa Counties have provided mitigation funds for habitat restoration and weed management. Building on these precedents, the California Invasive Plant Council, California Native Plant Society, and other groups are forming a coalition to extend this mitigation across California to generate money for weed management. Key elements of this incipient campaign include: 1) education of regulatory agencies, activists, and decision-makers about the threat; 2) generation of standard EIR comments with project specifics for developments that increase traffic or generate nitrogen emissions; 3) encouraging state and federal wildlife agencies to raise the issue in consultations and Habitat Conservation Plans; 4) policy and legal research to chart a course through the regulatory and political landscape; 5) collating research on impacts and development of tools to document those impacts; 6) media outreach, and 7) coalition building. The main mitigation strategy is funding for local weed management and stewardship groups through fees. There is a desperate need for stable long

  19. Ural-Tweed Bighorn Sheep Wildlife Mitigation Project, 1984-1990 Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Lewis R.; Yde, Chris A.

    The results of habitat improvement project activities accomplished under contract No.84-38 for bighorn sheep mitigation along Koocanusa Reservoir from September 1, 1984, through June 30, 1990, are reported here. Habitat treatments were applied to ten areas and covered 1100 acres. Treatments used were prescribed fire, slashing combined with prescribed fire, and fertilization. Several variations in season or intensity were used within the slashing and prescribed fire treatments. This project was coordinated with and complemented concurrent Kootenai National Forest habitat improvement activities.

  20. Influence of habitat and intrinsic characteristics on survival of neonatal pronghorn

    USGS Publications Warehouse

    Jacques, Christopher N.; Jenks, Jonathan A.; Grovenburg, Troy W.; Klaver, Robert W.

    2015-01-01

    , especially as they relate to coyote predation. Thus, landscape level variables (particularly percentages of open water, grassland habitats, and shrub density) should be incorporated into the development or implementation of pronghorn management plans across sagebrush steppe communities of the western Dakotas, and potentially elsewhere within the geographic range of pronghorn.

  1. Soil resources influence vegetation and response to fire and fire-surrogate treatments in Sagebrush-Steppe Ecosystems

    Treesearch

    Benjamin M. Rau; Jeanne C. Chambers; David A. Pyke; Bruce A. Roundy; Eugene W. Schupp; Paul Doescher; Todd G. Caldwell

    2014-01-01

    Current paradigm suggests that spatial and temporal competition for resources limit an exotic invader, cheatgrass (Bromus tectorum L.), which once established, alters fire regimes and can result in annual grass dominance in sagebrush steppe. Prescribed fire and fire surrogate treatments (mowing, tebuthiuron, and imazapic) are used to reduce woody...

  2. Habitat Evaluation Procedure (HEP) Report for the Pend Oreille Wetlands Wildlife Project, Technical Report 2002.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holmes, Darren

    The Habitat Evaluation Procedure (HEP), developed in 1980 by the U.S. Fish and Wildlife Service (USFWS 1980a, USFWS 1980b), uses a habitat/species based approach to assessing project impacts, and is a convenient tool to document the predicted effects of proposed management actions. The Northwest Power Planning Council (NPPC) endorsed the use of HEP in its Columbia River Basin Fish and Wildlife Program to evaluate wildlife benefits and impacts associated with the development and operation of the federal Columbia River Basin hydroelectric system (NPPC 1994). The Albeni Falls Interagency Work Group (AFIWG) used HEP in 1987 to evaluate wildlife habitat lossesmore » attributed to the Albeni Falls hydroelectric facility (Martin et al. 1988). In 1992, the AFIWG (Idaho Department of Fish and Game; Kalispel, Coeur d'Alene, and Kootenai Tribes) began implementing activities to mitigate these losses. Implementation activities include protecting, restoring and enhancing wildlife habitat. HEPs are used extensively within the NPPC's Columbia River Basin Fish and Wildlife Program. Wildlife managers use HEP to determine habitat lost from the construction of the federal hydroelectric projects and habitat gained through NPPC mitigation program. Habitat Suitability Index (HSI) models for each of the seven target species are used to determine habitat quality and quantity losses for representative habitat cover types for this project. Target species include Bald Eagle, black-capped chickadee, Canada goose, mallard, muskrat, white-tailed deer and yellow warbler. In 2002, a HEP team determined the habitat condition of the 436-acre Pend Oreille Wetlands Wildlife Project (Figure 1). The HEP team consisted of the following members and agencies: Roy Finley, Kalispel Natural Resource Department (KNRD); Neil Lockwood, KNRD; Brian Merson, KNRD; Sonny Finley, KNRD; Darren Holmes, KNRD; Anna, Washington Dept. of Fish and Game (WDFW); and Scott, WDFW. Baseline Habitat Units (HU) will be credited

  3. Effect of succession after fire on species contribution to evapotranspiration in sagebrush steppe

    NASA Astrophysics Data System (ADS)

    Naithani, K.; Ewers, B. E.; Pendall, E.; Bayless, M. K.

    2005-12-01

    Shrubland ecosystems play an important role in the hydrology of the often drought stricken inter-mountain basins of the United Sates. Our objective was to investigate the impact of changing environmental conditions on three major plant functional types, shrubs, grasses and forbs. We measured changes in diurnal water flux from Artemisia tridentata var vaseyana (mountain big sagebrush), Elymus smithii (western wheatgrass) and Lupinus argentus (lupine) with changing environmental drivers for a sagebrush ecosystem fire chronosequence near the Sierra Madre Mountains, Wyoming, USA. The measurements were conducted on four stands ranging in age from 2 to 38 years, during the summers of 2004 and 2005. Leaf scale measurements and shrub sapflux were compared with ecosystem scale measurements. We explained the diurnal and monthly variability of water fluxes from June through October using vapor pressure deficit, soil moisture, light and temperature. In the year 2005, peak ecosystem level evapotranspiration of 5-7 mmol m-2 s-1 was higher than 2004 with 2-3 mmol m-2 s-1. The interannual difference in evapotranspiration was explained by higher precipitation causing greater biomass, especially in non shrub species, in 2005. Our results show that environmental conditions have impacts on total evapotranspiration that depend on plant functional type.

  4. Vegetation species diversity inside and outside exclosures in sagebrush, salt desert shrub, and aspen communities

    Treesearch

    W. A. Laycock; Dale Bartos

    1999-01-01

    Vegetation was sampled inside and outside eight exclosures in salt desert shrub and sagebrush vegetation types in Southwestern Wyoming and eight exclosures in aspen vegetation in southern Utah. Only species richness has been examined thus far. Five of the eight Wyoming exclosures had an average of 11% more plant species present outside the exclosure than inside.

  5. History of fire and Douglas-fir establishment in a savanna and sagebrush-grassland mosaic, southwestern Montana, USA

    Treesearch

    Emily K. Heyerdahl; Richard F. Miller; Russell A. Parsons

    2006-01-01

    Over the past century, trees have encroached into grass- and shrublands across western North America. These include Douglas-fir trees (Pseudotsuga menziesii (Mirb.) Franco var. glauca (Beissn.) Franco) encroaching into mountain big sagebrush Nutt. ssp. vaseyana (Rydb.) Beetle) from stable islands of savanna in...

  6. Plant community dynamics of burned and unburned sagebrush and pinyon-juniper vegetation in West-Central Utah

    Treesearch

    Jeffrey E. Ott; E. Durant McArthur; Stewart C. Sanderson

    2001-01-01

    Fire ecology of sagebrush and pinyon-juniper vegetation in the Great Basin has been influenced by human disturbances and exotic plant introductions. Late-seral woody vegetation, which increased following Euro-American settlement, is now decreasing because of wildfire and exotic annuals. Multiple successional pathways following fire have been observed in these...

  7. Mitigation for one & all: An integrated framework for mitigation of development impacts on biodiversity and ecosystem services

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tallis, Heather, E-mail: htallis@tnc.org; Kennedy, Christina M., E-mail: ckennedy@tnc.org; Ruckelshaus, Mary

    Emerging development policies and lending standards call for consideration of ecosystem services when mitigating impacts from development, yet little guidance exists to inform this process. Here we propose a comprehensive framework for advancing both biodiversity and ecosystem service mitigation. We have clarified a means for choosing representative ecosystem service targets alongside biodiversity targets, identified servicesheds as a useful spatial unit for assessing ecosystem service avoidance, impact, and offset options, and discuss methods for consistent calculation of biodiversity and ecosystem service mitigation ratios. We emphasize the need to move away from area- and habitat-based assessment methods for both biodiversity and ecosystemmore » services towards functional assessments at landscape or seascape scales. Such comprehensive assessments more accurately reflect cumulative impacts and variation in environmental quality, social needs and value preferences. The integrated framework builds on the experience of biodiversity mitigation while addressing the unique opportunities and challenges presented by ecosystem service mitigation. These advances contribute to growing potential for economic development planning and execution that will minimize impacts on nature and maximize human wellbeing. - Highlights: • This is the first framework for biodiversity and ecosystem service mitigation. • Functional, landscape scale assessments are ideal for avoidance and offsets. • Servicesheds define the appropriate spatial extent for ecosystem service mitigation. • Mitigation ratios should be calculated consistently and based on standard factors. • Our framework meets the needs of integrated mitigation assessment requirements.« less

  8. Shallow snowpack inhibits soil respiration in sagebrush steppe through multiple biotic and abiotic mechanisms

    DOE PAGES

    Tucker, Colin L.; Tamang, Shanker; Pendall, Elise; ...

    2016-05-01

    In sagebrush steppe, snowpack may govern soil respiration through its effect on multiple abiotic and biotic factors. Across the Intermountain West of the United States, snowpack has been declining for decades and is projected to decline further over the next century, making the response of soil respiration to snowpack a potentially important factor in the ecosystem carbon cycle. In this study, we evaluated the direct and indirect roles of the snowpack in driving soil respiration in sagebrush steppe ecosystems by taking advantage of highway snowfences in Wyoming to manipulate snowpack. An important contribution of this study is the use ofmore » Bayesian modeling to quantify the effects of soil moisture and temperature on soil respiration across a wide range of conditions from frozen to hot and dry, while simultaneously accounting for biotic factors (e.g., vegetation cover, root density, and microbial biomass and substrate-use diversity) affected by snowpack. Elevated snow depth increased soil temperature (in the winter) and moisture (winter and spring), and was associated with reduced vegetation cover and microbial biomass carbon. Soil respiration showed an exponential increase with temperature, with a temperature sensitivity that decreased with increasing seasonal temperature (Q 10 = 4.3 [winter], 2.3 [spring], and 1.7 [summer]); frozen soils were associated with unrealistic Q 10 approximate to 7989 due to the liquid-to-ice transition of soil water. Soil respiration was sensitive to soil water content; predicted respiration under very dry conditions was less than 10% of respiration under moist conditions. While higher vegetation cover increased soil respiration, this was not due to increased root density, and may reflect differences in litter inputs. Microbial substrate-use diversity was negatively related to reference respiration (i.e., respiration rate at a reference temperature and optimal soil moisture), although the mechanism remains unclear. Lastly, this

  9. Shallow snowpack inhibits soil respiration in sagebrush steppe through multiple biotic and abiotic mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tucker, Colin L.; Tamang, Shanker; Pendall, Elise

    In sagebrush steppe, snowpack may govern soil respiration through its effect on multiple abiotic and biotic factors. Across the Intermountain West of the United States, snowpack has been declining for decades and is projected to decline further over the next century, making the response of soil respiration to snowpack a potentially important factor in the ecosystem carbon cycle. In this study, we evaluated the direct and indirect roles of the snowpack in driving soil respiration in sagebrush steppe ecosystems by taking advantage of highway snowfences in Wyoming to manipulate snowpack. An important contribution of this study is the use ofmore » Bayesian modeling to quantify the effects of soil moisture and temperature on soil respiration across a wide range of conditions from frozen to hot and dry, while simultaneously accounting for biotic factors (e.g., vegetation cover, root density, and microbial biomass and substrate-use diversity) affected by snowpack. Elevated snow depth increased soil temperature (in the winter) and moisture (winter and spring), and was associated with reduced vegetation cover and microbial biomass carbon. Soil respiration showed an exponential increase with temperature, with a temperature sensitivity that decreased with increasing seasonal temperature (Q 10 = 4.3 [winter], 2.3 [spring], and 1.7 [summer]); frozen soils were associated with unrealistic Q 10 approximate to 7989 due to the liquid-to-ice transition of soil water. Soil respiration was sensitive to soil water content; predicted respiration under very dry conditions was less than 10% of respiration under moist conditions. While higher vegetation cover increased soil respiration, this was not due to increased root density, and may reflect differences in litter inputs. Microbial substrate-use diversity was negatively related to reference respiration (i.e., respiration rate at a reference temperature and optimal soil moisture), although the mechanism remains unclear. Lastly, this

  10. Surface Habitat Systems

    NASA Technical Reports Server (NTRS)

    Kennedy, Kriss J.

    2009-01-01

    The Surface Habitat Systems (SHS) Focused Investment Group (FIG) is part of the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) effort to provide a focused direction and funding to the various projects that are working on human surface habitat designs and technologies for the planetary exploration missions. The overall SHS-FIG effort focuses on directing and guiding those projects that: 1) develop and demonstrate new surface habitat system concepts, innovations, and technologies to support human exploration missions, 2) improve environmental systems that interact with human habitats, 3) handle and emplace human surface habitats, and 4) focus on supporting humans living and working in habitats on planetary surfaces. The activity areas of the SHS FIG described herein are focused on the surface habitat project near-term objectives as described in this document. The SHS-FIG effort focuses on mitigating surface habitat risks (as identified by the Lunar Surface Systems Project Office (LSSPO) Surface Habitat Element Team; and concentrates on developing surface habitat technologies as identified in the FY08 gap analysis. The surface habitat gap assessment will be updated annually as the surface architecture and surface habitat definition continues to mature. These technologies are mapped to the SHS-FIG Strategic Development Roadmap. The Roadmap will bring to light the areas where additional innovative efforts are needed to support the development of habitat concepts and designs and the development of new technologies to support of the LSSPO Habitation Element development plan. Three specific areas of development that address Lunar Architecture Team (LAT)-2 and Constellation Architecture Team (CxAT) Lunar habitat design issues or risks will be focused on by the SHS-FIG. The SHS-FIG will establish four areas of development that will help the projects prepare in their planning for surface habitat systems development. Those development areas are

  11. Trajectories of change in sagebrush steppe vegetation communities in relation to multiple wildfires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, G. M.; Bakker, J. D.; Dettweiler-Robinson, E.

    Repeated perturbations, both biotic and abiotic, can lead to fundamental changes in the nature of ecosystems including changes in state. Sagebrush-steppe communities provide important habitat for wildlife and grazing for livestock. Fire is an integral part of these systems, but there is concern that increased ignition frequencies and invasive species are fundamentally altering these systems. Despite these issues, the majority of studies of fire effects in Artemisia tridentata wyomingensis-dominated systems have focused on the effects of single burns. The Arid Lands Ecology Reserve (ALE), in south-central Washington (U.S.A.), was one of the largest areas of continuous shrub-steppe habitat in themore » state until large wildfires burnt the majority of it in 2000 and 2007. We analysed data from permanent vegetation transects established in 1996 and resampled in 2002 and 2009. Our objective was to describe how the fires, and subsequent post-fire restoration efforts, affected communities successional pathways. Plant communities differed in response to repeated fire and restoration; these differences could largely be ascribed to the functional traits of the dominant species. Low elevation communities, previously dominated by obligate seeders, moved farthest from their initial composition and were dominated by weedy, early successional species in 2009. Higher elevation sites with resprouting shrubs, native bunchgrasses and few invasive species were generally more resilient to the effects of repeated disturbances. Shrub cover has been almost entirely removed from ALE, though there is evidence of recovery where communities were dominated by re-sprouters. Cheatgrass (Bromus tectorum) dominance was reduced by herbicide application in areas where it was previously abundant but increased significantly in untreated areas. Several re-sprouting species, notably Phlox longifolia and Poa secunda, expanded remarkably following competitive release from shrub canopies and/or abundant

  12. Effects of sand sagebrush control in southern mixed-grass prairie rangeland on cattle performance and economic return

    USDA-ARS?s Scientific Manuscript database

    To evaluate the effects of sand sagebrush (Artemisia filifolia Torr.) control in native rangelands on cattle performance, 15 pastures (10 to 21 ha each) were selected in Northwest Oklahoma. Eleven pastures had been sprayed with 2,4-dichlorophenoxyacetic acid in 1984 or 2003 to establish differences...

  13. Habitat Evaluation Procedure (HEP) Report for the Pend Oreille Wetlands Wildlife II Project, Technical Report 2002.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holmes, Darren

    The Habitat Evaluation Procedure (HEP), developed in 1980 by the U.S. Fish and Wildlife Service (USFWS 1980a, USFWS 1980b), uses a habitat/species based approach to assessing project impacts, and is a convenient tool to document the predicted effects of proposed management actions. The Northwest Power Planning Council (NPPC) endorsed the use of HEP in its Columbia River Basin Fish and Wildlife Program to evaluate wildlife benefits and impacts associated with the development and operation of the federal Columbia River Basin hydroelectric system (NPPC 1994). The Albeni Falls Interagency Work Group (AFIWG) used HEP in 1987 to evaluate wildlife habitat lossesmore » attributed to the Albeni Falls hydroelectric facility (Martin et al. 1988). In 1992, the AFIWG (Idaho Department of Fish and Game; Kalispel, Coeur d'Alene, and Kootenai Tribes) began implementing activities to mitigate these losses. Implementation activities include protecting, restoring and enhancing wildlife habitat. HEPs are used extensively within the NPPC's Columbia River Basin Fish and Wildlife Program. Wildlife managers use HEP to determine habitat lost from the construction of the federal hydroelectric projects and habitat gained through NPPC mitigation program. Habitat Suitability Index (HSI) models for each of the seven target species are used to determine habitat quality and quantity losses for representative habitat cover types for this project. Target species include Bald Eagle, black-capped chickadee, Canada goose, mallard, muskrat, white-tailed deer and yellow warbler. In 2002, a HEP team determined the habitat condition of the 164-acre Pend Oreille Wetlands Wildlife II Project (Figure 1). The HEP team consisted of the following members and agencies: Roy Finley, Kalispel Natural Resource Department (KNRD); Neil Lockwood, KNRD; Brian Merson, KNRD; Sonny Finley, KNRD; Darren Holmes, KNRD; Anna, Washington Dept. of Fish and Game (WDFW); and Scott, WDFW. Baseline Habitat Units (HU) will be

  14. Restoring forbs for sage grouse habitat: Fire, microsites, and establishment methods

    USGS Publications Warehouse

    Wirth, Troy A.; Pyke, David A.

    2003-01-01

    The decline and range reduction of sage grouse populations are primarily due to permanent loss and degradation of sagebrusha??grassland habitat. Several studies have shown that sage grouse productivity may be limited by the availability of certain preferred highly nutritious forb species that have also declined within sagebrush ecosystems of the Intermountain West, U.S.A. The purpose of this study was to determine the suitability of three species of forbs for revegetation projects where improving sage grouse habitat is a goal. Species suitability was determined by evaluating the emergence, survival, and reproduction of Crepis modocensis, C. occidentalis, and Astragalus purshii in response to method of establishment (seeding or transplanting), site preparation treatment (burned or unburned), and microsite (mound or interspace) in an Artemisia tridentata ssp. wyomingensis vegetation association in south central Oregon. For seeded plants A. purshii had the lowest emergence (8%) of all three species. Both seeded Crepis species had similar overall emergence (38%). Significantly more Crepis seedlings emerged from shrub mounds in unburned areas (50%) than in any other fire-by-microsite treatment (33 to 36%). Approximately 10% more Crepis seedlings survived in mounds compared with interspaces. Nearly twice as many emerging Crepis seedlings survived in the burned areas as opposed to unburned areas (p < 0.01). This resulted in more plant establishment in burned mounds despite higher emergence in unburned mounds. Astragalus purshii seedlings also survived better in burned areas (p = 0.06) but had no differential response to microsite. Fire enhanced survival of both Crepis and A. purshii transplants (p = 0.08 and p = 0.001). We believe additional research is needed to improve A. purshii emergence before it will become an effective plant for restoring sage grouse habitat. Conversely, we conclude that these Crepis species provide a viable revegetation option for improving sage

  15. Plant age, communication, and resistance to herbivores: young sagebrush plants are better emitters and receivers.

    PubMed

    Shiojiri, Kaori; Karban, Richard

    2006-08-01

    Plants progress through a series of distinct stages during development, although the role of plant ontogeny in their defenses against herbivores is poorly understood. Recent work indicates that many plants activate systemic induced resistance after herbivore attack, although the relationship between resistance and ontogeny has not been a focus of this work. In addition, for sagebrush and a few other species, individuals near neighbors that experience simulated herbivory become more resistant to subsequent attack. Volatile, airborne cues are required for both systemic induced resistance among branches and for communication among individuals. We conducted experiments in stands of sagebrush of mixed ages to determine effects of plant age on volatile signaling between branches and individuals. Young and old control plants did not differ in levels of chewing damage that they experienced. Systemic induced resistance among branches was only observed for young plants. Young plants showed strong evidence of systemic resistance only if airflow was permitted among branches; plants with only vascular connections showed no systemic resistance. We also found evidence for volatile communication between individuals. For airborne communication, young plants were more effective emitters of cues as well as more responsive receivers of volatile cues.

  16. Energy development and avian nest survival in Wyoming, USA: A test of a common disturbance index

    USGS Publications Warehouse

    Hethcoat, Matthew G.; Chalfoun, Anna D.

    2015-01-01

    Global energy demands continue to result in new and emerging sources of anthropogenic disturbance to populations and systems. Here, we assessed the influence of natural gas development on a critical component of fitness (nest survival) for Brewer’s sparrow (Spizella breweri), sagebrush sparrow (Artemisiospiza nevadensis), and sage thrasher (Oreoscoptes montanus), three species of sagebrush-obligate songbirds that are of conservation concern, and assessed the efficacy of a commonly used index of oil and gas development intensity (well density) for estimating habitat transformation and predicting species’ responses. During 2008–2009 and 2011–2012 we monitored 926 nests within two natural gas fields in western Wyoming, USA. We calculated landscape metrics (habitat loss, amount of edge, patch shape complexity, and mean patch size) to identify the aspect of landscape transformation most captured by well density. Well density was most positively associated with the amount of sagebrush habitat loss within 1 square kilometer. Nest survival was relatively invariant with respect to well density for all three species. In contrast, nest survival rates of all three species generally decreased with surrounding habitat loss due to energy development. Thus, although well density and habitat loss were strongly correlated, well density resulted in overly conservative estimates of nest survival probability. Our results emphasize the importance of careful evaluation of the appropriateness of particular indices for quantifying the effects of human-induced habitat change. For managers concerned about the effects of natural gas development or similar forms of human land use to co-occurring breeding birds, we recommend minimizing the amount of associated habitat conversion.

  17. Conservation and restoration of sagebrush ecosystems and sage-grouse: An assessment of USDA Forest Service Science

    Treesearch

    Deborah M. Finch; Douglas A. Boyce; Jeanne C. Chambers; Chris J. Colt; Kas Dumroese; Stanley G. Kitchen; Clinton McCarthy; Susan E. Meyer; Bryce A. Richardson; Mary M. Rowland; Mark A. Rumble; Michael K. Schwartz; Monica S. Tomosy; Michael J. Wisdom

    2016-01-01

    Sagebrush ecosystems are among the largest and most threatened ecosystems in North America. Greater sage-grouse has served as the bellwether for species conservation in these ecosystems and has been considered for listing under the Endangered Species Act eight times. In September 2015, the decision was made not to list greater sage-grouse, but to reevaluate its status...

  18. Wildlife associated with scoria outcrops: implications for reclamation of surface-mined lands

    Treesearch

    Mark A. Rumble

    1989-01-01

    Bird and mammal populations using scoria rock outcrop and adjacentsagebrush/grassland habitats were studied. Bird populations and bird species richness were greater in the outcrop habitats than in the surrounding sagebrush/grassland habitats. These differences were attributedto the structural features provided by the outcrops. Most, but not all, small mammal...

  19. Sage-grouse habitat restoration symposium

    Treesearch

    Nancy L. Shaw; Mike Pellant; Stephen B. Monsen

    2005-01-01

    Sage-grouse (greater sage-grouse [Centrocercus urophasianus] and Gunnison sage-grouse [C. minimus]) were once abundant over a range that approximated that of sagebrush (Artemisia spp.) in 16 Western States and three Canadian Provinces (Aldrich 1963; Connelly and others 2000; Johnsgard 1973). Although their...

  20. Greater sage-grouse: general use and roost site occurrence with pellet counts as a measure of relative abundance

    Treesearch

    Steven E. Hanser; Cameron L. Aldridge; Matthias Leu; Mary M. Rowland; Scott E. Nielsen; Steven T. Knick

    2011-01-01

    Greater sage-grouse (Centrocercus urophasianus) have been declining both spatially and numerically throughout their range because of anthropogenic disturbance and loss and fragmentation of sagebrush (Artemisia spp.) habitats. Understanding how sage-grouse respond to these habitat alterations and disturbances, particularly the...

  1. Simulating the Dependence of Sagebrush Steppe Vegetation on Redistributed Snow in a Semi-Arid Watershed.

    NASA Astrophysics Data System (ADS)

    Soderquist, B.; Kavanagh, K.; Link, T. E.; Strand, E. K.; Seyfried, M. S.

    2014-12-01

    In mountainous regions across the western USA, the composition of aspen (Populus tremuloides) and sagebrush steppe plant communities is often closely related to heterogeneous soil moisture subsidies resulting from redistributed snow. With decades of climate and precipitation data across elevational and precipitation gradients, the Reynolds Creek Experimental Watershed (RCEW) and critical zone observatory (CZO) in southwest Idaho provides a unique opportunity to study the relationship between vegetation types and redistributed snow. Within the RCEW, the total amount of precipitation has remained unchanged over the past 50 years, however the percentage of the precipitation falling as snow has declined by approximately 4% per decade at mid-elevation sites. As shifts in precipitation phase continue, future trends in vegetation composition and net primary productivity (NPP) of different plant functional types remains a critical question. We hypothesize that redistribution of snow may supplement drought sensitive species like aspen more so than drought tolerant species like mountain big sagebrush (Artemisia tridentata spp. vaseyana). To assess the importance of snowdrift subsidies on sagebrush steppe vegetation, NPP of aspen, shrub, and grass species was simulated at three sites using the biogeochemical process model BIOME-BGC. Each site is located directly downslope from snowdrifts providing soil moisture inputs to aspen stands and neighboring vegetation. Drifts vary in size with the largest containing up to four times the snow water equivalent (SWE) of a uniform precipitation layer. Precipitation inputs used by BIOME-BGC were modified to represent the redistribution of snow and simulations were run using daily climate data from 1985-2013. Simulated NPP of annual grasses at each site was not responsive to subsidies from drifting snow. However, at the driest site, aspen and shrub annual NPP was increased by as much as 44 and 30%, respectively, with the redistribution of

  2. Evolutionary and ecological implications of genome size in the North American endemic sagebrushes and allies (Artemisia, Asteraceae)

    Treesearch

    Sonia Garcia; Miguel A. Canela; Teresa Garnatje; E. Durant McArthur; Jaume Pellicer; Stewart C. Sanderson; Joan Valles

    2008-01-01

    The genome size of 51 populations of 20 species of the North American endemic sagebrushes (subgenus Tridentatae), related species, and some hybrid taxa were assessed by flow cytometry, and were analysed in a phylogenetic framework. Results were similar for most Tridentatae species, with the exception of three taxonomically conflictive species: Artemisia bigelovii Gray...

  3. Sagebrush steppe and pinyon-juniper ecosystems: effects of changing fire regimes, increased fuel loads, and invasive species

    Treesearch

    Jeanne C. Chambers; E. Durant McArthur; Steven B. Monson; Susan E. Meyer; Nancy L. Shaw; Robin J. Tausch; Robert R. Blank; Steve Bunting; Richard R. Miller; Mike Pellant; Bruce A. Roundy; Scott C. Walker; Alison Whittaker

    2005-01-01

    Pinyon-juniper woodlands and Wyoming big sagebrush ecosystems have undergone major changes in vegetation structure and composition since settlement by European Americans. These changes are resulting in dramatic shifts in fire frequency, size and severity. Effective management of these systems has been hindered by lack of information on: (1) presettlement fire regimes...

  4. Colville Confederated Tribes' Performance Project Wildlife Mitigation Acquisitions, Annual Report 2006.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitney, Richard; Berger, Matthew; Tonasket, Patrick

    2006-12-01

    The Colville Confederated Tribes Wildlife Mitigation Project is protecting lands as partial mitigation for hydropower's share of the wildlife losses resulting from Chief Joseph and Grand Coulee Dams. The Mitigation Project protects and manages 54,606 acres for the biological requirements of managed wildlife species that are important to the Colville Tribes. With the inclusion of 2006 acquisitions, the Colville Tribes have acquired approximately 32,018 habitat units (HUs) towards a total 35,819 HUs lost from original inundation due to hydropower development. This annual report for 2006 briefly describes that four priority land acquisitions that were considered for enrollment into the Colvillemore » Tribes Mitigation Project during the 2006 contract period.« less

  5. Climate and soil texture influence patterns of forb species richness and composition in big sagebrush plant communities across their spatial extent in the western US

    USGS Publications Warehouse

    Pennington, Victoria E.; Palmquist, Kyle A.; Bradford, John B.; Lauenroth, William K.

    2017-01-01

    Article for outlet: Plant Ecology. Abstract: Big sagebrush (Artemisia tridentata Nutt.) plant communities are widespread non-forested drylands in western North American and similar to all shrub steppe ecosystems world-wide are composed of a shrub overstory layer and a forb and graminoid understory layer. Forbs account for the majority of plant species diversity in big sagebrush plant communities and are important for ecosystem function. Few studies have explored the geographic patterns of forb species richness and composition and their relationships with environmental variables in these communities. Our objectives were to examine the small and large-scale spatial patterns in forb species richness and composition and the influence of environmental variables. We sampled forb species richness and composition along transects at 15 field sites in Colorado, Idaho, Montana, Nevada, Oregon, Utah, and Wyoming, built species-area relationships to quantify differences in forb species richness at sites, and used Principal Components Analysis and nonmetric multidimensional scaling to identify relationships among environmental variables and forb species richness and composition. We found that species richness was most strongly correlated with soil texture, while species composition was most related to climate. The combination of climate and soil texture influences water availability, with important consequences for forb species richness and composition, which suggests climate-change induced modification of soil water availability may have important implications for plant species diversity in the future. Our paper is the first to our knowledge to examine forb biodiversity patterns in big sagebrush ecosystems in relation to environmental factors across the big sagebrush region.

  6. Improving ungulate habitat in a region undergoing rapid energy development: Consequences for songbirds and small mammals

    NASA Astrophysics Data System (ADS)

    Bombaci, Sara Petrita

    Habitat manipulation intended to mitigate the impact of energy development on game animals is well underway in the western U.S. Yet, the consequences of these actions for other species are not well understood. A habitat manipulation experiment was established in the Piceance Basin, a region of Colorado undergoing rapid energy development, to evaluate alternative methods (i.e. chaining, hydro-axe, and roller-chop treatments) for reducing pinyon-juniper woodlands to promote mule deer habitat. I use this experimental design to additionally test the initial effects of these treatments on birds and small mammals, and to evaluate selection of habitat components in treatments by birds and small mammals. I found lower bird species occupancy in all treatment plots compared to control plots; however the strength of this response varied by bird guild. I found a positive relationship between bird species occupancy and percent tree cover and a negative relationship between bird species occupancy and percent grass and forb cover. I found no evidence of differences in small mammal species occupancy or density between controls and treatments. I found a positive relationship between small mammal species occupancy and percent grass and forb cover. Species richness did not significantly differ between control and treatment plots for birds or small mammals. My approach and research findings can be used to inform habitat management and multiple-species conservation objectives in pinyon-juniper and sage-steppe ecosystems undergoing energy development. Specifically, I have identified that recently developed roller-chop and hydro-axe treatments have similar impacts to woodland bird guilds as traditional chaining treatments. I have also identified species that are sensitive to habitat mitigation treatments, and thus should be monitored if woodland reduction continues to be used as a habitat mitigation strategy. Since all bird guilds were positively associated with tree cover, woodland

  7. Predation of Songbird Nests Differs By Predator and Between Field and Forest Habitats

    Treesearch

    Frank R., III Thompson; Dirk E. Burhans

    2003-01-01

    Our understanding of factors affecting nest predation and ability to mitigate high nest predation rates is hampered by a lack of information on the importance of various nest predator species in different habitats and landscapes. We identified predators of songbird nests in old-field and forest habitats in central Missouri, USA, with miniature video cameras. We used an...

  8. Rapid recovery of gross ecosystem production and ecosystem-level respiration in a semiarid sagebrush shrubland following prescribed fire.

    NASA Astrophysics Data System (ADS)

    Fellows, A.; Flerchinger, G. N.

    2016-12-01

    The impact of fire remains a key uncertainty in our understanding of the spatio-temporal dynamics of carbon cycling on Western US rangelands. We, therefore, tracked the recovery of carbon fluxes and vegetative carbon stocks following prescribed fire in a sagebrush shrubland located in the Western US Great Basin. We quantified the change in plant function type, Leaf Area Index (LAI), aboveground carbon stocks, Gross Ecosystem Production (GEP), and Ecosystem-level Respiration (Reco) for 2 years before and 5 years following a prescribed fire that burned in 2007. Recruitment of burned sagebrush shrubland by fast growing grasses and forbs drove a rapid recovery of LAI, GEP, and Reco following fire; LAI, GEP, and Reco recovered within 1-3 years. These findings are consistent with previous measurement and modeling work by Flerchinger that demonstrated rooting depths, soil moisture withdrawal, and evapotranspiration also recovered within a few years of this fire. Live aboveground biomass reached 15% of pre-fire aboveground biomass after 5 years. The rapid recovery of LAI, rooting depth, GEP and Reco may partially reflect conducive environmental conditions at this site and at the time of the fire. In particular, the site was wet for a sagebrush shrubland; annual precipitation averaged 545 mm during the study and large-deep snow drifts formed upslope of the site. Post-fire weather was particularly wet, with the second, third and fourth years following fire receiving 587, 614, and 745 mm of water. Grazing was excluded from the burned area, which limited herbivory and may have facilitated vegetation establishment and growth. Lastly, the fire burned in September after many grasses and herbaceous plants had already senesced.

  9. 1997 Monitoring report for the Gunnison, Colorado Wetlands Mitigation Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-11-01

    Under the Uranium Mill Tailings Remedial Action (UMTRA) Project, the U.S. Department of Energy (DOE) cleaned up uranium mill tailings and other surface contamination near the town of Gunnison, Colorado. Remedial action resulted in the elimination of 4.3 acres (ac) (1.7 hectares [ha]) of wetlands. This loss is mitigated by the enhancement of six spring-fed areas on Bureau of Land Management (BLM) land (mitigation sites). Approximately 254 ac (1 03.3 ha) were fenced at the six sites to exclude grazing livestock. Of the 254 ac (103.3 ha), 17.8 ac (7.2 ha) are riparian plant communities; the rest are sagebrush communities.more » Baseline grazed conditions of the riparian plant communities at the mitigation sites were measured prior to fencing. This report discusses results of the fourth year of a monitoring program implemented to document the response of vegetation and wildlife to the exclusion of livestock. Three criteria for determining success of the mitigation were established: plant height, vegetation density (bare ground), and vegetation diversity. By 1996, Prospector Spring, Upper Long`s Gulch, and Camp Kettle met the criteria. The DOE requested transfer of these sites to BLM for long-term oversight. The 1997 evaluation of the three remaining sites, discussed in this report, showed two sites (Houston Gulch and Lower Long`s Gulch) meet the criteria. The DOE will request the transfer of these two sites to the BLM for long-term oversight. The last remaining site, Sage Hen Spring, has met only two of the criteria (percent bare ground and plant height). The third criterion, vegetation diversity, was not met. The vegetation appears to be changing from predominantly wet species to drier upland species, although the reason for this change is uncertain. It may be due to below-normal precipitation in recent years, diversion of water from the spring to the stock tank, or manipulation of the hydrology farther up gradient.« less

  10. 76 FR 41284 - Cold Springs and McKay Creek National Wildlife Refuges, Umatilla County, OR; Comprehensive...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ... water remain. A mix of several distinct habitat types--open water, riparian, shrub-steppe upland, and... resting. The shrub-steppe upland consists of sagebrush, bitterbrush, rabbitbrush, and native bunchgrasses... species; management for long-term viability of riparian habitat; providing benefits to shrub-steppe or...

  11. Bird associations with shrubsteppe plant communities at the proposed reference repository location in southeastern Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuler, C.A.; Rickard, W.H.; Sargeant, G.A.

    1988-03-01

    This report provides information on te seasonal use of shrubsteppe vegetation by bird species at the RRL. Bird abundance and distribution were studied at the RRL to ensure that the DOE monitored migratory bird species pursuant to the Migratory Bird Treaty Act and to assess potential impacts of site characterization activities on bird populations. Birds were counted on two transects that together sampled an areas of 1.39 km/sup 2/. The relative abundance of birds, species richness, seasonal distribution, and the association of breeding shrubsteppe birds with major vegetation types were determined from Janurary through December 1987. Only 38 species weremore » counted during 82 surveys. Total bird density during the nesting season (March-June) was 42.96 birdskm/sup 2/ and the density for the entire year was 26.74 birdskm/sup 2/. The characteristic nesting birds in shrubsteppe habitats were western meadowlark, sage sparrow, burrowing owl, mourning dove, horned lark, long-billed curlew, lark sparrow, and loggerhead shrike. Western meadowlark and sage sparrows were the most abundant breeding birds with an average density of 11.25 and 7.76 birdskm/sup 2/, respectively. Seasonal distribution of birds varied with species, but most species were present from March to September. Distribution and abunandance of nesting birds were correlated with habitat type. About 63% of the habitat surveyed was sagebrush, 26% was cheatgrass, and 11% was spiny hopsage. Sagebrush habitat supproted a greeater total bird density than cheatgrass or hopsage habitats. Sage sparrows were closely associated with sagebrush habitats, while western meadowlarks showed no strong habitat affinities. 22 refs., 9 figs., 6 tabs« less

  12. A Decision Support System for Mitigating Stream Temperature Impacts in the Sacramento River

    NASA Astrophysics Data System (ADS)

    Caldwell, R. J.; Zagona, E. A.; Rajagopalan, B.

    2014-12-01

    Increasing demands on the limited and variable water supply across the West can result in insufficient streamflow to sustain healthy fish habitat. We develop an integrated decision support system (DSS) for modeling and mitigating stream temperature impacts and demonstrate it on the Sacramento River system in California. Water management in the Sacramento River is a complex task with a diverse set of demands ranging from municipal supply to mitigation of fisheries impacts due to high water temperatures. Current operations utilize the temperature control device (TCD) structure at Shasta Dam to mitigate these high water temperatures downstream at designated compliance points. The TCD structure at Shasta Dam offers a rather unique opportunity to mitigate water temperature violations through adjustments to both release volume and temperature. In this study, we develop and evaluate a model-based DSS with four broad components that are coupled to produce the decision tool for stream temperature mitigation: (i) a suite of statistical models for modeling stream temperature attributes using hydrology and climate variables of critical importance to fish habitat; (ii) a reservoir thermal model for modeling the thermal structure and, consequently, the water release temperature, (iii) a stochastic weather generator to simulate weather sequences consistent with seasonal outlooks; and, (iv) a set of decision rules (i.e., 'rubric') for reservoir water releases in response to outputs from the above components. Multiple options for modifying releases at Shasta Dam were considered in the DSS, including mixing water from multiple elevations through the TCD and using different acceptable levels of risk. The DSS also incorporates forecast uncertainties and reservoir operating options to help mitigate stream temperature impacts for fish habitat, while efficiently using the reservoir water supply and cold pool storage. The use of these coupled tools in simulating impacts of future climate

  13. Fine-scale variation of historical fire regimes in sagebrush-steppe and juniper woodland: An example from California, USA

    Treesearch

    Richard F. Miller; Emily K. Heyerdahl

    2008-01-01

    Coarse-scale estimates of fire intervals across the mountain big sagebrush (Artemisia tridentata spp. vaseyana (Rydb.) Beetle) alliance range from decades to centuries. However, soil depth and texture can affect the abundance and continuity of fine fuels and vary at fine spatial scales, suggesting fire regimes may vary at similar scales. We explored...

  14. The effect of herbaceous species removal, fire and cheatgrass (Bromus tectorum) on soil water availability in sagebrush steppe

    Treesearch

    Alison Whittaker; Bruce Roundy; Jeanne Chambers; Susan Meyer; Robert Blank; Stanley Kitchen; John Korfmacher

    2008-01-01

    Over the past several decades, cheatgrass (Bromus tectorum) has been continually expanding in the sagebrush steppe ecosystem. There has been very little research that examines why cheatgrass is able to invade these communities. To determine the effects of herbaceous vegetation removal and fire on available water for cheatgrass invasion, as well as...

  15. Strong genetic differentiation in the invasive annual grass Bromus tectorum across the Mojave-Great Basin ecological transition zone

    Treesearch

    Susan E. Meyer; Elizabeth A. Leger; Desiree R. Eldon; Craig E. Coleman

    2016-01-01

    Bromus tectorum, an inbreeding annual grass, is a dominant invader in sagebrush steppe habitat in North America. It is also common in warm and salt deserts, displaying a larger environmental tolerance than most native species. We tested the hypothesis that a suite of habitat-specific B. tectorum lineages dominates warm desert habitats. We sampled 30 B....

  16. Data Report: Meteorological and Evapotranspiration Data from Sagebrush and Pinyon Pine/Juniper Communities at Pahute Mesa, Nevada National Security Site, 2011-2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jasoni, Richard L; Larsen, Jessica D; Lyles, Brad F.

    Pahute Mesa is a groundwater recharge area at the Nevada National Security Site. Because underground nuclear testing was conducted at Pahute Mesa, groundwater recharge may transport radionuclides from underground test sites downward to the water table; the amount of groundwater recharge is also an important component of contaminant transport models. To estimate the amount of groundwater recharge at Pahute Mesa, an INFIL3.0 recharge-runoff model is being developed. Two eddy covariance (EC) stations were installed on Pahute Mesa to estimate evapotranspiration (ET) to support the groundwater recharge modeling project. This data report describes the methods that were used to estimate ETmore » and collect meteorological data. Evapotranspiration was estimated for two predominant plant communities on Pahute Mesa; one site was located in a sagebrush plant community, the other site in a pinyon pine/juniper community. Annual ET was estimated to be 310±13.9 mm for the sagebrush site and 347±15.9 mm for the pinyon pine/juniper site (March 26, 2011 to March 26, 2012). Annual precipitation measured with unheated tipping bucket rain gauges was 179 mm at the sagebrush site and 159 mm at the pinyon pine/juniper site. Annual precipitation measured with bulk precipitation gauges was 222 mm at the sagebrush site and 227 mm at the pinyon pine/juniper site (March 21, 2011 to March 28, 2012). A comparison of tipping bucket versus bulk precipitation data showed that total precipitation measured by the tipping bucket rain gauges was 17 to 20 percent lower than the bulk precipitation gauges. These differences were most likely the result of the unheated tipping bucket precipitation gauges not measuring frozen precipitation as accurately as the bulk precipitation gauges. In this one-year study, ET exceeded precipitation at both study sites because estimates of ET included precipitation that fell during the winter of 2010-2011 prior to EC instrumentation and the precipitation gauges

  17. Habitat Evaluation Procedures Report; Carl Property - Yakama Nation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashley, Paul; Muse, Anthony

    A baseline habitat evaluation procedures (HEP) analysis was conducted on the Carl property (160 acres) in June 2007 to determine the number of habitat units to credit Bonneville Power Administration (BPA) for providing funds to acquire the property as partial mitigation for habitat losses associated with construction of McNary Dam. HEP surveys also helped assess the general ecological condition of the property. The Carl property appeared damaged from livestock grazing and exhibited a high percentage of invasive forbs. Exotic grasses, while present, did not comprise a large percentage of the available cover in most areas. Cover types were primarily grassland/shrubsteppemore » with a limited emergent vegetation component. Baseline HEP surveys generated 356.11 HUs or 2.2 HUs per acre. Habitat units were associated with the following HEP models: California quail (47.69 HUs), western meadowlark (114.78 HUs), mallard (131.93 HUs), Canada goose (60.34 HUs), and mink (1.38 HUs).« less

  18. Measuring acoustic habitats

    PubMed Central

    Merchant, Nathan D; Fristrup, Kurt M; Johnson, Mark P; Tyack, Peter L; Witt, Matthew J; Blondel, Philippe; Parks, Susan E

    2015-01-01

    1. Many organisms depend on sound for communication, predator/prey detection and navigation. The acoustic environment can therefore play an important role in ecosystem dynamics and evolution. A growing number of studies are documenting acoustic habitats and their influences on animal development, behaviour, physiology and spatial ecology, which has led to increasing demand for passive acoustic monitoring (PAM) expertise in the life sciences. However, as yet, there has been no synthesis of data processing methods for acoustic habitat monitoring, which presents an unnecessary obstacle to would-be PAM analysts. 2. Here, we review the signal processing techniques needed to produce calibrated measurements of terrestrial and aquatic acoustic habitats. We include a supplemental tutorial and template computer codes in matlab and r, which give detailed guidance on how to produce calibrated spectrograms and statistical analyses of sound levels. Key metrics and terminology for the characterisation of biotic, abiotic and anthropogenic sound are covered, and their application to relevant monitoring scenarios is illustrated through example data sets. To inform study design and hardware selection, we also include an up-to-date overview of terrestrial and aquatic PAM instruments. 3. Monitoring of acoustic habitats at large spatiotemporal scales is becoming possible through recent advances in PAM technology. This will enhance our understanding of the role of sound in the spatial ecology of acoustically sensitive species and inform spatial planning to mitigate the rising influence of anthropogenic noise in these ecosystems. As we demonstrate in this work, progress in these areas will depend upon the application of consistent and appropriate PAM methodologies. PMID:25954500

  19. Measuring acoustic habitats.

    PubMed

    Merchant, Nathan D; Fristrup, Kurt M; Johnson, Mark P; Tyack, Peter L; Witt, Matthew J; Blondel, Philippe; Parks, Susan E

    2015-03-01

    1. Many organisms depend on sound for communication, predator/prey detection and navigation. The acoustic environment can therefore play an important role in ecosystem dynamics and evolution. A growing number of studies are documenting acoustic habitats and their influences on animal development, behaviour, physiology and spatial ecology, which has led to increasing demand for passive acoustic monitoring (PAM) expertise in the life sciences. However, as yet, there has been no synthesis of data processing methods for acoustic habitat monitoring, which presents an unnecessary obstacle to would-be PAM analysts. 2. Here, we review the signal processing techniques needed to produce calibrated measurements of terrestrial and aquatic acoustic habitats. We include a supplemental tutorial and template computer codes in matlab and r, which give detailed guidance on how to produce calibrated spectrograms and statistical analyses of sound levels. Key metrics and terminology for the characterisation of biotic, abiotic and anthropogenic sound are covered, and their application to relevant monitoring scenarios is illustrated through example data sets. To inform study design and hardware selection, we also include an up-to-date overview of terrestrial and aquatic PAM instruments. 3. Monitoring of acoustic habitats at large spatiotemporal scales is becoming possible through recent advances in PAM technology. This will enhance our understanding of the role of sound in the spatial ecology of acoustically sensitive species and inform spatial planning to mitigate the rising influence of anthropogenic noise in these ecosystems. As we demonstrate in this work, progress in these areas will depend upon the application of consistent and appropriate PAM methodologies.

  20. Wildlife Habitat Impact Assessment, Chief Joseph Dam Project, Washington : Project Report 1992.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuehn, Douglas; Berger, Matthew

    1992-01-01

    Under the Pacific Northwest Electric Power Planning and Conservation Act of 1980, and the subsequent Northwest Power Planning Council`s Columbia River Basin Fish and Wildlife Program, a wildlife habitat impact assessment and identification of mitigation objectives have been developed for the US Army Corps of Engineer`s Chief Joseph Dam Project in north-central Washington. This study will form the basis for future mitigation planning and implementation.

  1. THE LANDSCAPE PERSPECTIVE IN MITIGATING THE IMPACTS OF WETLAND HABITAT LOSS

    EPA Science Inventory

    Ecological restoration is viewed as a way to mitigate the effects of land uses and, potentially, global change. Research to date has primarily focused on the scale of the individual, restoration project, while restoration at the landscape scale is just beginning to be considered...

  2. Habitat Evaluation Procedures (HEP) Report; Tacoma/Trimble Area Management Plan, Technical Report 2001-2003.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Entz, Ray; Lockwood, Jr., Neil; Holmes, Darren

    2003-10-01

    In 2000 and 2001, the Kalispel Natural Resource Department (KNRD) continued to mitigate the wildlife habitat losses as part of the Albeni Falls Wildlife Mitigation Project. Utilizing Bonneville Power Administration (BPA) funds, the Kalispel Tribe of Indians (Tribe) purchased three projects totaling nearly 1,200 acres. The Tacoma/Trimble Wildlife Management Area is a conglomeration of properties now estimated at 1,700 acres. It is the Tribe's intent to manage these properties in cooperation and collaboration with the Pend Oreille County Public Utility District (PUD) No. 1 and the U.S. Fish and Wildlife Service (USFWS) to benefit wildlife habitats and associated species, populations,more » and guilds.« less

  3. A conceptual framework for hydropeaking mitigation.

    PubMed

    Bruder, Andreas; Tonolla, Diego; Schweizer, Steffen P; Vollenweider, Stefan; Langhans, Simone D; Wüest, Alfred

    2016-10-15

    Hydropower plants are an important source of renewable energy. In the near future, high-head storage hydropower plants will gain further importance as a key element of large-scale electricity production systems. However, these power plants can cause hydropeaking which is characterized by intense unnatural discharge fluctuations in downstream river reaches. Consequences on environmental conditions in these sections are diverse and include changes to the hydrology, hydraulics and sediment regime on very short time scales. These altered conditions affect river ecosystems and biota, for instance due to drift and stranding of fishes and invertebrates. Several structural and operational measures exist to mitigate hydropeaking and the adverse effects on ecosystems, but estimating and predicting their ecological benefit remains challenging. We developed a conceptual framework to support the ecological evaluation of hydropeaking mitigation measures based on current mitigation projects in Switzerland and the scientific literature. We refined this framework with an international panel of hydropeaking experts. The framework is based on a set of indicators, which covers all hydrological phases of hydropeaking and the most important affected abiotic and biotic processes. Effects of mitigation measures on these indicators can be predicted quantitatively using prediction tools such as discharge scenarios and numerical habitat models. Our framework allows a comparison of hydropeaking effects among alternative mitigation measures, to the pre-mitigation situation, and to reference river sections. We further identified key issues that should be addressed to increase the efficiency of current and future projects. They include the spatial and temporal context of mitigation projects, the interactions of river morphology with hydropeaking effects, and the role of appropriate monitoring to evaluate the success of mitigation projects. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Prescribed fire effects on runoff, erosion, and soil water repellency on steeply-sloped sagebrush rangeland over a five year period

    USDA-ARS?s Scientific Manuscript database

    Fire is an inherent component of sagebrush steppe rangelands in western North America and can dramatically affect runoff and erosion processes. Post-fire flooding and erosion events pose substantial threats to proximal resources, property, and human life. Yet, prescribed fire can serve as a tool to ...

  5. The effects of larval habitat quality on Aedes albopictus skip oviposition

    USDA-ARS?s Scientific Manuscript database

    Aedes albopictus, an invasive mosquito species that transmits disease-causing pathogens, oviposits in containers in resource-limited habitats. To mitigate larval competition, Ae. albopictus females may choose to distribute eggs from a single gonotrophic cycle among multiple containers through skip o...

  6. Projections of contemporary and future climate niche for Wyoming big sagebrush (Artemisia tridentate subsp. wyomingensis): A guide for restoration

    Treesearch

    Shannon M. Still; Bryce A. Richardson

    2015-01-01

    Big sagebrush (Artemisia tridentata) is one of the most widespread and abundant plant species in the intermountain regions of western North America. This species occupies an extremely wide ecological niche ranging from the semi-arid basins to the subalpine. Within this large niche, three widespread subspecies are recognized. Montane ecoregions are occupied by...

  7. 77 FR 43350 - Draft Environmental Assessment and Proposed Habitat Conservation Plan for the San Diego Unified...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-24

    ...) restoration and enhancement of vernal pools occupied by San Diego fairy shrimp on the McAuliffe Park and... would permanently remove all San Diego fairy shrimp and its vernal pool habitat from the project site. To mitigate impacts to the San Diego fairy shrimp and its vernal pool habitat, the applicant would...

  8. Effects of Mitigative Measures on Productivity of White Sturgeon Populations in the Columbia River Downstream from McNary Dam; Determine Status and Habitat Requirements of White Sturgeon Populations in the Columbia and Snake Rivers Upstream from McNary Dam, 1995-1996 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rien, Thomas A.; Beiningen, Kirk T.

    This project began in July 1986 and is a cooperative effort of federal, state, and tribal fisheries entities to determine (1) the status and habitat requirements, and (2) effects of mitigative measures on productivity of white sturgeon populations in the lower Colombia and Snake rivers.

  9. 76 FR 41810 - Francis Proposed Low-Effect Habitat Conservation Plan for the Morro Shoulderband Snail, Los Osos...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    ...] Francis Proposed Low-Effect Habitat Conservation Plan for the Morro Shoulderband Snail, Los Osos, San Luis... conservation program to minimize and mitigate project activities as described in their low-effect habitat conservation plan. We invite comments from the public on the application, which includes the Francis Low-Effect...

  10. A Mitigation Process for Impacts of the All American Pipeline on Oak Woodlands in Santa Barbara County

    Treesearch

    Germaine Reyes-French; Timothy J. Cohen

    1991-01-01

    This paper outlines a mitigation program for pipeline construction impacts to oak tree habitat by describing the requirements for the Offsite Oak Mitigation Program for the All American Pipeline (AAPL) in Santa Barbara County, California. After describing the initial environmental analysis, the County regulatory structure is described under which the plan was required...

  11. A warmer and drier climate in the northern sagebrush biome does not promote cheatgrass invasion or change its response to fire.

    PubMed

    Larson, Christian D; Lehnhoff, Erik A; Rew, Lisa J

    2017-12-01

    Dryland shrub communities have been degraded by a range of disturbances and now face additional stress from global climate change. The spring/summer growing season of the North American sagebrush biome is projected to become warmer and drier, which is expected to facilitate the expansion of the invasive annual grass Bromus tectorum (cheatgrass) and alter its response to fire in the northern extent of the biome. We tested these predictions with a factorial experiment with two levels of burning (spring burn and none) and three climate treatments (warming, warming + drying, and control) that was repeated over 3 years in a Montana sagebrush steppe. We expected the climate treatments to make B. tectorum more competitive with the native perennial grass community, especially Pseudoroegneria spicata, and alter its response to fire. Experimental warming and warming + drying reduced B. tectorum cover, biomass, and fecundity, but there was no response to fire except for fecundity, which increased; the native grass community was the most significant factor that affected B. tectorum metrics. The experimental climate treatments also negatively affected P. spicata, total native grass cover, and community biodiversity, while fire negatively affected total native grass cover, particularly when climate conditions were warmer and drier. Our short-term results indicate that without sufficient antecedent moisture and a significant disruption to the native perennial grass community, a change in climate to a warmer and drier spring/summer growing season in the northern sagebrush biome will not facilitate B. tectorum invasion or alter its response to fire.

  12. Temporal changes in giant panda habitat connectivity across boundaries of Wolong Nature Reserve, China.

    PubMed

    Viña, Andrés; Bearer, Scott; Chen, Xiaodong; He, Guangming; Linderman, Marc; An, Li; Zhang, Hemin; Ouyang, Zhiyun; Liu, Jianguo

    2007-06-01

    Global biodiversity loss is largely driven by human activities such as the conversion of natural to human-dominated landscapes. A popular approach to mitigating land cover change is the designation of protected areas (e.g., nature reserves). Nature reserves are traditionally perceived as strongholds of biodiversity conservation. However, many reserves are affected by land cover changes not only within their boundaries, but also in their surrounding areas. This study analyzed the changes in habitat for the giant panda (Ailuropoda melanoleuca) inside Wolong Nature Reserve, Sichuan, China, and in a 3-km buffer area outside its boundaries, through a time series of classified satellite imagery and field observations. Habitat connectivity between the inside and the outside of the reserve diminished between 1965 and 2001 because panda habitat was steadily lost both inside and outside the reserve. However, habitat connectivity slightly increased between 1997 and 2001 due to the stabilization of some panda habitat inside and outside the reserve. This stabilization most likely occurred as a response to changes in socioeconomic activities (e.g., shifts from agricultural to nonagricultural economies). Recently implemented government policies could further mitigate the impacts of land cover change on panda habitat. The results suggest that Wolong Nature Reserve, and perhaps other nature reserves in other parts of the world, cannot be managed as an isolated entity because habitat connectivity declines with land cover changes outside the reserve even if the area inside the reserve is well protected. The findings and approaches presented in this paper may also have important implications for the management of other nature reserves across the world.

  13. Is wetland mitigation successful in Southern California?

    NASA Astrophysics Data System (ADS)

    Cummings, D. L.; Rademacher, L. K.

    2004-12-01

    Wetlands perform many vital functions within their landscape position; they provide unique habitats for a variety of flora and fauna and they act as treatment systems for upstream natural and anthropogenic waste. California has lost an estimated 91% of its wetlands. Despite the 1989 "No Net Loss" policy and mitigation requirements by the regulatory agencies, the implemented mitigation may not be offsetting wetlands losses. The "No Net Loss" policy is likely failing for numerous reasons related to processes in the wetlands themselves and the policies governing their recovery. Of particular interest is whether these mitigation sites are performing essential wetlands functions. Specific questions include: 1) Are hydric soil conditions forming in mitigation sites; and, 2) are the water quality-related chemical transformations that occur in natural wetlands observed in mitigation sites. This study focuses on success (or lack of success) in wetlands mitigation sites in Southern California. Soil and water quality investigations were conducted in wetland mitigation sites deemed to be successful by vegetation standards. Observations of the Standard National Resource Conservation Service field indicators of reducing conditions were made to determine whether hydric soil conditions have developed in the five or more years since the implementation of mitigation plans. In addition, water quality measurements were performed at the inlet and outlet of these mitigation sites to determine whether these sites perform similar water quality transformations to natural wetlands within the same ecosystem. Water quality measurements included nutrient, trace metal, and carbon species measurements. A wetland location with minimal anthropogenic changes and similar hydrologic and vegetative features was used as a control site. All sites selected for study are within a similar ecosystem, in the interior San Diego and western Riverside Counties, in Southern California.

  14. Long-term field data and climate-habitat models show that orangutan persistence depends on effective forest management and greenhouse gas mitigation.

    PubMed

    Gregory, Stephen D; Brook, Barry W; Goossens, Benoît; Ancrenaz, Marc; Alfred, Raymond; Ambu, Laurentius N; Fordham, Damien A

    2012-01-01

    Southeast Asian deforestation rates are among the world's highest and threaten to drive many forest-dependent species to extinction. Climate change is expected to interact with deforestation to amplify this risk. Here we examine whether regional incentives for sustainable forest management will be effective in improving threatened mammal conservation, in isolation and when combined with global climate change mitigation. Using a long time-series of orangutan nest counts for Sabah (2000-10), Malaysian Borneo, we evaluated the effect of sustainable forest management and climate change scenarios, and their interaction, on orangutan spatial abundance patterns. By linking dynamic land-cover and downscaled global climate model projections, we determine the relative influence of these factors on orangutan spatial abundance and use the resulting statistical models to identify habitat crucial for their long-term conservation. We show that land-cover change the degradation of primary forest had the greatest influence on orangutan population size. Anticipated climate change was predicted to cause reductions in abundance in currently occupied populations due to decreased habitat suitability, but also to promote population growth in western Sabah by increasing the suitability of presently unoccupied regions. We find strong quantitative support for the Sabah government's proposal to implement sustainable forest management in all its forest reserves during the current decade; failure to do so could result in a 40 to 80 per cent regional decline in orangutan abundance by 2100. The Sabah orangutan is just one (albeit iconic) example of a forest-dependent species that stands to benefit from sustainable forest management, which promotes conservation of existing forests.

  15. Bed site selection by a subordinate predator: an example with the cougar (Puma concolor) in the Greater Yellowstone Ecosystem.

    PubMed

    Kusler, Anna; Elbroch, L Mark; Quigley, Howard; Grigione, Melissa

    2017-01-01

    As technology has improved, our ability to study cryptic animal behavior has increased. Bed site selection is one such example. Among prey species, bed site selection provides thermoregulatory benefits and mitigates predation risk, and may directly influence survival. We conducted research to test whether a subordinate carnivore also selected beds with similar characteristics in an ecosystem supporting a multi-species guild of competing predators. We employed a model comparison approach in which we tested whether cougar ( Puma concolor ) bed site attributes supported the thermoregulatory versus the predator avoidance hypotheses, or exhibited characteristics supporting both hypotheses. Between 2012-2016, we investigated 599 cougar bed sites in the Greater Yellowstone Ecosystem and examined attributes at two scales: the landscape (second-order, n  = 599) and the microsite (fourth order, n  = 140). At the landscape scale, cougars selected bed sites in winter that supported both the thermoregulatory and predator avoidance hypotheses: bed sites were on steeper slopes but at lower elevations, closer to the forest edge, away from sagebrush and meadow habitat types, and on southern, eastern, and western-facing slopes. In the summer, bed attributes supported the predator avoidance hypothesis over the thermoregulation hypothesis: beds were closer to forest edges, away from sagebrush and meadow habitat classes, and on steeper slopes. At the microsite scale, cougar bed attributes in both the winter and summer supported both the predator avoidance and thermoregulatory hypotheses: they selected bed sites with high canopy cover, high vegetative concealment, and in a rugged habitat class characterized by cliff bands and talus fields. We found that just like prey species, a subordinate predator selected bed sites that facilitated both thermoregulatory and anti-predator functions. In conclusion, we believe that measuring bed site attributes may provide a novel means of measuring

  16. Supplemental Environmental Assessment & Finding of No Significant Impact: Louisville Bend State Wildlife Area Fish and Wildlife Habitat Rehabilitation

    DTIC Science & Technology

    2013-05-01

    and Maintenance of the Missouri River Bank Stabilization and Navigation Project, and Operation of the Kansas River Reservoir System, and acquiring and...developing lands to produce habitat as directed by the BSNP Mitigation Project. The proposed project would be constructed under the authority of...the Mitigation Project. The Missouri River BSNP Mitigation Project of Missouri, Kansas , Iowa, and Nebraska was authorized by Section 601 (a) of the

  17. Pollution, habitat loss, fishing, and climate change as critical threats to penguins.

    PubMed

    Trathan, Phil N; García-Borboroglu, Pablo; Boersma, Dee; Bost, Charles-André; Crawford, Robert J M; Crossin, Glenn T; Cuthbert, Richard J; Dann, Peter; Davis, Lloyd Spencer; De La Puente, Santiago; Ellenberg, Ursula; Lynch, Heather J; Mattern, Thomas; Pütz, Klemens; Seddon, Philip J; Trivelpiece, Wayne; Wienecke, Barbara

    2015-02-01

    Cumulative human impacts across the world's oceans are considerable. We therefore examined a single model taxonomic group, the penguins (Spheniscidae), to explore how marine species and communities might be at risk of decline or extinction in the southern hemisphere. We sought to determine the most important threats to penguins and to suggest means to mitigate these threats. Our review has relevance to other taxonomic groups in the southern hemisphere and in northern latitudes, where human impacts are greater. Our review was based on an expert assessment and literature review of all 18 penguin species; 49 scientists contributed to the process. For each penguin species, we considered their range and distribution, population trends, and main anthropogenic threats over the past approximately 250 years. These threats were harvesting adults for oil, skin, and feathers and as bait for crab and rock lobster fisheries; harvesting of eggs; terrestrial habitat degradation; marine pollution; fisheries bycatch and resource competition; environmental variability and climate change; and toxic algal poisoning and disease. Habitat loss, pollution, and fishing, all factors humans can readily mitigate, remain the primary threats for penguin species. Their future resilience to further climate change impacts will almost certainly depend on addressing current threats to existing habitat degradation on land and at sea. We suggest protection of breeding habitat, linked to the designation of appropriately scaled marine reserves, including in the High Seas, will be critical for the future conservation of penguins. However, large-scale conservation zones are not always practical or politically feasible and other ecosystem-based management methods that include spatial zoning, bycatch mitigation, and robust harvest control must be developed to maintain marine biodiversity and ensure that ecosystem functioning is maintained across a variety of scales. © 2014 The Authors. Conservation Biology

  18. Carbon dioxide effluxes and their environmental controls in sagebrush steppe ecosystems along an elevation gradient in the Reynolds Creek Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Lohse, K. A.; Fellows, A.; Flerchinger, G. N.; Seyfried, M. S.

    2017-12-01

    The spatial and temporal variation of carbon dioxide effluxes and their environmental controls are poorly constrained in cold shrub steppe ecosystems. The objectives of this study were to 1) analyze environmental parameters in determining soil CO2 efflux, 2) assess the level of agreement between manual chambers and force diffusion (FD) soil CO2 efflux chambers, when both measurements are extrapolated across the growing season, and lastly to compare respiration fluxes to modeled ecosystem respiration fluxes. We installed FD chambers at four sites co-located with eddy covariance (EC) towers and soil moisture and temperature sensors along an elevation gradient in the Reynolds Creek Critical Zone Observatory in SW Idaho. FD chamber fluxes were collected continuously at 15-minute intervals. We sampled soil CO2 efflux with manual chambers at plant and interplant spaces in five plots at each site biweekly to monthly during the growing season. The sites included a Wyoming big sagebrush site, a low sagebrush site, a post-fire mountain big sagebrush site, and a mountain big sagebrush site located at elevations of 1425, 1680, 1808 and 2111 m. Climate variation followed the montane elevation gradient; mean annual precipitation (MAP) at the sites is 290, 337, 425, and 795 mm, respectively, and mean annual temperature is 8.9, 8.4, 6.1, 5.4°C. Automated force diffusion chambers detected large differences in carbon dioxide pulse dynamics along the elevation gradient. Growing season carbon dioxide fluxes were 3 times higher at the 425 mm MAP site compared than the lowest elevation sites at 290 and 337 MAP sites and >1.5 higher than the 795 mm MAP site over the same period. Manual fluxes showed similar seasonal patterns as FD chamber fluxes but often higher and greater spatial variability in fluxes than FD chamber fluxes. Plant and interplant flux differences were surprisingly similar, especially at higher elevations. Soil respiration ranged from 0.2-0.48 of ecosystem respiration

  19. Malheur River Wildlife Mitigation Project : 2008 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kesling, Jason; Abel, Chad; Schwabe, Laurence

    2009-01-01

    In 1998, the Burns Paiute Tribe (BPT) submitted a proposal to Bonneville Power Administration (BPA) for the acquisition of the Malheur River Wildlife Mitigation Project (Project). The proposed mitigation site was for the Denny Jones Ranch and included Bureau of Land Management (BLM) and Oregon Division of State Lands (DSL) leases and grazing allotments. The Project approval process and acquisition negotiations continued for several years until the BPT and BPA entered into a Memorandum of Agreement, which allowed for purchase of the Project in November 2000. The 31,781 acre Project is located seven miles east of Juntura, Oregon and ismore » adjacent to the Malheur River (Figure 1). Six thousand three hundred eighty-five acres are deeded to BPT, 4,154 acres are leased from DSL, and 21,242 acres are leased from BLM (Figure 2). In total 11 grazing allotments are leased between the two agencies. Deeded land stretches for seven miles along the Malheur River. It is the largest private landholding on the river between Riverside and Harper, Oregon. Approximately 938 acres of senior water rights are included with the Ranch. The Project is comprised of meadow, wetland, riparian and shrub-steppe habitats. The BLM grazing allotment, located south of the ranch, is largely shrub-steppe habitat punctuated by springs and seeps. Hunter Creek, a perennial stream, flows through both private and BLM lands. Similarly, the DSL grazing allotment, which lies north of the Ranch, is predominantly shrub/juniper steppe habitat with springs and seeps dispersed throughout the upper end of draws (Figure 2).« less

  20. Setting the stage to enhance ecological site description appplications to wildlife management in sagebrush ecosystems: A 2007 society for range management workshop

    USDA-ARS?s Scientific Manuscript database

    Widespread loss, alteration and degradation of sagebrush ecosystems have created complex challenges for managers seeking to conserve dependent wildlife species. A half century of range and wildlife research has generated an extensive and diverse base of information to assist managers in making land ...

  1. Stereo photo series for quantifying natural fuels Volume X: sagebrush with grass and ponderosa pine-juniper types in central Montana.

    Treesearch

    Roger D. Ottmar; Robert E. Vihnanek; Clinton S. Wright

    2007-01-01

    Two series of single and stereo photographs display a range of natural conditions and fuel loadings in sagebrush with grass and ponderosa pinejuniper types in central Montana. Each group of photos includes inventory information summarizing vegetation composition, structure, and loading; woody material loading and density by size class; forest floor depth and loading;...

  2. Tropical coral reef habitat in a geoengineered, high-CO2 world

    NASA Astrophysics Data System (ADS)

    Couce, E.; Irvine, P. J.; Gregorie, L. J.; Ridgwell, A.; Hendy, E. J.

    2013-05-01

    Continued anthropogenic CO2 emissions are expected to impact tropical coral reefs by further raising sea surface temperatures (SST) and intensifying ocean acidification (OA). Although geoengineering by means of solar radiation management (SRM) may mitigate temperature increases, OA will persist, raising important questions regarding the impact of different stressor combinations. We apply statistical Bioclimatic Envelope Models to project changes in shallow water tropical coral reef habitat as a single niche (without resolving biodiversity or community composition) under various representative concentration pathway and SRM scenarios, until 2070. We predict substantial reductions in habitat suitability centered on the Indo-Pacific Warm Pool under net anthropogenic radiative forcing of ≥3.0 W/m2. The near-term dominant risk to coral reefs is increasing SSTs; below 3 W/m2 reasonably favorable conditions are maintained, even when achieved by SRM with persisting OA. "Optimal" mitigation occurs at 1.5 W/m2 because tropical SSTs overcool in a fully geoengineered (i.e., preindustrial global mean temperature) world.

  3. Selection of anthropogenic features and vegetation characteristics by nesting Common Ravens in the sagebrush ecosystem

    USGS Publications Warehouse

    Howe, Kristy B.; Coates, Peter S.; Delehanty, David J.

    2014-01-01

    Common Raven (Corvus corax) numbers and distribution are increasing throughout the sagebrush steppe, influencing avian communities in complex ways. Anthropogenic structures are thought to increase raven populations by providing food and nesting subsidies, which is cause for concern because ravens are important nest predators of sensitive species, including Greater Sage-Grouse (Centrocercus urophasianus). During 2007–2009, we located raven nests in southeastern Idaho and conducted a resource selection analysis. We measured variables at multiple spatial scales for 72 unique nest locations, including landscape-level vegetation characteristics and anthropogenic structures. Using generalized linear mixed models and an information-theoretic approach, we found a 31% decrease in the odds of nesting by ravens for every 1 km increase in distance away from a transmission line. Furthermore, a 100-m increase in distance away from the edge of two different land cover types decreased the odds of nesting by 20%, and an increase in the amount of edge by 1 km within an area of 102.1 ha centered on the nest increased the odds of nesting by 49%. A post hoc analysis revealed that ravens were most likely to nest near edges of adjoining big sagebrush (Artemisia tridentata) and land cover types that were associated with direct human disturbance or fire. These findings contribute to our understanding of raven expansion into rural environments and could be used to make better-informed conservation decisions, especially in the face of increasing renewable energy development.

  4. Mitigation for the Construction and Operation of Libby Dam, 2004-2005 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunnigan, James; DeShazer, Jay; Garrow, Larry

    2005-06-01

    ''Mitigation for the Construction and Operation of Libby Dam'' is part of the Northwest Power and Conservation Council's (NPCC) resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determine themore » biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. The objectives of Phase III of the project (1996 through present) are to implement habitat enhancement measures to mitigate for dam effects, to provide data for implementation of operational strategies that benefit resident fish, monitor reservoir and river conditions, and monitor mitigation projects for effectiveness. This project completes urgent and high priority mitigation actions as directed by the Kootenai Subbasin Plan. Montana Fish, Wildlife & Parks (MFWP) uses a combination of techniques to collect physical and biological data within the Kootenai River Basin. These data serve several purposes including: the development and refinement of models used in management of water resources and operation of Libby Dam; investigations into the limiting factors of native fish populations, gathering basic life history information, tracking trends in endangered and threatened species, and the assessment of restoration or management activities designed to restore native fishes and their habitats.« less

  5. Mitigation for the Construction and Operation of Libby Dam, 2003-2004 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunnigan, James; DeShazer, Jay; Garrow, Larry

    2004-06-01

    ''Mitigation for the Construction and Operation of Libby Dam'' is part of the Northwest Power and Conservation Council's (NPCC) resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating for damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determinemore » the biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. The objectives of Phase III of the project (1996 through present) are to implement habitat enhancement measures to mitigate for dam effects, to provide data for implementation of operational strategies that benefit resident fish, monitor reservoir and river conditions, and monitor mitigation projects for effectiveness. This project completes urgent and high priority mitigation actions as directed by the Kootenai Subbasin Plan. Montana FWP uses a combination of diverse techniques to collect a variety of physical and biological data within the Kootenai River Basin. These data serve several purposes including: the development and refinement of models used in management of water resources and operation of Libby Dam; investigations into the limiting factors of native fish populations, gathering basic life history information, tracking trends in endangered, threatened species, and the assessment of restoration or management activities intended to restore native fishes and their habitats.« less

  6. Malheur River Wildlife Mitigation Project, Annual Report 2003.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashley, Paul

    Hydropower development within the Columbia and Snake River Basins has significantly affected riparian, riverine, and adjacent upland habitats and the fish and wildlife species dependent upon them. Hydroelectric dams played a major role in the extinction or major loss of both anadromous and resident salmonid populations and altered instream and adjacent upland habitats, water quality, and riparian/riverine function. Hydroelectric facility construction and inundation directly affected fish and wildlife species and habitats. Secondary and tertiary impacts including road construction, urban development, irrigation, and conversion of native habitats to agriculture, due in part to the availability of irrigation water, continue to affectmore » wildlife and fish populations throughout the Columbia and Snake River Basins. Fluctuating water levels resulting from facility operations have created exposed sand, cobble, and/or rock zones. These zones are generally devoid of vegetation with little opportunity to re-establish riparian plant communities. To address the habitat and wildlife losses, the United States Congress in 1980 passed the Pacific Northwest Electric Power Planning and Conservation Act (Act) (P.L. 96-501), which authorized the states of Idaho, Montana, Oregon, and Washington to create the Northwest Power Planning Council (Council). The Act directed the Council to prepare a program in conjunction with federal, state, and tribal wildlife resource authorities to protect, mitigate, and enhance fish and wildlife species affected by the construction, inundation and operation of hydroelectric dams in the Columbia River Basin (NPPC 2000). Under the Columbia Basin Fish and Wildlife Program (Program), the region's fish and wildlife agencies, tribes, non-government organizations (NGOs), and the public propose fish and wildlife projects that address wildlife and fish losses resulting from dam construction and subsequent inundation. As directed by the Council, project

  7. Identifying regions vulnerable to habitat degradation under future irrigation scenarios

    NASA Astrophysics Data System (ADS)

    Terrado, Marta; Sabater, Sergi; Acuña, Vicenç

    2016-11-01

    The loss and degradation of natural habitats is a primary cause of biodiversity decline. The increasing impacts of climate and land use change affect water availability, ultimately decreasing agricultural production. Areas devoted to irrigation have been increased to compensate this reduction, causing habitat and biodiversity losses, especially in regions undergoing severe water stress. These effects might intensify under global change, probably contributing to a decrease in habitat quality. We selected four European river basins across a gradient of water scarcity and irrigation agriculture. The habitat quality in the basins was assessed as a function of habitat suitability and threats under current and future global change scenarios of irrigation. Results revealed that the most threatened regions under future scenarios of global change were among those suffering of water scarcity and with bigger areas devoted to irrigation. Loss of habitat quality reached 10% in terrestrial and 25% in aquatic ecosystems under climate change scenarios involving drier conditions. The aquatic habitats were the most degraded in all scenarios, since they were affected by threats from both the terrestrial and the aquatic parts of the basin. By identifying in advance the regions most vulnerable to habitat and biodiversity loss, our approach can assist decision makers in deciding the conservation actions to be prioritized for mitigation and adaptation to the effects of climate change, particularly front the development of irrigation plans.

  8. Conforth Ranch Wildlife Mitigation Feasibility Study, McNary, Oregon : Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasmussen, Larry; Wright, Patrick; Giger, Richard

    1991-03-01

    The 2,860-acre Conforth Ranch near Umatilla, Oregon is being considered for acquisition and management to partially mitigate wildlife losses associated with McNary Hydroelectric Project. The Habitat Evaluation Procedures (HEP) estimated that management for wildlife would result in habitat unit gains of 519 for meadowlark, 420 for quail, 431 for mallard, 466 for Canada goose, 405 for mink, 49 for downy woodpecker, 172 for yellow warbler, and 34 for spotted sandpiper. This amounts to a total combined gain of 2,495 habitat units -- a 110 percent increase over the existing values for these species combined of 2,274 habitat units. Current watermore » delivery costs, estimated at $50,000 per year, are expected to increase to $125,000 per year. A survey of local interest indicated a majority of respondents favored the concept with a minority opposed. No contaminants that would preclude the Fish and Wildlife Service from agreeing to accept the property were identified. 21 refs., 3 figs., 5 tabs.« less

  9. Longitudinal assessment of hydropeaking impacts on various scales for an improved process understanding and the design of mitigation measures.

    PubMed

    Hauer, C; Holzapfel, P; Leitner, P; Graf, W

    2017-01-01

    Hydropeaking is one of the main pressures on the aquatic ecology in alpine rivers. Beside studies on abiotic process and biotic response on the local scale there is a lack in process understanding on the reach scale. Especially longitudinal changes of hydropeaking impacts based on retention processes have not been studied yet. Thus, based on unsteady one-dimensional and two-dimensional depth averaged modelling it was targeted to investigate possible changes in vertical ramping velocity for the discussion of possible mitigation measures at the local scale. Here, we compared artificial and natural sheltering habitats in terms of peak flow. Additionally, the hydropeaking assessment on various river scales was supported by an evaluation of tributaries in an alpine river system. Based on the modelling results and the discussion of the impact assessment of hydropeaking in different case studies we state, that on the first 5km downstream of the turbine outlet a significant decrease in vertical ramping velocity occurs. In this reach, habitat improvements should focus on increasing retention processes considering the higher risk of stranding for juvenile fish and macroinvertebrates. For morphological mitigation measures at the local scale, it turned out that self-formed, near-natural morphology should be targeted in terms of mitigation measure design compared to artificial sheltering habitats. Abundance and biomass of macroinvertebrates are directly linked to substrate variability in self-formed sheltering habitats downstream of gravel bars. Moreover, we ascertained that tributaries are able to contribute to the 'ecological potential' in multi-stressed hydropeaking rivers by providing spawning and rearing habitats for fish. However, for a sustainable improvement of the aquatic environment on all relevant scales, both sediment and flood dynamics have to be considered as important drivers to establish self-formed sheltering habitats in terms of hydropeaking. Copyright © 2016

  10. Long-Term Field Data and Climate-Habitat Models Show That Orangutan Persistence Depends on Effective Forest Management and Greenhouse Gas Mitigation

    PubMed Central

    Gregory, Stephen D.; Brook, Barry W.; Goossens, Benoît; Ancrenaz, Marc; Alfred, Raymond; Ambu, Laurentius N.; Fordham, Damien A.

    2012-01-01

    Background Southeast Asian deforestation rates are among the world’s highest and threaten to drive many forest-dependent species to extinction. Climate change is expected to interact with deforestation to amplify this risk. Here we examine whether regional incentives for sustainable forest management will be effective in improving threatened mammal conservation, in isolation and when combined with global climate change mitigation. Methodology/Principal Findings Using a long time-series of orangutan nest counts for Sabah (2000–10), Malaysian Borneo, we evaluated the effect of sustainable forest management and climate change scenarios, and their interaction, on orangutan spatial abundance patterns. By linking dynamic land-cover and downscaled global climate model projections, we determine the relative influence of these factors on orangutan spatial abundance and use the resulting statistical models to identify habitat crucial for their long-term conservation. We show that land-cover change the degradation of primary forest had the greatest influence on orangutan population size. Anticipated climate change was predicted to cause reductions in abundance in currently occupied populations due to decreased habitat suitability, but also to promote population growth in western Sabah by increasing the suitability of presently unoccupied regions. Conclusions/Significance We find strong quantitative support for the Sabah government’s proposal to implement sustainable forest management in all its forest reserves during the current decade; failure to do so could result in a 40 to 80 per cent regional decline in orangutan abundance by 2100. The Sabah orangutan is just one (albeit iconic) example of a forest-dependent species that stands to benefit from sustainable forest management, which promotes conservation of existing forests. PMID:22970145

  11. Effects of drought and prolonged winter on Townsend's ground squirrel demography in shrubsteppe habitats

    USGS Publications Warehouse

    Van Horne, Beatrice; Olson, Gail S.; Schooley, Robert L.; Corn, Janelle G.; Burnham, Kenneth P.

    1997-01-01

    During a mark–recapture study of Townsend's ground squirrels (Spermophilus townsendii) on 20 sites in the Snake River Birds of Prey National Conservation Area, Idaho, in 1991 through 1994, 4407 animals were marked in 17639 capture events. This study of differences in population dynamics of Townsend's ground squirrels among habitats spanned a drought near the extreme of the 130-yr record, followed by prolonged winter conditions.Townsend's ground squirrels have a short active season (≈4 mo) in which to reproduce and store fat for overwintering. Their food consists largely of succulent grasses and forbs in this dry shrubsteppe and grassland habitat. The drought in the latter half of the 1992 active season produced early drying of Sandberg's bluegrass (Poa secunda) and was associated with low adult and juvenile body masses prior to immergence into estivation/hibernation. The following prolonged winter was associated with late emergence of females in 1993. Early-season body masses of adults were low in 1993 relative to 1992, whereas percentage of body fat in males was relatively high. These weather patterns in spring 1992 and winter 1993 also resulted in reduced adult persistence through the ≈7-mo inactive period, especially for adult females, and near-zero persistence of >1200 juveniles. Consequently, densities of Townsend's ground squirrels across the 20 livetrap sites declined.The demographic effects of drought and prolonged winter lasted at least through the subsequent breeding season. Adult females that survived these weather extremes produced fewer emergent young per female than did adult females prior to the event. Prior to the drought/prolonged winter, yearling female body masses were higher than, or indistinguishable from, those of adults. Females produced in 1993 had lower body masses as yearlings than did adult females.Demographic response to the drought and prolonged winter varied with habitat; ground squirrels in sagebrush habitat showed less decline

  12. Ecological risks of shale oil and gas development to wildlife, aquatic resources and their habitats

    USGS Publications Warehouse

    Brittingham, Margaret C.; Maloney, Kelly O.; Farag, Aïda M.; Harper, David D.; Bowen, Zachary H.

    2014-01-01

    . Examples include core forest habitat and forest specialists, sagebrush habitat and specialists, vernal pond inhabitants and stream biota. We suggest five general areas of research and monitoring that could aid in development of effective guidelines and policies to minimize negative impacts and protect vulnerable species and ecosystems: (1) spatial analyses, (2) species-based modeling, (3) vulnerability assessments, (4) ecoregional assessments, and (5) threshold and toxicity evaluations.

  13. Ecological risks of shale oil and gas development to wildlife, aquatic resources and their habitats.

    PubMed

    Brittingham, Margaret C; Maloney, Kelly O; Farag, Aïda M; Harper, David D; Bowen, Zachary H

    2014-10-07

    . Examples include core forest habitat and forest specialists, sagebrush habitat and specialists, vernal pond inhabitants and stream biota. We suggest five general areas of research and monitoring that could aid in development of effective guidelines and policies to minimize negative impacts and protect vulnerable species and ecosystems: (1) spatial analyses, (2) species-based modeling, (3) vulnerability assessments, (4) ecoregional assessments, and (5) threshold and toxicity evaluations.

  14. 77 FR 25964 - Availability of Report: California Eelgrass Mitigation Policy; Extension of Comment Period

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ... cause (Short and Wyllie-Echeverria 1996). Throughout California, human activities including, but not... directed freshwater flows can directly and indirectly destroy eelgrass habitats. The importance of eelgrass..., monitoring programs, and reports verifying the completion of mitigation activities. Eelgrass warrants a...

  15. Habitat Evaluation Procedures (HEP) Report : Rainwater Wildlife Area, 1998-2001 Technical Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childs, Allen

    The 8,768 acre Rainwater Wildlife Area was acquired in September 1998 by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) through an agreement with Bonneville Power Administration (BPA) to partially offset habitat losses associated with construction of the John Day and McNary hydroelectric facilities on the mainstem Columbia River. U.S. Fish and Wildlife Service (USFWS) Habitat Evaluation Procedures (HEP) were used to determine the number of habitat units credited to BPA for acquired lands. Upland and riparian forest, upland and riparian shrub, and grassland rover types are evaluated in this study. Targeted wildlife species include downy woodpecker (Picoides pubescens),more » black-capped chickadee (Parus atricopillus), blue grouse (Dendragapus obscurus), great blue heron (Ardea herodias), yellow warbler (Dendroica petechia), mink (Mustela vison), and Western meadowlark (Sturnella neglects). Habitat surveys were conducted in 1998 and 1999 in accordance with published HEP protocols and included 65,300, 594m{sup 2} plots, and 112 one-tenth-acre plots. Between 153.3 and 7,187.46 acres were evaluated for each target wildlife mitigation species. Derived habitat suitability indices were multiplied by corresponding cover-type acreages to determine the number of habitat units for each species. The total baseline habitat units credited to BPA for the Rainwater Wildlife Area and its seven target species is 5,185.3 habitat units. Factors limiting habitat suitability are related to the direct, indirect, and cumulative effects of past livestock grazing, road construction, and timber harvest which have simplified the structure, composition, and diversity of native plant communities. Alternatives for protecting and improving habitat suitability include exclusion of livestock grazing, road de-commissioning/obliteration, reforestation and thinning, control of competing and unwanted vegetation (including noxious weeds), reestablishing displaced or reduced native

  16. Diffuse migratory connectivity in two species of shrubland birds: evidence from stable isotopes

    USGS Publications Warehouse

    Knick, Steven T.; Leu, Matthias; Rotenberry, John T.; Hanser, Steven E.; Fesenmyer, Kurt

    2014-01-01

    Connecting seasonal ranges of migratory birds is important for understanding the annual template of stressors that influence their populations. Brewer’s sparrows (Spizella breweri) and sagebrush sparrows (Artemisiospiza nevadensis) share similar sagebrush (Artemisia spp.) habitats for breeding but have different population trends that might be related to winter location. To link breeding and winter ranges, we created isoscapes of deuterium [stable isotope ratio (δ) of deuterium; δ2H] and nitrogen (δ15N) for each species modeled from isotope ratios measured in feathers of 264 Brewer’s and 82 sagebrush sparrows and environmental characteristics at capture locations across their breeding range. We then used feather δ2Hf and δ15Nf measured in 1,029 Brewer’s and 527 sagebrush sparrows captured on winter locations in southwestern United States to assign probable breeding ranges. Intraspecies population mixing from across the breeding range was strong for both Brewer’s and sagebrush sparrows on winter ranges. Brewer’s sparrows but not sagebrush sparrows were linked to more northerly breeding locations in the eastern part of their winter range. Winter location was not related to breeding population trends estimated from US Geological Survey Breeding Bird Survey routes for either Brewer’s or sagebrush sparrows. Primary drivers of population dynamics are likely independent for each species; Brewer’s and sagebrush sparrows captured at the same winter location did not share predicted breeding locations or population trends. The diffuse migratory connectivity displayed by Brewer’s and sagebrush sparrows measured at the coarse spatial resolution in our analysis also suggests that local environments rather than broad regional characteristics are primary drivers of annual population trends.

  17. Region-wide ecological responses of arid Wyoming big sagebrush communities to fuel treatments

    USGS Publications Warehouse

    Pyke, David A.; Shaff, Scott E.; Lindgren, Andrew I.; Schupp, Eugene W.; Doescher, Paul S.; Chambers, Jeanne C.; Burnham, Jeffrey S.; Huso, Manuela M.

    2014-01-01

    If arid sagebrush ecosystems lack resilience to disturbances or resistance to annual invasives, then alternative successional states dominated by annual invasives, especially cheatgrass (Bromus tectorum L.), are likely after fuel treatments. We identified six Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis Beetle & Young) locations (152–381 mm precipitation) that we believed had sufficient resilience and resistance for recovery. We examined impacts of woody fuel reduction (fire, mowing, the herbicide tebuthiuron, and untreated controls, all with and without the herbicide imazapic) on short-term dominance of plant groups and on important land health parameters with the use of analysis of variance (ANOVA). Fire and mowing reduced woody biomass at least 85% for 3 yr, but herbaceous fuels were reduced only by fire (72%) and only in the first year. Herbaceous fuels produced at least 36% more biomass with mowing than untreated areas during posttreatment years. Imazapic only reduced herbaceous biomass after fires (34%). Tebuthiuron never affected herbaceous biomass. Perennial tall grass cover was reduced by 59% relative to untreated controls in the first year after fire, but it recovered by the second year. Cover of all remaining herbaceous groups was not changed by woody fuel treatments. Only imazapic reduced significantly herbaceous cover. Cheatgrass cover was reduced at least 63% with imazapic for 3 yr. Imazapic reduced annual forb cover by at least 45%, and unexpectedly, perennial grass cover by 49% (combination of tall grasses and Sandberg bluegrass [Poa secunda J. Presl.]). Fire reduced density of Sandberg bluegrass between 40% and 58%, decreased lichen and moss cover between 69% and 80%, and consequently increased bare ground between 21% and 34% and proportion of gaps among perennial plants > 2 m (at least 28% during the 3 yr). Fire, mowing, and imazapic may be effective in reducing fuels for 3 yr, but each has potentially undesirable consequences

  18. Stress tolerance in plants via habitat-adapted symbiosis

    USGS Publications Warehouse

    Rodriguez, R.J.; Henson, J.; Van Volkenburgh, E.; Hoy, M.; Wright, L.; Beckwith, F.; Kim, Y.-O.; Redman, R.S.

    2008-01-01

    We demonstrate that native grass species from coastal and geothermal habitats require symbiotic fungal endophytes for salt and heat tolerance, respectively. Symbiotically conferred stress tolerance is a habitat-specific phenomenon with geothermal endophytes conferring heat but not salt tolerance, and coastal endophytes conferring salt but not heat tolerance. The same fungal species isolated from plants in habitats devoid of salt or heat stress did not confer these stress tolerances. Moreover, fungal endophytes from agricultural crops conferred disease resistance and not salt or heat tolerance. We define habitat-specific, symbiotically-conferred stress tolerance as habitat-adapted symbiosis and hypothesize that it is responsible for the establishment of plants in high-stress habitats. The agricultural, coastal and geothermal plant endophytes also colonized tomato (a model eudicot) and conferred disease, salt and heat tolerance, respectively. In addition, the coastal plant endophyte colonized rice (a model monocot) and conferred salt tolerance. These endophytes have a broad host range encompassing both monocots and eudicots. Interestingly, the endophytes also conferred drought tolerance to plants regardless of the habitat of origin. Abiotic stress tolerance correlated either with a decrease in water consumption or reactive oxygen sensitivity/generation but not to increased osmolyte production. The ability of fungal endophytes to confer stress tolerance to plants may provide a novel strategy for mitigating the impacts of global climate change on agricultural and native plant communities.The ISME Journal (2008) 2, 404-416; doi:10.1038/ismej.2007.106; published online 7 February 2008. ?? 2008 International Society for Microbial Ecology All rights reserved.

  19. Spatially explicit modeling of greater sage-grouse (Centrocercus urophasianus) habitat in Nevada and northeastern California: a decision-support tool for management

    USGS Publications Warehouse

    Coates, Peter S.; Casazza, Michael L.; Brussee, Brianne E.; Ricca, Mark A.; Gustafson, K. Benjamin; Overton, Cory T.; Sanchez-Chopitea, Erika; Kroger, Travis; Mauch, Kimberly; Niell, Lara; Howe, Kristy; Gardner, Scott; Espinosa, Shawn; Delehanty, David J.

    2014-01-01

    Greater sage-grouse (Centrocercus urophasianus, hereafter referred to as “sage-grouse”) populations are declining throughout the sagebrush (Artemisia spp.) ecosystem, including millions of acres of potential habitat across the West. Habitat maps derived from empirical data are needed given impending listing decisions that will affect both sage-grouse population dynamics and human land-use restrictions. This report presents the process for developing spatially explicit maps describing relative habitat suitability for sage-grouse in Nevada and northeastern California. Maps depicting habitat suitability indices (HSI) values were generated based on model-averaged resource selection functions informed by more than 31,000 independent telemetry locations from more than 1,500 radio-marked sage-grouse across 12 project areas in Nevada and northeastern California collected during a 15-year period (1998–2013). Modeled habitat covariates included land cover composition, water resources, habitat configuration, elevation, and topography, each at multiple spatial scales that were relevant to empirically observed sage-grouse movement patterns. We then present an example of how the HSI can be delineated into categories. Specifically, we demonstrate that the deviation from the mean can be used to classify habitat suitability into three categories of habitat quality (high, moderate, and low) and one non-habitat category. The classification resulted in an agreement of 93–97 percent for habitat versus non-habitat across a suite of independent validation datasets. Lastly, we provide an example of how space use models can be integrated with habitat models to help inform conservation planning. In this example, we combined probabilistic breeding density with a non-linear probability of occurrence relative to distance to nearest lek (traditional breeding ground) using count data to calculate a composite space use index (SUI). The SUI was then classified into two categories of use

  20. Forest inventory: Peter T. Johnson Wildlife Mitigation Unit, Craig Mountain, Idaho. Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narolski, Steven W.

    The primary objective of this report is to determine the quantity and quality of existing forest habitat types on the 59,991-acre Peter T. Johnson Wildlife Mitigation Unit (WMU). Products from this effort include a description of the ecological condition, a map of habitat types, and an inventory of forest resources on the WMU lands. The purpose of this and other resource inventories (plant and wildlife) is to assess the current resources condition of the WMU and to provide necessary information to generate a long-term management for this area.

  1. Habitat Evaluation Procedures (HEP) Report; Steigerwald Lake National Wildlife Refuge, Technical Report 2000-2001.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allard, Donna

    2001-09-01

    Steigenvald Lake National Wildlife Refuge (NWR, refuge) was established as a result of the U. S. Army Corps of Engineers (COE) transferring ownership of the Stevenson tract located in the historic Steigerwald Lake site to the U.S. Fish and Wildlife Service (FWS, Service) for the mitigation of the fish and wildlife losses associated with the construction of a second powerhouse at the Bonneville Dam on the Columbia River and relocation of the town of North Bonneville (Public Law 98-396). The construction project was completed in 1983 and resulted in the loss of approximately 577 acres of habitat on the Washingtonmore » shore of the Columbia River (USFWS, 1982). The COE determined that acquisition and development of the Steigenvald Lake area, along with other on-site project management actions, would meet their legal obligation to mitigate for these impacts (USCOE, 1985). Mitigation requirements included restoration and enhancement of this property to increase overall habitat diversity and productivity. From 1994 to 1999, 317 acres of additional lands, consisting of four tracts of contiguous land, were added to the original refuge with Bonneville Power Administration (BPA) funds provided through the Washington Wildlife Mitigation Agreement. These tracts comprised Straub (191 acres), James (90 acres), Burlington Northern (27 acres), and Bliss (9 acres). Refer to Figure 1. Under this Agreement, BPA budgeted $2,730,000 to the Service for 'the protection, mitigation, and enhancement of wildlife and wildlife habitat that was adversely affected by the construction of Federal hydroelectric dams on the Columbia River or its tributaries' in the state of Washington (BPA, 1993). Lands acquired for mitigation resulting from BPA actions are evaluated using the habitat evaluation procedures (HEP) methodology, which quantifies how many Habitat Units (HUs) are to be credited to BPA. HUs or credits gained lessen BPA's debt, which was formally tabulated in the Federal Columbia River

  2. Defining critical habitats of threatened and endemic reef fishes with a multivariate approach.

    PubMed

    Purcell, Steven W; Clarke, K Robert; Rushworth, Kelvin; Dalton, Steven J

    2014-12-01

    Understanding critical habitats of threatened and endemic animals is essential for mitigating extinction risks, developing recovery plans, and siting reserves, but assessment methods are generally lacking. We evaluated critical habitats of 8 threatened or endemic fish species on coral and rocky reefs of subtropical eastern Australia, by measuring physical and substratum-type variables of habitats at fish sightings. We used nonmetric and metric multidimensional scaling (nMDS, mMDS), Analysis of similarities (ANOSIM), similarity percentages analysis (SIMPER), permutational analysis of multivariate dispersions (PERMDISP), and other multivariate tools to distinguish critical habitats. Niche breadth was widest for 2 endemic wrasses, and reef inclination was important for several species, often found in relatively deep microhabitats. Critical habitats of mainland reef species included small caves or habitat-forming hosts such as gorgonian corals and black coral trees. Hard corals appeared important for reef fishes at Lord Howe Island, and red algae for mainland reef fishes. A wide range of habitat variables are required to assess critical habitats owing to varied affinities of species to different habitat features. We advocate assessments of critical habitats matched to the spatial scale used by the animals and a combination of multivariate methods. Our multivariate approach furnishes a general template for assessing the critical habitats of species, understanding how these vary among species, and determining differences in the degree of habitat specificity. © 2014 Society for Conservation Biology.

  3. Eder Acquisition 2007 Habitat Evaluation Procedures Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashley, Paul R.

    A habitat evaluation procedures (HEP) analysis was conducted on the Eder acquisition in July 2007 to determine how many protection habitat units to credit Bonneville Power Administration (BPA) for providing funds to acquire the project site as partial mitigation for habitat losses associated with construction of Grand Coulee and Chief Joseph Dams. Baseline HEP surveys generated 3,857.64 habitat units or 1.16 HUs per acre. HEP surveys also served to document general habitat conditions. Survey results indicated that the herbaceous plant community lacked forbs species, which may be due to both livestock grazing and the late timing of the surveys. Moreover,more » the herbaceous plant community lacked structure based on lower than expected visual obstruction readings (VOR); likely a direct result of livestock impacts. In addition, introduced herbaceous vegetation including cultivated pasture grasses, e.g. crested wheatgrass and/or invader species such as cheatgrass and mustard, were present on most areas surveyed. The shrub element within the shrubsteppe cover type was generally a mosaic of moderate to dense shrubby areas interspersed with open grassland communities while the 'steppe' component was almost entirely devoid of shrubs. Riparian shrub and forest areas were somewhat stressed by livestock. Moreover, shrub and tree communities along the lower reaches of Nine Mile Creek suffered from lack of water due to the previous landowners 'piping' water out of the stream channel.« less

  4. 75 FR 5765 - NOAA Coastal and Marine Habitat Restoration Project Supplemental Funding

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-04

    ... the approximately 3 percent of funding that remains from the original allocation provided to NMFS... manage and mitigate risks to the original habitat restoration investments and ensure program goals are... awarded funds as a result of the original competition. There is the possibility that NMFS may also fund...

  5. The interplay between habitat structure and chemical contaminants on biotic responses of benthic organisms

    PubMed Central

    Matias, Miguel G.; Coleman, Ross A.

    2016-01-01

    Habitat structure influences the diversity and distribution of organisms, potentially affecting their response to disturbances by either affecting their ‘susceptibility’ or through the provision of resources that can mitigate impacts of disturbances. Chemical disturbances due to contamination are associated with decreases in diversity and functioning of systems and are also likely to increase due to coastal urbanisation. Understanding how habitat structure interacts with contaminants is essential to predict and therefore manage such effects, minimising their consequences to marine systems. Here, we manipulated two structurally different habitats and exposed them to different types of contaminants. The effects of contamination and habitat structure interacted, affecting species richness. More complex experimental habitats were colonized by a greater diversity of organisms than the less complex habitats. These differences disappeared, however, when habitats were exposed to contaminants, suggesting that contaminants can override effects of habitats structure at small spatial scales. These results provide insight into the complex ways that habitat structure and contamination interact and the need to incorporate evidence of biotic responses from individual disturbances to multiple stressors. Such effects need to be taken into account when designing and planning management and conservation strategies to natural systems. PMID:27168991

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durham, Robin E.; Becker, James M.

    This document provides a review and status of activities conducted in support of the Fluor Daniel Hanford Company (Fluor), now Mission Support Alliance (MSA), Mitigation Action Plan (MAP) for Project L-325, Electrical Utility Upgrades (2007). Three plantings have been installed on a 4.5-hectare mitigation area to date. This review provides a description and chronology of events, monitoring results, and mitigative actions through fiscal year (FY) 2012. Also provided is a review of the monitoring methods, transect layout, and FY 2012 monitoring activities and results for all planting years. Planting densities and performance criteria stipulated in the MAP were aimed atmore » a desired future condition (DFC) of 10 percent mature sagebrush (Artemisia tridentata ssp wyomingensis) cover. Current recommendations for yielding this DFC are based upon a conceptual model planting of 1000 plants/ha (400/ac) exhibiting a 60-percent survival rate after 5 monitoring years (DOE 2003). Accordingly, a DFC after 5 monitoring years would not be less than 600 plants/ha (240/ac). To date, about 8700 sagebrush plants have been grown and transplanted onto the mitigation site. Harsh site conditions and low seedling survival have resulted in an estimated 489 transplants/ha on the mitigation site, which is 111 plants/ha short of the target DFC. Despite this apparent shortcoming, 71, 91, and 24 percent of the surviving seedlings planted in FY 2007 and FY 2008 and FY 2010, respectively, showed signs of blooming in FY 2012. Blooming status may be a positive indication of future sagebrush recruitment, and is therefore a potential source for reaching the target DFC of 600 plants/ha on this mitigation site over time. Because of the difficulty establishing small transplants on this site, we propose that no additional plantings be considered for this mitigation area and to rely upon the potential recruitment by established seedlings to achieve the mitigation commitment set forth in the MAP of 600

  7. Mitigation bank promotes research on restoring Coastal Plain depression wetlands (South Carolina).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barton, Christopher D.; DeSteven, Diane; Kilgo, John C.

    Barton, Christopher, D., Diane DeSteven and John C. Kilgo. 2004. Mitigation bank promotes research on restoring Coastal Plain depression wetlands (South Carolina). Ecol. Rest. 22(4):291-292. Abstract: Carolina bays and smaller depression wetlands support diverse plant communities and provide critical habitat for semi-aquatic fauna throughout the Coastal Plain region of the southeastern United States. Historically, many depression wetlands were altered or destroyed by surface ditching, drainage, and agricultural or silviculture uses. These important habitats are now at further risk of alteration and loss following a U.S. Supreme Court decision in 2001 restricting federal regulation of isolated wetlands. Thus, there is increasedmore » attention towards protecting intact sites and developing methods to restore others. The U.S. Department of Energy's (DOE) 312-mi2 (800-km2) Savannah River Site (SRS) in west-central South Carolina includes about 350 Carolina bays and bay-like wetland depressions, of which about two-thirds were degraded or destroyed prior to federal acquisition of the land. Although some of the altered wetlands have recovered naturally, others still have active active drainage ditches and contain successional forests typical of drained sites. In 1997, DOE established a wetland mitigation bank to compensate for unavoidable wetland impacts on the SRS. This effort provided an opportunity fir a systematic research program to investigate wetland restoration techniques and ecological responses. Consequently, research and management staffs from the USDA Forest Service, Westinghouse Savannah River Corporation, the Savannah River Technology Center, the Savannah River Ecology Laboratory (SREL) and several universities developed a collaborative project to restore degraded depression wetlands on the SRS. The mitigation project seeks cost-effective methods to restore the hydrology and vegetation typical of natural depression wetlands, and so enhance habitats for

  8. Habitat characteristics of larval mosquitoes in zoos of South Carolina, USA.

    PubMed

    Tuten, Holly C

    2011-06-01

    To investigate whether the unique assemblage of habitats in zoos could affect mosquito oviposition behavior and to provide zoos with suggestions for mosquito control, larvae were sampled and associated habitat variables were measured in 2 zoos in South Carolina, U.S.A. Fifty-nine sites were sampled from March 2008 to January 2009. A total of 1630 larvae representing 16 species was collected and identified. The dominant species was Aedes albopictus (46.0%), followed by Ae. triseriatus (23.6%), Culex restuans (12.4%), and Cx. pipiens complex (9.7%). Principal components and multiple logistic regression analyses showed that across both zoos the distribution of Ae. albopictus larvae was predicted by ambient and site temperature, precipitation, dissolved oxygen, and container habitats. The distribution of Ae. triseriatus larvae was predicted by natural containers and shade height < or =2 m. Overall larval mosquito presence (regardless of species) was predicted by ambient and site temperature, precipitation, dissolved oxygen, presence of natural habitats, and absence of aquatic vegetation. Additionally, C8 values of pairwise species associations indicated significant habitat-based relationships between Ae. albopictus and Ae. triseriatus, and Cx. pipiens complex and Cx. restuans. In general, species-habitat associations conformed to previously published studies. Recommendations to zoo personnel include elimination of artificial container habitats, reduction of shade sources < or =2 m over aquatic habitats, use of approved mosquito larvicides, and training in recognizing and mitigating larval mosquito habitats.

  9. Iskuulpa Watershed Management Plan : A Five-Year Plan for Protecting and Enhancing Fish and Wildlife Habitats in the Iskuulpa Watershed.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Confederated Tribes of the Umatilla Indian Reservation Wildlife Program

    The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) propose to protect, enhance, and mitigate wildlife and wildlife habitat and watershed resources in the Iskuulpa Watershed. The Iskuulpa Watershed Project was approved as a Columbia River Basin Wildlife Fish and Mitigation Project by the Bonneville Power Administration (BPA) and Northwest Power Planning Council (NWPPC) in 1998. Iskuulpa will contribute towards meeting BPA's obligation to compensate for wildlife habitat losses resulting from the construction of the John Day and McNary Hydroelectric facilities on the Columbia River. By funding the enhancement and operation and maintenance of the Iskuulpa Watershed, BPA will receivemore » credit towards their mitigation debt. The purpose of the Iskuulpa Watershed management plan update is to provide programmatic and site-specific standards and guidelines on how the Iskuulpa Watershed will be managed over the next three years. This plan provides overall guidance on both short and long term activities that will move the area towards the goals, objectives, and desired future conditions for the planning area. The plan will incorporate managed and protected wildlife and wildlife habitat, including operations and maintenance, enhancements, and access and travel management.« less

  10. Wetland habitats for wildlife of the Chesapeake Bay

    USGS Publications Warehouse

    Perry, M.C.; Majumdar, S.K.; Miller, E.W.; Brenner, Fred J.

    1998-01-01

    The wetlands of Chesapeake Bay have provided the vital habitats that have sustained the impressive wildlife populations that have brought international fame to the Bay. As these wetland habitats decrease in quantity and quality we will continue to see the decline in the wildlife populations that started when European settlers first came to this continent. These declines have accelerated significantly in this century. As the human population continues to increase in the Bay watershed, one can expect that wetland habitats will continue to decline, resulting in declines in species diversity and population numbers. Although federal, state, and local governments are striving for 'no net loss' of wetlands, the results to date are not encouraging. It is unrealistic to believe that human populations and associated development can continue to increase and not adversely affect the wetland resources of the Bay. Restrictions on human population growth in the Chesapeake area is clearly the best way to protect wetland habitats and the wildlife that are dependent on these habitats. In addition, there should be more aggressive approaches to protect wetland habitats from continued perturbations from humans. More sanctuary areas should be created and there should be greater use of enhancement and management techniques that will benefit the full complement of species that potentially exist in these wetlands. The present trend in wetland loss can be expected to continue as human populations increase with resultant increases in roads, shopping malls, and housing developments. Creation of habitat for mitigation of these losses will not result in 'no net loss'. More innovative approaches should be employed to reverse the long-term trend in wetland loss by humans.

  11. Aligning Natural Resource Conservation and Flood Hazard Mitigation in California

    PubMed Central

    Calil, Juliano; Beck, Michael W.; Gleason, Mary; Merrifield, Matthew; Klausmeyer, Kirk; Newkirk, Sarah

    2015-01-01

    Flooding is the most common and damaging of all natural disasters in the United States, and was a factor in almost all declared disasters in U.S. history. Direct flood losses in the U.S. in 2011 totaled $8.41 billion and flood damage has also been on the rise globally over the past century. The National Flood Insurance Program paid out more than $38 billion in claims since its inception in 1968, more than a third of which has gone to the one percent of policies that experienced multiple losses and are classified as “repetitive loss.” During the same period, the loss of coastal wetlands and other natural habitat has continued, and funds for conservation and restoration of these habitats are very limited. This study demonstrates that flood losses could be mitigated through action that meets both flood risk reduction and conservation objectives. We found that there are at least 11,243km2 of land in coastal California, which is both flood-prone and has natural resource conservation value, and where a property/structure buyout and habitat restoration project could meet multiple objectives. For example, our results show that in Sonoma County, the extent of land that meets these criteria is 564km2. Further, we explore flood mitigation grant programs that can be a significant source of funds to such projects. We demonstrate that government funded buyouts followed by restoration of targeted lands can support social, environmental, and economic objectives: reduction of flood exposure, restoration of natural resources, and efficient use of limited governmental funds. PMID:26200353

  12. Aligning Natural Resource Conservation and Flood Hazard Mitigation in California.

    PubMed

    Calil, Juliano; Beck, Michael W; Gleason, Mary; Merrifield, Matthew; Klausmeyer, Kirk; Newkirk, Sarah

    2015-01-01

    Flooding is the most common and damaging of all natural disasters in the United States, and was a factor in almost all declared disasters in U.S. Direct flood losses in the U.S. in 2011 totaled $8.41 billion and flood damage has also been on the rise globally over the past century. The National Flood Insurance Program paid out more than $38 billion in claims since its inception in 1968, more than a third of which has gone to the one percent of policies that experienced multiple losses and are classified as "repetitive loss." During the same period, the loss of coastal wetlands and other natural habitat has continued, and funds for conservation and restoration of these habitats are very limited. This study demonstrates that flood losses could be mitigated through action that meets both flood risk reduction and conservation objectives. We found that there are at least 11,243km2 of land in coastal California, which is both flood-prone and has natural resource conservation value, and where a property/structure buyout and habitat restoration project could meet multiple objectives. For example, our results show that in Sonoma County, the extent of land that meets these criteria is 564km2. Further, we explore flood mitigation grant programs that can be a significant source of funds to such projects. We demonstrate that government funded buyouts followed by restoration of targeted lands can support social, environmental, and economic objectives: reduction of flood exposure, restoration of natural resources, and efficient use of limited governmental funds.

  13. Grand Coulee Dam Wildlife Mitigation Program : Pygmy Rabbit Programmatic Management Plan, Douglas County, Washington.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashley, Paul

    1992-06-01

    The Northwest Power Planning Council and the Bonneville Power Administration approved the pygmy rabbit project as partial mitigation for impacts caused by the construction of Grand Coulee Dam. The focus of this project is the protection and enhancement of shrub-steppe/pygmy rabbit habitat in northeastern Washington.

  14. Multivariate model of female black bear habitat use for a Geographic Information System

    USGS Publications Warehouse

    Clark, Joseph D.; Dunn, James E.; Smith, Kimberly G.

    1993-01-01

    Simple univariate statistical techniques may not adequately assess the multidimensional nature of habitats used by wildlife. Thus, we developed a multivariate method to model habitat-use potential using a set of female black bear (Ursus americanus) radio locations and habitat data consisting of forest cover type, elevation, slope, aspect, distance to roads, distance to streams, and forest cover type diversity score in the Ozark Mountains of Arkansas. The model is based on the Mahalanobis distance statistic coupled with Geographic Information System (GIS) technology. That statistic is a measure of dissimilarity and represents a standardized squared distance between a set of sample variates and an ideal based on the mean of variates associated with animal observations. Calculations were made with the GIS to produce a map containing Mahalanobis distance values within each cell on a 60- × 60-m grid. The model identified areas of high habitat use potential that could not otherwise be identified by independent perusal of any single map layer. This technique avoids many pitfalls that commonly affect typical multivariate analyses of habitat use and is a useful tool for habitat manipulation or mitigation to favor terrestrial vertebrates that use habitats on a landscape scale.

  15. Spatiotemporal patterns and habitat associations of smallmouth bass (Micropterus dolomieu) invading salmon-rearing habitat

    USGS Publications Warehouse

    Lawrence, David J.; Olden, Julian D.; Torgersen, Christian E.

    2012-01-01

    1. Smallmouth bass (Micropterus dolomieu) have been widely introduced to fresh waters throughout the world to promote recreational fishing opportunities. In the Pacific Northwest (U.S.A.), upstream range expansions of predatory bass, especially into subyearling salmon-rearing grounds, are of increasing conservation concern, yet have received little scientific inquiry. Understanding the habitat characteristics that influence bass distribution and the timing and extent of bass and salmon overlap will facilitate the development of management strategies that mitigate potential ecological impacts of bass.2. We employed a spatially continuous sampling design to determine the extent of bass and subyearling Chinook salmon (Oncorhynchus tshawytscha) sympatry in the North Fork John Day River (NFJDR), a free-flowing river system in the Columbia River Basin that contains an upstream expanding population of non-native bass. Extensive (i.e. 53 km) surveys were conducted over 2 years and during an early and late summer period of each year, because these seasons provide a strong contrast in the river’s water temperature and flow condition. Classification and regression trees were applied to determine the primary habitat correlates of bass abundance at reach and channel-unit scales.3. Our study revealed that bass seasonally occupy up to 22% of the length of the mainstem NFJDR where subyearling Chinook salmon occur, and the primary period of sympatry between these species was in the early summer and not during peak water temperatures in late summer. Where these species co-occurred, bass occupied 60–76% of channel units used by subyearling Chinook salmon in the early summer and 28–46% of the channel units they occupied in the late summer. Because these rearing salmon were well below the gape limitation of bass, this overlap could result in either direct predation or sublethal effects of bass on subyearling Chinook salmon. The upstream extent of bass increased 10–23

  16. Spatial and ecological variation in dryland ecohydrological responses to climate change: implications for management

    USGS Publications Warehouse

    Palmquist, Kyle A.; Schlaepfer, Daniel R.; Bradford, John B.; Lauenroth, William K.

    2016-01-01

    Ecohydrological responses to climate change will exhibit spatial variability and understanding the spatial pattern of ecological impacts is critical from a land management perspective. To quantify climate change impacts on spatial patterns of ecohydrology across shrub steppe ecosystems in North America, we asked the following question: How will climate change impacts on ecohydrology differ in magnitude and variability across climatic gradients, among three big sagebrush ecosystems (SB-Shrubland, SB-Steppe, SB-Montane), and among Sage-grouse Management Zones? We explored these potential changes for mid-century for RCP8.5 using a process-based water balance model (SOILWAT) for 898 big sagebrush sites using site- and scenario-specific inputs. We summarize changes in available soil water (ASW) and dry days, as these ecohydrological variables may be helpful in guiding land management decisions about where to geographically concentrate climate change mitigation and adaptation resources. Our results suggest that during spring, soils will be wetter in the future across the western United States, while soils will be drier in the summer. The magnitude of those predictions differed depending on geographic position and the ecosystem in question: Larger increases in mean daily spring ASW were expected for high-elevation SB-Montane sites and the eastern and central portions of our study area. The largest decreases in mean daily summer ASW were projected for warm, dry, mid-elevation SB-Montane sites in the central and west-central portions of our study area (decreases of up to 50%). Consistent with declining summer ASW, the number of dry days was projected to increase rangewide, but particularly for SB-Montane and SB-Steppe sites in the eastern and northern regions. Collectively, these results suggest that most sites will be drier in the future during the summer, but changes were especially large for mid- to high-elevation sites in the northern half of our study area. Drier

  17. Winter ecology and habitat use of lesser prairie-chickens in west Texas, 2008-11

    USGS Publications Warehouse

    Boal, Clint W.; Pirius, Nicholas E.

    2012-01-01

    The lesser prairie-chicken (Tympanuchus pallidicinctus) has experienced declines in population and occupied range by more than 90 percent since the late 1800s. The lesser prairie-chicken has been listed as a candidate species for protection under the Endangered Species Act and is undergoing review for actual listing. Populations and distribution of lesser prairie-chickens in Texas are thought to be at or near all time lows. These factors have led to substantially increased concern for conservation of the species. It is apparent that sound management and conservation strategies for lesser prairie-chickens are necessary to ensure the long-term persistence of the species. To develop those strategies, basic ecological information is required. Currently, there is a paucity of data on the wintering ecology of the species. We examined home range, habitat use, and survival of lesser prairie-chickens during the winters of 2008–9, 2009–10, and 2010–11 in sand shinnery oak (Quercus havardii) landscapes in west Texas. We captured and radio-tagged 53 adult lesser prairie-chickens. We obtained sufficient locations to estimate winter home-range size for 23 individuals. Home-range size did not differ between years or by sex. Although female prairie-chickens had slightly larger home ranges (503.5 ± 34.9 ha) compared to males (489.1 ± 34.9 ha), the differences were not significant (t2 = 0.05, P = 0.96). During the nonbreeding season, we found that 97.2 percent of locations of male and female prairie-chickens alike were within 3.2 kilometers (km) of the lek of capture. Most locations (96.8%) were within 1.7 km of a known lek and almost all locations (99.9%) were within 3.2 km of an available water source. Habitat cover types were not used proportional to occurrence within the home ranges, grassland dominated areas with sand shinnery oak were used more than available, and sand sagebrush (Artemisia filifolia) areas dominated with grassland as well as sand sagebrush areas

  18. Assessing range-wide habitat suitability for the Lesser Prairie-Chicken

    USGS Publications Warehouse

    Jarnevich, Catherine S.; Holcombe, Tracy R.; Grisham, Blake A.; Timmer, Jennifer M.; Boal, Clint W.; Butler, Matthew; Pitman, James C.; Kyle, Sean; Klute, David; Beauprez, Grant M.; Janus, Allan; Van Pelt, William E.

    2016-01-01

    Population declines of many wildlife species have been linked to habitat loss incurred through land-use change. Incorporation of conservation planning into development planning may mitigate these impacts. The threatened Lesser Prairie-Chicken (Tympanuchus pallidicinctus) is experiencing loss of native habitat and high levels of energy development across its multijurisdictional range. Our goal was to explore relationships of the species occurrence with landscape characteristics and anthropogenic effects influencing its distribution through evaluation of habitat suitability associated with one particular habitat usage, lekking. Lekking has been relatively well-surveyed, though not consistently, in all jurisdictions. All five states in which Lesser Prairie-Chickens occur cooperated in development of a Maxent habitat suitability model. We created two models, one with state as a factor and one without state. When state was included it was the most important predictor, followed by percent of land cover consisting of known or suspected used vegetation classes within a 5000 m area around a lek. Without state, land cover was the most important predictor of relative habitat suitability for leks. Among the anthropogenic predictors, landscape condition, a measure of human impact integrated across several factors, was most important, ranking third in importance without state. These results quantify the relative suitability of the landscape within the current occupied range of Lesser Prairie-Chickens. These models, combined with other landscape information, form the basis of a habitat assessment tool that can be used to guide siting of development projects and targeting of areas for conservation.

  19. Hellsgate Big Game Winter Range Wildlife Mitigation Project : Annual Report 2008.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitney, Richard P.; Berger, Matthew T.; Rushing, Samuel

    The Hellsgate Big Game Winter Range Wildlife Mitigation Project (Hellsgate Project) was proposed by the Confederated Tribes of the Colville Reservation (CTCR) as partial mitigation for hydropower's share of the wildlife losses resulting from Chief Joseph and Grand Coulee Dams. At present, the Hellsgate Project protects and manages 57,418 acres (approximately 90 miles2) for the biological requirements of managed wildlife species; most are located on or near the Columbia River (Lake Rufus Woods and Lake Roosevelt) and surrounded by Tribal land. To date we have acquired about 34,597 habitat units (HUs) towards a total 35,819 HUs lost from original inundationmore » due to hydropower development. In addition to the remaining 1,237 HUs left unmitigated, 600 HUs from the Washington Department of Fish and Wildlife that were traded to the Colville Tribes and 10 secure nesting islands are also yet to be mitigated. This annual report for 2008 describes the management activities of the Hellsgate Big Game Winter Range Wildlife Mitigation Project (Hellsgate Project) during the past year.« less

  20. Using object-based image analysis to conduct high-resolution conifer extraction at regional spatial scales

    USGS Publications Warehouse

    Coates, Peter S.; Gustafson, K. Benjamin; Roth, Cali L.; Chenaille, Michael P.; Ricca, Mark A.; Mauch, Kimberly; Sanchez-Chopitea, Erika; Kroger, Travis J.; Perry, William M.; Casazza, Michael L.

    2017-08-10

    The distribution and abundance of pinyon (Pinus monophylla) and juniper (Juniperus osteosperma, J. occidentalis) trees (hereinafter, "pinyon-juniper") in sagebrush (Artemisia spp.) ecosystems of the Great Basin in the Western United States has increased substantially since the late 1800s. Distributional expansion and infill of pinyon-juniper into sagebrush ecosystems threatens the ecological function and economic viability of these ecosystems within the Great Basin, and is now a major contemporary challenge facing land and wildlife managers. Particularly, pinyon-juniper encroachment into intact sagebrush ecosystems has been identified as a primary threat facing populations of greater sage-grouse (Centrocercus urophasianus; hereinafter, "sage-grouse"), which is a sagebrush obligate species. Even seemingly innocuous scatterings of isolated pinyon-juniper in an otherwise intact sagebrush landscape can negatively affect survival and reproduction of sage-grouse. Therefore, accurate and high-resolution maps of pinyon-juniper distribution and abundance (indexed by canopy cover) across broad geographic extents would help guide land management decisions that better target areas for pinyon-juniper removal projects (for example, fuel reduction, habitat improvement for sage-grouse, and other sagebrush species) and facilitate science that further quantifies ecological effects of pinyon-juniper encroachment on sage-grouse populations and sagebrush ecosystem processes. Hence, we mapped pinyon-juniper (referred to as conifers for actual mapping) at a 1 × 1-meter (m) high resolution across the entire range of previously mapped sage-grouse habitat in Nevada and northeastern California.We used digital orthophoto quad tiles from National Agriculture Imagery Program (2010, 2013) as base imagery, and then classified conifers using automated feature extraction methodology with the program Feature Analyst™. This method relies on machine learning algorithms that extract features from

  1. Greater sage-grouse (Centrocercus urophasianus) nesting and brood-rearing microhabitat in Nevada and California—Spatial variation in selection and survival patterns

    USGS Publications Warehouse

    Coates, Peter S.; Brussee, Brianne E.; Ricca, Mark A.; Dudko, Jonathan E.; Prochazka, Brian G.; Espinosa, Shawn P.; Casazza, Michael L.; Delehanty, David J.

    2017-08-10

    Greater sage-grouse (Centrocercus urophasianus; hereinafter, "sage-grouse") are highly dependent on sagebrush (Artemisia spp.) dominated vegetation communities for food and cover from predators. Although this species requires the presence of sagebrush shrubs in the overstory, it also inhabits a broad geographic distribution with significant gradients in precipitation and temperature that drive variation in sagebrush ecosystem structure and concomitant shrub understory conditions. Variability in understory conditions across the species’ range may be responsible for the sometimes contradictory findings in the scientific literature describing sage-grouse habitat use and selection during important life history stages, such as nesting. To help understand the importance of this variability and to help guide management actions, we evaluated the nesting and brood-rearing microhabitat factors that influence selection and survival patterns in the Great Basin using a large dataset of microhabitat characteristics from study areas spanning northern Nevada and a portion of northeastern California from 2009 to 2016. The spatial and temporal coverage of the dataset provided a powerful opportunity to evaluate microhabitat factors important to sage-grouse reproduction, while also considering habitat variation associated with different climatic conditions and areas affected by wildfire. The summary statistics for numerous microhabitat factors, and the strength of their association with sage-grouse habitat selection and survival, are provided in this report to support decisions by land managers, policy-makers, and others with the best-available science in a timely manner.

  2. Rainwater Wildlife Area, Watershed Management Plan, A Columbia Basin Wildlife Mitigation Project, 2002.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childs, Allen B.

    This Management Plan has been developed by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) to document how the Rainwater Wildlife Area (formerly known as the Rainwater Ranch) will be managed. The plan has been developed under a standardized planning process developed by the Bonneville Power Administration (BPA) for Columbia River Basin Wildlife Mitigation Projects (See Appendix A and Guiding Policies Section below). The plan outlines the framework for managing the project area, provides an assessment of existing conditions and key resource issues, and presents an array of habitat management and enhancement strategies. The plan culminates into a 5-Yearmore » Action Plan that will focus our management actions and prioritize funding during the Fiscal 2001-2005 planning period. This plan is a product of nearly two years of field studies and research, public scoping, and coordination with the Rainwater Advisory Committee. The committee consists of representatives from tribal government, state agencies, local government, public organizations, and members of the public. The plan is organized into several sections with Chapter 1 providing introductory information such as project location, purpose and need, project goals and objectives, common elements and assumptions, coordination efforts and public scoping, and historical information about the project area. Key issues are presented in Chapter 2 and Chapter 3 discusses existing resource conditions within the wildlife area. Chapter 4 provides a detailed presentation on management activities and Chapter 5 outlines a monitoring and evaluation plan for the project that will help assess whether the project is meeting the intended purpose and need and the goals and objectives. Chapter 6 displays the action plan and provides a prioritized list of actions with associated budget for the next five year period. Successive chapters contain appendices, references, definitions, and a glossary. The purpose of the

  3. Carbon stock corridors to mitigate climate change and promote biodiversity in the tropics

    NASA Astrophysics Data System (ADS)

    Jantz, Patrick; Goetz, Scott; Laporte, Nadine

    2014-02-01

    A key issue in global conservation is how biodiversity co-benefits can be incorporated into land use and climate change mitigation activities, particularly those being negotiated under the United Nations to reduce emissions from tropical deforestation and forest degradation. Protected areas have been the dominant strategy for tropical forest conservation and they have increased substantially in recent decades. Avoiding deforestation by preserving carbon stored in vegetation between protected areas provides an opportunity to mitigate the effects of land use and climate change on biodiversity by maintaining habitat connectivity across landscapes. Here we use a high-resolution data set of vegetation carbon stock to map corridors traversing areas of highest biomass between protected areas in the tropics. The derived corridors contain 15% of the total unprotected aboveground carbon in the tropical region. A large number of corridors have carbon densities that approach or exceed those of the protected areas they connect, suggesting these are suitable areas for achieving both habitat connectivity and climate change mitigation benefits. To further illustrate how economic and biological information can be used for corridor prioritization on a regional scale, we conducted a multicriteria analysis of corridors in the Legal Amazon, identifying corridors with high carbon, high species richness and endemism, and low economic opportunity costs. We also assessed the vulnerability of corridors to future deforestation threat.

  4. Habitat characteristics provide insights of carbon storage in seagrass meadows.

    PubMed

    Mazarrasa, Inés; Samper-Villarreal, Jimena; Serrano, Oscar; Lavery, Paul S; Lovelock, Catherine E; Marbà, Núria; Duarte, Carlos M; Cortés, Jorge

    2018-02-16

    Seagrass meadows provide multiple ecosystem services, yet they are among the most threatened ecosystems on earth. Because of their role as carbon sinks, protection and restoration of seagrass meadows contribute to climate change mitigation. Blue Carbon strategies aim to enhance CO 2 sequestration and avoid greenhouse gasses emissions through the management of coastal vegetated ecosystems, including seagrass meadows. The implementation of Blue Carbon strategies requires a good understanding of the habitat characteristics that influence C org sequestration. Here, we review the existing knowledge on Blue Carbon research in seagrass meadows to identify the key habitat characteristics that influence C org sequestration in seagrass meadows, those factors that threaten this function and those with unclear effects. We demonstrate that not all seagrass habitats have the same potential, identify research priorities and describe the implications of the results found for the implementation and development of efficient Blue Carbon strategies based on seagrass meadows. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Prioritizing Tiger Conservation through Landscape Genetics and Habitat Linkages

    PubMed Central

    Yumnam, Bibek; Jhala, Yadvendradev V.; Qureshi, Qamar; Maldonado, Jesus E.; Gopal, Rajesh; Saini, Swati; Srinivas, Y.; Fleischer, Robert C.

    2014-01-01

    corridors, use smart green infrastructure to mitigate development impacts, and restore habitats where connectivity has been lost. PMID:25393234

  6. Prioritizing tiger conservation through landscape genetics and habitat linkages.

    PubMed

    Yumnam, Bibek; Jhala, Yadvendradev V; Qureshi, Qamar; Maldonado, Jesus E; Gopal, Rajesh; Saini, Swati; Srinivas, Y; Fleischer, Robert C

    2014-01-01

    to corridors, use smart green infrastructure to mitigate development impacts, and restore habitats where connectivity has been lost.

  7. Structural habitat predicts functional dispersal habitat of a large carnivore: how leopards change spots.

    PubMed

    Fattebert, Julien; Robinson, Hugh S; Balme, Guy; Slotow, Rob; Hunter, Luke

    2015-10-01

    Natal dispersal promotes inter-population linkage, and is key to spatial distribution of populations. Degradation of suitable landscape structures beyond the specific threshold of an individual's ability to disperse can therefore lead to disruption of functional landscape connectivity and impact metapopulation function. Because it ignores behavioral responses of individuals, structural connectivity is easier to assess than functional connectivity and is often used as a surrogate for landscape connectivity modeling. However using structural resource selection models as surrogate for modeling functional connectivity through dispersal could be erroneous. We tested how well a second-order resource selection function (RSF) models (structural connectivity), based on GPS telemetry data from resident adult leopard (Panthera pardus L.), could predict subadult habitat use during dispersal (functional connectivity). We created eight non-exclusive subsets of the subadult data based on differing definitions of dispersal to assess the predictive ability of our adult-based RSF model extrapolated over a broader landscape. Dispersing leopards used habitats in accordance with adult selection patterns, regardless of the definition of dispersal considered. We demonstrate that, for a wide-ranging apex carnivore, functional connectivity through natal dispersal corresponds to structural connectivity as modeled by a second-order RSF. Mapping of the adult-based habitat classes provides direct visualization of the potential linkages between populations, without the need to model paths between a priori starting and destination points. The use of such landscape scale RSFs may provide insight into predicting suitable dispersal habitat peninsulas in human-dominated landscapes where mitigation of human-wildlife conflict should be focused. We recommend the use of second-order RSFs for landscape conservation planning and propose a similar approach to the conservation of other wide-ranging large

  8. Stratton Sagebrush Hydrology Study Area: An annotated bibliography of research conducted 1968-1990

    USGS Publications Warehouse

    Burgess, Leah M.; Schoenecker, Kathryn A.

    2004-01-01

    This annotated bibliography provides an overview of research projects conducted on the Stratton Sagebrush Hydrology Study Area (Stratton) since its designation as such in 1967. Sources include the Rocky Mountain Forest and Range Experiment Station records storage room, Laramie, Wyoming, the USGS and USFS online reference libraries, and scientific journal databases at the University of Wyoming and Colorado State University. This annotated bibliography summarizes publications from research conducted at Stratton during the prime of its tenure as a research lab from 1968 to 1990. In addition, an appendix is included that catalogues all data on file at the Rocky Mountain Forest and Range Experiment Station in Laramie, Wyoming. Each file folder was searched and its contents recorded here for the researcher seeking original data sets, charts, photographs and records.

  9. Consequences of pre-inoculation with native arbuscular mycorrhizae on root colonization and survival of Artemisia tridentata ssp. wyomingensis (Wyoming big sagebrush) seedlings after transplanting

    Treesearch

    Bill Eugene Davidson

    2015-01-01

    Inoculation of seedlings with arbuscular mycorrhizal fungi (AMF) is a common practice aimed at improving seedling establishment. The success of this practice largely depends on the ability of the inoculum to multiply and colonize the growing root system after transplanting. These events were investigated in Artemisia tridentata ssp. wyomingensis (Wyoming big sagebrush...

  10. The impacts of fire on sage-grouse habitat and diet resources

    USDA-ARS?s Scientific Manuscript database

    We evaluated six years of vegetation response following prescribed fire in Wyoming big sagebrush (Artemisia tridentata spp. wyomingensis) steppe on vegetation cover, the productivity and nutritional quality of forbs preferred by greater sage-grouse (Centrocercus urophasianus), and the abundance of c...

  11. 77 FR 36287 - Proposed Low-Effect Habitat Conservation Plan for the California Tiger Salamander, Calaveras...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-18

    ...-FXES11120800000F2-123-F2] Proposed Low-Effect Habitat Conservation Plan for the California Tiger Salamander... animal, the threatened Central California Distinct Population Segment of the California tiger salamander (tiger salamander). The applicant would implement a conservation program to minimize and mitigate the...

  12. Multiple stress response of lowland stream benthic macroinvertebrates depends on habitat type.

    PubMed

    Graeber, Daniel; Jensen, Tinna M; Rasmussen, Jes J; Riis, Tenna; Wiberg-Larsen, Peter; Baattrup-Pedersen, Annette

    2017-12-01

    Worldwide, lowland stream ecosystems are exposed to multiple anthropogenic stress due to the combination of water scarcity, eutrophication, and fine sedimentation. The understanding of the effects of such multiple stress on stream benthic macroinvertebrates has been growing in recent years. However, the interdependence of multiple stress and stream habitat characteristics has received little attention, although single stressor studies indicate that habitat characteristics may be decisive in shaping the macroinvertebrate response. We conducted an experiment in large outdoor flumes to assess the effects of low flow, fine sedimentation, and nutrient enrichment on the structure of the benthic macroinvertebrate community in riffle and run habitats of lowland streams. For most taxa, we found a negative effect of low flow on macroinvertebrate abundance in the riffle habitat, an effect which was mitigated by fine sedimentation for overall community composition and the dominant shredder species (Gammarus pulex) and by nutrient enrichment for the dominant grazer species (Baetis rhodani). In contrast, fine sediment in combination with low flow rapidly affected macroinvertebrate composition in the run habitat, with decreasing abundances of many species. We conclude that the effects of typical multiple stressor scenarios on lowland stream benthic macroinvertebrates are highly dependent on habitat conditions and that high habitat diversity needs to be given priority by stream managers to maximize the resilience of stream macroinvertebrate communities to multiple stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. A Testbed for Evaluating Lunar Habitat Autonomy Architectures

    NASA Technical Reports Server (NTRS)

    Lawler, Dennis G.

    2008-01-01

    A lunar outpost will involve a habitat with an integrated set of hardware and software that will maintain a safe environment for human activities. There is a desire for a paradigm shift whereby crew will be the primary mission operators, not ground controllers. There will also be significant periods when the outpost is uncrewed. This will require that significant automation software be resident in the habitat to maintain all system functions and respond to faults. JSC is developing a testbed to allow for early testing and evaluation of different autonomy architectures. This will allow evaluation of different software configurations in order to: 1) understand different operational concepts; 2) assess the impact of failures and perturbations on the system; and 3) mitigate software and hardware integration risks. The testbed will provide an environment in which habitat hardware simulations can interact with autonomous control software. Faults can be injected into the simulations and different mission scenarios can be scripted. The testbed allows for logging, replaying and re-initializing mission scenarios. An initial testbed configuration has been developed by combining an existing life support simulation and an existing simulation of the space station power distribution system. Results from this initial configuration will be presented along with suggested requirements and designs for the incremental development of a more sophisticated lunar habitat testbed.

  14. Anthropogenic habitat disturbance and the dynamics of hantavirus using remote sensing, GIS, and a spatially explicit agent-based model

    NASA Astrophysics Data System (ADS)

    Cao, Lina

    Sin Nombre virus (SNV), a strain of hantavirus, causes hantavirus pulmonary syndrome (HPS) in humans, a deadly disease with high mortality rate (>50%). The primary virus host is deer mice, and greater deer mice abundance has been shown to increase the human risk of HPS. There is a great need in understanding the nature of the virus host, its temporal and spatial dynamics, and its relation to the human population with the purpose of predicting human risk of the disease. This research studies SNV dynamics in deer mice in the Great Basin Desert of central Utah, USA using multiyear field data and integrated geospatial approaches including remote sensing, Geographic Information System (GIS), and a spatially explicit agent-based model. The goal is to advance our understanding of the important ecological and demographic factors that affect the dynamics of deer mouse population and SNV prevalence. The primary research question is how climate, habitat disturbance, and deer mouse demographics affect deer mouse population density, its movement, and SNV prevalence in the sagebrush habitat. The results show that the normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI) can be good predictors of deer mouse density and the number of infected deer mice with a time lag of 1.0 to 1.3 years. This information can be very useful in predicting mouse abundance and SNV risk. The results also showed that climate, mouse density, sex, mass, and SNV infection had significant effects on deer mouse movement. The effect of habitat disturbance on mouse movement varies according to climate conditions with positive relationship in predrought condition and negative association in postdrought condition. The heavier infected deer mice moved the most. Season and disturbance alone had no significant effects. The spatial agent-based model (SABM) simulation results show that prevalence was negatively related to the disturbance levels and the sensitivity analysis showed that

  15. Habitat selection of a large carnivore along human-wildlife boundaries in a highly modified landscape.

    PubMed

    Takahata, Chihiro; Nielsen, Scott Eric; Takii, Akiko; Izumiyama, Shigeyuki

    2014-01-01

    When large carnivores occupy peripheral human lands conflict with humans becomes inevitable, and the reduction of human-carnivore interactions must be the first consideration for those concerned with conflict mitigation. Studies designed to identify areas of high human-bear interaction are crucial for prioritizing management actions. Due to a surge in conflicts, against a background of social intolerance to wildlife and the prevalent use of lethal control throughout Japan, Asiatic black bears (Ursus thibetanus) are now threatened by high rates of mortality. There is an urgent need to reduce the frequency of human-bear encounters if bear populations are to be conserved. To this end, we estimated the habitats that relate to human-bear interactions by sex and season using resource selection functions (RSF). Significant seasonal differences in selection for and avoidance of areas by bears were estimated by distance-effect models with interaction terms of land cover and sex. Human-bear boundaries were delineated on the basis of defined bear-habitat edges in order to identify areas that are in most need of proactive management strategies. Asiatic black bears selected habitats in close proximity to forest edges, forest roads, rivers, and red pine and riparian forests during the peak conflict season and this was correctly predicted in our human-bear boundary maps. Our findings demonstrated that bears selected abandoned forests and agricultural lands, indicating that it should be possible to reduce animal use near human lands by restoring season-specific habitat in relatively remote areas. Habitat-based conflict mitigation may therefore provide a practical means of creating adequate separation between humans and these large carnivores.

  16. Habitat Selection of a Large Carnivore along Human-Wildlife Boundaries in a Highly Modified Landscape

    PubMed Central

    Takahata, Chihiro; Nielsen, Scott Eric; Takii, Akiko; Izumiyama, Shigeyuki

    2014-01-01

    When large carnivores occupy peripheral human lands conflict with humans becomes inevitable, and the reduction of human-carnivore interactions must be the first consideration for those concerned with conflict mitigation. Studies designed to identify areas of high human-bear interaction are crucial for prioritizing management actions. Due to a surge in conflicts, against a background of social intolerance to wildlife and the prevalent use of lethal control throughout Japan, Asiatic black bears (Ursus thibetanus) are now threatened by high rates of mortality. There is an urgent need to reduce the frequency of human-bear encounters if bear populations are to be conserved. To this end, we estimated the habitats that relate to human-bear interactions by sex and season using resource selection functions (RSF). Significant seasonal differences in selection for and avoidance of areas by bears were estimated by distance-effect models with interaction terms of land cover and sex. Human-bear boundaries were delineated on the basis of defined bear-habitat edges in order to identify areas that are in most need of proactive management strategies. Asiatic black bears selected habitats in close proximity to forest edges, forest roads, rivers, and red pine and riparian forests during the peak conflict season and this was correctly predicted in our human-bear boundary maps. Our findings demonstrated that bears selected abandoned forests and agricultural lands, indicating that it should be possible to reduce animal use near human lands by restoring season-specific habitat in relatively remote areas. Habitat-based conflict mitigation may therefore provide a practical means of creating adequate separation between humans and these large carnivores. PMID:24465947

  17. Western Juniper Management: Assessing Strategies for Improving Greater Sage-grouse Habitat and Rangeland Productivity

    NASA Astrophysics Data System (ADS)

    Farzan, Shahla; Young, Derek J. N.; Dedrick, Allison G.; Hamilton, Matthew; Porse, Erik C.; Coates, Peter S.; Sampson, Gabriel

    2015-09-01

    Western juniper ( Juniperus occidentalis subsp. occidentalis) range expansion into sagebrush steppe ecosystems has affected both native wildlife and economic livelihoods across western North America. The potential listing of the greater sage-grouse ( Centrocercus urophasianus) under the U.S. Endangered Species Act has spurred a decade of juniper removal efforts, yet limited research has evaluated program effectiveness. We used a multi-objective spatially explicit model to identify optimal juniper removal sites in Northeastern California across weighted goals for ecological (sage-grouse habitat) and economic (cattle forage production) benefits. We also extended the analysis through alternative case scenarios that tested the effects of coordination among federal agencies, budgetary constraints, and the use of fire as a juniper treatment method. We found that sage-grouse conservation and forage production goals are somewhat complementary, but the extent of complementary benefits strongly depends on spatial factors and management approaches. Certain management actions substantially increase achievable benefits, including agency coordination and the use of prescribed burns to remove juniper. Critically, our results indicate that juniper management strategies designed to increase cattle forage do not necessarily achieve measurable sage-grouse benefits, underscoring the need for program evaluation and monitoring.

  18. Western juniper management: assessing strategies for improving greater sage-grouse habitat and rangeland productivity

    USGS Publications Warehouse

    Farzan, Shahla; Young, Derek J.N.; Dedrick, Allison G.; Hamilton, Mattew; Porse, Erik C.; Coates, Peter S.; Sampson, Gabriel

    2015-01-01

    Western juniper (Juniperus occidentalis subsp. occidentalis) range expansion into sagebrush steppe ecosystems has affected both native wildlife and economic livelihoods across western North America. The potential listing of the greater sage-grouse (Centrocercus urophasianus) under the U.S. Endangered Species Act has spurred a decade of juniper removal efforts, yet limited research has evaluated program effectiveness. We used a multi-objective spatially explicit model to identify optimal juniper removal sites in Northeastern California across weighted goals for ecological (sage-grouse habitat) and economic (cattle forage production) benefits. We also extended the analysis through alternative case scenarios that tested the effects of coordination among federal agencies, budgetary constraints, and the use of fire as a juniper treatment method. We found that sage-grouse conservation and forage production goals are somewhat complementary, but the extent of complementary benefits strongly depends on spatial factors and management approaches. Certain management actions substantially increase achievable benefits, including agency coordination and the use of prescribed burns to remove juniper. Critically, our results indicate that juniper management strategies designed to increase cattle forage do not necessarily achieve measurable sage-grouse benefits, underscoring the need for program evaluation and monitoring.

  19. Western Juniper Management: Assessing Strategies for Improving Greater Sage-grouse Habitat and Rangeland Productivity.

    PubMed

    Farzan, Shahla; Young, Derek J N; Dedrick, Allison G; Hamilton, Matthew; Porse, Erik C; Coates, Peter S; Sampson, Gabriel

    2015-09-01

    Western juniper (Juniperus occidentalis subsp. occidentalis) range expansion into sagebrush steppe ecosystems has affected both native wildlife and economic livelihoods across western North America. The potential listing of the greater sage-grouse (Centrocercus urophasianus) under the U.S. Endangered Species Act has spurred a decade of juniper removal efforts, yet limited research has evaluated program effectiveness. We used a multi-objective spatially explicit model to identify optimal juniper removal sites in Northeastern California across weighted goals for ecological (sage-grouse habitat) and economic (cattle forage production) benefits. We also extended the analysis through alternative case scenarios that tested the effects of coordination among federal agencies, budgetary constraints, and the use of fire as a juniper treatment method. We found that sage-grouse conservation and forage production goals are somewhat complementary, but the extent of complementary benefits strongly depends on spatial factors and management approaches. Certain management actions substantially increase achievable benefits, including agency coordination and the use of prescribed burns to remove juniper. Critically, our results indicate that juniper management strategies designed to increase cattle forage do not necessarily achieve measurable sage-grouse benefits, underscoring the need for program evaluation and monitoring.

  20. Established perennial vegetation provides high resistance to reinvasion by exotic annual grasses

    USDA-ARS?s Scientific Manuscript database

    Exotic annual grasses have invaded millions of hectares of sagebrush (Artemisia L.) steppe in the Great Basin region and degraded wildlife habitat, reduced forage production, and promoted increasingly frequent wildfires. Revegetation after control of exotic annual grasses is needed to restore ecosy...

  1. Multi-species benefits of the proposed North American sage-grouse management plan

    Treesearch

    Clait E. Braun

    2005-01-01

    The population size and distribution of the two species of sage-grouse (Greater – Centrocercus urophasianus and Gunnison – C. minimus) populations have become greatly reduced throughout western North America because of habitat changes. Threats are ongoing to the remaining sagebrush (Artemisia ...

  2. A conservation planning tool for Greater Sage-grouse using indices of species distribution, resilience, and resistance.

    PubMed

    Ricca, Mark A; Coates, Peter S; Gustafson, K Benjamin; Brussee, Brianne E; Chambers, Jeanne C; Espinosa, Shawn P; Gardner, Scott C; Lisius, Sherri; Ziegler, Pilar; Delehanty, David J; Casazza, Michael L

    2018-06-01

    Managers require quantitative yet tractable tools that identify areas for restoration yielding effective benefits for targeted wildlife species and the ecosystems they inhabit. As a contemporary example of high national significance for conservation, the persistence of Greater Sage-grouse (Centrocercus urophasianus) in the Great Basin is compromised by strongly interacting stressors of conifer expansion, annual grass invasion, and more frequent wildfires occurring in sagebrush ecosystems. Associated restoration treatments to a sagebrush-dominated state are often costly and may yield relatively little ecological benefit to sage-grouse if implemented without estimating how Sage-grouse may respond to treatments, or do not consider underlying processes influencing sagebrush ecosystem resilience to disturbance and resistance to invasive species. Here, we describe example applications of a spatially explicit conservation planning tool (CPT) to inform prioritization of: (1) removal of conifers (i.e., pinyon-juniper); and (2) wildfire restoration aimed at improving habitat conditions for the Bi-State Distinct Population Segment of Sage-grouse along the California-Nevada state line. The CPT measures ecological benefits to sage-grouse for a given management action through a composite index comprised of resource selection functions and estimates of abundance and space use. For pinyon-juniper removal, we simulated changes in land-cover composition following the removal of sparse trees with intact understories, and ranked treatments on the basis of changes in ecological benefits per dollar-unit of cost. For wildfire restoration, we formulated a conditional model to simulate scenarios for land cover changes (e.g., sagebrush to annual grass) given estimated fire severity and underlying ecosystem processes influencing resilience to disturbance and resistance to invasion by annual grasses. For both applications, we compared CPT rankings to land cover changes along with sagebrush

  3. Effects of Mitigative Measures on Productivity of White Sturgeon Populations in the Columbia River Downstream from McNary Dam; Determine Status and Habitat Requirements of White Sturgeon Populations in the Columbia and Snake Rivers Upstream from the McNary Dam, 1994-1995 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beiningen, Kirk T.

    The author reports on progress from April 1994 through March 1995 of research on white sturgeon in the lower Columbia River. The study began in July 1986 and is a cooperative effort of federal, state and tribal fisheries entities to determine the (1) the status and habitat requirements, and (2) the effects of mitigative measures on productivity of white sturgeon populations in the lower Columbia River. This report describes activities conducted during the third year of this contract's second phase. Information was collected, analyzed, and evaluated on sub-adult and adult life histories, population dynamics, quantity and quality of habitat, andmore » production enhancement strategies. The report is divided into sections that evaluate success of developing and implementing a management plan for white sturgeon; evaluate growth, mortality, and contributions to fisheries of juvenile white sturgeon transplanted from areas downstream; describe the life history and population dynamics of sub-adult a nd adult white sturgeon; define habitat requirements for spawning and rearing of white sturgeon and quantify the extent of habitat available; describe reproductive and early life history characteristics of white sturgeon; and quantify physical habitat used by spawning and rearing white sturgeon in the free-flowing portion of the Columbia River.« less

  4. Renewed mining and reclamation: Imapacts on bats and potential mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, P.E.; Berry, R.D.

    Historic mining created new roosting habitat for many bat species. Now the same industry has the potential to adversely impact bats. Contemporary mining operations usually occur in historic districts; consequently the old workings are destroyed by open pit operations. Occasionally, underground techniques are employed, resulting in the enlargement or destruction of the original workings. Even during exploratory operations, historic mine openings can be covered as drill roads are bulldozed, or drills can penetrate and collapse underground workings. Nearby blasting associated with mine construction and operation can disrupt roosting bats. Bats can also be disturbed by the entry of mine personnelmore » to collect ore samples or by recreational mine explorers, since the creation of roads often results in easier access. In addition to roost disturbance, other aspects of renewed mining can have adverse impacts on bat populations, and affect even those bats that do not live in mines. Open cyanide ponds, or other water in which toxic chemicals accumulate, can poison bats and other wildlife. The creation of the pits, roads and processing areas often destroys critical foraging habitat, or change drainage patterns. Finally, at the completion of mining, any historic mines still open may be sealed as part of closure and reclamation activities. The net result can be a loss of bats and bat habitat. Conversely, in some contemporary underground operations, future roosting habitat for bats can be fabricated. An experimental approach to the creation of new roosting habitat is to bury culverts or old tires beneath waste rock. Mining companies can mitigate for impacts to bats by surveying to identify bat-roosting habitat, removing bats prior to renewed mining or closure, protecting non-impacted roost sites with gates and fences, researching to identify habitat requirements and creating new artificial roosts.« less

  5. Sustainable biochar to mitigate global climate change

    PubMed Central

    Woolf, Dominic; Amonette, James E.; Street-Perrott, F. Alayne; Lehmann, Johannes; Joseph, Stephen

    2010-01-01

    Production of biochar (the carbon (C)-rich solid formed by pyrolysis of biomass) and its storage in soils have been suggested as a means of abating climate change by sequestering carbon, while simultaneously providing energy and increasing crop yields. Substantial uncertainties exist, however, regarding the impact, capacity and sustainability of biochar at the global level. In this paper we estimate the maximum sustainable technical potential of biochar to mitigate climate change. Annual net emissions of carbon dioxide (CO2), methane and nitrous oxide could be reduced by a maximum of 1.8 Pg CO2-C equivalent (CO2-Ce) per year (12% of current anthropogenic CO2-Ce emissions; 1 Pg=1 Gt), and total net emissions over the course of a century by 130 Pg CO2-Ce, without endangering food security, habitat or soil conservation. Biochar has a larger climate-change mitigation potential than combustion of the same sustainably procured biomass for bioenergy, except when fertile soils are amended while coal is the fuel being offset. PMID:20975722

  6. Lunar and Martian Sub-surface Habitat Structure Technology Development and Application

    NASA Technical Reports Server (NTRS)

    Boston, Penelope J.; Strong, Janet D.

    2005-01-01

    NASA's human exploration initiative poses great opportunity and great risk for manned missions to the Moon and Mars. Subsidace structures such as caves and lava tubes offer readily available and existing in-situ habitat options. Sub-surface dwellings can provide complete radiation, micro-meteorite and exhaust plume shielding and a moderate and constant temperature environment; they are, therefore, excellent pre-existing habitat risk mitigation elements. Technical challenges to subsurface habitat structure development include surface penetration (digging and mining equipment), environmental pressurization, and psychological environment enhancement requirements. Lunar and Martian environments and elements have many beneficial similarities. This will allow for lunar testing and design development of subsurface habitat structures for Martian application; however, significant differences between lunar and Martian environments and resource elements will mandate unique application development. Mars is NASA's ultimate exploration goal and is known to have many very large lava tubes. Other cave types are plausible. The Moon has unroofed rilles and lava tubes, but further research will, in the near future, define the extent of Lunar and Martian differences and similarities. This paper will discuss Lunar and Martian subsurface habitation technology development challenges and opportunities.

  7. Seagrass habitat metabolism increases short-term extremes and long-term offset of CO2 under future ocean acidification.

    PubMed

    Pacella, Stephen R; Brown, Cheryl A; Waldbusser, George G; Labiosa, Rochelle G; Hales, Burke

    2018-04-10

    The role of rising atmospheric CO 2 in modulating estuarine carbonate system dynamics remains poorly characterized, likely due to myriad processes driving the complex chemistry in these habitats. We reconstructed the full carbonate system of an estuarine seagrass habitat for a summer period of 2.5 months utilizing a combination of time-series observations and mechanistic modeling, and quantified the roles of aerobic metabolism, mixing, and gas exchange in the observed dynamics. The anthropogenic CO 2 burden in the habitat was estimated for the years 1765-2100 to quantify changes in observed high-frequency carbonate chemistry dynamics. The addition of anthropogenic CO 2 alters the thermodynamic buffer factors (e.g., the Revelle factor) of the carbonate system, decreasing the seagrass habitat's ability to buffer natural carbonate system fluctuations. As a result, the most harmful carbonate system indices for many estuarine organisms [minimum pH T , minimum Ω arag , and maximum pCO 2(s.w.) ] change up to 1.8×, 2.3×, and 1.5× more rapidly than the medians for each parameter, respectively. In this system, the relative benefits of the seagrass habitat in locally mitigating ocean acidification increase with the higher atmospheric CO 2 levels predicted toward 2100. Presently, however, these mitigating effects are mixed due to intense diel cycling of CO 2 driven by aerobic metabolism. This study provides estimates of how high-frequency pH T , Ω arag , and pCO 2(s.w.) dynamics are altered by rising atmospheric CO 2 in an estuarine habitat, and highlights nonlinear responses of coastal carbonate parameters to ocean acidification relevant for water quality management.

  8. Impacts of pinyon and juniper control on ecosystems processes in the Porter Canyon Experimental Watershed

    USDA-ARS?s Scientific Manuscript database

    The opportunistic encroachment of native pinyon and juniper trees into areas formerly dominated by sagebrush has reduced the presence of shrubs and grasses, impacting critical habitat and forage availability. Pinyon and juniper currently occupy 19 million ha in the Intermountain West and prior to 18...

  9. Habitat Evaluation Procedures (HEP) Report; Precious Lands Wildlife Management Area, Technical Report 2000-2003.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozusko, Shana

    The Nez Perce Tribe (NPT) currently manages a 15,325 acre parcel of land known as the Precious Lands Wildlife Management Area that was purchased as mitigation for losses incurred by construction of the four lower Snake River dams. The Management Area is located in northern Wallowa County, Oregon and southern Asotin County, Washington (Figure 1). It is divided into three management parcels--the Buford parcel is located on Buford Creek and straddles the WA-OR state line, and the Tamarack and Basin parcels are contiguous to each other and located between the Joseph Creek and Cottonwood Creek drainages in Wallowa County, OR.more » The project was developed under the Pacific Northwest Electric Power Planning and Conservation Act of 1980 (P.L. 96-501), with funding from the Bonneville Power Administration (BPA). The acreage protected under this contract will be credited to BPA as habitat permanently dedicated to wildlife and wildlife mitigation. A modeling strategy known as Habitat Evaluation Procedure (HEP) was developed by the U.S. Fish and Wildlife Service and adopted by BPA as a habitat equivalency accounting system. Nine wildlife species models were used to evaluate distinct cover type features and provide a measure of habitat quality. Models measure a wide range of life requisite variables for each species and monitor overall trends in vegetation community health and diversity. One product of HEP is an evaluation of habitat quality expressed in Habitat Units (HUs). This HU accounting system is used to determine the amount of credit BPA receives for mitigation lands. After construction of the four lower Snake River dams, a HEP loss assessment was conducted to determine how many Habitat Units were inundated behind the dams. Twelve target species were used in that evaluation: Canada goose, mallard, river otter, downy woodpecker, song sparrow, yellow warbler, marsh wren, western meadowlark, chukar, ring-necked pheasant, California quail, and mule deer. The U.S. Army

  10. Nest mortality of sagebrush songbirds due to a severe hailstorm

    USGS Publications Warehouse

    Hightower, Jessica N.; Carlisle, Jason D.; Chalfoun, Anna D.

    2018-01-01

    Demographic assessments of nesting birds typically focus on failures due to nest predation or brood parasitism. Extreme weather events such as hailstorms, however, can also destroy eggs and injure or kill juvenile and adult birds at the nest. We documented the effects of a severe hailstorm on 3 species of sagebrush-associated songbirds: Sage Thrasher (Oreoscoptes montanus), Brewer's Sparrow (Spizella breweri), and Vesper Sparrow (Pooecetes gramineus), nesting at eight 24 ha study plots in central Wyoming, USA. Across all plots, 17% of 128 nests failed due to the hailstorm; however, all failed nests were located at a subset of study plots (n = 3) where the hailstorm was most intense, and 45% of all nests failures on those plots were due to hail. Mortality rates varied by species, nest architecture, and nest placement. Nests with more robust architecture and those sited more deeply under the shrub canopy were more likely to survive the hailstorm, suggesting that natural history traits may modulate mortality risk due to hailstorms. While sporadic in nature, hailstorms may represent a significant source of nest failure to songbirds in certain locations, especially with increasing storm frequency and severity forecasted in some regions with ongoing climate change.

  11. Contamination Mitigation Strategies for Long Duration Human Spaceflight Missions

    NASA Technical Reports Server (NTRS)

    Lewis, Ruthan; Lupisella, Mark; Bleacher, Jake; Farrell, William

    2017-01-01

    Contamination control issues are particularly challenging for long-term human spaceflight and are associated with the search for life, dynamic environmental conditions, human-robotic-environment interaction, sample collection and return, biological processes, waste management, long-term environmental disturbance, etc. These issues impact mission success, human health, planetary protection, and research and discovery. Mitigation and control techniques and strategies may include and integrate long-term environmental monitoring and reporting, contamination control and planetary protection protocols, habitation site design, habitat design, and surface exploration and traverse pathways and area access planning.

  12. Managing multiple diffuse pressures on water quality and ecological habitat: Spatially targeting effective mitigation actions at the landscape scale.

    NASA Astrophysics Data System (ADS)

    Joyce, Hannah; Reaney, Sim

    2015-04-01

    Catchment systems provide multiple benefits for society, including: land for agriculture, climate regulation and recreational space. Yet, these systems also have undesirable externalities, such as flooding, and the benefits they create can be compromised through societal use. For example, agriculture, forestry and urban land use practices can increase the export of fine sediment and faecal indicator organisms (FIO) delivered to river systems. These diffuse landscape pressures are coupled with pressures on the in stream temperature environment from projected climate change. Such pressures can have detrimental impacts on water quality and ecological habitat and consequently the benefits they provide for society. These diffuse and in-stream pressures can be reduced through actions at the landscape scale but are commonly tackled individually. Any intervention may have benefits for other pressures and hence the challenge is to consider all of the different pressures simultaneously to find solutions with high levels of cross-pressure benefits. This research presents (1) a simple but spatially distributed model to predict the pattern of multiple pressures at the landscape scale, and (2) a method for spatially targeting the optimum location for riparian woodland planting as mitigation action against these pressures. The model follows a minimal information requirement approach along the lines of SCIMAP (www.scimap.org.uk). This approach defines the critical source areas of fine sediment diffuse pollution, rapid overland flow and FIOs, based on the analysis of the pattern of the pressure in the landscape and the connectivity from source areas to rivers. River temperature was modeled using a simple energy balance equation; focusing on temperature of inflowing and outflowing water across a catchment. The model has been calibrated using a long term observed temperature record. The modelling outcomes enabled the identification of the severity of each pressure in relative rather

  13. The idiosyncrasies of streams: local variability mitigates vulnerability of trout to changing conditions

    Treesearch

    Andrea Watts; Brooke Penaluna; Jason Dunham

    2016-01-01

    Land use and climate change are two key factors with the potential to affect stream conditions and fish habitat. Since the 1950s, Washington and Oregon have required forest practices designed to mitigate the effects of timber harvest on streams and fish. Yet questions remain about the extent to which these practices are effective. Add in the effects of climate change—...

  14. Soil resources influence vegetation and response to fire and fire-surrogate treatments in sagebrush-steppe ecosystems

    USGS Publications Warehouse

    Rau, Benjamin M.; Chambers, Jeanne C.; Pyke, David A.; Roundy, Bruce A.; Schupp, Eugene W.; Doescher, Paul; Caldwell, Todd G.

    2014-01-01

    Current paradigm suggests that spatial and temporal competition for resources limit an exotic invader, cheatgrass (Bromus tectorum L.), which once established, alters fire regimes and can result in annual grass dominance in sagebrush steppe. Prescribed fire and fire surrogate treatments (mowing, tebuthiuron, and imazapic) are used to reduce woody fuels and increase resistance to exotic annuals, but may alter resource availability and inadvertently favor invasive species. We used four study sites within the Sagebrush Steppe Treatment Evaluation Project (SageSTEP) to evaluate 1) how vegetation and soil resources were affected by treatment, and 2) how soil resources influenced native herbaceous perennial and exotic annual grass cover before and following treatment. Treatments increased resin exchangeable NH4+, NO3−, H2PO4−, and K+, with the largest increases caused by prescribed fire and prolonged by application of imazapic. Burning with imazapic application also increased the number of wet growing degree days. Tebuthiuron and imazapic reduced exotic annual grass cover, but imazapic also reduced herbaceous perennial cover when used with prescribed fire. Native perennial herbaceous species cover was higher where mean annual precipitation and soil water resources were relatively high. Exotic annual grass cover was higher where resin exchangeable H2PO4− was high and gaps between perennial plants were large. Prescribed fire, mowing, and tebuthiuron were successful at increasing perennial herbaceous cover, but the results were often ephemeral and inconsistent among sites. Locations with sandy soil, low mean annual precipitation, or low soil water holding capacity were more likely to experience increased exotic annual grass cover after treatment, and treatments that result in slow release of resources are needed on these sites. This is one of few studies that correlate abiotic variables to native and exotic species cover across a broad geographic setting, and that

  15. Habitat or matrix: which is more relevant to predict road-kill of vertebrates?

    PubMed

    Bueno, C; Sousa, C O M; Freitas, S R

    2015-11-01

    We believe that in tropics we need a community approach to evaluate road impacts on wildlife, and thus, suggest mitigation measures for groups of species instead a focal-species approach. Understanding which landscape characteristics indicate road-kill events may also provide models that can be applied in other regions. We intend to evaluate if habitat or matrix is more relevant to predict road-kill events for a group of species. Our hypothesis is: more permeable matrix is the most relevant factor to explain road-kill events. To test this hypothesis, we chose vertebrates as the studied assemblage and a highway crossing in an Atlantic Forest region in southeastern Brazil as the study site. Logistic regression models were designed using presence/absence of road-kill events as dependent variables and landscape characteristics as independent variables, which were selected by Akaike's Information Criterion. We considered a set of candidate models containing four types of simple regression models: Habitat effect model; Matrix types effect models; Highway effect model; and, Reference models (intercept and buffer distance). Almost three hundred road-kills and 70 species were recorded. River proximity and herbaceous vegetation cover, both matrix effect models, were associated to most road-killed vertebrate groups. Matrix was more relevant than habitat to predict road-kill of vertebrates. The association between river proximity and road-kill indicates that rivers may be a preferential route for most species. We discuss multi-species mitigation measures and implications to movement ecology and conservation strategies.

  16. Comparing Habitat Suitability and Connectivity Modeling Methods for Conserving Pronghorn Migrations

    PubMed Central

    Poor, Erin E.; Loucks, Colby; Jakes, Andrew; Urban, Dean L.

    2012-01-01

    Terrestrial long-distance migrations are declining globally: in North America, nearly 75% have been lost. Yet there has been limited research comparing habitat suitability and connectivity models to identify migration corridors across increasingly fragmented landscapes. Here we use pronghorn (Antilocapra americana) migrations in prairie habitat to compare two types of models that identify habitat suitability: maximum entropy (Maxent) and expert-based (Analytic Hierarchy Process). We used distance to wells, distance to water, NDVI, land cover, distance to roads, terrain shape and fence presence to parameterize the models. We then used the output of these models as cost surfaces to compare two common connectivity models, least-cost modeling (LCM) and circuit theory. Using pronghorn movement data from spring and fall migrations, we identified potential migration corridors by combining each habitat suitability model with each connectivity model. The best performing model combination was Maxent with LCM corridors across both seasons. Maxent out-performed expert-based habitat suitability models for both spring and fall migrations. However, expert-based corridors can perform relatively well and are a cost-effective alternative if species location data are unavailable. Corridors created using LCM out-performed circuit theory, as measured by the number of pronghorn GPS locations present within the corridors. We suggest the use of a tiered approach using different corridor widths for prioritizing conservation and mitigation actions, such as fence removal or conservation easements. PMID:23166656

  17. Comparing habitat suitability and connectivity modeling methods for conserving pronghorn migrations.

    PubMed

    Poor, Erin E; Loucks, Colby; Jakes, Andrew; Urban, Dean L

    2012-01-01

    Terrestrial long-distance migrations are declining globally: in North America, nearly 75% have been lost. Yet there has been limited research comparing habitat suitability and connectivity models to identify migration corridors across increasingly fragmented landscapes. Here we use pronghorn (Antilocapra americana) migrations in prairie habitat to compare two types of models that identify habitat suitability: maximum entropy (Maxent) and expert-based (Analytic Hierarchy Process). We used distance to wells, distance to water, NDVI, land cover, distance to roads, terrain shape and fence presence to parameterize the models. We then used the output of these models as cost surfaces to compare two common connectivity models, least-cost modeling (LCM) and circuit theory. Using pronghorn movement data from spring and fall migrations, we identified potential migration corridors by combining each habitat suitability model with each connectivity model. The best performing model combination was Maxent with LCM corridors across both seasons. Maxent out-performed expert-based habitat suitability models for both spring and fall migrations. However, expert-based corridors can perform relatively well and are a cost-effective alternative if species location data are unavailable. Corridors created using LCM out-performed circuit theory, as measured by the number of pronghorn GPS locations present within the corridors. We suggest the use of a tiered approach using different corridor widths for prioritizing conservation and mitigation actions, such as fence removal or conservation easements.

  18. Patterns of red tree vole distribution and habitat suitability: implications for surveys and conservation planning

    Treesearch

    Daniel K. Rosenberg; Raymond J. Davis; Kelli J. Van Norman; Jeffrey R. Dunk; Eric D. Forsman; Robert D. Huff

    2016-01-01

    Environmental regulations often require wildlife surveys prior to habitat disturbance to avoid impacts or as the basis for planning mitigation, yet project-level surveys may not provide the insights needed to guide long-term management. Management of the red tree vole (Arborimus longicaudus) has largely been based on such surveys. As an alternative...

  19. Occurrence and abundance of ants, reptiles, and mammals

    Treesearch

    Steven E. Hanser; Matthias Leu; Cameron L. Aldridge; Scott E. Neilsen; Mary M. Rowland; Steven T. Knick

    2011-01-01

    Sagebrush (Artemisia spp.) associated wildlife are threatened by habitat loss and fragmentation and by impacts associated with anthropogenic disturbances, including energy development. Understanding how species of concern as well as other wildlife including insects, reptiles, and mammals respond to type and spatial scale of disturbance is critical...

  20. Shrub-steppe early succession following invasive juniper cutting and prescribed fire

    USDA-ARS?s Scientific Manuscript database

    Piñon-juniper woodlands of the western United States have expanded in area nearly 10-fold since the late 1800’s. Woodland dominance in sagebrush steppe has several negative consequences including reductions in herbaceous production and diversity, decreased wildlife habitat, higher erosion and runof...