Science.gov

Sample records for sagebrush mitigation project

  1. L-325 Sagebrush Habitat Mitigation Project: FY2009 Compensation Area Monitoring Report

    SciTech Connect

    Durham, Robin E.; Sackschewsky, Michael R.

    2009-09-29

    Annual monitoring in support of the Fluor Daniel Hanford Company (Fluor) Mitigation Action Plan (MAP) for Project L-325, Electrical Utility Upgrades was conducted in June 2009. MAP guidelines defined mitigation success for this project as 3000 established sagebrush transplants on a 4.5 ha mitigation site after five monitoring years. Annual monitoring results suggest that an estimated 2130 sagebrush transplants currently grow on the site. Additional activities in support of this project included gathering sagebrush seed and securing a local grower to produce between 2250 and 2500 10-in3 tublings for outplanting during the early winter months of FY2010. If the minimum number of seedlings grown for this planting meets quality specifications, and planting conditions are favorable, conservative survival estimates indicate the habitat mitigation goals outlined in the MAP will be met in FY2014.

  2. L-325 Sagebrush Habitat Mitigation Project: Final Compensation Area Monitoring Report

    SciTech Connect

    Durham, Robin E.; Becker, James M.

    2013-09-26

    This document provides a review and status of activities conducted in support of the Fluor Daniel Hanford Company (Fluor), now Mission Support Alliance (MSA), Mitigation Action Plan (MAP) for Project L-325, Electrical Utility Upgrades (2007). Three plantings have been installed on a 4.5-hectare mitigation area to date. This review provides a description and chronology of events, monitoring results, and mitigative actions through fiscal year (FY) 2012. Also provided is a review of the monitoring methods, transect layout, and FY 2012 monitoring activities and results for all planting years. Planting densities and performance criteria stipulated in the MAP were aimed at a desired future condition (DFC) of 10 percent mature sagebrush (Artemisia tridentata ssp wyomingensis) cover. Current recommendations for yielding this DFC are based upon a conceptual model planting of 1000 plants/ha (400/ac) exhibiting a 60-percent survival rate after 5 monitoring years (DOE 2003). Accordingly, a DFC after 5 monitoring years would not be less than 600 plants/ha (240/ac). To date, about 8700 sagebrush plants have been grown and transplanted onto the mitigation site. Harsh site conditions and low seedling survival have resulted in an estimated 489 transplants/ha on the mitigation site, which is 111 plants/ha short of the target DFC. Despite this apparent shortcoming, 71, 91, and 24 percent of the surviving seedlings planted in FY 2007 and FY 2008 and FY 2010, respectively, showed signs of blooming in FY 2012. Blooming status may be a positive indication of future sagebrush recruitment, and is therefore a potential source for reaching the target DFC of 600 plants/ha on this mitigation site over time. Because of the difficulty establishing small transplants on this site, we propose that no additional plantings be considered for this mitigation area and to rely upon the potential recruitment by established seedlings to achieve the mitigation commitment set forth in the MAP of 600 plants/ha.

  3. Integrated disposal Facility Sagebrush Habitat Mitigation Project: FY2007 Compensation Area Monitoring Report

    SciTech Connect

    Durham, Robin E.; Sackschewsky, Michael R.

    2007-09-01

    This report summarizes the first year survival of sagebrush seedlings planted as compensatory mitigation for the Integrated Disposal Facility Project. Approximately 42,600 bare root seedlings and 26,000 pluglings were planted at a mitigation site along Army Loop Road in February 2007. Initial baseline monitoring occurred in March 2007, and first summer survival was assessed in September 2007. Overall survival was 19%, with bare root survival being marginally better than pluglings (21% versus 14%). Likely major factors contributing to low survival were late season planting and insufficient soil moisture during seedling establishment.

  4. W-519 Sagebrush Mitigation Project FY-2004 Final Review and Status

    SciTech Connect

    Durham, Robin E.; Sackschewsky, Michael R.

    2004-09-30

    This report summarizes activities conducted as mitigation for loss of sagebrush-steppe habitats due to Project W-519, the construction of the infrastructure for the Tank Waste Remediation System Vitrification Plant. The focus of this report is to provide a review and final status of mitigation actions performed through FY2004. Data collected since FY1999 have been included where appropriate. The Mitigation Action Plan (MAP) for Project W-519 prescribed three general actions to be performed as mitigation for the disturbance of approximately 40 ha (100 acres) of mature sagebrush-steppe habitat. These actions included: (1) transplanting approximately 130,000 sagebrush seedlings on the Fitzner-Eberhardt Arid Lands Ecology Reserve (ALE); (2) rectification of the new transmission line corridor via seeding with native grasses and sagebrush; and (3) research on native plant species with a goal of increasing species diversity in future mitigation or restoration actions. Nearly 130,000 Wyoming big sagebrush seedlings where planted on ALE during FY2000 and FY2001. About 39,000 of those seedlings were burned during the 24-Command Fire of June 2000. The surviving and subsequent replanting has resulted in about 91,000 seedlings that were planted across four general areas on ALE. A 50% survival rate at any monitoring period was defined as the performance standard in the MAP for this project. Data collected in 2004 indicate that of the over 5000 monitored plants, 51.1% are still alive, and of those the majority are thriving and blooming. These results support the potential for natural recruitment and the ultimate goal of wildlife habitat replacement. Thus, the basic performance standard for sagebrush survival within the habitat compensation planting has been met. Monitoring activities conducted in 2004 indicate considerable variation in seedling survival depending on the type of plant material, site conditions, and to a lesser extent, treatments performed at the time of planting

  5. L-325 Sagebrush Habitat Mitigation Project: FY2008 Compensation Area Monitoring Report

    SciTech Connect

    Durham, Robin E.; Sackschewsky, Michael R.

    2008-09-30

    This document provides a review and status of activities conducted in support of the Fluor Daniel Hanford Company (Fluor) Mitigation Action Plan (MAP) for Project L-325, Electrical Utility Upgrades. It includes time-zero monitoring results for planting activities conducted in January 2008, annual survival monitoring for all planting years (2007 and 2008), and recommendations for the successful completion of DOE habitat mitigation commitments for this project.

  6. IDF Sagebrush Habitat Mitigation Project: FY2008 Compensation Area Monitoring Report

    SciTech Connect

    Durham, Robin E.; Sackschewsky, Michael R.

    2008-09-01

    This document provides a review and status of activities conducted in support of the CH2MHill Hanford Group (CHG) Compensatory Mitigation Implementation Plan (MIP) for the Integrated Disposal Facility (IDF). It includes time-zero monitoring results for planting activities conducted in December 2007, annual survival monitoring for all planting years, a summary of artificial burrow observations, and recommendations for the successful completion of DOE mitigation commitments for this project.

  7. A synopsis of short-term response to alternative restoration treatments in sagebrush-steppe: the SageSTEP project

    USGS Publications Warehouse

    McIver, James; Brunson, Mark; Bunting, Steve; Chambers, Jeanne; Doescher, Paul; Grace, James; Hulet, April; Johnson, Dale; Knick, Steven T.; Miller, Richard; Pellant, Mike; Pierson, Fred; Pyke, David; Rau, Benjamin; Rollins, Kim; Roundy, Bruce; Schupp, Eugene; Tausch, Robin; Williams, Jason

    2014-01-01

    The Sagebrush Steppe Treatment Evaluation Project (SageSTEP) is an integrated long-term study that evaluates ecological effects of alternative treatments designed to reduce woody fuels and to stimulate the herbaceous understory of sagebrush steppe communities of the Intermountain West. This synopsis summarizes results through 3 yr posttreatment. Woody vegetation reduction by prescribed fire, mechanical treatments, or herbicides initiated a cascade of effects, beginning with increased availability of nitrogen and soil water, followed by increased growth of herbaceous vegetation. Response of butterflies and magnitudes of runoff and erosion closely followed herbaceous vegetation recovery. Effects on shrubs, biological soil crust, tree cover, surface woody fuel loads, and sagebrush-obligate bird communities will take longer to be fully expressed. In the short term, cool wet sites were more resilient than warm dry sites, and resistance was mostly dependent on pretreatment herbaceous cover. At least 10 yr of posttreatment time will likely be necessary to determine outcomes for most sites. Mechanical treatments did not serve as surrogates for prescribed fire in how each influenced the fuel bed, the soil, erosion, and sage-obligate bird communities. Woody vegetation reduction by any means resulted in increased availability of soil water, higher herbaceous cover, and greater butterfly numbers. We identified several trade-offs (desirable outcomes for some variables, undesirable for others), involving most components of the study system. Trade-offs are inevitable when managing complex natural systems, and they underline the importance of asking questions about the whole system when developing management objectives. Substantial spatial and temporal heterogeneity in sagebrush steppe ecosystems emphasizes the point that there will rarely be a “recipe” for choosing management actions on any specific area. Use of a consistent evaluation process linked to monitoring may be the

  8. Implementing Financial Assurance for Mitigation Project Success

    EPA Pesticide Factsheets

    The Institute for Water Resources (IWR) prepared this white paper on financial assurance for mitigation project success to provide a reference resource for Corps district staff involved with establishing and overseeing financial assurances.

  9. The lake acidification mitigation project (LAMP)

    SciTech Connect

    Porcella, D.P. )

    1987-01-01

    In areas where there is limited capacity to resist input of acid deposition, acid soils and surface waters have affected natural communities and man's uses of the environment. In response to problems of acid soils, farmers added limestone materials to their soil during Roman times; this method of agricultural management continues today. The addition of limestone (CaCo/sub 3/), called liming, has been used more recently to mitigate acidic conditions in lakes and streams. Liming neutralizes acidity directly, provides buffering as acid neutralizing capacity (ANC) or alkalinity, and increases calcium ion concentration which mitigates toxicity in low ionic strength waters. The Lake Acidification Mitigation Project (LAMP) has the objective of identifying and quantifying environmental impacts of liming, and evaluating the effectiveness of liming and stocking procedures in restoring acid lakes. The purpose of this paper is to provide an overview of LAMP and to summarize results from the initial phases of the project.

  10. Airport expansion requires major wetlands mitigation project

    SciTech Connect

    Erickson, B.M.

    1994-01-01

    This article describes the steps taken to mitigate the impact to existing wetlands by creating new wetlands in an airport expansion project. The project addressed maintaining suitable amounts of wetlands to accommodate peak waterfowl populations, moving of high voltage power transmission towers, and maintaining agricultural and hunting interests. This project involved recreating of open water areas, marsh habitat, mud flat habitat, saline meadow habitat, maintaining two existing wetlands in the area of the new wetlands without disturbing them, and improving upland habitat surrounding the new wetlands.

  11. Albeni Falls Wildlife Mitigation Project : Annual Report of Mitigation Activities.

    SciTech Connect

    Entz, Ray D.

    2001-04-01

    The Albeni Falls Interagency Work Group was actively involved in implementing wildlife mitigation activities in 2000. The Work Group met each quarter to discuss management and budget issues affecting Albeni Falls wildlife mitigation. Members of the Work Group protected a total of 1,242 acres of wetland habitat in 2000. The total amount of wildlife habitat protected for Albeni Falls mitigation is approximately 4,190 acres (4,630 Habitat Units). Approximately 16% of the total wildlife habitat lost has been mitigated. Land management activities were limited in 2000 as protection opportunities took up most staff time. Administrative activities increased in 2000 as funding was more evenly distributed among Work Group members. As a result, implementation is expected to continue to increase in the coming year. Land management and monitoring and evaluation activities will increase in 2001 as site-specific management plans are completed and implemented.

  12. Sagebrush Ecosystems Under Fire

    SciTech Connect

    Downs, Janelle L.

    2014-12-30

    Since settlement of the western United States began, sagebrush (Artemisia L. spp.) ecosystems have decreased both in quantity and quality. Originally encompassing up to 150 million acres in the West, the “interminable fields” of sage described by early explorers (Fremont 1845) have been degraded and often eliminated by conversion to agriculture, urbanization, livestock grazing, invasion by alien plants, and alteration of wildfire cycles (Hann et al. 1997; West 1999). More than half of the original sagebrush steppe ecosystems in Washington have been converted to agriculture and many of the remaining stands of sagebrush are degraded by invasion of exotic annuals such as cheatgrass (Bromus tectorum L.). Today, sagebrush ecosystems are considered to be one of the most imperiled in the United States (Noss, LeRoe and Scott 1995), and more than 350 sagebrush-associated plants and animals have been identified as species of conservation concern (Suring et al. 2005; Wisdom et al. 2005). The increasing frequency of wildfire in sagebrush-dominated landscapes is one of the greatest threats to these habitats and also presents one of the most difficult to control.

  13. Hellsgate Winter Range : Wildlife Mitigation Project. Preliminary Environmental Assessment.

    SciTech Connect

    United States. Bonneville Power Administration.

    1995-01-01

    The Bonneville Power Administration proposes funding the Hellsgate Winter Range Wildlife Mitigation Project in cooperation with the Colville Convederated Tribes and Bureau of Indian Affairs. This Preliminary Environmental Assessment examines the potential environmental effects of acquiring and managing property for wildlife and wildlife habitat within a large project area. The Propose action is intended to meet the need for mitigation of wildlife and wild life habitat that was adversely affected by the construction of Grand Coulee and Chief Joseph Dams and their reservoirs.

  14. Insider Threat Mitigation Project: A Dynamic Network Approach (Poster)

    DTIC Science & Technology

    2014-10-23

    OCT 2014 2. REPORT TYPE N/A 3. DATES COVERED 4. TITLE AND SUBTITLE Insider Threat Mitigation Project: A Dynamic Network Approach 5a...Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Insider Threat Mitigation Project A Dynamic Network Approach Approach: • Semi-automated coding...to- external communication • Remove suspected distribution lists • Identify “normal behavior” using Enron • Develop pattern for “ insiders ” in

  15. Multiscale sagebrush rangeland habitat modeling in southwest Wyoming

    USGS Publications Warehouse

    Homer, Collin G.; Aldridge, Cameron L.; Meyer, Debra K.; Coan, Michael J.; Bowen, Zachary H.

    2009-01-01

    four secondary targets included percent sagebrush (Artemisia spp.), percent big sagebrush (Artemisia tridentata), percent Wyoming sagebrush (Artemisia tridentata wyomingensis), and sagebrush height (centimeters). Results were validated by an independent accuracy assessment with root mean square error (RMSE) values ranging from 6.38 percent for bare ground to 2.99 percent for sagebrush at the QuickBird scale and RMSE values ranging from 12.07 percent for bare ground to 6.34 percent for sagebrush at the full Landsat scale. Subsequent project phases are now in progress, with plans to deliver products that improve accuracies of existing components, model new components, complete models over larger areas, track changes over time (from 1988 to 2007), and ultimately model wildlife population trends against these changes. We believe these results offer significant improvement in sagebrush rangeland quantification at multiple scales and offer users products that have been rigorously validated.

  16. Columbia River Wildlife Mitigation Habitat Evaluation Procedures Report / Scotch Creek Wildlife Area, Berg Brothers, and Douglas County Pygmy Rabbit Projects.

    SciTech Connect

    Ashley, Paul R.

    1997-01-01

    This Habitat Evaluation Procedure study was conducted to determine baseline habitat units (HUs) on the Scotch Creek, Mineral Hill, Pogue Mountain, Chesaw and Tunk Valley Habitat Areas (collectively known as the Scotch Creek Wildlife Area) in Okanogan County, Sagebrush Flat and the Dormaler property in Douglas County, and the Berg Brothers ranch located in Okanogan County within the Colville Reservation. A HEP team comprised of individuals from the Washington Department of Fish and Wildlife, the Confederated Tribes of the Colville Reservation, and the Natural Resources Conservation Service (Appendix A) conducted baseline habitat surveys using the following HEP evaluation species: mule deer (Odocoileus hemionus), sharp-tailed grouse (Tympanuchus phasianellus), pygmy rabbit (Brachylagus idahoensis), white-tailed deer (Odocoileus virginiana), mink (Mustela vison), Canada goose (Branta canadensis), downy woodpecker (Picoides pubescens), Lewis woodpecker (Melanerpes lewis), and Yellow warbler (Dendroica petechia). Results of the HEP analysis are listed below. General ratings (poor, marginal, fair, etc.,) are described in Appendix B. Mule deer habitat was marginal lacking diversity and quantify of suitable browse species. Sharp-tailed grouse habitat was marginal lacking residual nesting cover and suitable winter habitat Pygmy rabbit habitat was in fair condition except for the Dormaier property which was rated marginal due to excessive shrub canopy closure at some sites. This report is an analysis of baseline habitat conditions on mitigation project lands and provides estimated habitat units for mitigation crediting purposes. In addition, information from this document could be used by wildlife habitat managers to develop management strategies for specific project sites.

  17. Wildlife and Wildlife Habitat Mitigation Plan for Libby Hydroelectric Project, Final Report.

    SciTech Connect

    Mundinger, John

    1985-01-01

    This report describes the proposed mitigation plan for wildlife losses attributable to the construction of the Libby hydroelectric project. Mitigation objectives and alternatives, the recommended mitigation projects, and the crediting system for each project are described by each target species. The report describes mitigation that has already taken place and 8 recommended mitigation projects designed to complete total wildlife mitigation. 8 refs., 2 figs., 12 tabs.

  18. Should ranchers value sagebrush? Why we need sagebrush

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sagebrush is an important native species that has potential benefits to ranchers who desire multiple services from their lands. Here, we outline how sagebrush benefits other range plants, improves forage and habitat for wildlife, and can be valuable for winter livestock grazing and revegetation....

  19. Wildlife Protection, Mitigation, and Enhancement Plan, Palisades Project: Final Report.

    SciTech Connect

    Meuleman, G. Allyn

    1986-11-01

    Under direction of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 and the subsequent Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program, projects have been developed in Idaho and Wyoming to mitigate the losses of wildlife habitat and annual production due to the development and operation of the Palisades Project. A modified Habitat Evaluation Procedure (HEP) was used to assess the benefits of the preferred mitigation plan to wildlife. The interagency work group used the target species Habitat Units (HU's) lost with inundation of the reservoir area as a guideline during the mitigation planning process, while considering needs of wildlife in eastern Idaho and western Wyoming. A total of 37,068 HU's were estimated to be lost as a result of the inundation of the Palisades Reservoir area. Through a series of protection/enhancement projects, the preferred mitigation plan will provide benefits of an estimated 37,066 HU's. Target species to be benefited by this mitigation plan include bald eagle, mule deer, elk, mallard, Canada goose, mink, yellow warbler, black-capped chickadee, ruffed grouse, and peregrine falcon.

  20. Big Sagebrush Seed Bank Densities Following Wildfires

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Big sagebrush (Artemisia sp.) is a critical shrub to such sagebrush obligate species as sage grouse, (Centocercus urophasianus), mule deer (Odocoileus hemionus), and pygmy rabbit (Brachylagus idahoensis). Big sagebrush do not sprout after wildfires wildfires and big sagebrush seed is generally sho...

  1. Albeni Falls Wildlife Mitigation Project, 2001 Annual Report.

    SciTech Connect

    Terra-Burns, Mary

    2002-02-11

    The Albeni Falls Interagency Work Group was actively engaged in implementing wildlife mitigation activities in 2001. The Work Group met quarterly to discuss management and budget issues affecting the Albeni Falls Wildlife Mitigation Program. Work Group members protected 851 acres of wetland habitat in 2001. Wildlife habitat protected to date for the Albeni Falls project is approximately 5,248.31 acres ({approx}4,037.48 Habitat Units). Approximately 14% of the total wildlife habitat lost has been mitigated. Administrative activities increased as funding was more evenly distributed among Work Group members and protection opportunities became more time consuming. In 2001, Work Group members focused on development and implementation of the monitoring and evaluation program as well as completion of site-specific management plans. With the implementation of the monitoring and evaluation program, and as management plans are reviewed and executed, on the ground management activities are expected to increase in 2002.

  2. Earthquake risk mitigation projects in central asia and india

    NASA Astrophysics Data System (ADS)

    Hausler, E.; Petal, M.; Tobin, T.; Tucker, B.; Gupta, M.; Sharma, A.; Shaw, R.

    2003-04-01

    In the fall of 2002, GeoHazards International (GHI), a California-based nonprofit organization, launched two 3-year projects, each funded by the U.S. Agency for International Development, to improve the earthquake risk management of 23 cities in Central Asia and India. The objectives of these projects are to: * Assess the earthquake risk of each city, * Identify the most effective risk mitigation options for each city, * Raise awareness of that risk and those mitigation options, and * Initiate mitigation activities in some of these cities. A critical characteristic of these projects is that leaders of each local community will be deeply involved in realizing all four objectives. GHI will work with, in addition to local authorities, national government, academic and non-governmental organizations. In India, GHI’s partners are the Disaster Management Planning Hyogo Office, United Nations Centre for Regional Development (UNCRD) of Kobe, Japan, and the Sustainable Environment and Ecological Development Society (SEEDS), of Delhi, India. In India, we will work in 20 cities that were chosen, in a February 1, 2002 workshop (sponsored by Munich Reinsurance Company) in Delhi; the cities were selected by Indian earthquake professionals on the basis of the cities’ population, hazard, and economic, cultural and political significance. In Central Asia, we will focus on Tashkent, Uzbekistan; Dushanbe, Tadzhikistan; and Almaty, Kazakstan. GHI and its partners are looking for other organizations that would like to collaborate on these projects.

  3. Albeni Falls Wildlife Mitigation Project, 2008 Annual Report.

    SciTech Connect

    Soults, Scott

    2009-08-05

    The Albeni Falls Interagency Work Group (AFIWG) was actively involved in implementing wildlife mitigation activities in late 2007, but due to internal conflicts, the AFIWG members has fractionated into a smaller group. Implementation of the monitoring and evaluation program continued across protected lands. As of 2008, The Albeni Falls Interagency Work Group (Work Group) is a coalition comprised of wildlife managers from three tribal entities (Kalispel Tribe, Kootenai Tribe, Coeur d Alene Tribe) and the US Army Corps of Engineers. The Work Group directs where wildlife mitigation implementation occurs in the Kootenai, Pend Oreille and Coeur d Alene subbasins. The Work Group is unique in the Columbia Basin. The Columbia Basin Fish and Wildlife Authority (CBFWA) wildlife managers in 1995, approved what was one of the first two project proposals to implement mitigation on a programmatic basis. The maintenance of this kind of approach through time has allowed the Work Group to implement an effective and responsive habitat protection program by reducing administrative costs associated with site-specific project proposals. The core mitigation entities maintain approximately 9,335 acres of wetland/riparian habitats in 2008.

  4. Wildlife and Wildlife Habitat Mitigation Plan for Hungry Horse Hydroelectric Project, Final Report.

    SciTech Connect

    Bissell, Gael

    1985-01-01

    This report describes the proposed mitigation plan for wildlife losses attributable to the construction of the Hungry Horse hydroelectric project. In this report, mitigation objectives and alternatives, the recommended mitigation projects, and the crediting system for each project are described by each target species. Mitigation objectives for each species (group) were established based on the loss estimates but tailored to the recommended projects. 13 refs., 3 figs., 19 tabs.

  5. Hellsgate Winter Range : Wildlife Mitigation Project. Final Environmental Assessment.

    SciTech Connect

    United States. Bonneville Power Administration.

    1995-03-01

    Bonneville Power Administration (BPA) proposes to fund the Hellsgate Winter Range Wildlife Mitigation Project (Project) in a cooperative effort with the Colville Confederated Tribes and the Bureau of Indian Affairs (BIA). The proposed action would allow the sponsors to secure property and conduct wildlife management activities within the boundaries of the Colville Indian Reservation. This Final Environmental Assessment (EA) examines the potential environmental effects of acquiring and managing property for wildlife and wildlife habitat within a large project area. This area consists of several separated land parcels, of which 2,000 hectares (4,943 acres) have been purchased by BPA and an additional 4,640 hectares (11,466 acres) have been identified by the Colville Confederated Tribes for inclusion in the Project. Four proposed activities (habitat protection, habitat enhancement, operation and maintenance, and monitoring and evaluation) are analyzed. The proposed action is intended to meet the need for mitigation of wildlife and wildlife habitat that was adversely affected by the construction of Grand Coulee and Chief Joseph Dams and their reservoirs.

  6. Hellsgate Big Game Winter Range Wildlife Mitigation Site Specific Management Plan for the Hellsgate Project.

    SciTech Connect

    Berger, Matthew T.; Judd, Steven L.

    1999-01-01

    This report contains a detailed site-specific management plan for the Hellsgate Winter Range Wildlife Mitigation Project. The report provides background information about the mitigation process, the review process, mitigation acquisitions, Habitat Evaluation Procedures (HEP) and mitigation crediting, current habitat conditions, desired future habitat conditions, restoration/enhancements efforts and maps.

  7. Malheur River Wildlife Mitigation Project, Annual Report 2003.

    SciTech Connect

    Ashley, Paul

    2004-01-01

    Hydropower development within the Columbia and Snake River Basins has significantly affected riparian, riverine, and adjacent upland habitats and the fish and wildlife species dependent upon them. Hydroelectric dams played a major role in the extinction or major loss of both anadromous and resident salmonid populations and altered instream and adjacent upland habitats, water quality, and riparian/riverine function. Hydroelectric facility construction and inundation directly affected fish and wildlife species and habitats. Secondary and tertiary impacts including road construction, urban development, irrigation, and conversion of native habitats to agriculture, due in part to the availability of irrigation water, continue to affect wildlife and fish populations throughout the Columbia and Snake River Basins. Fluctuating water levels resulting from facility operations have created exposed sand, cobble, and/or rock zones. These zones are generally devoid of vegetation with little opportunity to re-establish riparian plant communities. To address the habitat and wildlife losses, the United States Congress in 1980 passed the Pacific Northwest Electric Power Planning and Conservation Act (Act) (P.L. 96-501), which authorized the states of Idaho, Montana, Oregon, and Washington to create the Northwest Power Planning Council (Council). The Act directed the Council to prepare a program in conjunction with federal, state, and tribal wildlife resource authorities to protect, mitigate, and enhance fish and wildlife species affected by the construction, inundation and operation of hydroelectric dams in the Columbia River Basin (NPPC 2000). Under the Columbia Basin Fish and Wildlife Program (Program), the region's fish and wildlife agencies, tribes, non-government organizations (NGOs), and the public propose fish and wildlife projects that address wildlife and fish losses resulting from dam construction and subsequent inundation. As directed by the Council, project proposals are

  8. Malheur River Wildlife Mitigation Project : 2008 Annual Report.

    SciTech Connect

    Kesling, Jason; Abel, Chad; Schwabe, Laurence

    2009-01-01

    In 1998, the Burns Paiute Tribe (BPT) submitted a proposal to Bonneville Power Administration (BPA) for the acquisition of the Malheur River Wildlife Mitigation Project (Project). The proposed mitigation site was for the Denny Jones Ranch and included Bureau of Land Management (BLM) and Oregon Division of State Lands (DSL) leases and grazing allotments. The Project approval process and acquisition negotiations continued for several years until the BPT and BPA entered into a Memorandum of Agreement, which allowed for purchase of the Project in November 2000. The 31,781 acre Project is located seven miles east of Juntura, Oregon and is adjacent to the Malheur River (Figure 1). Six thousand three hundred eighty-five acres are deeded to BPT, 4,154 acres are leased from DSL, and 21,242 acres are leased from BLM (Figure 2). In total 11 grazing allotments are leased between the two agencies. Deeded land stretches for seven miles along the Malheur River. It is the largest private landholding on the river between Riverside and Harper, Oregon. Approximately 938 acres of senior water rights are included with the Ranch. The Project is comprised of meadow, wetland, riparian and shrub-steppe habitats. The BLM grazing allotment, located south of the ranch, is largely shrub-steppe habitat punctuated by springs and seeps. Hunter Creek, a perennial stream, flows through both private and BLM lands. Similarly, the DSL grazing allotment, which lies north of the Ranch, is predominantly shrub/juniper steppe habitat with springs and seeps dispersed throughout the upper end of draws (Figure 2).

  9. Blue Creek Winter Range : Wildlife Mitigation Project : Final Environmental Assessment.

    SciTech Connect

    United States. Bonneville Power Administration; United States. Bureau of Indian Affairs; Spokane Tribe of the Spokane Reservation, Washington

    1994-11-01

    Bonneville Power Administration (BPA) proposes to fund that portion of the Washington Wildlife Agreement pertaining to the Blue Creek Winter Range Wildlife Mitigation Project (Project) in a cooperative effort with the Spokane Tribe, Upper Columbia United Tribes, and the Bureau of Indian Affairs (BIA). If fully implemented, the proposed action would allow the sponsors to protect and enhance 2,631 habitat units of big game winter range and riparian shrub habitat on 2,185 hectares (5,400 acres) of Spokane Tribal trust lands, and to conduct long term wildlife management activities within the Spokane Indian Reservation project area. This Final Environmental Assessment (EA) examines the potential environmental effects of securing land and conducting wildlife habitat enhancement and long term management activities within the boundaries of the Spokane Indian Reservation. Four proposed activities (habitat protection, habitat enhancement, operation and maintenance, and monitoring and evaluation) are analyzed. The proposed action is intended to meet the need for mitigation of wildlife and wildlife habitat adversely affected by the construction of Grand Coulee Dam and its reservoir.

  10. Big sagebrush seed bank densities following wildfires

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Big sagebrush (Artemisia spp.) is a critical shrub to many wildlife species including sage grouse (Centrocercus urophasianus), mule deer (Odocoileus hemionus), and pygmy rabbit (Brachylagus idahoensis). Big sagebrush is killed by wildfires and big sagebrush seed is generally short-lived and do not s...

  11. Projections of Rapidly Rising Temperatures over Africa Under Low Mitigation

    NASA Technical Reports Server (NTRS)

    Engelbrecht, Francois; Adegoke, Jimmy; Bopape, Mary-Jane; Naidoo, Mogesh; Garland, Rebecca; Thatcher, Marcus; McGregor, John; Katzfe, Jack; Werner, Micha; Ichoku, Charles; Gatebe, Charles

    2015-01-01

    An analysis of observed trends in African annual-average near-surface temperatures over the last five decades reveals drastic increases, particularly over parts of the subtropics and central tropical Africa. Over these regions, temperatures have been rising at more than twice the global rate of temperature increase. An ensemble of high-resolution downscalings, obtained using a single regional climate model forced with the sea-surface temperatures and sea-ice fields of an ensemble of global circulation model (GCM) simulations, is shown to realistically represent the relatively strong temperature increases observed in subtropical southern and northern Africa. The amplitudes of warming are generally underestimated, however. Further warming is projected to occur during the 21st century, with plausible increases of 4-6 C over the subtropics and 3-5 C over the tropics by the end of the century relative to present-day climate under the A2 (a low mitigation) scenario of the Special Report on Emission Scenarios. High impact climate events such as heat-wave days and high fire-danger days are consistently projected to increase drastically in their frequency of occurrence. General decreases in soil-moisture availability are projected, even for regions where increases in rainfall are plausible, due to enhanced levels of evaporation. The regional downscalings presented here, and recent GCM projections obtained for Africa, indicate that African annual-averaged temperatures may plausibly rise at about 1.5 times the global rate of temperature increase in the subtropics, and at a somewhat lower rate in the tropics. These projected increases although drastic, may be conservative given the model underestimations of observed temperature trends. The relatively strong rate of warming over Africa, in combination with the associated increases in extreme temperature events, may be key factors to consider when interpreting the suitability of global mitigation targets in terms of African

  12. The impact of climate mitigation on projections of future drought

    NASA Astrophysics Data System (ADS)

    Taylor, I. H.; Burke, E.; McColl, L.; Falloon, P. D.; Harris, G. R.; McNeall, D.

    2013-06-01

    Drought is a cumulative event, often difficult to define and involving wide-reaching consequences for agriculture, ecosystems, water availability, and society. Understanding how the occurrence of drought may change in the future and which sources of uncertainty are dominant can inform appropriate decisions to guide drought impacts assessments. Our study considers both climate model uncertainty associated with future climate projections, and future emissions of greenhouse gases (future scenario uncertainty). Four drought indices (the Standardised Precipitation Index (SPI), Soil Moisture Anomaly (SMA), the Palmer Drought Severity Index (PDSI) and the Standardised Runoff Index (SRI)) are calculated for the A1B and RCP2.6 future emissions scenarios using monthly model output from a 57-member perturbed parameter ensemble of climate simulations of the HadCM3C Earth System model, for the baseline period 1961-1990, and the period 2070-2099 ("the 2080s"). We consider where there are statistically significant increases or decreases in the proportion of time spent in drought in the 2080s compared to the baseline. Despite the large range of uncertainty in drought projections for many regions, projections for some regions have a clear signal, with uncertainty associated with the magnitude of change rather than direction. For instance, a significant increase in time spent in drought is generally projected for the Amazon, Central America and South Africa whilst projections for northern India consistently show significant decreases in time spent in drought. Whilst the patterns of changes in future drought were similar between scenarios, climate mitigation, represented by the RCP2.6 scenario, tended to reduce future changes in drought. In general, climate mitigation reduced the area over which there was a significant increase in drought but had little impact on the area over which there was a significant decrease in time spent in drought.

  13. Pend Oreille Wetlands Wildlife Mitigation Projects, 2001 Annual Report.

    SciTech Connect

    Entz, Ray D.

    2001-12-05

    The Pend Oreille Wetlands project consists of two adjacent parcels totaling about 600 acres. The parcels make up the northern boundary of the Kalispel Indian Reservation, and is also adjacent to the Pend Oreille River about 25 miles north of Newport and Albeni Falls Dam (Figure 1). Located in the Selkirk Mountains in Pend Oreille County Washington, the project is situated on an active floodplain, increasing its effectiveness as mitigation for Albeni Falls Dam. The combination of the River, wetlands and the north-south alignment of the valley have resulted in an important migratory waterfowl flyway. Washington Department of Fish and Wildlife and Kalispel Natural Resource Department have designated both project sites as priority habitats. Seven habitat types exist on the project properties and include four wetland habitats (open water, emergent, and scrub-shrub and forested), riparian deciduous forest, upland mixed coniferous forest and floodplain meadow. Importance of the project to wildlife is further documented by the occurrence of an active Bald Eagle nest aerie.

  14. Wildlife Protection, Mitigation, and Enhancment Plan: Minidoka Dam: Final Report.

    SciTech Connect

    Meuleman, G. Allyn; Martin, Robert C.; Hansen, H. Jerome

    1991-04-01

    A wildlife protection, mitigation, and enhancement plan has been developed for the US Bureau of Reclamation's Minidoka Dam and Reservoir in south-central Idaho. Specific objectives of this study included the following: Develop protection, mitigation, and enhancement goals and objectives for target wildlife species; identify potential protection, mitigation, and enhancement opportunities to achieve the mitigation objectives; and coordinate project activities with agencies, tribes, and the public. The interagency work group previously assessed the impacts of Minidoka Dam on wildlife. There were estimated losses of 10,503 habitat units (HU's) for some target wildlife species and gains of 5,129 HU's for other target species. The work group agreed that mitigation efforts should be directed toward target species that were negatively impacted by Minidoka Dam. They developed the following prioritized mitigation goals: 1,531 river otter HU's in riparian/river habitat, 1,922 sage grouse HU's in shrub-steppe (sagebrush-grassland) habitat, 1,746 mule deer HU's in shrub-steppe habitat, and 175 yellow warbler HU's in deciduous scrub-shrub wetland habitat. The work group proposed the following preferred mitigation options, in priority order: Provide benefits of 1,706 river otter and yellow warbler HU's by protecting and enhancing riparian/river habitat in south central Idaho; and provide benefits of 3,668 sage grouse and mule deer HU's by protecting and enhancing shrub-steppe (sagebrush-grassland) habitat. 38 refs., 2 figs., 5 tabs.

  15. Willow Creek Wildlife Mitigation Project. Final Environmental Assessment.

    SciTech Connect

    1995-04-01

    Today`s notice announces BPA`s proposal to fund land acquisition or acquisition of a conservation easement and a wildlife management plan to protect and enhance wildlife habitat at the Willow Creek Natural Area in Eugene, Oregon. This action would provide partial mitigation for wildlife and wildlife habitat lost by the development of Federal hydroelectric projects in the Willamette River Basin. The project is consistent with BPA`s obligations under provisions of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 as outlined by the Northwest Power Planning Council`s 1994 Columbia River Basin Fish and Wildlife Program. BPA has prepared an environmental assessment (DOE/EA-1023) evaluating the proposed project. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement (EIS) is not required and BPA is issuing this FONSI.

  16. A synthesis of environmental and recreational mitigation requirements at hydropower projects in the United States

    SciTech Connect

    Schramm, Michael P.; Bevelhimer, Mark S.; DeRolph, Chris R.

    2016-04-11

    Environmental mitigation plays an important role in the environmentally sustainable development of hydropower resources. However, comprehensive data on mitigation required by the Federal Energy Regulatory Commission (FERC) at United States (US) hydropower projects is lacking. Therefore, our objective was to create a comprehensive database of mitigation required at non-federal hydropower projects and provide a synthesis of available mitigation data. Mitigation data was collated for over 300 plants licensed or relicensed from 1998 through 2013. We observed that the majority of FERC mitigation requirements deal with either hydrologic flows or recreation and that hydropower plants in the Pacific Northwest had the highest number of requirements. Our data indicate opportunities exist to further explore hydropower mitigation in the areas of environmental flows, fish passage, and water quality. Lastly, connecting these data with ecological outcomes, actual flow data, and larger landscape level information will be necessary to evaluate the effectiveness of mitigation and ultimately inform regulators, managers, and planners.

  17. Big sagebrush transplanting success in crested wheatgrass stands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The conversion of formerly big sagebrush (Artemisia tridentate ssp. wyomingensis)/bunchgrass communities to annual grass dominance, primarily cheatgrass (Bromus tectorum), in Wyoming big sagebrush ecosystems has sparked the increasing demand to establish big sagebrush on disturbed rangelands. The e...

  18. Sagebrush ecosystems: current status and trends.

    USGS Publications Warehouse

    Beever, E.A.; Connelly, J.W.; Knick, S.T.; Schroeder, M.A.; Stiver, S. J.

    2004-01-01

    The sagebrush (Artemisia spp.) biome has changed since settlement by Europeans. The current distribution, composition and dynamics, and disturbance regimes of sagebrush ecosystems have been altered by interactions among disturbance, land use, and invasion of exotic plants. In this chapter, we present the dominant factors that have influenced habitats across the sagebrush biome. Using a large-scale analysis, we identified regional changes and patterns in “natural disturbance”, invasive exotic species, and influences of land use in sagebrush systems. Number of fires and total area burned has increased since 1980 across much of the sagebrush biome. Juniper (Juniperus spp.) and pinyon (Pinus spp.) woodlands have expanded into sagebrush habitats at higher elevations. Cheatgrass (Bromus tectorum), an exotic annual grass, has invaded much of lower elevation, more xeric sagebrush landscapes across the western portion of the biome. Consequently, synergistic feedbacks between habitats and disturbance (natural and human-caused) have altered disturbance regimes, plant community dynamics and contributed to loss of sagebrush habitats and change in plant communities. Habitat conversion to agriculture has occurred in the highly productive regions of the sagebrush biome and influenced up to 56% of the Conservation Assessment area. Similarly, urban areas, and road, railroad, and powerline networks fragment habitats, facilitate predator movements, and provide corridors for spread of exotic species across the entire sagebrush biome. Livestock grazing has altered sagebrush habitats; the effects of overgrazing combined with drought on plant communities in the late 1880s and early 1900s still influences current habitats. Management of livestock grazing has influenced sagebrush ecosystems by habitat treatments to increase forage and reduce sagebrush and other plant species unpalatable to livestock. Fences, roads, and water developments to manage livestock movements have further

  19. Wildlife and Wildlife Habitat Mitigation Plan for the Thompson Falls Hydroelectric Project, Final Report.

    SciTech Connect

    Bissell, Gael; Wood, Marilyn

    1985-08-01

    This document presents a preliminary mitigation and enhancement plan for the Thompson Falls hydroelectric project. It discusses options available to provide wildlife protection, mitigation and enhancement in accordance with the Pacific Northwest Electric Power Planning and Conservation Act of 1980 (P.L. 96-501). The options focus on mitigation for wildlife and wildlife habitat losses attributable to the construction of the hydroelectric project. These losses were previously estimated from the best available information concerning the degree of negative and positive impacts to target wildlife species (Wood and Olsen 1984). Criteria by which the mitigation alternatives were evaluated were the same as those used to assess the impacts identified in the Phase I document (Wood and Olsen 1984). They were also evaluated according to feasibility and cost effectiveness. This document specifically focuses on mitigation for target species which were identified during Phase I (Wood and Olsen 1984). It was assumed mitigation and enhancement for the many other target wildlife species impacted by the hydroelectric developments will occur as secondary benefits. The recommended mitigation plan includes two recommended mitigation projects: (1) development of wildlife protection and enhancement plans for MPC lands and (2) strategies to protect several large islands upstream of the Thompson Falls reservoir. If implemented, these projects would provide satisfactory mitigation for wildlife losses associated with the Thompson Falls hydroelectric project. The intent of the mitigation plan is to recommend wildlife management objectives and guidelines. The specific techniques, plans, methods and agreements would be developed is part of the implementation phase.

  20. Multiscale sagebrush rangeland habitat modeling in the Gunnison Basin of Colorado

    USGS Publications Warehouse

    Homer, Collin G.; Aldridge, Cameron L.; Meyer, Debra K.; Schell, Spencer J.

    2013-01-01

    North American sagebrush-steppe ecosystems have decreased by about 50 percent since European settlement. As a result, sagebrush-steppe dependent species, such as the Gunnison sage-grouse, have experienced drastic range contractions and population declines. Coordinated ecosystem-wide research, integrated with monitoring and management activities, is needed to help maintain existing sagebrush habitats; however, products that accurately model and map sagebrush habitats in detail over the Gunnison Basin in Colorado are still unavailable. The goal of this project is to provide a rigorous large-area sagebrush habitat classification and inventory with statistically validated products and estimates of precision across the Gunnison Basin. This research employs a combination of methods, including (1) modeling sagebrush rangeland as a series of independent objective components that can be combined and customized by any user at multiple spatial scales; (2) collecting ground measured plot data on 2.4-meter QuickBird satellite imagery in the same season the imagery is acquired; (3) modeling of ground measured data on 2.4-meter imagery to maximize subsequent extrapolation; (4) acquiring multiple seasons (spring, summer, and fall) of Landsat Thematic Mapper imagery (30-meter) for optimal modeling; (5) using regression tree classification technology that optimizes data mining of multiple image dates, ratios, and bands with ancillary data to extrapolate ground training data to coarser resolution Landsat Thematic Mapper; and 6) employing accuracy assessment of model predictions to enable users to understand their dependencies. Results include the prediction of four primary components including percent bare ground, percent herbaceous, percent shrub, and percent litter, and four secondary components including percent sagebrush (Artemisia spp.), percent big sagebrush (Artemisia tridentata), percent Wyoming sagebrush (Artemisia tridentata wyomingensis), and shrub height (centimeters

  1. 77 FR 24505 - Hazard Mitigation Assistance for Wind Retrofit Projects for Existing Residential Buildings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-24

    ... SECURITY Federal Emergency Management Agency Hazard Mitigation Assistance for Wind Retrofit Projects for... comments on Hazard Mitigation Assistance for Wind Retrofit Projects for Existing Residential Buildings... property from hazards and their effects. One such activity is the implementation of wind retrofit...

  2. Environmental mitigation at hydroelectric projects: Volume II. Benefits and costs of fish passage and protection

    SciTech Connect

    Francfort, J. E.; Cada, G. F.; Dauble, D. D.; Hunt, R. T.; Jones, D. W.; Rinehart, B. N.; Sommers, G. L.; Costello, R. J.

    1994-01-01

    The Department of Energy, through its hydropower program, is studying environmental mitigation practices at hydroelectric projects. The study of environmental mitigation is intended to provide greater understanding of environmental problems and solutions that are associated with conventional hydroelectric projects. This volume examines upstream and downstream fish passage/protection technologies and the associated practices, benefits, and costs. Fish passage/protection mitigation technologies are investigated by three methods: (a) national, regional (Federal Energy Regulatory Commission regions), and temporal frequencies of fish passage/protection mitigation are examined at 1,825 operating and conventional (excludes pumped storage) Federal Energy Regulatory Commission (FERC) regulated hydroelectric sites in the United States; (b) general fish passage/protection mitigation costs are discussed for 50 FERC regulated hydroelectric projects; and (c) 16 case studies are used to examine specific fish passage/protection mitigation practices, benefits, and costs.

  3. The seismic project of the National Tsunami Hazard Mitigation Program

    USGS Publications Warehouse

    Oppenheimer, D.H.; Bittenbinder, A.N.; Bogaert, B.M.; Buland, R.P.; Dietz, L.D.; Hansen, R.A.; Malone, S.D.; McCreery, C.S.; Sokolowski, T.J.; Whitmore, P.M.; Weaver, C.S.

    2005-01-01

    In 1997, the Federal Emergency Management Agency (FEMA), National Oceanic and Atmospheric Administration (NOAA), U.S. Geological Survey (USGS), and the five western States of Alaska, California, Hawaii, Oregon, and Washington joined in a partnership called the National Tsunami Hazard Mitigation Program (NTHMP) to enhance the quality and quantity of seismic data provided to the NOAA tsunami warning centers in Alaska and Hawaii. The NTHMP funded a seismic project that now provides the warning centers with real-time seismic data over dedicated communication links and the Internet from regional seismic networks monitoring earthquakes in the five western states, the U.S. National Seismic Network in Colorado, and from domestic and global seismic stations operated by other agencies. The goal of the project is to reduce the time needed to issue a tsunami warning by providing the warning centers with high-dynamic range, broadband waveforms in near real time. An additional goal is to reduce the likelihood of issuing false tsunami warnings by rapidly providing to the warning centers parametric information on earthquakes that could indicate their tsunamigenic potential, such as hypocenters, magnitudes, moment tensors, and shake distribution maps. New or upgraded field instrumentation was installed over a 5-year period at 53 seismic stations in the five western states. Data from these instruments has been integrated into the seismic network utilizing Earthworm software. This network has significantly reduced the time needed to respond to teleseismic and regional earthquakes. Notably, the West Coast/Alaska Tsunami Warning Center responded to the 28 February 2001 Mw 6.8 Nisqually earthquake beneath Olympia, Washington within 2 minutes compared to an average response time of over 10 minutes for the previous 18 years. ?? Springer 2005.

  4. Hellsgate Winter Range Mitigation Project; Long-term Management Plan, Project Report 1993, Final Draft.

    SciTech Connect

    Berger, Matthew T.

    1994-01-01

    A study was conducted on the Hellsgate Winter Range Mitigation Project area, a 4,943 acre ranch purchased for mitigating some habitat losses associated with the original construction of Grand Coulee Dam and innundation of habitat by Lake Roosevelt. A Habitat Evaluation Procedure (HEP) study was used to determine habitat quality and quantity baseline data and future projections. Target species used in the study were sharp-tailed grouse (Tympanuchus phasianellus), mule deer (Odocoileus hemoinus), mink (Mustela vison), spotted sandpiper (Actiius colchicus), bobcat (Felis reufs), blue grouse (Dendragapus obscurus), and mourning dove (Zenaida macroura). From field data collected, limiting life values or HSI's (Habitat Suitability Index's) for each indicator species was determined for existing habitats on project lands. From this data a long term management plan was developed. This report is designed to provide guidance for the management of project lands in relation to the habitat cover types discussed and the indicator species used to evaluate these cover types. In addition, the plan discusses management actions, habitat enhancements, and tools that will be used to enhance, protect and restore habitats to desired conditions. Through planned management actions biodiversity and vegetative structure can be optimized over time to reduce or eliminate, limiting HSI values for selected wildlife on project lands.

  5. Wildlife Loss Estimates and Summary of Previous Mitigation Related to Hydroelectric Projects in Montana, Volume Three, Hungry Horse Project.

    SciTech Connect

    Casey, Daniel

    1984-10-01

    This assessment addresses the impacts to the wildlife populations and wildlife habitats due to the Hungry Horse Dam project on the South Fork of the Flathead River and previous mitigation of theses losses. In order to develop and focus mitigation efforts, it was first necessary to estimate wildlife and wildlife hatitat losses attributable to the construction and operation of the project. The purpose of this report was to document the best available information concerning the degree of impacts to target wildlife species. Indirect benefits to wildlife species not listed will be identified during the development of alternative mitigation measures. Wildlife species incurring positive impacts attributable to the project were identified.

  6. Northeast Oregon Wildlife Mitigation Project : Final Environmental Assessment.

    SciTech Connect

    United States. Bonneville Power Administration; Nez Perce Tribe

    1996-08-01

    Development of the hydropower system in the Columbia River Basin has had far-reaching effects on many species of wildlife. The Bonneville Power Administration (BPA) is responsible for mitigating the loss of wildlife habitat caused by the Federal portion of this system, as allocated to the purpose of power production. BPA needs to mitigate for loss of wildlife habitat in the Snake River Subbasin.

  7. Status Review of Wildlife Mitigation, Columbia Basin Hydroelectric Projects, Washington Facilities (Intrastate) Final Report.

    SciTech Connect

    Howerton, Jack

    1984-11-01

    This report was prepared for BPA in fulfillment of section 1004 (b)(1) of the Pacific Northwest Electric Power Planning and Conservation Act of 1980, to review the status of past, present, and proposed future wildlife planning and mitigation program at existing hydroelectric projects in the Columbia River Basin. The project evaluations will form the basis for determining any needed remedial measures or additional project analysis. Projects addressed are: Merwin Dam; Swift Project; Yale Project; Cowlitz River; Boundary Dam; Box Canyon Dam; Lake Chelan; Condit Project; Enloe Project; Spokane River; Tumwater and Dryden Dam; Yakima; and Naches Project.

  8. Status Review of Wildlife Mitigation, Columbia Basin Hydroelectric Projects, Columbia River Mainstem Facilities, 1984 Final Report.

    SciTech Connect

    Howerton, Jack; Hwang, Diana

    1984-11-01

    This report reviews the status of past, present, and proposed future wildlife planning and mitigation programs at existing hydroelectric projects in the Columbia River Basin. The project evaluations will form the basis for determining any needed remedial measures or additional project analysis. Each hydropower facility report is abstracted separately for inclusion in the Energy Data Base.

  9. Wildfire, climate, and invasive grass interactions negatively impact an indicator species by reshaping sagebrush ecosystems

    USGS Publications Warehouse

    Coates, Peter S.; Ricca, Mark; Prochazka, Brian; Brooks, Matthew L.; Doherty, Kevin E.; Kroger, Travis; Blomberg, Erik J.; Hagen, Christian A.; Casazza, Michael L.

    2016-01-01

    Iconic sagebrush ecosystems of the American West are threatened by larger and more frequent wildfires that can kill sagebrush and facilitate invasion by annual grasses, creating a cycle that alters sagebrush ecosystem recovery post disturbance. Thwarting this accelerated grass–fire cycle is at the forefront of current national conservation efforts, yet its impacts on wildlife populations inhabiting these ecosystems have not been quantified rigorously. Within a Bayesian framework, we modeled 30 y of wildfire and climatic effects on population rates of change of a sagebrush-obligate species, the greater sage-grouse, across the Great Basin of western North America. Importantly, our modeling also accounted for variation in sagebrush recovery time post fire as determined by underlying soil properties that influence ecosystem resilience to disturbance and resistance to invasion. Our results demonstrate that the cumulative loss of sagebrush to direct and indirect effects of wildfire has contributed strongly to declining sage-grouse populations over the past 30 y at large spatial scales. Moreover, long-lasting effects from wildfire nullified pulses of sage-grouse population growth that typically follow years of higher precipitation. If wildfire trends continue unabated, model projections indicate sage-grouse populations will be reduced to 43% of their current numbers over the next three decades. Our results provide a timely example of how altered fire regimes are disrupting recovery of sagebrush ecosystems and leading to substantial declines of a widespread indicator species. Accordingly, we present scenario-based stochastic projections to inform conservation actions that may help offset the adverse effects of wildfire on sage-grouse and other wildlife populations.

  10. Wildfire, climate, and invasive grass interactions negatively impact an indicator species by reshaping sagebrush ecosystems

    PubMed Central

    Coates, Peter S.; Ricca, Mark A.; Prochazka, Brian G.; Brooks, Matthew L.; Doherty, Kevin E.; Kroger, Travis; Blomberg, Erik J.; Hagen, Christian A.; Casazza, Michael L.

    2016-01-01

    Iconic sagebrush ecosystems of the American West are threatened by larger and more frequent wildfires that can kill sagebrush and facilitate invasion by annual grasses, creating a cycle that alters sagebrush ecosystem recovery post disturbance. Thwarting this accelerated grass–fire cycle is at the forefront of current national conservation efforts, yet its impacts on wildlife populations inhabiting these ecosystems have not been quantified rigorously. Within a Bayesian framework, we modeled 30 y of wildfire and climatic effects on population rates of change of a sagebrush-obligate species, the greater sage-grouse, across the Great Basin of western North America. Importantly, our modeling also accounted for variation in sagebrush recovery time post fire as determined by underlying soil properties that influence ecosystem resilience to disturbance and resistance to invasion. Our results demonstrate that the cumulative loss of sagebrush to direct and indirect effects of wildfire has contributed strongly to declining sage-grouse populations over the past 30 y at large spatial scales. Moreover, long-lasting effects from wildfire nullified pulses of sage-grouse population growth that typically follow years of higher precipitation. If wildfire trends continue unabated, model projections indicate sage-grouse populations will be reduced to 43% of their current numbers over the next three decades. Our results provide a timely example of how altered fire regimes are disrupting recovery of sagebrush ecosystems and leading to substantial declines of a widespread indicator species. Accordingly, we present scenario-based stochastic projections to inform conservation actions that may help offset the adverse effects of wildfire on sage-grouse and other wildlife populations. PMID:27791084

  11. Addressing Climate Change Mitigation and Adaptation Together: A Global Assessment of Agriculture and Forestry Projects

    NASA Astrophysics Data System (ADS)

    Kongsager, Rico; Locatelli, Bruno; Chazarin, Florie

    2016-02-01

    Adaptation and mitigation share the ultimate purpose of reducing climate change impacts. However, they tend to be considered separately in projects and policies because of their different objectives and scales. Agriculture and forestry are related to both adaptation and mitigation: they contribute to greenhouse gas emissions and removals, are vulnerable to climate variations, and form part of adaptive strategies for rural livelihoods. We assessed how climate change project design documents (PDDs) considered a joint contribution to adaptation and mitigation in forestry and agriculture in the tropics, by analyzing 201 PDDs from adaptation funds, mitigation instruments, and project standards [e.g., climate community and biodiversity (CCB)]. We analyzed whether PDDs established for one goal reported an explicit contribution to the other (i.e., whether mitigation PDDs contributed to adaptation and vice versa). We also examined whether the proposed activities or expected outcomes allowed for potential contributions to the two goals. Despite the separation between the two goals in international and national institutions, 37 % of the PDDs explicitly mentioned a contribution to the other objective, although only half of those substantiated it. In addition, most adaptation (90 %) and all mitigation PDDs could potentially report a contribution to at least partially to the other goal. Some adaptation project developers were interested in mitigation for the prospect of carbon funding, whereas mitigation project developers integrated adaptation to achieve greater long-term sustainability or to attain CCB certification. International and national institutions can provide incentives for projects to harness synergies and avoid trade-offs between adaptation and mitigation.

  12. Addressing Climate Change Mitigation and Adaptation Together: A Global Assessment of Agriculture and Forestry Projects.

    PubMed

    Kongsager, Rico; Locatelli, Bruno; Chazarin, Florie

    2016-02-01

    Adaptation and mitigation share the ultimate purpose of reducing climate change impacts. However, they tend to be considered separately in projects and policies because of their different objectives and scales. Agriculture and forestry are related to both adaptation and mitigation: they contribute to greenhouse gas emissions and removals, are vulnerable to climate variations, and form part of adaptive strategies for rural livelihoods. We assessed how climate change project design documents (PDDs) considered a joint contribution to adaptation and mitigation in forestry and agriculture in the tropics, by analyzing 201 PDDs from adaptation funds, mitigation instruments, and project standards [e.g., climate community and biodiversity (CCB)]. We analyzed whether PDDs established for one goal reported an explicit contribution to the other (i.e., whether mitigation PDDs contributed to adaptation and vice versa). We also examined whether the proposed activities or expected outcomes allowed for potential contributions to the two goals. Despite the separation between the two goals in international and national institutions, 37% of the PDDs explicitly mentioned a contribution to the other objective, although only half of those substantiated it. In addition, most adaptation (90%) and all mitigation PDDs could potentially report a contribution to at least partially to the other goal. Some adaptation project developers were interested in mitigation for the prospect of carbon funding, whereas mitigation project developers integrated adaptation to achieve greater long-term sustainability or to attain CCB certification. International and national institutions can provide incentives for projects to harness synergies and avoid trade-offs between adaptation and mitigation.

  13. Albeni Falls Wildlife Mitigation Project; Idaho Department of Fish and Game 2007 Final Annual Report.

    SciTech Connect

    Cousins, Katherine

    2009-04-03

    The Idaho Department of Fish and Game maintained a total of about 2,743 acres of wildlife mitigation habitat in 2007, and protected another 921 acres. The total wildlife habitat mitigation debt has been reduced by approximately two percent (598.22 HU) through the Department's mitigation activities in 2007. Implementation of the vegetative monitoring and evaluation program continued across protected lands. For the next funding cycle, the IDFG is considering a package of restoration projects and habitat improvements, conservation easements, and land acquisitions in the project area.

  14. Colville Confederated Tribes' Performance Project Wildlife Mitigation Acquisitions, Annual Report 2006.

    SciTech Connect

    Whitney, Richard; Berger, Matthew; Tonasket, Patrick

    2006-12-01

    The Colville Confederated Tribes Wildlife Mitigation Project is protecting lands as partial mitigation for hydropower's share of the wildlife losses resulting from Chief Joseph and Grand Coulee Dams. The Mitigation Project protects and manages 54,606 acres for the biological requirements of managed wildlife species that are important to the Colville Tribes. With the inclusion of 2006 acquisitions, the Colville Tribes have acquired approximately 32,018 habitat units (HUs) towards a total 35,819 HUs lost from original inundation due to hydropower development. This annual report for 2006 briefly describes that four priority land acquisitions that were considered for enrollment into the Colville Tribes Mitigation Project during the 2006 contract period.

  15. A synthesis of environmental and recreational mitigation requirements at hydropower projects in the United States

    DOE PAGES

    Schramm, Michael P.; Bevelhimer, Mark S.; DeRolph, Chris R.

    2016-04-11

    Environmental mitigation plays an important role in the environmentally sustainable development of hydropower resources. However, comprehensive data on mitigation required by the Federal Energy Regulatory Commission (FERC) at United States (US) hydropower projects is lacking. Therefore, our objective was to create a comprehensive database of mitigation required at non-federal hydropower projects and provide a synthesis of available mitigation data. Mitigation data was collated for over 300 plants licensed or relicensed from 1998 through 2013. We observed that the majority of FERC mitigation requirements deal with either hydrologic flows or recreation and that hydropower plants in the Pacific Northwest had themore » highest number of requirements. Our data indicate opportunities exist to further explore hydropower mitigation in the areas of environmental flows, fish passage, and water quality. Lastly, connecting these data with ecological outcomes, actual flow data, and larger landscape level information will be necessary to evaluate the effectiveness of mitigation and ultimately inform regulators, managers, and planners.« less

  16. Quantifying spatiotemporal changes in a sagebrush ecosystem in relation to energy development.

    SciTech Connect

    Walston, L. J.; Cantwell, B. L.; Krummel, J. R.; Environmental Science Division

    2009-12-01

    Energy development has been occurring in the intermountain western United States for over a century, yet few studies have attempted to spatially quantify the impacts of this disturbance on native ecosystems. We used temporal remotely sensed data for the Pinedale Anticline Project Area (PAPA) in western Wyoming, a region that has experienced increased natural gas development within the past 10 yr, to quantify the spatiotemporal distribution of Wyoming big sagebrush Artemisia tridentata, natural gas development, and other landcover types. Our analyses included 5 Landsat Thematic Mapper (TM) images of the PAPA over a 22-yr period (1985-2006). We determined whether Wyoming big sagebrush spatiotemporal patterns were associated with natural gas development or other landcover types. We also developed a footprint model to determine the direct and indirect impacts of natural gas development on the distribution of Wyoming big sagebrush habitats. Over the 22-yr period, we observed an inverse relationship between the amount of Wyoming big sagebrush habitat and natural gas development. During this time, Wyoming big sagebrush habitat declined linearly at a rate of 0.2% yr-1 (4.5% total net loss), whereas natural gas development increased exponentially at a rate of 20% yr-1 (4800% total net increase). Our evaluation indicated that, by 2006, natural gas development directly impacted 2.7% (1750 ha) of original Wyoming big sagebrush habitat. Indirect impacts, quantified to account for degraded habitat quality, affected as much as 58.5% (assuming 1000-m buffers) of the original Wyoming big sagebrush habitat. Integrating assessments of the direct and indirect impacts will yield a better elucidation of the overall effects of disturbances on ecosystem function and quality.

  17. Methodological Issues In Forestry Mitigation Projects: A CaseStudy Of Kolar District

    SciTech Connect

    Ravindranath, N.H.; Murthy, I.K.; Sudha, P.; Ramprasad, V.; Nagendra, M.D.V.; Sahana, C.A.; Srivathsa, K.G.; Khan, H.

    2007-06-01

    There is a need to assess climate change mitigationopportunities in forest sector in India in the context of methodologicalissues such as additionality, permanence, leakage, measurement andbaseline development in formulating forestry mitigation projects. A casestudy of forestry mitigation project in semi-arid community grazing landsand farmlands in Kolar district of Karnataka, was undertaken with regardto baseline and project scenariodevelopment, estimation of carbon stockchange in the project, leakage estimation and assessment ofcost-effectiveness of mitigation projects. Further, the transaction coststo develop project, and environmental and socio-economic impact ofmitigation project was assessed.The study shows the feasibility ofestablishing baselines and project C-stock changes. Since the area haslow or insignificant biomass, leakage is not an issue. The overallmitigation potential in Kolar for a total area of 14,000 ha under variousmitigation options is 278,380 tC at a rate of 20 tC/ha for the period2005-2035, which is approximately 0.67 tC/ha/yr inclusive of harvestregimes under short rotation and long rotation mitigation options. Thetransaction cost for baseline establishment is less than a rupee/tC andfor project scenario development is about Rs. 1.5-3.75/tC. The projectenhances biodiversity and the socio-economic impact is alsosignificant.

  18. Restoration handbook for sagebrush steppe ecosystems with emphasis on greater sage-grouse habitat—Part 1. Concepts for understanding and applying restoration

    USGS Publications Warehouse

    Pyke, David A.; Chambers, Jeanne C.; Pellant, Mike; Knick, Steven T.; Miller, Richard F.; Beck, Jeffrey L.; Doescher, Paul S.; Schupp, Eugene W.; Roundy, Bruce A.; Brunson, Mark; McIver, James D.

    2015-10-26

    restoration techniques for sage-grouse habitat restoration. We conclude with a description of the critical nature of monitoring for adaptive management of sagebrush steppe restoration at landscape- and project-specific levels.

  19. Native perennial forb variation between mountain big sagebrush and Wyoming big sagebrush plant communities.

    PubMed

    Davies, Kirk W; Bates, Jon D

    2010-09-01

    Big sagebrush (Artemisia tridentata Nutt.) occupies large portions of the western United States and provides valuable wildlife habitat. However, information is lacking quantifying differences in native perennial forb characteristics between mountain big sagebrush [A. tridentata spp. vaseyana (Rydb.) Beetle] and Wyoming big sagebrush [A. tridentata spp. wyomingensis (Beetle & A. Young) S.L. Welsh] plant communities. This information is critical to accurately evaluate the quality of habitat and forage that these communities can produce because many wildlife species consume large quantities of native perennial forbs and depend on them for hiding cover. To compare native perennial forb characteristics on sites dominated by these two subspecies of big sagebrush, we sampled 106 intact big sagebrush plant communities. Mountain big sagebrush plant communities produced almost 4.5-fold more native perennial forb biomass and had greater native perennial forb species richness and diversity compared to Wyoming big sagebrush plant communities (P < 0.001). Nonmetric multidimensional scaling (NMS) and the multiple-response permutation procedure (MRPP) demonstrated that native perennial forb composition varied between these plant communities (P < 0.001). Native perennial forb composition was more similar within plant communities grouped by big sagebrush subspecies than expected by chance (A = 0.112) and composition varied between community groups (P < 0.001). Indicator analysis did not identify any perennial forbs that were completely exclusive and faithful, but did identify several perennial forbs that were relatively good indicators of either mountain big sagebrush or Wyoming big sagebrush plant communities. Our results suggest that management plans and habitat guidelines should recognize differences in native perennial forb characteristics between mountain and Wyoming big sagebrush plant communities.

  20. The NEOShield Project: Understanding the Mitigation-Relevant Physical Properties of Potentially Hazardous Asteroids

    NASA Astrophysics Data System (ADS)

    Harris, Alan W.; Drube, L.; Consortium, NEOShield

    2012-10-01

    NEOShield is a European-Union funded project to address impact hazard mitigation issues, coordinated by the German Aerospace Center, DLR. The NEOShield consortium consists of 13 research institutes, universities, and industrial partners from 6 countries and includes leading US and Russian space organizations. The primary aim of the 5.8 million euro, 3.5 year project, which commenced in January 2012, is to investigate in detail promising mitigation techniques, such as the kinetic impactor, blast deflection, and the gravity tractor, and devise feasible demonstration missions. Options for an international strategy for implementation when an actual impact threat arises will also be investigated. Our current scientific work is focused on examining the mitigation-relevant physical properties of the NEO population via observational data and laboratory experiments on asteroid surface analog materials. We are attempting to narrow the range of the expected properties of objects that are most likely to threaten the Earth and trigger space-borne mitigation attempts, and investigate how such objects would respond to different mitigation techniques. The results of our scientific work will flow into the technical phase of the project, during which detailed designs of feasible mitigation demonstration missions will be developed. We briefly describe the scope of the project and report on results obtained to date. Funded under EU FP7 program agreement no. 282703.

  1. Environmental mitigation at hydroelectric projects. Volume 2, Benefits and costs of fish passage and protection

    SciTech Connect

    Francfort, J.E.; Rinehart, B.N.; Sommers, G.L.; Cada, G.F.; Jones, D.W.; Dauble, D.D.; Hunt, R.T.; Costello, R.J.

    1994-01-01

    This study examines envirorunental mitigation practices that provide upstream and downstream fish passage and protection at hydroelectric projects. The study includes a survey of fish passage and protection mitigation practices at 1,825 hydroelectric plants regulated by the Federal Energy Regulatory Commission (FERC) to determine frequencies of occurrence, temporal trends, and regional practices based on FERC regions. The study also describes, in general terms, the fish passage/protection mitigation costs at 50 non-Federal hydroelectric projects. Sixteen case studies are used to examine in detail the benefits and costs of fish passage and protection. The 16 case studies include 15 FERC licensed or exempted hydroelectric projects and one Federally-owned and-operated hydroelectric project. The 16 hydroelectric projects are located in 12 states and range in capacity from 400 kilowatts to 840 megawatts. The fish passage and protection mitigation methods at the case studies include fish ladders and lifts, an Eicher screen, spill flows, airburst-cleaned inclined and cylindrical wedgewire screens, vertical barrier screens, and submerged traveling screens. The costs, benefits, monitoring methods, and operating characteristics of these and other mitigation methods used at the 16 case studies are examined.

  2. Sagebrush Flat Wildlife Area 2008 Annual Report.

    SciTech Connect

    Peterson, Dan

    2008-11-03

    The Sagebrush Flat Wildlife Area is a 12,718 acre complex located in Douglas County, Washington. Four distinct management units make up the area: Bridgeport, Chester Butte, Dormaier and Sagebrush Flat. The four Units are located across a wide geographic area within Douglas County. The Units are situated roughly along a north/south line from Bridgeport in the north to the Douglas/Grant county line in the south, 60 miles away. The wildlife area was established to conserve and enhance shrubsteppe habitat for the benefit shrubsteppe obligate and dependent wildlife species. In particular, the Sagebrush Flat Wildlife Area is managed to promote the recovery of three state-listed species: Columbian sharp-tailed grouse (threatened), greater sage grouse (threatened) and the pygmy rabbit (endangered). The US Fish and Wildlife Service also list the pygmy rabbit as endangered. Wildlife area staff seeded 250 acres of old agricultural fields located on the Sagebrush Flat, Dormaier and Chester Butte units. This has been a three project to reestablish high quality shrubsteppe habitat on fields that had either been abandoned (Dormaier) or were dominated by non-native grasses. A mix of 17 native grasses and forbs, most of which were locally collected and grown, was used. First year maintenance included spot spraying Dalmatian toadflax on all sites and mowing annual weeds to reduce competition. Photo points were established and will be integral to long term monitoring and evaluation. Additional monitoring and evaluation will come from existing vegetation transects. This year weed control efforts included spot treatment of noxious weeds, particularly Dalmatian toadflax, in previously restored fields on the Bridgeport Unit (150 acres). Spot treatment also took place within fields scheduled for restoration (40 acres) and in areas where toadflax infestations are small and relatively easily contained. Where toadflax is so widespread that chemical treatment would be impractical, we use the

  3. Greenhouse gas mitigation options in the forest sector of Russia: National and project level assessments

    SciTech Connect

    Vinson, T.S.; Kolchugina, T.P.; Andrasko, K.A.

    1996-09-01

    Greenhouse gas (GHG) mitigation options in the Russian forest sector include: afforestation and reforestation of unforested/degraded land area; enhanced forest productivity; incorporation of nondestructive methods of wood harvesting in the forest industry; establishment of land protective forest stands; increase in stand age of final harvest in the European part of Russia; increased fire control; increased disease and pest control; and preservation of old growth forests in the Russian Far-East, which are presently threatened. Considering the implementation of all of the options presented, the GHG mitigation potential within the forest and agroforestry sectors of Russia is approximately 0.6-0.7 Pg C/yr or one half of the industrial carbon emissions of the United States. The difference between the GHG mitigation potential and the actual level of GHGs mitigated in the Russian forest sector will depend to a great degree on external financing that may be available. One possibility for external financing is through joint implementation (JI). However, under the JI process, each project will be evaluated by considering a number of criteria including also the difference between the carbon emissions or sequestration for the baseline (or reference) and the project case, the permanence of the project, and leakage. Consequently, a project level assessment must appreciate the near-term constraints that will face practitioners who attempt to realize the GHG mitigation potential in the forest and agroforestry sectors of their countries. 25 refs.

  4. Rainwater Wildlife Area, Watershed Management Plan, A Columbia Basin Wildlife Mitigation Project, 2002.

    SciTech Connect

    Childs, Allen B.

    2002-03-01

    This Management Plan has been developed by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) to document how the Rainwater Wildlife Area (formerly known as the Rainwater Ranch) will be managed. The plan has been developed under a standardized planning process developed by the Bonneville Power Administration (BPA) for Columbia River Basin Wildlife Mitigation Projects (See Appendix A and Guiding Policies Section below). The plan outlines the framework for managing the project area, provides an assessment of existing conditions and key resource issues, and presents an array of habitat management and enhancement strategies. The plan culminates into a 5-Year Action Plan that will focus our management actions and prioritize funding during the Fiscal 2001-2005 planning period. This plan is a product of nearly two years of field studies and research, public scoping, and coordination with the Rainwater Advisory Committee. The committee consists of representatives from tribal government, state agencies, local government, public organizations, and members of the public. The plan is organized into several sections with Chapter 1 providing introductory information such as project location, purpose and need, project goals and objectives, common elements and assumptions, coordination efforts and public scoping, and historical information about the project area. Key issues are presented in Chapter 2 and Chapter 3 discusses existing resource conditions within the wildlife area. Chapter 4 provides a detailed presentation on management activities and Chapter 5 outlines a monitoring and evaluation plan for the project that will help assess whether the project is meeting the intended purpose and need and the goals and objectives. Chapter 6 displays the action plan and provides a prioritized list of actions with associated budget for the next five year period. Successive chapters contain appendices, references, definitions, and a glossary. The purpose of the project is

  5. 75 FR 19643 - Sagebrush, a California Partnership; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-15

    ...] Sagebrush, a California Partnership; Notice of Filing April 7, 2010. Take notice that on April 5, 2010, Sagebrush, a California partnership (Sagebrush) submits for filing a revised open access transmission tariff... proceeding. Any person wishing to become a party must file a notice of intervention or motion to...

  6. Hellsgate Big Game Winter Range Wildlife Mitigation Project : Annual Report 2008.

    SciTech Connect

    Whitney, Richard P.; Berger, Matthew T.; Rushing, Samuel; Peone, Cory

    2009-01-01

    The Hellsgate Big Game Winter Range Wildlife Mitigation Project (Hellsgate Project) was proposed by the Confederated Tribes of the Colville Reservation (CTCR) as partial mitigation for hydropower's share of the wildlife losses resulting from Chief Joseph and Grand Coulee Dams. At present, the Hellsgate Project protects and manages 57,418 acres (approximately 90 miles2) for the biological requirements of managed wildlife species; most are located on or near the Columbia River (Lake Rufus Woods and Lake Roosevelt) and surrounded by Tribal land. To date we have acquired about 34,597 habitat units (HUs) towards a total 35,819 HUs lost from original inundation due to hydropower development. In addition to the remaining 1,237 HUs left unmitigated, 600 HUs from the Washington Department of Fish and Wildlife that were traded to the Colville Tribes and 10 secure nesting islands are also yet to be mitigated. This annual report for 2008 describes the management activities of the Hellsgate Big Game Winter Range Wildlife Mitigation Project (Hellsgate Project) during the past year.

  7. Resilience and resistance of sagebrush ecosystems: implications for state and transition models and management treatments

    USGS Publications Warehouse

    Chambers, Jeanne C.; Miller, Richard F.; Board, David I.; Pyke, David A.; Roundy, Bruce A.; Grace, James B.; Schupp, Eugene W.; Tausch, Robin J.

    2014-01-01

    In sagebrush ecosystems invasion of annual exotics and expansion of piñon (Pinus monophylla Torr. and Frem.) and juniper (Juniperus occidentalis Hook., J. osteosperma [Torr.] Little) are altering fire regimes and resulting in large-scale ecosystem transformations. Management treatments aim to increase resilience to disturbance and enhance resistance to invasive species by reducing woody fuels and increasing native perennial herbaceous species. We used Sagebrush Steppe Treatment Evaluation Project data to test predictions on effects of fire vs. mechanical treatments on resilience and resistance for three site types exhibiting cheatgrass (Bromus tectorum L.) invasion and/or piñon and juniper expansion: 1) warm and dry Wyoming big sagebrush (WY shrub); 2) warm and moist Wyoming big sagebrush (WY PJ); and 3) cool and moist mountain big sagebrush (Mtn PJ). Warm and dry (mesic/aridic) WY shrub sites had lower resilience to fire (less shrub recruitment and native perennial herbaceous response) than cooler and moister (frigid/xeric) WY PJ and Mtn PJ sites. Warm (mesic) WY Shrub and WY PJ sites had lower resistance to annual exotics than cool (frigid to cool frigid) Mtn PJ sites. In WY shrub, fire and sagebrush mowing had similar effects on shrub cover and, thus, on perennial native herbaceous and exotic cover. In WY PJ and Mtn PJ, effects were greater for fire than cut-and-leave treatments and with high tree cover in general because most woody vegetation was removed increasing resources for other functional groups. In WY shrub, about 20% pretreatment perennial native herb cover was necessary to prevent increases in exotics after treatment. Cooler and moister WY PJ and especially Mtn PJ were more resistant to annual exotics, but perennial native herb cover was still required for site recovery. We use our results to develop state and transition models that illustrate how resilience and resistance influence vegetation dynamics and management options.

  8. Mitigating project risk by use of high performance collector technology

    NASA Astrophysics Data System (ADS)

    Richert, Timo; Riffelmann, Klaus-Jürgen; Nava, Paul

    2016-05-01

    Collectors with a high optical quality are generally valued for their additional performance, i.e. the expected additional output due to the performance gain compared to a lower quality reference collector. However, high-performance collectors additionally have a lower sensitivity to additional optical errors and, thus not only perform better nominally, but are also more likely to reach their nominal performance even when project uncertainties (e.g. increased sun-shape) or quality issues (e.g. increased component optical error) degrade their performance. This has physical reasons, whose cause and effect will be described and quantified within this paper.

  9. Plume Mitigation for Mars Terminal Landing: Soil Stabilization Project

    NASA Technical Reports Server (NTRS)

    Hintze, Paul E.

    2014-01-01

    Kennedy Space Center (KSC) has led the efforts for lunar and Martian landing site preparation, including excavation, soil stabilization, and plume damage prediction. There has been much discussion of sintering but until our team recently demonstrated it for the lunar case there was little understanding of the serious challenges. Simplistic sintering creates a crumbly, brittle, weak surface unsuitable for a rocket exhaust plume. The goal of this project is to solve those problems and make it possible to land a human class lander on Mars, making terminal landing of humans on Mars possible for the first time.

  10. Spectroscopic detection of nitrogen concentrations in sagebrush

    SciTech Connect

    J. J. MITCHELL; N. F. GLENN; T.T. SANKEY; D. R. DERRYBERRY; R. C. HRUSKA; M. O. Anderson

    2012-07-01

    The ability to estimate foliar nitrogen (N) in semi-arid landscapes can yield information on nutritional status and improve our limited understanding of controls on canopy photosynthesis. We examined two spectroscopic methods for estimating sagebrush dried leaf and live shrub N content: first derivative reflectance (FDR) and continuum removal. Both methods used partial least squares (PLS) regression to select wavebands most significantly correlated with N concentrations in the samples. Sagebrush dried leaf spectra produced PLS models (R2 = 0.76–0.86) that could predict N concentrations within the dataset more accurately than PLS models generated from live shrub spectra (R2 = 0.41–0.63). Inclusion of wavelengths associated with leaf water in the FDR transformations appeared to improve regression results. Findings are encouraging and warrant further exploration into sagebrush reflectance spectra to characterize N concentrations.

  11. IDENTIFICATION OF CANDIDATE HOUSES FOR NORTH FLORIDA PORTION OF THE FLORIDA RADON MITIGATION PROJECT

    EPA Science Inventory

    The report gives results of a study to locate candidate houses for a proposed radon mitigation research and demonstration project in North Florida. he effort involved: 1) identification of target geographical areas, 2) radon monitoring in identified clusters, and 3) house charact...

  12. Safety equipment list for the 241-SY-101 RAPID mitigation project

    SciTech Connect

    MORRIS, K.L.

    1999-06-29

    This document provides the safety classification for the safety (safety class and safety RAPID Mitigation Project. This document is being issued as the project SEL until the supporting authorization basis documentation, this document will be superseded by the TWRS SEL (LMHC 1999), documentation istlralized. Upon implementation of the authorization basis significant) structures, systems, and components (SSCS) associated with the 241-SY-1O1 which will be updated to include the information contained herein.

  13. Evaluating aggregate terrestrial impacts of road construction projects for advanced regional mitigation.

    PubMed

    Thorne, James H; Girvetz, Evan H; McCoy, Michael C

    2009-05-01

    This study presents a GIS-based database framework used to assess aggregate terrestrial habitat impacts from multiple highway construction projects in California, USA. Transportation planners need such impact assessment tools to effectively address additive biological mitigation obligations. Such assessments can reduce costly delays due to protracted environmental review. This project incorporated the best available statewide natural resource data into early project planning and preliminary environmental assessments for single and multiple highway construction projects, and provides an assessment of the 10-year state-wide mitigation obligations for the California Department of Transportation. Incorporation of these assessments will facilitate early and more strategic identification of mitigation opportunities, for single-project and regional mitigation efforts. The data architecture format uses eight spatial scales: six nested watersheds, counties, and transportation planning districts, which were intersected. This resulted in 8058 map planning units statewide, which were used to summarize all subsequent analyses. Range maps and georeferenced locations of federally and state-listed plants and animals and a 55-class landcover map were spatially intersected with the planning units and the buffered spatial footprint of 967 funded projects. Projected impacts were summarized and output to the database. Queries written in the database can sum expected impacts and provide summaries by individual construction project, or by watershed, county, transportation district or highway. The data architecture allows easy incorporation of new information and results in a tool usable without GIS by a wide variety of agency biologists and planners. The data architecture format would be useful for other types of regional planning.

  14. Evaluating the impact of gas extraction infrastructure on the occupancy of sagebrush-obligate songbirds.

    PubMed

    Mutter, Max; Pavlacky, David C; Van Lanen, Nicholas J; Grenyer, Richard

    2015-07-01

    Development associated with natural gas extraction may have negative effects on wildlife. Here we assessed the effects of natural gas development on the distributions of three sagebrush-obligate birds (Brewer's Sparrow, Spizella breweri; Sagebrush Sparrow, Amphispiza belli; and Sage Thrasher, Oreoscoptes montanus) at a natural gas extraction site in Wyoming, USA. Two drivers of habitat disturbance were investigated: natural gas well pads and roadways. Disturbances were quantified on a small scale (minimum distance to a disturbance) and a large scale (landscape density of a disturbance). Their effects on the study species' distributions were assessed using a multi-scale occupancy model. Minimum distances to wells and roadways were found to not have significant impacts on small-scale occupancy. However, roadway and well density at the landscape-scale significantly impacted the large-scale occupancy of Sagebrush Sparrows and Sage Thrashers. The results confirmed our hypotheses that increasing road density negatively affects the landscape-scale occupancy rates of Sagebrush Sparrow and Sage Thrasher, but did not confirm our hypothesis that increasing well density would negatively impact large-scale occupancy. We therefore suggest that linear features that affect patch size may be more important than point features in determining sagebrush-obligate songbird occupancy when compared to structural effects such as habitat fragmentation and increased predation. We recommend that future well construction be focused along existing roadways, that horizontal drilling be used to reduce the need for additional roads, and that deactivation and restoration of roadways be implemented upon the deactivation of wells, we also recommend a possible mitigation strategy when new roads are to be built.

  15. 40 CFR 93.125 - Enforceability of design concept and scope and project-level mitigation and control measures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... written commitments to mitigation measures must be obtained prior to a positive conformity determination... scope and project-level mitigation and control measures. 93.125 Section 93.125 Protection of Environment... measures. (a) Prior to determining that a transportation project is in conformity, the MPO, other...

  16. Saving the sagebrush sea: An ecosystem conservation plan for big sagebrush plant communities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetation change and anthropogenic development are altering ecosystems and decreasing biodiversity. Successful management of ecosystems threatened by multiple stressors requires development of ecosystem conservation plans rather than single species plans. We selected the big sagebrush (Artemisia ...

  17. Selecting sagebrush seed sources for restoration in a variable climate: ecophysiological variation among genotypes

    USGS Publications Warehouse

    Germino, Matthew J.

    2012-01-01

    Big sagebrush (Artemisia tridentata) communities dominate a large fraction of the United States and provide critical habitat for a number of wildlife species of concern. Loss of big sagebrush due to fire followed by poor restoration success continues to reduce ecological potential of this ecosystem type, particularly in the Great Basin. Choice of appropriate seed sources for restoration efforts is currently unguided due to knowledge gaps on genetic variation and local adaptation as they relate to a changing landscape. We are assessing ecophysiological responses of big sagebrush to climate variation, comparing plants that germinated from ~20 geographically distinct populations of each of the three subspecies of big sagebrush. Seedlings were previously planted into common gardens by US Forest Service collaborators Drs. B. Richardson and N. Shaw, (USFS Rocky Mountain Research Station, Provo, Utah and Boise, Idaho) as part of the Great Basin Native Plant Selection and Increase Project. Seed sources spanned all states in the conterminous Western United States. Germination, establishment, growth and ecophysiological responses are being linked to genomics and foliar palatability. New information is being produced to aid choice of appropriate seed sources by Bureau of Land Management and USFS field offices when they are planning seed acquisitions for emergency post-fire rehabilitation projects while considering climate variability and wildlife needs.

  18. Conforth Ranch (Wanaket) Wildlife Mitigation Project : Draft Management Plan and Draft Environmental Assessment.

    SciTech Connect

    United States. Bonneville Power Administration; Confederated Tribes of the Umatilla Reservation, Oregon.

    1995-03-01

    Bonneville Power Administration (BPA) proposes to mitigate for loss of wildlife habitat caused by the development of Columbia River Basin hydroelectric projects, including McNary dam. The proposed wildlife mitigation project involves wildlife conservation on 1140 hectares (ha)(2817 acres) of land (including water rights) in Umatilla County, Oregon. BPA has prepared an Environmental Assessment (EA)(DOE/EA- 1016) evaluating the proposed project. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required, and BPA is issuing this Finding of No Significant Impact (FONSI).

  19. Special Issue On Estimation Of Baselines And Leakage In CarbonMitigation Forestry Projects

    SciTech Connect

    Sathaye, Jayant A.; Andrasko, Kenneth

    2006-06-01

    There is a growing acceptance that the environmentalbenefits of forests extend beyond traditional ecological benefits andinclude the mitigation of climate change. Interest in forestry mitigationactivities has led to the inclusion of forestry practices at the projectlevel in international agreements. Climate change activities place newdemands on participating institutions to set baselines, establishadditionality, determine leakage, ensure permanence, and monitor andverify a project's greenhouse gas benefits. These issues are common toboth forestry and other types of mitigation projects. They demandempirical evidence to establish conditions under which such projects canprovide sustained long term global benefits. This Special Issue reportson papers that experiment with a range of approaches based on empiricalevidence for the setting of baselines and estimation of leakage inprojects in developing Asia and Latin America.

  20. Washington Wildlife Mitigation Projects : Final Programmatic Environmental Assessment and Finding of No Significant Impact.

    SciTech Connect

    United States. Bonneville Power Administration; Washington . Dept. of Fish and Wildlife.

    1996-08-01

    Bonneville Power Administration (BPA) proposes to fund the portion of the Washington Wildlife Mitigation Agreement (Agreement) pertaining to wildlife habitat mitigation projects to be undertaken in a cooperative effort with the Washington Department of Fish and Wildlife (WDFW). This Agreement serves to establish a monetary budget funded by BPA for projects proposed by Washington Wildlife Coalition members and approved by BPA to protect, mitigate, and improve wildlife and/or wildlife habitat within the State of Washington that has been affected by the construction of Federal dams along the Columbia River. This Environmental Assessment examines the potential environmental effects of acquiring and/or improving wildlife habitat within five different project areas. These project areas are located throughout Grant County and in parts of Okanogan, Douglas, Adams, Franklin, Kittias, Yakima, and Benton Counties. The multiple projects would involve varying combinations of five proposed site-specific activities (habitat improvement, operation and maintenance, monitoring and evaluation, access and recreation management, and cultural resource management). All required Federal, State, and tribal coordination, permits and/or approvals would be obtained prior to ground-disturbing activities.

  1. Predicting environmental mitigation requirements for hydropower projects through the integration of biophysical and socio-political geographies.

    PubMed

    DeRolph, Christopher R; Schramm, Michael P; Bevelhimer, Mark S

    2016-10-01

    Uncertainty about environmental mitigation needs at existing and proposed hydropower projects makes it difficult for stakeholders to minimize environmental impacts. Hydropower developers and operators desire tools to better anticipate mitigation requirements, while natural resource managers and regulators need tools to evaluate different mitigation scenarios and order effective mitigation. Here we sought to examine the feasibility of using a suite of multi-faceted explanatory variables within a spatially explicit modeling framework to fit predictive models for future environmental mitigation requirements at hydropower projects across the conterminous U.S. Using a database comprised of mitigation requirements from more than 300 hydropower project licenses, we were able to successfully fit models for nearly 50 types of environmental mitigation and to apply the predictive models to a set of more than 500 non-powered dams identified as having hydropower potential. The results demonstrate that mitigation requirements are functions of a range of factors, from biophysical to socio-political. Project developers can use these models to inform cost projections and design considerations, while regulators can use the models to more quickly identify likely environmental issues and potential solutions, hopefully resulting in more timely and more effective decisions on environmental mitigation.

  2. Predicting environmental mitigation requirements for hydropower projects through the integration of biophysical and socio-political geographies

    SciTech Connect

    Bevelhimer, Mark S.; DeRolph, Christopher R.; Schramm, Michael P.

    2016-06-06

    Uncertainty about environmental mitigation needs at existing and proposed hydropower projects makes it difficult for stakeholders to minimize environmental impacts. Hydropower developers and operators desire tools to better anticipate mitigation requirements, while natural resource managers and regulators need tools to evaluate different mitigation scenarios and order effective mitigation. Here we sought to examine the feasibility of using a suite of multidisciplinary explanatory variables within a spatially explicit modeling framework to fit predictive models for future environmental mitigation requirements at hydropower projects across the conterminous U.S. Using a database comprised of mitigation requirements from more than 300 hydropower project licenses, we were able to successfully fit models for nearly 50 types of environmental mitigation and to apply the predictive models to a set of more than 500 non-powered dams identified as having hydropower potential. The results demonstrate that mitigation requirements have been a result of a range of factors, from biological and hydrological to political and cultural. Furthermore, project developers can use these models to inform cost projections and design considerations, while regulators can use the models to more quickly identify likely environmental issues and potential solutions, hopefully resulting in more timely and more effective decisions on environmental mitigation.

  3. Predicting environmental mitigation requirements for hydropower projects through the integration of biophysical and socio-political geographies

    DOE PAGES

    Bevelhimer, Mark S.; DeRolph, Christopher R.; Schramm, Michael P.

    2016-06-06

    Uncertainty about environmental mitigation needs at existing and proposed hydropower projects makes it difficult for stakeholders to minimize environmental impacts. Hydropower developers and operators desire tools to better anticipate mitigation requirements, while natural resource managers and regulators need tools to evaluate different mitigation scenarios and order effective mitigation. Here we sought to examine the feasibility of using a suite of multidisciplinary explanatory variables within a spatially explicit modeling framework to fit predictive models for future environmental mitigation requirements at hydropower projects across the conterminous U.S. Using a database comprised of mitigation requirements from more than 300 hydropower project licenses, wemore » were able to successfully fit models for nearly 50 types of environmental mitigation and to apply the predictive models to a set of more than 500 non-powered dams identified as having hydropower potential. The results demonstrate that mitigation requirements have been a result of a range of factors, from biological and hydrological to political and cultural. Furthermore, project developers can use these models to inform cost projections and design considerations, while regulators can use the models to more quickly identify likely environmental issues and potential solutions, hopefully resulting in more timely and more effective decisions on environmental mitigation.« less

  4. Oregon Trust Agreement Planning Project : Potential Mitigations to the Impacts on Oregon Wildlife Resources Associated with Relevant Mainstem Columbia River and Willamette River Hydroelectric Projects.

    SciTech Connect

    United States. Bonneville Power Administration.

    1993-10-01

    A coalition of the Oregon wildlife agencies and tribes (the Oregon Wildlife Mitigation Coalition) have forged a cooperative effort to promote wildlife mitigation from losses to Oregon wildlife resources associated with the four mainstream Columbia River and the eight Willamette River Basin hydroelectric projects. This coalition formed a Joint Advisory Committee, made up of technical representatives from all of the tribes and agencies, to develop this report. The goal was to create a list of potential mitigation opportunities by priority, and to attempt to determine the costs of mitigating the wildlife losses. The information and analysis was completed for all projects in Oregon, but was gathered separately for the Lower Columbia and Willamette Basin projects. The coalition developed a procedure to gather information on potential mitigation projects and opportunities. All tribes, agencies and interested parties were contacted in an attempt to evaluate all proposed or potential mitigation. A database was developed and minimum criteria were established for opportunities to be considered. These criteria included the location of the mitigation site within a defined area, as well as other criteria established by the Northwest Power Planning Council. Costs were established for general habitats within the mitigation area, based on estimates from certified appraisers. An analysis of the cost effectiveness of various types of mitigation projects was completed. Estimates of operation and maintenance costs were also developed. The report outlines strategies for gathering mitigation potentials, evaluating them, determining their costs, and attempting to move towards their implementation.

  5. Seismic imaging of a slope stability mitigation project at Newby Island Sanitary Landfill, San Jose, California

    NASA Astrophysics Data System (ADS)

    Treece, B.; Catchings, R.; Reed, D.; Goldman, M.

    2013-12-01

    Seismic reflection and refraction data were obtained along a transect through a slope stability mitigation project involving deep soil mixing at Newby Island Sanitary Landfill in San Jose, California. Deep soil mixing involves the simultaneous injection of a cement slurry while rotating augers advance vertically down through the subsurface material, resulting in groups of soil-cement columns (elements) intended to increase the strength and rigidity of the treated area. Seismic data were used to analyze the effectiveness of the mitigation procedure, approximately one month after the completion of the deep soil mixing project. Repeated accelerated-weight-drop (AWD) impacts provided the seismic source at each geophone location. Seismic arrivals were recorded with 40-Hz vertical-component geophones, spaced at 3-m intervals. All shots were recorded on all channels. This shooting geometry was designed to produce tomographic refraction (velocity) and reflection (CDP stacks) images from a yet to be mitigated area into the mitigated area, along the base of a steep slope composed of compacted landfill. The acquired data were generally of good quality, with shots propagating the entire length of the profile. An initial analysis of the data shows an increase in seismic velocity in the treated areas compared with non-treated areas, and a relative seismic velocity increase with curing time for soil-cement elements. Future surveys will be collected to further constrain strength increases with time, and to correlate calculated rates of strength with other subsurface data.

  6. Restoring mountain big sagebrush communities after prescribed fire in juniper encroached rangelands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Western juniper encroachment into sagebrush steppe communities has reduced livestock forage production, increased erosion and runoff risk, and degraded sagebrush-associated wildlife habitat. We evaluated seeding perennial herbaceous vegetation and sagebrush at five sites where juniper was controlle...

  7. Ural-Tweed Bighorn Sheep Wildlife Mitigation Project, 1984-1990 Final Report.

    SciTech Connect

    Young, Lewis R.; Yde, Chris A.

    1990-06-01

    The results of habitat improvement project activities accomplished under contract No.84-38 for bighorn sheep mitigation along Koocanusa Reservoir from September 1, 1984, through June 30, 1990, are reported here. Habitat treatments were applied to ten areas and covered 1100 acres. Treatments used were prescribed fire, slashing combined with prescribed fire, and fertilization. Several variations in season or intensity were used within the slashing and prescribed fire treatments. This project was coordinated with and complemented concurrent Kootenai National Forest habitat improvement activities.

  8. Composting projects under the Clean Development Mechanism: Sustainable contribution to mitigate climate change

    SciTech Connect

    Rogger, Cyrill; Beaurain, Francois; Schmidt, Tobias S.

    2011-01-15

    The Clean Development Mechanism (CDM) of the Kyoto Protocol aims to reduce greenhouse gas emissions in developing countries and at the same time to assist these countries in sustainable development. While composting as a suitable mitigation option in the waste sector can clearly contribute to the former goal there are indications that high rents can also be achieved regarding the latter. In this article composting is compared with other CDM project types inside and outside the waste sector with regards to both project numbers and contribution to sustainable development. It is found that, despite the high number of waste projects, composting is underrepresented and a major reason for this fact is identified. Based on a multi-criteria analysis it is shown that composting has a higher potential for contribution to sustainable development than most other best in class projects. As these contributions can only be assured if certain requirements are followed, eight key obligations are presented.

  9. Pend Oreille Wetlands Wildlife Mitigation Project Management Plan for the "Dilling Addition".

    SciTech Connect

    Entz, Ray D.

    1999-01-15

    This report is a recommendation from the Kalispel Tribe to the Bonneville Power Administration (BPA) and the Columbia Basin Fish and Wildlife Authority (CBFWA) for management of the Pend Oreille Wetland Wildlife Mitigation project II (Dilling Addition) for the extensive habitat losses caused by Albeni Falls Dam on Kalispel Ceded Lands. Albeni Falls Dam is located on the Pend Oreille River near the Washington-Idaho border, about 25 miles upstream of the Kalispel Indian Reservation. The dam controls the water level on Lake Pend Oreille. The lake was formerly the center of subsistence use by the Kalispel Tribe. Flooding of wetlands, and water fluctuations both on the lake and downstream on the river, has had adverse impacts to wildlife and wildlife habitat. An extensive process was followed to formulate and prioritize wildlife resource goals. The Kalispel Natural Resource Department provided guidance in terms of opportunities onsite. To prioritize specific goals, the Albeni Falls Interagency Work Group and the Columbia Basin Fish and Wildlife Authority Wildlife Caucus were consulted. From this process, the top priority goal for the Kalispel Tribe is: Protect and develop riparian forest and shrub, and freshwater wetlands, to mitigate losses resulting from reservoir inundation and river level fluctuations due to Albeni Falls Dam. Indicator species used to determine the initial construction/inundation loses and mitigation project gains include Bald Eagle (breeding and wintering), Black-capped Chickadee, Canada Goose, Mallard, muskrat, white-tailed deer, and Yellow Warbler.

  10. Northwest Montana Wildlife Habitat Enhancement: Hungry Horse Elk Mitigation Project: Monitoring and Evaluation Plan.

    SciTech Connect

    Casey, Daniel; Malta, Patrick

    1990-12-01

    Portions of two important elk (Cervus elaphus) winter ranges totalling 8749 acres were lost due to the construction of the Hungry Horse Dam hydroelectric facility. This habitat loss decreased the carrying capacity of the both the elk and the mule deer (Odocoileus hemionus). In 1985, using funds from the Bonneville Power Administration (BPA) as authorized by the Northwest Power Act, the Montana Department of Fish, Wildlife and Parks (FWP) completed a wildlife mitigation plan for Hungry Horse Reservoir. This plan identified habitat enhancement of currently-occupied winter range as the most cost-efficient, easily implemented mitigation alternative available to address these large-scale losses of winter range. The Columbia Basin Fish and Wildlife Program, as amended in 1987, authorized BPA to fund winter range enhancement to meet an adjusted goal of 133 additional elk. A 28-month advance design phase of the BPA-funded project was initiated in September 1987. Primary goals of this phase of the project included detailed literature review, identification of enhancement areas, baseline (elk population and habitat) data collection, and preparation of 3-year and 10-year implementation plans. This document will serve as a site-specific habitat and population monitoring plan which outlines our recommendations for evaluating the results of enhancement efforts against mitigation goals. 25 refs., 13 figs., 7 tabs.

  11. Fish passage mitigation of impacts from hydroelectric power projects in the United States

    SciTech Connect

    Cada, G.F.

    1996-10-01

    Obstruction of fish movements by dams continues to be the major environmental issue facing the hydropower industry in the US. Dams block upstream migrations, which can cut off adult fish form their historical spawning grounds and severely curtail reproduction. Conversely, downstream-migrating fish may be entrained into the turbine intake flow and suffer turbine-passage injury or mortality. Hydroelectric projects can interfere with the migrations of a wide variety of fish. Maintenance, restoration or enhancement of populations of these species may require the construction of facilities to allow for upstream and downstream fish passage. The Federal Energy Regulatory Commission (FERC), by law, must give fish and wildlife resources equal consideration with power production in its licensing decisions, must be satisfied that a project is consistent with comprehensive plans for a waterway (including fisheries management plans), and must consider all federal and state resource agency terms and conditions for the protection of fish and wildlife. As a consequence, FERC often requires fish passage mitigation measures as a condition of the hydropower license when such measures are deemed necessary for the protection of fish. Much of the recent research and development efforts of the US Department of Energy`s Hydropower Program have focused on the mitigation of impacts to upstream and downstream fish passage. This paper descries three components of that effort: (1) a survey of environmental mitigation measures at hydropower sites across the country; (2) a critical review of the effectiveness of fish passage mitigation measures at 16 case study sites; and (3) ongoing efforts to develop new turbine designs that minimize turbine-passage mortality.

  12. The monitoring evaluation, reporting and verification of climate change mitigation projects

    SciTech Connect

    Vine, E.; Sathaye, J.

    1998-05-01

    Because of concerns with the growing threat of global climate change from increasing emissions of greenhouse gases, the US and other countries are implementing, by themselves or in cooperation with one or more other nations, climate change mitigation projects. These projects will reduce greenhouse gas (GHG) emissions or sequester carbon, and will also result in non-GHG benefits (i.e., environmental, economic, and social benefits). Monitoring, evaluating, reporting, and verifying (MERV) guidelines are needed for these projects to accurately determine their net GHG, and other, benefits. Implementation of MERV guidelines is also intended to: (1) increase the reliability of data for estimating GHG benefits; (2) provide real-time data so that mid-course corrections can be made; (3) introduce consistency and transparency across project types and reporters; and (4) enhance the credibility of the projects with stakeholders. In this paper, the authors review the issues involved in MERV activities. They identify several topics that future protocols and guidelines need to address, such as: (1) establishing a credible baseline; (2) accounting for impacts outside project boundaries through leakage; (3) net GHG reductions and other benefits; (4) precision of measurement; (5) MERV frequency; (6) persistence (sustainability) of savings, emissions reduction, and carbon sequestration; (7) reporting by multiple project participants; (8) verification of GHG reduction credits; (9) uncertainty and risk; (10) institutional capacity in conducting MERV; and (11) the cost of MERV.

  13. The Dust Management Project: Characterizing Lunar Environments and Dust, Developing Regolith Mitigation Technology and Simulants

    NASA Technical Reports Server (NTRS)

    Hyatt, Mark J.; Straka, Sharon A.

    2010-01-01

    A return to the Moon to extend human presence, pursue scientific activities, use the Moon to prepare for future human missions to Mars, and expand Earth?s economic sphere, will require investment in developing new technologies and capabilities to achieve affordable and sustainable human exploration. From the operational experience gained and lessons learned during the Apollo missions, conducting long-term operations in the lunar environment will be a particular challenge, given the difficulties presented by the unique physical properties and other characteristics of lunar regolith, including dust. The Apollo missions and other lunar explorations have identified significant lunar dust-related problems that will challenge future mission success. Comprised of regolith particles ranging in size from tens of nanometers to microns, lunar dust is a manifestation of the complex interaction of the lunar soil with multiple mechanical, electrical, and gravitational effects. The environmental and anthropogenic factors effecting the perturbation, transport, and deposition of lunar dust must be studied in order to mitigate it?s potentially harmful effects on exploration systems and human explorers. The Dust Management Project (DMP) is tasked with the evaluation of lunar dust effects, assessment of the resulting risks, and development of mitigation and management strategies and technologies related to Exploration Systems architectures. To this end, the DMP supports the overall goal of the Exploration Technology Development Program (ETDP) of addressing the relevant high priority technology needs of multiple elements within the Constellation Program (CxP) and sister ETDP projects. Project scope, plans, and accomplishments will be presented.

  14. The Carolina Bay Restoration Project: Implementation and Management of a Wetland Mitigation Bank.

    SciTech Connect

    Barton, Christopher; DeSteven, Diane; Sharitz, Rebecca; Kilgo, John; Imm, Donald; Kolka, Randy; Blake, John, I.

    2003-01-01

    A wetlands Mitigation Bank was established at the Savannah River Site (SRS) in 1997 as a compensatory alternative for unavoidable wetland losses associated with future authorized construction and environmental restoration projects in SRS wetlands. The Bank was intended not only to hasten mitigation efforts with respect to regulatory requirements and implementation, but also to provide onsite and fully functional compensation of impacted wetland acreage prior to any impact. Restoration and enhancement of small isolated wetlands, as well as major bottomland wetland systems scattered throughout the nonindustrialized area of SRS were designated for inclusion in the Bank. Based on information and techniques gained from previous research efforts involving Carolina bay wetlands (DOE 1997), a project to restore degraded Carolina bays on SRS has been undertaken to serve as the initial ''deposit'' in The Bank. There are over 300 Carolina bays or bay-like depression wetlands on the SRS, of which an estimated two-thirds were ditched or disturbed prior to federal occupation of the Site (Kirkman et al., 1996). These isolated wetlands range from small ephemeral depressions to large permanent ponds of 10-50 hectares in size. They provide habitat to support a wide range of rare plant species, and many vertebrates (birds, amphibians, bats). Historical impacts to the Carolina bays at SRS were primarily associated with agricultural activities. Bays were often drained tilled and planted to crops. The consequence was a loss in the wetland hydrologic cycle, the native wetland vegetation, and associated wildlife. The purpose of this mitigation and research project is to restore the functions and vegetation typical of intact depression wetlands and, in doing so, to enhance habitat for wetland dependent wildlife on SRS.

  15. Status Review of Wildlife Mitigation at 14 of 27 Major Hydroelectric Projects in Idaho, 1983-1984 Final Report.

    SciTech Connect

    Martin, Robert C.; Mehrhoff, L.A.

    1985-01-01

    The Pacific Northwest Electric Power Planning and Conservation Act and wildlife and their habitats in the Columbia River Basin and to compliance with the Program, the wildlife mitigation status reports coordination with resource agencies and Indian Tribes. developed the Columbia River Basin Fish and Wildlife Program development, operation, and maintenance of hydroelectric projects on existing agreements; and past, current, and proposed wildlife factual review and documentation of existing information on wildlife meet the requirements of Measure 1004(b)(l) of the Program. The mitigation, enhancement, and protection activities were considered. In mitigate for the losses to those resources resulting from the purpose of these wildlife mitigation status reports is to provide a resources at some of the Columbia River Basin hydroelectric projects the river and its tributaries. To accomplish this goal, the Council were written with the cooperation of project operators, and in within Idaho.

  16. Estimating sagebrush biomass using terrestrial laser scanning (TLS)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The impacts of climate change, including changing fire frequency and intensity and the spread of invasive species have led to a rapidly changing habitat for sagebrush (Artemisia tridentata). Monitoring the change and distribution of suitable habitat and fuel loads is an important aspect of sagebrush...

  17. Restoring mountain big sagebrush steppe habitat after western juniper control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Western juniper is being controlled across large acreages in the northern Great Basin to restore sagebrush steppe plant communities. One of the most common control methods is prescribed burning. After burning juniper stands, sagebrush is absent from the community and the herbaceous understory may ...

  18. The importance of maintaining perennial bunchgrass in the sagebrush steppe

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sagebrush steppe is generally described as an ecosystem at great risk from encroachment of invasive annual grasses and conifer woodlands, land use changes, climate shifts and fragmentation in general. A great deal of attention has been focused on sage-grouse and need for sagebrush cover and for...

  19. Cattle grazing and vegetation succession on burned sagebrush steppe

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is limited information on the effects of cattle grazing to longer-term plant community composition and productivity following fire in big sagebrush steppe. This study evaluated vegetation response to cattle grazing over seven years (2007-2013) on burned Wyoming big sagebrush (Artemisia triden...

  20. Kootenai River Wildlife Habitat Enhancement Project : Long-term Bighorn Sheep/Mule Deer Winter and Spring Habitat Improvement Project : Wildlife Mitigation Project, Libby Dam, Montana : Management Plan.

    SciTech Connect

    Yde, Chis

    1990-06-01

    The Libby hydroelectric project, located on the Kootenai River in northwestern Montana, resulted in several impacts to the wildlife communities which occupied the habitats inundated by Lake Koocanusa. Montana Department of Fish, Wildlife and Parks, in cooperation with the other management agencies, developed an impact assessment and a wildlife and wildlife habitat mitigation plan for the Libby hydroelectric facility. In response to the mitigation plan, Bonneville Power Administration funded a cooperative project between the Kootenai National Forest and Montana Department of Fish, Wildlife and Parks to develop a long-term habitat enhancement plan for the bighorn sheep and mule deer winter and spring ranges adjacent to Lake Koocanusa. The project goal is to rehabilitate 3372 acres of bighorn sheep and 16,321 acres of mule deer winter and spring ranges on Kootenai National Forest lands adjacent to Lake Koocanusa and to monitor and evaluate the effects of implementing this habitat enhancement work. 2 refs.

  1. Seed bank and big sagebrush plant community composition in a range margin for big sagebrush

    USGS Publications Warehouse

    Martyn, Trace E.; Bradford, John B.; Schlaepfer, Daniel R.; Burke, Ingrid C.; Laurenroth, William K.

    2016-01-01

    The potential influence of seed bank composition on range shifts of species due to climate change is unclear. Seed banks can provide a means of both species persistence in an area and local range expansion in the case of increasing habitat suitability, as may occur under future climate change. However, a mismatch between the seed bank and the established plant community may represent an obstacle to persistence and expansion. In big sagebrush (Artemisia tridentata) plant communities in Montana, USA, we compared the seed bank to the established plant community. There was less than a 20% similarity in the relative abundance of species between the established plant community and the seed bank. This difference was primarily driven by an overrepresentation of native annual forbs and an underrepresentation of big sagebrush in the seed bank compared to the established plant community. Even though we expect an increase in habitat suitability for big sagebrush under future climate conditions at our sites, the current mismatch between the plant community and the seed bank could impede big sagebrush range expansion into increasingly suitable habitat in the future.

  2. Rainwater Wildlife Area Management Plan Executive Summary : A Columbia Basin Wildlife Mitigation Project.

    SciTech Connect

    Childs, Allen B.

    2002-02-01

    This Executive Summary provides an overview of the Draft Rainwater Wildlife Area Management Plan. The comprehensive plan can be viewed on the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) website at: www.umatilla.nsn.us or requested in hard copy from the CTUIR at the address below. The wildlife area was established in September 1998 when the CTUIR purchased the Rainwater Ranch through Bonneville Power Administration (BPA) for purposes of fish and wildlife mitigation for the McNary and John Day dams. The Management Plan has been developed under a standardized planning process developed by BPA for Columbia River Basin Wildlife Mitigation Projects (See Guiding Policies Section below). The plan outlines the framework for managing the project area, provides an assessment of existing conditions and key resource issues, and presents an array of habitat management and enhancement strategies. The plan culminates into a 5-Year Action Plan that will focus management actions and prioritize funding during the 2002-2006 planning period. Since acquisition of the property in late 1998, the CTUIR has conducted an extensive baseline resource assessment in preparation for the management plan, initiated habitat restoration in the Griffin Fork drainage to address road-related resource damage caused by roads constructed for forest practices and an extensive flood event in 1996, and initiated infrastructure developments associated with the Access and Travel Management Plan (i.e., installed parking areas, gates, and public information signs). In addition to these efforts, the CTUIR has worked to set up a long-term funding mechanism with BPA through the NPPC Fish and Wildlife Program. The CTUIR has also continued to coordinate closely with local and state government organizations to ensure consistency with local land use laws and maintain open lines of communication regarding important issues such as big game hunting, tribal member exercise of treaty rights, and public

  3. Remote sensing of sagebrush canopy nitrogen

    USGS Publications Warehouse

    Mitchell, Jessica J.; Glenn, Nancy F.; Sankey, Temuulen T.; Derryberry, DeWayne R.; Germino, Matthew J.

    2012-01-01

    This paper presents a combination of techniques suitable for remotely sensing foliar Nitrogen (N) in semiarid shrublands – a capability that would significantly improve our limited understanding of vegetation functionality in dryland ecosystems. The ability to estimate foliar N distributions across arid and semi-arid environments could help answer process-driven questions related to topics such as controls on canopy photosynthesis, the influence of N on carbon cycling behavior, nutrient pulse dynamics, and post-fire recovery. Our study determined that further exploration into estimating sagebrush canopy N concentrations from an airborne platform is warranted, despite remote sensing challenges inherent to open canopy systems. Hyperspectral data transformed using standard derivative analysis were capable of quantifying sagebrush canopy N concentrations using partial least squares (PLS) regression with an R2 value of 0.72 and an R2 predicted value of 0.42 (n = 35). Subsetting the dataset to minimize the influence of bare ground (n = 19) increased R2 to 0.95 (R2 predicted = 0.56). Ground-based estimates of canopy N using leaf mass per unit area measurements (LMA) yielded consistently better model fits than ground-based estimates of canopy N using cover and height measurements. The LMA approach is likely a method that could be extended to other semiarid shrublands. Overall, the results of this study are encouraging for future landscape scale N estimates and represent an important step in addressing the confounding influence of bare ground, which we found to be a major influence on predictions of sagebrush canopy N from an airborne platform.

  4. Computer system requirements specification for 101-SY hydrogen mitigation test project data acquisition and control system (DACS-1)

    SciTech Connect

    McNeece, S.G.; Truitt, R.W.

    1994-10-12

    The system requirements specification for SY-101 hydrogen mitigation test project (HMTP) data acquisition and control system (DACS-1) documents the system requirements for the DACS-1 project. The purpose of the DACS is to provide data acquisition and control capabilities for the hydrogen mitigation testing of Tank SY-101. Mitigation testing uses a pump immersed in the waste, directed at varying angles and operated at different speeds and time durations. Tank and supporting instrumentation is brought into the DACS to monitor the status of the tank and to provide information on the effectiveness of the mitigation test. Instrumentation is also provided for closed loop control of the pump operation. DACS is also capable for being expanded to control and monitor other mitigation testing. The intended audience for the computer system requirements specification includes the SY-101 hydrogen mitigation test data acquisition and control system designers: analysts, programmers, instrument engineers, operators, maintainers. It is intended for the data users: tank farm operations, mitigation test engineers, the Test Review Group (TRG), data management support staff, data analysis, Hanford data stewards, and external reviewers.

  5. Columbia Basin Wildlife Mitigation Project : Rainwater Wildlife Area Final Management Plan.

    SciTech Connect

    Childs, Allen

    2002-03-01

    This Draft Management Plan has been developed by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) to document how the Rainwater Wildlife Area (formerly known as the Rainwater Ranch) will be managed. The plan has been developed under a standardized planning process developed by the Bonneville Power Administration (BPA) for Columbia River Basin Wildlife Mitigation Projects (See Appendix A and Guiding Policies Section below). The plan outlines the framework for managing the project area, provides an assessment of existing conditions and key resource issues, and presents an array of habitat management and enhancement strategies. The plan culminates into a 5-Year Action Plan that will focus our management actions and prioritize funding during the Fiscal 2001-2005 planning period. This plan is a product of nearly two years of field studies and research, public scoping, and coordination with the Rainwater Advisory Committee. The committee consists of representatives from tribal government, state agencies, local government, public organizations, and members of the public. The plan is organized into several sections with Chapter 1 providing introductory information such as project location, purpose and need, project goals and objectives, common elements and assumptions, coordination efforts and public scoping, and historical information about the project area. Key issues are presented in Chapter 2 and Chapter 3 discusses existing resource conditions within the wildlife area. Chapter 4 provides a detailed presentation on management activities and Chapter 5 outlines a monitoring and evaluation plan for the project that will help assess whether the project is meeting the intended purpose and need and the goals and objectives. Chapter 6 displays the action plan and provides a prioritized list of actions with associated budget for the next five year period. Successive chapters contain appendices, references, definitions, and a glossary.

  6. Stimulation Controls and Mitigation of Induced Seismicity for EGS Project: Examples from the Newberry EGS Demonstration Project (Invited)

    NASA Astrophysics Data System (ADS)

    Petty, S.; Cladouhos, T. T.; Osborn, W.; Iovenitti, J.

    2010-12-01

    Creating an EGS reservoir depends upon injection induced seismicity (IIS) to create fracture permeability and allow the reservoir to be mapped using passive microseismic monitoring. However, in some cases, the seismicity induced through the stimulation has been felt by surrounding populations and in one case caused sufficient concern to force shut-down of the project. AltaRock Energy, Inc. is working with universities, national labs and consultants on the Newberry Volcano EGS Demonstration Project (Funded in part through a grant from the US DOE: DE-EE0002777). This project will attempt to stimulate a very low permeability existing deep geothermal well with high temperature to develop a circulating geothermal system that be able to sustain production of economic quantities of hot water and steam for power production. In order to allay concerns that IIS might become hazardous at Newberry, AltaRock Energy has agreed to a robust series of safeguards and mitigation controls. The safeguards detail how the EGS stimulation will be monitored and under what circumstances the stimulation should be safely reduced or halted to avoid perceptible seismic events that would alarm or possibly cause damage to the local community. The International Energy Agency (IEA) Implementing Agreement for a Cooperative Programme on Geothermal Energy Research and Technology, or Geothermal Implementing Agreement (GIA), developed an induced seismicity mitigation protocol which has been adopted by the US Department of Energy for their funded EGS Demonstration Projects. AltaRock is the process of making this protocol site specific for the Newberry project.The Notice of Intent (NOI) to the BLM for the Newberry EGS Demonstration includes plans to conduct an induced seismicity hazards and risk assessment. These plans include implementing the Protocol for Induced Seismicity Associated with Geothermal System (Majer et al., 2008), adopted by the International Energy Agency. The theory of IIS has recently

  7. The VUELCO project consortium: new interdisciplinary research for improved risk mitigation and management during volcanic unrest

    NASA Astrophysics Data System (ADS)

    Gottsmann, J.

    2012-04-01

    Volcanic unrest is a complex multi-hazard phenomenon of volcanism. The fact that unrest may, but not necessarily must lead to an imminent eruption contributes significant uncertainty to short-term hazard assessment of volcanic activity world-wide. Although it is reasonable to assume that all eruptions are associated with precursory activity of some sort, the knowledge of the causative links between subsurface processes, resulting unrest signals and imminent eruption is, today, inadequate to deal effectively with crises of volcanic unrest. This results predominantly from the uncertainties in identifying the causative processes of unrest and as a consequence in forecasting its short-term evolution. However, key for effective risk mitigation and management during unrest is the early and reliable identification of changes in the subsurface dynamics of a volcano and their assessment as precursors to an impending eruption. The VUELCO project consortium has come together for a multi-disciplinary attack on the origin, nature and significance of volcanic unrest from the scientific contributions generated by collaboration of ten partners in Europe and Latin America. Dissecting the science of monitoring data from unrest periods at six type volcanoes in Italy, Spain, the West Indies, Mexico and Ecuador the consortium will create global strategies for 1) enhanced monitoring capacity and value, 2) mechanistic data interpretation and 3) identification of reliable eruption precursors; all from the geophysical, geochemical and geodetic fingerprints of unrest episodes. Experiments will establish a mechanistic understanding of subsurface processes capable of inducing unrest and aid in identifying key volcano monitoring parameters indicative of the nature of unrest processes. Numerical models will help establish a link between the processes and volcano monitoring data to inform on the causes of unrest and its short-term evolution. Using uncertainty assessment and new short

  8. PRESS40: a project for involving students in active seismic risk mitigation

    NASA Astrophysics Data System (ADS)

    Barnaba, Carla; Contessi, Elisa; Rosa Girardi, Maria

    2016-04-01

    To memorialize the anniversary of the 1976 Friuli earthquake, the Istituto Statale di Istruzione Superiore "Magrini Marchetti" in Gemona del Friuli (NE Italy), with the collaboration of the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), has promoted the PRESS40 Project (Prevenzione Sismica nella Scuola a 40 anni dal terremoto del Friuli, that in English sounds like "Seismic Prevention at School 40 years later the Friuli earthquake"). The project has developed in the 2015-2016 school year, starting from the 40th anniversary of the Friuli earthquake, and it aims to disseminate historical memory, seismic culture and awareness of seismic safety in the young generations, too often unconscious of past experiences, as recent seismic hazard perception tests have demonstrated. The basic idea of the PRESS40 Project is to involve the students in experimental activities to be active part of the seismic mitigation process. The Project is divided into two main parts, the first one in which students learn-receive knowledge from researchers, and the second one in which they teach-bring knowledge to younger students. In the first part of the project, 75 students of the "Magrini Marchetti" school acquired new geophysical data, covering the 23 municipalities from which they come from. These municipalities represent a wide area affected by the 1976 Friuli earthquake. In each locality a significant site was examined, represented by a school area. At least, 127 measurements of ambient noise have been acquired. Data processing and interpretation of all the results are still going on, under the supervision of OGS researchers.The second part of the project is planned for the early spring, when the students will present the results of geophysical survey to the younger ones of the monitored schools and to the citizens in occasion of events to commemorate the 40th anniversary of the Friuli earthquake.

  9. Burrows of the sagebrush vole (Lemmiscus curtatus) in southeastern Idaho

    SciTech Connect

    Mullican, T.R.; Keller, B.L.

    1987-04-30

    Burrows of the sagebrush vole (Lemmiscus curtatus) were analyzed by injecting them with expanding polyurethane foam. Average mean depth +/- 1 SE of four burrows was 12.5 +/- 2.6 cm. Tunnels were wider than high and flat on the bottom. Three of four burrows were nearly linear, with an average of five entrances. Burrows usually contained one nest made of Artemisia tridentat bark. No middens or communal nests were found. The burrow structure in sagebrush habitat suggests that sagebrush voles occur singly or in pairs rather than in colonies.

  10. Medusahead in sagebrush steppe rangelands: Prevention, control, and revegetation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Medusahead is an exotic annual grass invading western rangelands. Medusahead invasion is particularly troublesome, because revegetation of invaded areas is difficult. This manuscript synthesizes the literature to provide recommendations for managing medusahead in sagebrush plant communities. Beca...

  11. Investigating Seed Longevity of Big Sagebrush (Artemisia tridentata)

    USGS Publications Warehouse

    Wijayratne, Upekala C.; Pyke, David A.

    2009-01-01

    The Intermountain West is dominated by big sagebrush communities (Artemisia tridentata subspecies) that provide habitat and forage for wildlife, prevent erosion, and are economically important to recreation and livestock industries. The two most prominent subspecies of big sagebrush in this region are Wyoming big sagebrush (A. t. ssp. wyomingensis) and mountain big sagebrush (A. t. ssp. vaseyana). Increased understanding of seed bank dynamics will assist with sustainable management and persistence of sagebrush communities. For example, mountain big sagebrush may be subjected to shorter fire return intervals and prescribed fire is a tool used often to rejuvenate stands and reduce tree (Juniperus sp. or Pinus sp.) encroachment into these communities. A persistent seed bank for mountain big sagebrush would be advantageous under these circumstances. Laboratory germination trials indicate that seed dormancy in big sagebrush may be habitat-specific, with collections from colder sites being more dormant. Our objective was to investigate seed longevity of both subspecies by evaluating viability of seeds in the field with a seed retrieval experiment and sampling for seeds in situ. We chose six study sites for each subspecies. These sites were dispersed across eastern Oregon, southern Idaho, northwestern Utah, and eastern Nevada. Ninety-six polyester mesh bags, each containing 100 seeds of a subspecies, were placed at each site during November 2006. Seed bags were placed in three locations: (1) at the soil surface above litter, (2) on the soil surface beneath litter, and (3) 3 cm below the soil surface to determine whether dormancy is affected by continued darkness or environmental conditions. Subsets of seeds were examined in April and November in both 2007 and 2008 to determine seed viability dynamics. Seed bank samples were taken at each site, separated into litter and soil fractions, and assessed for number of germinable seeds in a greenhouse. Community composition data

  12. Ecological influence and pathways of land use in sagebrush

    USGS Publications Warehouse

    Knick, Steven T.; Hanser, Steven E.; Miller, Richard F.; Pyke, David A.; Wisdom, Michael J.; Finn, Sean P.; Rinkes, E. Thomas; Henny, Charles J.; Knick, Steven T.; Connelly, John W.

    2011-01-01

    Land use in sagebrush (Artemisia spp.) landscapes influences all sage-grouse (Centrocer-cus spp.) populations in western North America. Croplands and the network of irrigation canals cover 230,000 km2 and indirectly influence up to 77% of the Sage-Grouse Conservation Area and 73% of sagebrush land cover by subsidizing synanthropic predators on sage-grouse. Urbanization and the demands of human population growth have created an extensive network of con-necting infrastructure that is expanding its influence on sagebrush landscapes. Over 2,500 km2 are now covered by interstate highways and paved roads; when secondary roads are included, 15% of the Sage-Grouse Conservation Area and 5% of existing sagebrush habitats are 2.5 km from roads. Density of secondary roads often exceeds 5 km/km2, resulting in widespread motorized access for recreation, creating extensive travel corridors for management actions and resource development, subsidizing predators adapted to human presence, and facilitating spread of exotic or invasive plants. Sagebrush lands also are being used for their wilderness and recreation values, including off highway vehicle use. Approximately 12,000,000 animal use months (AUM amount of forage to support one livestock unit per month) are permitted for grazing livestock on public lands in the western states. Direct effects of grazing on sage-grouse populations or sagebrush landscapes are not possible to assess from current data. However, management of lands grazed by livestock has influenced sagebrush ecosystems by vegetation treatments to increase forage and reduce sagebrush and other plant species unpalatable to livestock. Fences (2 km/km2 in some regions), roads, and water developments to manage livestock movements further modify the landscape. Oil and gas development influences 8% of the sagebrush habitats with the highest intensities occurring in the eastern range of sage-grouse; 20% of the sagebrush distribution is indirectly influenced in the Great

  13. Natural regeneration processes in big sagebrush (Artemisia tridentata)

    USGS Publications Warehouse

    Schlaepfer, Daniel R.; Lauenroth, William K.; Bradford, John B.

    2014-01-01

    Big sagebrush, Artemisia tridentata Nuttall (Asteraceae), is the dominant plant species of large portions of semiarid western North America. However, much of historical big sagebrush vegetation has been removed or modified. Thus, regeneration is recognized as an important component for land management. Limited knowledge about key regeneration processes, however, represents an obstacle to identifying successful management practices and to gaining greater insight into the consequences of increasing disturbance frequency and global change. Therefore, our objective is to synthesize knowledge about natural big sagebrush regeneration. We identified and characterized the controls of big sagebrush seed production, germination, and establishment. The largest knowledge gaps and associated research needs include quiescence and dormancy of embryos and seedlings; variation in seed production and germination percentages; wet-thermal time model of germination; responses to frost events (including freezing/thawing of soils), CO2 concentration, and nutrients in combination with water availability; suitability of microsite vs. site conditions; competitive ability as well as seedling growth responses; and differences among subspecies and ecoregions. Potential impacts of climate change on big sagebrush regeneration could include that temperature increases may not have a large direct influence on regeneration due to the broad temperature optimum for regeneration, whereas indirect effects could include selection for populations with less stringent seed dormancy. Drier conditions will have direct negative effects on germination and seedling survival and could also lead to lighter seeds, which lowers germination success further. The short seed dispersal distance of big sagebrush may limit its tracking of suitable climate; whereas, the low competitive ability of big sagebrush seedlings may limit successful competition with species that track climate. An improved understanding of the

  14. Habitat Evaluation Procedures (HEP) Report; Iskuulpa Wildlife Mitigation and Watershed Project, Technical Report 1998-2003.

    SciTech Connect

    Quaempts, Eric

    2003-01-01

    U.S. Fish and Wildlife Service (USFWS) Habitat Evaluation Procedures (HEP) were used to determine the number of habitat units credited to evaluate lands acquired and leased in Eskuulpa Watershed, a Confederated Tribes of the Umatilla Indian Reservation watershed and wildlife mitigation project. The project is designed to partially credit habitat losses incurred by BPA for the construction of the John Day and McNary hydroelectric facilities on the Columbia River. Upland and riparian forest, upland and riparian shrub, and grasslands cover types were included in the evaluation. Indicator species included downy woodpecker (Picuides puhescens), black-capped chickadee (Pams atricopillus), blue grouse (Beadragapus obscurus), great blue heron (Ardea herodias), yellow warbler (Dendroica petschia), mink (Mustela vison), and Western meadowlark (Sturnello neglects). Habitat surveys were conducted in 1998 and 1999 in accordance with published HEP protocols and included 55,500 feet of transects, 678 m2 plots, and 243 one-tenth-acre plots. Between 123.9 and f 0,794.4 acres were evaluated for each indicator species. Derived habitat suitability indices were multiplied by corresponding cover-type acreages to determine the number of habitat units for each species. The total habitat units credited to BPA for the Iskuulpa Watershed Project and its seven indicator species is 4,567.8 habitat units. Factors limiting habitat suitability are related to the direct, indirect, and cumulative effects of past livestock grazing, road construction, and timber harvest, which have simplified the structure, composition, and diversity of native plant communities. Alternatives for protecting and improving habitat suitability include exclusion of livestock grazing or implementation of restoration grazing schemes, road de-commissioning, reforestation, large woody debris additions to floodplains, control of competing and unwanted vegetation, reestablishing displaced or reduced native vegetation species

  15. Multi-phase Temporal Seismic Imaging of a Slope Stability Mitigation Project at Newby Island Sanitary Landfill, San Jose, California

    NASA Astrophysics Data System (ADS)

    Treece, B. J.; Catchings, R.; Reed, D.; Goldman, M.

    2014-12-01

    Without slope stability mitigation, liquefaction-induced settlement in bay mud and Pleistocene alluvial deposits may lead to the collapse of levee walls surrounding sanitary landfills that are located adjacent to the San Francisco Bay. To analyze the effectiveness of a slope stability mitigation project involving deep soil mixing at Newby Island Sanitary Landfill in San Jose, California, we acquired P- and S-wave seismic surveys along a transect through the mitigated region during, and two years after, completion of the mitigation project. Deep soil mixing involves the injection of a cement slurry in augered holes, resulting in groups of soil-cement columns (elements) that are intended to increase the strength and rigidity of the subsurface materials. For our seismic investigations, we used accelerated-weight-drop (AWD) and hammer impacts to generate P- and S-wave seismic sources, respectively, at 57 geophone locations, spaced 5 m apart. The resulting seismic data were recorded using 40-Hz, vertical-component (P-wave) and 4.5-Hz, horizontal-component (S-wave) sensors. Initially, we developed tomographic refraction (velocity) images along a progressive transition from a yet-to-be-mitigated area into a more recently mitigated area, located along the base of a steep slope composed of compacted landfill. The initial survey revealed an increase in seismic velocity in the treated area, seismic velocity increases with curing time for soil-cement elements, and a high-velocity zone beneath the active injection zone. The influence of the mitigation was most apparent from increases in Vp/Vs and Poisson's ratios. To assess the long-term effects of the mitigation project, an identical, follow-up survey was acquired in July 2014, 23 months after the initial survey. We present a comparative analysis of the tomographic images from the two surveys, variations in Vp/Vs and Poisson's ratios over time, and a comparison of in situ, time-varying seismic parameters with laboratory

  16. Accounting for Impacts of Natural Disturbances on Climate Change Mitigation Projects in Tropical Forests (Invited)

    NASA Astrophysics Data System (ADS)

    Birdsey, R.; Dai, Z.; Hernandez, J.; Johnson, K. D.; Vargas, R.

    2013-12-01

    Most forests in the world are recovering from natural or human-induced disturbances -- the fraction of the world's forests disturbed each year by fire and insects alone is conservatively estimated by FAO to be 2.6%. Natural disturbances are common in many tropical forest areas and have significant impacts on carbon stocks. For example, emissions from wildfires in tropical forests are estimated to exceed 700 TgC yr-1 annually, with significant interannual variability related to global weather cycles. Several lines of evidence point toward long-term climate-induced increases in natural disturbances, with the potential for changing the world's terrestrial ecosystems from a sink to a source of CO2. This raises the important question of whether forests can be an effective part of a climate change mitigation strategy and concurrently, how to account for the effects of disturbances separately from the effects of changes in land use or forest management. Although global and regional studies have made some good progress to quantify the impacts of natural disturbances, it remains a technical challenge to separate or 'factor out' the impacts of natural disturbances from other causes of changes in carbon stocks, such as vegetation regrowth and CO2 fertilization, when developing the accounting and monitoring systems required to support climate change mitigation projects. We tested one approach in the semi-deciduous dry forests of the Yucatan Peninsula of Mexico using the ecosystem process model DNDC. Spatial variability in simulated C stocks reflects variations in stand age, vegetation type, soil characteristics and disturbance. Disturbances that occurred between 1985 and 2010 led to a mean decrease in C stocks of 3.2 Mg C ha-1 in 2012 not including forestland lost to crops and urban land uses. Other approaches may be possible for factoring out specific causes of changes in carbon stocks, but the IPCC has twice determined that none of the currently available alternatives is

  17. 40 CFR 93.125 - Enforceability of design concept and scope and project-level mitigation and control measures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Enforceability of design concept and... Transit Laws § 93.125 Enforceability of design concept and scope and project-level mitigation and control... measures which are identified as conditions for NEPA process completion with respect to local CO, PM10,...

  18. 40 CFR 93.125 - Enforceability of design concept and scope and project-level mitigation and control measures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Enforceability of design concept and... Transit Laws § 93.125 Enforceability of design concept and scope and project-level mitigation and control... measures which are identified as conditions for NEPA process completion with respect to local CO, PM10,...

  19. 40 CFR 93.125 - Enforceability of design concept and scope and project-level mitigation and control measures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Enforceability of design concept and... Transit Laws § 93.125 Enforceability of design concept and scope and project-level mitigation and control... measures which are identified as conditions for NEPA process completion with respect to local CO, PM10,...

  20. 40 CFR 93.125 - Enforceability of design concept and scope and project-level mitigation and control measures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Enforceability of design concept and... Transit Laws § 93.125 Enforceability of design concept and scope and project-level mitigation and control... measures which are identified as conditions for NEPA process completion with respect to local CO, PM10,...

  1. Antiretroviral Therapy and Reproductive Life Projects: Mitigating the Stigma of AIDS in Nigeria

    PubMed Central

    Mbakwem, Benjamin C

    2010-01-01

    As millions of people infected with HIV in Africa are increasingly able to live longer and healthier lives because of access to antiretroviral therapy, concerns have emerged that people might eschew protective practices after their health improves. Extending beyond the notion of sexual “disinhibition,” researchers have begun to analyze the sexual behavior of people in treatment through the perspective of their marital and childbearing aspirations. This article explores the reproductive life projects of HIV-positive men and women in southeastern Nigeria, showing how actions that contradict medical advice are understandable in the context of patients’ socially normative desires for marriage and children. Based on in-depth interviews and observations (June–December 2004; June–July 2006; June–July 2007) of people enrolled in the region’s oldest treatment program, we argue that broadly held social expectations with regard to reproduction are experienced even more acutely by HIV-positive people. This is because in Nigeria the stigma associated with AIDS is closely tied to widespread perceptions of social and moral crisis, such that AIDS itself is seen as both a cause and a symptom of anxiety-producing forms of social change. Specifically, in an era of rapid societal transformation, Nigerians see sexual promiscuity and the alienation of young people from traditional obligations to kin and community as indicative of threatened social reproduction. For people who are HIV-positive, marrying and having children offer not only the opportunity to lead normal lives, but also a means to mitigate the stigma associated with the disease. Four ethnographic case studies are provided to exemplify how and why social and personal life projects can trump or complicate medical and public health priorities. These examples suggest that treatment programs must openly address and proactively support the life projects of people on antiretroviral therapy if the full benefits of

  2. PRESCRIBED FIRE EFFECTS ON UNDERSTORY COMPONENTS IN A WYOMING BIG SAGEBRUSH COMMUNITY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Historically, fire was a naturally occurring disturbance in the Wyoming big sagebrush alliance (Artemisia tridentata ssp. wyomingensis Beetle & Young), temporarily shifting plant community dominance from sagebrush to perennial grasses. Research efforts have been focused on fire effects on sites with...

  3. Restoration of mountain big sagebrush plant communities following western juniper control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Western juniper (Juniperus occidentalis ssp. occidentalis Hook) encroachment into mountain big sagebrush (Artemisia tridentata spp. vaseyana (Rydb.) Beetle) plant communities has degraded sagebrush-associated wildlife habitat, reduced livestock forage, and increased erosion and runoff risk. The los...

  4. Restoration of mountain big sagebrush steppe following prescibed burning to control western juniper

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Western juniper (Juniperus occidentalis ssp. occidentalis Hook) encroachment into mountain big sagebrush (Artemisia tridentata spp. vaseyana (Rydb.) Beetle) steppe has degraded sagebrush-associated wildlife habitat, reduced livestock forage production, and increased erosion risk. The loss of sagebr...

  5. An assessment of potential hydrologic and ecologic impacts of constructing mitigation wetlands, Rifle, Colorado, UMTRA project sites

    SciTech Connect

    1995-04-01

    This-assessment examines the consequences and risks that could result from the proposed construction of mitigation wetlands at the New and Old Rifle Uranium Mill Tailings Remedial Action (UMTRA) Project sites near Rifle, Colorado. Remediation of surface contamination at those sites is now under way. Preexisting wetlands at or near the Old and New Rifle sites have been cleaned up, resulting in the loss of 0.7 and 10.5 wetland acres (ac) (0.28 and 4.2 hectares [ha]) respectively. Another 9.9 ac (4.0 ha) of wetlands are in the area of windblown contamination west of the New Rifle site. The US Army Corps of Engineers (USACE) has jurisdiction over the remediated wetlands. Before remedial action began, and before any wetlands were eliminated, the USACE issued a Section 404 Permit that included a mitigation plan for the wetlands to be lost. The mitigation plan calls for 34.2 ac (1 3.8 ha) of wetlands to be constructed at the south end and to the west of the New Rifle site. The mitigation wetlands would be constructed over and in the contaminated alluvial aquifer at the New Rifle site. As a result of the hydrologic characteristics of this aquifer, contaminated ground water would be expected to enter the environment through the proposed wetlands. A preliminary assessment was therefore required to assess any potential ecological risks associated with constructing the mitigation wetlands at the proposed location.

  6. System design description for SY-101 hydrogen mitigation test project data acquisition and control system (DACS-1)

    SciTech Connect

    Truitt, R.W.; Pounds, T.S.; Smith, S.O.

    1994-08-24

    This document describes the hardware subsystems of the data acquisition and control system (DACS) used in mitigation tests conducted on waste tank SY-101 at the Hanford Nuclear Reservation. The system was designed and implemented by Los Alamos National Laboratory (LANL) and supplied to Westinghouse Hanford Company (WHC). The mitigation testing uses a pump immersed in the waste tank, directed at certain angles and operated at different speeds and time durations. The SY-101 tank has experienced recurrent periodic gas releases of hydrogen, nitrous oxide, ammonia, and (recently discovered) methane. The hydrogen gas represents a danger, as some of the releases are in amounts above the lower flammability limit (LFL). These large gas releases must be mitigated. Several instruments have been added to the tank to monitor the gas compositions, the tank level, the tank temperature, and other parameters. A mixer pump has been developed to stir the tank waste to cause the gases to be released at a slow rate. It is the function of the DACS to monitor those instruments and to control the mixer pump in a safe manner. During FY93 and FY94 the mixer pump was installed with associated testing operations support equipment and a mitigation test project plan was implemented. These activities successfully demonstrated the mixer pump`s ability to mitigate the SY-101 tank hydrogen gas hazard.

  7. Effect of aspect on sagebrush steppe recovery post-fire juniper woodlands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Restoration of sagebrush after controlling encroaching western juniper with fire in mountain big sagebrush communities is needed to improve wildlife habitat. We evaluated seeding mountain and Wyoming big sagebrush on north and south aspects after juniper control with prescribed burning. We included...

  8. 77 FR 11061 - Endangered and Threatened Wildlife and Plants; Proposed Endangered Status for the Dunes Sagebrush...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-24

    ...; Proposed Endangered Status for the Dunes Sagebrush Lizard AGENCY: Fish and Wildlife Service, Interior..., 2010, proposed endangered status for the dunes sagebrush lizard (Sceloporus arenicolus) under the... agreement for the dunes sagebrush lizard in Texas. We are reopening the comment period to allow...

  9. Hydropeaking mitigation project on a multi-purpose hydro-scheme on Valsura River in South Tyrol/Italy.

    PubMed

    Premstaller, Georg; Cavedon, Valentina; Pisaturo, Giuseppe Roberto; Schweizer, Steffen; Adami, Vito; Righetti, Maurizio

    2017-01-01

    A hydropeaking mitigation project on Valsura River in the Italians Alps is described. The project is of particular interest due to several aspects. First of all, the Valsura torrent has unique morphological braiding characteristics, which are unique in the reach of Adige valley between Merano and Bolzano, and has a good reproduction potential for fish, especially in the terminal stretch along a biotope before its confluence with Adige River. Moreover, the Valsura hydropower cascade, which overall consists of six high-head hydropower plants, has an exceptional economic importance for the local hydropower industry. Lastly, the last HPP on the cascade is a multipurpose plant, so that interesting interactions between hydropeaking mitigation, irrigation supply and peak energy production are considered. The project started from a hydrological and a limnological measuring campaign and from an energetic, hydraulic and legislative framework analysis. The ecological findings are combined into a deficit analysis, founding the basis for the definition of a hydrological target state, which points to achieve a good natural reproduction for brown trout in the hydropeaked stretch, fulfilling at the same time the human safety conditions. Finally, mitigation Measures are described that at the same time comply with the following manifold aspects: a. maintenance of the requested target limits for fish reproduction; b. maintenance of the water release for the agricultural irrigation; c. enhancement of the flexibility of the hydropower plant's operation; d. reduction of the risk for local population. The paper compares operational and constructive mitigation measures and shows that constructive hydropeaking mitigation measures, for the present case study, can combine the positive effects of ecological improvement with higher safety standards and more flexible energy production.

  10. Wildlife and Wildlife Habitat Mitigation Plan for the Noxon Rapids and Cabinet Gorge Hydroelectric Projects, Final Report.

    SciTech Connect

    Bissell, Gael

    1985-04-01

    Mitigation projects for wildlife species impacted by the Noxon Rapids and Cabinet Gorge hydroelectric projects are recommended. First priority projects encompass the development of long-term wildlife management plans for WWP lands adjacent to the two reservoirs. General objectives for all WWP lands include alternatives designed to protect or enhance existing wildlife habitat. It is also suggested that WWP evaluate the current status of beaver and river otter populations occupying the reservoirs and implement indicated management. Second priority projects include the protection/enhancement of wildlife habitat on state owned or privately owned lands. Long-term wildlife management agreements would be developed with Montana School Trust lands and may involve reimbursement of revenues lost to the state. Third priority projects include the enhancement of big game winter ranges located on Kootenai National Forest lands. 1 ref., 1 fig., 7 tabs.

  11. Status of national CO{sub 2}-mitigation projects and initiatives in the Philippine energy sector

    SciTech Connect

    Tupas, C.T.

    1996-12-31

    The Philippines has a huge energy requirement for the next 30 years in order to achieve its economic growth target. Based on an expected annual GDP growth rate of 6.9 percent, the Philippines total energy requirement is estimated to increase at an average of 6.6 percent annually from 1996 to 2025. Gross energy demand shall increase from 219.0 million barrels of fuel oil equivalent (MMBFOE) in 1996 to 552.4 MMBFOE in 2010 and 1,392.6 MMBFOE by 2025. These energy demand levels shall be driven primarily by the substantial increase in fuel requirements for power generation whose share of total energy requirement is 28.3 percent in 1996, 48.0 percent in 2010 and 55.0 percent in 2025. With the expected increase in energy demand, there will necessarily be adverse impacts on the environment. Energy projects and their supporting systems - from fuel extraction and storage to distribution - can and will be major contributors not only to local but also to regional and global environmental pollution and degradation. International experiences and trends in greenhouse gas (GHG) emissions inventory have shown that the energy sector has always been the dominant source of carbon dioxide (CO{sub 2}) - the principal contributor to global climate change. The energy sector`s CO{sub 2} emissions come primarily from fossil fuels combustion. Since energy use is the dominant source of CO{sub 2} emissions, efforts should therefore be concentrated on designing a mitigation strategy in this sector.

  12. Restoration of Mountain Big Sagebrush Steppe Following Prescribed Burning to Control Western Juniper

    NASA Astrophysics Data System (ADS)

    Davies, K. W.; Bates, J. D.; Madsen, M. D.; Nafus, A. M.

    2014-05-01

    Western juniper ( Juniperus occidentalis ssp. occidentalis Hook) encroachment into mountain big sagebrush ( Artemisia tridentata spp. vaseyana (Rydb.) Beetle) steppe has reduced livestock forage production, increased erosion risk, and degraded sagebrush-associated wildlife habitat. Western juniper has been successfully controlled with partial cutting followed by prescribed burning the next fall, but the herbaceous understory and sagebrush may be slow to recover. We evaluated the effectiveness of seeding perennial herbaceous vegetation and sagebrush at five sites where juniper was controlled by partially cutting and prescribed burning. Treatments tested at each site included an unseeded control, herbaceous seed mix (aerially seeded), and the herbaceous seed mix plus sagebrush seed. In the third year post-treatment, perennial grass cover and density were twice as high in plots receiving the herbaceous seed mix compared to the control plots. Sagebrush cover and density in the sagebrush seeded plots were between 74- and 290-fold and 62- and 155-fold greater than the other treatments. By the third year after treatment, sagebrush cover was as high as 12 % in the sagebrush seeded plots and between 0 % and 0.4 % where it was not seeded. These results indicate that aerial seeding perennial herbaceous vegetation can accelerate the recovery of perennial grasses which likely stabilize the site. Our results also suggest that seeding mountain big sagebrush after prescribed burning encroaching juniper can rapidly recover sagebrush cover and density. In areas where sagebrush habitat is limited, seeding sagebrush after juniper control may increase sagebrush habitat and decrease the risks to sagebrush-associated species.

  13. The role of fire in structuring sagebrush habitats and bird communities

    USGS Publications Warehouse

    Knick, S.T.; Holmes, A.L.; Miller, R.F.

    2005-01-01

    Fire is a dominant and highly visible disturbance in sagebrush (Artemisia spp.) ecosystems. In lower elevation, xeric sagebrush communities, the role of fire has changed in recent decades from an infrequent disturbance maintaining a landscape mosaic and facilitating community processes to frequent events that alter sagebrush communities to exotic vegetation, from which restoration is unlikely. Because of cheatgrass invasion, fire-return intervals in these sagebrush ecosystems have decreased from an historical pattern (pre-European settlement) of 30 to >100 yr to 5-15 yr. In other sagebrush communities, primarily higher elevation ecosystems, the lack of fire has allowed transitions to greater dominance by sagebrush, loss of herbaceous understory, and expansion of juniper-pinyon woodlands. Response by birds living in sagebrush habitats to fire was related to the frequency, size, complexity (or patchiness), and severity of the burns. Small-scale fires that left patchy distributions of sagebrush did not influence bird populations. However, large-scale fires that resulted in large grassland expanses and isolated existing sagebrush patches reduced the probability of occupancy by sagebrush-obligate species. Populations of birds also declined in sagebrush ecosystems with increasing dominance by juniper (Juniperus spp.) and pinyon (Pinus spp.) woodlands. Our understanding of the effects of fire on sagebrush habitats and birds in these systems is limited. Almost all studies of fire effects on birds have been opportunistic, correlative, and lacking controls. We recommend using the large number of prescribed burns to develop strong inferences about cause-and-effect relationships. Prescribed burning is complicated and highly contentious, particularly in low-elevation, xeric sagebrush communities. Therefore, we need to use the unique opportunities provided by planned burns to understand the spatial and temporal influence of fire on sagebrush landscapes and birds. In particular

  14. Airborne signals of communication in sagebrush: a pharmacological approach

    PubMed Central

    Shiojiri, Kaori; Ishizaki, Satomi; Ozawa, Rika; Karban, Richard

    2015-01-01

    When plants receive volatiles from a damaged plant, the receivers become more resistant to herbivory. This phenomenon has been reported in many plant species and called plant-plant communication. Lab experiments have suggested that several compounds may be functioning as airborne signals. The objective of this study is to identify potential airborne signals used in communication between sagebrush (Artemisia tridentata) individuals in the field. We collected volatiles of one branch from each of 99 sagebrush individual plants. Eighteen different volatiles were detected by GC-MS analysis. Among these, 4 compounds; 1.8-cineol, β-caryophyllene, α-pinene and borneol, were investigated as signals of communication under natural conditions. The branches which received either 1,8-cineol or β-caryophyllene tended to get less damage than controls. These results suggested that 1,8-cineol and β-caryophyllene should be considered further as possible candidates for generalized airborne signals in sagebrush. PMID:26418970

  15. CARBON-14 IN SAGEBRUSH ON THE HANFORD SITE AND VICINITY

    SciTech Connect

    Price, K. R.

    1981-07-01

    The purpose of this study was to estimate the levels of {sup 14}C in sagebrush wood from plants growing on the Hanford Site and vicinity and to determine if these levels could be attributed to past and present operations at Hanford. Mature sagebrush plants were collected at one onsite and two offsite locations and analyzed for {sup 14}C. The offsite samples were collected both 60 km upwind and 26 km downwind from fuel reprocessing facilities on the Hanford Site. The results from these samples showed no statistically significant increased levels of {sup 14}C for any time period during the operation of Hanford fuel reprocessing facilities. However, samples representative of the postnuclear era showed a 30% increase in {sup 14}C content over prenuclear era (pre-1944) samples. This increase is primarily attributable to worldwide fallout resulting from atmospheric testing of nuclear weapons. An important finding of the study was the approximate fourfold increase in {sup 14}C detected in sagebrush wood collected onsite near the PUREX fuel reprocessing facility at Hanford. This result implies that sagebrush plants growing within 0.5 km of PUREX while the facility was in operation were exposed to an estimated average air concentration four times normal or about 4 pCi/m{sup 3}. This was during those times when the sagebrush was actively growing and assimilating carbon. The data indicate that sagebrush wood provides an historical record of changes in {sup 14}C assimilation and, thus, some basis for judging what to expect in the way of increased levels of {sup 14}C in vegetation following the proposed restart of PUREX operations.

  16. Concerns About Climate Change Mitigation Projects: Summary of Findings from Case Studies in Brazil, India, Mexico, and South Africa

    SciTech Connect

    Sathaye, Jayant A.; Andrasko, Kenneth; Makundi, Willy; La Rovere, Emilio Lebre; Ravinandranath, N.H.; Melli, Anandi; Rangachari, Anita; Amaz, Mireya; Gay, Carlos; Friedmann, Rafael; Goldberg, Beth; van Horen, Clive; Simmonds, Gillina; Parker, Gretchen

    1998-11-01

    The concept of joint implementation as a way to implement climate change mitigation projects in another country has been controversial ever since its inception. Developing countries have raised numerous issues at the project-specific technical level, and broader concerns having to do with equity and burden sharing. This paper summarizes the findings of studies for Brazil, India, Mexico and South Africa, four countries that have large greenhouse gas emissions and are heavily engaged in the debate on climate change projects under the Kyoto Protocol. The studies examine potential or current projects/programs to determine whether eight technical concerns about joint implementation can be adequately addressed. They conclude that about half the concerns were minor or well managed by project developers, but concerns about additionality of funds, host country institutions and guarantees of performance (including the issues of baselines and possible leakage) need much more effort to be adequately addressed. All the papers agree on the need to develop institutional arrangements for approving and monitoring such projects in each of the countries represented. The case studies illustrate that these projects have the potential to bring new technology, investment, employment and ancillary socioeconomic and environmental benefits to developing countries. These benefits are consistent with the goal of sustainable development in the four study countries. At a policy level, the studies' authors note that in their view, the Annex I countries should consider limits on the use of jointly implemented projects as a way to get credits against their own emissions at home, and stress the importance of industrialized countries developing new technologies that will benefit all countries. The authors also observe that if all countries accepted caps on their emissions (with a longer time period allowed for developing countries to do so) project-based GHG mitigation would be significantly

  17. Quantifying and predicting fuels and the effects of reduction treatments along successional and invasion gradients in sagebrush habitats

    USGS Publications Warehouse

    Shinneman, Douglas; Pilliod, David; Arkle, Robert; Glenn, Nancy F.

    2015-01-01

    Sagebrush shrubland ecosystems in the Great Basin are prime examples of how altered successional trajectories can create dynamic fuel conditions and, thus, increase uncertainty about fire risk and behavior. Although fire is a natural disturbance in sagebrush, post-fire environments are highly susceptible to conversion to an invasive grass-fire regime (often referred to as a “grass-fire cycle”). After fire, native shrub-steppe plants are often slow to regenerate, whereas nonnative annuals, especially cheatgrass (Bromus tectorum) and medusahead (Taeniatherum caput-medusae), can establish quickly and outcompete native species. Once fire-prone annuals become established, fire occurrences increase, further promoting dominance of nonnative species. The invasive grass-fire regime also alters nutrient and hydrologic cycles, pushing ecosystems beyond ecological thresholds toward steady-state, fire-prone, nonnative communities. These changes affect millions of hectares in the Great Basin and increase fire risk, decrease habitat quality and biodiversity, accelerate soil erosion, and degrade rangeland resources for livestock production. In many sagebrush landscapes, constantly changing plant communities and fuel conditions hinder attempts by land managers to predict and control fire behavior, restore native communities, and provide ecosystem services (e.g., forage production for livestock). We investigated successional and nonnative plant invasion states and associated fuel loads in degraded sagebrush habitat in a focal study area, the Morley Nelson Snake River Birds of Prey National Conservation Area (hereafter the NCA), in the Snake River Plain Ecoregion of southern Idaho. We expanded our inference by comparing our findings to similar data collected throughout seven major land resource areas (MLRAs) across the Great Basin (JFSP Project “Fire Rehabilitation Effectiveness: A Chronosequence Approach for the Great Basin” [09-S-02-1]). 4 We used a combination of field

  18. Biochemical processes in sagebrush ecosystems: Interactions with terrain

    NASA Technical Reports Server (NTRS)

    Matson, P. (Principal Investigator); Reiners, W.; Strong, L.

    1985-01-01

    The objectives of a biogeochemical study of sagebrush ecosystems in Wyoming and their interactions with terrain are as follows: to describe the vegetational pattern on the landscape and elucidate controlling variables, to measure the soil properties and chemical cycling properties associated with the vegetation units, to associate soil properties with vegetation properties as measured on the ground, to develop remote sensing capabilities for vegetation and surface characteristics of the sagebrush landscape, to develop a system of sensing snow cover and indexing seasonal soil to moisture; and to develop relationships between temporal Thematic Mapper (TM) data and vegetation phenological state.

  19. Planetary Defense Architecture for Mitigating Short-Term Warning Cosmic Threats: READI Project

    NASA Technical Reports Server (NTRS)

    Nambiar, Shrrirup; Hussein, Alaa; Silva-Martinez, Jackelynne; Reinert, Jessica; Gonzalez, Fernando

    2016-01-01

    Earth is being constantly bombarded by a large variety of celestial bodies and has been since its formation 4.5 billion years ago. Among those bodies, mainly asteroids and comets, there are those that have the potential to create large scale destruction upon impact. The only extinction-level impact recorded to date was 65 million years ago, during the era of dinosaurs. The probability of another extinction-level, or even city-killer, impact may be negligible, but the consequences can be severe for the biosphere and for our species. Therefore it is highly imperative for us to be prepared for such a devastating impact in the near future, especially since humanity is at the threshold of wielding technologies that allow us to do so. Majority of scientists, engineers, and policymakers have focused on long-term strategies and warning periods for Earth orbit crossing Near-Earth Objects (NEOs), and have suggested methods and policies to tackle such problems. However, less attention has been paid to short warning period NEO threats. Such NEOs test current technological and international cooperation capabilities in protecting ourselves, and can create unpredictable devastation ranging from local to global scale. The most recent example is the Chelyabinsk incident in Russia. This event has provided a wakeup call for space agencies and governments around the world towards establishing a Planetary Defense Program. The Roadmap for EArth Defense Initiative (READI) is a project by a team of international, intercultural, and interdisciplinary participants of the International Space University's Space Studies Program 2015 hosted by Ohio University, Athens, OH proposing a roadmap for space agencies, governments, and the general public to tackle NEOs with a short warning before impact. Taking READI as a baseline, this paper presents a technical description of methodologies proposed for detection and impact mitigation of a medium-sized comet (up to 800m across) with a short

  20. Architecture for Mitigating Short-Term Warning Cosmic Threats: READI Project

    NASA Technical Reports Server (NTRS)

    Nambiar, Shrrirup P.; Hussein, Alaa; Silva-Martinez, Jackelynne; Reinert, Jessica; Gonzalez, Fernando

    2016-01-01

    Earth is being constantly bombarded by a large variety of celestial bodies and has been since its formation 4.5 billion years ago. Among those bodies, mainly asteroids and comets, there are those that have the potential to create large scale destruction upon impact. The only extinction-level impact recorded to date was 65 million years ago, during the era of dinosaurs. The probability of another extinction-level, or even city-killer, impact may be negligible, but the consequences can be severe for the biosphere and for our species. Therefore it is highly imperative for us to be prepared for such a devastating impact in the near future, especially since humanity is at the threshold of wielding technologies that allow us to do so. Majority of scientists, engineers, and policymakers have focused on long-term strategies and warning periods for Earth orbit crossing Near-Earth Objects (NEOs), and have suggested methods and policies to tackle such problems. However, less attention has been paid to short warning period NEO threats. Such NEOs test current technological and international cooperation capabilities in protecting ourselves, and can create unpredictable devastation ranging from local to global scale. The most recent example is the Chelyabinsk incident in Russia. This event has provided a wakeup call for space agencies and governments around the world towards establishing a Planetary Defense Program. The Roadmap for EArth Defense Initiative (READI) is a project by a team of international, intercultural, and interdisciplinary participants of the International Space University's Space Studies Program 2015 hosted by Ohio University, Athens, OH proposing a roadmap for space agencies, governments, and the general public to tackle NEOs with a short warning before impact. Taking READI as a baseline, this paper presents a technical description of methodologies proposed for detection and impact mitigation of a medium-sized comet (up to 800m across) with a short

  1. ANTIOXIDANT CAPACITY OF WYOMING BIG SAGEBRUSH (ARTEMISIA TRIDENTATA SSP. WYOMINGENSIS) VARIES SPATIALLY AND IS NOT RELATED TO THE PRESENCE OF A SAGEBRUSH DIETARY SPECIALIST

    PubMed Central

    Pu, Xinzhu; Lam, Lisa; Gehlken, Kristina; Ulappa, Amy C.; Rachlow, Janet L.; Forbey, Jennifer Sorensen

    2015-01-01

    Sagebrush (Artemisia spp.) in North America is an abundant native plant species that is ecologically and evolutionarily adapted to have a diverse array of biologically active chemicals. Several of these chemicals, specifically polyphenols, have antioxidant activity that may act as biomarkers of biotic or abiotic stress. This study investigated the spatial variation of antioxidant capacity, as well as the relationship between a mammalian herbivore and antioxidant capacity in Wyoming big sagebrush (Artemisia tridentata wyomingensis). We quantified and compared total polyphenols and antioxidant capacity of leaf extracts from sagebrush plants from different spatial scales and at different levels of browsing by a specialist mammalian herbivore, the pygmy rabbit (Brachylagus idahoensis). We found that antioxidant capacity of sagebrush extracts was positively correlated with total polyphenol content. Antioxidant capacity varied spatially within and among plants. Antioxidant capacity in sagebrush was not related to either browsing intensity or duration of association with rabbits. We propose that the patterns of antioxidant capacity observed in sagebrush may be a result of spatial variation in abiotic stress experienced by sagebrush. Antioxidants could therefore provide a biomarker of environmental stress for sagebrush that could aid in management and conservation of this plant in the threatened sagebrush steppe. PMID:26582971

  2. D Applications in Disaster Mitigation and Management: Core Results of Ditac Project

    NASA Astrophysics Data System (ADS)

    Kaptan, K.; Kavlak, U.; Yilmaz, O.; Celik, O. T.; Manesh, A. K.; Fischer, P.; Lupescu, O.; Ingrassia, P. L.; Ammann, W. J.; Ashkenazi, M.; Arculeo, C.; Komadina, R.; Lechner, K.; Arnim, G. v.; Hreckovski, B.

    2013-08-01

    According to statistical data, natural disasters as well as the number of people affected by them are occurring with increasing frequency compared to the past. This situation is also seen in Europe Union; So, Strengthening the EU capacity to respond to Disasters is very important. This paper represents the baseline results of the FP-7 founded DITAC project, which aims to develop a holistic and highly structured curriculum for responders and strategic crisis managers. Up-to-date geospatial information is required in order to create an effective disaster response plan. Common sources for geospatial information such as Google Earth, GIS databases, and aerial surveys are frequently outdated, or insufficient. This limits the effectiveness of disaster planning. Disaster Management has become an issue of growing importance. Planning for and managing large scale emergencies is complex. The number of both victims and relief workers is large and the time pressure is extreme. Emergency response and triage systems with 2D user interfaces are currently under development and evaluation. Disasters present a number of spatially related problems and an overwhelming quantity of information. 3D user interfaces are well suited for intuitively solving basic emergency response tasks. Such tasks include commanding rescue agents and prioritizing the disaster victims according to the severity of their medical condition. Further, 3D UIs hold significant potential for improving the coordination of rescuers as well as their awareness of relief workers from other organizations. This paper describes the outline of a module in a Disaster Management Course related to 3D Applications in Disaster Mitigation and Management. By doing this, the paper describes the gaps in existing systems and solutions. Satellite imageries and digital elevation data of Turkey are investigated for detecting sites prone to natural hazards. Digital image processing methods used to enhance satellite data and to produce

  3. The Influence of Woodland Encroachment on Runoff and Erosion in Sagebrush Steppe Systems, Great Basin, USA.

    NASA Astrophysics Data System (ADS)

    Pierson, F. B.; Kormos, P. R.; Williams, C. J.

    2007-12-01

    Pinyon and juniper woodlands have expanded 10 to 30% in the past 30 years and now occupy nearly 20 million hectares of sagebrush shrub steppe in the Great Basin Region and Colorado Plateau, USA. The conversion of sagebrush steppe to pinyon and juniper woodlands has been linked to changes in plant community structure and composition and respective increases in overland flow and erosion from these landscapes. The Sagebrush Steppe Treatment Evaluation Project (SageSTEP, www.sagestep.org) was implemented in 2005 as a 5 year interdisciplinary research study to evaluate restoration methodologies for sagebrush rangelands degraded by woodland and grassland encroachment over a six state area within the Great Basin. The hydrology component of SageSTEP focuses on the relationships between changes in vegetation and groundcover and runoff/erosion processes. In 2006, 140 small scale (0.5 m2) rainfall simulations were conducted at 2 locations within the Great Basin to determine whether critical thresholds exist in vegetation and ground cover that significantly influence infiltration, runoff, and erosion in pinyon and juniper woodlands. Simulation plots were distributed on interspaces (areas between shrub/tree canopies) and juniper, pinyon, and shrub coppices (areas underneath canopy). Water drop penetration times and litter depths were also collected for each plot to explore controls on soil hydrophobicity. Preliminary results suggest a positive correlation between litter depth and hydrophobicity, as soils under thick pinyon and juniper coppices are strongly water repellant and soils in interspaces and under shrub coppices are easily wettable. Interspace plots with varying amounts of grasses and forbs have the highest erosion and runoff rates due to higher percentages of bare ground and relatively low soil stability. Pinyon coppices have the least runoff and erosion due to very high litter depths and low bare ground cover, even though surface soils are hydrophobic. Juniper and

  4. Climate influences the demography of three dominant sagebrush steppe plants.

    PubMed

    Dalgleish, Harmony J; Koons, David N; Hooten, Mevin B; Moffet, Corey A; Adler, Peter B

    2011-01-01

    Climate change could alter the population growth of dominant species, leading to profound effects on community structure and ecosystem dynamics. Understanding the links between historical variation in climate and population vital rates (survival, growth, recruitment) is one way to predict the impact of future climate change. Using a unique, long-term data set from eastern Idaho, USA, we parameterized integral projection models (IPMs) for Pseudoroegneria spicata, Hesperostipa comata, and Artemisia tripartita to identify the demographic rates and climate variables most important for population growth. We described survival, growth, and recruitment as a function of genet size using mixed-effect regression models that incorporated climate variables. Elasticites for the survival + growth portion of the kernel were larger than the recruitment portion for all three species, with survival + growth accounting for 87-95% of the total elasticity. The genet sizes with the highest elasticity values in each species were very close to the genet size threshold where survival approached 100%. We found strong effects of climate on the population growth rate of two of our three species. In H. comata, a 1% decrease in previous year's precipitation would lead to a 0.6% decrease in population growth. In A. tripartita, a 1% increase in summer temperature would result in a 1.3% increase in population growth. In both H. comata and A. tripartita, climate influenced population growth by affecting genet growth more than survival or recruitment. Late-winter snow was the most important climate variable for P. spicata, but its effect on population growth was smaller than the climate effects we found in H. comata or A. tripartita. For all three species, demographic responses lagged climate by at least one year. Our analysis indicates that understanding climate effects on genet growth may be crucial for anticipating future changes in the structure and function of sagebrush steppe vegetation.

  5. RoboCup-Rescue: an international cooperative research project of robotics and AI for the disaster mitigation problem

    NASA Astrophysics Data System (ADS)

    Tadokoro, Satoshi; Kitano, Hiroaki; Takahashi, Tomoichi; Noda, Itsuki; Matsubara, Hitoshi; Shinjoh, Atsushi; Koto, Tetsuo; Takeuchi, Ikuo; Takahashi, Hironao; Matsuno, Fumitoshi; Hatayama, Mitsunori; Nobe, Jun; Shimada, Susumu

    2000-07-01

    This paper introduces the RoboCup-Rescue Simulation Project, a contribution to the disaster mitigation, search and rescue problem. A comprehensive urban disaster simulator is constructed on distributed computers. Heterogeneous intelligent agents such as fire fighters, victims and volunteers conduct search and rescue activities in this virtual disaster world. A real world interface integrates various sensor systems and controllers of infrastructures in the real cities with the real world. Real-time simulation is synchronized with actual disasters, computing complex relationship between various damage factors and agent behaviors. A mission-critical man-machine interface provides portability and robustness of disaster mitigation centers, and augmented-reality interfaces for rescue in real disasters. It also provides a virtual- reality training function for the public. This diverse spectrum of RoboCup-Rescue contributes to the creation of the safer social system.

  6. Work plan for upgrade of SY-101 Hydrogen Mitigation Test Project Data Acquisition and Control System (DACS-1)

    SciTech Connect

    Truitt, R.W.

    1994-08-01

    The purpose of this effort is to upgrade the existing DACS-1 used for control and data acquisition in support of the hydrogen mitigation program for tank 101-SY. The planned upgrades will enhance the system capabilities to support additional mitigation projects and improve the system operability by implementing changes identified during operation of the system to date. Once the upgrades have been implemented, the DACS-1 system should operate as it did prior to the upgrade, but with greatly increased speed and capability. No retraining of Test Engineers will be required; the upgrade is designed to be transparent to those who operate it, with only a noticeable increase in the speed of the system. This work plan defines the tasks required for implementing the upgrade. It identifies deliverables, responsible organizations and individuals, interfaces, and schedule. This upgrade effort employs system engineering principles wherever applicable.

  7. Mitigation and Monitoring Plan for impacted wetlands at the Gunnison UMTRA Project site, Gunnison, Colorado. Revision 1

    SciTech Connect

    Not Available

    1994-12-01

    The Gunnison, Colorado, abandoned uranium mill site is one site being cleaned up by the DOE under UMTRCA authority. This site`s contaminated material is being transported to a disposal site on US Bureau of Land Management (BLM) land east of Gunnison. Remedial action activities have temporarily disturbed 0.8 acre (ac) (0.3 hectares [ha]) of wetlands and permanently eliminated 4.3 ac (1.7 ha). As required by the Clean Water Act, the US Army Corps of Engineers (USACE) prepared a Section 404 Permit that addresses the loss of wetlands as a result of remedial action at the Gunnison UMTRA Project site. The 404 permit includes this report as an attachment and it describes the wetland mitigation and monitoring plan. The DOE formulated this plan in consultation with the BLM and the USACE. This report represents a revised version of the mitigation and monitoring plan (DOE, 1992b).

  8. Wildlife Mitigation and Restoration for Grand Coulee Dam: Blue Creek Project, Phase 1.

    SciTech Connect

    Merker, Christopher

    1993-04-01

    This report is a recommendation from the Spokane Tribe to the Northwest Power Planning Council (NPPC) for partial mitigation for the extensive wildlife and wildlife habitat losses on the Spokane Indian Reservation caused by the construction of Grand Coulee Dam. NPPC`s interim wildlife goal over the next 7 years for the Columbia hydropower system, is to protect, mitigate and enhance approximately 35% basin wide of the lost habitat units. Grand Coulee Dam had the greatest habitat losses of any Dams of the Wildlife Rule.

  9. Medusahead In Sagebrush Steppe Rangelands: Control, Restoration, And Prevention.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Medusahead is a non-native annual grass that is degrading sagebrush rangelands. However, information on its management is not widely available to land managers. We compiled results from previous studies to provide information on controlling, restoring, and preventing medusahead infestations in sag...

  10. Postfire Succession in Big Sagebrush Steppe With Livestock Grazing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prescribed fire in rangeland ecosystems is applied for a variety of management objectives including enhancing productivity of forage species for domestic livestock. In big sagebrush (Artemisia tridentata Nutt.) steppe of the western United States, fire has been a natural and prescribed disturbance ...

  11. Wyoming big sagebrush associations of eastern Oregon; vegetation attributes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report provides a synopsis of several vegetative characteristics for the Wyoming big sagebrush complex in eastern Oregon covering the High Desert , Snake River, and Owyhee Ecological Provinces in Harney, Lake, and Malheur Counties. The complex has been grouped into six associations defined by t...

  12. MEDUSAHEAD DISPERSAL AND ESTABLISHMENT IN SAGEBRUSH PLANT COMMUNITIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Medusahead (Taeniatherum caput-medusae (L.) Nevski) is an invasive annual grass that that is rapidly invading sagebrush plant communities. To prevent medusahead invasion land managers need to know 1) when and how far medusahead seeds disperse and 2) its establishment rates and interactions with the...

  13. Woody fuels reduction in Wyoming big sagebrush communities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle & Young) ecosystems historically have been subject to disturbances that reduce or remove shrubs primarily by fire, although insect outbreaks and disease have also been important. Depending on site productivity, fire return in...

  14. An efficient sampling protocol for sagebrush/grassland monitoring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Monitoring the health and condition of rangeland vegetation can be very time consuming and costly. An efficiency but rigorous sampling protocol is needed for monitoring sagebrush/grassland vegetation. A randomized sampling protocol was presented for geo-referenced, nadir photographs acquired using...

  15. Taking Sides on "Takings": Rhetorical Resurgence of the Sagebrush Rebellion.

    ERIC Educational Resources Information Center

    Chiaviello, Tony

    The "Takings Clause" of the Fifth Amendment to the United States Constitution seems clear enough: when the government takes an individual's property, it must pay him or her for it. The "Sagebrush Rebellion" refers to the numerous incarnations of a movement to privatize public lands and contain environmental regulation. This…

  16. Remote sensing and ecosystem simulation modeling of the intermountain sagebrush-steppe, with implications for global climate change

    SciTech Connect

    Kremer, R.G.

    1993-01-01

    Three papers are presented that focus on remote sensing and ecosystem simulation modeling of the Intermountain Northwest sagebrush-steppe ecosystem. The first utilizes Advanced Very High Resolution Radiometer data to derive seasonal greenness indices of three pre-dominant vegetation communities in south-central WashingtoN. Temporal signatures were statistically separated, and used to create a classification for the three communities by integrating Normalized Difference Vegetation Indices over the growing season. The classification accuracy was 75% when compared to 53 ground-truthed sites, but was less accurate (62%) in a more topographically variable region. The second paper develops a logic for treating the intermountain sagebrush-steepe as a mosaic of distinct, hydrologically partitioned vegetation communities, and identifies critical ecophysiological considerations for process modeling of arid ecosystems. Soil water and nutrient dynamics of an ecosystem process model were modified to simulate productivity and seasonal water use patterns in Artemisia, Agropyron, and Bromus communities for the same study site. 60 year simulations maintained steady state vegetation productivity while predicting soil moisture content for 65 dates in 1992 with R[sup 2] values ranging from 0.93 to 0.98. In the third paper, the model was used to derive projections of the response of the ecosystem to natural and general circulation model (GCM)-predicted climate variability. Simulations predicted the adaptability of a less productive, invasive grass community (Bromus) to climate change, while a native sagebrush (Artemisia) community does not survive the increased temperatures of the GCM climates. High humidity deficits and greater maintenance respiration costs associated with increased temperatures limit the ability of the sagebrush community to support a relatively high biomass, and substantial increases in soil water storage and subsurface outflow occur was the vegetation senesces.

  17. Status Review of Wildlife Mitigation at Columbia Basin Hydroelectric Projects, Oregon Facilities, Final Report.

    SciTech Connect

    Bedrossian, Karen L.

    1984-08-01

    The report presents a review and documentation of existing information on wildlife resources at Columbia River Basin hydroelectric facilities within Oregon. Effects of hydroelectric development and operation; existing agreements; and past, current and proposed wildlife mitigation, enhancement, and protection activities were considered. (ACR)

  18. Contrasting Effects of Different Mammalian Herbivores on Sagebrush Plant Communities

    PubMed Central

    Veblen, Kari E.; Nehring, Kyle C.; McGlone, Christopher M.; Ritchie, Mark E.

    2015-01-01

    Herbivory by both grazing and browsing ungulates shapes the structure and functioning of terrestrial ecosystems worldwide, and both types of herbivory have been implicated in major ecosystem state changes. Despite the ecological consequences of differences in diets and feeding habits among herbivores, studies that experimentally distinguish effects of grazing from spatially co-occurring, but temporally segregated browsing are extremely rare. Here we use a set of long-term exclosures in northern Utah, USA, to determine how domestic grazers vs. wild ungulate herbivores (including browsers and mixed feeders) affect sagebrush-dominated plant communities that historically covered ~62 million ha in North America. We sampled plant community properties and found that after 22 years grazing and browsing elicited perceptible changes in overall plant community composition and distinct responses by individual plant species. In the woody layer of the plant community, release from winter and spring wild ungulate herbivory increased densities of larger Wyoming big sagebrush (Artemisia tridentata, ssp. wyomingensis) at the expense of small sagebrush, while disturbance associated with either cattle or wild ungulate activity alone was sufficient to increase bare ground and reduce cover of biological soil crusts. The perennial bunchgrass, bottlebrush squirretail (Elymus elymoides), responded positively to release from summer cattle grazing, and in turn appeared to competitively suppress another more grazing tolerant perennial grass, Sandberg’s blue grass (Poa secunda). Grazing by domestic cattle also was associated with increased non-native species biomass. Together, these results illustrate that ungulate herbivory has not caused sagebrush plant communities to undergo dramatic state shifts; however clear, herbivore-driven shifts are evident. In a dry, perennial-dominated system where plant community changes can occur very slowly, our results provide insights into potential long

  19. Contrasting effects of different mammalian herbivores on sagebrush plant communities.

    PubMed

    Veblen, Kari E; Nehring, Kyle C; McGlone, Christopher M; Ritchie, Mark E

    2015-01-01

    Herbivory by both grazing and browsing ungulates shapes the structure and functioning of terrestrial ecosystems worldwide, and both types of herbivory have been implicated in major ecosystem state changes. Despite the ecological consequences of differences in diets and feeding habits among herbivores, studies that experimentally distinguish effects of grazing from spatially co-occurring, but temporally segregated browsing are extremely rare. Here we use a set of long-term exclosures in northern Utah, USA, to determine how domestic grazers vs. wild ungulate herbivores (including browsers and mixed feeders) affect sagebrush-dominated plant communities that historically covered ~62 million ha in North America. We sampled plant community properties and found that after 22 years grazing and browsing elicited perceptible changes in overall plant community composition and distinct responses by individual plant species. In the woody layer of the plant community, release from winter and spring wild ungulate herbivory increased densities of larger Wyoming big sagebrush (Artemisia tridentata, ssp. wyomingensis) at the expense of small sagebrush, while disturbance associated with either cattle or wild ungulate activity alone was sufficient to increase bare ground and reduce cover of biological soil crusts. The perennial bunchgrass, bottlebrush squirretail (Elymus elymoides), responded positively to release from summer cattle grazing, and in turn appeared to competitively suppress another more grazing tolerant perennial grass, Sandberg's blue grass (Poa secunda). Grazing by domestic cattle also was associated with increased non-native species biomass. Together, these results illustrate that ungulate herbivory has not caused sagebrush plant communities to undergo dramatic state shifts; however clear, herbivore-driven shifts are evident. In a dry, perennial-dominated system where plant community changes can occur very slowly, our results provide insights into potential long

  20. Effects of Wyoming big sagebrush seeding rate and grass competition on the long-term density and canopy volume of the big sagebrush and wildlife habitat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This research was initiated in 1997 to evaluate the effects of seeding rates of grass and Wyoming big sagebrush on the establishment of big sagebrush. The research was accomplished at the Belle Ayr West mine, south of Gillette, WY using a randomized complete block experimental design with three big ...

  1. Ensuring Success of Adaptive Control Research Through Project Lifecycle Risk Mitigation

    NASA Technical Reports Server (NTRS)

    Pavlock, Kate M.

    2011-01-01

    Lessons Learne: 1. Design-out unnecessary risk to prevent excessive mitigation management during flight. 2. Consider iterative checkouts to confirm or improve human factor characteristics. 3. Consider the total flight test profile to uncover unanticipated human-algorithm interactions. 4. Consider test card cadence as a metric to assess test readiness. 5. Full-scale flight test is critical to development, maturation, and acceptance of adaptive control laws for operational use.

  2. 1997 Monitoring report for the Gunnison, Colorado Wetlands Mitigation Plan

    SciTech Connect

    1997-11-01

    Under the Uranium Mill Tailings Remedial Action (UMTRA) Project, the U.S. Department of Energy (DOE) cleaned up uranium mill tailings and other surface contamination near the town of Gunnison, Colorado. Remedial action resulted in the elimination of 4.3 acres (ac) (1.7 hectares [ha]) of wetlands. This loss is mitigated by the enhancement of six spring-fed areas on Bureau of Land Management (BLM) land (mitigation sites). Approximately 254 ac (1 03.3 ha) were fenced at the six sites to exclude grazing livestock. Of the 254 ac (103.3 ha), 17.8 ac (7.2 ha) are riparian plant communities; the rest are sagebrush communities. Baseline grazed conditions of the riparian plant communities at the mitigation sites were measured prior to fencing. This report discusses results of the fourth year of a monitoring program implemented to document the response of vegetation and wildlife to the exclusion of livestock. Three criteria for determining success of the mitigation were established: plant height, vegetation density (bare ground), and vegetation diversity. By 1996, Prospector Spring, Upper Long`s Gulch, and Camp Kettle met the criteria. The DOE requested transfer of these sites to BLM for long-term oversight. The 1997 evaluation of the three remaining sites, discussed in this report, showed two sites (Houston Gulch and Lower Long`s Gulch) meet the criteria. The DOE will request the transfer of these two sites to the BLM for long-term oversight. The last remaining site, Sage Hen Spring, has met only two of the criteria (percent bare ground and plant height). The third criterion, vegetation diversity, was not met. The vegetation appears to be changing from predominantly wet species to drier upland species, although the reason for this change is uncertain. It may be due to below-normal precipitation in recent years, diversion of water from the spring to the stock tank, or manipulation of the hydrology farther up gradient.

  3. Wildlife Impact Assessment and Summary of Previous Mitigation Related to Hydroelectric Projects in Montana, Volume One, Libby Dam Project, Operator, U.S. Army Corps of Engineers.

    SciTech Connect

    Yde, Chris A.

    1984-10-01

    This assessment addresses the impacts to the wildlife populations and wildlife habitats due to the Libby Dam project on the Kootenai River and previous mitigation of these losses. The current assessment documents the best available information concerning the impacts to the wildlife populations inhabiting the project area prior to construction of the dam and creation of the reservoir. Many of the impacts reported in this assessment differ from those contained in the earlier document compiled by the Fish and Wildlife Service; however, this document is a thorough compilation of the available data (habitat and wildlife) and, though conservative, attempts to realistically assess the impacts related to the Libby Dam project. Where appropriate the impacts resulting from highway construction and railroad relocation were included in the assessment. This was consistent with the previous assessments.

  4. Herbicide treatment effects on properties of mountain big sagebrush soils after fourteen years

    NASA Technical Reports Server (NTRS)

    Burke, I. C.; Reiners, W. A.; Sturges, D. L.; Matson, P. A.

    1987-01-01

    The effects of sagebrush conversion on the soil properties of a high-elevation portion of the Western Intermountain Sagebrush Steppe (West, 1983) are described. Changes were found in only a few soil chemical properties after conversion to grassland. It was found that surface concentrations of N were lower under grass vegetation than under undisturbed vegetation. Undershrub net N mineralization rates were higher under shrubs in the sagebrush vegetation than under former shrubs in the grass vegetation.

  5. Uncertainty in future agro-climate projections in the United States and benefits of greenhouse gas mitigation

    NASA Astrophysics Data System (ADS)

    Monier, Erwan; Xu, Liyi; Snyder, Richard

    2016-05-01

    Scientific challenges exist on how to extract information from the wide range of projected impacts simulated by crop models driven by climate ensembles. A stronger focus is required to understand and identify the mechanisms and drivers of projected changes in crop yield. In this study, we investigate the robustness of future projections of five metrics relevant to agriculture stakeholders (accumulated frost days, dry days, growing season length, plant heat stress and start of field operations). We use a large ensemble of climate simulations by the MIT IGSM-CAM integrated assessment model that accounts for the uncertainty associated with different emissions scenarios, climate sensitivities, and representations of natural variability. By the end of the century, the US is projected to experience fewer frosts, a longer growing season, more heat stress and an earlier start of field operations—although the magnitude and even the sign of these changes vary greatly by regions. Projected changes in dry days are shown not to be robust. We highlight the important role of natural variability, in particular for changes in dry days (a precipitation-related index) and heat stress (a threshold index). The wide range of our projections compares well the CMIP5 multi-model ensemble, especially for temperature-related indices. This suggests that using a single climate model that accounts for key sources of uncertainty can provide an efficient and complementary framework to the more common approach of multi-model ensembles. We also show that greenhouse gas mitigation has the potential to significantly reduce adverse effects (heat stress, risks of pest and disease) of climate change on agriculture, while also curtailing potentially beneficial impacts (earlier planting, possibility for multiple cropping). A major benefit of climate mitigation is potentially preventing changes in several indices to emerge from the noise of natural variability, even by 2100. This has major implications

  6. Mitigation effectiveness for improving nesting success of greater sage-grouse influenced by energy development

    PubMed Central

    Kirol, Christopher P.; Sutphin, Andrew L.; Bond, Laura; Fuller, Mark R.; Maechtle, Thomas L.

    2015-01-01

    Sagebrush (Artemisia spp.) habitats being developed for oil and gas reserves are inhabited by sagebrush obligate species—including the greater sage-grouse (Centrocercus urophasianus; sage-grouse) that is currently being considered for protection under the U.S. Endangered Species Act. Numerous studies suggest increasing oil and gas development may exacerbate species extinction risks. Therefore, there is a great need for effective on-site mitigation to reduce impacts to co-occurring wildlife such as sage-grouse. Nesting success is a primary factor in avian productivity and declines in nesting success are also thought to be an important contributor to population declines in sage-grouse. From 2008 to 2011 we monitored 296 nests of radio-marked female sage-grouse in a natural gas (NG) field in the Powder River Basin, Wyoming, USA and compared nest survival in mitigated and non-mitigated development areas and relatively unaltered areas to determine if specific mitigation practices were enhancing nest survival. Nest survival was highest in relatively unaltered habitats followed by mitigated, and then non-mitigated NG areas. Reservoirs used for holding NG discharge water had the greatest support as having a direct relationship to nest survival. Within a 5 km2 area surrounding a nest, the probability of nest failure increased by about 15% for every 1.5 km increase in reservoir water edge. Reducing reservoirs was a mitigation focus and sage-grouse nesting in mitigated areas were exposed to almost half of the amount of water edge compared to those in non-mitigated areas. Further, we found that an increase in sagebrush cover was positively related to nest survival. Consequently, mitigation efforts focused on reducing reservoir construction and reducing surface disturbance, especially when the surface disturbance results in sagebrush removal, are important to enhancing sage-grouse nesting success. PMID:26366042

  7. Mitigation effectiveness for improving nesting success of greater sage-grouse influenced by energy development

    USGS Publications Warehouse

    Kirol, Christopher P.; Sutphin, Andrew L.; Bond, Laura S.; Fuller, Mark R.; Maechtle, Thomas L.

    2015-01-01

    Sagebrush Artemisia spp. habitats being developed for oil and gas reserves are inhabited by sagebrush obligate species — including the greater sage-grouse Centrocercus urophasianus (sage-grouse) that is currently being considered for protection under the U.S. Endangered Species Act. Numerous studies suggest increasing oil and gas development may exacerbate species extinction risks. Therefore, there is a great need for effective on-site mitigation to reduce impacts to co-occurring wildlife such as sage-grouse. Nesting success is a primary factor in avian productivity and declines in nesting success are also thought to be an important contributor to population declines in sage-grouse. From 2008 to 2011 we monitored 296 nests of radio-marked female sage-grouse in a natural gas (NG) field in the Powder River Basin, Wyoming, USA, and compared nest survival in mitigated and non-mitigated development areas and relatively unaltered areas to determine if specific mitigation practices were enhancing nest survival. Nest survival was highest in relatively unaltered habitats followed by mitigated, and then non-mitigated NG areas. Reservoirs used for holding NG discharge water had the greatest support as having a direct relationship to nest survival. Within a 5-km2 area surrounding a nest, the probability of nest failure increased by about 15% for every 1.5 km increase in reservoir water edge. Reducing reservoirs was a mitigation focus and sage-grouse nesting in mitigated areas were exposed to almost half of the amount of water edge compared to those in non-mitigated areas. Further, we found that an increase in sagebrush cover was positively related to nest survival. Consequently, mitigation efforts focused on reducing reservoir construction and reducing surface disturbance, especially when the surface disturbance results in sagebrush removal, are important to enhancing sage-grouse nesting success.

  8. Mitigation effectiveness for improving nesting success of greater sage-grouse influenced by energy development.

    PubMed

    Kirol, Christopher P; Sutphin, Andrew L; Bond, Laura; Fuller, Mark R; Maechtle, Thomas L

    Sagebrush (Artemisia spp.) habitats being developed for oil and gas reserves are inhabited by sagebrush obligate species-including the greater sage-grouse (Centrocercus urophasianus; sage-grouse) that is currently being considered for protection under the U.S. Endangered Species Act. Numerous studies suggest increasing oil and gas development may exacerbate species extinction risks. Therefore, there is a great need for effective on-site mitigation to reduce impacts to co-occurring wildlife such as sage-grouse. Nesting success is a primary factor in avian productivity and declines in nesting success are also thought to be an important contributor to population declines in sage-grouse. From 2008 to 2011 we monitored 296 nests of radio-marked female sage-grouse in a natural gas (NG) field in the Powder River Basin, Wyoming, USA and compared nest survival in mitigated and non-mitigated development areas and relatively unaltered areas to determine if specific mitigation practices were enhancing nest survival. Nest survival was highest in relatively unaltered habitats followed by mitigated, and then non-mitigated NG areas. Reservoirs used for holding NG discharge water had the greatest support as having a direct relationship to nest survival. Within a 5 km(2) area surrounding a nest, the probability of nest failure increased by about 15% for every 1.5 km increase in reservoir water edge. Reducing reservoirs was a mitigation focus and sage-grouse nesting in mitigated areas were exposed to almost half of the amount of water edge compared to those in non-mitigated areas. Further, we found that an increase in sagebrush cover was positively related to nest survival. Consequently, mitigation efforts focused on reducing reservoir construction and reducing surface disturbance, especially when the surface disturbance results in sagebrush removal, are important to enhancing sage-grouse nesting success.

  9. Economic aspects of hydro geological risk mitigation measures management in Italy: the ReNDiS project experience

    NASA Astrophysics Data System (ADS)

    Spizzichino, D.; Campobasso, C.; Gallozzi, P. L.; Dessi', B.; Traversa, F.

    2009-04-01

    ReNDiS project is a useful tool for monitoring, analysis and management of information data on mitigation measures and restoration works of soil protection at national scale. The main scope of the project, and related monitoring activities, is to improve the knowledge about the use of national funds and efforts against floods and landslides risk and, as a consequence, to better address the preventive policies in future. Since 1999 after the disastrous mudflow event occurred in Sarno in 1998, which caused the loss of 160 human lives, an extraordinary effort was conducted by the Italian Government in order to promote preventive measures against the hydro geological risk over the entire Italian territory. The Italian Ministry for the Environment promoted several and annual soil protection programmes. The ReNDiS project (Repertory of mitigation measures for National Soil Protection) is carried out by ISPRA - Institute for Environmental protection and Research, with the aim of improving the knowledge about the results of preventive policies against floods and landslides in order to better address national funds as requested by the Minister itself. The repertory is composed by a main archive and two secondary interface, the first for direct data management (ReNDiS-ist) and the latter (ReNDiS-web) for the on-line access and public consultation. At present, ReNDiS database contains about 3000 records concerning those programmes, focused on restoration works but including also information on landslide typologies and processes. The monitoring project is developed taking into account all the information about each step of every mitigation measure from the initial funding phase until the end of the work. During present work, we have statistically analyzed the ReNDiS database in order to highlight the conformity between the characteristic and type of the hazard (identified in a specific area) and the corresponding mitigation measures adopted for risk reduction. Through specific

  10. Outplanting Wyoming big sagebrush following wldfire: stock performance and economics

    USGS Publications Warehouse

    Dettweiler-Robinson, Eva; Bakker, Jonathan D.; Evans, James R.; Newsome, Heidi; Davies, G. Matt; Wirth, Troy A.; Pyke, David A.; Easterly, Richard T.; Salstrom, Debra; Dunwiddle, Peter W.

    2013-01-01

    mycorrhizal amendments. Most mortality occurred during the first year after planting; this period is the greatest barrier to establishment of sagebrush stock. The proportion of healthy stock in Year 1 was positively related to subsequent survival to Year 3. Costs were minimized, and survival maximized, by planting container stock or bare-root stock with a hydrogel dip. Our results indicate that outplanting is an ecologically and economically effective way of establishing Wyoming big sagebrush. However, statistical analyses were limited by the fact that data about initial variables (stock quality, site conditions, weather) were often unrecorded and by the lack of a replicated experimental design. Sharing consistent data and using an experimental approach would help land managers and restoration practitioners maximize the success of outplanting efforts.

  11. Small-Footprint Lidar Estimations of Sagebrush Canopy Characteristics

    SciTech Connect

    Matthew Anderson; Ryan Hruska; Jessica Mitchell; Nancy Glenn

    2011-05-01

    Separating lidar returns for use in determining canopy height and shape in low-height vegetation is difficult because the vegetation canopy return is often close to the ground return in time and space. In addition, height underestimation is likely exacerbated in sparsely vegetated shrub ecosystems. This study compares lidar point-cloud data to sagebrush canopy characteristics measured in the field. It was determined that cumulative prediction error could account for as much as 35.6% of the average height and 37.4% of the average canopy area of shrubs sampled. When scaling from the individual shrub scale to coarser scales, prediction error averaged over a number of shrubs decreases as observation numbers increase. High density (in this case an average of 9.46 returns per m2), small footprint lidar (in this case a footprint diameter of 18 cm at nadir) may provide sufficient accuracy for characterizing sagebrush structure and cover and estimating biomass across landscapes.

  12. Big sagebrush seed storage. Forest Service research note

    SciTech Connect

    Welch, B.L.; Briggs, S.F.; Johansen, J.H.

    1996-12-01

    Big sagebrush (Artemisia tridentata Nutt.) seeds were stored in three different environments; cool, constant temperature (refrigerator 10 degs. C); room temperature (14 to 24 degs. C); and a nonheated warehouse (-28 to +44 degs. C). In all three cases, humidity was held constant and equal. Significant drop in seed viability occurred first in the seed stored in the nonheated warehouse, followed by seed stored at room temperatures, and then seed stored at cool temperatures. It appeared from this study and studies by others that humidity control is more important to maintaining seed viability than temperature control. The old adage simply states `store seeds in a cool and dry place` - but first make sure the seeds have been properly dried. Drying sagebrush seed during the cool, wet weather of the harvesting period creates special challenges to the producer.

  13. Methane emission from ruminants and solid waste: A critical analysis of baseline and mitigation projections for climate and policy studies

    NASA Astrophysics Data System (ADS)

    Matthews, E.

    2012-12-01

    Current and projected estimates of methane (CH4) emission from anthropogenic sources are numerous but largely unexamined or compared. Presented here is a critical appraisal of CH4 projections used in climate-chemistry and policy studies. We compare emissions for major CH4 sources from several groups, including our own new data and RCP projections developed for climate-chemistry models for the next IPCC Assessment Report (AR5). We focus on current and projected baseline and mitigation emissions from ruminant animals and solid waste that are both predicted to rise dramatically in coming decades, driven primarily by developing countries. For waste, drivers include increasing urban populations, higher per capita waste generation due to economic growth and increasing landfilling rates. Analysis of a new global data base detailing waste composition, collection and disposal indicates that IPCC-based methodologies and default data overestimate CH4 emission for the current period which cascades into substantial overestimates in future projections. CH4 emission from solid waste is estimated to be ~10-15 Tg CH4/yr currently rather than the ~35 Tg/yr often reported in the literature. Moreover, emissions from developing countries are unlikely to rise rapidly in coming decades because new management approaches, such as sanitary landfills, that would increase emissions are maladapted to infrastructures in these countries and therefore unlikely to be implemented. The low current emission associated with solid waste (~10 Tg), together with future modest growth, implies that mitigation of waste-related CH4 emission is a poor candidate for slowing global warming. In the case of ruminant animals (~90 Tg CH4/yr currently), the dominant assumption driving future trajectories of CH4 emission is a substantial increase in meat and dairy consumption in developing countries to be satisfied by growing animal populations. Unlike solid waste, current ruminant emissions among studies exhibit a

  14. Is fire exclusion in mountain big sagebrush communities prudent? Soil nutrient, plant diversity, and arthropod response to burning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fire has largely been excluded from many mountain big sagebrush (Artemisia tridentata Nutt. ssp. vaseyana (Rydb.) Beetle) communities. Land and wildlife managers are especially reluctant to reintroduce fire in mountain big sagebrush plant communities, especially those communities without significan...

  15. Evaluation of the varying Naturally Occurring Asbestos mitigation measures at School and Commercial construction projects in California

    NASA Astrophysics Data System (ADS)

    Kalika, S.

    2012-12-01

    In commercial development or K-12 school construction, project sites are often purchased and much of the planning process completed prior to an assessment of the soils proposed for excavation or potential offhaul. Geologic maps, while initially helpful for identifying potential hazards such as landslides and earthquake faults, are less helpful in the identification of naturally occurring hazardous minerals, such as the seven regulated minerals currently classified as asbestos. Geologic maps identify mafic and ultramafic bedrock zones; however, a skilled geologist with knowledge of asbestos hazards will further visualize the earth-shaping processes that may have resulted in the deposition of naturally occurring asbestos in locations outside mapped ultramafic zones including the base of an alluvial fan or within streambed channels. When sampled as an afterthought prior to disposal, property owners are surprised by the budget-crippling costs of waste handling and disposal of NOA, as well as mitigations required to protect the health of construction workers, the public, and future site occupants. The California Air Resources Board (CARB) continues to lead the way in evaluation and regulation of NOA, through development of the CARB 435 preparation and laboratory analytical method, local enforcement of the Asbestos Airborne Toxic Control Measure for Construction, Grading, Quarrying, and Surface Mining Operations (ATCM), and implementation of dust control measures to protect public health. A thorough site evaluation and construction design includes utilization of the sampling methods developed by the California Geological Survey, laboratory analytical methods within CARB 435, and mitigation measures required by CARB, DTSC, and OSHA for the protection of worker and public health after NOA is discovered. The site evaluation should additionally include an assessment of the future site usage, as regulations differ based on potential health affects to future occupants

  16. Stratton Sagebrush Hydrology Study Area: An annotated bibliography of research conducted 1968-1990

    USGS Publications Warehouse

    Burgess, Leah M.; Schoenecker, Kathryn A.

    2004-01-01

    This annotated bibliography provides an overview of research projects conducted on the Stratton Sagebrush Hydrology Study Area (Stratton) since its designation as such in 1967. Sources include the Rocky Mountain Forest and Range Experiment Station records storage room, Laramie, Wyoming, the USGS and USFS online reference libraries, and scientific journal databases at the University of Wyoming and Colorado State University. This annotated bibliography summarizes publications from research conducted at Stratton during the prime of its tenure as a research lab from 1968 to 1990. In addition, an appendix is included that catalogues all data on file at the Rocky Mountain Forest and Range Experiment Station in Laramie, Wyoming. Each file folder was searched and its contents recorded here for the researcher seeking original data sets, charts, photographs and records.

  17. Historical fire regimes, reconstructed from land-survey data, led to complexity and fluctuation in sagebrush landscapes.

    PubMed

    Bukowski, Beth E; Baker, William L

    2013-04-01

    Sagebrush landscapes provide habitat for Sage-Grouse and other sagebrush obligates, yet historical fire regimes and the structure of historical sagebrush landscapes are poorly known, hampering ecological restoration and management. To remedy this, General Land Office Survey (GLO) survey notes were used to reconstruct over two million hectares of historical vegetation for four sagebrush-dominated (Artemisia spp.) study areas in the western United States. Reconstructed vegetation was analyzed for fire indicators used to identify historical fires and reconstruct historical fire regimes. Historical fire-size distributions were inverse-J shaped, and one fire > 100 000 ha was identified. Historical fire rotations were estimated at 171-342 years for Wyoming big sagebrush (A. tridentata ssp. wyomingensis) and 137-217 years for mountain big sagebrush (A. tridentata ssp. vaseyana). Historical fire and patch sizes were significantly larger in Wyoming big sagebrush than mountain big sagebrush, and historical fire rotations were significantly longer in Wyoming big sagebrush than mountain big sagebrush. Historical fire rotations in Wyoming were longer than those in other study areas. Fine-scale mosaics of burned and unburned area and larger unburned inclusions within fire perimeters were less common than in modern fires. Historical sagebrush landscapes were dominated by large, contiguous areas of sagebrush, though large grass-dominated areas and finer-scale mosaics of grass and sagebrush were also present in smaller amounts. Variation in sagebrush density was a common source of patchiness, and areas classified as "dense" made up 24.5% of total sagebrush area, compared to 16.3% for "scattered" sagebrush. Results suggest significant differences in historical and modern fire regimes. Modern fire rotations in Wyoming big sagebrush are shorter than historical fire rotations. Results also suggest that historical sagebrush landscapes would have fluctuated, because of infrequent

  18. Space Radiation Cancer Risk Projections for Exploration Missions: Uncertainty Reduction and Mitigation

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis; Badhwar, Gautam; Saganti, Premkumar; Schimmerling, Walter; Wilson, John; Peterson, Leif; Dicello, John

    2002-01-01

    In this paper we discuss expected lifetime excess cancer risks for astronauts returning from exploration class missions. For the first time we make a quantitative assessment of uncertainties in cancer risk projections for space radiation exposures. Late effects from the high charge and energy (HZE) ions present in the galactic cosmic rays including cancer and the poorly understood risks to the central nervous system constitute the major risks. Methods used to project risk in low Earth orbit are seen as highly uncertain for projecting risks on exploration missions because of the limited radiobiology data available for estimating HZE ion risks. Cancer risk projections are described as a product of many biological and physical factors, each of which has a differential range of uncertainty due to lack of data and knowledge. Monte-Carlo sampling from subjective error distributions represents the lack of knowledge in each factor to quantify risk projection overall uncertainty. Cancer risk analysis is applied to several exploration mission scenarios. At solar minimum, the number of days in space where career risk of less than the limiting 3% excess cancer mortality can be assured at a 95% confidence level is found to be only of the order of 100 days.

  19. Selection of a Propulsion System for Jason-CS in Order to Fulfil Space Debris Mitigation Requirements for ESA Project

    NASA Astrophysics Data System (ADS)

    Barthen, Bjoern; Beck, Jan; Duske, Norbert; Francis, Richard; Koeble, Klaus-Peter

    2013-08-01

    For two decades, the mission Topex-Poseidon and its successor mission Jason/Ocean Surface Topography Mission provide satellite data for the analysis of sea topography, wave heights and wind speeds. For the continuation of service mission Jason-CS, ESA's choice to rely on the CryoSat-2 platform design permits re-use of a well established product and proven processes. An industrial consortium led by Astrium GmbH has built the satellite CryoSat-2 which for over three years successfully provides altimeter measurements of the polar ice cap thickness evolutions. This platform is perfectly suited for accommodation of the Jason-CS instruments. Unlike CryoSat-2, Jason-CS is required to perform a post-mission disposal according to the Requirements for Space Debris Mitigation for ESA Projects. This paper discusses different technologies in terms of efficiency, feasibility and accommodation, aiming at minimizing necessary spacecraft design modifications.

  20. Rainwater Wildlife Area Habitat Evaluation Procedures Report; A Columbia Basin Wildlife Mitigation Project.

    SciTech Connect

    Childs, Allen B.

    2004-01-01

    The 8,768 acre Rainwater Wildlife Area was acquired in September 1998 by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) through an agreement with Bonneville Power Administration (BPA) to partially offset habitat losses associated with construction of the John Day and McNary hydroelectric facilities on the mainstem Columbia River. U.S. Fish and Wildlife Service (USFWS) Habitat Evaluation Procedures (HEP) were used to determine the number of habitat units credited to BPA for acquired lands. Upland and riparian forest, upland and riparian shrub, and grassland cover types are evaluated in this study. Targeted wildlife species include downy woodpecker (Picoides pubescens), black-capped chickadee (Parus atricopillus), blue grouse (Dendragapus obscurus), great blue heron (Ardea herodias), yellow warbler (Dendroica petechia), mink (Mustela vison), and Western meadowlark (Sturnella neglecta). Habitat surveys were conducted in 1998 and 1999 in accordance with published HEP protocols and included 65,300, 594m{sup 2}2 plots, and 112 one-tenth-acre plots. Between 153.3 and 7,187.46 acres were evaluated for each target wildlife mitigation species. Derived habitat suitability indices were multiplied by corresponding cover-type acreages to determine the number of habitat units for each species. The total baseline habitat units credited to BPA for the Rainwater Wildlife Area and its seven target species is 5,185.3 habitat units. Factors limiting habitat suitability are related to the direct, indirect, and cumulative effects of past livestock grazing, road construction, and timber harvest which have simplified the structure, composition, and diversity of native plant communities. Alternatives for protecting and improving habitat suitability include exclusion of livestock grazing, road de-commissioning/obliteration, reforestation and thinning, control of competing and unwanted vegetation (including noxious weeds), reestablishing displaced or reduced native

  1. Air pollution prevention through urban heat island mitigation: An update on the urban heat island pilot project

    SciTech Connect

    Gorsevski, V.; Taha, H.; Quattrochi, D.; Luvall, J.

    1998-07-01

    Urban heat islands increase the demand for cooling energy and accelerate the formation of smog. They are created when natural vegetation is replaced by heat-absorbing surfaces such as building roofs and walls, parking lots, and streets. Through the implementation of measures designed to mitigate the urban heat island, communities can decrease their demand for energy and effectively cool the metropolitan landscape. In addition to the economic benefits, using less energy leads to reductions in emission of CO{sub 2}--a greenhouse gas--as well as ozone (smog) precursors such as NOx and VOCs. Because ozone is created when NOx and VOCs photochemically combine with heat and solar radiation, actions taken to lower ambient air temperature can significantly reduce ozone concentrations in certain areas. Measures to reverse the urban heat island include afforestation and the widespread use of highly reflective surfaces. To demonstrate the potential benefits of implementing these measures, EPA has teamed up with NASA and LBNL to initiate a pilot project with three US cities. As part of the pilot, NASA will use remotely-sensed data to quantify surface temperature, albedo, the thermal response number and NDVI vegetation of each city. This information will be used by scientists at Lawrence Berkeley National Laboratory (LBNL) along with other data as inputs to model various scenarios that will help quantify the potential benefits of urban heat island mitigation measures in terms of reduced energy use and pollution. This paper will briefly describe this pilot project and provide an update on the progress to date.

  2. Post-fire recovery of sagebrush communities: Assessment using SPOT5 and very large-scale aerial imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Much interest lies in the long-term recovery rates of sagebrush communities after fire in the western USA as sagebrush communities comprise millions of hectares of rangelands and important wildlife habitat. Little is known about post-fire changes in sagebrush canopy cover over time, especially at a...

  3. The role of PIXE in the AIRUSE project "testing and development of air quality mitigation measures in Southern Europe"

    NASA Astrophysics Data System (ADS)

    Lucarelli, F.; Chiari, M.; Calzolai, G.; Giannoni, M.; Nava, S.; Udisti, R.; Severi, M.; Querol, X.; Amato, F.; Alves, C.; Eleftheriadis, K.

    2015-11-01

    The European AIRUSE LIFE+ project aims at testing existing and future mitigation measures and developing new strategies for the improvement of air quality in Southern European countries. The project involves public and private institutions of Spain, UK, Portugal, Italy and Greece. PM10 and PM2.5 daily samplings have been scheduled for one year (from January 2013) in four urban sites, Barcelona (Spain), Porto (Portugal), Athens (Greece), and Florence (Italy). The daily data set gives an overall representative picture of the PM composition in these urban sites. The project includes also samplings with hourly resolution for limited periods. Hourly samples give an easier identification of the different aerosol sources due to the capability of tracking rapid changes as the ones occurring in many particulate emissions as well as in atmospheric transport and dilution processes. The role of PIXE technique within the project has been described in this paper. The comparison of data obtained by different techniques (e.g. PIXE, IC and ICP) assured a quality assurance control on the huge quantity of data obtained in the project. PIXE data together with those obtained by other analytical techniques have been used to reconstruct the average aerosol chemical composition and in Positive Matrix Factorization (PMF) analysis to determine the aerosol sources and their impact on PM10 and PM2.5 mass. In particular the high sensitivity of PIXE for all the crustal elements (including Si which is not easily detected by ICP) allows the direct determination of the Saharan dust contribution. Finally, the 1-h resolution data, which can be obtained only by PIXE, confirmed and reinforced the identification of the aerosol sources obtained by the daily concentrations.

  4. Fluor-Hanford 3013 Digital Radiography Dead Zone Mitigation Project Pressure Test Report

    SciTech Connect

    Gibbs, K.

    2003-11-21

    The use of digital radiographic (DR) measurement of lid deflection as an indication of pressurization of the 3013 inner can was first reported by the Savannah River Technology Center (SRTC). The conclusions of this report were that for cans with relatively large initial concavity, lid deflection could be used to meet the 3013 standard (DOE-STD-3013-2000) requirement for a nondestructive indication of a pressurization of 100 psig. During acceptance testing of the system in the Spring of 2003, it was confirmed that for some cans the DR measured lid deflection could become insensitive to the change in lid deflection when compared to actual mechanical measurements. The basic explanation of this phenomenon is that characteristics of the lid geometry such as tilt and wobble can obfuscate the bottom of the lid where the deflection is measured. The purpose of this report is to document the results of the pressure testing and the efficacy of the alternate imaging and analysis methods developed to mitigate the dead zone problem. Prior to review of the results, a review of the current method and an introduction to the newly developed methods and techniques is provided.

  5. Mitigating Cost and Schedule Risk from Environmental Litigation Over DOD Projects in Hawaii

    DTIC Science & Technology

    2013-03-01

    Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave blank) 2 . REPORT DATE...SECURITY CLASSIFICATION OF ABSTRACT Unclassified 20. LIMITATION OF ABSTRACT UU NSN 7540-01-280-5500 Standard Form 298 (Rev. 2 -89) Prescribed... 2 C. RESEARCH QUESTIONS .............................................................................3 D. BENEFITS OF

  6. Effects of using winter grazing as a fuel treatment on Wyoming big sagebrush plant communities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    More frequent wildfires and incidences of mega-fires have increased the pressure for fuel treatments in sagebrush (Artemisia) communities. Winter grazing has been one of many fuel treatments proposed for Wyoming big sagebrush (A. tridentata Nutt. subsp. wyomingensis Beetle and A. Young) communitie...

  7. Chemical control of sand sagebrush: implications for lesser prairie chicken habitat.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Traditional management of sand sagebrush rangelands has emphasized sagebrush control to increase forage for livestock. Concerns over declining lesser prairie–chicken (LPC) populations have lead to increased scrutiny over the use of herbicides to control shrubs. Our objective was to describe change...

  8. Herbicide Control of Sand Sagebrush: Impacts on Lesser Prairie Chicken Habitat.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Traditional management of rangelands dominated by sand sagebrush (Artemisia filifolia) has centered around removal of sagebrush to increase forage for livestock production. There has been both concern and support over shrub control strategies when managing lesser prairie-chicken (LPC, Tympanuchus p...

  9. Chemical control of sand sagebrush: implications for lesser prairie-chicken habitat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Traditional management of rangelands dominated by sand sagebrush (Artemisia filifolia) has emphasized sagebrush control to increase forage for livestock. Since the 1950’s, shrub removal has been primarily achieved with herbicides. Concerns about the declining lesser prairie-chicken (Tympanuchus pa...

  10. Conifer removal in the sagebrush steppe: why, when, where, and how?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over the past 150 years, juniper and pine woodlands have increased in both distribution and density across the sagebrush steppe of the Intermountain West. To restore sagebrush steppe plant communities the application of mechanical and prescribed fire treatments are used to remove the influence of e...

  11. Restoring big sagebrush after controlling encroaching western juniper with fire: aspect and subspecies effects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The need for restoration of shrubs is increasingly recognized around the world. In the western USA, restoration of mountain big sagebrush (Artemisia tridentata Nutt. ssp. vaseyana (Rydb.) Beetle) after controlling encroaching conifers is a priority to improve sagebrush-associated wildlife habitat. ...

  12. Evaluation of cultural methods for establishing Wyoming big sagebrush on mined lands

    SciTech Connect

    Cockrell, J.R.; Schuman, G.E.; Booth, D.T.

    1995-09-01

    Wyoming big sagebrush (Artemisia tridentata spp. wyomingensis) is one of the most widely distributed and adapted shrub species in Wyoming and the region. However, its reestablishment on mined lands has proven difficult because of low seedling vigor, its inability to compete with herbaceous species, poor seed quality, and altered edaphic conditions. Field research evaluating the effect of topsoil management, mulching practice, and plant competition have shown that all of these factors significantly influence early initial sagebrush establishment. Greater sagebrush establishment occurred on fresh topsoil compared to 5 year old stockpiled topsoil. Stubble and surface applied mulch and elimination of herbaceous species competition also significantly increased big sagebrush establishment in the first growing season. However, a cool, wet second year growing season (April-September) resulted in large increases in sagebrush seedling density across all treatments. These large increases resulted in some changes in response to imposed treatments; however, greater sagebrush seedling densities were still evident on fresh compared to stockpiled topsoil and competition still significantly reduced seedling density on the fresh topsoil treatment. Mulch type showed limited effects on sagebrush seedling density in the later phases of the study. This research indicated that big sagebrush seed viability may be longer than previously thought and that seed dormancy, safe site development, and climatic conditions play an important role in germination and establishment of this species.

  13. Mitigation of Selected Hanford Site Manhattan Project and Cold War Era Artifacts

    SciTech Connect

    Kennedy, Ellen P.; Harvey, David W.

    2006-09-08

    This document is the first time that Manhattan Project and Cold War era artifacts from the Hanford Site have been assembled within a publication. The publication presents photographic and written documentation of a number of Manhattan Project and Cold War era artifacts that were identified and tagged during assessment walk throughs of historic buildings on the Hanford Site but which could not be curated within the Hanford collection because they were too large for long-term storage and/or exhibit purposes or were radiologically contaminated. The significance of the artifacts in this publication and a proposed future appendix is based not on the individual significance of any single artifact but on their collective contribution to the science and engineering of creating plutonium and advancing nuclear technology in nuclear fuel and power.

  14. Using offsets to mitigate environmental impacts of major projects: A stakeholder analysis.

    PubMed

    Martin, Nigel; Evans, Megan; Rice, John; Lodhia, Sumit; Gibbons, Philip

    2016-09-01

    Global patterns of development suggest that as more projects are initiated, business will need to find acceptable measures to conserve biodiversity. The application of environmental offsets allows firms to combine their economic interests with the environment and society. This article presents the results of a multi-stakeholder analysis related to the design of offsets principles, policies, and regulatory processes, using a large infrastructure projects context. The results indicate that business was primarily interested in using direct offsets and other compensatory measures, known internationally as indirect offsets, to acquit their environmental management obligations. In contrast, the environmental sector argued that highly principled and scientifically robust offsets programs should be implemented and maintained for enduring environmental protection. Stakeholder consensus stressed the importance of offsets registers with commensurate monitoring and enforcement. Our findings provide instructive insights into the countervailing views of offsets policy stakeholders.

  15. Sagebrush ecosystem conservation and management: ecoregional assessment tools and models for the Wyoming Basins

    USGS Publications Warehouse

    Hanser, S.E.; Leu, M.; Knick, S.T.; Aldridge, C.L.

    2011-01-01

    The Wyoming Basins are one of the remaining strongholds of the sagebrush ecosystem. However, like most sagebrush habitats, threats to this region are numerous. This book adds to current knowledge about the regional status of the sagebrush ecosystem, the distribution of habitats, the threats to the ecosystem, and the influence of threats and habitat conditions on occurrence and abundance of sagebrush associated fauna and flora in the Wyoming Basins. Comprehensive methods are outlined for use in data collection and monitoring of wildlife and plant populations. Field and spatial data are integrated into a spatially explicit analytical framework to develop models of species occurrence and abundance for the egion. This book provides significant new information on distributions, abundances, and habitat relationships for a number of species of conservation concern that depend on sagebrush in the region. The tools and models presented in this book increase our understanding of impacts from land uses and can contribute to the development of comprehensive management and conservation strategies.

  16. Comparison of Unmanned Aerial Vehicle Platforms for Assessing Vegetation Cover in Sagebrush Steppe Ecosystems

    SciTech Connect

    Robert P. Breckenridge; Maxine Dakins; Stephen Bunting; Jerry Harbour; Sera White

    2011-09-01

    In this study, the use of unmanned aerial vehicles (UAVs) as a quick and safe method for monitoring biotic resources was evaluated. Vegetation cover and the amount of bare ground are important factors in understanding the sustainability of many ecosystems and assessment of rangeland health. Methods that improve speed and cost efficiency could greatly improve how biotic resources are monitored on western lands. Sagebrush steppe ecosystems provide important habitat for a variety of species (including sage grouse and pygmy rabbit). Improved methods are needed to support monitoring these habitats because there are not enough resource specialists or funds available for comprehensive ground evaluations. In this project, two UAV platforms, fixed wing and helicopter, were used to collect still-frame imagery to assess vegetation cover in sagebrush steppe ecosystems. This paper discusses the process for collecting and analyzing imagery from the UAVs to (1) estimate percent cover for six different vegetation types (shrub, dead shrub, grass, forb, litter, and bare ground) and (2) locate sage grouse using representative decoys. The field plots were located on the Idaho National Engineering (INL) site west of Idaho Falls, Idaho, in areas with varying amounts and types of vegetation cover. A software program called SamplePoint was used along with visual inspection to evaluate percent cover for the six cover types. Results were compared against standard field measurements to assess accuracy. The comparison of fixed-wing and helicopter UAV technology against field estimates shows good agreement for the measurement of bare ground. This study shows that if a high degree of detail and data accuracy is desired, then a helicopter UAV may be a good platform to use. If the data collection objective is to assess broad-scale landscape level changes, then the collection of imagery with a fixed-wing system is probably more appropriate.

  17. Using Unmanned Aerial Vehicles to Assess Vegetative Cover in Sagebrush Steppe Ecosytstems

    SciTech Connect

    Robert P. Breckenridge

    2005-09-01

    The Idaho National Laboratory (INL), in conjunction with the University of Idaho, is evaluating novel approaches for using unmanned aerial vehicles (UAVs) as a quicker and safer method for monitoring biotic resources. Evaluating vegetative cover is an important factor in understanding the sustainability of many ecosystems. In assessing vegetative cover, methods that improve accuracy and cost efficiency could revolutionize how biotic resources are monitored on western federal lands. Sagebrush steppe ecosystems provide important habitat for a variety of species, some of which are important indicator species (e.g., sage grouse). Improved methods are needed to support monitoring these habitats because there are not enough resource specialists or funds available for comprehensive ground evaluation of these ecosystems. In this project, two types of UAV platforms (fixed wing and helicopter) were used to collect still-frame imagery to assess cover in sagebrush steppe ecosystems. This paper discusses the process for collecting and analyzing imagery from the UAVs to (1) estimate total percent cover, (2) estimate percent cover for six different types of vegetation, and (3) locate sage grouse based on representative decoys. The field plots were located on the INL site west of Idaho Falls, Idaho, in areas with varying amounts and types of vegetative cover. A software program called SamplePoint developed by the U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS) was used to evaluate the imagery for percent cover for the six vegetation types (bare ground, litter, shrubs, dead shrubs, grasses, and forbs). Results were compared against standard field measurements to assess accuracy.

  18. Teetering on the edge or too late? Conservation and research issues for avifauna of sagebrush habitats

    USGS Publications Warehouse

    Knick, Steven T.; Dobkin, D.S.; Rotenberry, J.T.; Schroeder, M.A.; Vander Haegen, M.; Van Riper, C.

    2003-01-01

    Degradation, fragmentation, and loss of native sagebrush (Artemisia spp.) landscapes have imperiled these habitats and their associated avifauna. Historically, this vast piece of the Western landscape has been undervalued: even though more than 70% of all remaining sagebrush habitat in the United States is publicly owned, <3% of it is protected as federal reserves or national parks. We review the threats facing birds in sagebrush habitats to emphasize the urgency for conservation and research actions, and synthesize existing information that forms the foundation for recommended research directions. Management and conservation of birds in sagebrush habitats will require more research into four major topics: (1) identification of primary land-use practices and their influence on sagebrush habitats and birds, (2) better understanding of bird responses to habitat components and disturbance processes of sagebrush ecosystems, (3) improved hierarchical designs for surveying and monitoring programs, and (4) linking bird movements and population changes during migration and wintering periods to dynamics on the sagebrush breeding grounds. This research is essential because we already have seen that sagebrush habitats can be altered by land use, spread of invasive plants, and disrupted disturbance regimes beyond a threshold at which natural recovery is unlikely. Research on these issues should be instituted on lands managed by state or federal agencies because most lands still dominated by sagebrush are owned publicly. In addition to the challenge of understanding shrubsteppe bird-habitat dynamics, conservation of sagebrush landscapes depends on our ability to recognize and communicate their intrinsic value and on our resolve to conserve them.

  19. Ural-Tweed Bighorn Sheep Wildlife Mitigation Project, 1986 Annual Report.

    SciTech Connect

    Yde, Chris A.; Summerfield, Bob; Young, Lewis

    1987-02-01

    This report summarizes the results of the project activities from September 1, 1984 to December 31, 1986. To date, habitat treatments have been initiated on eight areas. The treatments include selective slash and burn, prescribed fire and fertilization. Inclement weather precluded the completion of the prescribed burns scheduled during fall 1985 and fall 1986. The lower Stonehill prescribed fire was rescheduled from fall 1985 to spring 1986 with the burn accomplished, producing varied results. Extensive pretreatment vegetative information has been collected from all units scheduled for habitat manipulations. Additionally, future projects have been delineated for other areas frequented by bighorn sheep. Ten adult bighorn sheep (5 ewes and 5 rams) have been fitted with radio transmitters. Systematic aerial and ground surveys were utilized to monitor the movements and seasonal habitat preferences of the instrumented sheep. Age and sex information was gathered whenever possible to aid in the development of a population model, Monthly pallet group collections were initiated in May 1985 to provide samples for 2.6 diaminopimetic acid (DAPA), food habits and lungworm larvae analysis. The majority of the data analysis is ongoing and will be presented in later reports.

  20. The Space Geodesy Project and Radio Frequency Interference Characterization and Mitigation

    NASA Technical Reports Server (NTRS)

    Lawrence, Hilliard M.; Beaudoin, C.; Corey, B. E.; Tourain, C. L.; Petrachenko, B.; Dickey, John

    2013-01-01

    The Space Geodesy Project (SGP) development by NASA is an effort to co-locate the four international geodetic techniques Satellite Laser Ranging (SLR) and Lunar Laser Ranging (LLR), Very Long Baseline Interferometry (VLBI), Global Navigation Satellite System (GNSS), and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) into one tightly referenced campus and coordinated reference frame analysis. The SGP requirement locates these stations within a small area to maintain line-of-sight and frequent automated survey known as the vector tie system. This causes a direct conflict with the new broadband VLBI technique. Broadband means 2-14 GHz, and RFI susceptibility at -80 dBW or higher due to sensitive RF components in the front end of the radio receiver.

  1. Simulated big sagebrush regeneration supports predicted changes at the trailing and leading edges of distribution shifts

    USGS Publications Warehouse

    Schlaepfer, Daniel R.; Taylor, Kyle A.; Pennington, Victoria E.; Nelson, Kellen N.; Martin, Trace E.; Rottler, Caitlin M.; Lauenroth, William K.; Bradford, John B.

    2015-01-01

    Many semi-arid plant communities in western North America are dominated by big sagebrush. These ecosystems are being reduced in extent and quality due to economic development, invasive species, and climate change. These pervasive modifications have generated concern about the long-term viability of sagebrush habitat and sagebrush-obligate wildlife species (notably greater sage-grouse), highlighting the need for better understanding of the future big sagebrush distribution, particularly at the species' range margins. These leading and trailing edges of potential climate-driven sagebrush distribution shifts are likely to be areas most sensitive to climate change. We used a process-based regeneration model for big sagebrush, which simulates potential germination and seedling survival in response to climatic and edaphic conditions and tested expectations about current and future regeneration responses at trailing and leading edges that were previously identified using traditional species distribution models. Our results confirmed expectations of increased probability of regeneration at the leading edge and decreased probability of regeneration at the trailing edge below current levels. Our simulations indicated that soil water dynamics at the leading edge became more similar to the typical seasonal ecohydrological conditions observed within the current range of big sagebrush ecosystems. At the trailing edge, an increased winter and spring dryness represented a departure from conditions typically supportive of big sagebrush. Our results highlighted that minimum and maximum daily temperatures as well as soil water recharge and summer dry periods are important constraints for big sagebrush regeneration. Overall, our results confirmed previous predictions, i.e., we see consistent changes in areas identified as trailing and leading edges; however, we also identified potential local refugia within the trailing edge, mostly at sites at higher elevation. Decreasing

  2. USGS: providing scientific understanding of the sagebrush biome

    USGS Publications Warehouse

    ,

    2005-01-01

    Early explorers wrote about the vast sea of sagebrush that stretched in front of them. Today, the consequences of land-use practices, invasion by exotic plants, and altered disturbance regimes have touched virtually all of these seemingly endless expanses. Increasing human populations in the western United States, the infrastructure necessary to support these populations, and a growing demand for natural resources exert a large influence. Changes within the biome have resulted in its designation as one of the most endangered ecosystems in North America.

  3. Earthquake and Tsunami Disaster Mitigation in The Marmara Region and Disaster Education in Turkey (SATREPS Project: Science and Technology Research Partnership for Sustainable Development by JICA-JST)

    NASA Astrophysics Data System (ADS)

    Kaneda, Yoshiyuki

    2015-04-01

    Earthquake and Tsunami Disaster Mitigation in The Marmara Region and Disaster Education in Turkey (SATREPS Project: Science and Technology Research Partnership for Sustainable Development by JICA-JST) Yoshiyuki KANEDA Disaster mitigation center Nagoya University/ Japan Agency for Marine-Earth Science and Technology (JAMSTEC) Mustafa ELDIK Boğaziçi University, Kandilli Observatory and       Earthquake Researches Institute (KOERI) and Members of SATREPS Japan-Turkey project The target of this project is the Marmara Sea earthquake after the Izmit (Kocaeli) Earthquake 1999 along to the North Anatolian fault. According to occurrences of historical Earthquakes, epicenters have moved from East to West along to the North Anatolian Fault. There is a seismic gap in the Marmara Sea. In Marmara region, there is Istanbul with high populations such as Tokyo. Therefore, Japan and Turkey can share our own experiences during past damaging earthquakes and we can prepare for future large Earthquakes and Tsunamis in cooperation with each other in SATREPS project. This project is composed of Multidisciplinary research project including observation researches, simulation researches, educational researches, and goals are as follows, ① To develop disaster mitigation policy and strategies based on Multidisciplinary research activities. ② To provide decision makers with newly found knowledge for its implementation to the current regulations. ③ To organize disaster education programs in order to increase disaster awareness in Turkey. ④ To contribute the evaluation of active fault studies in Japan. In this SATREPS project, we will integrate Multidisciplinary research results for disaster mitigation in Marmara region and .disaster education in Turkey.

  4. South Fork Snake River/Palisades Wildlife Mitigation Project: Environmental assessment

    SciTech Connect

    1995-09-01

    BPA proposes to fund the implementation of the South Fork Snake River Programmatic Management Plan to compensate for losses of wildlife and wildlife habitat due to hydroelectric development at Palisades Dam. The Idaho Department of Fish and Game drafted the plan, which was completed in May 1993. This plan recommends land and conservation easement acquisition and wildlife habitat enhancement measures. These measures would be implemented on selected lands along the South Fork of the Snake River between Palisades Dam and the confluence with the Henry`s Fork, and on portions of the Henry`s Fork located in Bonneville, Madison, and Jefferson Counties, Idaho. BPA has prepared an Environmental Assessment evaluating the proposed project. The EA also incorporates by reference the analyses in the South Fork Snake River Activity/Operations Plan and EA prepared jointly in 1991 by the Bureau of Land Management and the Forest Service. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required and BPA is issuing this FONSI.

  5. Sharp-tailed Grouse and Pygmy Rabbit Wildlife Mitigation Project. Final Environmental Assessment

    SciTech Connect

    Not Available

    1992-10-01

    The Proposed Action is needed to protect and enhance shrub-steppe and riparian habitat for sharp-tailed grouse (Tympanuchus phasianellus columbianus), Pygmy rabbits (Brachylagus idahoensis), and other indigenous wildlife species. The purpose of the Proposed Action is to compensate, in part, for wildlife habitat lost from the construction of Grand Coulee Dam and the inundation of Lake Roosevelt. Bonneville Power Administration proposes to fund management agreements, conservation easements, acquisition of fee title, or a combination of these on as many as 29,000 acres in Lincoln and Douglas Counties to improve shrub-steppe and riparian habitat for sharp-tailed grouse and pygmy rabbits. The BPA also proposes to fund habitat improvements (enhancements) on project lands including existing public lands. Proposed habitat treatments would include control of grazing; planting of native trees, shrubs, forbs and grasses; protection of wetlands and streambanks; herbicide use; fire prescriptions; and wildfire suppression. Proposed management activities may include predator control, population introductions, and control of crop depredation.

  6. Sharp-Tailed Grouse and Pygmy Rabbit Wildlife Mitigation Project : Final Environmental Assessment.

    SciTech Connect

    Untied States. Bonneville Power Adminsitration.

    1992-10-01

    The Proposed Action is needed to protect and enhance shrub-steppe and riparian habitat for sharp-tailed grouse (Tympanuchus phasianellus columbianus), Pygmy rabbits (Brachylagus idahoensis), and other indigenous wildlife species. The purpose of the Proposed Action is to compensate, in part, for wildlife habitat lost from the construction of Grand Coulee Dam and the inundation of Lake Roosevelt. Bonneville Power Administration proposes to fund management agreements, conservation easements, acquisition of fee title, or a combination of these on as many as 29,000 acres in Lincoln and Douglas Counties to improve shrub-steppe and riparian habitat for sharp-tailed grouse and pygmy rabbits. The BPA also proposes to fund habitat improvements (enhancements) on project lands including existing public lands. Proposed habitat treatments would include control of grazing; planting of native trees, shrubs, forbs and grasses; protection of wetlands and streambanks; herbicide use; fire prescriptions; and wildfire suppression. Proposed management activities may include predator control, population introductions, and control of crop depredation.

  7. 2009 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    SciTech Connect

    C. T. Lindsey; K. A. Gano; R. D. Teel

    2009-09-30

    This document details the results of revegetation and mitigation monitoring conducted in 2009, including 25 revegetation/restoration projects, one revegetation/mitigation project, and three bat mitigation projects.

  8. Are there benefits to mowing Wyoming big sagebrush plant communities? An evaluation in southeastern Oregon.

    PubMed

    Davies, Kirk W; Bates, Jon D; Nafus, Aleta M

    2011-09-01

    Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis Beetle & Young) communities frequently are mowed in an attempt to increase perennial herbaceous vegetation. However, there is limited information as to whether expected benefits of mowing are realized when applied to Wyoming big sagebrush communities with intact understory vegetation. We compared vegetation and soil nutrient concentrations in mowed and undisturbed reference plots in Wyoming big sagebrush plant communities at eight sites for three years post-treatment. Mowing generally did not increase perennial herbaceous vegetation cover, density, or biomass production (P > 0.05). Annual forbs and exotic annual grasses were generally greater in the mowed compared to the reference treatment (P < 0.05). By the third year post-treatment annual forb and annual grass biomass production was more than nine and sevenfold higher in the mowed than reference treatment, respectively. Our results imply that the application of mowing treatments in Wyoming big sagebrush plant communities does not increase perennial herbaceous vegetation, but may increase the risk that exotic annual grasses will dominate the herbaceous vegetation. We suggest that mowing Wyoming big sagebrush communities with intact understories does not produce the expected benefits. However, the applicability of our results to Wyoming big sagebrush communities with greater sagebrush cover and/or degraded understories needs to be evaluated.

  9. Libby Dam Hydro-electric Project Mitigation: Efforts for Downstream Ecosystem Restoration.

    SciTech Connect

    Holderman, Charles

    2009-02-10

    Construction of Libby Dam, a large hydropower and flood control dam occurred from 1966 to 1975 on the Kootenai River, near Libby, Montana in the Northwestern United States. Live reservoir storage is substantial, with water residence time of about 5 1/2 months (based on mean annual discharge of about 440 m{sup 3}/s). Downstream river discharge and thermal regimes and the dependent habitat conditions have been significantly altered by dam construction and operation relative to pre-dam conditions. Highly valued Kootenai River fish populations, including white sturgeon Acipenser transmontanus, burbot Lota lota and bull trout Salvelinus confluentus and their supporting ecological conditions have been deteriorating during post-dam years. Measurements of the presence of very low (ultraoligotrophic) concentrations of dissolved phosphorus in the river downstream from Libby Dam were identified as a critical limitation on primary production and overall ecosystem health. A decision was made to initiate the largest experimental river fertilization project to date in the Kootenai River at the Montana-Idaho border. Pre-treatment aquatic biomonitoring began in 2001; post-treatment monitoring began in 2005. A solar-powered nutrient addition system was custom designed and built to dose small releases of dissolved nutrients at rates from 10 to 40 L/hour, depending on river discharge, which averaged several hundred m3/s. Closely monitored experimental additions of ammonium polyphosphate solution (10-34-0) into the river occurred during the summers of 2005 through 2008. Targets for mixed in-river P concentrations were 1.5 {micro}g/L in 2005, and 3 {micro}g/L in subsequent years. Primary productivity and algal accrual rates along with invertebrate and fish community metrics and conditions were consistently measured annually, before and after experimental fertilization. Initial results from the program are very encouraging, and are reported.

  10. Conversion of sagebrush shrublands to exotic annual grasslands negatively impacts small mammal communities

    USGS Publications Warehouse

    Ostoja, S.M.; Schupp, E.W.

    2009-01-01

    Aim The exotic annual cheatgrass (Bromus tectorum) is fast replacing sagebrush (Artemisia tridentata) communities throughout the Great Basin Desert and nearby regions in the Western United States, impacting native plant communities and altering fire regimes, which contributes to the long-term persistence of this weedy species. The effect of this conversion on native faunal communities remains largely unexamined. We assess the impact of conversion from native perennial to exotic annual plant communities on desert rodent communities. Location Wyoming big sagebrush shrublands and nearby sites previously converted to cheatgrass-dominated annual grasslands in the Great Basin Desert, Utah, USA. Methods At two sites in Tooele County, Utah, USA, we investigated with Sherman live trapping whether intact sagebrush vegetation and nearby converted Bromus tectorum-dominated vegetation differed in rodent abundance, diversity and community composition. Results Rodent abundance and species richness were considerably greater in sagebrush plots than in cheatgrass-dominated plots. Nine species were captured in sagebrush plots; five of these were also trapped in cheatgrass plots, all at lower abundances than in the sagebrush. In contrast, cheatgrass-dominated plots had no species that were not found in sagebrush. In addition, the site that had been converted to cheatgrass longer had lower abundances of rodents than the site more recently converted to cheatgrass-dominated plots. Despite large differences in abundances and species richness, Simpson's D diversity and Shannon-Wiener diversity and Brillouin evenness indices did not differ between sagebrush and cheatgrass-dominated plots. Main conclusions This survey of rodent communities in native sagebrush and in converted cheatgrass-dominated vegetation suggests that the abundances and community composition of rodents may be shifting, potentially at the larger spatial scale of the entire Great Basin, where cheatgrass continues to invade

  11. CO2 and non-CO2 radiative forcings in climate projections for twenty-first century mitigation scenarios

    NASA Astrophysics Data System (ADS)

    Strassmann, Kuno M.; Plattner, G.-K.; Joos, F.

    2009-11-01

    Climate is simulated for reference and mitigation emissions scenarios from Integrated Assessment Models using the Bern2.5CC carbon cycle-climate model. Mitigation options encompass all major radiative forcing agents. Temperature change is attributed to forcings using an impulse-response substitute of Bern2.5CC. The contribution of CO2 to global warming increases over the century in all scenarios. Non-CO2 mitigation measures add to the abatement of global warming. The share of mitigation carried by CO2, however, increases when radiative forcing targets are lowered, and increases after 2000 in all mitigation scenarios. Thus, non-CO2 mitigation is limited and net CO2 emissions must eventually subside. Mitigation rapidly reduces the sulfate aerosol loading and associated cooling, partly masking Greenhouse Gas mitigation over the coming decades. A profound effect of mitigation on CO2 concentration, radiative forcing, temperatures and the rate of climate change emerges in the second half of the century.

  12. Geology and mineral resources of the North-Central Idaho Sagebrush Focal Area: Chapter C in Mineral resources of the Sagebrush Focal Areas of Idaho, Montana, Nevada, Oregon, Utah, and Wyoming

    USGS Publications Warehouse

    Lund, Karen; Zürcher, Lukas; Hofstra, Albert H.; Van Gosen, Bradley S.; Benson, Mary Ellen; Box, Stephen E.; Anderson, Eric D.; Bleiwas, Donald I.; DeAngelo, Jacob; Drake, Ronald M.; Fernette, Gregory L.; Giles, Stuart A.; Glen, Jonathan M. G.; Haacke, Jon E.; Horton, John D.; John, David A.; Robinson,, Gilpin R.; Rockwell, Barnaby W.; San Juan, Carma A.; Shaffer, Brian N.; Smith, Steven M.; Williams, Colin F.

    2016-10-04

    SummaryThe U.S. Department of the Interior has proposed to withdraw approximately 10 million acres of Federal lands from mineral entry (subject to valid existing rights) from 12 million acres of lands defined as Sagebrush Focal Areas (SFAs) in Idaho, Montana, Nevada, Oregon, Utah, and Wyoming (for further discussion on the lands involved see Scientific Investigations Report 2016–5089–A). The purpose of the proposed action is to protect the greater sage-grouse (Centrocercus urophasianus) and its habitat from potential adverse effects of locatable mineral exploration and mining. The U.S. Geological Survey Sagebrush Mineral-Resource Assessment (SaMiRA) project was initiated in November 2015 and supported by the Bureau of Land Management to (1) assess locatable mineral-resource potential and (2) to describe leasable and salable mineral resources for the seven SFAs and Nevada additions.This chapter summarizes the current status of locatable, leasable, and salable mineral commodities and assesses the potential of locatable minerals in the North-Central Idaho SFA, which extends from east-central to south-central Idaho. The geologically complex area is composed of many different rock units that locally contain potential mineral resources.

  13. Geology and mineral resources of the North-Central Montana Sagebrush Focal Area: Chapter D in Mineral resources of the Sagebrush Focal Areas of Idaho, Montana, Nevada, Oregon, Utah, and Wyoming

    USGS Publications Warehouse

    Mauk, Jeffrey L.; Zientek, Michael L.; Hearn, B. Carter; Parks, Heather L.; Jenkins, M. Christopher; Anderson, Eric D.; Benson, Mary Ellen; Bleiwas, Donald I.; DeAngelo, Jacob; Denning, Paul D.; Dicken, Connie L.; Drake, Ronald M.; Fernette, Gregory L.; Folger, Helen W.; Giles, Stuart A.; Glen, Jonathan M. G.; Granitto, Matthew; Haacke, Jon E.; Horton, John D.; Kelley, Karen D.; Ober, Joyce A.; Rockwell, Barnaby W.; San Juan, Carma A.; Sangine, Elizabeth S.; Schweitzer, Peter N.; Shaffer, Brian N.; Smith, Steven M.; Williams, Colin F.; Yager, Douglas B.

    2016-10-04

    SummaryThe U.S. Department of the Interior has proposed to withdraw approximately 10 million acres of Federal lands from mineral entry (subject to valid existing rights) from 12 million acres of lands defined as Sagebrush Focal Areas (SFAs) in Idaho, Montana, Nevada, Oregon, Utah, and Wyoming (for further discussion on the lands involved see Scientific Investigations Report 2016–5089–A). The purpose of the proposed action is to protect the greater sage-grouse (Centrocercus urophasianus) and its habitat from potential adverse effects of locatable mineral exploration and mining. The U.S. Geological Survey Sagebrush Mineral-Resource Assessment (SaMiRA) project was initiated in November 2015 and supported by the Bureau of Land Management to (1) assess locatable mineral-resource potential and (2) to describe leasable and salable mineral resources for the seven SFAs and Nevada additions.This chapter summarizes the current status of locatable, leasable, and salable mineral commodities and assesses the potential of locatable minerals in the North-Central Montana SFA. The proposed withdrawal area that is evaluated in this report is located in north-central Montana, and includes parts of Fergus, Petroleum, Phillips, and Valley Counties.

  14. Wetlands Mitigation Banking Concepts

    DTIC Science & Technology

    1992-07-01

    Naval Amphibious Bas Eslgrss Mit. Bank CA, San Diego Co. dredging & facilities Dept of the Navy SeaWorld Eelgras Mitigation Dank CA, San Diego Co...shore development, private projects SeaWorld 8 Table 2. WETLAND MITIGATION BANKS UNDER PLANNING, Institute for Water Resources Preliminary Survey Data

  15. Data Report: Meteorological and Evapotranspiration Data from Sagebrush and Pinyon Pine/Juniper Communities at Pahute Mesa, Nevada National Security Site, 2011-2012

    SciTech Connect

    Jasoni, Richard L; Larsen, Jessica D; Lyles, Brad F.; Healey, John M; Cooper, Clay A; Hershey, Ronald L; Lefebre, Karen J

    2013-04-01

    Pahute Mesa is a groundwater recharge area at the Nevada National Security Site. Because underground nuclear testing was conducted at Pahute Mesa, groundwater recharge may transport radionuclides from underground test sites downward to the water table; the amount of groundwater recharge is also an important component of contaminant transport models. To estimate the amount of groundwater recharge at Pahute Mesa, an INFIL3.0 recharge-runoff model is being developed. Two eddy covariance (EC) stations were installed on Pahute Mesa to estimate evapotranspiration (ET) to support the groundwater recharge modeling project. This data report describes the methods that were used to estimate ET and collect meteorological data. Evapotranspiration was estimated for two predominant plant communities on Pahute Mesa; one site was located in a sagebrush plant community, the other site in a pinyon pine/juniper community. Annual ET was estimated to be 310±13.9 mm for the sagebrush site and 347±15.9 mm for the pinyon pine/juniper site (March 26, 2011 to March 26, 2012). Annual precipitation measured with unheated tipping bucket rain gauges was 179 mm at the sagebrush site and 159 mm at the pinyon pine/juniper site. Annual precipitation measured with bulk precipitation gauges was 222 mm at the sagebrush site and 227 mm at the pinyon pine/juniper site (March 21, 2011 to March 28, 2012). A comparison of tipping bucket versus bulk precipitation data showed that total precipitation measured by the tipping bucket rain gauges was 17 to 20 percent lower than the bulk precipitation gauges. These differences were most likely the result of the unheated tipping bucket precipitation gauges not measuring frozen precipitation as accurately as the bulk precipitation gauges. In this one-year study, ET exceeded precipitation at both study sites because estimates of ET included precipitation that fell during the winter of 2010-2011 prior to EC instrumentation and the precipitation gauges started

  16. Appalachian Stream Mitigation Workshop

    EPA Pesticide Factsheets

    A 5 day workshop in 2011 developed for state and federal regulatory and resource agencies, who review, comment on and/or approve compensatory mitigation plans for surface coal mining projects in Appalachia

  17. Geology and mineral resources of the Southwestern and South-Central Wyoming Sagebrush Focal Area, Wyoming, and the Bear River Watershed Sagebrush Focal Area, Wyoming and Utah: Chapter E in Mineral resources of the Sagebrush Focal Areas of Idaho, Montana, Nevada, Oregon, Utah, and Wyoming

    USGS Publications Warehouse

    Wilson, Anna B.; Hayes, Timothy S.; Benson, Mary Ellen; Yager, Douglas B.; Anderson, Eric D.; Bleiwas, Donald I.; DeAngelo, Jacob; Dicken, Connie L.; Drake, Ronald M.; Fernette, Gregory L.; Giles, Stuart A.; Glen, Jonathan M. G.; Haacke, Jon E.; Horton, John D.; Parks, Heather L.; Rockwell, Barnaby W.; Williams, Colin F.

    2016-10-04

    SummaryThe U.S. Department of the Interior has proposed to withdraw approximately 10 million acres of Federal lands from mineral entry (subject to valid existing rights) from 12 million acres of lands defined as Sagebrush Focal Areas (SFAs) in Idaho, Montana, Nevada, Oregon, Utah, and Wyoming (for further discussion on the lands involved see Scientific Investigations Report 2016–5089–A). The purpose of the proposed action is to protect the greater sage-grouse (Centrocercus urophasianus) and its habitat from potential adverse effects of locatable mineral exploration and mining. The U.S. Geological Survey Sagebrush Mineral-Resource Assessment (SaMiRA) project was initiated in November 2015 and supported by the Bureau of Land Management to (1) assess locatable mineral-resource potential and (2) to describe leasable and salable mineral resources for the seven SFAs and Nevada additions.This chapter summarizes the current status of locatable, leasable, and salable mineral commodities and assesses the potential of locatable minerals in the Southwestern and South-Central Wyoming and Bear River Watershed, Wyoming and Utah, SFAs.

  18. Clarifying Potential Successional Trajectories in Sagebrush Communities Historically Seeded with Crested Wheatgrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crested wheatgrass (Agropyron cristatum [L.] Gaertn.) has been historically seeded on thousands of hectares of Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingenis) communities. Initially used to improve degraded rangeland, its use has become controversial in the current management set...

  19. COMPARISON OF MEDUSAHEAD INVADED AND NON-INVADED WYOMING BIG SAGEBRUSH STEPPE IN SOUTHEASTERN OREGON

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Medusahead (Taeniatherum caput-medusae (L.) Nevski) is an exotic, annual grass invading sagebrush steppe rangelands in the western United States. Medusahead invasion has been demonstrated to reduce livestock forage, but otherwise information comparing vegetation characteristics of medusahead invade...

  20. Success of seeding native compared with introduced perennial vegetation for revegetating medusahead-invaded sagebrush rangeland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Millions of hectares of Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle &Young) rangeland have been invaded by medusahead (Taeniatherum caput-medusae [L.] Nevski), an exotic annual grass that degrades wildlife habitat, reduces forage production, and decreases biodiversity....

  1. Attempting to restore herbaceous understories in Wyoming big sagebrush communities with mowing and seeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shrub steppe communities with depleted perennial herbaceous understories need to be restored to increase resilience, provide quality wildlife habitat, and improve ecosystem function. Mowing has been applied to Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle &Young) steppe...

  2. Mechanical mastication of Utah juniper encroaching sagebrush steppe increases inorganic soil N

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Juniper (Juniperus spp.) has encroached millions of hectares of sagebrush (Artemisia spp.) steppe. Juniper mechanical mastication increases cover of understory species, but could increase resource availability and subsequently invasive plant species. We quantified the effects of juniper mastication ...

  3. Temporal variability in microclimatic conditions for grass germination and emergence in the sagebrush steppe

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sagebrush steppe ecosystems in the western United States are characterized by harsh environmental conditions with high annual and seasonal variability in both precipitation and temperature. Environmental variability contributes to widespread failure in establishing stands of desired species on degr...

  4. Modeling regeneration responses of big sagebrush (Artemisia tridentata) to abiotic conditions

    USGS Publications Warehouse

    Schlaepfer, Daniel R.; Lauenroth, William K.; Bradford, John B.

    2014-01-01

    Ecosystems dominated by big sagebrush, Artemisia tridentata Nuttall (Asteraceae), which are the most widespread ecosystems in semiarid western North America, have been affected by land use practices and invasive species. Loss of big sagebrush and the decline of associated species, such as greater sage-grouse, are a concern to land managers and conservationists. However, big sagebrush regeneration remains difficult to achieve by restoration and reclamation efforts and there is no regeneration simulation model available. We present here the first process-based, daily time-step, simulation model to predict yearly big sagebrush regeneration including relevant germination and seedling responses to abiotic factors. We estimated values, uncertainty, and importance of 27 model parameters using a total of 1435 site-years of observation. Our model explained 74% of variability of number of years with successful regeneration at 46 sites. It also achieved 60% overall accuracy predicting yearly regeneration success/failure. Our results identify specific future research needed to improve our understanding of big sagebrush regeneration, including data at the subspecies level and improved parameter estimates for start of seed dispersal, modified wet thermal-time model of germination, and soil water potential influences. We found that relationships between big sagebrush regeneration and climate conditions were site specific, varying across the distribution of big sagebrush. This indicates that statistical models based on climate are unsuitable for understanding range-wide regeneration patterns or for assessing the potential consequences of changing climate on sagebrush regeneration and underscores the value of this process-based model. We used our model to predict potential regeneration across the range of sagebrush ecosystems in the western United States, which confirmed that seedling survival is a limiting factor, whereas germination is not. Our results also suggested that modeled

  5. Canopy growth and density of Wyoming big sagebrush sown with cool-season perennial grasses

    SciTech Connect

    Hild, A.L.; Schuman, G.E.; Vicklund, L.E.; Williams, M.I.

    2006-07-15

    Post-mining revegetation efforts often require grass seeding and mulch applications to stabilize the soils at the same time as shrub seeding, creating intraspecific competition between seeded shrubs and grasses that is not well understood. In 1999, we initiated a study at the Belle Ayr Coal Mine near Gillette, Wyoming, to evaluate the influence of grass competition on establishment and growth of Wyoming big sagebrush. Combinations of three sagebrush seeding rates (1, 2, and 4 kg pls ha{sup -1}) and seven cool-season perennial grass mixture seeding rates (0, 2, 4, 6, 8, 10, and 14 kg pls ha{sup -1}) were seeded during winter 1998-1999. Shrub density and grass cover were assessed from 1999 to 2004. We monitored sagebrush canopy size in 2001, 2002, and 2004. All sagebrush seeding rates provided shrub densities (>=) 1 shrub m {sup -1} after six growing seasons. Grass production (>=) 75 g m{sup -2} was achieved by seeding grasses at 6 to 8 kg pls ha{sup -1}). Canopy growth of individual sagebrush plants was least in the heaviest grass seeding rate. Reduced grass seeding rates can aid in achieving Wyoming big sagebrush density standards and enhance shrub canopy growth.

  6. System Design Description for the SY-101 Hydrogen Mitigation Test Project Data Acquisition and Control System (DACS-1)

    SciTech Connect

    ERMI, A.M.

    2000-01-24

    This document describes the hardware and software of the computer subsystems for the Data Acquisition and Control System (DACS) used in mitigation tests conducted on waste tank 241-SY-101 at the Hanford Nuclear Reservation.

  7. Socioeconomic monitoring and mitigation plan for the Salt Repository Project Site, Deaf Smith County, Texas: Revision 5: Draft

    SciTech Connect

    Not Available

    1988-03-01

    The purpose of the Socioeconomic Monitoring and Mitigation Plan (SMMP) is to identify, in consultation with the affected States and Indian Tribes, potentially significant adverse socioeconomic impacts that could result from site characterization activities, to describe approaches that will be used to monitor any such identified impacts, and to describe procedures for mitigating them. Chapter 3 of the SMMP provides a description of site characterization phase activities planned to assess the geologic condition of the site and construction the exploratory shafts and surface support facilities. The rationale for developing socioeconomic monitoring studies is presented in Chapter 4. Chapter 5 contains descriptions of the socioeconomic monitoring and mitigation procedures whenever they are applicable. Additionally, in Chapter 6, the SMMP includes a procedure for modifying the monitoring and mitigation program and an approach for reporting monitoring results to interested parties. 8 refs., 20 figs., 4 tabs.

  8. Erosion response of a disturbed sagebrush steppe hillslope

    USGS Publications Warehouse

    Goff, B.F.; Bent, G.C.; Hart, G.E.

    1993-01-01

    Land management activities that disrupt surface vegetation cover pose a serious threat to the long-term stability of buried-waste sites located within the semiarid sagebrush (Artemisia tridentata Nutt.) steppe region of the northwestern USA. In this study, we evaluated the erosion response of a sagebrush hillslope subjected to three vegetation cover treatments: natural (undisturbed), bare (plant canopy and litter cover removed), and clipped (canopy removed). A rotating boom rainfall simulator was used to apply rain at 60 or 120 mm/h intensities to runoff plots (3.0 m by 10.7 m) with dry, wet, and very wet antecedent moisture conditions, and during two late and one early summer seasons. Supplemental overland flow was added at the upper end of each plot to simulate increased slope length during very wet runs. Maximum soil loss rates on the natural, clipped, and bare treatments were, respectively, 1, 5, and 216 mg/m2 per s during the 60 mm/h rainfall intensity, and 13, 79, and 1473 mg/m2 per s during the 120 mm/h rainfall intensity. Cumulative soil loss was typically 100 to 1000 times greater on the bare treatment than on the natural or clipped treatments. Increases in simulated slope length produced a near linear increase in soil loss from the bare treatment plots (about 0.02 g/m2 per s soil loss per m of slope length) until 30 m, after which the effect of slope length declined. Surface crust development and mound-intermound microtopography played important roles in governing soil detachment and transport on the hillslope. Despite high rainfall intensity and surface runoff rates, rill erosion was negligible on both the undisturbed and disturbed portions of the hillslope.

  9. Supplement Analysis for the Wildlife Mitigation Program EIS (DOE/EIS-0246/SA-27) - Abbot Creek Fish Barrier Project (Hungry Horse Mitigation / Habitat Improvements)

    SciTech Connect

    Yarde, Richard

    2002-06-28

    BPA proposes to fund a fishery enhancement project where a fish passage barrier will be installed in Abbot Creek to remove introduced rainbow trout and prevent hybridization with westslope cutthroat trout. Montana Fish, Wildlife & Parks (MFWP) will operate a fish trap downstream of the barrier for 6-10 consecutive years to manually remove the rainbow trout and hybrid spawners from the population. Removal of rainbow trout and hybrids from the stream will eradicate the existing hybrid population spawning in Abbot Creek and ultimately reduce the threat of hybridization in the Flathead River system. Pending completion of a successful disease screening and authorization from MFWP Fish Health Committee, live fish captured in the fish trap will be transported to a nearby close-basin lake for use in MFWP’s Urban Fishing Program.

  10. Using Unmanned Helicopters to Assess Vegetation Cover in Sagebrush Steppe Ecosystems

    SciTech Connect

    Robert P. Breckenridge; Maxine Dakins; Stephen Bunting; Jerry Harbour; Randy Lee

    2012-07-01

    Evaluating vegetation cover is an important factor in understanding the sustainability of many ecosystems. Methods that have sufficient accuracy and improved cost efficiency could dramatically alter how biotic resources are monitored on both public and private lands. This will be of interest to land managers because there are rarely enough resource specialists or funds available for comprehensive ground evaluations. In this project, unmanned helicopters were used to collect still-frame imagery to assess vegetation cover during May, June, and July in 2005. The images were used to estimate percent cover for six vegetative cover classes (shrub, dead shrub, grass, forbs, litter, and bare ground). The field plots were located on the INL site west of Idaho Falls, Idaho. Ocular assessments of digital imagery were performed using a software program called SamplePoint, and the results were compared against field measurements collected using a point-frame method to assess accuracy. The helicopter imagery evaluation showed a high degree of agreement with field cover class values for litter, bare ground, and grass, and reasonable agreement for dead shrubs. Shrub cover was often overestimated and forbs were generally underestimated. The helicopter method took 45% less time than the field method to set plots and collect and analyze data. This study demonstrates that UAV technology provides a viable method for monitoring vegetative cover on rangelands in less time and with lower costs. Tradeoffs between cost and accuracy are critical management decisions that are important when managing vegetative conditions across vast sagebrush ecosystems throughout the Intermountain West.

  11. Burlington Bottoms Wildlife Mitigation Project. Final Environmental Assessment/Management Plan and Finding of No Significant Impact.

    SciTech Connect

    Not Available

    1994-12-01

    Bonneville Power Administration (BPA) proposes to fund wildlife management and enhancement activities for the Burlington bottoms wetlands mitigation site. Acquired by BPA in 1991, wildlife habitat at Burlington bottoms would contribute toward the goal of mitigation for wildlife losses and inundation of wildlife habitat due to the construction of Federal dams in the lower Columbia and Willamette River Basins. Target wildlife species identified for mitigation purposes are yellow warbler, great blue heron, black-capped chickadee, red-tailed hawk, valley quail, spotted sandpiper, wood duck, and beaver. The Draft Management Plan/Environmental Assessment (EA) describes alternatives for managing the Burlington Bottoms area, and evaluates the potential environmental impacts of the alternatives. Included in the Draft Management Plan/EA is an implementation schedule, and a monitoring and evaluation program, both of which are subject to further review pending determination of final ownership of the Burlington Bottoms property.

  12. Net carbon exchange and evapotranspiration in postfire and intact sagebrush communities in the Great Basin.

    PubMed

    Prater, Margaret R; Obrist, Daniel; Arnone, John A; DeLucia, Evan H

    2006-01-01

    Invasion of non-native annuals across the Intermountain West is causing a widespread transition from perennial sagebrush communities to fire-prone annual herbaceous communities and grasslands. To determine how this invasion affects ecosystem function, carbon and water fluxes were quantified in three, paired sagebrush and adjacent postfire communities in the northern Great Basin using a 1-m3 gas exchange chamber. Most of the plant cover in the postfire communities was invasive species including Bromus tectorum L., Agropyron cristatum (L.) Gaertn and Sisymbrium altissimum L. Instantaneous morning net carbon exchange (NCE) and evapotranspiration (ET) in native shrub plots were greater than either intershrub or postfire plots. Native sagebrush communities were net carbon sinks (mean NCE 0.2-4.3 micromol m-2 s-1) throughout the growing season. The magnitude and seasonal variation of NCE in the postfire communities were controlled by the dominant species and availability of soil moisture. Net C exchange in postfire communities dominated by perennial bunchgrasses was similar to sagebrush. However, communities dominated by annuals (cheatgrass and mustard) had significantly lower NCE than sagebrush and became net sources of carbon to the atmosphere (NCE declined to -0.5 micromol m-2 s-1) with increased severity of the summer drought. Differences in the patterns of ET led to lower surface soil moisture content and increased soil temperatures during summer in the cheatgrass-dominated community compared to the adjacent sagebrush community. Intensive measurements at one site revealed that temporal and spatial patterns of NCE and ET were correlated most closely with changes in leaf area in each community. By altering the patterns of carbon and water exchange, conversion of native sagebrush to postfire invasive communities may disrupt surface-atmosphere exchange and degrade the carbon storage capacity of these systems.

  13. Biogeochemistry of Cesium in a Sagebrush Steppe Ecosystem

    NASA Astrophysics Data System (ADS)

    Palmer, C. D.; Hess, J. R.; Hamilton, M. A.; Cook, L. L.; Siegel, L. S.; Yancey, N. A.

    2002-12-01

    The nature of radiocesium sources is such that they often have resulted in the contamination of shallow (< 1m), vegetated soils. This surface and near-surface soil contamination by radiocesium may be susceptible to migration on vegetated sites due to plant facilitated 137Cs translocation. Once in the plant, the 137Cs will not only reposition within the soil profile, but grazing and predation can move it through the food chain and range fires can further disperse it throughout the environment. We have been studying the biogeochemistry of cesium in a sagebrush ecosystem at the Idaho National Engineering and Environmental Laboratory in southeastern Idaho. This ecosystem is dominated by crested wheatgrass, rabbitbrush, and sagebrush. Field measurements at the Central Facilities Area indicate that approximately 94% of plant mass radiocesium is associated with crested wheatgrass. Under conditions of senescence, the crested wheatgrass root-to-soil and shoot-to-root ratios (transfer factors) are different for 137Cs and stable Cs (133Cs). These differences are partially attributed to the differences in the binding mechanisms of 137Cs and 133Cs in the soil. Field measurements in the vicinity of the former SL-1 reactor show changes in concentrations and transfer factors with the stage of plant growth. The samples included both rhizosphere and bulk soils as well as roots and shoots from the crested wheatgrass. The ranges of total cesium in rhizosphere and bulk soils are similar, are fairly narrow (1.7 to 5.2 mg kg-1), and do not appear to vary seasonally. In contrast, 137Cs activities in rhizosphere and bulk soils are significantly different, vary over orders of magnitude (10-180 pCi g-1), and show seasonal differences. Shoot and root 137Cs activities decrease between April and May. Total Cs shoot-to-root ratios are greater than the corresponding ratios for radiocesium. Total Cs root-to-rhizosphere soil ratios are lower than the corresponding ratios for 137Cs. These results

  14. Antifungal leaf-surface metabolites correlate with fungal abundance in sagebrush populations.

    PubMed

    Talley, Sharon M; Coley, Phyllis D; Kursar, Thomas A

    2002-11-01

    A central component in understanding plant-enemy interactions is to determine whether plant enemies, such as herbivores and pathogens, mediate the evolution of plant secondary metabolites. Using 26 populations of a broadly distributed plant species, sagebrush (Artemisia tridentata), we examined whether sagebrush populations in habitats with a greater prevalence of fungi contained antifungal secondary metabolites on leaf surfaces that were more active and diverse than sagebrush populations in habitats less favorable to fungi. Because moisture and temperature play a key role in the epidemiology of most plant-pathogen interactions, we also examined the relationship between the antifungal activity of secondary metabolites and the climate of a site. We evaluated the antifungal activity of sagebrush secondary metabolites against two fungi, a wild Penicillium sp. and a laboratory yeast, Saccharomyces cerevisiae, using a filter-paper disk assay and bioautography. Comparing the 26 sagebrush populations, we found that fungal abundance was a good predictor of both the activity (r2 = 0.36 for Saccharomyces, r2 = 0.37 for Penicillium) and number (r2 = 0.34 for Saccharomyces) of antifungal secondary metabolites. This suggests that selection imposed by fungal pathogens has led to more effective antifungal secondary metabolites. We found that the antifungal activity of sagebrush secondary metabolites was negatively related to average vapor pressure deficit of the habitat (r2 = 0.60 for Saccharomyces, r2 = 0.61 for Penicillium). Differences in antifungal activity among populations were not due to the amount of secondary metabolites, but rather to qualitative differences in the composition of antifungal compounds. Although all populations in habitats with high fungal prevalence had secondary metabolites with high antifungal activity, different suites of compounds were responsible for this activity, suggesting independent outcomes of selection on plants by fungal pathogens. The

  15. Sagebrush, greater sage-grouse, and the occurrence and importance of forbs

    USGS Publications Warehouse

    Pennington, Victoria E.; Schlaepfer, Daniel R.; Beck, Jeffrey L.; Bradford, John B.; Palmquist, Kyle A.; Lauenroth, William K.

    2016-01-01

    Big sagebrush (Artemisia tridentata Nutt.) ecosystems provide habitat for sagebrush-obligate wildlife species such as the Greater Sage-Grouse (Centrocercus urophasianus). The understory of big sagebrush plant communities is composed of grasses and forbs that are important sources of cover and food for wildlife. The grass component is well described in the literature, but the composition, abundance, and habitat role of forbs in these communities is largely unknown. Our objective was to synthesize information about forbs and their importance to Greater Sage-Grouse diets and habitats, how rangeland management practices affect forbs, and how forbs respond to changes in temperature and precipitation. We also sought to identify research gaps and needs concerning forbs in big sagebrush plant communities. We searched for relevant literature including journal articles and state and federal agency reports. Our results indicated that in the spring and summer, Greater Sage-Grouse diets consist of forbs (particularly species in the Asteraceae family), arthropods, and lesser amounts of sagebrush. The diets transition to sagebrush in fall and winter. Forbs provide cover for Greater Sage-Grouse individuals at their lekking, nesting, and brood-rearing sites, and the species has a positive relationship with arthropod presence. The effect of grazing on native forbs may be compounded by invasion of nonnative species and differs depending on grazing intensity. The effect of fire on forbs varies greatly and may depend on time elapsed since burning. In addition, chemical and mechanical treatments affect annual and perennial forbs differently. Temperature and precipitation influence forb phenology, biomass, and abundance differently among species. Our review identified several uncertainties and research needs about forbs in big sagebrush ecosystems. First, in many cases the literature about forbs is reported only at the genus or functional type level. Second, information about forb

  16. Presenting Triple-Wins? Assessing Projects That Deliver Adaptation, Mitigation and Development Co-benefits in Rural Sub-Saharan Africa.

    PubMed

    Suckall, Natalie; Stringer, Lindsay C; Tompkins, Emma L

    2015-02-01

    The concept of climate compatible development (CCD) is increasingly employed by donors and policy makers seeking 'triple-wins' for development, adaptation and mitigation. While CCD rhetoric is becoming more widespread, analyses drawing on empirical cases that present triple-wins are sorely lacking. We address this knowledge gap. Drawing on examples in rural sub-Saharan Africa, we provide the first glimpse into how projects that demonstrate triple-win potential are framed and presented within the scientific literature. We identify that development projects are still commonly evaluated in terms of adaptation or mitigation benefits. Few are framed according to their benefits across all three dimensions. Consequently, where triple-wins are occurring, they are likely to be under-reported. This has important implications, which underestimates the co-benefits that projects can deliver. A more robust academic evidence base for the delivery of triple-wins is necessary to encourage continued donor investment in activities offering the potential to deliver CCD.

  17. Characterization of a sagebrush (Artemisia tridentata ssp. wyomingensis) die-off on the Handford Site

    SciTech Connect

    Cardenas, A.; Lewinsohn, J.; Auger, C.; Downs, J.L.; Cadwell, L.L.; Burrows, R.

    1997-09-01

    The Hanford Site contains one of the few remaining contiguous areas of shrub-steppe habitat left in Washington State. This habitat is home to many native plant and wildlife species, some of which are threatened with extinction or are unique to the Site. The importance of the Hanford Site increases as other lands surrounding the Site are developed, and these native species and habitats are lost. Stands of Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis) on the Site are a particularly important component of shrub-steppe habitat, because a number of wildlife require big sagebrush for food and cover. Since 1993, researchers and field biologists have made anecdotal observations of dying and declining sagebrush in stands of shrubs near the 100 Areas. This study was initiated to delineate and document the general boundary where sagebrush stands appear to be declining. We mapped the areal extent of the die-off using a global positioning system and found that the central portion of the die-off encompasses 280 hectares. Shrub stand defoliation was estimated to be near or greater than 80% in this area. The remainder of the die-off area exhibits varying mixtures of completely defoliated, partially defoliated, and healthy-looking stands. Declining sagebrush stands comprise a total of 1776 hectares.

  18. Common raven occurrence in relation to energy transmission line corridors transiting human-altered sagebrush steppe

    USGS Publications Warehouse

    Coates, Peter S.; Howe, Kristy B.; Casazza, Michael L.; Delehanty, David J.

    2014-01-01

    Energy-related infrastructure and other human enterprises within sagebrush steppe of the American West often results in changes that promote common raven (Corvus corax; hereafter, raven) populations. Ravens, a generalist predator capable of behavioral innovation, present a threat to many species of conservation concern. We evaluate the effects of detailed features of an altered landscape on the probability of raven occurrence using extensive raven survey (n= 1045) and mapping data from southern Idaho, USA. We found nonlinear relationships between raven occurrence and distances to transmission lines, roads, and facilities. Most importantly, raven occurrence was greater with presence of transmission lines up to 2.2 km from the corridor.We further explain variation in raven occurrence along anthropogenic features based on the amount of non-native vegetation and cover type edge, such that ravens select fragmented sagebrush stands with patchy, exotic vegetative introgression. Raven occurrence also increased with greater length of edge formed by the contact of big sagebrush (Artemisia tridentate spp.) with non-native vegetation cover types. In consideration of increasing alteration of sagebrush steppe, these findings will be useful for planning energy transmission corridor placement and other management activities where conservation of sagebrush obligate species is a priority.

  19. Effects of arbuscular mycorrhizae on water stress tolerance of big sagebrush seedlings

    SciTech Connect

    Schuman, G.E.; Stahl, P.D.; Williams, S.E.; Frost, S.M.

    1998-12-31

    Reestablishment of Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis) on mined lands has been difficult in the past even though it is widespread in the western US. Its reestablishment on mined lands has recently become law where wildlife is one of the post-mining land uses and it represented the primary premining shrub species. One hypothesis thought to contribute to its difficult reestablishment is the reduce lack of mycorrhizae inoculum present in the disturbed topsoil and the resulting effect on the seedling`s ability to extract water from the soil under the arid/semiarid climate of this region. A greenhouse study was conducted to evaluate the effect of mycorrhizae on sagebrush seedling water stress tolerance. Seedling ages evaluated ranged from 30 to 150 days. Seedling survival was greater for mycorrhizal seedlings compared to non-mycorrhizal seedlings when soil moisture tension was {minus}2.5 to {minus}3.8 MPa. At all ages, the degree of soil dryness necessary to cause sagebrush seedling mortality was significantly greater for mycorrhizal than non-mycorrhizal seedlings. Seedling age and mycorrhizal infection exhibited a significant statistical interaction; suggesting that as the sagebrush seedling aged, the benefits of arbuscular mycorrhizae (AM) increased the plants water stress tolerance. These findings lead the authors to conclude that topsoil management that prevents/reduces the loss of AM inoculum in the topsoil will significantly enhance the success of sagebrush establishment on mined lands.

  20. Ecohydrology of adjacent sagebrush and lodgepole pine ecosystems: the consequences of climate change and disturbance

    USGS Publications Warehouse

    Bradford, John B.; Schlaepfer, Daniel R.; Lauenroth, William K.

    2014-01-01

    Sagebrush steppe and lodgepole pine forests are two of the most widespread vegetation types in the western United States and they play crucial roles in the hydrologic cycle of these water-limited regions. We used a process-based ecosystem water model to characterize the potential impact of climate change and disturbance (wildfire and beetle mortality) on water cycling in adjacent sagebrush and lodgepole pine ecosystems. Despite similar climatic and topographic conditions between these ecosystems at the sites examined, lodgepole pine, and sagebrush exhibited consistent differences in water balance, notably more evaporation and drier summer soils in the sagebrush and greater transpiration and less water yield in lodgepole pine. Canopy disturbances (either fire or beetle) have dramatic impacts on water balance and availability: reducing transpiration while increasing evaporation and water yield. Results suggest that climate change may reduce snowpack, increase evaporation and transpiration, and lengthen the duration of dry soil conditions in the summer, but may have uncertain effects on drainage. Changes in the distribution of sagebrush and lodgepole pine ecosystems as a consequence of climate change and/or altered disturbance regimes will likely alter ecosystem water balance.

  1. Is pile seeding Wyoming big sagebrush(Artemisia tridentata subsp. wyomingensis) an effective alternative to broadcast seeding?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sagebrush plays an important role in the ecological functions of sagebrush steppe plant communities and is a necessary component of habitat for a variety of wildlife including sage-grouse. At lower elevations, increased fire frequency associated with exotic annual grass invasion has heightened the ...

  2. Effects of intermediate-term grazing rest on sagebrush communities with depleted understories: evidence of a threshold

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Millions of hectares of sagebrush (Artemisia L.) plant communities have been degraded by past improper management resulting in dense sagebrush stands with depleted herbaceous understories. Rest from grazing is often applied to promote herbaceous recovery from past mismanagement. However, the effe...

  3. System Design Description for the SY-101 Hydrogen Mitigation Test Project Data Acquisition and Control System (DACS-1)

    SciTech Connect

    ERMI, A.M.

    1999-08-25

    This document describes the hardware and software of the computer subsystems for the Data Acquisition and Control System (DACS) used in mitigation tests conducted on waste tank 241-SY-101 at the Hanford Nuclear Reservation, The original system was designed and implemented by LANL, supplied to WHC, and turned over to LMHC for operation. In 1999, the hardware and software were upgraded to provide a state-of-the-art, Year-2000 compliant system.

  4. Functional design criteria for SY-101 hydrogen mitigation test project Data Acquisition and Control System (DACS-1)

    SciTech Connect

    Truitt, R.W.

    1994-09-01

    Early in 1990, the potential for a large quantity of hydrogen and nitrous oxide to exist as an explosive mixture within some Hanford waste tanks was declared an unreviewed safety question. The waste tank safety task team was established at that time to carry out safety evaluations and plan the means for mitigating this potential hazard. Action was promptly taken to identify those tanks with the highest hazard and to implement interim operating requirements to minimize ignition sources.

  5. Soil resources influence vegetation and response to fire and fire-surrogate treatments in sagebrush-steppe ecosystems

    USGS Publications Warehouse

    Rau, Benjamin M.; Chambers, Jeanne C.; Pyke, David A.; Roundy, Bruce A.; Schupp, Eugene W.; Doescher, Paul; Caldwell, Todd G.

    2014-01-01

    Current paradigm suggests that spatial and temporal competition for resources limit an exotic invader, cheatgrass (Bromus tectorum L.), which once established, alters fire regimes and can result in annual grass dominance in sagebrush steppe. Prescribed fire and fire surrogate treatments (mowing, tebuthiuron, and imazapic) are used to reduce woody fuels and increase resistance to exotic annuals, but may alter resource availability and inadvertently favor invasive species. We used four study sites within the Sagebrush Steppe Treatment Evaluation Project (SageSTEP) to evaluate 1) how vegetation and soil resources were affected by treatment, and 2) how soil resources influenced native herbaceous perennial and exotic annual grass cover before and following treatment. Treatments increased resin exchangeable NH4+, NO3−, H2PO4−, and K+, with the largest increases caused by prescribed fire and prolonged by application of imazapic. Burning with imazapic application also increased the number of wet growing degree days. Tebuthiuron and imazapic reduced exotic annual grass cover, but imazapic also reduced herbaceous perennial cover when used with prescribed fire. Native perennial herbaceous species cover was higher where mean annual precipitation and soil water resources were relatively high. Exotic annual grass cover was higher where resin exchangeable H2PO4− was high and gaps between perennial plants were large. Prescribed fire, mowing, and tebuthiuron were successful at increasing perennial herbaceous cover, but the results were often ephemeral and inconsistent among sites. Locations with sandy soil, low mean annual precipitation, or low soil water holding capacity were more likely to experience increased exotic annual grass cover after treatment, and treatments that result in slow release of resources are needed on these sites. This is one of few studies that correlate abiotic variables to native and exotic species cover across a broad geographic setting, and that

  6. Using Unmanned Aerial Vehicles to Assess Vegetative Cover and Identify Biotic Resources in Sagebrush Steppe Ecosystems: Preliminary Evaluation

    SciTech Connect

    Robert P. Breckenridge

    2006-04-01

    The Idaho National Laboratory (INL), in conjunction with the University of Idaho, is evaluating novel approaches for using unmanned aerial vehicles (UAVs) as a quicker and safer method for monitoring biotic resources. Evaluating vegetative cover is an important factor in understanding the sustainability of many ecosystems. In assessing vegetative cover, methods that improve accuracy and cost efficiency could revolutionize how biotic resources are monitored on western federal lands. Sagebrush steppe ecosystems provide important habitat for a variety of species, some of which are important indicator species (e.g., sage grouse). Improved methods are needed to support monitoring these habitats because there are not enough resource specialists or funds available for comprehensive ground evaluation of these ecosystems. In this project, two types of UAV platforms (fixed wing and helicopter) were used to collect still-frame imagery to assess cover in sagebrush steppe ecosystems. This paper discusses the process for collecting and analyzing imagery from the UAVs to (1) estimate total percent cover, (2) estimate percent cover for six different types of vegetation, and (3) locate sage grouse based on representative decoys. The field plots were located on the INL site west of Idaho Falls, Idaho, in areas with varying amounts and types of vegetative cover. A software program called SamplePoint developed by the U.S. Department of Agriculture, Agricultural Research Service was used to evaluate the imagery for percent cover for the six vegetation types (bare ground, litter, shrubs, dead shrubs, grasses, and forbs). Results were compared against standard field measurements to assess accuracy.

  7. Contrasting the patterns of aspen forest and sagebrush shrubland gross ecosystem exchange in montane Idaho, USA

    NASA Astrophysics Data System (ADS)

    Fellows, A.; Flerchinger, G. N.; Seyfried, M. S.

    2015-12-01

    We investigated the environmental controls on Gross Ecosystem Exchange (GEE) at an aspen forest and a sagebrush shrubland in southwest Idaho. The two sites were situated within a mosaic of vegetation that included temperate deciduous trees, shrublands, and evergreen conifer trees. The distribution of vegetation was presumably linked to water availability; aspen were located in wetter high-elevations sites, topographic drainages, or near snow drifts. Local temperatures have increased by ~2-3 °C over the past 50 years and less precipitation has arrived as snow. These ongoing changes in weather may impact snow water redistribution, plant-water availability, and plant-thermal stress, with associated impacts on vegetation health and production. We used eddy covariance to measure the exchange of water and carbon dioxide above the two sites and partitioned the net carbon flux to determine GEE. The sagebrush record was from 2003-2007 and the aspen record was from 2007-12. The region experienced a modest-to-severe drought in 2007, with ~73% of typical precipitation. We found that aspen were local "hotspots" for carbon exchange; peak rates of aspen GEE were ~ 60% greater than the peak rates of sagebrush GEE. Light, temperature, and water availability were dominant controls on the seasonality of GEE at both sites. Sagebrush and aspen were dormant during winter, limited by cold temperatures during winter and early spring, and water availability during mid-late summer. The onset of summer drought was typically later in the aspen than in the sagebrush. Drifting snow, lateral water redistribution, or increased rooting depths may have increased water availability in the aspen stand. Seasonal patterns of observed soil moisture and evaporation indicated aspen were rooted to >= 1 m. The sagebrush and aspen both responded strongly to the 2007 drought; peak GEE decreased by ~75%, peak GEE shifted to earlier parts of the year, and mid-summer GEE was decreased. We consider potential

  8. Seasonal variation of responses to herbivory and volatile communication in sagebrush (Artemisia tridentata) (Asteraceae).

    PubMed

    Ishizaki, Satomi; Shiojiri, Kaori; Karban, Richard; Ohara, Masashi

    2016-07-01

    Plants can respond to insect herbivory in various ways to avoid reductions in fitness. However, the effect of herbivory on plant performance can vary depending on the seasonal timing of herbivory. We investigated the effects of the seasonal timing of herbivory on the performance of sagebrush (Artemisia tridentata). Sagebrush is known to induce systemic resistance by receiving volatiles emitted from clipped leaves of the same or neighboring plants, which is called volatile communication. Resistance to leaf herbivory is known to be induced most effectively after volatile communication in spring. We experimentally clipped 25 % of leaves of sagebrush in May when leaves were expanding, or in July when inflorescences were forming. We measured the growth and flower production of clipped plants and neighboring plants which were exposed to volatiles emitted from clipped plants. The treatment conducted in spring reduced the growth of clipped plants. This suggests that early season leaf herbivory is detrimental because it reduces the opportunities for resource acquisition after herbivory, resulting in strong induction of resistance in leaves. On the other hand, the late season treatment increased flower production in plants exposed to volatiles, which was caused mainly by the increase in the number of inflorescences. Because the late season treatment occurred when sagebrush produces inflorescences, sagebrush may respond to late herbivory by increasing compensation ability and/or resistance in inflorescences rather than in leaves. Our results suggest that sagebrush can change responses to herbivory and subsequent volatile communication seasonally and that the seasonal variation in responses may reduce the cost of induced resistance.

  9. Contrasting ecosystem drivers of mass and energy fluxes at upper and lower elevation sagebrush steppe sites

    NASA Astrophysics Data System (ADS)

    Reed, D. E.; Ewers, B. E.; Pendall, E.; Kwon, H.

    2012-12-01

    The sagebrush steppe ecosystem covers nearly 15% of Western North America, and its productivity is sensitive to warming and increasingly variable precipitation. Previous work has shown that soil moisture below 45cm is an important control over net ecosystem exchange NEE for sagebrush ecosystems while shallower soil moisture controls ET. We seek to expand on that work by using multiple site years from eddy covariance sites near the upper and lower elevation range of sagebrush to answer the question "How do changing water availability affect the ecosystem controls of carbon, water, and energy fluxes from rocky mountain sagebrush ecosystems". We are answering this question by quantifying ecosystem scale carbon, water, and energy cycling using eddy covariance measurements and a standard suite of atmospheric, soil and vegetation monitoring instruments. The two sites were active from 2006 to 2010 and were located at elevations of 2069m and 2469m at Saratoga, WY and Walden, CO, with mean annual temperatures of 5.9C and 4.5, respectively. The relationship of drivers to ecosystem fluxes is hypothesized to have stronger controls at the high elevation sagebrush site relative to the low elevation site. Our work shows a strong relationship between deep soil moisture and ecosystem fluxes, but that one driver alone does not explain all of the seasonal and interannual variation in the fluxes. Other drives of the water and carbon cycles include vapor pressure deficit, net radiation and soil temperature. Fluxes from the high elevation site have a 40% reduction of carbon and a 70% reduction of water flux relative to the low elevation site over the same time period, due to a higher frequency of short duration, larger flux events at the lower elevation site. Ecosystem models that attempt to capture the dynamics of carbon, water and energy fluxes from sagebrush steppe ecosystems must account for the variation in controls of those fluxes and their variations in time and elevation.

  10. Effects of agricultural management on productivity, soil quality and climate change mitigation - evaluations within the EU Project (FP 7) CATCH-C

    NASA Astrophysics Data System (ADS)

    Spiegel, Heide; Schlatter, Norman; Haslmayr, Hans-Peter; Baumgarten, Andreas; ten Berge, Hein

    2014-05-01

    Soils are the main basis for the production of food and feed. Furthermore, the production of biomass for energy and material use is becoming increasingly important. Goals for an optimal management of agricultural soils are, on the one hand, the maintenance or improvement of soil quality and, on the other hand, high productivity and climate change mitigation (reduction of GHG emissions and C sequestration). Thus, the EU project CATCH-C aims to evaluate current management practices concerning these three goals based on indicators derived from long-term field experiments of the project partners and from literature data. A maximum of 72 indicators for productivity, soil quality and the potential for carbon storage in the soil and the reduction of greenhouse gas emissions were selected by the project partners. As indicators for productivity, crop yields are determined in almost all field trials. The content of soil organic carbon (SOC) is an indicator for chemical, physical and biological soil quality and was analysed in the topsoil in all field trials. Less data exist for SOC contents in the subsoil. An important physical soil quality indicator is the bulk density, however, it is not determined in all field trials of the project partners. Therefore, information on SOC stocks, with relevance to carbon storage and climate change mitigation, is not available in all field experiments. Other physical indicators, such as penetration resistance, runoff coefficient and soil losses are evaluated. Essential biological indicators are microbial biomass and the number and weight of earthworms, which have been tested in several field trials. The evaluation of all these indicators will help to select "best management practices" and to address trade-offs and synergies for all indicators under consideration of major European farm type zones. CATCH-C is funded within the 7th Framework Programme for Research, Technological Development and Demonstration, Theme 2 - Biotechnologies

  11. Computer system design description for SY-101 hydrogen mitigation test project data acquisition and control system (DACS-1). Revision 1

    SciTech Connect

    Truitt, R.W.

    1994-08-24

    This document provides descriptions of components and tasks that are involved in the computer system for the data acquisition and control of the mitigation tests conducted on waste tank SY-101 at the Hanford Nuclear Reservation. The system was designed and implemented by Los alamos National Laboratory and supplied to Westinghouse Hanford Company. The computers (both personal computers and specialized data-taking computers) and the software programs of the system will hereafter collectively be referred to as the DACS (Data Acquisition and Control System).

  12. The monitoring, evaluation, reporting, and verification of climate change mitigation projects: Discussion of issues and methodologies and review of existing protocols and guidelines

    SciTech Connect

    Vine, E.; Sathaye, J.

    1997-12-01

    Because of concerns with the growing threat of global climate change from increasing emissions of greenhouse gases, the US and other countries are implementing, by themselves or in cooperation with one or more other nations (i.e., joint implementation), climate change mitigation projects. These projects will reduce greenhouse gas (GHG) emissions or sequester carbon, and will also result in non-GHG impacts (i.e., environmental, economic, and social impacts). Monitoring, evaluating, reporting, and verifying (MERV) guidelines are needed for these projects in order to accurately determine their net GHG, and other, benefits. Implementation of MERV guidelines is also intended to: (1) increase the reliability of data for estimating GHG benefits; (2) provide real-time data so that mid-course corrections can be made; (3) introduce consistency and transparency across project types and reporters; and (4) enhance the credibility of the projects with stakeholders. In this paper, the authors review the issues and methodologies involved in MERV activities. In addition, they review protocols and guidelines that have been developed for MERV of GHG emissions in the energy and non-energy sectors by governments, nongovernmental organizations, and international agencies. They comment on their relevance and completeness, and identify several topics that future protocols and guidelines need to address, such as (1) establishing a credible baseline; (2) accounting for impacts outside project boundaries through leakage; (3) net GHG reductions and other impacts; (4) precision of measurement; (5) MERV frequency; (6) persistence (sustainability) of savings, emissions reduction, and carbon sequestration; (7) reporting by multiple project participants; (8) verification of GHG reduction credits; (9) uncertainty and risk; (10) institutional capacity in conducting MERV; and (11) the cost of MERV.

  13. Land use and habitat conditions across the southwestern Wyoming sagebrush steppe: development impacts, management effectiveness and the distribution of invasive plants

    USGS Publications Warehouse

    Manier, Daniel J.; Aldridge, Cameron L.; Anderson, Patrick; Chong, Geneva; Homer, Collin G.; O'Donnell, Michael S.; Schell, Spencer

    2011-01-01

    For the past several years, USGS has taken a multi-faceted approach to investigating the condition and trends in sagebrush steppe ecosystems. This recent effort builds upon decades of work in semi-arid ecosystems providing a specific, applied focus on the cumulative impacts of expanding human activities across these landscapes. Here, we discuss several on-going projects contributing to these efforts: (1) mapping and monitoring the distribution and condition of shrub steppe communities with local detail at a regional scale, (2) assessing the relationships between specific, land-use features (for example, roads, transmission lines, industrial pads) and invasive plants, including their potential (environmentally defined) distribution across the region, and (3) monitoring the effects of habitat treatments on the ecosystem, including wildlife use and invasive plant abundance. This research is focused on the northern sagebrush steppe, primarily in Wyoming, but also extending into Montana, Colorado, Utah and Idaho. The study area includes a range of sagebrush types (including, Artemisia tridentata ssp. tridentata, Artemisia tridentata ssp. wyomingensis, Artemisia tridentata ssp. vaseyana, Artemisia nova) and other semi-arid shrubland types (for example, Sarcobatus vermiculatus, Atriplex confertifolia, Atriplex gardneri), impacted by extensive interface between steppe ecosystems and industrial energy activities resulting in a revealing multiple-variable analysis. We use a combination of remote sensing (AWiFS (1 Any reference to platforms, data sources, equipment, software, patented or trade-marked methods is for information purposes only. It does not represent endorsement of the U.S.D.I., U.S.G.S. or the authors), Landsat and Quickbird platforms), Geographic Information System (GIS) design and data management, and field-based, replicated sampling to generate multiple scales of data representing the distribution of shrub communities for the habitat inventory. Invasive plant

  14. Fungal and bacterial contributions to nitrogen cycling in cheatgrass-invaded and uninvaded native sagebrush soils of the western USA

    USGS Publications Warehouse

    DeCrappeo, Nicole; DeLorenze, Elizabeth J.; Giguere, Andrew T; Pyke, David A.; Bottomley, Peter J.

    2017-01-01

    AimThere is interest in determining how cheatgrass (Bromus tectorum L.) modifies N cycling in sagebrush (Artemisia tridentata Nutt.) soils of the western USA.MethodsTo gain insight into the roles of fungi and bacteria in N cycling of cheatgrass-invaded and uninvaded sagebrush soils, the fungal protein synthesis inhibitor, cycloheximide (CHX), and the bacteriocidal compound, bronopol (BRO) were combined with a 15NH4+ isotope pool dilution approach.ResultsCHX reduced gross N mineralization to the same rate in both sagebrush and cheatgrass soils indicating a role for fungi in N mineralization in both soil types. In cheatgrass soils BRO completely inhibited gross N mineralization, whereas, in sagebrush soils a BRO-resistant gross N mineralization rate was detected that was slower than CHX sensitive gross N mineralization, suggesting that the microbial drivers of gross N mineralization were different in sagebrush and cheatgrass soils. Net N mineralization was stimulated to a higher rate in sagebrush than in cheatgrass soils by CHX, implying that a CHX inhibited N sink was larger in the former than the latter soils. Initial gross NH4+ consumption rates were reduced significantly by both CHX and BRO in both soil types, yet, consumption rates recovered significantly between 24 and 48 h in CHX-treated sagebrush soils. The recovery of NH4+ consumption in sagebrush soils corresponded with an increase in the rate of net nitrification.ConclusionsThese results suggest that cheatgrass invasion of sagebrush soils of the northern Great Basin reduces the capacity of the fungal N consumption sink, enhances the capacity of a CHX resistant N sink and alters the contributions of bacteria and fungi to gross N mineralization.

  15. Work plan for transition of SY-101 hydrogen mitigation test project data acquisition and control system (DACS-1)

    SciTech Connect

    McClees, J.; Truitt, R.W.

    1994-10-12

    The purpose of this effort is to transfer operating and maintenance responsibility for the 241-SY-101 data acquisition and control system (DACS-1) from Los Alamos National Laboratory to Westinghouse Hanford Company. This work plan defines the tasks required for a successful turnover. It identifies DACS-1 transition, deliverables, responsible organizations and individuals, interfaces, cost, and schedule. The transition plan will discuss all required hardware, software, documentation, maintenance, operations, and training for use at Hanford Waste Tank 241-SY-101. The transfer of responsibilities for DACS-1 to WHC is contingent on final approval of applicable Acceptance for Beneficial Use documentation by Waste Tank Operations. The DACS-1 was designed to provide data monitoring, display, and storage for Tank 241-SY-101. The DACS-1 also provides alarm and control of all the hydrogen mitigation testing systems, as well as ancillary systems and equipment (HVAC, UPS, etc.) required to achieve safe and reliable operation of the testing systems in the tank.

  16. Computer system design description for SY-101 hydrogen mitigation test project data acquisition and control system (DACS-1)

    SciTech Connect

    Ermi, A.M.

    1997-05-01

    Description of the Proposed Activity/REPORTABLE OCCURRENCE or PIAB: This ECN changes the computer systems design description support document describing the computers system used to control, monitor and archive the processes and outputs associated with the Hydrogen Mitigation Test Pump installed in SY-101. There is no new activity or procedure associated with the updating of this reference document. The updating of this computer system design description maintains an agreed upon documentation program initiated within the test program and carried into operations at time of turnover to maintain configuration control as outlined by design authority practicing guidelines. There are no new credible failure modes associated with the updating of information in a support description document. The failure analysis of each change was reviewed at the time of implementation of the Systems Change Request for all the processes changed. This document simply provides a history of implementation and current system status.

  17. Mitigating artifacts in back-projection source imaging with implications for frequency-dependent properties of the Tohoku-Oki earthquake

    NASA Astrophysics Data System (ADS)

    Meng, Lingsen; Ampuero, Jean-Paul; Luo, Yingdi; Wu, Wenbo; Ni, Sidao

    2012-12-01

    Comparing teleseismic array back-projection source images of the 2011 Tohoku-Oki earthquake with results from static and kinematic finite source inversions has revealed little overlap between the regions of high- and low-frequency slip. Motivated by this interesting observation, back-projection studies extended to intermediate frequencies, down to about 0.1 Hz, have suggested that a progressive transition of rupture properties as a function of frequency is observable. Here, by adapting the concept of array response function to non-stationary signals, we demonstrate that the "swimming artifact", a systematic drift resulting from signal non-stationarity, induces significant bias on beamforming back-projection at low frequencies. We introduce a "reference window strategy" into the multitaper-MUSIC back-projection technique and significantly mitigate the "swimming artifact" at high frequencies (1 s to 4 s). At lower frequencies, this modification yields notable, but significantly smaller, artifacts than time-domain stacking. We perform extensive synthetic tests that include a 3D regional velocity model for Japan. We analyze the recordings of the Tohoku-Oki earthquake at the USArray and at the European array at periods from 1 s to 16 s. The migration of the source location as a function of period, regardless of the back-projection methods, has characteristics that are consistent with the expected effect of the "swimming artifact". In particular, the apparent up-dip migration as a function of frequency obtained with the USArray can be explained by the "swimming artifact". This indicates that the most substantial frequency-dependence of the Tohoku-Oki earthquake source occurs at periods longer than 16 s. Thus, low-frequency back-projection needs to be further tested and validated in order to contribute to the characterization of frequency-dependent rupture properties.

  18. Estimation of big sagebrush leaf area index with terrestrial laser scanning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A remote-sensing technique is need to bridge the gap between airborne laser scanning (ALS) and ground-based field techniques for accurately assessing leaf area index (LAI) in sparsely vegetated landscapes like sagebrush steppe. Terrestrial laser scanning (TLS) was used to measure structural variable...

  19. A comparison of Bromus tectorum growth and mycorrhizal colonization in salt desert versus sagebrush habitat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cheatgrass has recently invaded marginal low elevation salt desert habitats across the Great Basin, USA. We tested the hypothesis that cheatgrass seed produced in populations from the more stressful salt desert versus upland sagebrush habitats should grow differently in salt desert soils compared to...

  20. The influence of plant removal on succession in wyoming big sagebrush

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Predicting plant community response following disturbance is a major hurdle facing ecologists. The objective of our study was to identify the rate of short-term (<10 years) floristic changes following removal of plant functional groups in Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensi...

  1. Attempting to restore mountain big sagebrush (Artemisia tridentata ssp. vaseyana) four years after fire

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Restoration of shrubs is increasingly needed throughout the world because of altered fire regimes, anthropogenic disturbance, and over-utilization. The native shrub mountain big sagebrush (Artemisia tridentata Nutt. ssp. vaseyana (Rydb.) Beetle) is a restoration priority in western North America be...

  2. Evaluating winter/spring seeding of a native perennial bunchgrass in the sagebrush steppe

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sagebrush (Artemisia tridentata Nutt.) plant communities in the US Great Basin region are being severely impacted by increasingly frequent wildfires in association with the expansion of exotic annual grasses. Maintenance of native perennial bunchgrasses is key to controlling annual grass expansion,...

  3. Spatial variability in cost and success of revegetation in a Wyoming big sagebrush community

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ecological integrity of the Wyoming big sagebrush alliance is being severely interrupted by post-fire invasion of non-native annual grasses. In order to curtail this invasion, successful post-fire revegetation of perennial grasses in affected areas is required. Environmental factors impacting ...

  4. Postfire shrub cover dynamics: a 70-year fire history in mountain big sagebrush communities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fire is a natural process in sagebrush (Artemisia L.) communities. Land managers use fire to meet rangeland management objectives. This study was conducted to quantify, from present conditions, the effect of time since last burn (TSLB) on shrub cover over 70 yr of fire history. We sampled mountain...

  5. Postfire shrub-cover dynamics: a 70-year fire history in big sagebrush communities.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land managers use prescribed fire to meet rangeland management objectives. This study was conducted to quantify, from present conditions, the effect of time since last burn (TSLB) on shrub cover over 70 yr of fire history. We sampled mountain big sagebrush communities at the USDA, ARS, U.S. Sheep ...

  6. Spatial and temporal variability in minimum temperature trends in the western U.S. sagebrush steppe

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate is a major driver of ecosystem dynamics. In recent years there has been considerable interest in future climate change and potential impacts on ecosystems and management options. In this paper, we analyzed minimum monthly temperature (T min) for ten rural locations in the western sagebrush...

  7. Hydrologic impacts of woodland encroachment and tree removal in Great Basin sagebrush steppe

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extensive woodland expansion in the Great Basin has generated concern regarding the ecological impacts of tree encroachment on sagebrush (Artemisia spp.) rangelands. This study used rainfall and concentrated flow experiments and measures of vegetation, ground cover, and soils at three sites to inve...

  8. Plant and soil consequences of shrub management in a big sagebrush-dominated rangeland ecosystem

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil organic carbon (SOC) responses to shrub management in western US rangelands, especially those dominated by Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle & Young) in low rainfall areas (<300 mm), remains a major knowledge gap. We sampled vegetation and soils in 2009 ...

  9. Water And Carbon Fluxes Along An Elevation/Precipitation Gradient In A Sagebrush Steppe Environment

    NASA Astrophysics Data System (ADS)

    Flerchinger, G. N.; Fellows, A.; Seyfried, M. S.

    2015-12-01

    Environmental gradients exert controls on water, carbon and energy fluxes across montane landscapes, impacting the magnitude and timing of evapotranspiration, carbon uptake, water stress, and water use efficiency. Four eddy covariance systems were situated along an elevation gradient in Idaho's Owyhee Mountains. The sites are part of the Reynolds Creek Critical Zone Observatory and contribute to an ongoing long-term environmental monitoring network in the USDA's Reynold's Creek Experimental Watershed. The sites include a Wyoming big sagebrush site, a low sagebrush site, a post-fire mountain big sagebrush site, and a mountain big sagebrush site located at elevations of 1425, 1680, 1808 and 2111 m. Variations in climate follow the montane elevation gradient; mean annual precipitation at the sites is 290, 337, 425, and 795 mm, respectively, and mean annual temperature is 8.9, 8.4, 6.1, 5.4°C. Transpiration peaked about a month earlier at the lower elevation sites, but with limited precipitation the vegetation also encountered water stress much earlier. The two higher elevation sites experienced relatively little water stress and transpired at near potential for most of the growing season. Implications on water use efficiency were investigated.

  10. Selection of high producing shrubs of the Western United States for energy biomass. Final report, April 1, 1978-October 31, 1981. [Saltbush, sagebrush, rabbitbrush, and greasewood

    SciTech Connect

    McKell, C.M.; Van Epps, G.A.; Barker, J.R.

    1981-01-01

    This project investigated the selection and preliminary study of the most productive native shrubs that are commonly found growing on millions of acres of arid and semiarid lands of the Western United States for their potential use as energy fuel from biomass. Many uncertainties exist in producing biomass for energy fuels. However, arid land shrub biomass production offers several advantages that may be more favorable than other biomass types. Shrubs could utilize available marginal croplands and rangelands; there would be little or no competition for scarce water resources, and within the wide diversity of native shrubs, a number of species have a potential for relatively large biomass production. Species chosen for study were fourwing saltbush (Atriplex canescens), big saltbush (A. lentiformis), big sagebrush (Artemisia tridentata), spreading rabbitbrush (Chrysothamnus linifolis), rubber rabbitbrush (C. nauseosus), and greasewood (Sarcobatus vermiculatus). The study was divided into three phases. Phase one dealt with the selection, measurement, and burning quality of large growing shrubs in native populations. The main objective of phase two was to measure the biomass production of the selected large growing shrubs at a dryland field research station for three years. In addition the influence of planting space was ascertained. In phase three the genetic differences of large and small sagebrush (A. tridentata) were evaluated. 15 figs., 24 tabs.

  11. Challenges of establishing big sgebrush (Artemisia tridentata) in rangeland restoration: effects of herbicide, mowing, whole-community seeding, and sagebrush seed sources

    USGS Publications Warehouse

    Brabec, Martha M.; Germino, Matthew J.; Shinneman, Douglas J.; Pilliod, David S.; McIlroy, Susan K.; Arkle, Robert S.

    2015-01-01

    The loss of big sagebrush (Artemisia tridentata Nutt.) on sites disturbed by fire has motivated restoration seeding and planting efforts. However, the resulting sagebrush establishment is often lower than desired, especially in dry areas. Sagebrush establishment may be increased by addressing factors such as seed source and condition or management of the plant community. We assessed initial establishment of seeded sagebrush and four populations of small outplants (from different geographies, climates, and cytotypes) and small sagebrush outplants in an early seral community where mowing, herbicide, and seeding of other native plants had been experimentally applied. No emergence of seeded sagebrush was detected. Mowing the site before planting seedlings led to greater initial survival probabilities for sagebrush outplants, except where seeding also occurred, and these effects were related to corresponding changes in bare soil exposure. Initial survival probabilities were > 30% greater for the local population of big sagebrush relative to populations imported to the site from typical seed transfer distances of ~320–800 km. Overcoming the high first-year mortality of outplanted or seeded sagebrush is one of the most challenging aspects of postfire restoration and rehabilitation, and further evaluation of the impacts of herb treatments and sagebrush seed sources across different site types and years is needed.

  12. Identifying key climate and environmental factors affecting rates of post-fire big sagebrush (Artemisia tridentata) recovery in the northern Columbia Basin, USA

    USGS Publications Warehouse

    Shinneman, Douglas; McIlroy, Susan

    2016-01-01

    Sagebrush steppe of North America is considered highly imperilled, in part owing to increased fire frequency. Sagebrush ecosystems support numerous species, and it is important to understand those factors that affect rates of post-fire sagebrush recovery. We explored recovery of Wyoming big sagebrush (Artemisia tridentata ssp.wyomingensis) and basin big sagebrush (A. tridentata ssp. tridentata) communities following fire in the northern Columbia Basin (Washington, USA). We sampled plots across 16 fires that burned in big sagebrush communities from 5 to 28 years ago, and also sampled nearby unburned locations. Mixed-effects models demonstrated that density of large–mature big sagebrush plants and percentage cover of big sagebrush were higher with time since fire and in plots with more precipitation during the winter immediately following fire, but were lower when precipitation the next winter was higher than average, especially on soils with higher available water supply, and with greater post-fire mortality of mature big sagebrush plants. Bunchgrass cover 5 to 28 years after fire was predicted to be lower with higher cover of both shrubs and non-native herbaceous species, and only slightly higher with time. Post-fire recovery of big sagebrush in the northern Columbia Basin is a slow process that may require several decades on average, but faster recovery rates may occur under specific site and climate conditions.

  13. Greater sage-grouse as an umbrella species for sagebrush-associated vertebrates

    USGS Publications Warehouse

    Rowland, M.M.; Wisdom, M.J.; Suring, L.H.; Meinke, C.W.

    2006-01-01

    Widespread degradation of the sagebrush ecosystem in the western United States, including the invasion of cheatgrass, has prompted resource managers to consider a variety of approaches to restore and conserve habitats for sagebrush-associated species. One such approach involves the use of greater sage-grouse, a species of prominent conservation interest, as an umbrella species. This shortcut approach assumes that managing habitats to conserve sage-grouse will simultaneously benefit other species of conservation concern. The efficacy of using sage-grouse as an umbrella species for conservation management, however, has not been fully evaluated. We tested that concept by comparing: (1) commonality in land-cover associations, and (2) spatial overlap in habitats between sage-grouse and 39 other sagebrush-associated vertebrate species of conservation concern in the Great Basin ecoregion. Overlap in species' land-cover associations with those of sage-grouse, based on the ?? (phi) correlation coefficient, was substantially greater for sagebrush obligates (x??=0.40) than non-obligates (x??=0.21). Spatial overlap between habitats of target species and those associated with sage-grouse was low (mean ?? = 0.23), but somewhat greater for habitats at high risk of displacement by cheatgrass (mean ?? = 0.33). Based on our criteria, management of sage-grouse habitats likely would offer relatively high conservation coverage for sagebrush obligates such as pygmy rabbit (mean ?? = 0.84), but far less for other species we addressed, such as lark sparrow (mean ?? = 0.09), largely due to lack of commonality in land-cover affinity and geographic ranges of these species and sage-grouse.

  14. Spatial wildlife-vehicle collision models: a review of current work and its application to transportation mitigation projects.

    PubMed

    Gunson, Kari E; Mountrakis, Giorgos; Quackenbush, Lindi J

    2011-04-01

    In addition to posing a serious risk to motorist safety, vehicle collisions with wildlife are a significant threat for many species. Previous spatial modeling has concluded that wildlife-vehicle collisions (WVCs) exhibit clustering on roads, which is attributed to specific landscape and road-related factors. We reviewed twenty-four published manuscripts that used generalized linear models to statistically determine the influence that numerous explanatory predictors have on the location of WVCs. Our motivation was to summarize empirical WVC findings to facilitate application of this knowledge to planning, and design of mitigation strategies on roads. In addition, commonalities between studies were discussed and recommendations for future model design were made. We summarized the type and measurement of each significant predictor and whether they potentially increased or decreased the occurrence of collisions with ungulates, carnivores, small-medium vertebrates, birds, and amphibians and reptiles. WVCs commonly occurred when roads bisect favorable cover, foraging, or breeding habitat for specific species or groups of species. WVCs were generally highest on road sections with high traffic volumes, or low motorist visibility, and when roads cut through drainage movement corridors, or level terrain. Ungulates, birds, small-medium vertebrates, and carnivore collision locations were associated with road-side vegetation and other features such as salt pools. In several cases, results were spurious due to confounding and interacting predictors within the same model. For example, WVCs were less likely to occur when a road bisected steep slopes; however, steep slopes may be located along specific road-types and habitat that also influence the occurrence of WVCs. In conclusion, this review showed that much of the current literature has gleaned the obvious, broad-scale relationships between WVCs and predictors from available data sets, and localized studies can provide unique

  15. Earthquake and Tsunami Disaster Mitigation in The Marmara Region and Disaster Education in Turkey. (SATREPS Project: Science and Technology Research Partnership for Sustainable Development by JICA-JST)

    NASA Astrophysics Data System (ADS)

    Kaneda, Y.; Erdik, M. O.; Takahashi, N.; Meral Ozel, N.; Hori, T.; Hori, M.; Kumamoto, K.; Kalafat, D.; Pinar, A.; Ozel, A. O.; Yalciner, A. C.; Nurlu, M.; Tanircan, G.; Citak, S.; Ariyoshi, K.; Necmioglu, O.

    2014-12-01

    Since 1900, around 90,000 people have lost their lives in 76 earthquakes occurred in Turkey, with a total affected population of ~7 million and direct estimated losses of ~25 billion USD. About half the lives lost were due to two earthquakes associated with the North Anatolian Fault in 1939 and 1999. During this time, seven large westward-migrating earthquakes created a 900-km-long continuous surface rupture along the fault zone from Erzincan to the Marmara Sea, stopping just short of Istanbul. Based on a time-dependent model that includes coseismic and postseismic effects of the 1999 Kocaeli earthquake with moment magnitude (Mw) = 7.4, Parsons concluded that the probability of an earthquake with Mw >7 in the Sea of Marmara near Istanbul is 35% to 70% in the next 30 years. This high probability is shared by Tokyo and San Francisco; however, the earthquake fragility of the pre-2000 building stock in Turkey is much higher than that of California or Japan. (Erdik, 2013). All of the arguments described above provide a sound basis for a Japanese-Turkish partnership enabling each partner to share experiences gained from past destructive earthquakes and prepare for expected large earthquakes. The SATREPS project aims to address this need, also focusing on the tsunami hazard. The project's main objectives are i) to develop disaster mitigation policies and strategies based on multidisciplinary research activities; ii) to provide decision makers with newly found knowledge for its implementation to the current regulations; iii) to organize disaster education programs in order to increase disaster awareness in Turkey; iv) to contribute the evaluation of active fault studies in Japan. To achieve successfully these objectives, 4 research groups have been set specializing on observations, simulations, civil engineering and disaster education and the results will be integrated for disaster mitigation in the Marmara region and disaster education in Turkey.

  16. Southern idaho Wildlife Mitigation Implementation 1999 Annual Report.

    SciTech Connect

    Bottum, Edward; Mikkelsen, Anders

    2000-04-01

    This report is for the Southern Idaho Wildlife Mitigation Implementation project. This project, implemented by IDFG and SBT wildlife mitigation staff, is designed to protect, enhance and maintain wildlife habitats to mitigate construction losses for Palisades, Anderson Ranch, Black Canyon and Minidoka hydroelectric projects. Additional project information is available in the quarterly reports.

  17. Southern Idaho Wildlife Mitigation Implementation 2000 Annual Report.

    SciTech Connect

    Bottum, Edward; Mikkelsen, Anders

    2001-03-01

    This report covers calendar year 2000 activities for the Southern Idaho Wildlife Mitigation Implementation project. This project, implemented by Idaho Department of Fish and Game and Shoshone Bannock Tribes wildlife mitigation staff, is designed to protect, enhance and maintain wildlife habitats to mitigate construction losses for Palisades, Anderson Ranch, Black Canyon and Minidoka hydroelectric projects. Additional project information is available in the quarterly reports.

  18. One carbon cycle: Impacts of model integration, ecosystem process detail, model resolution, and initialization data, on projections of future climate mitigation strategies

    NASA Astrophysics Data System (ADS)

    Fisk, J.; Hurtt, G. C.; le page, Y.; Patel, P. L.; Chini, L. P.; Sahajpal, R.; Dubayah, R.; Thomson, A. M.; Edmonds, J.; Janetos, A. C.

    2013-12-01

    Integrated assessment models (IAMs) simulate the interactions between human and natural systems at a global scale, representing a broad suite of phenomena across the global economy, energy system, land-use, and carbon cycling. Most proposed climate mitigation strategies rely on maintaining or enhancing the terrestrial carbon sink as a substantial contribution to restrain the concentration of greenhouse gases in the atmosphere, however most IAMs rely on simplified regional representations of terrestrial carbon dynamics. Our research aims to reduce uncertainties associated with forest modeling within integrated assessments, and to quantify the impacts of climate change on forest growth and productivity for integrated assessments of terrestrial carbon management. We developed the new Integrated Ecosystem Demography (iED) to increase terrestrial ecosystem process detail, resolution, and the utilization of remote sensing in integrated assessments. iED brings together state-of-the-art models of human society (GCAM), spatial land-use patterns (GLM) and terrestrial ecosystems (ED) in a fully coupled framework. The major innovative feature of iED is a consistent, process-based representation of ecosystem dynamics and carbon cycle throughout the human, terrestrial, land-use, and atmospheric components. One of the most challenging aspects of ecosystem modeling is to provide accurate initialization of land surface conditions to reflect non-equilibrium conditions, i.e., the actual successional state of the forest. As all plants in ED have an explicit height, it is one of the few ecosystem models that can be initialized directly with vegetation height data. Previous work has demonstrated that ecosystem model resolution and initialization data quality have a large effect on flux predictions at continental scales. Here we use a factorial modeling experiment to quantify the impacts of model integration, process detail, model resolution, and initialization data on projections of

  19. A European effort towards the development of tools for tsunami hazard and risk assessment and mitigation, and tsunami early warning: the EC-funded TRANSFER project

    NASA Astrophysics Data System (ADS)

    Tinti, S.; Armigliato, A.

    2007-12-01

    TRANSFER (acronym for "Tsunami Risk ANd Strategies For the European Region") is a European Community funded project being coordinated by the University of Bologna (Italy) and involving 29 partners in Europe, Turkey and Israel. The main objectives of the project can be summarised as: 1) improving our understanding of tsunami processes in the Euro-Mediterranean region, 2) contributing to the tsunami hazard, vulnerability and risk assessment, 3) identifying the best strategies for reduction of tsunami risk, 4) focussing on the gaps and needs for the implementation of an efficient tsunami early warning system (TEWS) in the Euro-Mediterranean area, which is a high-priority task in consideration that no tsunami early warning system is today in place in the Euro- Mediterranean countries. This paper briefly outlines the results that were obtained in the first year of life of the project and the activities that are currently carried out and planned for the future. In particular, we will emphasize the efforts made so far in the following directions. 1) The improvement of existing numerical models for tsunami generation, propagation and impact, and the possible development of new ones. Existing numerical models have been already applied to selected benchmark problems. At the same time, the project is making an important effort in the development of standards for inundation maps in Europe. 2) The project Consortium has selected seven test areas in different countries facing the Mediterranean Sea and the eastern Atlantic Ocean, where innovative probabilistic and statistical approaches for tsunami hazard assessment, up-to-date and new methods to compute inundation maps are being and will be applied. For the same test areas, tsunami scenario approaches are being developed, vulnerability and risk assessed, prevention and mitigation measures defined also by the advice of end users that are organised in an End User Group. 3) A final key aspect is represented by the dissemination of

  20. Full-Scaled Advanced Systems Testbed: Ensuring Success of Adaptive Control Research Through Project Lifecycle Risk Mitigation

    NASA Technical Reports Server (NTRS)

    Pavlock, Kate M.

    2011-01-01

    , experiment functionality, overall risk mitigation, flight test approach and results, and lessons learned of adaptive controls research of the Full-Scale Advanced Systems Testbed.

  1. Mammoth Lakes Route 203 transportation project: a case study in air-quality modeling and mitigation. Final report

    SciTech Connect

    Benson, P.; Nokes, W.; Cramer, R.

    1985-06-01

    An evaluation is made of the effects on carbon monoxide concentrations of transportation improvements incorporated in the Route 203 highway project. This includes a comparison of preconstruction and postconstruction field-sampling studies. The performance of the CALINE4 air-quality model is evaluated for use in complex terrain. The report describes the problems encountered in applying the model to mountainous locations, the tracer-release study used for assessing model performance, and the model-verification analysis.

  2. 2008 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    SciTech Connect

    C. T. Lindsey; K. A. Gano

    2008-09-30

    The purpose of this report is to document the status of revegetation projects and natural resources mitigation efforts that have been conducted for remediated waste sites and other activities associated with the Comprehensive Environmental Response, Compensation, and Liability Act cleanup of National Priorities List waste sites at Hanford. This report documents the results of revegetation and mitigation monitoring conducted in 2008 and includes 22 revegetation/restoration projects, one revegetation/mitigation project, and two bat habitat mitigation projects.

  3. 2007 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    SciTech Connect

    K. A. Gano; C. T. Lindsey

    2007-09-27

    The purpose of this report is to document the status of revegetation projects and natural resources mitigation efforts that have been conducted for remediated waste sites and other activities associated with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) cleanup of National Priorities List waste sites at Hanford. This report documents the results of revegetation and mitigation monitoring conducted in 2007 and includes 11 revegetation/restoration projects, one revegetation/mitigation project, and 3 bat habitat mitigation projects.

  4. USGS mineral-resource assessment of Sagebrush Focal Areas in the western United States

    USGS Publications Warehouse

    Frank, David G.; Frost, Thomas P.; Day, Warren C.; ,

    2016-10-04

    U.S. Geological Survey (USGS) scientists have completed an assessment of the mineral-resource potential of nearly 10 million acres of Federal and adjacent lands in Idaho, Montana, Nevada, Oregon, Utah, and Wyoming. The assessment of these lands, identified as Sagebrush Focal Areas, was done at the request of the Bureau of Land Management. The assessment results will be used in the decision-making process that the Department of the Interior is pursuing toward the protection of large areas of contiguous sagebrush habitat for the greater sage-grouse (Centrocercus urophasianus) in the Western United States. The detailed results of this ambitious study are published in the five volumes of USGS Scientific Investigations Report 2016–5089 and seven accompanying data releases.

  5. North American Artemisia species from the subgenus Tridentatae (Sagebrush): a phytochemical, botanical and pharmacological review.

    PubMed

    Turi, Christina E; Shipley, Paul R; Murch, Susan J

    2014-02-01

    The genus Artemisia consists of between 350 and 500 species with most of the North American endemic Artemisia species contained within the subgenus Tridentatae (Sagebrush). The reported uses of these species by Native American and First Nations peoples include analgesic, antiinflammatory, antiseptic, immunostimulation activity, as well as the treatment of afflictions from spiritual origins. Taxonomic revision for North American Sagebrush has created a number of synonyms that confuse the literature. The phytochemical diversity of the Tridentatae includes at least 220 distinct and important specialized metabolites. This manuscript reviews the current phytochemical, botanical and pharmacological understanding for the subgenus Tridentatae, and provides a foundation for future studies of the metabolomes of the Tridentatae. Modern approaches to phytochemical analysis and drug discovery are likely to provide interesting lead compounds in the near future.

  6. DimeRisk Project: Development of an educational and training program for the prevention and mitigation of seismic risk in Spain

    NASA Astrophysics Data System (ADS)

    Martín-González, Fidel; Martín-Velazquez, Silvia; Giner-Robles, Jorge; Martínez-Díaz, Jose Jesus; Rodríguez-Pascua, Miguel Angel; Béjar, Marta; Pérez-López, Raul; López, Jose Antonio; Morales, Javier; Barranco, Ana; Palomo, Isabel

    2014-05-01

    In Spain, due to the low recurrence of earthquakes in the last century, there is no awareness of seismic risk and prevention plans. For this reason, moderate magnitude earthquakes have generated significant damage and casualties. However, the risk is evident, in Spain during the nineteenth century there were more than five destructive earthquakes with intensities greater than VIII (e.g. Arenas del Rey IX-X, Torrevieja IX-X). A recent example was the 2011 Lorca earthquake, that with moderate magnitudes and intensities (magnitude Mw 5.2, intensity VI) it struck a populated area with old historic buildings and a population unprepared (9 victims, 324 injured, 1,200 million in reparations). In this earthquake many errors were found in the behavior of the population and in the basic self-protection measures. Many countries have educational programs that significantly reduce the damage and losses caused by earthquakes. The objective of this project (Dimerisk project) is to generate training and educational materials that help mitigate the damage and losses caused by earthquakes. This project is based on plans of experienced countries (e.g. U.S.A., Italy, Mexico, New Zealand) but having into account the mistakes made in the last earthquake in Spain, and also the characteristics of the Spanish educational system and building characteristics. This project has been founded by FUNDACION MAPFRE. The team is formed by geologist, earthquake researchers and teachers at secondary schools and universities. The ultimate goal is to generate material that can inform about the seismic and geological processes that participate in an earthquake and the basics of self-protection against earthquakes. This project has focused on scenarios (offices, factories, homes, education centers) and educational levels (schools, colleges and universities). Educational materials have been also developed for different educational levels with basic concepts related to seismicity, how to behave during an

  7. Establishing native grasses in a big sagebrush-dominated site: an intermediate restoration step

    USGS Publications Warehouse

    Huber-Sannwald, Elisabeth; Pyke, David A.

    2005-01-01

    Many semiarid rangelands in the Great Basin, U.S.A., are shifting dominance to woody species as a consequence of land degradation including intense livestock grazing and fire suppression. Whereas past rehabilitation efforts in Big sagebrush (Artemisia tridentata) steppes removed the shrub and added introduced forage grasses to successfully shift communities from shrublands to grasslands, current consensus is that native species should be included in restoration projects and that retention of some woody plants is desirable. We examined the potential for interseeding grasses into dense shrub communities as a precursor to thinning shrubs and releasing grasses from shrub interference. We compared seedling establishment of the native grass, Bluebunch wheatgrass (Pseudoroegneria spicata), with that of the Eurasia grass, Crested wheatgrass (Agropyron desertorum), in dense Ar. tridentata stands. Shrubs may play an important role as nurse plants for seedling establishment (reduced solar radiation, 'island of fertility' effect) but result in highly contrasting light environments and root interference for seedlings. In experimental plots, we examined effects of Ar. tridentata shade levels (0, 40, 70, and 90% reduction of solar radiation) and initial root exclusion (present/absent) on the establishment and growth of P. spicata and Ag. desertorum seedlings. With this design we evaluated the interference effects of Ar. tridentata on the two grasses and identified the most beneficial microsites for grass restoration in Ar. tridentataa??dominated communities. We predicted seedling survival and growth to be greater under moderate shade (40% reduction) and limited root competition than under no or strong shade conditions (0 and 90%) and unrestricted root interactions. Fifty to 85% of the P. spicata and Ag. desertorum seedlings survived the dry summer months of 1995 and 1996 and the intervening winter. Neither shading nor root exclusion from Ar. tridentata affected final seedling

  8. Comparison of radionuclide levels in soil, sagebrush, plant litter, cryptogams, and small mammals

    SciTech Connect

    Landeen, D.S.

    1994-09-01

    Soil, sagebrush, plant litter, cryptogam, and small mammal samples were collected and analyzed for cesium-137, strontium-90, plutonium-238, plutonium 239/240, technetium-99, and iodine-129 from 1981 to 1986 at the US Department of Energy Hanford Site in southeastern Washington State as part of site characterization and environmental monitoring activities. Samples were collected on the 200 Areas Plateau, downwind from ongoing waste management activities. Plant litter, cryptogams, and small mammals are media that are not routinely utilized in monitoring or characterization efforts for determination of radionuclide concentrations. Studies at Hanford, other US Department of Energy sites, and in eastern Europe have indicated that plant litter and cryptogams may serve as effective ``natural`` monitors of air quality. Plant litter in this study consists of fallen leaves from sagebrush and ``cryptogams`` describes that portion of the soil crust composed of mosses, lichens, algae, and fungi. Comparisons of cesium-137 and strontium-90 concentrations in the soil, sagebrush, litter, and cryptogams revealed significantly higher (p<0.05) levels in plant litter and cryptogams. Technetium-99 values were the highest in sagebrush and litter. Plutonium-238 and 239/40 and iodine-129 concentrations never exceeded 0.8 pCi/gm in all media. No evidence of any significant amounts of any radionuclides being incorporated into the small mammal community was discovered. The data indicate that plant litter and cryptogams may be better, indicators of environmental quality than soil or vegetation samples. Augmenting a monitoring program with samples of litter and cryptogams may provide a more accurate representation of radionuclide environmental uptake and/or contamination levels in surrounding ecosystems. The results of this study may be applied directly to other radioecological monitoring conducted at other nuclear sites and to the monitoring of other pollutants.

  9. 75 FR 77801 - Endangered and Threatened Wildlife and Plants; Endangered Status for Dunes Sagebrush Lizard

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-14

    ...We, the U.S. Fish and Wildlife Service, propose to list the dunes sagebrush lizard (Sceloporus arenicolus), a lizard known from southeastern New Mexico and adjacent west Texas, as endangered under the Endangered Species Act of 1973, as amended. If we finalize the rule as proposed, it would extend the Act's protections to this species. We have determined that critical habitat for the dunes......

  10. Wildlife Impact Assessment and Summary of Previous Mitigation Related to Hydroelectric Projects in Montana, Phase 1, Volume Two (B), Clark Fork River Projects, Cabinet Gorge and Noxon Rapids Dams, Operator, Washington Water Power Company.

    SciTech Connect

    Wood, Marilyn

    1984-06-01

    This report documents best available information concerning the wildlife species impacted and the degree of the impact. A target species list was developed to focus the impact assessment and to direct mitigation efforts. Many non-target species also incurred impacts but are not discussed in this report. All wildlife habitats inundated by the two reservoirs are represented by the target species. It was assumed the numerous non-target species also affected will be benefited by the mitigation measures adopted for the target species. Impacts addressed are limited to those directly attributable to the loss of habitat and displacement of wildlife populations due to the construction and operation of the two hydroelectric projects. Secondary impacts, such as the relocation of railroads and highways, and the increase of the human population, were not considered. In some cases, both positive and negative impacts were assessed; and the overall net effect was reported. The loss/gain estimates reported represent impacts considered to have occurred during one point in time except where otherwise noted. When possible, quantitative estimates were developed based on historical information from the area or on data from similar areas. Qualitative loss estimates of low, moderate, or high with supporting rationale were assessed for each species or species group.

  11. Signals of speciation: volatile organic compounds resolve closely related sagebrush taxa, suggesting their importance in evolution.

    PubMed

    Jaeger, Deidre M; Runyon, Justin B; Richardson, Bryce A

    2016-09-01

    Volatile organic compounds (VOCs) play important roles in the environmental adaptation and fitness of plants. Comparison of the qualitative and quantitative differences in VOCs among closely related taxa and assessing the effects of environment on their emissions are important steps to deducing VOC function and evolutionary importance. Headspace VOCs from five taxa of sagebrush (Artemisia, subgenus Tridentatae) growing in two common gardens were collected and analyzed using GC-MS. Of the 74 total VOCs emitted, only 15 were needed to segregate sagebrush taxa using Random Forest analysis with a low error of 4%. All but one of these 15 VOCs showed qualitative differences among taxa. Ordination of results showed strong clustering that reflects taxonomic classification. Random Forest identified five VOCs that classify based on environment (2% error), which do not overlap with the 15 VOCs that segregated taxa. We show that VOCs can discriminate closely related species and subspecies of Artemisia, which are difficult to define using molecular markers or morphology. Thus, it appears that changes in VOCs either lead the way or follow closely behind speciation in this group. Future research should explore the functions of VOCs, which could provide further insights into the evolution of sagebrushes.

  12. A spatial model to prioritize sagebrush landscapes in the intermountain west (U.S.A.) for restoration

    USGS Publications Warehouse

    Meinke, C.W.; Knick, S.T.; Pyke, D.A.

    2009-01-01

    The ecological integrity of Sagebrush (Artemisia spp.) ecosystems in the Intermountain West (U.S.A.) has been diminished by synergistic relationships among human activities, spread of invasive plants, and altered disturbance regimes. An aggressive effort to restore Sagebrush habitats is necessary if we are to stabilize or improve current habitat trajectories and reverse declining population trends of dependent wildlife. Existing economic resources, technical impediments, and logistic difficulties limit our efforts to a fraction of the extensive area undergoing fragmentation, degradation, and loss. We prioritized landscapes for restoring Sagebrush habitats within the intermountain western region of the United States using geographic information system (GIS) modeling techniques to identify areas meeting a set of conditions based on (1) optimum abiotic and biotic conditions favorable for revegetation of Sagebrush; (2) potential to increase connectivity of Sagebrush habitats in the landscape to benefit wildlife; (3) location of population strongholds for Greater Sage-Grouse (Centrocercus urophasianus, a species of conservation concern); and (4) potential impediments to successful restoration created by Cheatgrass (Bromus tectorum, an invasive exotic annual grass). Approximately 5.8 million ha in southwestern Idaho, northern Nevada, and eastern Oregon met our criteria for restoring Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis) and 5.1 million ha had high priority for restoring Mountain big sagebrush (A. tridentata ssp. vaseyana). Our results represent an integral component in a hierarchical framework after which site-specific locations for treatments can be focused within high-priority areas. Using this approach, long-term restoration strategies can be implemented that combine local-scale treatments and objectives with large-scale ecological processes and priorities. ?? 2008 Society for Ecological Restoration International.

  13. Multi-scale remote sensing sagebrush characterization with regression trees over Wyoming, USA: Laying a foundation for monitoring

    NASA Astrophysics Data System (ADS)

    Homer, Collin G.; Aldridge, Cameron L.; Meyer, Debra K.; Schell, Spencer J.

    2012-02-01

    Sagebrush ecosystems in North America have experienced extensive degradation since European settlement. Further degradation continues from exotic invasive plants, altered fire frequency, intensive grazing practices, oil and gas development, and climate change - adding urgency to the need for ecosystem-wide understanding. Remote sensing is often identified as a key information source to facilitate ecosystem-wide characterization, monitoring, and analysis; however, approaches that characterize sagebrush with sufficient and accurate local detail across large enough areas to support this paradigm are unavailable. We describe the development of a new remote sensing sagebrush characterization approach for the state of Wyoming, U.S.A. This approach integrates 2.4 m QuickBird, 30 m Landsat TM, and 56 m AWiFS imagery into the characterization of four primary continuous field components including percent bare ground, percent herbaceous cover, percent litter, and percent shrub, and four secondary components including percent sagebrush ( Artemisia spp.), percent big sagebrush ( Artemisia tridentata), percent Wyoming sagebrush ( Artemisia tridentata Wyomingensis), and shrub height using a regression tree. According to an independent accuracy assessment, primary component root mean square error (RMSE) values ranged from 4.90 to 10.16 for 2.4 m QuickBird, 6.01 to 15.54 for 30 m Landsat, and 6.97 to 16.14 for 56 m AWiFS. Shrub and herbaceous components outperformed the current data standard called LANDFIRE, with a shrub RMSE value of 6.04 versus 12.64 and a herbaceous component RMSE value of 12.89 versus 14.63. This approach offers new advancements in sagebrush characterization from remote sensing and provides a foundation to quantitatively monitor these components into the future.

  14. Relative Abundance of and Composition within Fungal Orders Differ between Cheatgrass (Bromus tectorum) and Sagebrush (Artemisia tridentata)-Associated Soils

    PubMed Central

    Weber, Carolyn F.; King, Gary M.; Aho, Ken

    2015-01-01

    Nonnative Bromus tectorum (cheatgrass) is decimating sagebrush steppe, one of the largest ecosystems in the Western United States, and is causing regional-scale shifts in the predominant plant-fungal interactions. Sagebrush, a native perennial, hosts arbuscular mycorrhizal fungi (AMF), whereas cheatgrass, a winter annual, is a relatively poor host of AMF. This shift is likely intertwined with decreased carbon (C)-sequestration in cheatgrass-invaded soils and alterations in overall soil fungal community composition and structure, but the latter remain unresolved. We examined soil fungal communities using high throughput amplicon sequencing (ribosomal large subunit gene) in the 0–4 cm and 4–8 cm depth intervals of six cores from cheatgrass- and six cores from sagebrush-dominated soils. Sagebrush core surfaces (0–4 cm) contained higher nitrogen and total C than cheatgrass core surfaces; these differences mirrored the presence of glomalin related soil proteins (GRSP), which has been associated with AMF activity and increased C-sequestration. Fungal richness was not significantly affected by vegetation type, depth or an interaction of the two factors. However, the relative abundance of seven taxonomic orders was significantly affected by vegetation type or the interaction between vegetation type and depth. Teloschistales, Spizellomycetales, Pezizales and Cantharellales were more abundant in sagebrush libraries and contain mycorrhizal, lichenized and basal lineages of fungi. Only two orders (Coniochaetales and Sordariales), which contain numerous economically important pathogens and opportunistic saprotrophs, were more abundant in cheatgrass libraries. Pleosporales, Agaricales, Helotiales and Hypocreales were most abundant across all libraries, but the number of genera detected within these orders was as much as 29 times lower in cheatgrass relative to sagebrush libraries. These compositional differences between fungal communities associated with cheatgrass- and

  15. Final Project Report: Development of Micro-Structural Mitigation Strategies for PEM Fuel Cells: Morphological Simulations and Experimental Approaches

    SciTech Connect

    Wessel, Silvia; Harvey, David

    2013-06-28

    The durability of PEM fuel cells is a primary requirement for large scale commercialization of these power systems in transportation and stationary market applications that target operational lifetimes of 5,000 hours and 40,000 hours by 2015, respectively. Key degradation modes contributing to fuel cell lifetime limitations have been largely associated with the platinum-based cathode catalyst layer. Furthermore, as fuel cells are driven to low cost materials and lower catalyst loadings in order to meet the cost targets for commercialization, the catalyst durability has become even more important. While over the past few years significant progress has been made in identifying the underlying causes of fuel cell degradation and key parameters that greatly influence the degradation rates, many gaps with respect to knowledge of the driving mechanisms still exist; in particular, the acceleration of the mechanisms due to different structural compositions and under different fuel cell conditions remains an area not well understood. The focus of this project was to address catalyst durability by using a dual path approach that coupled an extensive range of experimental analysis and testing with a multi-scale modeling approach. With this, the major technical areas/issues of catalyst and catalyst layer performance and durability that were addressed are: 1. Catalyst and catalyst layer degradation mechanisms (Pt dissolution, agglomeration, Pt loss, e.g. Pt in the membrane, carbon oxidation and/or corrosion). a. Driving force for the different degradation mechanisms. b. Relationships between MEA performance, catalyst and catalyst layer degradation and operational conditions, catalyst layer composition, and structure. 2. Materials properties a. Changes in catalyst, catalyst layer, and MEA materials properties due to degradation. 3. Catalyst performance a. Relationships between catalyst structural changes and performance. b. Stability of the three-phase boundary and its effect on

  16. Projected 21st Century Impacts of Climate Change on the Performance of the Los Angeles Aqueduct and Adaptation Measures to Mitigate Adverse Impacts

    NASA Astrophysics Data System (ADS)

    Mills, B.; Sayenko, K.; Roy, S. B.; Lew, C.

    2011-12-01

    One of the largest sources of drinking water to the City of Los Angeles (the City) comes from snow melt from the Eastern Sierra Nevada Mountains that drain into Owens Valley and Mono Basin. Much of this water is then transported to the City via the Los Angeles Aqueduct (LAA) originally built in 1913. During the 1980s and earlier, up to 500,000 acre-feet (af) of water was conveyed annually, but more recently less water has been transported due to increasing usage in Owens Valley, and due to a series of dry years.The City is concerned about potential impacts of climate change on this water supply, and commissioned the authors to perform a study to evaluate these potential impacts on both the infrastructure of the LAA and water supply to the City. This presentation focuses on the water supply issue, which has the potential to impact millions of customers. The study results presented here are part of a larger study where 16 global climate models were downscaled and applied to the Owens Valley and Mono Basin watersheds. This presentation begins by assuming base-of-mountain runoff is known from the 16 GCMs, and does not focus on the GCMs or downscaling.The results of the study described in this presentation are those of the authors and not of the LADWP. One of the most consequential findings of the study is the projected decrease in runoff from the watershed over the 21st century. While wet years are still dispersed between dry years, over the 21st century the loss in runoff is equivalent to approximately five years of historical average runoff. In addition to climate change impacts, water usage in the Owens valley is projected to increase over the 21st century and that increasing usage is projected to be comparable to climate change impacts. Eight adaptation options were identified to mitigate potential impacts. These included increasing storage volume of reservoirs in Owens Valley, changing operational rules for releasing water, construction of surface storage or

  17. HOW EFFECTIVE ARE FEDERAL PROGRAMS IN MITIGATING WETLAND LOSSES?

    EPA Science Inventory

    The project tests the hypothesis that fundamental value differences among three key contributors to wetlands mitigation may be important and generally unrecognized factors determining the project outcomes.

  18. Transcriptome characterization and polymorphism detection between subspecies of big sagebrush (Artemisia tridentata)

    PubMed Central

    2011-01-01

    Background Big sagebrush (Artemisia tridentata) is one of the most widely distributed and ecologically important shrub species in western North America. This species serves as a critical habitat and food resource for many animals and invertebrates. Habitat loss due to a combination of disturbances followed by establishment of invasive plant species is a serious threat to big sagebrush ecosystem sustainability. Lack of genomic data has limited our understanding of the evolutionary history and ecological adaptation in this species. Here, we report on the sequencing of expressed sequence tags (ESTs) and detection of single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers in subspecies of big sagebrush. Results cDNA of A. tridentata sspp. tridentata and vaseyana were normalized and sequenced using the 454 GS FLX Titanium pyrosequencing technology. Assembly of the reads resulted in 20,357 contig consensus sequences in ssp. tridentata and 20,250 contigs in ssp. vaseyana. A BLASTx search against the non-redundant (NR) protein database using 29,541 consensus sequences obtained from a combined assembly resulted in 21,436 sequences with significant blast alignments (≤ 1e-15). A total of 20,952 SNPs and 119 polymorphic SSRs were detected between the two subspecies. SNPs were validated through various methods including sequence capture. Validation of SNPs in different individuals uncovered a high level of nucleotide variation in EST sequences. EST sequences of a third, tetraploid subspecies (ssp. wyomingensis) obtained by Illumina sequencing were mapped to the consensus sequences of the combined 454 EST assembly. Approximately one-third of the SNPs between sspp. tridentata and vaseyana identified in the combined assembly were also polymorphic within the two geographically distant ssp. wyomingensis samples. Conclusion We have produced a large EST dataset for Artemisia tridentata, which contains a large sample of the big sagebrush leaf transcriptome. SNP

  19. Producing fractional rangeland component predictions in a sagebrush ecosystem, a Wyoming sensitivity analysis

    USGS Publications Warehouse

    Xian, George; Homer, Collin G.; Granneman, Brian; Meyer, Debra K.

    2012-01-01

    Remote sensing information has been widely used to monitor vegetation condition and variations in a variety of ecosystems, including shrublands. Careful application of remotely sensed imagery can provide additional spatially explicit, continuous, and extensive data on the composition and condition of shrubland ecosystems. Historically, the most widely available remote sensing information has been collected by Landsat, which has offered large spatial coverage and moderate spatial resolution data globally for nearly three decades. Such medium-resolution satellite remote sensing information can quantify the distribution and variation of terrestrial ecosystems. Landsat imagery has been frequently used with other high-resolution remote sensing data to classify sagebrush components and quantify their spatial distributions (Ramsey and others, 2004; Seefeldt and Booth, 2004; Stow and others, 2008; Underwood and others, 2007). Modeling algorithms have been developed to use field measurements and satellite remote sensing data to quantify the extent and evaluate the quality of shrub ecosystem components in large geographic areas (Homer and others, 2009). The percent cover of sagebrush ecosystem components, including bare-ground, herbaceous, litter, sagebrush, and shrub, have been quantified for entire western states (Homer and others, 2012). Furthermore, research has demonstrated the use of current measurements with historical archives of Landsat imagery to quantify the variations of these components for the last two decades (Xian and others, 2012). The modeling method used to quantify the extent and spatial distribution of sagebrush components over a large area also has required considerable amounts of training data to meet targeted accuracy requirements. These training data have maintained product accuracy by ensuring that they are derived from good quality field measurements collected during appropriate ecosystem phenology and subsequently maximized by extrapolation on

  20. An integrated multi-parameter monitoring approach for the quantification and mitigation of the climate change impact on the coasts of Eastern Crete, S. Aegean Sea (Project AKTAIA)

    NASA Astrophysics Data System (ADS)

    Ghionis, George; Alexandrakis, George; Karditsa, Aikaterini; Sifnioti, Dafni; Vousdoukas, Michalis; Andreadis, Olympos; Petrakis, Stelios; Poulos, Serafim; Velegrakis, Adonis; Kampanis, Nikolaos; Lipakis, Michalis

    2014-05-01

    associated sediment transport and beach morphodynamics, calibrated with in situ data, is used to predict beach response and vulnerability to different climate change scenarios. Finally, the socio-economic impact of the climate change on the coastal zone will be assessed and a management protocol for the coastal zone and for the mitigation of the climate change impact will be developed. The ultimate scope of the project is to benefit the society by providing current and high quality information on the consequences of the climate change, especially those related to sea-level rise, and on the available protection and mitigation measures. In addition, the technological product will help in the proper planning of the required actions and technical interventions, reducing the need for costly, incomplete and frequently redundant localized studies and the risk of unsuccessful interventions. Acknowledgements The project is supported by the Action "Cooperation 2007-2013" (09SYN-31-711 "AKTAIA") of the Operational Program "Competitiveness and Entrepreneurship" co-funded by the European Regional Development Fund (ERDF) and the General Secretariat for Research and Technology (Hellenic Ministry of Education).

  1. Sagebrush as a sampling medium for gold exploration in the Great Basin - evaluation from a greenhouse study

    USGS Publications Warehouse

    Stewart, K.C.; McKown, D.M.

    1995-01-01

    Seedlings (Artemisia tridentata subsp, tridentata germinated from seed collected near Preble, Nevada were grown in soils containing Carlin-type disseminated gold ore. After 4 months growth leaves, twigs and stems were combined and analyzed by INAA. Plants grown in soils containing Carlin ore did not accumulate significantly more gold than those growing in control soil. On the other hand, sagebrush grown in soils containing Carlin ores accumulated significantly more arsenic and antimony compared to those grown in control soils. Results suggest that sagebrush would be a good prospecting medium for detecting concealed Carlin-type deposits in the Great Basin if arsenic and antimony are used as the pathfinder elements. Results also suggest that true gold anomalies in sagebrush will be more difficult to separate from aeolian contamination than those for arsenic and antimony in arid environments. -from Authors

  2. Uranium in big sagebrush from western U.S. and evidence of possible mineralization in the Owyhee mountains of Idaho

    USGS Publications Warehouse

    Erdman, J.A.; Harrach, G.H.

    1981-01-01

    Two regional studies of big sagebrush (Artemisia tridentata), a widely distributed and dominant shrub in the western United States, have shown its responsiveness to known uranium mineralization in the Monument Hill and Pumpkin Buttes districts of the southern Powder River Basin, Wyoming, and the Uravan mineral belt area in southeastern Utah and southwestern Colorado. Uranium concentrations in the ash of 154 stem-and-leaf samples of sagebrush are plotted on two maps, one representing the sampling design for the Powder River Basin study, and the other representing the sampling design for the Colorado Plateaus, the Basin and Range, and the Columbia Plateaus physiographic provinces of the West. Sites having high concentrations in sagebrush correspond not only to the above uranium districts, but also reveal an area along the northeast flanks of the Owyhee Mountains in Idaho that should be further explored for its possible uranium potential.

  3. Multi-scale remote sensing sagebrush characterization with regression trees over Wyoming, USA: laying a foundation for monitoring

    USGS Publications Warehouse

    Homer, Collin G.; Aldridge, Cameron L.; Meyer, Debra K.; Schell, Spencer J.

    2012-01-01

    agebrush ecosystems in North America have experienced extensive degradation since European settlement. Further degradation continues from exotic invasive plants, altered fire frequency, intensive grazing practices, oil and gas development, and climate change – adding urgency to the need for ecosystem-wide understanding. Remote sensing is often identified as a key information source to facilitate ecosystem-wide characterization, monitoring, and analysis; however, approaches that characterize sagebrush with sufficient and accurate local detail across large enough areas to support this paradigm are unavailable. We describe the development of a new remote sensing sagebrush characterization approach for the state of Wyoming, U.S.A. This approach integrates 2.4 m QuickBird, 30 m Landsat TM, and 56 m AWiFS imagery into the characterization of four primary continuous field components including percent bare ground, percent herbaceous cover, percent litter, and percent shrub, and four secondary components including percent sagebrush (Artemisia spp.), percent big sagebrush (Artemisia tridentata), percent Wyoming sagebrush (Artemisia tridentata Wyomingensis), and shrub height using a regression tree. According to an independent accuracy assessment, primary component root mean square error (RMSE) values ranged from 4.90 to 10.16 for 2.4 m QuickBird, 6.01 to 15.54 for 30 m Landsat, and 6.97 to 16.14 for 56 m AWiFS. Shrub and herbaceous components outperformed the current data standard called LANDFIRE, with a shrub RMSE value of 6.04 versus 12.64 and a herbaceous component RMSE value of 12.89 versus 14.63. This approach offers new advancements in sagebrush characterization from remote sensing and provides a foundation to quantitatively monitor these components into the future.

  4. Projecting the Dependence of Sage-steppe Vegetation on Redistributed Snow in a Warming Climate.

    NASA Astrophysics Data System (ADS)

    Soderquist, B.; Kavanagh, K.; Link, T. E.; Seyfried, M. S.; Strand, E. K.

    2015-12-01

    In mountainous regions, the redistribution of snow by wind can increase the effective precipitation available to vegetation. Moisture subsidies caused by drifting snow may be critical to plant productivity in semi-arid ecosystems. However, with increasing temperatures, the distribution of precipitation is becoming more uniform as rain replaces drifting snow. Understanding the ecohydrological interactions between sagebrush steppe vegetation communities and the heterogeneous distribution of soil moisture is essential for predicting and mitigating future losses in ecosystem diversity and productivity in regions characterized by snow dominated precipitation regimes. To address the dependence of vegetation productivity on redistributed snow, we simulated the net primary production (NPP) of aspen, sagebrush, and C3 grass plant functional types spanning a precipitation phase (rain:snow) gradient in the Reynolds Creek Experimental Watershed and Critical Zone Observatory (RCEW-CZO). The biogeochemical process model Biome-BGC was used to simulate NPP at three sites located directly below snowdrifts that provide melt water late into the spring. To assess climate change impacts on future plant productivity, mid-century (2046-2065) NPP was simulated using the average temperature increase from the Multivariate Adaptive Constructed Analogs (MACA) data set under the RCP 8.5 emission scenario. At the driest site, mid-century projections of decreased snow cover and increased growing season evaporative demand resulted in limiting soil moisture up to 30 and 40 days earlier for aspen and sage respectively. While spring green up for aspen occurred an average of 13 days earlier under climate change scenarios, NPP remained negative up to 40 days longer during the growing season. These results indicate that the loss of the soil moisture subsidy stemming from prolonged redistributed snow water resources can directly influence ecosystem productivity in the rain:snow transition zone.

  5. Spatial variability in cost and success of revegetation in a Wyoming big sagebrush community.

    PubMed

    Boyd, Chad S; Davies, Kirk W

    2012-09-01

    The ecological integrity of the Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle and A. Young) alliance is being severely interrupted by post-fire invasion of non-native annual grasses. To curtail this invasion, successful post-fire revegetation of perennial grasses is required. Environmental factors impacting post-fire restoration success vary across space within the Wyoming big sagebrush alliance; however, most restorative management practices are applied uniformly. Our objectives were to define probability of revegetation success over space using relevant soil-related environmental factors, use this information to model cost of successful revegetation and compare the importance of vegetation competition and soil factors to revegetation success. We studied a burned Wyoming big sagebrush landscape in southeast Oregon that was reseeded with perennial grasses. We collected soil and vegetation data at plots spaced at 30 m intervals along a 1.5 km transect in the first two years post-burn. Plots were classified as successful (>5 seedlings/m(2)) or unsuccessful based on density of seeded species. Using logistic regression we found that abundance of competing vegetation correctly predicted revegetation success on 51 % of plots, and soil-related variables correctly predicted revegetation performance on 82.4 % of plots. Revegetation estimates varied from $167.06 to $43,033.94/ha across the 1.5 km transect based on probability of success, but were more homogenous at larger scales. Our experimental protocol provides managers with a technique to identify important environmental drivers of restoration success and this process will be of value for spatially allocating logistical and capital expenditures in a variable restoration environment.

  6. Pinyon and juniper encroachment into sagebrush ecosystems impacts distribution and survival of greater sage-grouse

    USGS Publications Warehouse

    Coates, Peter S.; Prochazka, Brian; Ricca, Mark; Gustafson, K. Ben; Ziegler, Pilar T.; Casazza, Michael L.

    2017-01-01

    In sagebrush (Artemisia spp.) ecosystems, encroachment of pinyon (Pinus spp.) and juniper (Juniperus spp.; hereafter, “pinyon-juniper”) trees has increased dramatically since European settlement. Understanding the impacts of this encroachment on behavioral decisions, distributions, and population dynamics of greater sage-grouse (Centrocercus urophasianus) and other sagebrush obligate species could help benefit sagebrush ecosystem management actions. We employed a novel two-stage Bayesian model that linked avoidance across different levels of pinyon-juniper cover to sage-grouse survival. Our analysis relied on extensive telemetry data collected across 6 yr and seven subpopulations within the Bi-State Distinct Population Segment (DPS), on the border of Nevada and California. The first model stage indicated avoidance behavior for all canopy cover classes on average, but individual grouse exhibited a high degree of heterogeneity in avoidance behavior of the lowest cover class (e.g., scattered isolated trees). The second stage modeled survival as a function of estimated avoidance parameters and indicated increased survival rates for individuals that exhibited avoidance of the lowest cover class. A post hoc frailty analysis revealed the greatest increase in hazard (i.e., mortality risk) occurred in areas with scattered isolated trees consisting of relatively high primary plant productivity. Collectively, these results provide clear evidence that local sage-grouse distributions and demographic rates are influenced by pinyon-juniper, especially in habitats with higher primary productivity but relatively low and seemingly benign tree cover. Such areas may function as ecological traps that convey attractive resources but adversely affect population vital rates. To increase sage-grouse survival, our model predictions support reducing actual pinyon-juniper cover as low as 1.5%, which is lower than the published target of 4.0%. These results may represent effects of pinyon

  7. Ecosystem engineering of harvester ants: effects on vegetation in a sagebrush-steppe ecosystem

    USGS Publications Warehouse

    Gosselin, Elyce N; Holbrook, Joseph D.; Huggler, Katey; Brown, Emily; Vierling, Kerri T.; Arkle, Robert; Pilliod, David

    2016-01-01

    Harvester ants are influential in many ecosystems because they distribute and consume seeds, remove vegetation, and redistribute soil particles and nutrients. Understanding the interaction between harvester ants and plant communities is important for management and restoration efforts, particularly in systems altered by fire and invasive species such as the sagebrush-steppe. Our objective was to evaluate how vegetation cover changed as a function of distance from Owyhee harvester ant (Pogonomyrmex salinus) nests within a sagebrush-steppe ecosystem. We sampled 105 harvester ant nests within southern Idaho, USA, that occurred in different habitats: annual grassland, perennial grassland, and native shrubland. The influence of Owyhee harvester ants on vegetation was larger at the edge of ant nests, but the relationship was inconsistent among plant species. Percent cover was positively associated with distance from harvester ant nests for plant species that were considered undesirable food sources and were densely distributed. However, percent cover was negatively associated with distance-from-nests for patchily distributed and desirable plant species. For some plant species, there was no change in cover associated with distance-from-nests. Total vegetation cover was associated with distance-from-nests in the shrubland habitat but not in the 2 grasslands. The dominant plant species in the shrubland habitat was a densely distributed shrub (winterfat, Krascheninnikovia lanata) that was defoliated by harvester ants. Our results suggest that Owyhee harvester ants increase spatial heterogeneity in plant communities through plant clearing, but the direction and magnitude of effect will likely be contingent on the dominant vegetation groups. This information may inform future management and plant restoration efforts in sagebrush-steppe by directly considering the islands of influence associated with harvester ant engineering.

  8. Spatial Variability in Cost and Success of Revegetation in a Wyoming Big Sagebrush Community

    NASA Astrophysics Data System (ADS)

    Boyd, Chad S.; Davies, Kirk W.

    2012-09-01

    The ecological integrity of the Wyoming big sagebrush ( Artemisia tridentata Nutt. ssp. wyomingensis Beetle and A. Young) alliance is being severely interrupted by post-fire invasion of non-native annual grasses. To curtail this invasion, successful post-fire revegetation of perennial grasses is required. Environmental factors impacting post-fire restoration success vary across space within the Wyoming big sagebrush alliance; however, most restorative management practices are applied uniformly. Our objectives were to define probability of revegetation success over space using relevant soil-related environmental factors, use this information to model cost of successful revegetation and compare the importance of vegetation competition and soil factors to revegetation success. We studied a burned Wyoming big sagebrush landscape in southeast Oregon that was reseeded with perennial grasses. We collected soil and vegetation data at plots spaced at 30 m intervals along a 1.5 km transect in the first two years post-burn. Plots were classified as successful (>5 seedlings/m2) or unsuccessful based on density of seeded species. Using logistic regression we found that abundance of competing vegetation correctly predicted revegetation success on 51 % of plots, and soil-related variables correctly predicted revegetation performance on 82.4 % of plots. Revegetation estimates varied from 167.06 to 43,033.94/ha across the 1.5 km transect based on probability of success, but were more homogenous at larger scales. Our experimental protocol provides managers with a technique to identify important environmental drivers of restoration success and this process will be of value for spatially allocating logistical and capital expenditures in a variable restoration environment.

  9. Canopy structure of sagebrush ecosystems leading to differences in carbon and water fluxes

    NASA Astrophysics Data System (ADS)

    Reed, D. E.; Ewers, B. E.; Peckham, S. D.; Pendall, E. G.; Kelly, R. D.

    2013-12-01

    The sagebrush steppe ecosystem covers nearly 15% of Western North America, and its productivity is sensitive to warming and increasingly variable precipitation. Previous work has shown that interannual variability of precipitation is the largest factor in carbon and water cycling in these semi-arid ecosystems and that the relationship of traditional drivers of fluxes (VPD, net radiation, soil temperature) to carbon and water fluxes as well as ecosystem water use efficiency does not change along an elevation gradient. We seek to expand on that work by using multiple site-years from eddy covariance data near the upper (2469m) and lower (2069m) elevation range of sagebrush to answer the question 'How does canopy structure and canopy leaf area index combine to control the ecosystem carbon and water fluxes from rocky mountain sagebrush ecosystems'. We are answering this question by quantifying ecosystem scale carbon and water using eddy covariance measurements and a standard suite of atmospheric, soil and vegetation monitoring instruments. This data will be used with the Terrestrial Regional Ecosystem Exchange Simulator (TREES) Bayesian framework model that utilizes a coupled plant hydraulic and carbon uptake. For this work we use the TREES model to simulate canopy structure and leaf area based on seven years of eddy covariance data from the two different locations. This canopy information will be compared with canopy structure ground measurements within the eddy covariance footprint, and then we will compare the relationship between canopy structure and ecosystem fluxes. During well watered growing season time periods, the high elevation site has average water flux of 1.06 mmol m-2 s-1 and carbon flux of 1.54 μmol m-2 s-1 of uptake. Average water and carbon fluxes at the lower elevation site were 0.84 mmol m-2 s-1 and 1.09 μmol m-2 s-1 of uptake respectively. This is a reduction of 20% for water flux and 30% and carbon flux down the elevation gradient. With the

  10. Southern Idaho Wildlife Mitigation Implementation 2000 Annual Report.

    SciTech Connect

    Bottum, Edward; Mikkelsen, Anders

    2002-01-01

    This report covers calendar year 2001 activities for the Southern Idaho Wildlife Mitigation Implementation project. This project, implemented by Idaho Department of Fish and Game and Shoshone Bannock Tribes, is designed to protect, enhance and maintain wildlife habitats to mitigate for construction losses associated with Anderson Ranch, Black Canyon, Deadwood, Minidoka and Palisades hydroelectric projects. Additional project information is available in the quarterly reports.

  11. Compensatory Mitigation for Losses of Aquatic Resources; Final Rule

    EPA Pesticide Factsheets

    These regulations are designed to improve the effectiveness of compensatory mitigation to replace lost aquatic resource functions and area, and increase the efficiency and predictability of the mitigation project review process.

  12. Data resources for range-wide assessment of livestock grazing across the sagebrush biome

    USGS Publications Warehouse

    Assal, T.J.; Veblen, K.E.; Farinha, M.A.; Aldridge, C.L.; Casazza, M.L.; Pyke, D.A.

    2012-01-01

    The data contained in this series were compiled, modified, and analyzed for the U.S. Geological Survey (USGS) report "Range-Wide Assessment of Livestock Grazing Across the Sagebrush Biome." This report can be accessed through the USGS Publications Warehouse (online linkage: http://pubs.usgs.gov/of/2011/1263/). The dataset contains spatial and tabular data related to Bureau of Land Management (BLM) Grazing Allotments. We reviewed the BLM national grazing allotment spatial dataset available from the GeoCommunicator National Integrated Land System (NILS) website in 2007 (http://www.geocommunicator.gov). We identified several limitations in those data and learned that some BLM State and/or field offices had updated their spatial data to rectify these limitations, but maintained the data outside of NILS. We contacted appropriate BLM offices (State or field, 25 in all) to obtain the most recent data, assessed the data, established a data development protocol, and compiled data into a topologically enforced dataset throughout the area of interest for this project (that is, the pre-settlement distribution of Greater Sage-Grouse in the Western United States). The final database includes three spatial datasets: Allotments (BLM Grazing Allotments), OUT_Polygons (nonallotment polygons used to ensure topology), and Duplicate_Polygon_Allotments. See Appendix 1 of the aforementioned report for complete methods. The tabular data presented here consists of information synthesized by the Land Health Standard (LHS) analysis (Appendix 2), and data obtained from the BLM Rangeland Administration System (http://www.blm.gov/ras/). In 2008, available LHS data for all allotments in all regions were compiled by BLM in response to a Freedom of Information Act (FOIA) request made by a private organization. The BLM provided us with a copy of these data. These data provided three major types of information that were of interest: (1) date(s) (if any) of the most recent LHS evaluation for each

  13. Fish and Wildlife Mitigation Plan

    DTIC Science & Technology

    1979-07-01

    NORTHERN CALIFORNIA COUNCIL OF FLY FISHING CLUBS Bob Baiocchi Vice President Conservation Chairman 1859 Salida Way Paradise, CA 95969 (916...PROJECT CALIFORNIA FIRST PHASE SPECIAL REPORT FISH AND WILDLIFE MITIGATION PLAN DEPARTMENT OF THE ARMY SACRAMENTO DISTRICT...CORPS OF ENGINEERS SACRAMENTO, CALIFORNIA 20081029163 DEFENSE TECHNICAL INFORMATION CENTER lufontuiioitfoir tktr Defense- CMtutucnity DTIC

  14. Remote Sensing Technologies Mitigate Drought

    NASA Technical Reports Server (NTRS)

    2015-01-01

    Ames Research Center has partnered with the California Department of Water Resources to develop satellite-based technologies to mitigate drought conditions. One project aims to help water managers adjust their irrigation to match the biological needs of each crop, and another involves monitoring areas where land is fallow so emergency relief can more quickly aid affected communities.

  15. RFI Mitigation / Excision techniques

    NASA Astrophysics Data System (ADS)

    Roshi, D. A.

    2004-06-01

    Radio frequency interference (RFI) is increasingly affecting radio astronomy research. A few years ago, active research to investigate the possibility of observing in the presence of interference using RFI mitigation techniques was initiated. In this paper, I briefly discuss four RFI mitigation/excision projects. These projects are:- (1) A technique to suppress double sideband amplitude modulated interference in which I show that an astronomical signal in the presence of a DSB interference can be observed with a signal-to-noise ratio factor of 2 less compared to observations if the RFI were not present. (2) Techniques to suppress interference due to synchronization signals in composite video signals are presented. A combination of noise-free modelling of the synchronization signals and adaptive filtering is used for suppressing the interference. (3) Design techniques to minimize spurious pick-up at the analog input of an analog-to-digital converter are discussed. (4) Spectral RFI excision using a spectral channel weighted scheme and its application to Green Bank telescope observations are also presented.

  16. Selection of anthropogenic features and vegetation characteristics by nesting Common Ravens in the sagebrush ecosystem

    USGS Publications Warehouse

    Howe, Kristy B.; Coates, Peter S.; Delehanty, David J.

    2014-01-01

    Common Raven (Corvus corax) numbers and distribution are increasing throughout the sagebrush steppe, influencing avian communities in complex ways. Anthropogenic structures are thought to increase raven populations by providing food and nesting subsidies, which is cause for concern because ravens are important nest predators of sensitive species, including Greater Sage-Grouse (Centrocercus urophasianus). During 2007–2009, we located raven nests in southeastern Idaho and conducted a resource selection analysis. We measured variables at multiple spatial scales for 72 unique nest locations, including landscape-level vegetation characteristics and anthropogenic structures. Using generalized linear mixed models and an information-theoretic approach, we found a 31% decrease in the odds of nesting by ravens for every 1 km increase in distance away from a transmission line. Furthermore, a 100-m increase in distance away from the edge of two different land cover types decreased the odds of nesting by 20%, and an increase in the amount of edge by 1 km within an area of 102.1 ha centered on the nest increased the odds of nesting by 49%. A post hoc analysis revealed that ravens were most likely to nest near edges of adjoining big sagebrush (Artemisia tridentata) and land cover types that were associated with direct human disturbance or fire. These findings contribute to our understanding of raven expansion into rural environments and could be used to make better-informed conservation decisions, especially in the face of increasing renewable energy development.

  17. 32 CFR 989.22 - Mitigation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE ENVIRONMENTAL PROTECTION ENVIRONMENTAL IMPACT ANALYSIS PROCESS (EIAP) § 989.22 Mitigation. (a) When preparing EIAP documents, indicate... should include the cost of mitigation as a line item in the budget for a proposed project. The...

  18. 32 CFR 989.22 - Mitigation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE ENVIRONMENTAL PROTECTION ENVIRONMENTAL IMPACT ANALYSIS PROCESS (EIAP) § 989.22 Mitigation. (a) When preparing EIAP documents, indicate... should include the cost of mitigation as a line item in the budget for a proposed project. The...

  19. Hurricane risk mitigation - High Pressure Gas Facility

    NASA Technical Reports Server (NTRS)

    2008-01-01

    A worker pours concrete as part of a nitrogen risk mitigation project at the High Pressure Gas Facility at Stennis Space Center. The concrete slab will provide the foundation needed to place new pumps at the site and is part of ongoing hurricane-related mitigation work at Stennis.

  20. Mitigation assessment results and priorities in China

    SciTech Connect

    Wu Zongxin; Wei Zhihong

    1996-12-31

    In this paper energy related CO2 emission projections of China by 2030 are given. CO2 mitigation potential and technology options in main fields of energy conservation and energy substitution are analyzed. CO2 reduction costs of main mitigation technologies are estimated and the AHP approach is used for helping assessment of priority technologies.

  1. Bee floral guilds of sagebrush-steppe wildflowers: evaluating bee community benefits among available species to seed after fire

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Healthy plant communities of the American sagebrush-steppe consist of mostly wind-pollinated shrubs and grasses interspersed with a diverse mix of mostly spring-blooming, herbaceous perennial wildflowers. Native, non-social bees are the common floral visitors, but their floral associations and abund...

  2. Response of Two Sagebrush Sites to Low-Disturbance, Mechanical Removal of Piñyon and Juniper

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Encroachment of shrubland communities by woody species is occurring across the globe and prompting land management agencies to deal with the ecological results. In North America, invasion by Pinus monophylla (pinyon pine) and Juniperus osteosperma (Utah juniper) into Artemisia spp. (sagebrush) commu...

  3. Preference of pen-reared northern bobwhite among native plant seeds of the sand sagebrush-mixed prairie

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adult northern bobwhite quail (Colinus virginianus) are largely granivorous, eating primarily seeds produced from grasses and forbs. The objective of this research was to determine northern bobwhite quail preference among seeds of 45 plant species associated with the sand sagebrush-mixed prairie. ...

  4. Effects of sand sagebrush control in southern mixed-grass prairie rangeland on cattle performance and economic return

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To evaluate the effects of sand sagebrush (Artemisia filifolia Torr.) control in native rangelands on cattle performance, 15 pastures (10 to 21 ha each) were selected in Northwest Oklahoma. Eleven pastures had been sprayed with 2,4-dichlorophenoxyacetic acid in 1984 or 2003 to establish differences...

  5. Geology and mineral resources of the Sheldon-Hart Mountain National Wildlife Refuge Complex (Oregon and Nevada), the Southeastern Oregon and North-Central Nevada, and the Southern Idaho and Northern Nevada (and Utah) Sagebrush Focal Areas: Chapter B in Mineral resources of the Sagebrush Focal Areas of Idaho, Montana, Nevada, Oregon, Utah, and Wyoming

    USGS Publications Warehouse

    Vikre, Peter G.; Benson, Mary Ellen; Bleiwas, Donald I.; Colgan, Joseph P.; Cossette, Pamela M.; DeAngelo, Jacob; Dicken, Connie L.; Drake, Ronald M.; du Bray, Edward A.; Fernette, Gregory L.; Glen, Jonathan M.G.; Haacke, Jon E.; Hall, Susan M.; Hofstra, Albert H.; John, David A.; Ludington, Stephen; Mihalasky, Mark J.; Rytuba, James J.; Shaffer, Brian N.; Stillings, Lisa L.; Wallis, John C.; Williams, Colin F.; Yager, Douglas B.; Zürcher, Lukas

    2016-10-04

    SummaryThe U.S. Department of the Interior has proposed to withdraw approximately 10 million acres of Federal lands from mineral entry (subject to valid existing rights) from 12 million acres of lands defined as Sagebrush Focal Areas (SFAs) in Idaho, Montana, Nevada, Oregon, Utah, and Wyoming (for further discussion on the lands involved see Scientific Investigations Report 2016–5089–A). The purpose of the proposed action is to protect the greater sage-grouse (Centrocercus urophasianus) and its habitat from potential adverse effects of locatable mineral exploration and mining. The U.S. Geological Survey Sagebrush Mineral-Resource Assessment (SaMiRA) project was initiated in November 2015 and supported by the Bureau of Land Management to (1) assess locatable mineral-resource potential and (2) to describe leasable and salable mineral resources for the seven SFAs and Nevada additions.This chapter summarizes the current status of locatable, leasable, and salable mineral commodities and assesses the potential of selected locatable minerals in lands proposed for withdrawal that span the Nevada, Oregon, Idaho, and Utah borders. In this report, the four study areas evaluated were (1) the Sheldon-Hart Mountain National Wildlife Refuge Complex SFA in Washoe County, Nevada, and Harney and Lake Counties, Oregon; (2) the Southeastern Oregon and North-Central Nevada SFA in Humboldt County, Nevada, and Harney and Malheur Counties, Oregon; (3) the Southern Idaho and Northern Nevada SFA in Cassia, Owyhee, and Twin Falls Counties, Idaho, Elko County, Nevada, and Box Elder County, Utah; and (4) the Nevada additions in Humboldt and Elko Counties, Nevada.

  6. Spatial and temporal dynamics of Aroga moth (Lepidoptera: Gelechiidae) populations and damage to sagebrush in shrub steppe across varying elevation.

    PubMed

    Bolshakova, Virginia L J; Evans, Edward W

    2014-12-01

    Spatial and temporal variation in the density of the Aroga moth, Aroga websteri Clarke (Lepidoptera: Gelechiidae), and in its damage to its host plant, big sagebrush (Artemisia tridentata Nuttall), were examined at 38 sites across a shrub steppe landscape in mountain foothills of northern Utah. Sites were sampled from 2008 to 2012 during and after an outbreak of the moth, to assess whether and how local variation in moth abundance, survivorship, and damage to the host plant was accounted for by sagebrush cover, elevation, slope, aspect, or incident solar radiation. As moth numbers declined from a peak in 2009, individual sites had a consistent tendency in subsequent years to support more or fewer defoliator larvae. Local moth abundance was not correlated with sagebrush cover, which declined with elevation, and moth survivorship was highest at intermediate elevations (1,800-2,000 m). North-facing stands of sagebrush, characterized by lower values of incident solar radiation, were found to be especially suitable local habitats for the Aroga moth, as reflected in measures of both abundance and feeding damage. This high habitat suitability may result from favorable microclimate, both in its direct effects on the Aroga moth and in indirect effects through associated vegetative responses. North-facing sites also supported taller and more voluminous sagebrush plants in comparison to south-facing sites. Thus, the moth is reasonably predictable in the sites at which it is likely to occur in greatest numbers, and such sites may be those that in fact have most potential to recover from feeding damage.

  7. The influence of mitigation on sage-grouse habitat selection within an energy development field.

    PubMed

    Fedy, Bradley C; Kirol, Christopher P; Sutphin, Andrew L; Maechtle, Thomas L

    2015-01-01

    Growing global energy demands ensure the continued growth of energy development. Energy development in wildlife areas can significantly impact wildlife populations. Efforts to mitigate development impacts to wildlife are on-going, but the effectiveness of such efforts is seldom monitored or assessed. Greater sage-grouse (Centrocercus urophasianus) are sensitive to energy development and likely serve as an effective umbrella species for other sagebrush-steppe obligate wildlife. We assessed the response of birds within an energy development area before and after the implementation of mitigation action. Additionally, we quantified changes in habitat distribution and abundance in pre- and post-mitigation landscapes. Sage-grouse avoidance of energy development at large spatial scales is well documented. We limited our research to directly within an energy development field in order to assess the influence of mitigation in close proximity to energy infrastructure. We used nest-location data (n = 488) within an energy development field to develop habitat selection models using logistic regression on data from 4 years of research prior to mitigation and for 4 years following the implementation of extensive mitigation efforts (e.g., decreased activity, buried powerlines). The post-mitigation habitat selection models indicated less avoidance of wells (well density β = 0.18 ± 0.08) than the pre-mitigation models (well density β = -0.09 ± 0.11). However, birds still avoided areas of high well density and nests were not found in areas with greater than 4 wells per km2 and the majority of nests (63%) were located in areas with ≤ 1 well per km2. Several other model coefficients differed between the two time periods and indicated stronger selection for sagebrush (pre-mitigation β = 0.30 ± 0.09; post-mitigation β = 0.82 ± 0.08) and less avoidance of rugged terrain (pre-mitigation β = -0.35 ± 0.12; post-mitigation β = -0.05 ± 0.09). Mitigation efforts implemented may

  8. The Influence of Mitigation on Sage-Grouse Habitat Selection within an Energy Development Field

    PubMed Central

    Fedy, Bradley C.; Kirol, Christopher P.; Sutphin, Andrew L.; Maechtle, Thomas L.

    2015-01-01

    Growing global energy demands ensure the continued growth of energy development. Energy development in wildlife areas can significantly impact wildlife populations. Efforts to mitigate development impacts to wildlife are on-going, but the effectiveness of such efforts is seldom monitored or assessed. Greater sage-grouse (Centrocercus urophasianus) are sensitive to energy development and likely serve as an effective umbrella species for other sagebrush-steppe obligate wildlife. We assessed the response of birds within an energy development area before and after the implementation of mitigation action. Additionally, we quantified changes in habitat distribution and abundance in pre- and post-mitigation landscapes. Sage-grouse avoidance of energy development at large spatial scales is well documented. We limited our research to directly within an energy development field in order to assess the influence of mitigation in close proximity to energy infrastructure. We used nest-location data (n = 488) within an energy development field to develop habitat selection models using logistic regression on data from 4 years of research prior to mitigation and for 4 years following the implementation of extensive mitigation efforts (e.g., decreased activity, buried powerlines). The post-mitigation habitat selection models indicated less avoidance of wells (well density β = 0.18 ± 0.08) than the pre-mitigation models (well density β = -0.09 ± 0.11). However, birds still avoided areas of high well density and nests were not found in areas with greater than 4 wells per km2 and the majority of nests (63%) were located in areas with ≤ 1 well per km2. Several other model coefficients differed between the two time periods and indicated stronger selection for sagebrush (pre-mitigation β = 0.30 ± 0.09; post-mitigation β = 0.82 ± 0.08) and less avoidance of rugged terrain (pre-mitigation β = -0.35 ± 0.12; post-mitigation β = -0.05 ± 0.09). Mitigation efforts implemented may

  9. Simulating the Dependence of Sagebrush Steppe Vegetation on Redistributed Snow in a Semi-Arid Watershed.

    NASA Astrophysics Data System (ADS)

    Soderquist, B.; Kavanagh, K.; Link, T. E.; Strand, E. K.; Seyfried, M. S.

    2014-12-01

    In mountainous regions across the western USA, the composition of aspen (Populus tremuloides) and sagebrush steppe plant communities is often closely related to heterogeneous soil moisture subsidies resulting from redistributed snow. With decades of climate and precipitation data across elevational and precipitation gradients, the Reynolds Creek Experimental Watershed (RCEW) and critical zone observatory (CZO) in southwest Idaho provides a unique opportunity to study the relationship between vegetation types and redistributed snow. Within the RCEW, the total amount of precipitation has remained unchanged over the past 50 years, however the percentage of the precipitation falling as snow has declined by approximately 4% per decade at mid-elevation sites. As shifts in precipitation phase continue, future trends in vegetation composition and net primary productivity (NPP) of different plant functional types remains a critical question. We hypothesize that redistribution of snow may supplement drought sensitive species like aspen more so than drought tolerant species like mountain big sagebrush (Artemisia tridentata spp. vaseyana). To assess the importance of snowdrift subsidies on sagebrush steppe vegetation, NPP of aspen, shrub, and grass species was simulated at three sites using the biogeochemical process model BIOME-BGC. Each site is located directly downslope from snowdrifts providing soil moisture inputs to aspen stands and neighboring vegetation. Drifts vary in size with the largest containing up to four times the snow water equivalent (SWE) of a uniform precipitation layer. Precipitation inputs used by BIOME-BGC were modified to represent the redistribution of snow and simulations were run using daily climate data from 1985-2013. Simulated NPP of annual grasses at each site was not responsive to subsidies from drifting snow. However, at the driest site, aspen and shrub annual NPP was increased by as much as 44 and 30%, respectively, with the redistribution of

  10. 2006 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    SciTech Connect

    A. L. Johnson; K. A. Gano

    2006-10-03

    The purpose of this report is to document the status of revegetation projects and natural resources mitigation efforts that have been conducted for remediated waste sites and other activities associated with the Comprehensive Environmental Response, Compensation, and Liability Act cleanup of National Priorities List waste sites at Hanford. One of the objectives of restoration is the revegetation of remediated waste sites to stabilize the soil and restore the land to native vegetation. The report documents the results of revegetation and mitigation monitoring conducted in 2006 and includes 11 revegetation/restoration projects, one revegetation/mitigation project, and 2 bat habitat mitigation projects.

  11. 44 CFR 201.4 - Standard State Mitigation Plans.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... also continue to be available. The mitigation plan is the demonstration of the State's commitment to... determine their priorities for implementing mitigation measures under the strategy, and to prioritize... updating the plan. (ii) A system for monitoring implementation of mitigation measures and project...

  12. Novel Ice Mitigation Methods

    NASA Technical Reports Server (NTRS)

    2008-01-01

    After the loss of Columbia, there was great concern in the Space Shuttle program for the impact of debris against the leading edges of the Orbiter wings. It was quickly recognized that, in addition to impacts by foam, ice that formed on the liquid-oxygen bellows running down the outside of the External Tank could break free during launch and hit this sensitive area. A Center Director s Discretionary Fund (CDDF) project would concentrate on novel ideas that were potentially applicable. The most successful of the new concepts for ice mitigation involved shape memory alloy materials. These materials can be bent into a given shape and, when heated, will return to their original shape.

  13. Nitrogen and phosphorus effects on secondary succession dynamics on a semi-arid sagebrush site

    SciTech Connect

    McLendon, T.; Redente, E.F. )

    1992-12-01

    A sagebrush steppe community in northwestern Colorado was disturbed in 1984 and subjected to annual applications of nitrogen and phosphorus, and successional responses were studied over a 5-yr period. Phosphorus was not found to be significant but nitrogen did significantly affect succession for all years except the first. Three seral groups developed on the non-fertilized plots, the first two dominated by annuals and lasting 3 yr, the third transitional and dominated by perennials. The addition of N altered this successional pattern by allowing annuals to remain as site dominants through the 5th yr. Results of this study suggests that dominance of a site by annuals in early stages of secondary succession is related to high nutrient availability.

  14. Soil microbial communities and elk foraging intensity: implications for soil biogeochemical cycling in the sagebrush steppe.

    PubMed

    Cline, Lauren C; Zak, Donald R; Upchurch, Rima A; Freedman, Zachary B; Peschel, Anna R

    2017-02-01

    Foraging intensity of large herbivores may exert an indirect top-down ecological force on soil microbial communities via changes in plant litter inputs. We investigated the responses of the soil microbial community to elk (Cervus elaphus) winter range occupancy across a long-term foraging exclusion experiment in the sagebrush steppe of the North American Rocky Mountains, combining phylogenetic analysis of fungi and bacteria with shotgun metagenomics and extracellular enzyme assays. Winter foraging intensity was associated with reduced bacterial richness and increasingly distinct bacterial communities. Although fungal communities did not respond linearly to foraging intensity, a greater β-diversity response to winter foraging exclusion was observed. Furthermore, winter foraging exclusion increased soil cellulolytic and hemicellulolytic enzyme potential and higher foraging intensity reduced chitinolytic gene abundance. Thus, future changes in winter range occupancy may shape biogeochemical processes via shifts in microbial communities and subsequent changes to their physiological capacities to cycle soil C and N.

  15. Assessing long-term variations in sagebrush habitat: characterization of spatial extents and distribution patterns using multi-temporal satellite remote-sensing data

    USGS Publications Warehouse

    Xian, George; Homer, Collin G.; Aldridge, Cameron L.

    2012-01-01

    An approach that can generate sagebrush habitat change estimates for monitoring large-area sagebrush ecosystems has been developed and tested in southwestern Wyoming, USA. This prototype method uses a satellite-based image change detection algorithm and regression models to estimate sub-pixel percentage cover for five sagebrush habitat components: bare ground, herbaceous, litter, sagebrush and shrub. Landsat images from three different months in 1988, 1996 and 2006 were selected to identify potential landscape change during these time periods using change vector (CV) analysis incorporated with an image normalization algorithm. Regression tree (RT) models were used to estimate percentage cover for five components on all change areas identified in 1988 and 1996, using unchanged 2006 baseline data as training for both estimates. Over the entire study area (24 950 km2), a net increase of 98.83 km2, or 0.7%, for bare ground was measured between 1988 and 2006. Over the same period, the other four components had net losses of 20.17 km2, or 0.6%, for herbaceous vegetation; 30.16 km2, or 0.7%, for litter; 32.81 km2, or 1.5%, for sagebrush; and 33.34 km2, or 1.2%, for shrubs. The overall accuracy for shrub vegetation change between 1988 and 2006 was 89.56%. Change patterns within sagebrush habitat components differ spatially and quantitatively from each other, potentially indicating unique responses by these components to disturbances imposed upon them.

  16. Region-wide ecological responses of arid Wyoming big sagebrush communities to fuel treatments

    USGS Publications Warehouse

    Pyke, David A.; Shaff, Scott E.; Lindgren, Andrew I.; Schupp, Eugene W.; Doescher, Paul S.; Chambers, Jeanne C.; Burnham, Jeffrey S.; Huso, Manuela M.

    2014-01-01

    If arid sagebrush ecosystems lack resilience to disturbances or resistance to annual invasives, then alternative successional states dominated by annual invasives, especially cheatgrass (Bromus tectorum L.), are likely after fuel treatments. We identified six Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis Beetle & Young) locations (152–381 mm precipitation) that we believed had sufficient resilience and resistance for recovery. We examined impacts of woody fuel reduction (fire, mowing, the herbicide tebuthiuron, and untreated controls, all with and without the herbicide imazapic) on short-term dominance of plant groups and on important land health parameters with the use of analysis of variance (ANOVA). Fire and mowing reduced woody biomass at least 85% for 3 yr, but herbaceous fuels were reduced only by fire (72%) and only in the first year. Herbaceous fuels produced at least 36% more biomass with mowing than untreated areas during posttreatment years. Imazapic only reduced herbaceous biomass after fires (34%). Tebuthiuron never affected herbaceous biomass. Perennial tall grass cover was reduced by 59% relative to untreated controls in the first year after fire, but it recovered by the second year. Cover of all remaining herbaceous groups was not changed by woody fuel treatments. Only imazapic reduced significantly herbaceous cover. Cheatgrass cover was reduced at least 63% with imazapic for 3 yr. Imazapic reduced annual forb cover by at least 45%, and unexpectedly, perennial grass cover by 49% (combination of tall grasses and Sandberg bluegrass [Poa secunda J. Presl.]). Fire reduced density of Sandberg bluegrass between 40% and 58%, decreased lichen and moss cover between 69% and 80%, and consequently increased bare ground between 21% and 34% and proportion of gaps among perennial plants > 2 m (at least 28% during the 3 yr). Fire, mowing, and imazapic may be effective in reducing fuels for 3 yr, but each has potentially undesirable consequences

  17. Native and exotic plants of fragments of sagebrush steppe produced by geomorphic processes versus land use

    USGS Publications Warehouse

    Huntly, N.; Bangert, R.; Hanser, S.E.

    2011-01-01

    Habitat fragmentation and invasion by exotic species are regarded as major threats to the biodiversity of many ecosystems. We surveyed the plant communities of two types of remnant sagebrush-steppe fragments from nearby areas on the Snake River Plain of southeastern Idaho, USA. One type resulted from land use (conversion to dryland agriculture; hereafter AG Islands) and the other from geomorphic processes (Holocene volcanism; hereafter kipukas). We assessed two predictions for the variation in native plant species richness of these fragments, using structural equation models (SEM). First, we predicted that the species richness of native plants would follow the MacArthur-Wilson (M-W) hypothesis of island biogeography, as often is expected for the communities of habitat fragments. Second, we predicted a negative relationship between native and exotic plants, as would be expected if exotic plants are decreasing the diversity of native plants. Finally, we assessed whether exotic species were more strongly associated with the fragments embedded in the agricultural landscape, as would be expected if agriculture had facilitated the introduction and naturalization of non-native species, and whether the communities of the two types of fragments were distinct. Species richness of native plants was not strongly correlated with M-W characteristics for either the AG Islands or the **kipukas. The AG Islands had more species and higher cover of exotics than the kipukas, and exotic plants were good predictors of native plant species richness. Our results support the hypothesis that proximity to agriculture can increase the diversity and abundance of exotic plants in native habitat. In combination with other information, the results also suggest that agriculture and exotic species have caused loss of native diversity and reorganization of the sagebrush-steppe plant community. ?? 2011 Springer Science+Business Media B.V.

  18. Mineral resources of the Sagebrush Focal Areas of Idaho, Montana, Nevada, Oregon, Utah, and Wyoming

    USGS Publications Warehouse

    Day, Warren C.; Frost, Thomas P.; Hammarstrom, Jane M.; Zientek, Michael L.

    2016-08-19

    Scientific Investigations Report 2016–5089 and accompanying data releases are the products of the U.S. Geological Survey (USGS) Sagebrush Mineral-Resource Assessment (SaMiRA). The assessment was done at the request of the Bureau of Land Management (BLM) to evaluate the mineral-resource potential of some 10 million acres of Federal and adjacent lands in Idaho, Montana, Nevada, Oregon, Utah, and Wyoming. The need for this assessment arose from the decision by the Secretary of the Interior to pursue the protection of large tracts of contiguous habitat for the greater sage-grouse (Centrocercus urophasianus) in the Western United States. One component of the Department of the Interior plan to protect the habitat areas includes withdrawing selected lands from future exploration and development of mineral and energy resources, including copper, gold, silver, rare earth elements, and other commodities used in the U.S. economy. The assessment evaluates the potential for locatable minerals such as gold, copper, and lithium and describes the nature and occurrence of leaseable and salable minerals for seven Sagebrush Focal Areas and additional lands in Nevada (“Nevada additions”) delineated by BLM. Supporting data are available in a series of USGS data releases describing mineral occurrences (the USGS Mineral Deposit Database or “USMIN”), oil and gas production and well status, previous mineral-resource assessments that covered parts of the areas studied, and a compilation of mineral-use cases based on data provided by BLM, as well as results of the locatable mineral-resource assessment in a geographic information system. The present assessment of mineral-resource potential will contribute to a better understanding of the economic and environmental trade-offs that would result from closing approximately 10 million acres of Federal lands to mineral entry.

  19. Forecasting sagebrush ecosystem components and greater sage-grouse habitat for 2050: learning from past climate patterns and Landsat imagery to predict the future

    USGS Publications Warehouse

    Homer, Collin G.; Xian, George Z.; Aldridge, Cameron L.; Meyer, Debra K.; Loveland, Thomas R.; O'Donnell, Michael S.

    2015-01-01

    Sagebrush (Artemisia spp.) ecosystems constitute the largest single North American shrub ecosystem and provide vital ecological, hydrological, biological, agricultural, and recreational ecosystem services. Disturbances have altered and reduced this ecosystem historically, but climate change may ultimately represent the greatest future risk. Improved ways to quantify, monitor, and predict climate-driven gradual change in this ecosystem is vital to its future management. We examined the annual change of Daymet precipitation (daily gridded climate data) and five remote sensing ecosystem sagebrush vegetation and soil components (bare ground, herbaceous, litter, sagebrush, and shrub) from 1984 to 2011 in southwestern Wyoming. Bare ground displayed an increasing trend in abundance over time, and herbaceous, litter, shrub, and sagebrush showed a decreasing trend. Total precipitation amounts show a downward trend during the same period. We established statistically significant correlations between each sagebrush component and historical precipitation records using a simple least squares linear regression. Using the historical relationship between sagebrush component abundance and precipitation in a linear model, we forecasted the abundance of the sagebrush components in 2050 using Intergovernmental Panel on Climate Change (IPCC) precipitation scenarios A1B and A2. Bare ground was the only component that increased under both future scenarios, with a net increase of 48.98 km2 (1.1%) across the study area under the A1B scenario and 41.15 km2 (0.9%) under the A2 scenario. The remaining components decreased under both future scenarios: litter had the highest net reductions with 49.82 km2 (4.1%) under A1B and 50.8 km2 (4.2%) under A2, and herbaceous had the smallest net reductions with 39.95 km2 (3.8%) under A1B and 40.59 km2 (3.3%) under A2. We applied the 2050 forecast sagebrush component values to contemporary (circa 2006) greater sage-grouse (Centrocercus

  20. Habitat use and food selection of small mammals near a sagebrush/crested wheatgrass interface in southeastern Idaho

    SciTech Connect

    Koehler, D.K. ); Anderson, S.H. )

    1991-09-01

    Research has been conducted on various aspects of the ecology of wildlife residing on and adjacent to the Subsurface Disposal Area (SDA) and one other low-level radioactive waste disposal site on the Idaho National Engineering Laboratory (INEL) in southeastern Idaho. Habitat use and food selection data were collected for deer mice (Peromyscus maniculatus), montane voles (Microtus montanus), Ord's kangaroo rats (Dipodomys ordii), and Townsend's ground squirrels (Spermophilus townsendii) near a sagebrush (Artemisia tridentata)/crested wheatgrass (Agropyron cristatum) interface. Significantly more captures occurred in the native sagebrush habitat than in areas planted in crested wheatgrass or in disturbed sites. Crested wheatgrass, a prolific seed producer, still accounted for over 30% of the total captures. Montane voles and Townsend's ground squirrels (during periods of aboveground activity) used the crested wheatgrass habitat throughout the summer, while deer mice and Ord's kangaroo rats exhibited heavy use after seed set.

  1. Restoration as mitigation: analysis of stream mitigation for coal mining impacts in southern Appalachia.

    PubMed

    Palmer, Margaret A; Hondula, Kelly L

    2014-09-16

    Compensatory mitigation is commonly used to replace aquatic natural resources being lost or degraded but little is known about the success of stream mitigation. This article presents a synthesis of information about 434 stream mitigation projects from 117 permits for surface mining in Appalachia. Data from annual monitoring reports indicate that the ratio of lengths of stream impacted to lengths of stream mitigation projects were <1 for many projects, and most mitigation was implemented on perennial streams while most impacts were to ephemeral and intermittent streams. Regulatory requirements for assessing project outcome were minimal; visual assessments were the most common and 97% of the projects reported suboptimal or marginal habitat even after 5 years of monitoring. Less than a third of the projects provided biotic or chemical data; most of these were impaired with biotic indices below state standards and stream conductivity exceeding federal water quality criteria. Levels of selenium known to impair aquatic life were reported in 7 of the 11 projects that provided Se data. Overall, the data show that mitigation efforts being implemented in southern Appalachia for coal mining are not meeting the objectives of the Clean Water Act to replace lost or degraded streams ecosystems and their functions.

  2. Range-wide assessment of livestock grazing across the sagebrush biome

    USGS Publications Warehouse

    Veblen, Kari E.; Pyke, David A.; Aldridge, Cameron L.; Casazza, Michael L.; Assal, Timothy J.; Farinha, Melissa A.

    2011-01-01

    Domestic livestock grazing occurs in virtually all sagebrush habitats and is a prominent disturbance factor. By affecting habitat condition and trend, grazing influences the resources required by, and thus, the distribution and abundance of sagebrush-obligate wildlife species (for example, sage-grouse Centrocercus spp.). Yet, the risks that livestock grazing may pose to these species and their habitats are not always clear. Although livestock grazing intensity and associated habitat condition may be known in many places at the local level, we have not yet been able to answer questions about use, condition, and trend at the landscape scale or at the range-wide scale for wildlife species. A great deal of information about grazing use, management regimes, and ecological condition exists at the local level (for individual livestock management units) under the oversight of organizations such as the Bureau of Land Management (BLM). However, the extent, quality, and types of existing data are unknown, which hinders the compilation, mapping, or analysis of these data. Once compiled, these data may be helpful for drawing conclusions about rangeland status, and we may be able to identify relationships between those data and wildlife habitat at the landscape scale. The overall objective of our study was to perform a range-wide assessment of livestock grazing effects (and the relevant supporting data) in sagebrush ecosystems managed by the BLM. Our assessments and analyses focused primarily on local-level management and data collected at the scale of BLM grazing allotments (that is, individual livestock management units). Specific objectives included the following: 1. Identify and refine existing range-wide datasets to be used for analyses of livestock grazing effects on sagebrush ecosystems. 2. Assess the extent, quality, and types of livestock grazing-related natural resource data collected by BLM range-wide (i.e., across allotments, districts and regions). 3. Compile and

  3. Hole-in-the-Rock Backwater Excavation Missouri River Fish and Wildlife Mitigation Project, Thurston County, Nebraska, Missouri River Mile 706

    DTIC Science & Technology

    2013-04-01

    impacted by the proposed project, the pallid sturgeon and the western prairie fringed orchid (Platanthera praeclara). Supplemental Environmental...Prairie Fringed Orchid The western prairie fringed orchid is a federally threatened prairie species. This plant is often found in mesic to wet...the proposed project. Listed Species Pallid sturgeon (Scaphirhynchus a/bus) Western prairie fringed orchid (WPFO) ( P latanthera praeclara) Pallid

  4. Gold and other metals in big sagebrush (Artemisia tridentata Nutt.) as an exploration tool, Gold Run District, Humboldt County, Nevada

    USGS Publications Warehouse

    Erdman, J.A.; Cookro, T.M.; O'Leary, R. M.; Harms, T.F.

    1988-01-01

    Big sagebrush - a cold-desert species that dominates the terrain over large parts of western United States - was sampled along several traverses that crossed thermally metamorphosed limestone, phyllitic shale, and schist of the Middle and Upper Cambrian Preble Formation that host skarn-, disseminated gold and silver-, and hot springs gold-type mineral occurrences. Patterns of detectable levels of gold (8 to 28 ppb or ng g-1) in ash of new growth were consistent with areas affected by known or suspected gold mineralization. Soils collected along one of the traverses where a selenium-indicator plant was common contained no gold above background levels of 2ppb, but were consistently high in As, Sb, and Zn, and several samples were unusually high in Se (maximum 11 ppm or ??g g-1). Sagebrush along this traverse contained Li at levels above norms for this species. We also found a puzzling geochemical anomaly at a site basinward from active hot springs along a range-front fault scarp. Sagebrush at this site contained a trace of gold and an unusually high concentration of Cd (13 ppm) and the soil had anomalous concentrations of Cd and Bi (3.2 and 6 ppm, respectively). The source of this anomaly could be either metal-rich waters from an irrigation ditch or leakage along a buried fault. Despite the limited nature of the study, we conclude that gold in sagebrush could be a cost-effective guide to drilling locations in areas where the geology seems favorable for disseminated and vein precious metals. ?? 1988.

  5. Lunar Dust Mitigation Technology Development

    NASA Technical Reports Server (NTRS)

    Hyatt, Mark J.; Deluane, Paul B.

    2008-01-01

    NASA s plans for implementing the Vision for Space Exploration include returning to the moon as a stepping stone for further exploration of Mars, and beyond. Dust on the lunar surface has a ubiquitous presence which must be explicitly addressed during upcoming human lunar exploration missions. While the operational challenges attributable to dust during the Apollo missions did not prove critical, the comparatively long duration of impending missions presents a different challenge. Near term plans to revisit the moon places a primary emphasis on characterization and mitigation of lunar dust. Comprised of regolith particles ranging in size from tens of nanometers to microns, lunar dust is a manifestation of the complex interaction of the lunar soil with multiple mechanical, electrical, and gravitational effects. The environmental and anthropogenic factors effecting the perturbation, transport, and deposition of lunar dust must be studied in order to mitigate it s potentially harmful effects on exploration systems. This paper presents the current perspective and implementation of dust knowledge management and integration, and mitigation technology development activities within NASA s Exploration Technology Development Program. This work is presented within the context of the Constellation Program s Integrated Lunar Dust Management Strategy. The Lunar Dust Mitigation Technology Development project has been implemented within the ETDP. Project scope and plans will be presented, along with a a perspective on lessons learned from Apollo and forensics engineering studies of Apollo hardware. This paper further outlines the scientific basis for lunar dust behavior, it s characteristics and potential effects, and surveys several potential strategies for its control and mitigation both for lunar surface operations and within the working volumes of a lunar outpost.

  6. Landscape alterations influence differential habitat use of nesting buteos and ravens within sagebrush ecosystem: implications for transmission line development

    USGS Publications Warehouse

    Coates, Peter S.; Howe, Kristy B.; Casazza, Michael L.; Delehanty, David J.

    2014-01-01

    A goal in avian ecology is to understand factors that influence differences in nesting habitat and distribution among species, especially within changing landscapes. Over the past 2 decades, humans have altered sagebrush ecosystems as a result of expansion in energy production and transmission. Our primary study objective was to identify differences in the use of landscape characteristics and natural and anthropogenic features by nesting Common Ravens (Corvus corax) and 3 species of buteo (Swainson's Hawk [Buteo swainsoni], Red-tailed Hawk [B. jamaicensis], and Ferruginous Hawk [B. regalis]) within a sagebrush ecosystem in southeastern Idaho. During 2007–2009, we measured multiple environmental factors associated with 212 nest sites using data collected remotely and in the field. We then developed multinomial models to predict nesting probabilities by each species and predictive response curves based on model-averaged estimates. We found differences among species related to nesting substrate (natural vs. anthropogenic), agriculture, native grassland, and edge (interface of 2 cover types). Most important, ravens had a higher probability of nesting on anthropogenic features (0.80) than the other 3 species (Artemisia spp.), favoring increased numbers of nesting ravens and fewer nesting Ferruginous Hawks. Our results indicate that habitat alterations, fragmentation, and forthcoming disturbances anticipated with continued energy development in sagebrush steppe ecosystems can lead to predictable changes in raptor and raven communities.

  7. Invertebrate biomass: Associations with lesser prairie-chicken habitat use and sand sagebrush density in southwestern Kansas

    USGS Publications Warehouse

    Jamison, B.E.; Robel, R.J.; Pontius, J.S.; Applegate, R.D.

    2002-01-01

    Invertebrates are important food sources for lesser prairie-chicken (Tympanuchus pallidicinctus) adults and broods. We compared invertebrate biomass in areas used and not used by lesser prairie-chicken adults and broods. We used radiotelemetry to determine use and non-use areas in sand sagebrush (Artemisia filifolia) prairie in southwestern Kansas and sampled invertebrate populations during summer 1998 and 1999. Sweepnet-collected biomass of short-horned grasshoppers (Acrididae) and total invertebrate biomass generally were greater in habitats used by lesser prairie-chickens than in paired non-use areas. We detected no differences in pitfall-collected biomass of Acrididae (P=0.81) or total invertebrate biomass (P=0.93) among sampling areas with sand sagebrush canopy cover of 0 to 10%, 11 to 30%, and >30%. Results of multivariate analysis and regression model selection suggested that forbs were more strongly associated with invertebrate biomass than shrubs, grasses, or bare ground. We could not separate lesser prairie-chicken selection for areas of forb cover from selection of areas with greater invertebrate biomass associated with forb cover. Regardless of whether the effects of forbs were direct or indirect, their importance in sand sagebrush habitat has management implications. Practices that maintain or increase forb cover likely will increase invertebrate biomass and habitat quality in southwestern Kansas.

  8. Invertebrate biomass: associations with lesser prairie-chicken habitat use and sand sagebrush density in southwestern Kansas

    USGS Publications Warehouse

    Jamison, B.; Robel, R.J.; Pontius, J.S.; Applegate, R.D.

    2002-01-01

    Invertebrates are important food sources for lesser prairie-chicken (Tympanuchus pallidicinctus) adults and broods. We compared invertebrate biomass in areas used and not used by lesser prairie-chicken adults and broods. We used radiotelemetry to determine use and non-use areas in sand sagebrush (Artemisia filifolia) prairie in southwestern Kansas and sampled invertebrate populations during summer 1998 and 1999. Sweepnet-collected biomass of short-horned grasshoppers (Acrididae) and total invertebrate biomass generally were greater in habitats used by lesser prairie-chickens than in paired non-use areas. We detected no differences in pitfall-collected biomass of Acrididae (P=0.81) or total invertebrate biomass (P=0.93) among sampling areas with sand sagebrush canopy cover of 0 to 10%, 11 to 30%, and >30%. Results of multivariate analysis and regression model selection suggested that forbs were more strongly associated with invertebrate biomass than shrubs, grasses, or bare ground. We could not separate lesser prairie-chicken selection for areas of forb cover from selection of areas with greater invertebrate biomass associated with forb cover. Regardless of whether the effects of forbs were direct or indirect, their importance in sand sagebrush habitat has management implications. Practices that maintain or increase forb cover likely will increase invertebrate biomass and habitat quality in southwestern Kansas.

  9. Characteristics of modern pollen rain and the relationship to vegetation in sagebrush-steppe environments of Montana, USA

    NASA Astrophysics Data System (ADS)

    Briles, C.; Bryant, V.

    2010-12-01

    Variations in pollen production and dispersal characteristics among plant species complicate our ability to determine direct relationships between deposited pollen and actual vegetation. In order to better understand modern pollen-vegetation relationships, we analyzed pollen from 61 samples taken from sagebrush-steppe environments across Montana and compared them with the actual vegetation composition at each site. We also determined to what degree sagebrush-steppe communities can be geographically distinguished from one another based on their pollen signature. Pollen preservation was good, especially in wetter environments, with pollen degradataion ranging from 4-15%. Diploxylon Pinus was the primary contributor to the pollen rain, even in plots where pine trees did not occur or were several kilometers from the plot. Artemisia and grass pollen are underrepresented in the soils samples, while Chenopodiaceae and Juniperus pollen are overrepresented when compared to actual vegetation composition. Insect-pollinated species are present only in very minor amounts in the soil samples, even though some (e.g., Brassica) are abundant in the plots. In general, pollen spectra show significant differences between regions, however, within each region the individual spectra are not statistically significant from one another. An understanding of modern pollen-vegetation relationships and the palynological “fingerprint” of sagebrush-steppe communities aid in climatic and ecological interpretations of fossil pollen assemblages. The data also provide important control samples for forensics studies that use pollen to geolocate an object or person to a crime scene.

  10. A conceptual framework for hydropeaking mitigation.

    PubMed

    Bruder, Andreas; Tonolla, Diego; Schweizer, Steffen P; Vollenweider, Stefan; Langhans, Simone D; Wüest, Alfred

    2016-10-15

    Hydropower plants are an important source of renewable energy. In the near future, high-head storage hydropower plants will gain further importance as a key element of large-scale electricity production systems. However, these power plants can cause hydropeaking which is characterized by intense unnatural discharge fluctuations in downstream river reaches. Consequences on environmental conditions in these sections are diverse and include changes to the hydrology, hydraulics and sediment regime on very short time scales. These altered conditions affect river ecosystems and biota, for instance due to drift and stranding of fishes and invertebrates. Several structural and operational measures exist to mitigate hydropeaking and the adverse effects on ecosystems, but estimating and predicting their ecological benefit remains challenging. We developed a conceptual framework to support the ecological evaluation of hydropeaking mitigation measures based on current mitigation projects in Switzerland and the scientific literature. We refined this framework with an international panel of hydropeaking experts. The framework is based on a set of indicators, which covers all hydrological phases of hydropeaking and the most important affected abiotic and biotic processes. Effects of mitigation measures on these indicators can be predicted quantitatively using prediction tools such as discharge scenarios and numerical habitat models. Our framework allows a comparison of hydropeaking effects among alternative mitigation measures, to the pre-mitigation situation, and to reference river sections. We further identified key issues that should be addressed to increase the efficiency of current and future projects. They include the spatial and temporal context of mitigation projects, the interactions of river morphology with hydropeaking effects, and the role of appropriate monitoring to evaluate the success of mitigation projects.

  11. Insect community responses to climate and weather across elevation gradients in the Sagebrush Steppe, eastern Oregon

    USGS Publications Warehouse

    Pilliod, David S.; Rohde, Ashley T.

    2016-11-17

    Executive SummaryIn this study, the U.S. Geological Survey investigated the use of insects as bioindicators of climate change in sagebrush steppe shrublands and grasslands in the Upper Columbia Basin. The research was conducted in the Stinkingwater and Pueblo mountain ranges in eastern Oregon on lands administered by the Bureau of Land Management.We used a “space-for-time” sampling design that related insect communities to climate and weather along elevation gradients. We analyzed our insect dataset at three levels of organization: (1) whole-community, (2) feeding guilds (detritivores, herbivores, nectarivores, parasites, and predators), and (3) orders within nectarivores (i.e., pollinators). We captured 59,517 insects from 176 families and 10 orders at the Pueblo Mountains study area and 112,305 insects from 185 families and 11 orders at the Stinkingwater Mountains study area in 2012 and 2013. Of all the individuals captured at the Stinkingwater Mountains study area, 77,688 were from the family Cecidomyiidae (Diptera, gall gnats).We found that the composition of insect communities was associated with variability in long-term (30-yr) temperature and interannual fluctuations in temperature. We found that captures of certain fly, bee, moth, and butterfly pollinators were more strongly associated with some climate and vegetation variables than others. We found that timing of emergence, as measured by first detection of families, was associated with elevation. When analyzed by feeding guilds, we found that all guilds emerged later at high elevations except for detritivores, which emerged earlier at high elevations. The abundance of most taxa varied through time, mostly in response to temperature and precipitation. Of the pollinators, bees (particularly, Halictidae and Megachilidae) peaked in abundance in late June and early July, whereas butterflies and moths peaked in August. Flies peaked in abundance in July.Overall, our interpretation of these patterns is that

  12. Trajectories of change in sagebrush steppe vegetation communities in relation to multiple wildfires.

    PubMed

    Davies, G M; Bakker, J D; Dettweiler-Robinson, E; Dunwiddie, P W; Hall, S A; Downs, J; Evans, J

    2012-07-01

    Repeated perturbations, both biotic and abiotic, can lead to fundamental changes in the nature of ecosystems, including changes in state. Sagebrush steppe communities provide important habitat for wildlife and grazing for livestock. Fire is an integral part of these systems, but there is concern that increased ignition frequencies and invasive species are fundamentally altering them. Despite these issues, the majority of studies of fire effects in systems dominated by Artemisia tridentata wyomingensis have focused on the effects of single burns. The Arid Lands Ecology Reserve (ALE), in south-central Washington (U.S.A.), was one of the largest contiguous areas of sagebrush steppe habitat in the state until large wildfires burned the majority of it in 2000 and 2007. We analyzed data from permanent vegetation transects established in 1996 and resampled in 2002 and 2009. Our objective was to describe how the fires, and subsequent postfire restoration efforts, affected communities' successional pathways. Plant communities differed in response to repeated fire and restoration; these differences could largely be ascribed to the functional traits of the dominant species. Low-elevation communities, previously dominated by obligate seeders, moved furthest from their initial composition and were dominated by weedy, early-successional species in 2009. Higher-elevation sites with resprouting shrubs, native bunchgrasses, and few invasive species were generally more resilient to the effects of repeated disturbances. Shrub cover has been almost entirely removed from ALE, although there was some recovery where communities were dominated by resprouters. Bromus tectorum dominance was reduced by herbicide application in areas where it was previously abundant, but it increased significantly in untreated areas. Several resprouting species, notably Phlox longifolia and Poa secunda, expanded remarkably following competitive release from shrub canopies and/or abundant B. tectorum. Our

  13. Habitat Evaluation Procedures (HEP) Report : Malheur River Wildlife Mitigation, 2000-2002 Technical Report.

    SciTech Connect

    Gonzalez, Daniel; Wenick, Jess

    2002-02-06

    (ISRP). Program participants are responsible for creating management plans for each of the 52 subbasins. Upon approval by the Council, the management plan is then incorporated into the Program. In 1998, the Tribe submitted two land acquisition proposals for funding through Bonneville's Wildlife Mitigation Program, the Logan Valley and Malheur River Wildlife Mitigation Projects. After several months of rigorous scrutiny and defense of its project presentations, the Tribe was awarded both acquisitions. In February of 2000, the Tribe and BPA entered into a Memorandum of Agreement (MOA) to fund the acquisition and management of Logan Valley and the Malheur River Projects. In April and November of 2000, the Tribe acquired the Logan Valley property (Project) and the Malheur River Wildlife Mitigation Project, respectively. The MOA requires the Tribe to dedicate the Project to wildlife habitat protection. Project management must be consistent with the term and conditions of the MOA and a site-specific management plan (Plan) that is to be prepared by the Tribe. The Malheur River Wildlife Mitigation Project (Denny Jones Ranch) allows the Tribe to manage 6,385 acres of meadow, wetland, and sagebrush steppe habitats along the Malheur River. The deeded property includes seven miles of the Malheur River, the largest private landholding along this waterway between Riverside and Harper. The property came with approximately 938 acres of senior water rights and 38,377 acres of federal and state grazing allotments. The project will benefit a diverse population of fish, wildlife, and plant species. Objectives include reviving and improving critical habitat for fish and wildlife populations, controlling/ eradicating weed populations, improving water quality, maintaining Bureau of Land Management (BLM) allotments, and preserving cultural resources. Before the Tribe acquired the project site, a combination of high levels of cattle stocking rates, management strategy, and a disruption of

  14. Plant-plant signaling: application of trans- or cis-methyl jasmonate equivalent to sagebrush releases does not elicit direct defenses in native tobacco.

    PubMed

    Preston, Catherine A; Laue, Grit; Baldwin, Ian T

    2004-11-01

    Nicotiana attenuata plants growing in close proximity to damaged sagebrush (Artemisia tridentata ssp. tridentata) suffer less herbivory than plants near undamaged sagebrush. Sagebrush constitutively releases methyl jasmonate (MeJA), a compound that when applied directly to N. attenuata, elicits herbivore resistance and the direct defense traits [protease inhibitors (PIs), nicotine]. Damage increases the release of volatile MeJA, primarily in the cis epimer, suggesting that cis-MeJA may mediate this apparent interplant signaling. We characterized sagebrush's MeJA plume before and after damage in nature and in the laboratory, and compared the activity of trans- and cis-MeJA in inducing PIs, nicotine, and Manduca sexta resistance in N. attenuata. We used both lanolin applications and aqueous sprays that mimic natural exposures, and we determined the amount of volatilized MeJA required to elicit a nicotine response in open-grown plants. Wounding rapidly and transiently increased cis-MeJA emissions from damaged parts (but not systemically), and the released plume did not rapidly dissipate in nature. cis-MeJA was not consistently more active than trans-MeJA, and the order of exposure (trans- then cis-) did not influence activity. We conclude that volatile MeJA, either trans- or cis-, when applied at levels consistent with those released by sagebrush does not elicit direct defenses in N. attenuata.

  15. Ground-water hydrology of the Sagebrush Flat area as related to the discharge of Rattlesnake Springs, Grant and Douglas counties, Washington

    USGS Publications Warehouse

    Walters, K.L.

    1980-01-01

    In 1978, the U.S. Geological Survey, in cooperation with the State of Washington Department of Ecology, investigated the hydrology of the Sagebrush Flat area as it relates to Rattlesnake Springs. Rattlesnake Springs and all known wells on Sagebrush Flat obtain water from basalt aquifers. The wells tap aquifers at or below the altitude of the spring discharge. Water levels in some wells on Sagebrush Flat, and in a well 27 miles to the northeast in an area of no groundwater development, show slight fluctuations that may correspond to annual variations in precipitation. However, hydrographs of most wells on Sagebrush Flat show water-level declines and rises that correspond with the beginning and end of the pumping season. The discharge of Rattlesnake Springs started to decrease at about the beginning of the 1978 pumping season and did not start to increase until after most pumping was stopped. The water level in deep aquifers beneath Sagebrush Flat is at a lower altitude than in shallow a quifers, and water moves down well boreholes from shallow aquifers to deeper aquifers. This downward movement of water diverts groundwater that is moving toward natural discharge points such as Rattlesnake Springs, thereby decreasing the discharge at these points. (USGS)

  16. Using resistance and resilience concepts to reduce impacts of invasive annual grasses and altered fire regimes on the sagebrush ecosystem and greater sage-grouse: a strategic multi-scale approach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This Report provides a strategic approach for conservation of sagebrush ecosystems and Greater Sage-Grouse (sage-grouse) that focuses specifically on habitat threats caused by invasive annual grasses and altered fire regimes. It uses information on (1) factors that influence sagebrush ecosystem resi...

  17. Supplement Analysis for the Wildlife Mitigation Program EIS (DOE/EIS-0246/SA-28) - Lower Naches River Land Acquisition, Yakima River Side Channels Project

    SciTech Connect

    Stewart, Shannon C.

    2002-07-24

    BPA proposes to purchase four parcels of private land that total approximately 125 acres located in south-central Washington along the Naches River in Yakima County. Following acquisition, title to the land will be held by The Yakama Nation. The goal of this project is to protect and enhance riparian, wetland, and upland habitats for the benefit of fish and wildlife.

  18. Multivariate sexual selection on male tegmina in wild populations of sagebrush crickets, Cyphoderris strepitans (Orthoptera: Haglidae).

    PubMed

    Ower, G D; Hunt, J; Sakaluk, S K

    2017-02-01

    Although the strength and form of sexual selection on song in male crickets have been studied extensively, few studies have examined selection on the morphological structures that underlie variation in males' song, particularly in wild populations. Geometric morphometric techniques were used to measure sexual selection on the shape, size and symmetry of both top and bottom tegmina in wild populations of sagebrush crickets, a species in which nuptial feeding by females imposes an unambiguous phenotypic marker on males. The size of the tegmina negatively covaried with song dominant frequency and positively covaried with song pulse duration. Sexual selection was more intense on the bottom tegmen, conceivably because it interacts more freely with the subtegminal airspace, which may play a role in song amplification. An expanded coastal/subcostal region was one of the phenotypes strongly favoured by disruptive selection on the bottom tegmen, an adaptation that may form a more effective seal with the thorax to prevent noise cancellation. Directional selection also favoured increased symmetry in tegminal shape. Assuming more symmetrical males are better able to buffer against developmental noise, the song produced by these males may make them more attractive to females. Despite the strong stabilizing selection documented previously on the dominant frequency of the song, stabilizing selection on the resonator that regulates dominant frequency was surprisingly absent. Nonetheless, wing morphology had an important influence on song structure and appears to be subject to significant linear and nonlinear sexual selection through female mate choice.

  19. Climate drives adaptive genetic responses associated with survival in big sagebrush (Artemisia tridentata).

    PubMed

    Chaney, Lindsay; Richardson, Bryce A; Germino, Matthew J

    2017-04-01

    A genecological approach was used to explore genetic variation for survival in Artemisia tridentata (big sagebrush). Artemisia tridentata is a widespread and foundational shrub species in western North America. This species has become extremely fragmented, to the detriment of dependent wildlife, and efforts to restore it are now a land management priority. Common-garden experiments were established at three sites with seedlings from 55 source-populations. Populations included each of the three predominant subspecies, and cytotype variations. Survival was monitored for 5 years to assess differences in survival between gardens and populations. We found evidence of adaptive genetic variation for survival. Survival within gardens differed by source-population and a substantial proportion of this variation was explained by seed climate of origin. Plants from areas with the coldest winters had the highest levels of survival, while populations from warmer and drier sites had the lowest levels of survival. Survival was lowest, 36%, in the garden that was prone to the lowest minimum temperatures. These results suggest the importance of climatic driven genetic differences and their effect on survival. Understanding how genetic variation is arrayed across the landscape, and its association with climate can greatly enhance the success of restoration and conservation.

  20. Aeolian nutrient fluxes following wildfire in sagebrush steppe: Implications for soil carbon storage

    USGS Publications Warehouse

    Hasselquist, N.J.; Germino, M.J.; Sankey, J.B.; Ingram, L.J.; Glenn, N.F.

    2011-01-01

    Pulses of aeolian transport following fire can profoundly affect the biogeochemical cycling of nutrients in semi-arid and arid ecosystems. Our objective was to determine horizontal nutrient fluxes during an episodic pulse of aeolian transport that occurred following a wildfire in a semi-arid sagebrush steppe ecosystem in southern Idaho, USA. We also examined how temporal trends in nutrient fluxes were affected by changes in particle sizes of eroded mass as well as nutrient concentrations associated with different particle size classes. In the burned area, total carbon (C) and nitrogen (N) fluxes were as high as 235 g C m????'1 d????'1 and 19 g N m????'1 d????'1 during the first few months following fire, whereas C and N fluxes were negligible in an adjacent unburned area throughout the study. Temporal variation in C and N fluxes following fire was largely attributable to the redistribution of saltation-sized particles. Total N and organic C concentrations in the soil surface were significantly lower in the burned relative to the unburned area one year after fire. Our results show how an episodic pulse of aeolian transport following fire can affect the spatial distribution of soil C and N, which, in turn, can have important implications for soil C storage. These findings demonstrate how an ecological disturbance can exacerbate a geomorphic process and highlight the need for further research to better understand the role aeolian transport plays in the biogeochemical cycling of C and N in recently burned landscapes. ?? 2011 Author(s).

  1. Space Debris & its Mitigation

    NASA Astrophysics Data System (ADS)

    Kaushal, Sourabh; Arora, Nishant

    2012-07-01

    : In this technique we will use the nano tubes. We will create a mesh that will act as a touch panel of the touch screen cell phone. When any small or tiny particle will come on this mesh and touch it then the mesh will act as a touch panel and so that the corresponding processor or sensor will come to know the co-ordinates of it then further by using Destructive laser beam we can destroy that particle. B. Use of the Nano tubes and Nano Bots for the collection of the Space Debris: In this method also we will use a nano mesh which is made up of the nano tubes and the corresponding arrangement will be done so that that mesh will act as a touch panel same as that of the touch screen phones. So when tiny particles will dash on the nano mesh then the Nano Bots which will be at the specific co-ordinates collect the particles and store them into the garbage storage. C. Further the space Debris can be use for the other purposes too:- As we know that the space debris can be any tiny particle in the space. So instead of decomposing that particles or destroying it we can use those particles for the purpose of energy production by using the fuel cells, but for this the one condition is that the particle material should be capable of forming the ionize liquid or solution which can be successfully use in the fuel cell for energy production. But this is useful for only the big projects where in smallest amount of energy has also the great demand or value. D. RECYCLING OF SPACE DEBRIS The general idea of making space structures by recycling space debris is to capture the aluminum of the upper stages, melt it, and form it into new aluminum structures, perhaps by coating the inside of inflatable balloons, to make very large structures of thin aluminum shells. CONCLUSION Space debris has become the topic of great concern in recent years. Space debris creation can't be stopped completely but it can be minimized by adopting some measures. Many methods of space debris mitigation have been

  2. The Atlanta Urban Heat Island Mitigation and Air Quality Modeling Project: How High-Resoution Remote Sensing Data Can Improve Air Quality Models

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Estes, Maurice G., Jr.; Crosson, William L.; Khan, Maudood N.

    2006-01-01

    The Atlanta Urban Heat Island and Air Quality Project had its genesis in Project ATLANTA (ATlanta Land use Analysis: Temperature and Air quality) that began in 1996. Project ATLANTA examined how high-spatial resolution thermal remote sensing data could be used to derive better measurements of the Urban Heat Island effect over Atlanta. We have explored how these thermal remote sensing, as well as other imaged datasets, can be used to better characterize the urban landscape for improved air quality modeling over the Atlanta area. For the air quality modeling project, the National Land Cover Dataset and the local scale Landpro99 dataset at 30m spatial resolutions have been used to derive land use/land cover characteristics for input into the MM5 mesoscale meteorological model that is one of the foundations for the Community Multiscale Air Quality (CMAQ) model to assess how these data can improve output from CMAQ. Additionally, land use changes to 2030 have been predicted using a Spatial Growth Model (SGM). SGM simulates growth around a region using population, employment and travel demand forecasts. Air quality modeling simulations were conducted using both current and future land cover. Meteorological modeling simulations indicate a 0.5 C increase in daily maximum air temperatures by 2030. Air quality modeling simulations show substantial differences in relative contributions of individual atmospheric pollutant constituents as a result of land cover change. Enhanced boundary layer mixing over the city tends to offset the increase in ozone concentration expected due to higher surface temperatures as a result of urbanization.

  3. Overview with methods and procedures of the U.S. Geological Survey mineral-resource assessment of the Sagebrush Focal Areas of Idaho, Montana, Nevada, Oregon, Utah, and Wyoming: Chapter A in Mineral resources of the Sagebrush Focal Areas of Idaho, Montana, Nevada, Oregon, Utah, and Wyoming

    USGS Publications Warehouse

    Day, Warren C.; Hammarstrom, Jane M.; Zientek, Michael L.; Frost, Thomas P.

    2016-08-19

    This report, chapter A of Scientific Investigations Report 2016–5089, provides an overview of the U.S. Geological Survey (USGS) Sagebrush Mineral-Resource Assessment (SaMiRA). The report also describes the methods, procedures, and voluminous fundamental reference information used throughout the assessment. Data from several major publicly available databases and other published sources were used to develop an understanding of the locatable, leaseable, and salable mineral resources of this vast area. This report describes the geologic, mineral-occurrence, geochemical, geophysical, remote-sensing, and Bureau of Land Management mineral-case-status data used for the assessment, along with the methods for evaluating locatable mineral-resource potential. The report also discusses energy-resource data (oil and gas, coal, and geothermal) used in the assessment. Appendixes include summary descriptive mineral-deposit models that provide the criteria necessary to assess for the pertinent locatable minerals and market-demand commodity profiles for locatable mineral commodities relevant to the project. Datasets used in the assessment are available as USGS data releases.

  4. Mitigation Action Plan

    SciTech Connect

    Not Available

    1994-02-01

    This Mitigation Action Plan (MAP) focuses on mitigation commitments stated in the Supplemental Environmental Impact Statement (SEIS) and the Record of Decision (ROD) for the Naval Petroleum Reserve No. 1 (NPR-1). Specific commitments and mitigation implementation actions are listed in Appendix A-Mitigation Actions, and form the central focus of this MAP. They will be updated as needed to allow for organizational, regulatory, or policy changes. It is the intent of DOE to comply with all applicable federal, state, and local environmental, safety, and health laws and regulations. Eighty-six specific commitments were identified in the SEIS and associated ROD which pertain to continued operation of NPR-1 with petroleum production at the Maximum Efficient Rate (MER). The mitigation measures proposed are expected to reduce impacts as much as feasible, however, as experience is gained in actual implementation of these measures, some changes may be warranted.

  5. L-Reactor Habitat Mitigation Study

    SciTech Connect

    Not Available

    1988-02-01

    The L-Reactor Fish and Wildlife Resource Mitigation Study was conducted to quantify the effects on habitat of the L-Reactor restart and to identify the appropriate mitigation for these impacts. The completed project evaluated in this study includes construction of a 1000 acre reactor cooling reservoir formed by damming Steel Creek. Habitat impacts identified include a loss of approximately 3,700 average annual habitat units. This report presents a mitigation plan, Plan A, to offset these habitat losses. Plan A will offset losses for all species studied, except whitetailed deer. The South Carolina Wildlife and Marine Resources Department strongly recommends creation of a game management area to provide realistic mitigation for loss of deer habitats. 10 refs., 5 figs., 3 tabs. (MHB)

  6. Uptake and kinetics of /sup 226/Ra, /sup 210/Pb and /sup 210/Po in big sagebrush. [Artemisia tridentata

    SciTech Connect

    Simon, S.L.

    1985-01-01

    Root uptake of /sup 226/Ra, /sup 210/Pb and /sup 210/Po by mature sagebrush was studied using a soil injection method for spiking the soil with minimal root disturbance. The main objective was to measure vegetation concentrations and determine concentration ratios (CR's) due to root uptake as a function of time in mature big sagebrush. Concentration ratios obtained in mature vegetation and in steady-state situations may be valuable in assessing the impact of uranium mining and milling. The vegetation was sampled approximately every 3 months for a 2 year period. Significant levels of activity were detected in the vegetation beginning at the first sampling (81 days after soil injection for /sup 226/Ra, 28 days for /sup 210/Pb and /sup 210/Po). There was an exponential decrease in concentration to an apparent steady-state value. Mean values (geometric) of the data pooled over the second year period indicated that the steady-state CR's for /sup 226/Ra, /sup 210/Pb and /sup 210/Po, as determined in mature sagebrush, were 0.04, 0.009, and 0.08, respectively. A three compartment mathematical model was formulated to help understand mechanisms of plant uptake and to predict, if possible, the concentration of /sup 226/Ra, /sup 210/Pb and /sup 210/Po in vegetation as a function of time after soil spiking. A numerical solution was determined by 'calibrating' the general model solution with constants determined from regressions of concentrations in vegetation, soil leaching and leaf leaching data. Validation of the model is currently not possible because of an absence of similar time-dependent uptake studies. 168 refs., 19 figs., 18 tabs.

  7. Influence of the South-to-North Water Transfer and the Yangtze River mitigation projects on the water quality of Han River in China

    NASA Astrophysics Data System (ADS)

    Kuo, Yi-Ming; liu, Wenwen

    2016-04-01

    Algal bloom was occurred every year in the down stream of the Han River in recent five years. The operation of the Middle Route of China's South-to-North Water Transfer (MSNW) Project may affect the hydrological condition and self-purification of water body in the down and middle streams of the Han River, trigger algal bloom, and elevate the difficulty in the treatment of water pollutants, which is a crucial issue involved in ecology, environment, and economy. In this study, the monthly water samples were collected from the middle and down streams of Han River from July 2014 to December 2015. Factor Analysis and Cluster Analysis were applied to identify major pollution types and areas and determine the reasons influencing the variations of water quality in the down and middle streams of the Han River. The results show that whole monitoring period can be divided into three periods as different pollution levels. The factor analysis distinguishes three pollution types (inorganic pollution, organic pollution, and agricultural pollution) and thier contributions on Han River water quality in dry and wet seasons. Industrial areas are influenced by inorganic pollution and cultivated lands are influenced by agricultural pollution. The water quality in wet season is significantly affected by flow rate, which was sometimes controlled by two projects. The heavy polluted water may be diluted by high flow volume.

  8. Aeolian nutrient fluxes following wildfire in sagebrush steppe: Implications for soil carbon storage

    USGS Publications Warehouse

    Hasselquist, N.J.; Germino, M.J.; Sankey, J.B.; Ingram, L.J.; Glenn, N.F.

    2011-01-01

    Pulses of aeolian transport following fire can profoundly affect the biogeochemical cycling of nutrients in semi-arid and arid ecosystems. Our objective was to determine horizontal nutrient fluxes occurring in the saltation zone during an episodic pulse of aeolian transport that occurred following a wildfire in a semi-arid sagebrush steppe ecosystem in southern Idaho, USA. We also examined how temporal trends in nutrient fluxes were affected by changes in particle sizes of eroded mass as well as nutrient concentrations associated with different particle size classes. In the burned area, total carbon (C) and nitrogen (N) fluxes were as high as 235 g C m????'1 d????'1 and 19 g N m????'1 d????'1 during the first few months following fire, whereas C and N fluxes were negligible in an adjacent unburned area throughout the study. Temporal variation in C and N fluxes following fire was largely attributable to the redistribution of saltation-sized particles. Total N and organic C concentrations in the soil surface were significantly lower in the burned relative to the unburned area one year after fire. Our results show how an episodic pulse of aeolian transport following fire can affect the spatial distribution of soil C and N, which, in turn, can have important implications for soil C storage. These findings demonstrate how an ecological disturbance can exacerbate a geomorphic process and highlight the need for further research to better understand the role aeolian transport plays in the biogeochemical cycling of C and N in recently burned landscapes. ?? Author(s) 2011. CC Attribution 3.0 License.

  9. Secondary succession in disturbed and reclaimed sagebrush communities of northwestern Colorado

    SciTech Connect

    Biondini, M.E.

    1984-01-01

    The objective of this dissertation was the study of natural and induced secondary succession and soil biological activity in disturbed lands and reclaimed areas of a big sagebrush community (Artemisia tridentata) in northwestern Colorado. Four types of treatments were utilized to study soil disturbance effects in secondary succession: 1) vegetation was scraped off with as much topsoil left as possible, 2) vegetation was scraped off and topsoil was ripped to a depth of 30 cm, 3) 1 m of topsoil and subsoil was removed, mixed, and replaced, and 4) 1 m of topsoil and 1 m of subsoil were removed and replaced in reverse order. Treatment 4 drastically altered the successional pattern. In six years, Treatments 1, 2, and 3 became a grass-forb dominated community (Agropyron riparium, A. smithii, Koeleria cristata, and Sphaeralcea coccinea as predominant species) while Treatment 4 became a shrub dominated community (Artemisia tridentata, Chrysothamnus spp., Gutierrezia sarothrae). The rate of succession was not decreased by the increased disturbance levels. Native and introduced seeded communities were utilized to study secondary succession in reclaimed areas. The treatments consisted of 30 cm and 60 cm of topsoil over retorted shale with and without fertilization. The variables studied were plant species composition (expressed as relative cover), soil dehydrogenase and phosphatase enzymatic activities, acetylene reduction, and soil organic matter. Medicago sativa became the dominant species on the introduced seed mixture in the 30-cm topsoil without fertilization. Grasses (Agropyron desertorum, A. intermedium, and A. trichophorum) were dominant in the other treatments. The species composition of the native seed mixture was not affected by fertilization but showed a long-term topsoil effect. The 30-cm plots became dominated by Poa ampla while the 60-cm plots were dominated by Agropyron inermis.

  10. Perceptions of Ranchers About Medusahead ( Taeniatherum caput-medusae (L.) Nevski) Management on Sagebrush Steppe Rangelands

    NASA Astrophysics Data System (ADS)

    Johnson, Dustin D.; Davies, Kirk W.; Schreder, Peter T.; Chamberlain, Anna-Marie

    2011-09-01

    Medusahead ( Taeniatherum caput-medusae (L.) Nevski) is an exotic annual grass invading rangelands in the western United States. Medusahead is a serious management concern because it decreases biodiversity, reduces livestock forage production, and degrades the ecological function of rangelands. Despite the obvious importance of ranchers as partners in preventing and managing medusahead in rangelands, little is known about their perceptions and behaviors concerning medusahead management. We present the results of a survey of ranchers operating on sagebrush steppe rangeland in a three-county area in southeast Oregon encompassing over 7.2 million ha. The primary objective of this research was to determine if the presence of medusahead on a ranch influenced its operator's perceptions and behaviors concerning invasive plant control and prevention. Ranchers operating on medusahead-infested rangeland were more likely to indicate increased awareness and concern about medusahead and the potential for its continued expansion. Ranchers operating on rangeland invaded by medusahead were also more likely to indicate use of measures to prevent the spread of medusahead and other invasive plants on rangeland, interest in educational opportunities concerning invasive annual grass management, and plans for controlling invasive annual grasses in the future. This study revealed an alarming trend in which individuals are less likely to implement important prevention measures and participate in education opportunities to improve their knowledge of invasive plants until they directly experience the negative consequences of invasion. Information campaigns on invasive plants and their impacts may rectify this problem; however, appropriate delivery methods are critical for success. Web- or computer-based invasive plant information and tools were largely unpopular among ranchers, whereas traditional forms of information delivery including brochures/pamphlets and face-to-face interaction were

  11. Annual grass invasion in sagebrush steppe: the relative importance of climate, soil properties and biotic interactions.

    PubMed

    Bansal, Sheel; Sheley, Roger L

    2016-06-01

    The invasion by winter-annual grasses (AGs) such as Bromus tectorum into sagebrush steppe throughout the western USA is a classic example of a biological invasion with multiple, interacting climate, soil and biotic factors driving the invasion, although few studies have examined all components together. Across a 6000-km(2) area of the northern Great Basin, we conducted a field assessment of 100 climate, soil, and biotic (functional group abundances, diversity) factors at each of 90 sites that spanned an invasion gradient ranging from 0 to 100 % AG cover. We first determined which biotic and abiotic factors had the strongest correlative relationships with AGs and each resident functional group. We then used regression and structural equation modeling to explore how multiple ecological factors interact to influence AG abundance. Among biotic interactions, we observed negative relationships between AGs and biodiversity, perennial grass cover, resident species richness, biological soil crust cover and shrub density, whereas perennial and annual forb cover, tree cover and soil microbial biomass had no direct linkage to AG. Among abiotic factors, AG cover was strongly related to climate (increasing cover with increasing temperature and aridity), but had weak relationships with soil factors. Our structural equation model showed negative effects of perennial grasses and biodiversity on AG cover while integrating the negative effects of warmer climate and positive influence of belowground processes on resident functional groups. Our findings illustrate the relative importance of biotic interactions and climate on invasive abundance, while soil properties appear to have stronger relationships with resident biota than with invasives.

  12. Mitigation Monitoring Plan

    SciTech Connect

    Not Available

    1992-09-01

    The Final Supplemental Environmental Impact Report (SEIR) (September 1992) for the Proposed Renewal of the Contract between the United States Department of Energy and The Regents of the University of California for the Operation and Management of the Lawrence Berkeley Laboratory identifies the environmental impacts associated with renewing the contract and specifies a series of measures designed to mitigate adverse impacts to the environment. This Mitigation Monitoring Plan describes the procedures the University will use to implement the mitigation measures adopted in connection with the approval of the Contract.

  13. Smart disaster mitigation in Thailand

    NASA Astrophysics Data System (ADS)

    Aimmanee, S.; Ekkawatpanit, C.; Asanuma, H.

    2016-04-01

    Thailand is notoriously exposed to several natural disasters, from heavy thunder storms to earthquakes and tsunamis, since it is located in the tropical area and has tectonic cracks underneath the ground. Besides these hazards flooding, despite being less severe, occurs frequently, stays longer than the other disasters, and affects a large part of the national territory. Recently in 2011 have also been recorded the devastating effects of major flooding causing the economic damages and losses around 50 billion dollars. Since Thailand is particularly exposed to such hazards, research institutions are involved in campaigns about monitoring, prevention and mitigation of the effects of such phenomena, with the aim to secure and protect human lives, and secondly, the remarkable cultural heritage. The present paper will first make a brief excursus on the main Thailand projects aimed at the mitigation of natural disasters, referring to projects of national and international relevance, being implemented, such as the ESCAP1999 (flow regime regulation and water conservation). Adaptable devices such as foldable flood barriers and hydrodynamically supported temporary banks have been utilized when flooding. In the second part of the paper, will be described some new ideas concerning the use of smart and biomimicking column structures capable of high-velocity water interception and velocity detection in the case of tsunami. The pole configuration is composite cylindrical shell structure embedded with piezoceramic sensor. The vortex shedding of the flow around the pole induces the vibration and periodically strains the piezoelectric element, which in turn generates the electrical sensorial signal. The internal space of the shell is filled with elastic foam to enhance the load carrying capability due to hydrodynamic application. This more rigid outer shell inserted with soft core material resemble lotus stem in nature in order to prolong local buckling and ovalization of column

  14. Wildlife Mitigation Program Record of Decision.

    SciTech Connect

    United States. Bonneville Power Administration

    1997-06-01

    Bonneville Power Administration (BPA) has decided to adopt a set of Descriptions (goals, strategies, and procedural requirements) that apply to future BPA-funded wildlife mitigation projects. Various. sources-including Indian tribes, state agencies, property owners, private conservation groups, or other Federal agencies-propose wildlife mitigation projects to the Northwest Power Planning Council (Council) for BPA funding. Following independent scientific and public reviews, Council then selects projects to recommend for BPA funding. BPA adopts this set of prescriptions to standardize the planning and implementation of individual wildlife mitigation projects. This decision is based on consideration of potential environmental impacts evaluated in BPA`s Wildlife Mitigation Program Final Environmental Impact Statement (DOE/EIS-0246) published March, 20, 1997, and filed with the Environmental Protection Agency (EPA) the week of March 24, 1997 (EPA Notice of Availability Published April 4, 1997, 62 FR 65, 16154). BPA will distribute this Record of Decision to all known interested and affected persons, groups, tribes, and agencies.

  15. Albeni Falls Wildlife Mitigation : Annual Report 2002.

    SciTech Connect

    Terra-Berns, Mary

    2003-01-01

    The Albeni Falls Interagency Work Group continued to actively engage in implementing wildlife mitigation actions in 2002. Regular Work Group meetings were held to discuss budget concerns affecting the Albeni Falls Wildlife Mitigation Program, to present potential acquisition projects, and to discuss and evaluate other issues affecting the Work Group and Project. Work Group members protected 1,386.29 acres of wildlife habitat in 2002. To date, the Albeni Falls project has protected approximately 5,914.31 acres of wildlife habitat. About 21% of the total wildlife habitat lost has been mitigated. Administrative activities have increased as more properties are purchased and continue to center on restoration, operation and maintenance, and monitoring. In 2001, Work Group members focused on development of a monitoring and evaluation program as well as completion of site-specific management plans. This year the Work Group began implementation of the monitoring and evaluation program performing population and plant surveys, data evaluation and storage, and map development as well as developing management plans. Assuming that the current BPA budget restrictions will be lifted in the near future, the Work Group expects to increase mitigation properties this coming year with several potential projects.

  16. Mitigation win-win

    NASA Astrophysics Data System (ADS)

    Moran, Dominic; Lucas, Amanda; Barnes, Andrew

    2013-07-01

    Win-win messages regarding climate change mitigation policies in agriculture tend to oversimplify farmer motivation. Contributions from psychology, cultural evolution and behavioural economics should help to design more effective policy.

  17. Mitigation Banking Factsheet

    EPA Pesticide Factsheets

    A mitigation bank is an aquatic resource area that has been restored, established, enhanced, or preserved for the purpose of providing compensation for unavoidable impacts to aquatic resources permitted under Section 404

  18. Forb, insect, and soil response to burning and mowing Wyoming big sagebrush in greater sage-grouse breeding habitat.

    PubMed

    Hess, Jennifer E; Beck, Jeffrey L

    2014-04-01

    Wyoming big sagebrush (Artemisia tridentata wyomingensis A. t. Nutt. ssp. wyomingensis Beetle and Young) communities provide structure and forbs and insects needed by greater sage-grouse (Centrocercus urophasianus) for growth and survival. We evaluated forb, insect, and soil responses at six mowed and 19 prescribed burned sites compared to 25, paired and untreated reference sites. Sites were classified by treatment type, soil type, season, and decade of treatment (sites burned during 1990-1999 and sites burned or mowed during 2000-2006). Our objective was to evaluate differences in ten habitat attributes known to influence sage-grouse nesting and brood rearing to compare responses among treatment scenarios. Contrary to desired outcomes, treating Wyoming big sagebrush through prescribed burning or mowing may not stimulate cover or increase nutrition in food forbs, or increase insect abundance or indicators of soil quality compared with reference sites. In some cases, prescribed burning showed positive results compared with mowing such as greater forb crude protein content (%), ant (Hymenoptera; no./trap), beetle (Coleoptera/no./trap), and grasshopper abundance (Orthoptera; no./sweep), and total (%) soil carbon and nitrogen, but of these attributes, only grasshopper abundance was enhanced at burned sites compared with reference sites in 2008. Mowing did not promote a statistically significant increase in sage-grouse nesting or early brood-rearing habitat attributes such as cover or nutritional quality of food forbs, or counts of ants, beetles, or grasshoppers compared with reference sites.

  19. Forb, Insect, and Soil Response to Burning and Mowing Wyoming Big Sagebrush in Greater Sage-Grouse Breeding Habitat

    NASA Astrophysics Data System (ADS)

    Hess, Jennifer E.; Beck, Jeffrey L.

    2014-04-01

    Wyoming big sagebrush ( Artemisia tridentata wyomingensis A. t. Nutt. ssp. wyomingensis Beetle and Young) communities provide structure and forbs and insects needed by greater sage-grouse ( Centrocercus urophasianus) for growth and survival. We evaluated forb, insect, and soil responses at six mowed and 19 prescribed burned sites compared to 25, paired and untreated reference sites. Sites were classified by treatment type, soil type, season, and decade of treatment (sites burned during 1990-1999 and sites burned or mowed during 2000-2006). Our objective was to evaluate differences in ten habitat attributes known to influence sage-grouse nesting and brood rearing to compare responses among treatment scenarios. Contrary to desired outcomes, treating Wyoming big sagebrush through prescribed burning or mowing may not stimulate cover or increase nutrition in food forbs, or increase insect abundance or indicators of soil quality compared with reference sites. In some cases, prescribed burning showed positive results compared with mowing such as greater forb crude protein content (%), ant (Hymenoptera; no./trap), beetle (Coleoptera/no./trap), and grasshopper abundance (Orthoptera; no./sweep), and total (%) soil carbon and nitrogen, but of these attributes, only grasshopper abundance was enhanced at burned sites compared with reference sites in 2008. Mowing did not promote a statistically significant increase in sage-grouse nesting or early brood-rearing habitat attributes such as cover or nutritional quality of food forbs, or counts of ants, beetles, or grasshoppers compared with reference sites.

  20. Prescribed fire effects on runoff, erosion, and soil water repellency on steeply-sloped sagebrush rangeland over a five year period

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fire is an inherent component of sagebrush steppe rangelands in western North America and can dramatically affect runoff and erosion processes. Post-fire flooding and erosion events pose substantial threats to proximal resources, property, and human life. Yet, prescribed fire can serve as a tool to ...

  1. Restoration handbook for sagebrush steppe ecosystems with emphasis on greater sage-grouse habitat—Part 3. Site level restoration decisions

    USGS Publications Warehouse

    Pyke, David A.; Chambers, Jeanne C.; Pellant, Mike; Miller, Richard F.; Beck, Jeffrey L.; Doescher, Paul S.; Roundy, Bruce A.; Schupp, Eugene W.; Knick, Steven T.; Brunson, Mark; McIver, James D.

    2017-02-14

    Sagebrush steppe ecosystems in the United States currently (2016) occur on only about one-half of their historical land area because of changes in land use, urban growth, and degradation of land, including invasions of non-native plants. The existence of many animal species depends on the existence of sagebrush steppe habitat. The greater sage-grouse (Centrocercus urophasianus) depends on large landscapes of intact habitat of sagebrush and perennial grasses for their existence. In addition, other sagebrush-obligate animals have similar requirements and restoration of landscapes for greater sage-grouse also will benefit these animals. Once sagebrush lands are degraded, they may require restoration actions to make those lands viable habitat for supporting sagebrush-obligate animals, livestock, and wild horses, and to provide ecosystem services for humans now and for future generations.When a decision is made on where restoration treatments should be applied, there are a number of site-specific decisions managers face before selecting the appropriate type of restoration. This site-level decision tool for restoration of sagebrush steppe ecosystems is organized in nine steps.Step 1 describes the process of defining site-level restoration objectives.Step 2 describes the ecological site characteristics of the restoration site. This covers soil chemistry and texture, soil moisture and temperature regimes, and the vegetation communities the site is capable of supporting.Step 3 compares the current vegetation to the plant communities associated with the site State and Transition models.Step 4 takes the manager through the process of current land uses and past disturbances that may influence restoration success.Step 5 is a brief discussion of how weather before and after treatments may impact restoration success.Step 6 addresses restoration treatment types and their potential positive and negative impacts on the ecosystem and on habitats, especially for greater sage

  2. 2002 Mitigation Regulatory Guidance Letter (RGL) 02-2

    EPA Pesticide Factsheets

    Guidance on Compensatory Mitigation Projects for Aquatic Resource Impacts Under the Corps Regulatory Program Pursuant to Section 404 of the Clean Water Act and Section 10 of the Rivers and Harbors Act of 1899

  3. Compensatory Mitigation Site Protection Instrument Handbook and Fact Sheet

    EPA Pesticide Factsheets

    The site protection instrument is a written description of the legal arrangements including site ownership, management, and enforcement of any use restrictions that will be used to ensure the long-term protection of the compensatory mitigation project site

  4. Hazard Mitigation Assistance Programs Available to Water and Wastewater Utilities

    EPA Pesticide Factsheets

    You can prevent damage to your utility before it occurs. Utilities can implement mitigation projects to better withstand a natural disaster, minimize damage and rapidly recover from disruptions to service.

  5. Trajectories of change in sagebrush steppe vegetation communities in relation to multiple wildfires

    SciTech Connect

    Davies, G. M.; Bakker, J. D.; Dettweiler-Robinson, E.; Dunwiddie, Peter W.; Hall, S. A.; Downs, Janelle L.; Evans, J.

    2012-07-01

    Repeated perturbations, both biotic and abiotic, can lead to fundamental changes in the nature of ecosystems including changes in state. Sagebrush-steppe communities provide important habitat for wildlife and grazing for livestock. Fire is an integral part of these systems, but there is concern that increased ignition frequencies and invasive species are fundamentally altering these systems. Despite these issues, the majority of studies of fire effects in Artemisia tridentata wyomingensis-dominated systems have focused on the effects of single burns. The Arid Lands Ecology Reserve (ALE), in south-central Washington (U.S.A.), was one of the largest areas of continuous shrub-steppe habitat in the state until large wildfires burnt the majority of it in 2000 and 2007. We analysed data from permanent vegetation transects established in 1996 and resampled in 2002 and 2009. Our objective was to describe how the fires, and subsequent post-fire restoration efforts, affected communities successional pathways. Plant communities differed in response to repeated fire and restoration; these differences could largely be ascribed to the functional traits of the dominant species. Low elevation communities, previously dominated by obligate seeders, moved farthest from their initial composition and were dominated by weedy, early successional species in 2009. Higher elevation sites with resprouting shrubs, native bunchgrasses and few invasive species were generally more resilient to the effects of repeated disturbances. Shrub cover has been almost entirely removed from ALE, though there is evidence of recovery where communities were dominated by re-sprouters. Cheatgrass (Bromus tectorum) dominance was reduced by herbicide application in areas where it was previously abundant but increased significantly in untreated areas. Several re-sprouting species, notably Phlox longifolia and Poa secunda, expanded remarkably following competitive release from shrub canopies and/or abundant

  6. Mechanistic understanding of the effects of natural gas development on sagebrush-obligate songbird nest predation rates

    NASA Astrophysics Data System (ADS)

    Hethcoat, Matthew G.

    Natural gas development has rapidly increased within sagebrush ( Artemisia spp.) dominated landscapes of the Intermountain West. Prior research in the Upper Green River Basin, Wyoming demonstrated increased nest predation of sagebrush-obligate songbirds with higher densities of natural gas wells. To better understand the mechanisms underlying this pattern, I assessed this commonly used index of oil and gas development intensity (well density) for estimating habitat transformation and predicting nest survival for songbirds breeding in energy fields during 2008- 2009 and 2011-2012. We calculated landscape metrics (habitat loss, amount of edge, patch shape complexity, and mean patch size) to identify the aspect of landscape transformation most captured by well density. Well density was most positively associated with the amount of habitat loss within 1 square kilometer. Daily nest survival was relatively invariant with respect to well density for all three species. In contrast, nest survival rates of all three species consistently decreased with increased surrounding habitat loss due to energy development. Thus, although well density and habitat loss were strongly correlated, at times they provided contrasting estimates of nest survival probability. Additionally, we tested the hypothesis that surrounding habitat loss influenced local nest predation rates via increased predator activity. During 2011- 2012, we surveyed predators and monitored songbird nests at twelve sites in western Wyoming. Nine species, representing four mammalian and three avian families, were video-recorded depredating eggs and nestlings. Approximately 75% of depredation events were caused by rodents. While chipmunk (Tamias minimus) detections were negatively associated with increased habitat loss, mice (Peromyscus maniculatus and Reithrodontomys megalotis) and ground squirrels (Ictidomys tridecemlineatus and Urocitellus armatus) increased with greater surrounding habitat loss. Consistent with our

  7. Using resistance and resilience concepts to reduce impacts of annual grasses and altered fire regimes on the sagebrush ecosystem and sage-grouse- A strategic multi-scale approach

    USGS Publications Warehouse

    Chambers, Jeanne C.; Pyke, David A.; Maestas, Jeremy D.; Boyd, Chad S.; Campbell, Steve; Espinosa, Shawn; Havlina, Doug; Mayer, Kenneth F.; Wuenschel, Amarina

    2014-01-01

    This Report provides a strategic approach for conservation of sagebrush ecosystems and Greater Sage- Grouse (sage-grouse) that focuses specifically on habitat threats caused by invasive annual grasses and altered fire regimes. It uses information on factors that influence (1) sagebrush ecosystem resilience to disturbance and resistance to invasive annual grasses and (2) distribution, relative abundance, and persistence of sage-grouse populations to develop management strategies at both landscape and site scales. A sage-grouse habitat matrix links relative resilience and resistance of sagebrush ecosystems with sage-grouse habitat requirements for landscape cover of sagebrush to help decision makers assess risks and determine appropriate management strategies at landscape scales. Focal areas for management are assessed by overlaying matrix components with sage-grouse Priority Areas for Conservation (PACs), breeding bird densities, and specific habitat threats. Decision tools are discussed for determining the suitability of focal areas for treatment and the most appropriate management treatments.

  8. Soil water repellency and infiltration in coarse-textured soils of burned and unburned sagebrush ecosystems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Millions of dollars are spent each year in the United States to mitigate the effects of wildfires and reduce the risk of flash floods and debris flows. Research from forested, chaparral, and rangeland communities indicate severe wildfires can cause significant increases in soil water repellency res...

  9. Bonneville Power Administration Wildlife Mitigation Program : Draft Environmental Impact Statement.

    SciTech Connect

    United States. Bonneville Power Administration.

    1996-08-01

    Bonneville Power Administration (BPA) is responsible for mitigating the loss of wildlife habitat caused by the development of the Federal Columbia River Power System. BPA accomplishes this mitigation by funding projects consistent with those recommended by the Northwest Power Planning Council (Council). The projects are submitted to the Council from Indian Tribes, state agencies, property owners, private conservation groups, and other Federal agencies. Future wildlife mitigation actions with potential environmental impacts are expected to include land acquisition and management, water rights acquisition and management, habitat restoration and enhancement, installation of watering devices, riparian fencing, and similar wildlife conservation actions. BPA needs to ensure that individual wildlife mitigation projects are planned and managed with appropriate consistency across projects, jurisdictions, and ecosystems, as well as across time. BPA proposes to standardize the planning and implementation of individual wildlife mitigation projects funded by BPA. Alternative 1 is the No Action alternative. Five standardizing alternatives are identified to represent the range of possible strategies, goals, and procedural requirements reasonably applicable to BPA-funded projects under a standardized approach to project planning and implementation. All action alternatives are based on a single project planning process designed to resolve site-specific issues in an ecosystem context and to adapt to changing conditions and information.

  10. Implications of climate mitigation for future agricultural production

    NASA Astrophysics Data System (ADS)

    Müller, Christoph; Elliott, Joshua; Chryssanthacopoulos, James; Deryng, Delphine; Folberth, Christian; Pugh, Thomas A. M.; Schmid, Erwin

    2015-12-01

    Climate change is projected to negatively impact biophysical agricultural productivity in much of the world. Actions taken to reduce greenhouse gas emissions and mitigate future climate changes, are thus of central importance for agricultural production. Climate impacts are, however, not unidirectional; some crops in some regions (primarily higher latitudes) are projected to benefit, particularly if increased atmospheric carbon dioxide is assumed to strongly increase crop productivity at large spatial and temporal scales. Climate mitigation measures that are implemented by reducing atmospheric carbon dioxide concentrations lead to reductions both in the strength of climate change and in the benefits of carbon dioxide fertilization. Consequently, analysis of the effects of climate mitigation on agricultural productivity must address not only regions for which mitigation is likely to reduce or even reverse climate damages. There are also regions that are likely to see increased crop yields due to climate change, which may lose these added potentials under mitigation action. Comparing data from the most comprehensive archive of crop yield projections publicly available, we find that climate mitigation leads to overall benefits from avoided damages at the global scale and especially in many regions that are already at risk of food insecurity today. Ignoring controversial carbon dioxide fertilization effects on crop productivity, we find that for the median projection aggressive mitigation could eliminate ∼81% of the negative impacts of climate change on biophysical agricultural productivity globally by the end of the century. In this case, the benefits of mitigation typically extend well into temperate regions, but vary by crop and underlying climate model projections. Should large benefits to crop yields from carbon dioxide fertilization be realized, the effects of mitigation become much more mixed, though still positive globally and beneficial in many food insecure

  11. Teaching Hazards Mitigation.

    ERIC Educational Resources Information Center

    Abernethy, James

    1980-01-01

    It is recommended that courses be provided for architectural students in postoccupancy building performance and user experience. A course in disaster mitigation is described. It was introduced to increase student awareness of the importance of design decisions in building safety. (MSE)

  12. Passive versus active mitigation cost analysis

    SciTech Connect

    Parazin, R.J.; Galbraith, J.D.

    1995-04-01

    The scope of this task is to assess the impact of mitigation alternatives for Tanks 241-SY-101 and 241-SY-103 on the Project W-236A Multi-Function Waste Tank Facility. This assessment and other related tasks are part of an Action Plan Path Forward prepared by the Tank Waste Remediation System (TWRS) Life Extension and Transition Program. Task 3.7 of the Action Plan for Project W-236A MWTF analyzed the comparative cost/risk of two hydrogen gas mitigation alternatives (active versus passive) to recommend the most appropriate course of action to resolve the hydrogen gas safety issue. The qualitative success of active mitigation has been demonstrated through Tank 241-SY-101 testing. Passive mitigation has not been demonstrated but will be validated by laboratory test work performed under Task 3.1 of the Action Plan. It is assumed for this assessment that the uncertainties associated with the performance of either alternative is comparable. Determining alternative specific performance measures beyond those noted are not in the scope of this effort.

  13. Timing is everything: using near-surface and remote sensing to monitor vegetation phenology in sagebrush steppe

    NASA Astrophysics Data System (ADS)

    Chong, G.; Steltzer, H.; Shory, R.; Petach, A.; Wallenstein, M. D.

    2012-12-01

    Climate change models for the north¬ern Rocky Mountains predict changes in temperature and water availability that in turn may alter vegetation. Changes to vegetation may include timing of plant life-history events, or phenology, such as green-up, flower¬ing and senescence, and shifts in species composition. Moreover, climate changes may favor some species, such as non¬native, annual grasses over native species. Changes in vegetation could make forage for ungulates, sage-grouse, and livestock available earlier in the growing season, but could also result in earlier senescence (die-off or dormancy) and reduced overall production. The normalized difference vegetation index (NDVI) is regularly used to quantify greenness over large areas using remotely sensed reflectance data. The timing and scale of data collection, however, may be insufficient to capture fine-scale differences in phenology that are important indicators of habitat quality. We used data from near-surface light sensors to construct NDVI curves in native sagebrush vegetation with and without herbicide application for reducing non-native cheatgrass. We fit piecewise linear models to the data to compare characteristics of near-surface NDVI curves such as rate of green-up and duration of maximum greenness. Treated, inter-space areas had a later onset of peak season, but longer duration of greenness (greater productivity) than untreated inter-space. Sagebrush shrubs maintained relatively high greenness throughout the snow-free season. We compared our near-surface NDVI curves to curves constructed using remotely sensed data both locally (9 cell neighborhood) and regionally (southwest Wyoming) to identify the lag between actual green-up and green-up detected remotely and differences in the shapes of the NDVI curves. Understanding phenology and productivity at fine scales can help guide resource management decisions related to habitat quality, and monitoring changes in phenology and productivity over the

  14. Habitat Evaluation Procedures (HEP) Report : Grand Coulee Dam Mitigation, 1996-1999 Technical Report.

    SciTech Connect

    Kieffer, B.; Singer, Kelly; Abrahamson, Twa-le

    1999-07-01

    The purpose of this Habitat Evaluation Procedures (HEP) study was to determine baseline habitat units and to estimate future habitat units for Bonneville Power Administration (BPA) mitigation projects on the Spokane Indian Reservation. The mitigation between BPA and the Spokane Tribe of Indians (STOI) is for wildlife habitat losses on account of the construction of Grand Coulee Dam. Analysis of the HEP survey data will assist in mitigation crediting and appropriate management of the mitigation lands.

  15. Ecological Compliance Assessment Project: 1994 Summary report

    SciTech Connect

    Brandt, C.A.

    1994-11-01

    The Ecological Compliance Assessment Project (ECAP) began full operation on March 1, 1994. The project is designed around a baseline environmental data concept that includes intensive biological field surveys of key areas of the Hanford Site where the majority of Site activities occur. These surveys are conducted at biologically appropriate times of year to ensure that the data gathered are current and accurate. The data are entered into the ECAP database, which serves as a reference for the evaluation of review requests coming in to the project. This methodology provided the basis for over 90 percent of the review requests received. Field surveys conducted under ECAP are performed to document occurrence information for species of concern and to obtain habitat descriptions. There are over 200 species of concern on the Hanford Site, including plants, birds, mammals, reptiles, amphibians, fish, and invertebrates. In addition, Washington State has designated mature sagebrush-steppe habitat as a Priority Habitat meriting special protective measures. Of the projects reviewed, 17 resulted or will result in impacts to species or habitats of concern on the Hanford Site. The greatest impact has been on big sagebrush habitat. Most of the impact has been or will be within the 600 Area of the Site.

  16. Enhanced Practical Photosynthetic CO2 Mitigation

    SciTech Connect

    Gregory Kremer; David J. Bayless; Morgan Vis; Michael Prudich; Keith Cooksey; Jeff Muhs

    2005-01-13

    This report highlights significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation Project during the ending 12/31/2004. Specific results and accomplishments for the program include review of pilot scale testing and design of a new bioreactor. Testing confirmed that algae can be grown in a sustainable fashion in the pilot bioreactor, even with intermittent availability of sunlight. The pilot-scale tests indicated that algal growth rate followed photon delivery during productivity testing.

  17. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    SciTech Connect

    Dr. Gregory Kremer; Dr. David J. Bayless; Dr. Morgan Vis; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2003-04-15

    This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 1/2/2003 through 4/01/2003. As indicated in the list of accomplishments below we are progressing with long-term model scale bioreactor tests and are completing final preparations for pilot scale bioreactor testing. Specific results and accomplishments for the first quarter of 2003 are included.

  18. Mitigating Infectious Disease Outbreaks

    NASA Astrophysics Data System (ADS)

    Davey, Victoria

    The emergence of new, transmissible infections poses a significant threat to human populations. As the 2009 novel influenza A/H1N1 pandemic and the 2014-2015 Ebola epidemic demonstrate, we have observed the effects of rapid spread of illness in non-immune populations and experienced disturbing uncertainty about future potential for human suffering and societal disruption. Clinical and epidemiologic characteristics of a newly emerged infectious organism are usually gathered in retrospect as the outbreak evolves and affects populations. Knowledge of potential effects of outbreaks and epidemics and most importantly, mitigation at community, regional, national and global levels is needed to inform policy that will prepare and protect people. Study of possible outcomes of evolving epidemics and application of mitigation strategies is not possible in observational or experimental research designs, but computational modeling allows conduct of `virtual' experiments. Results of well-designed computer simulations can aid in the selection and implementation of strategies that limit illness and death, and maintain systems of healthcare and other critical resources that are vital to public protection. Mitigating Infectious Disease Outbreaks.

  19. Susceptibility and antibody response of Vesper Sparrows (Pooecetes gramineus) to West Nile virus: A potential amplification host in sagebrush-grassland habitat

    USGS Publications Warehouse

    Hofmeister, Erik K.; Dusek, Robert J.; Fassbinder-Orth, Carol; Owen, Benjamin; Franson, J. Christian

    2016-01-01

    West Nile virus (WNV) spread to the US western plains states in 2003, when a significant mortality event attributed to WNV occurred in Greater Sage-grouse ( Centrocercus urophasianus ). The role of avian species inhabiting sagebrush in the amplification of WNV in arid and semiarid regions of the North America is unknown. We conducted an experimental WNV challenge study in Vesper Sparrows ( Pooecetes gramineus ), a species common to sagebrush and grassland habitats found throughout much of North America. We found Vesper Sparrows to be moderately susceptible to WNV, developing viremia considered sufficient to transmit WNV to feeding mosquitoes, but the majority of birds were capable of surviving infection and developing a humoral immune response to the WNV nonstructural 1 and envelope proteins. Despite clearance of viremia, after 6 mo, WNV was detected molecularly in three birds and cultured from one bird. Surviving Vesper Sparrows were resistant to reinfection 6 mo after the initial challenge. Vesper sparrows could play a role in the amplification of WNV in sagebrush habitat and other areas of their range, but rapid clearance of WNV may limit their importance as competent amplification hosts of WNV.

  20. Genotype, soil type, and locale effects on reciprocal transplant vigor, endophyte growth, and microbial functional diversity of a narrow sagebrush hybrid zone in Salt Creek Canyon, Utah

    USGS Publications Warehouse

    Miglia, K.J.; McArthur, E.D.; Redman, R.S.; Rodriguez, R.J.; Zak, J.C.; Freeman, D.C.

    2007-01-01

    When addressing the nature of ecological adaptation and environmental factors limiting population ranges and contributing to speciation, it is important to consider not only the plant's genotype and its response to the environment, but also any close interactions that it has with other organisms, specifically, symbiotic microorganisms. To investigate this, soils and seedlings were reciprocally transplanted into common gardens of the big sagebrush hybrid zone in Salt Creek Canyon, Utah, to determine location and edaphic effects on the fitness of parental and hybrid plants. Endophytic symbionts and functional microbial diversity of indigenous and transplanted soils and sagebrush plants were also examined. Strong selection occurred against the parental genotypes in the middle hybrid zone garden in middle hybrid zone soil; F1 hybrids had the highest fitness under these conditions. Neither of the parental genotypes had superior fitness in their indigenous soils and habitats; rather F1 hybrids with the nonindigenous maternal parent were superiorly fit. Significant garden-by-soil type interactions indicate adaptation of both plant and soil microorganisms to their indigenous soils and habitats, most notably in the middle hybrid zone garden in middle hybrid zone soil. Contrasting performances of F1 hybrids suggest asymmetrical gene flow with mountain, rather than basin, big sagebrush acting as the maternal parent. We showed that the microbial community impacted the performance of parental and hybrid plants in different soils, likely limiting the ranges of the different genotypes.

  1. Mitigating Reptile Road Mortality: Fence Failures Compromise Ecopassage Effectiveness

    PubMed Central

    Baxter-Gilbert, James H.; Riley, Julia L.; Lesbarrères, David; Litzgus, Jacqueline D.

    2015-01-01

    Roadways pose serious threats to animal populations. The installation of roadway mitigation measures is becoming increasingly common, yet studies that rigorously evaluate the effectiveness of these conservation tools remain rare. A highway expansion project in Ontario, Canada included exclusion fencing and ecopassages as mitigation measures designed to offset detrimental effects to one of the most imperial groups of vertebrates, reptiles. Taking a multispecies approach, we used a Before-After-Control-Impact study design to compare reptile abundance on the highway before and after mitigation at an Impact site and a Control site from 1 May to 31 August in 2012 and 2013. During this time, radio telemetry, wildlife cameras, and an automated PIT-tag reading system were used to monitor reptile movements and use of ecopassages. Additionally, a willingness to utilize experiment was conducted to quantify turtle behavioral responses to ecopassages. We found no difference in abundance of turtles on the road between the un-mitigated and mitigated highways, and an increase in the percentage of both snakes and turtles detected dead on the road post-mitigation, suggesting that the fencing was not effective. Although ecopassages were used by reptiles, the number of crossings through ecopassages was lower than road-surface crossings. Furthermore, turtle willingness to use ecopassages was lower than that reported in previous arena studies, suggesting that effectiveness of ecopassages may be compromised when alternative crossing options are available (e.g., through holes in exclusion structures). Our rigorous evaluation of reptile roadway mitigation demonstrated that when exclusion structures fail, the effectiveness of population connectivity structures is compromised. Our project emphasizes the need to design mitigation measures with the biology and behavior of the target species in mind, to implement mitigation designs in a rigorous fashion, and quantitatively evaluate road

  2. Earthquake and Tsunami Disaster Mitigation in The Marmara Region and Disaster Education in Turkey Part2 Yoshiyuki KANEDA Nagoya University Japan Agency for Marine-Earth Science and Technology (JAMSTEC) Haluk OZENER Boğaziçi University, Earthquake Researches Institute (KOERI) and Members of SATREPS Japan-Turkey project

    NASA Astrophysics Data System (ADS)

    Kaneda, Y.; Ozener, H.

    2015-12-01

    The 1999 Izumit Earthquake as the destructive earthquake occurred near the Marmara Sea. The Marmara Sea should be focused on because of a seismic gap in the North Anatolian fault. Istanbul is located around the Marmara Sea, so, if next earthquake will occur near Istanbul, fatal damages will be generated. The Japan and Turkey can share our own experiences during past damaging earthquakes and we can prepare for future large earthquakes in cooperation with each other. In earthquakes in Tokyo area and Istanbul area as the destructive earthquakes near high population cities, there are common disaster researches and measures. For disaster mitigation, we are progressing multidisciplinary researches. Our goals of this SATREPS project are as follows, To develop disaster mitigation policy and strategies based on multidisciplinary research activities. To provide decision makers with newly found knowledge for its implementation to the current regulations. To organize disaster education programs in order to increase disaster awareness in Turkey. To contribute the evaluation of active fault studies in Japan. This project is composed of four research groups. The first group is Marmara Earthquake Source region observationally research group. This group has 4 sub-themes such as Seismicity, Geodesy, Electromagnetics and Trench analyses. The second group focuses on scenario researches of earthquake occurrence along the North Anatolia fault and precise tsunami simulation in the Marmara region. Aims of the third group are improvements and constructions of seismic characterizations and damage predictions based on observation researches and precise simulations. The fourth group is promoting disaster educations using research result visuals. In this SATREPS project, we will integrate these research results for disaster mitigation in Marmara region and .disaster education in Turkey. We will have a presentation of the updated results of this SATREPS project.

  3. Mitigating flood exposure

    PubMed Central

    Shultz, James M; McLean, Andrew; Herberman Mash, Holly B; Rosen, Alexa; Kelly, Fiona; Solo-Gabriele, Helena M; Youngs Jr, Georgia A; Jensen, Jessica; Bernal, Oscar; Neria, Yuval

    2013-01-01

    Introduction. In 2011, following heavy winter snowfall, two cities bordering two rivers in North Dakota, USA faced major flood threats. Flooding was foreseeable and predictable although the extent of risk was uncertain. One community, Fargo, situated in a shallow river basin, successfully mitigated and prevented flooding. For the other community, Minot, located in a deep river valley, prevention was not possible and downtown businesses and one-quarter of the homes were inundated, in the city’s worst flood on record. We aimed at contrasting the respective hazards, vulnerabilities, stressors, psychological risk factors, psychosocial consequences, and disaster risk reduction strategies under conditions where flood prevention was, and was not, possible. Methods. We applied the “trauma signature analysis” (TSIG) approach to compare the hazard profiles, identify salient disaster stressors, document the key components of disaster risk reduction response, and examine indicators of community resilience. Results. Two demographically-comparable communities, Fargo and Minot, faced challenging river flood threats and exhibited effective coordination across community sectors. We examined the implementation of disaster risk reduction strategies in situations where coordinated citizen action was able to prevent disaster impact (hazard avoidance) compared to the more common scenario when unpreventable disaster strikes, causing destruction, harm, and distress. Across a range of indicators, it is clear that successful mitigation diminishes both physical and psychological impact, thereby reducing the trauma signature of the event. Conclusion. In contrast to experience of historic flooding in Minot, the city of Fargo succeeded in reducing the trauma signature by way of reducing risk through mitigation. PMID:28228985

  4. 2011 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    SciTech Connect

    West, W. J.; Lucas, J. G.; Gano, K. A.

    2011-11-14

    This report documents the status of revegetation projects and natural resources mitigation efforts conducted for remediated waste sites and other activities associated with the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 cleanup of National Priorities List waste sites at Hanford. This report contains the vegetation monitoring data that was collected in the spring and summer of 2011 from the River Corridor Closure Contractor’s revegetation and mitigation areas on the Hanford Site.

  5. 2010 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    SciTech Connect

    C. T. Lindsey, A. L. Johnson

    2010-09-30

    This report documents eh status of revegetation projects and natural resources mitigation efforts conducted for remediated waste sites and other activities associated with CERLA cleanup of National Priorities List waste sites at Hanford. This report contains vegetation monitoring data that were collected in the spring and summer of 2010 from the River Corridor Closure Contract’s revegetation and mitigation areas on the Hanford Site.

  6. Mitigation technologies and measures in energy sector of Kazakstan

    SciTech Connect

    Pilifosova, O.; Danchuk, D.; Temertekov, T.

    1996-12-31

    An important commitment in the UN Framework Convention on Climate Change is to conduct mitigation analysis and to communicate climate change measures and policies. In major part reducing CO{sub 2} as well as the other greenhouse gas emissions in Kazakstan, can be a side-product of measures addressed to increasing energy efficiency. Since such measures are very important for the national economy, mitigation strategies in the energy sector of Kazakstan are directly connected with the general national strategy of the energy sector development. This paper outlines the main measures and technologies in energy sector of Kazakstan which can lead to GHG emissions reduction and presents the results of current mitigation assessment. The mitigation analysis is addressed to energy production sector. A baseline and six mitigation scenarios were developed to evaluate the most attractive mitigation options, focusing on specific technologies which have been already included in sustainable energy programs. According to the baseline projection, Kazakstan`s CO{sub 2} emissions will not exceed their 1990 level until 2005. The potential for CO{sub 2} emission reduction is estimated to be about 11 % of the base line emission level by the end of considered period (in 2020). The main mitigation options in the energy production sector in terms of mitigation potential and technical and economical feasibility include rehabilitation of thermal power plants aimed to increasing efficiency, use of nuclear energy and further expansion in the use of hydro energy based on small hydroelectric power plants.

  7. Prescribed Fire Effects on Runoff, Erosion, and Soil Water Repellency on Steeply-Sloped Sagebrush Rangeland over a Five Year Period

    NASA Astrophysics Data System (ADS)

    Williams, C. J.; Pierson, F. B.; Al-Hamdan, O. Z.

    2014-12-01

    Fire is an inherent component of sagebrush steppe rangelands in western North America and can dramatically affect runoff and erosion processes. Post-fire flooding and erosion events pose substantial threats to proximal resources, property, and human life. Yet, prescribed fire can serve as a tool to manage vegetation and fuels on sagebrush rangelands and to reduce the potential for large catastrophic fires and mass erosion events. The impact of burning on event hydrologic and erosion responses is strongly related to the degree to which burning alters vegetation, ground cover, and surface soils and the intensity and duration of precipitation. Fire impacts on hydrologic and erosion response may be intensified or reduced by inherent site characteristics such as topography and soil properties. Parameterization of these diverse conditions in predictive tools is often limited by a lack of data and/or understanding for the domain of interest. Furthermore, hydrologic and erosion functioning change as vegetation and ground cover recover in the years following burning and few studies track these changes over time. In this study, we evaluated the impacts of prescribed fire on vegetation, ground cover, soil water repellency, and hydrologic and erosion responses 1, 2, and 5 yr following burning of a mountain big sagebrush community on steep hillslopes with fine-textured soils. The study site is within the Reynolds Creek Experimental Watershed, southwestern Idaho, USA. Vegetation, ground cover, and soil properties were measured over plot scales of 0.5 m2 to 9 m2. Rainfall simulations (0.5 m2) were used to assess the impacts of fire on soil water repellency, infiltration, runoff generation, and splash-sheet erosion. Overland flow experiments (9 m2) were used to assess the effects of fire-reduced ground cover on concentrated-flow runoff and erosion processes. The study results provide insight regarding fire impacts on runoff, erosion, and soil water repellency in the immediate and

  8. Predicting foundation bunchgrass species abundances: Model-assisted decision-making in protected-area sagebrush steppe

    USGS Publications Warehouse

    Rodhouse, Thomas J.; Irvine, Kathryn M.; Sheley, Roger L.; Smith, Brenda S.; Hoh, Shirley; Esposito, Daniel M.; Mata-Gonzalez, Ricardo

    2014-01-01

    Foundation species are structurally dominant members of ecological communities that can stabilize ecological processes and influence resilience to disturbance and resistance to invasion. Being common, they are often overlooked for conservation but are increasingly threatened from land use change, biological invasions, and over-exploitation. The pattern of foundation species abundances over space and time may be used to guide decision-making, particularly in protected areas for which they are iconic. We used ordinal logistic regression to identify the important environmental influences on the abundance patterns of bluebunch wheatgrass (Pseudoroegneria spicata), Thurber's needlegrass (Achnatherum thurberianum), and Sandberg bluegrass (Poa secunda) in protected-area sagebrush steppe. We then predicted bunchgrass abundances along gradients of topography, disturbance, and invasive annual grass abundance. We used model predictions to prioritize the landscape for implementation of a management and restoration decision-support tool. Models were fit to categorical estimates of grass cover obtained from an extensive ground-based monitoring dataset. We found that remnant stands of abundant wheatgrass and bluegrass were associated with steep north-facing slopes in higher and more remote portions of the landscape outside of recently burned areas where invasive annual grasses were less abundant. These areas represented only 25% of the landscape and were prioritized for protection efforts. Needlegrass was associated with south-facing slopes, but in low abundance and in association with invasive cheatgrass (Bromus tectorum). Abundances of all three species were strongly negatively correlated with occurrence of another invasive annual grass, medusahead (Taeniatherum caput-medusae). The rarity of priority bunchgrass stands underscored the extent of degradation and the need for prioritization. We found no evidence that insularity reduced invasibility; annual grass invasion represents

  9. Calibration of remotely sensed, coarse resolution NDVI to CO2 fluxes in a sagebrush-steppe ecosystem

    USGS Publications Warehouse

    Wylie, B.K.; Johnson, D.A.; Laca, Emilio; Saliendra, Nicanor Z.; Gilmanov, T.G.; Reed, B.C.; Tieszen, L.L.; Worstell, B.B.

    2003-01-01

    The net ecosystem exchange (NEE) of carbon flux can be partitioned into gross primary productivity (GPP) and respiration (R). The contribution of remote sensing and modeling holds the potential to predict these components and map them spatially and temporally. This has obvious utility to quantify carbon sink and source relationships and to identify improved land management strategies for optimizing carbon sequestration. The objective of our study was to evaluate prediction of 14-day average daytime CO2 fluxes (Fday) and nighttime CO2 fluxes (Rn) using remote sensing and other data. Fday and Rn were measured with a Bowen ratio-energy balance (BREB) technique in a sagebrush (Artemisia spp.)-steppe ecosystem in northeast Idaho, USA, during 1996-1999. Micrometeorological variables aggregated across 14-day periods and time-integrated Advanced Very High Resolution Radiometer (AVHRR) Normalized Difference Vegetation Index (iNDVI) were determined during four growing seasons (1996-1999) and used to predict Fday and Rn. We found that iNDVI was a strong predictor of Fday (R2 = 0.79, n = 66, P < 0.0001). Inclusion of evapotranspiration in the predictive equation led to improved predictions of Fday (R2= 0.82, n = 66, P < 0.0001). Crossvalidation indicated that regression tree predictions of Fday were prone to overfitting and that linear regression models were more robust. Multiple regression and regression tree models predicted Rn quite well (R2 = 0.75-0.77, n = 66) with the regression tree model being slightly more robust in crossvalidation. Temporal mapping of Fday and Rn is possible with these techniques and would allow the assessment of NEE in sagebrush-steppe ecosystems. Simulations of periodic Fday measurements, as might be provided by a mobile flux tower, indicated that such measurements could be used in combination with iNDVI to accurately predict Fday. These periodic measurements could maximize the utility of expensive flux towers for evaluating various carbon

  10. Evaluating greater sage-grouse seasonal space use relative to leks: Implications for surface use designations in sagebrush ecosystems

    USGS Publications Warehouse

    Casazza, Michael L.; Coates, Peter S.

    2013-01-01

    The development of anthropogenic structures, especially those related to energy resources, in sagebrush ecosystems is an important concern among developers, conservationists, and land managers in relation to greater sage-grouse (Centrocercus urophasianus; hereafter, sage-grouse) populations. Sage-grouse are dependent on sagebrush ecosystems to meet their seasonal life-phase requirements, and research indicates that anthropogenic structures can adversely affect sage-grouse populations. Land management agencies have attempted to reduce the negative effects of anthropogenic development by assigning surface use (SU) designations, such as no surface occupancy, to areas around leks (breeding grounds). However, rationale for the size of these areas is often challenged. To help inform this issue, we used a spatial analysis of sage-grouse utilization distributions (UDs) to quantify seasonal (spring, summer and fall, winter) sage-grouse space use in relation to leks. We sampled UDs from 193 sage-grouse (11,878 telemetry locations) across 4 subpopulations within the Bi-State Distinct Population Segment (DPS, bordering California and Nevada) during 2003–2009. We quantified the volume of each UD (vUD) within a range of areas that varied in size and were centered on leks, up to a distance of 30 km from leks. We also quantified the percentage of nests within those areas. We then estimated the diminishing gains of vUD as area increased and produced continuous response curves that allow for flexibility in land management decisions. We found nearly 90% of the total vUD (all seasons combined) was contained within 5 km of leks, and we identified variation in vUD for a given distance related to season and migratory status. Five kilometers also represented the 95th percentile of the distribution of nesting distances. Because diminishing gains of vUD was not substantial until distances exceeded 8 km, managers should consider the theoretical optimal distances for SU designation

  11. Zebra mussel mitigation; overview

    SciTech Connect

    Claudi, R.

    1995-06-01

    Zebra mussels cause a number of problems to industrial raw water users as well as having serious impact on civil structures exposed to mussel infested waters. The largest volume of water (up to 90% of the total) drawn into most industrial and power generating plants, is for cooling and heat transfer. The rest of the volume is used for other plant processes, such as make-up in steam systems, and service systems used for cleaning, air conditions, fire protection and human consumption. All raw water systems are vulnerable to zebra mussel infestation to greater or lesser degree. To-date, many different chemical and non-chemical techniques for zebra mussel control have been investigated. However, the treatment of choice for most facilities is based on chemical control. This has been the common practice in Europe and so far it has been the case in North America. This is likely to change as the environmental constraints on release of chemicals into natural water bodies continue to increase. This paper deals with the different steps raw water users should take when deciding on a mitigation strategy, the mitigation measures available to-date and those that have been proposed for the control of zebra mussels in industrial systems.

  12. Hungry Horse Mitigation; Flathead Lake, 2001-2002 Annual Report.

    SciTech Connect

    Hansen, Barry

    2003-06-09

    The Confederated Salish and Kootenai Tribes (CSKT) and Montana Fish Wildlife and Parks (MFWP) wrote ''Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam'' in March 1991 to define the fisheries losses, mitigation alternatives and recommendations to protect, mitigate and enhance resident fish and aquatic habitat affected by Hungry Horse Dam. On November 12, 1991, the Northwest Power Planning Council (NPPC) approved the mitigation plan with minor modifications, called for a detailed implementation plan, and amended measures 903(h)(1) through (7). A long-term mitigation plan was submitted in August 1992, was approved by the Council in 1993, and the first contract for this project was signed on November 11, 1993. The problem this project addresses is the loss of habitat, both in quality and quantity, in the interconnected Flathead Lake and River basin resulting from the construction and operation of Hungry Horse Dam. The purpose of the project is to both implement mitigation measures and monitor the biological responses to those measures including those implemented by Project Numbers 9101903 and 9101904. Goals and objectives of the 1994 Fish and Wildlife Program (Section 10.1) addressed by this project are the rebuilding to sustainable levels weak, but recoverable, native populations injured by the hydropower system. The project mitigates the blockage of spawning runs by Hungry Horse Dam by restoring and even creating spawning habitats within direct drainages to Flathead Lake. The project also addresses the altered habitat within Flathead Lake resulting from species shifts and consequent dominance of new species that restricts the potential success of mitigation measures. Specific goals of this project are to create and restore habitat and quantitatively monitor changes in fish populations to verify the efficacy of our mitigation measures. The project consists of three components: monitoring, restoration and research

  13. Libby Mitigation Program, 2007 Annual Progress Report: Mitigation for the Construction and Operation of Libby Dam.

    SciTech Connect

    Dunnigan, James; DeShazer, J.; Garrow, L.

    2009-05-26

    Libby Reservoir was created under an International Columbia River Treaty between the United States and Canada for cooperative water development of the Columbia River Basin (Columbia River Treaty 1964). Libby Reservoir inundated 109 stream miles of the mainstem Kootenai River in the United States and Canada, and 40 miles of tributary streams in the U.S. that provided habitat for spawning, juvenile rearing, and migratory passage (Figure 1). The authorized purpose of the dam is to provide power (91.5%), flood control (8.3%), and navigation and other benefits (0.2%; Storm et al. 1982). The Pacific Northwest Power Act of 1980 recognized possible conflicts stemming from hydroelectric projects in the northwest and directed Bonneville Power Administration to 'protect, mitigate, and enhance fish and wildlife to the extent affected by the development and operation of any hydroelectric project of the Columbia River and its tributaries' (4(h)(10)(A)). Under the Act, the Northwest Power Planning Council was created and recommendations for a comprehensive fish and wildlife program were solicited from the region's federal, state, and tribal fish and wildlife agencies. Among Montana's recommendations was the proposal that research be initiated to quantify acceptable seasonal minimum pool elevations to maintain or enhance the existing fisheries (Graham et al. 1982). Research to determine how operations of Libby Dam affect the reservoir and river fishery and to suggest ways to lessen these effects began in May 1983. The framework for the Libby Reservoir Model (LRMOD) was completed in 1989. Development of Integrated Rule Curves (IRCs) for Libby Dam operation was completed in 1996 (Marotz et al. 1996). The Libby Reservoir Model and the IRCs continue to be refined (Marotz et al 1999). Initiation of mitigation projects such as lake rehabilitation and stream restoration began in 1996. The primary focus of the Libby Mitigation project now is to restore the fisheries and fish habitat in

  14. Trade-offs between reproductive coloration and innate immunity in a natural population of female sagebrush lizards, Sceloporus graciosus

    PubMed Central

    Ruiz, Mayté; Wang, Danfeng; Reinke, Beth A.; Demas, Gregory E.; Martins, Emília P.

    2014-01-01

    Trade-offs between immune function and reproduction are common to many organisms. Nevertheless, high energetic resources may eliminate the need for these trade-offs. In this study, we consider the effects of food availability on these trade-offs in a wild population of female sagebrush lizards (Sceloporus graciosus) during the breeding season. We manipulated food availability by supplementing some lizards but not others. We measured female orange side coloration as an indicator of reproductive state and calculated the bacterial killing capability of collected plasma exposed to Escherichia coli ex vivo as a measure of innate immunity. We found that female lizards show a natural trade-off between reproductive effort and immune function; females under high reproductive investment had lower innate immunity than those at a later reproductive state. We did not detect this trade-off with food supplementation. We show that trade-offs depend on the energetic state of the animal, illustrating that trade-offs between immune function and reproduction can be context-dependent. PMID:25400312

  15. The influence of precipitation, vegetation and soil properties on the ecohydrology of sagebrush steppe rangelands on the INL site

    USGS Publications Warehouse

    Germino, Matthew J.

    2013-01-01

    The INL Site and other landscapes having sagebrush steppe vegetation are experiencing a simultaneous change in climate and floristics that result from increases in exotic species. Determining the separate and combined/interactive effects of climate and vegetation change is important for assessing future changes on the landscape and for hydrologic processes. This research uses the 72 experimental plots established and initially maintained for many years as the “Protective Cap Biobarrier Experiment” by Dr. Jay Anderson and the Stoller ESER program, and the experiment is also now referred to as the “INL Site Ecohydrology Study.” We are evaluating long-term impacts of different plant communities commonly found throughout Idaho subject to different precipitation regimes and to different soil depths. Treatments of amount and timing of precipitation (irrigation), soil depth, and either native/perennial or exotic grass vegetation allow researchers to investigate how vegetation, precipitation and soil interact to influence soil hydrology and ecosystem biogeochemistry. This information will be used to improve a variety of models, as well as provide data for these models.

  16. Effects of converting sagebrush cover to grass on the hydrology of small watersheds at Boco Mountain, Colorado

    USGS Publications Warehouse

    Lusby, Gregg C.

    1979-01-01

    Changes in runoff and sediment yield caused by changing sagebrush cover to grass cover were studied at four small watersheds in western Colorado during a 9-year period, from 1965 to 1978. Measurements of runoff and sediment yield from the four watersheds were made for 8 years, at which time two watersheds were plowed and seeded to beardless bluebunch wheatgrass. The same measurements were then continued for an additional 6 years. Measurements indicated that conversion to grass caused a reduction in runoff from summer rainstorms of about 75 percent. Runoff from spring snowmelt increased about 12 percent, and annual runoff from treated watersheds decreased about 20 percent when compared to control watersheds. Sediment yield from the seeded watersheds was reduced by about 80 percent; most of this reduction is related to the decrease in runoff from summer rainstorms. The size of barren interspaces between plants was reduced on the converted water- sheds to about 30 percent of those on the untreated watersheds. Linear regression analysis indicates that a reduction of 38 percent in the amount of bare soil resulting from planting grass would result in a decrease of 73 percent in sediment concentration.

  17. Climate change and mitigation.

    PubMed

    Nibleus, Kerstin; Lundin, Rickard

    2010-01-01

    Planet Earth has experienced repeated changes of its climate throughout time. Periods warmer than today as well as much colder, during glacial episodes, have alternated. In our time, rapid population growth with increased demand for natural resources and energy, has made society increasingly vulnerable to environmental changes, both natural and those caused by man; human activity is clearly affecting the radiation balance of the Earth. In the session "Climate Change and Mitigation" the speakers offered four different views on coal and CO2: the basis for life, but also a major hazard with impact on Earth's climate. A common denominator in the presentations was that more than ever science and technology is required. We need not only understand the mechanisms for climate change and climate variability, we also need to identify means to remedy the anthropogenic influence on Earth's climate.

  18. Washington Tsunami Hazard Mitigation Program

    NASA Astrophysics Data System (ADS)

    Walsh, T. J.; Schelling, J.

    2012-12-01

    Washington State has participated in the National Tsunami Hazard Mitigation Program (NTHMP) since its inception in 1995. We have participated in the tsunami inundation hazard mapping, evacuation planning, education, and outreach efforts that generally characterize the NTHMP efforts. We have also investigated hazards of significant interest to the Pacific Northwest. The hazard from locally generated earthquakes on the Cascadia subduction zone, which threatens tsunami inundation in less than hour following a magnitude 9 earthquake, creates special problems for low-lying accretionary shoreforms in Washington, such as the spits of Long Beach and Ocean Shores, where high ground is not accessible within the limited time available for evacuation. To ameliorate this problem, we convened a panel of the Applied Technology Council to develop guidelines for construction of facilities for vertical evacuation from tsunamis, published as FEMA 646, now incorporated in the International Building Code as Appendix M. We followed this with a program called Project Safe Haven (http://www.facebook.com/ProjectSafeHaven) to site such facilities along the Washington coast in appropriate locations and appropriate designs to blend with the local communities, as chosen by the citizens. This has now been completed for the entire outer coast of Washington. In conjunction with this effort, we have evaluated the potential for earthquake-induced ground failures in and near tsunami hazard zones to help develop cost estimates for these structures and to establish appropriate tsunami evacuation routes and evacuation assembly areas that are likely to to be available after a major subduction zone earthquake. We intend to continue these geotechnical evaluations for all tsunami hazard zones in Washington.

  19. Hungry Horse Mitigation; Flathead Lake, 2004-2005 Annual Report.

    SciTech Connect

    Hansen, Barry; Evarts, Les

    2006-06-01

    The Confederated Salish and Kootenai Tribes (CSKT) and Montana Fish Wildlife and Parks (MFWP) wrote the ''Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam'' in March 1991 to define the fisheries losses, mitigation alternatives and recommendations to protect, mitigate and enhance resident fish and aquatic habitat affected by Hungry Horse Dam. On November 12, 1991, the Northwest Power Planning Council (NPPC) approved the mitigation plan with minor modifications, called for a detailed implementation plan, and amended measures 903(h)(1) through (7). A long-term mitigation plan was submitted in August 1992, was approved by the Council in 1993, and the first contract for this project was signed on November 11, 1993. The problem this project addresses is the loss of habitat, both in quality and quantity, in the Flathead Lake and River basin resulting from the construction and operation of Hungry Horse Dam. The purpose of the project is to both implement mitigation measures and monitor the biological responses to those measures including those implemented by Project Numbers 9101903 and 9101904. Goals and objectives of the 1994 Fish and Wildlife Program (Section 10.1) addressed by this project are the rebuilding to sustainable levels weak, but recoverable, native populations injured by the hydropower system. The project mitigates the blockage of spawning runs by Hungry Horse Dam by restoring and even creating spawning habitats within direct drainages to Flathead Lake. The project also addresses the altered habitat within Flathead Lake resulting from species shifts and consequent dominance of new species that restricts the potential success of mitigation measures. Specific goals of this project are to create and restore habitat and quantitatively monitor changes in fish populations to verify the efficacy of our mitigation measures. The project consists of three components: monitoring, restoration and research. Monitoring

  20. Hungry Horse Mitigation; Flathead Lake, 2003-2004 Annual Report.

    SciTech Connect

    Hansen, Barry; Evarts, Les

    2005-06-01

    The Confederated Salish and Kootenai Tribes (CSKT) and Montana Fish Wildlife and Parks (MFWP) wrote the ''Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam'' in March 1991 to define the fisheries losses, mitigation alternatives and recommendations to protect, mitigate and enhance resident fish and aquatic habitat affected by Hungry Horse Dam. On November 12, 1991, the Northwest Power Planning Council (NPPC) approved the mitigation plan with minor modifications, called for a detailed implementation plan, and amended measures 903(h)(1) through (7). A long-term mitigation plan was submitted in August 1992, was approved by the Council in 1993, and the first contract for this project was signed on November 11, 1993. The problem this project addresses is the loss of habitat, both in quality and quantity, in the Flathead Lake and River basin resulting from the construction and operation of Hungry Horse Dam. The purpose of the project is to both implement mitigation measures and monitor the biological responses to those measures including those implemented by Project Numbers 9101903 and 9101904. Goals and objectives of the 1994 Fish and Wildlife Program (Section 10.1) addressed by this project are the rebuilding to sustainable levels weak, but recoverable, native populations injured by the hydropower system. The project mitigates the blockage of spawning runs by Hungry Horse Dam by restoring and even creating spawning habitats within direct drainages to Flathead Lake. The project also addresses the altered habitat within Flathead Lake resulting from species shifts and consequent dominance of new species that restricts the potential success of mitigation measures. Specific goals of this project are to create and restore habitat and quantitatively monitor changes in fish populations to verify the efficacy of our mitigation measures. The project consists of three components: monitoring, restoration and research. Monitoring

  1. Hungry Horse Mitigation : Flathead Lake : Annual Progress Report 2008.

    SciTech Connect

    Hansen, Barry; Evarts, Les

    2009-08-06

    The Confederated Salish and Kootenai Tribes (CSKT) and Montana Fish Wildlife and Parks (MFWP) wrote the 'Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam' in March 1991 to define the fisheries losses, mitigation alternatives and recommendations to protect, mitigate and enhance resident fish and aquatic habitat affected by Hungry Horse Dam. On November 12, 1991, the Northwest Power Planning Council (NPPC) approved the mitigation plan with minor modifications, called for a detailed implementation plan, and amended measures 903(h)(1) through (7). A long-term mitigation plan was submitted in August 1992, was approved by the Council in 1993, and the first contract for this project was signed on November 11, 1993. The problem this project addresses is the loss of habitat, both in quality and quantity, in the Flathead Lake and River basin resulting from the construction and operation of Hungry Horse Dam. The purpose of the project is to both implement mitigation measures and monitor the biological responses to those measures including those implemented by Project Numbers 9101903 and 9101904. Goals and objectives of the 1994 Fish and Wildlife Program (Section 10.1) addressed by this project are the rebuilding to sustainable levels weak, but recoverable, native populations injured by the hydropower system. The project mitigates the blockage of spawning runs by Hungry Horse Dam by restoring and even creating spawning habitats within direct drainages to Flathead Lake. The project also addresses the altered habitat within Flathead Lake resulting from species shifts and consequent dominance of new species that restricts the potential success of mitigation measures. Specific goals of this project are to create and restore habitat and quantitatively monitor changes in fish populations to verify the efficacy of our mitigation measures. The project consists of three components: monitoring, restoration and research. Monitoring

  2. Hungry Horse Mitigation : Flathead Lake : Annual Progress Report 2007.

    SciTech Connect

    Hansen, Barry; Evarts, Les

    2008-12-22

    The Confederated Salish and Kootenai Tribes (CSKT) and Montana Fish Wildlife and Parks (MFWP) wrote the 'Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam' in March 1991 to define the fisheries losses, mitigation alternatives and recommendations to protect, mitigate and enhance resident fish and aquatic habitat affected by Hungry Horse Dam. On November 12, 1991, the Northwest Power Planning Council (NPPC) approved the mitigation plan with minor modifications, called for a detailed implementation plan, and amended measures 903(h)(1) through (7). A long-term mitigation plan was submitted in August 1992, was approved by the Council in 1993, and the first contract for this project was signed on November 11, 1993. The problem this project addresses is the loss of habitat, both in quality and quantity, in the Flathead Lake and River basin resulting from the construction and operation of Hungry Horse Dam. The purpose of the project is to both implement mitigation measures and monitor the biological responses to those measures including those implemented by Project Numbers 9101903 and 9101904. Goals and objectives of the 1994 Fish and Wildlife Program (Section 10.1) addressed by this project are the rebuilding to sustainable levels weak, but recoverable, native populations injured by the hydropower system. The project mitigates the blockage of spawning runs by Hungry Horse Dam by restoring and even creating spawning habitats within direct drainages to Flathead Lake. The project also addresses the altered habitat within Flathead Lake resulting from species shifts and consequent dominance of new species that restricts the potential success of mitigation measures. Specific goals of this project are to create and restore habitat and quantitatively monitor changes in fish populations to verify the efficacy of our mitigation measures. The project consists of three components: monitoring, restoration and research. Monitoring

  3. Apparatus and Methods for Mitigating Electromagnetic Emissions

    NASA Technical Reports Server (NTRS)

    Geng, Steven M. (Inventor); Niedra, Janis M. (Inventor)

    2013-01-01

    Apparatus, methods, and other embodiments associated with mitigation of magnetic fields are described herein. In an embodiment, a method for mitigating an electromagnetic field includes positioning a mitigating coil around a linear alternator of linear motor so that the mitigating coil is coaxially located with an alternator coil; arranging the mitigating coil to generate a field to mitigate an electromagnetic field generated by the alternator coil; and passing an induced current from the alternator coil through the mitigating coil.

  4. Apparatus and Methods for Mitigating Electromagnetic Emissions

    NASA Technical Reports Server (NTRS)

    Geng, Steven M. (Inventor); Niedra, Janis M. (Inventor)

    2016-01-01

    Apparatus, methods, and other embodiments associated with mitigation of magnetic fields are described herein. In an embodiment, a method for mitigating an electromagnetic field includes positioning a mitigating coil around a linear alternator of linear motor so that the mitigating coil is coaxially located with an alternator coil; arranging the mitigating coil to generate a field to mitigate an electromagnetic field generated by the alternator coil; and passing an induced current from the alternator coil through the mitigating coil.

  5. Toward to Disaster Mitigation Science

    NASA Astrophysics Data System (ADS)

    Kaneda, Yoshiyuki; Shiraki, Wataru; Tokozakura, Eiji

    2016-04-01

    Destructive natural disasters such as earthquakes and tsunamis have occurred frequently in the world. For the reduction and mitigation of damages by destructive natural disasters, early detection of natural disasters and speedy and proper evacuations are indispensable. And hardware and software preparations for reduction and mitigation of natural disasters are quite important and significant. Finally, methods on restorations and revivals are necessary after natural disasters. We would like to propose natural disaster mitigation science for early detections, evacuations and restorations against destructive natural disasters. In natural disaster mitigation science, there are lots of research fields such as natural science, engineering, medical treatment, social science and literature/art etc. Especially, natural science, engineering and medical treatment are fundamental research fields for natural disaster mitigation, but social sciences such as sociology, psychology etc. are very important research fields for restorations after natural disasters. We have to progress the natural disaster mitigation science against destructive natural disaster mitigation. in the near future. We will present the details of natural disaster mitigation science.

  6. Modeling the Emission, Transport, and Dispersion of Post-wildfire Dust from Western Sagebrush Landscapes within a Regional Air Quality Framework

    NASA Astrophysics Data System (ADS)

    Chung, S. H.; Wagenbrenner, N. S.; Lamb, B. K.

    2014-12-01

    Millions of hectares are burned by wildfires each year in the western US. The resulting burn scars are extremely wind erodible surfaces with high loadings of easily entrained ash and soil. Previous work has demonstrated that wind erosion from these burn scars can release large amounts of dust and ash as particulate matter (PM) into the atmosphere, resulting in large impacts on downwind air quality and visibility. Sagebrush-dominated landscapes, where often essentially all vegetation is consumed by the fire, appear to be particularly vulnerable. Climate change predictions indicate more wildfire activity in the western US and, hence, more potential for wind erosion from burn scars. However, these PM sources are not yet accounted for in regional air quality models. Here we describe a modification to the AIRPACT regional air quality modeling framework for simulating the emission, transport and dispersion of PM from post-wildfire burn scars. We present results from a 2012 sagebrush fire in southeast Oregon as a case study. Modeled PM emission rates and downwind concentrations are compared against observations for two major dust events, one which resulted in exceedances of the PM10 National Ambient Air Quality Standard in Boise, Idaho the month after the fire and another which resulted in a significant dust on snow event and subsequent snowmelt in the Owyhee Mountains of southwest Idaho the following spring. Additionally, we present model estimates of annual emissions from all wildfires that occurred in sagebrush landscapes of the western US during the 2012 fire year as an estimate of annual post-fire PM loading potential.

  7. Translation readthrough mitigation.

    PubMed

    Arribere, Joshua A; Cenik, Elif S; Jain, Nimit; Hess, Gaelen T; Lee, Cameron H; Bassik, Michael C; Fire, Andrew Z

    2016-06-30

    A fraction of ribosomes engaged in translation will fail to terminate when reaching a stop codon, yielding nascent proteins inappropriately extended on their C termini. Although such extended proteins can interfere with normal cellular processes, known mechanisms of translational surveillance are insufficient to protect cells from potential dominant consequences. Here, through a combination of transgenics and CRISPR–Cas9 gene editing in Caenorhabditis elegans, we demonstrate a consistent ability of cells to block accumulation of C-terminal-extended proteins that result from failure to terminate at stop codons. Sequences encoded by the 3′ untranslated region (UTR) were sufficient to lower protein levels. Measurements of mRNA levels and translation suggested a co- or post-translational mechanism of action for these sequences in C. elegans. Similar mechanisms evidently operate in human cells, in which we observed a comparable tendency for translated human 3′ UTR sequences to reduce mature protein expression in tissue culture assays, including 3′ UTR sequences from the hypomorphic ‘Constant Spring’ haemoglobin stop codon variant. We suggest that 3′ UTRs may encode peptide sequences that destabilize the attached protein, providing mitigation of unwelcome and varied translation errors.

  8. Translation Readthrough Mitigation

    PubMed Central

    Arribere, Joshua A.; Cenik, Elif S.; Jain, Nimit; Hess, Gaelen T.; Lee, Cameron H.; Bassik, Michael C.; Fire, Andrew Z.

    2016-01-01

    A fraction of ribosomes engaged in translation will fail to terminate when reaching a stop codon, yielding nascent proteins inappropriately extended on their C-termini. Although such extended proteins can interfere with normal cellular processes, known mechanisms of translational surveillance are insufficient to protect cells from potential dominant consequences. Through a combination of transgenics and CRISPR/Cas9 gene editing in C. elegans, we demonstrate a consistent ability of cells to block accumulation of C-terminal extended proteins that result from failure to terminate at stop codons. 3’UTR-encoded sequences were sufficient to lower protein levels. Measurements of mRNA levels and translation suggested a co- or post-translational mechanism of action for these sequences in C. elegans. Similar mechanisms evidently operate in human cells, where we observed a comparable tendency for translated human 3’UTR sequences to reduce mature protein expression in tissue culture assays, including 3' sequences from the hypomorphic “Constant Spring” hemoglobin stop codon variant. We suggest 3’UTRs may encode peptide sequences that destabilize the attached protein, providing mitigation of unwelcome and varied translation errors. PMID:27281202

  9. Mitigation analysis for Estonia

    SciTech Connect

    Martins, A.; Roos, J.; Pesur, A.

    1996-09-01

    The present report provides data on the mitigation analysis of Estonia. The results for energy, forest and agricultural sectors and macro-economic analysis are given. The Government of Estonia has identified the development of energy production as the main strategical means in the movement towards market economy. Now 99% of electricity generation and about 25% of heat production in Estonia is based on oil shale combustion. To increase the efficiency of oil shale-fired power plants and decrease CO{sub 2} emissions, the State Enterprise (SE) Eesti Energia (Estonian Energy) is planning to reconstruct these power plants and introduce the Circulating Fluidized Bed (CFB) combustion technology for oil shale burning to replace the Pulverized Combustion (PC). According to the Estonian Forest Policy, two general objectives are of importance: sustainability in forestry and efficiency in forest management. For the reduction of greenhouse gases (GHG) emissions from agriculture, it is necessary to increase the efficiency of production resource usage. The growth of the GDP in 1995 was 2.9% as a result of large-scale privatization activities in Estonia and re-introduction of the available, but unused production capacities with the help of foreign and domestic investments. It is assumed that the medium growth rate of GDP reaches 6% in 1998.

  10. Diurnal and Seasonal Variation in Sap Flow Among Different Sagebrush Species and Subspecies Along an Elevation Gradient in a Semi-Arid Ecosystem

    NASA Astrophysics Data System (ADS)

    Sharma, H.; Reinhardt, K.; Lohse, K. A.

    2015-12-01

    Sagebrush is a widespread and locally dominant shrub across much of western North America, occupying >66 million ha. Sagebrush steppe provides many important ecosystem services including carbon (C) storage, water storage, and providing critical habitat for several threatened and endangered animal species. At the Reynolds Creek Critical Zone Observatory (RC CZO) in southwestern Idaho, sagebrush is the dominant shrub species across most of the watershed. The research objectives of RC CZO are to quantify soil carbon storage and flux, and the environmental factors governing these from pedon to landscape scales. Sagebrush-steppe ecosystems have been identified as possible future C sinks, but C storage in these water-limited systems is tightly linked to hydroclimate, which is highly variable in space and time. Quantifying soil-plant water relations is essential to understanding C storage in these systems. Stem-heat-balance sap-flow sensors were installed in June 2015 at three sites in RC CZO that had existing meteorological stations and eddy covariance towers. These sites are situated along an elevation gradient from 1417 m to 2111 m. Artemisia tridentata ssp. wyomingenesis, A. arbuscula and A. tridentata ssp. vaseyana at dominate at the lower, middle, and upper sites, respectively. At all three sites, we installed sensors on 5-6 shrubs. Preliminary results indicate greater sap flow velocity in both wyomingenesis and tridentata species than arbuscula. The mean hourly sap flow rates were 2.05±0.12 g/h, 0.33±0.01 g/h and 3.02±0.14 g/h for wyomingenesis, arbuscula, and vaseyana, respectively, during June 26th to July 22nd, 2015. Daily sap flow averaged about 61.56±5.21 g/day, 7.60±0.88 g/day, and 74.60±5.44 g/day, respectively within same time period. Lower soil water content at the middle site seemed to be the cause of lower sap flow velocities in arbuscula. Diurnal patterns in sap flow were similar in all subspecies, with maximum flow velocities recorded between 11

  11. Hungry Horse Dam Fisheries Mitigation, 1992-1993 Progress Report.

    SciTech Connect

    DosSantos, Joe; Vashro, Jim; Lockard, Larry

    1994-06-01

    In February of 1900, over forty agency representatives and interested citizens began development of the 1991 Mitigation Plan. This effort culminated in the 1993 Implementation Plan for mitigation of fish losses attributable to the construction and operation of Hungry Horse Dam. The primary purpose of this biennial report is to inform the public of the status of ongoing mitigation activities resulting from those planning efforts. A habitat improvement project is underway to benefit bull trout in Big Creek in the North Fork drainage of the Flathead River and work is planned in Hay Creek, another North Fork tributary. Bull trout redd counts have been expanded and experimental programs involving genetic evaluation, outmigrant monitoring, and hatchery studies have been initiated, Cutthroat mitigation efforts have focused on habitat improvements in Elliott Creek and Taylor`s Outflow and improvements have been followed by imprint plants of hatchery fish and/or eyed eggs in those streams. Rogers Lake west of Kalispell and Lion Lake, near Hungry Horse, were chemically rehabilitated. Cool and warm water fish habitat has been improved in Halfmoon Lake and Echo Lake. Public education and public interest is important to the future success of mitigation activities. As part of the mitigation team`s public awareness responsibility we have worked with numerous volunteer groups, public agencies, and private landowners to stimulate interest and awareness of mitigation activities and the aquatic ecosystem. The purpose of this biennial report is to foster public awareness of, and support for, mitigation activities as we move forward in implementing the Hungry Horse Dam Fisheries Mitigation Implementation Plan.

  12. Climate change mitigation through livestock system transitions

    PubMed Central

    Havlík, Petr; Valin, Hugo; Herrero, Mario; Obersteiner, Michael; Schmid, Erwin; Rufino, Mariana C.; Mosnier, Aline; Thornton, Philip K.; Böttcher, Hannes; Conant, Richard T.; Frank, Stefan; Fritz, Steffen; Fuss, Sabine; Kraxner, Florian; Notenbaert, An

    2014-01-01

    Livestock are responsible for 12% of anthropogenic greenhouse gas emissions. Sustainable intensification of livestock production systems might become a key climate mitigation technology. However, livestock production systems vary substantially, making the implementation of climate mitigation policies a formidable challenge. Here, we provide results from an economic model using a detailed and high-resolution representation of livestock production systems. We project that by 2030 autonomous transitions toward more efficient systems would decrease emissions by 736 million metric tons of carbon dioxide equivalent per year (MtCO2e⋅y−1), mainly through avoided emissions from the conversion of 162 Mha of natural land. A moderate mitigation policy targeting emissions from both the agricultural and land-use change sectors with a carbon price of US$10 per tCO2e could lead to an abatement of 3,223 MtCO2e⋅y−1. Livestock system transitions would contribute 21% of the total abatement, intra- and interregional relocation of livestock production another 40%, and all other mechanisms would add 39%. A comparable abatement of 3,068 MtCO2e⋅y−1 could be achieved also with a policy targeting only emissions from land-use change. Stringent climate policies might lead to reductions in food availability of up to 200 kcal per capita per day globally. We find that mitigation policies targeting emissions from land-use change are 5 to 10 times more efficient—measured in “total abatement calorie cost”—than policies targeting emissions from livestock only. Thus, fostering transitions toward more productive livestock production systems in combination with climate policies targeting the land-use change appears to be the most efficient lever to deliver desirable climate and food availability outcomes. PMID:24567375

  13. Manure management for greenhouse gas mitigation.

    PubMed

    Petersen, S O; Blanchard, M; Chadwick, D; Del Prado, A; Edouard, N; Mosquera, J; Sommer, S G

    2013-06-01

    Ongoing intensification and specialisation of livestock production lead to increasing volumes of manure to be managed, which are a source of the greenhouse gases (GHGs) methane (CH4) and nitrous oxide (N2O). Net emissions of CH4 and N2O result from a multitude of microbial activities in the manure environment. Their relative importance depends not only on manure composition and local management practices with respect to treatment, storage and field application, but also on ambient climatic conditions. The diversity of livestock production systems, and their associated manure management, is discussed on the basis of four regional cases (Sub-Saharan Africa, Southeast Asia, China and Europe) with increasing levels of intensification and priorities with respect to nutrient management and environmental regulation. GHG mitigation options for production systems based on solid and liquid manure management are then presented, and potentials for positive and negative interactions between pollutants, and between management practices, are discussed. The diversity of manure properties and environmental conditions necessitate a modelling approach for improving estimates of GHG emissions, and for predicting effects of management changes for GHG mitigation, and requirements for such a model are discussed. Finally, we briefly discuss drivers for, and barriers against, introduction of GHG mitigation measures for livestock production. There is no conflict between efforts to improve food and feed production, and efforts to reduce GHG emissions from manure management. Growth in livestock populations are projected to occur mainly in intensive production systems where, for this and other reasons, the largest potentials for GHG mitigation may be found.

  14. Climate change mitigation through livestock system transitions.

    PubMed

    Havlík, Petr; Valin, Hugo; Herrero, Mario; Obersteiner, Michael; Schmid, Erwin; Rufino, Mariana C; Mosnier, Aline; Thornton, Philip K; Böttcher, Hannes; Conant, Richard T; Frank, Stefan; Fritz, Steffen; Fuss, Sabine; Kraxner, Florian; Notenbaert, An

    2014-03-11

    Livestock are responsible for 12% of anthropogenic greenhouse gas emissions. Sustainable intensification of livestock production systems might become a key climate mitigation technology. However, livestock production systems vary substantially, making the implementation of climate mitigation policies a formidable challenge. Here, we provide results from an economic model using a detailed and high-resolution representation of livestock production systems. We project that by 2030 autonomous transitions toward more efficient systems would decrease emissions by 736 million metric tons of carbon dioxide equivalent per year (MtCO2e⋅y(-1)), mainly through avoided emissions from the conversion of 162 Mha of natural land. A moderate mitigation policy targeting emissions from both the agricultural and land-use change sectors with a carbon price of US$10 per tCO2e could lead to an abatement of 3,223 MtCO2e⋅y(-1). Livestock system transitions would contribute 21% of the total abatement, intra- and interregional relocation of livestock production another 40%, and all other mechanisms would add 39%. A comparable abatement of 3,068 MtCO2e⋅y(-1) could be achieved also with a policy targeting only emissions from land-use change. Stringent climate policies might lead to reductions in food availability of up to 200 kcal per capita per day globally. We find that mitigation policies targeting emissions from land-use change are 5 to 10 times more efficient--measured in "total abatement calorie cost"--than policies targeting emissions from livestock only. Thus, fostering transitions toward more productive livestock production systems in combination with climate policies targeting the land-use change appears to be the most efficient lever to deliver desirable climate and food availability outcomes.

  15. Landslides risk mitigation along lifelines

    NASA Astrophysics Data System (ADS)

    Capparelli, G.; Versace, P.; Artese, G.; Costanzo, S.; Corsonello, P.; Di Massa, G.; Mendicino, G.; Maletta, D.; Leone, S.; Muto, F.; Senatore, A.; Troncone, A.; Conte, E.; Galletta, D.

    2012-04-01

    The paper describes an integrated, innovative and efficient solution to manage risk issues associated to landslides interfering with infrastructures. The research project was submitted for financial support in the framework of the Multi -regional Operational Programme 2007-13: Research and Competitiveness funded by the Ministry of Research (MIUR) and co-funded by the European Regional Development Fund. The project is aimed to developing and demonstrating an integrated system of monitoring, early warning and mitigation of landslides risk. The final goal is to timely identify potentially dangerous landslides, and to activate all needed impact mitigation measures, including the information delivery. The essential components of the system include monitoring arrays, telecommunication networks and scenario simulation models, assisted by a data acquisition and processing centre, and a traffic control centres. Upon integration, the system will be experimentally validated and demonstrated over ca. 200 km of three highway sections, crossing the regions of Campania, Basilicata, Calabria and Sicily. Progress in the state of art is represented by the developments in the field of environmental monitoring and in the mathematical modeling of landslides and by the development of services for traffic management. The approach to the problem corresponds to a "systemic logics" where each developed component foresees different interchangeable technological solutions to maximize the operational flexibility. The final system may be configured as a simple to complex structure, including different configurations to deal with different scenarios. Specifically, six different monitoring systems will be realized: three "point" systems, made up of a network of locally measuring sensors, and three "area" systems to remotely measure the displacements of large areas. Each network will be fully integrated and connected to a unique data transmission system. Standardized and shared procedures for the

  16. Fuel Flexibility: Landfill Gas Contaminant Mitigation for Power Generation

    SciTech Connect

    Storey, John Morse; Theiss, Timothy J; Kass, Michael D; FINNEY, Charles E A; Lewis, Samuel; Kaul, Brian C; Besmann, Theodore M; Thomas, John F; Rogers, Hiram; Sepaniak, Michael

    2014-04-01

    This research project focused on the mitigation of silica damage to engine-based renewable landfill gas energy systems. Characterization of the landfill gas siloxane contamination, combined with characterization of the silica deposits in engines, led to development of two new mitigation strategies. The first involved a novel method for removing the siloxanes and other heavy contaminants from the landfill gas prior to use by the engines. The second strategy sought to interrupt the formation of hard silica deposits in the engine itself, based on inspection of failed landfill gas engine parts. In addition to mitigation, the project had a third task to develop a robust sensor for siloxanes that could be used to control existing and/or future removal processes.

  17. Experimental study designs to improve the evaluation of road mitigation measures for wildlife.

    PubMed

    Rytwinski, Trina; van der Ree, Rodney; Cunnington, Glenn M; Fahrig, Lenore; Findlay, C Scott; Houlahan, Jeff; Jaeger, Jochen A G; Soanes, Kylie; van der Grift, Edgar A

    2015-05-01

    An experimental approach to road mitigation that maximizes inferential power is essential to ensure that mitigation is both ecologically-effective and cost-effective. Here, we set out the need for and standards of using an experimental approach to road mitigation, in order to improve knowledge of the influence of mitigation measures on wildlife populations. We point out two key areas that need to be considered when conducting mitigation experiments. First, researchers need to get involved at the earliest stage of the road or mitigation project to ensure the necessary planning and funds are available for conducting a high quality experiment. Second, experimentation will generate new knowledge about the parameters that influence mitigation effectiveness, which ultimately allows better prediction for future road mitigation projects. We identify seven key questions about mitigation structures (i.e., wildlife crossing structures and fencing) that remain largely or entirely unanswered at the population-level: (1) Does a given crossing structure work? What type and size of crossing structures should we use? (2) How many crossing structures should we build? (3) Is it more effective to install a small number of large-sized crossing structures or a large number of small-sized crossing structures? (4) How much barrier fencing is needed for a given length of road? (5) Do we need funnel fencing to lead animals to crossing structures, and how long does such fencing have to be? (6) How should we manage/manipulate the environment in the area around the crossing structures and fencing? (7) Where should we place crossing structures and barrier fencing? We provide experimental approaches to answering each of them using example Before-After-Control-Impact (BACI) study designs for two stages in the road/mitigation project where researchers may become involved: (1) at the beginning of a road/mitigation project, and (2) after the mitigation has been constructed; highlighting real case

  18. Seasonal movements and Home-range use by female pronghorns in sagebrush-steppe communities of western south dakota

    USGS Publications Warehouse

    Jacques, C.N.; Jenks, J.A.; Klaver, R.W.

    2009-01-01

    Knowledge of seasonal movements by pronghorns (Antilocapra americana) within the easternmost extension of sagebrush-steppe communities is limited. Current hypotheses regarding movement patterns suggest that pronghorns initiate seasonal movements in response to severe winter weather, snowfall patterns, spatial and temporal variation in forage abundance, and availability of water. From January 2002 to August 2005, we monitored movements of 76 adult (???1.5 years) female pronghorns on 2 study areas (Harding and Fall River counties) in western South Dakota. We collected 8,750 visual locations, calculated 204 home ranges, and documented 17 seasonal movements. Eighty-four percent (n = 55) of pronghorns were nonmigratory and 10% (n = 6) were conditional migrators. Mean distance between summer and winter range was 23.1 km (SE = 2.8 km, n = 13). Five adult pronghorns (8%) dispersed a mean distance of 37.6 km (SE = 12.4 km); of which 1 female moved a straight-line distance of 75.0 km. Winter and summer home-range size varied (P < 0.0001) between study sites. Mean 95% adaptive kernel winter and summer home-range size of pronghorns was 55.5 and 19.7 km 2, respectively, in Harding County and 127.2 and 65.9 km2, respectively, in Fall River County. Nonmigratory behavior exhibited by pronghorns was likely associated with minimal snow cover and moderate temperatures during winter 2002-2004. Variation in size of adult seasonal home ranges between sites was likely associated with differences in forage distribution and availability between regions. ?? 2009 American Society of Mammalogists.

  19. Annual grass invasion in sagebrush-steppe: The relative importance of climate, soil properties and biotic interactions

    USGS Publications Warehouse

    Bansal, Sheel; Sheley, Roger L.

    2016-01-01

    The invasion by winter-annual grasses (AGs) such as Bromus tectorum into sagebrush steppe throughout the western USA is a classic example of a biological invasion with multiple, interacting climate, soil and biotic factors driving the invasion, although few studies have examined all components together. Across a 6000-km2 area of the northern Great Basin, we conducted a field assessment of 100 climate, soil, and biotic (functional group abundances, diversity) factors at each of 90 sites that spanned an invasion gradient ranging from 0 to 100 % AG cover. We first determined which biotic and abiotic factors had the strongest correlative relationships with AGs and each resident functional group. We then used regression and structural equation modeling to explore how multiple ecological factors interact to influence AG abundance. Among biotic interactions, we observed negative relationships between AGs and biodiversity, perennial grass cover, resident species richness, biological soil crust cover and shrub density, whereas perennial and annual forb cover, tree cover and soil microbial biomass had no direct linkage to AG. Among abiotic factors, AG cover was strongly related to climate (increasing cover with increasing temperature and aridity), but had weak relationships with soil factors. Our structural equation model showed negative effects of perennial grasses and biodiversity on AG cover while integrating the negative effects of warmer climate and positive influence of belowground processes on resident functional groups. Our findings illustrate the relative importance of biotic interactions and climate on invasive abundance, while soil properties appear to have stronger relationships with resident biota than with invasives.

  20. Yield Responses of Ruderal Plants to Sucrose in Invasive-Dominated Sagebrush Steppe of the Northern Great Basin

    USGS Publications Warehouse

    Brunson, J.L.; Pyke, D.A.; Perakis, S.S.

    2010-01-01

    Restoration of sagebrush-steppe plant communities dominated by the invasive ruderals Bromus tectorum (cheatgrass) and Taeniatherum caput-medusae (medusahead) can be facilitated by adding carbon (C) to the soil, stimulating microbes to immobilize nitrogen (N) and limit inorganic N availability. Our objectives were to determine responses in (1) cheatgrass and medusahead biomass and seed production; (2) soil microbial biomass C and N; and (3) inorganic soil N to a range of C doses and to calculate the lowest dose that yielded a significant response. In November 2005, we applid 12 C doses ranging from 0 to 2,400 kg C/ha as sucrose to plots sown with cheatgrass and medusahead at two sites in the northern Great Basin. Other ruderal plants established in our plots, and this entire ruderal community was negatively affected by C addition. End-of-year biomass of the ruderal community decreased approximately by approximately 6% at each site for an increase in C dose of 100 kg C/ha. For the same increase in C, microbial biomass C increased by 2-4 mg/kg in November 2005 and March 2006, but not in July 2006. There was little, if any, microbial soil N uptake, as microbial biomass N increased by 0.3 mg/kg at only one site at the earliest date, in November 2005. Soil nitrate (NO3-) measured via resin capsules placed in situ for the study duration decreased at both sites with increasing C. Although we found no threshold dose of C, for a significant reduction in ruderal biomass, we calculated lowest significant doses of 240-640 kg C/ha. ?? 2010 Society for Ecological Restoration International.

  1. Wind erosion from a sagebrush steppe burned by wildfire: Measurements of PM10 and total horizontal sediment flux

    NASA Astrophysics Data System (ADS)

    Wagenbrenner, Natalie S.; Germino, Matthew J.; Lamb, Brian K.; Robichaud, Peter R.; Foltz, Randy B.

    2013-09-01

    Wind erosion and aeolian transport processes are under studied compared to rainfall-induced erosion and sediment transport on burned landscapes. Post-fire wind erosion studies have predominantly focused on near-surface sediment transport and associated impacts such as on-site soil loss and site fertility. Downwind impacts, including air quality degradation and deposition of dust or contaminants, are also likely post-fire effects; however, quantitative field measurements of post-fire dust emissions are needed for assessment of these downwind risks. A wind erosion monitoring system was installed immediately following a desert sagebrush and grass wildfire in southeastern Idaho, USA to measure wind erosion from the burned landscape. This paper presents measurements of horizontal sediment flux and PM10 vertical flux from the burned area. We determined threshold wind speeds and corresponding threshold friction velocities to be 6.0 and 0.20 m s-1, respectively, for the 4 months immediately following the fire and 10 and 0.55 m s-1 for the following spring months. Several major wind erosion events were measured in the months following the July 2010 Jefferson Fire. The largest wind erosion event occurred in early September 2010 and produced 1495 kg m-1 of horizontal sediment transport within the first 2 m above the soil surface, had a maximum PM10 vertical flux of 100 mg m-2 s-1, and generated a large dust plume that was visible in satellite imagery. The peak PM10 concentration measured on-site at a height of 2 m in the downwind portion of the burned area was 690 mg m-3. Our results indicate that wildfire can convert a relatively stable landscape into one that is a major dust source.

  2. Effects of resource availability and propagule supply on native species recruitment in sagebrush ecosystems invaded by Bromus tectorum

    USGS Publications Warehouse

    Mazzola, Monica B.; Chambers, Jeanne C.; Blank, Robert R.; Pyke, David A.; Schupp, Eugene W.; Allcock, Kimberly G.; Doescher, Paul S.; Nowak, Robert S.

    2011-01-01

    Resource availability and propagule supply are major factors influencing establishment and persistence of both native and invasive species. Increased soil nitrogen (N) availability and high propagule inputs contribute to the ability of annual invasive grasses to dominate disturbed ecosystems. Nitrogen reduction through carbon (C) additions can potentially immobilize soil N and reduce the competitiveness of annual invasive grasses. Native perennial species are more tolerant of resource limiting conditions and may benefit if N reduction decreases the competitive advantage of annual invaders and if sufficient propagules are available for their establishment. Bromus tectorum, an exotic annual grass in the sagebrush steppe of western North America, is rapidly displacing native plant species and causing widespread changes in ecosystem processes. We tested whether nitrogen reduction would negatively affect B. tectorum while creating an opportunity for establishment of native perennial species. A C source, sucrose, was added to the soil, and then plots were seeded with different densities of both B. tectorum (0, 150, 300, 600, and 1,200 viable seeds m-2) and native species (0, 150, 300, and 600 viable seeds m-2). Adding sucrose had short-term (1 year) negative effects on available nitrogen and B. tectorum density, biomass and seed numbers, but did not increase establishment of native species. Increasing propagule availability increased both B. tectorum and native species establishment. Effects of B. tectorum on native species were density dependent and native establishment increased as B. tectorum propagule availability decreased. Survival of native seedlings was low indicating that recruitment is governed by the seedling stage.

  3. Long-term dynamics of production, respiration, and net CO2 exchange in two sagebrush-steppe ecosystems

    USGS Publications Warehouse

    Gilmanov, T.G.; Svejcar, T.J.; Johnson, D.A.; Angell, R.F.; Saliendra, Nicanor Z.; Wylie, B.K.

    2006-01-01

    We present a synthesis of long-term measurements of CO2 exchange in 2 US Intermountain West sagebrush-steppe ecosystems. The locations near Burns, Oregon (1995-2001), and Dubois, Idaho (1996-2001), are part of the AgriFlux Network of the Agricultural Research Service, United States Department of Agriculture. Measurements of net ecosystem CO2 exchange (F c) during the growing season were continuously recorded at flux towers using the Bowen ratio-energy balance technique. Data were partitioned into gross primary productivity (Pg) and ecosystem respiration (Re) using the light-response function method. Wintertime fluxes were measured during 1999/2000 and 2000/2001 and used to model fluxes in other winters. Comparison of daytime respiration derived from light-response analysis with nighttime tower measurements showed close correlation, with daytime respiration being on the average higher than nighttime respiration. Maxima of Pg and Re at Burns were both 20 g CO2?? m-2??d-1 in 1998. Maxima of Pg and R e at Dubois were 37 and 35 g CO2??m -2??d-1, respectively, in 1997. Mean annual gross primary production at Burns was 1 111 (range 475-1 715) g CO2?? m-2??y-1 about 30% lower than that at Dubois (1 602, range 963-2 162 g CO2??m-2??y-1). Across the years, both ecosystems were net sinks for atmospheric CO2 with a mean net ecosystem CO2 exchange of 82 g CO2?? m-2??y-1 at Burns and 253 g CO2?? m-2??y-1 at Dubois, but on a yearly basis either site could be a C sink or source, mostly depending on precipitation timing and amount. Total annual precipitation is not a good predictor of carbon sequestration across sites. Our results suggest that Fc should be partitioned into Pg and Re components to allow prediction of seasonal and yearly dynamics of CO2 fluxes.

  4. Compensatory Stream and Wetland Mitigation in North Carolina: An Evaluation of Regulatory Success

    NASA Astrophysics Data System (ADS)

    Hill, Tammy; Kulz, Eric; Munoz, Breda; Dorney, John R.

    2013-05-01

    Data from a probability sample were used to estimate wetland and stream mitigation success from 2007 to 2009 across North Carolina (NC). "Success" was defined as whether the mitigation site met regulatory requirements in place at the time of construction. Analytical results were weighted by both component counts and mitigation size. Overall mitigation success (including preservation) was estimated at 74 % (SE = 3 %) for wetlands and 75 % (SE = 4 %) for streams in NC. Compared to the results of previous studies, wetland mitigation success rates had increased since the mid-1990s. Differences between mitigation providers (mitigation banks, NC Ecosystem Enhancement Program's design-bid-build and full-delivery programs, NC Department of Transportation and private permittee-responsible mitigation) were generally not significant although permittee-responsible mitigation yielded higher success rates in certain circumstances. Both wetland and stream preservation showed high rates of success and the stream enhancement success rate was significantly higher than that of stream restoration. Additional statistically significant differences when mitigation size was considered included: (1) the Piedmont yielded a lower stream mitigation success rate than other areas of the state, and (2) recently constructed wetland mitigation projects demonstrated a lower success rate than those built prior to 2002. Opportunities for improvement exist in the areas of regulatory record-keeping, understanding the relationship between post-construction establishment and long-term ecological trajectories of stream and wetland restoration projects, incorporation of numeric ecological metrics into mitigation monitoring and success criteria, and adaptation of stream mitigation designs to achieve greater success in the Piedmont.

  5. Lunar Dust Mitigation Screens

    NASA Astrophysics Data System (ADS)

    Knutson, Shawn; Holloway, Nancy

    With plans for the United States to return to the moon, and establish a sustainable human presence on the lunar surface many issues must be successfully overcome. Lunar dust is one of a number of issues with the potential to create a myriad of problems if not adequately addressed. Samples of dust brought back from Apollo missions show it to be soft, yet sharp and abrasive. The dust consists of a variety of morphologies including spherical, angular blocks, shards, and a number of irregular shapes. One of the main issues with lunar dust is its attraction to stick to anything it comes in contact with (i.e. astronauts, equipment, habitats, etc.). Ionized radiation from the sun strikes the moon's surface and creates an electrostatic charge on the dust. Further, the dust harbors van der Waals forces making it especially difficult to separate once it sticks to a surface. During the Apollo missions, it was discovered that trying to brush the lunar dust from spacesuits was not effective, and rubbing it caused degradation of the suit material. Further, when entering the lunar module after moonwalks, the astronauts noted that the dust was so prolific inside the cabin that they inhaled and ingested it, causing at least one of them, Harrison "Jack" Schmidt, to report irritation of the throat and lungs. It is speculated that the dust could also harm an astronaut's nervous and cardiovascular systems, especially during an extended stay. In addition to health issues, the dust can also cause problems by scouring reflective coatings off of thermal blankets, and roughening surfaces of windows and optics. Further, panels on solar cells and photovoltaics can also be compromised due to dust sticking on the surfaces. Lunar dust has the capacity to penetrate seals, interfere with connectors, as well as mechanisms on digging machines, all of which can lead to problems and failure. To address lunar dust issues, development of electrostatic screens to mitigate dust on sur-faces is currently

  6. Land Use Planning and Social Equity in North Carolina's Compensatory Wetland and Stream Mitigation Programs

    NASA Astrophysics Data System (ADS)

    Bendor, Todd; Stewart, Audrey

    2011-02-01

    The U.S. Clean Water Act requires compensatory mitigation for wetland and stream damage through restoration of damaged aquatic ecosystems. We evaluate the North Carolina's Ecosystem Enhancement Program (EEP), a state agency responsible for compensatory mitigation. We compare communities gaining and losing aquatic resources during mitigation, finding new types of socioeconomic disparities that contradict previous studies of mitigation program behavior. We find average distances between impact and mitigation sites for streams (43.53 km) and wetlands (50.3 km) to be larger in North Carolina than in off-site mitigation programs in other regions previously studied. We also find that aquatic resources in the State are lost from urbanized areas that are more affluent, white, and highly educated, and mitigated at sites in rural areas that are less affluent, less well educated, and have a higher percentage of minorities. We also analyze the relationship between urban growth indicators and EEP accumulation of compensation sites. Growth indicators and long-term population projections are uncorrelated with both projected transportation impacts and advance mitigation acquired by the EEP, suggesting that growth considerations can be more effectively incorporated into the EEP's planning process. We explore the possibility that spatial mismatches could develop between watersheds that are rapidly growing and those that are gaining mitigation. We make recommendations for ways that regulators incorporate growth indicators into the mitigation planning process.

  7. Land use planning and social equity in North Carolina's compensatory wetland and stream mitigation programs.

    PubMed

    BenDor, Todd; Stewart, Audrey

    2011-02-01

    The U.S. Clean Water Act requires compensatory mitigation for wetland and stream damage through restoration of damaged aquatic ecosystems. We evaluate the North Carolina's Ecosystem Enhancement Program (EEP), a state agency responsible for compensatory mitigation. We compare communities gaining and losing aquatic resources during mitigation, finding new types of socioeconomic disparities that contradict previous studies of mitigation program behavior. We find average distances between impact and mitigation sites for streams (43.53 km) and wetlands (50.3 km) to be larger in North Carolina than in off-site mitigation programs in other regions previously studied. We also find that aquatic resources in the State are lost from urbanized areas that are more affluent, white, and highly educated, and mitigated at sites in rural areas that are less affluent, less well educated, and have a higher percentage of minorities. We also analyze the relationship between urban growth indicators and EEP accumulation of compensation sites. Growth indicators and long-term population projections are uncorrelated with both projected transportation impacts and advance mitigation acquired by the EEP, suggesting that growth considerations can be more effectively incorporated into the EEP's planning process. We explore the possibility that spatial mismatches could develop between watersheds that are rapidly growing and those that are gaining mitigation. We make recommendations for ways that regulators incorporate growth indicators into the mitigation planning process.

  8. Economics of Tsunami Mitigation in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Goettel, K. A.; Rizzo, A.; Sigrist, D.; Bernard, E. N.

    2011-12-01

    The death total in a major Cascadia Subduction Zone (CSZ) tsunami may be comparable to the Tohoku tsunami - tens of thousands. To date, tsunami risk reduction activities have been almost exclusively hazard mapping and evacuation planning. Reducing deaths in locations where evacuation to high ground is impossible in the short time between ground shaking and arrival of tsunamis requires measures such as vertical evacuation facilities or engineered pathways to safe ground. Yet, very few, if any, such tsunami mitigation projects have been done. In contrast, many tornado safe room and earthquake mitigation projects driven entirely or in largely by life safety have been done with costs in the billions of dollars. The absence of tsunami mitigation measures results from the belief that tsunamis are too infrequent and the costs too high to justify life safety mitigation measures. A simple analysis based on return periods, death rates, and the geographic distribution of high risk areas for these hazards demonstrates that this belief is incorrect: well-engineered tsunami mitigation projects are more cost-effective with higher benefit-cost ratios than almost all tornado or earthquake mitigation projects. Goldfinger's paleoseismic studies of CSZ turbidites indicate return periods for major CSZ tsunamis of about 250-500 years (USGS Prof. Paper 1661-F in press). Tsunami return periods are comparable to those for major earthquakes at a given location in high seismic areas and are much shorter than those for tornados at any location which range from >4,000 to >16,000 years for >EF2 and >EF4 tornadoes, respectively. The average earthquake death rate in the US over the past 100-years is about 1/year, or about 30/year including the 1906 San Francisco earthquake. The average death rate for tornadoes is about 90/year. For CSZ tsunamis, the estimated average death rate ranges from about 20/year (10,000 every 500 years) to 80/year (20,000 every 250 years). Thus, the long term deaths rates

  9. 33 CFR 332.3 - General compensatory mitigation requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... is to offset environmental losses resulting from unavoidable impacts to waters of the United States... determination, the district engineer must assess the likelihood for ecological success and sustainability, the... importance of landscape position and resource type of compensatory mitigation projects for the...

  10. 33 CFR 332.3 - General compensatory mitigation requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... is to offset environmental losses resulting from unavoidable impacts to waters of the United States... determination, the district engineer must assess the likelihood for ecological success and sustainability, the... importance of landscape position and resource type of compensatory mitigation projects for the...

  11. 33 CFR 332.3 - General compensatory mitigation requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... is to offset environmental losses resulting from unavoidable impacts to waters of the United States... determination, the district engineer must assess the likelihood for ecological success and sustainability, the... importance of landscape position and resource type of compensatory mitigation projects for the...

  12. 33 CFR 332.3 - General compensatory mitigation requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... is to offset environmental losses resulting from unavoidable impacts to waters of the United States... determination, the district engineer must assess the likelihood for ecological success and sustainability, the... importance of landscape position and resource type of compensatory mitigation projects for the...

  13. 33 CFR 332.3 - General compensatory mitigation requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... is to offset environmental losses resulting from unavoidable impacts to waters of the United States... determination, the district engineer must assess the likelihood for ecological success and sustainability, the... importance of landscape position and resource type of compensatory mitigation projects for the...

  14. GHG emission mitigation measures and technologies in the Czech Republic

    SciTech Connect

    Tichy, M.

    1996-12-31

    The paper presents a short overview of main results in two fields: projection of GHG emission from energy sector in the Czech Republic and assessment of technologies and options for GHG mitigation. The last part presents an overview of measures that were prepared for potential inclusion to the Czech Climate Change Action Plan.

  15. National Wetlands Mitigation Action Plan

    EPA Pesticide Factsheets

    On December 26, 2002, EPA and the Corps of Engineers announced the release of a comprehensive, interagency National Wetlands Mitigation Action Plan to further achievement of the goal of no net loss of wetlands.

  16. Stream Mitigation Protocol Compendium - 2004

    EPA Pesticide Factsheets

    This document is intended as a reference in order to select, adapt, or devise stream assessment methods appropriate for impact assessment and mitigation of fluvial resources in the CWA Section 404 Program.

  17. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    SciTech Connect

    Dr. David J. Bayless; Dr. Morgan Vis; Dr. Gregory Kremer; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2001-01-16

    This is the first quarterly report of the project Enhanced Practical Photosynthetic CO{sub 2} Mitigation. The official project start date, 10/02/2000, was delayed until 10/31/2000 due to an intellectual property dispute that was resolved. However, the delay forced a subsequent delay in subcontracting with Montana State University, which then delayed obtaining a sampling permit from Yellowstone National Park. However, even with these delays, the project moved forward with some success. Accomplishments for this quarter include: Culturing of thermophilic organisms from Yellowstone; Testing of mesophilic organisms in extreme CO{sub 2} conditions; Construction of a second test bed for additional testing; Purchase of a total carbon analyzer dedicated to the project; Construction of a lighting container for Oak Ridge National Laboratory optical fiber testing; Modified lighting of existing test box to provide more uniform distribution; Testing of growth surface adhesion and properties; Experimentation on water-jet harvesting techniques; and Literature review underway regarding uses of biomass after harvesting. Plans for next quarter's work and an update on the project's web page are included in the conclusions.

  18. Mitigating amphibian chytridiomycosis in nature

    USGS Publications Warehouse

    Garner, Trenton W. J.; Schmidt, Benedikt R.; Martel, An; Pasmans, Frank; Muths, Erin L.; Cunningham, Andrew A.; Weldon, Che; Fisher, Matthew C.; Bosch, Jaime

    2016-01-01

    Amphibians across the planet face the threat of population decline and extirpation caused by the disease chytridiomycosis. Despite consensus that the fungal pathogens responsible for the disease are conservation issues, strategies to mitigate their impacts in the natural world are, at best, nascent. Reducing risk associated with the movement of amphibians, non-amphibian vectors and other sources of infection remains the first line of defence and a primary objective when mitigating the threat of disease in wildlife. Amphibian-associated chytridiomycete fungi and chytridiomycosis are already widespread, though, and we therefore focus on discussing options for mitigating the threats once disease emergence has occurred in wild amphibian populations. All strategies have shortcomings that need to be overcome before implementation, including stronger efforts towards understanding and addressing ethical and legal considerations. Even if these issues can be dealt with, all currently available approaches, or those under discussion, are unlikely to yield the desired conservation outcome of disease mitigation. The decision process for establishing mitigation strategies requires integrated thinking that assesses disease mitigation options critically and embeds them within more comprehensive strategies for the conservation of amphibian populations, communities and ecosystems.

  19. Direct and indirect effects of petroleum production activities on the western fence lizard (Sceloporus occidentalis) as a surrogate for the dunes sagebrush lizard (Sceloporus arenicolus).

    PubMed

    Weir, Scott M; Knox, Ami; Talent, Larry G; Anderson, Todd A; Salice, Christopher J

    2016-05-01

    The dunes sagebrush lizard (Sceloporus arenicolus) is a habitat specialist of conservation concern limited to shin oak sand dune systems of New Mexico and Texas (USA). Because much of the dunes sagebrush lizard's habitat occurs in areas of high oil and gas production, there may be direct and indirect effects of these activities. The congeneric Western fence lizard (Sceloporus occidentalis) was used as a surrogate species to determine direct effects of 2 contaminants associated with oil and gas drilling activities in the Permian Basin (NM and TX, USA): herbicide formulations (Krovar and Quest) and hydrogen sulfide gas (H2S). Lizards were exposed to 2 concentrations of H2 S (30 ppm or 90 ppm) and herbicide formulations (1× or 2× label application rate) representing high-end exposure scenarios. Sublethal behavioral endpoints were evaluated, including sprint speed and time to prey detection and capture. Neither H2S nor herbicide formulations caused significant behavioral effects compared to controls. To understand potential indirect effects of oil and gas drilling on the prey base, terrestrial invertebrate biomass and order diversity were quantified at impacted sites to compare with nonimpacted sites. A significant decrease in biomass was found at impacted sites, but no significant effects on diversity. The results suggest little risk from direct toxic effects, but the potential for indirect effects should be further explored.

  20. Annual monitoring report for the Gunnison, Colorado, wetlands mitigation plan

    SciTech Connect

    1995-10-01

    The US Department of Energy (DOE) administers the Uranium Mill Tailings Remedial Action (UMTRA) Project to clean up uranium mill tailings and other surface contamination at 24 abandoned uranium mill sites in 10 states. One of these abandoned mill sites is near the town of Gunnison, Colorado; surface remediation and the environmental impacts of remedial action are described in the Gunnison environmental assessment (EA) (DOE, 1992). Remedial action resulted in the elimination of 4.3 acres (ac) 1.7 hectares (ha) of wetlands and mitigation of this loss of wetlands is being accomplished through the enhance of 18.4 ac (7.5 ha) of riparian plant communities in six spring feed areas on Bureau of Land Management (BLM) land. The description of the impacted and mitigation wetlands is provided in the Mitigation and Monitoring Plan for Impacted Wetlands at the Gunnison UMTRA Project Site, Gunnison, Colorado (DOE, 1994), which is attached to the US Army corps of Engineers (USACE) Section 404 Permit. As part of the wetlands mitigation plan, the six mitigation wetlands were fenced in the fall of 1993 to exclude livestock grazing. Baseline of grazed conditions of the wetlands vegetation was determined during the summer of 1993 (DOE, 1994). A 5-year monitoring program of these six sites has been implemented to document the response of vegetation and wildlife to the exclusion of livestock. This annual monitoring report provides the results of the first year of the 5-year monitoring period.

  1. Light Water Reactor Sustainability Program BWR High-Fluence Material Project: Assessment of the Role of High-Fluence on the Efficiency of HWC Mitigation on SCC Crack Growth Rates

    SciTech Connect

    Sebastien Teysseyre

    2014-04-01

    As nuclear power plants age, the increasing neutron fluence experienced by stainless steels components affects the materials resistance to stress corrosion cracking and fracture toughness. The purpose of this report is to identify any new issues that are expected to rise as boiling water reactor power plants reach the end of their initial life and to propose a path forward to study such issues. It has been identified that the efficiency of hydrogen water chemistry mitigation technology may decrease as fluence increases for high-stress intensity factors. This report summarizes the data available to support this hypothesis and describes a program plan to determine the efficiency of hydrogen water chemistry as a function of the stress intensity factor applied and fluence. This program plan includes acquisition of irradiated materials, generation of material via irradiation in a test reactor, and description of the test plan. This plan offers three approaches, each with an estimated timetable and budget.

  2. Review of Offshore Wind Farm Impact Monitoring and Mitigation with Regard to Marine Mammals.

    PubMed

    Verfuss, Ursula K; Sparling, Carol E; Arnot, Charlie; Judd, Adrian; Coyle, Michael

    2016-01-01

    Monitoring and mitigation reports from 19 UK and 9 other European Union (EU) offshore wind farm (OWF) developments were reviewed, providing a synthesis of the evidence associated with the observed environmental impact on marine mammals. UK licensing conditions were largely concerned with mitigation measures reducing the risk of physical and auditory injury from pile driving. At the other EU sites, impact monitoring was conducted along with mitigation measures. Noise-mitigation measures were developed and tested in UK and German waters in German government-financed projects. We highlight some of the review's findings and lessons learned with regard to noise impact on marine mammals.

  3. Mitigation for the Construction and Operation of Libby Dam, 2000 Annual Report.

    SciTech Connect

    Hoffman, Greg; Marotz, Brian L.; Dunnigan, James

    2002-09-01

    ''Mitigation for the Construction and Operation of Libby Dam'' is part of the Northwest Power Planning Council's resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating for damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determine the biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. The objectives of Phase III of the project (1996 through present) are to implement habitat enhancement measures to mitigate for dam effects, to provide data for implementation of operational strategies that benefit resident fish, monitor reservoir and river conditions, and monitor mitigation projects for effectiveness.

  4. A combined mitigation/geoengineering approach to climate stabilization.

    PubMed

    Wigley, T M L

    2006-10-20

    Projected anthropogenic warming and increases in CO2 concentration present a twofold threat, both from climate changes and from CO2 directly through increasing the acidity of the oceans. Future climate change may be reduced through mitigation (reductions in greenhouse gas emissions) or through geoengineering. Most geoengineering approaches, however, do not address the problem of increasing ocean acidity. A combined mitigation/geoengineering strategy could remove this deficiency. Here we consider the deliberate injection of sulfate aerosol precursors into the stratosphere. This action could substantially offset future warming and provide additional time to reduce human dependence on fossil fuels and stabilize CO2 concentrations cost-effectively at an acceptable level.

  5. Wildlife mitigation and monitoring report Gunnison, Colorado, site

    SciTech Connect

    1997-04-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project is administered by the U.S. Department of Energy (DOE); its purpose is to cleanup uranium mill tailings and other contaminated material at 24 UMTRA Project sites in 10 states. This report summarizes the wildlife mitigation and monitoring program under way at the Gunnison UMTRA Project, Gunnison, Colorado. Remedial action at the Gunnison site was completed in December 1995 and is described in detail in the Gunnison completion report. The impacts of this activity were analyzed in the Gunnison environmental assessment (EA). These impacts included two important game species: the pronghorn antelope (Antilocapra americans) and sage grouse (Wentrocerus urophasianus). Haul truck traffic was predicted to limit antelope access to water sources north of the Tenderfoot Mountain haul road and that truck traffic along this and other haul roads could result in antelope road kills. Clearing land at the disposal cell, haul road and borrow site activities, and the associated human activities also were predicted to negatively impact (directly and indirectly) sage grouse breeding, nesting, loafing, and wintering habitat. As a result, an extensive mitigation and monitoring plan began in 1992. Most of the monitoring studies are complete and the results of these studies, written by different authors, appear in numerous reports. This report will: (1) Analyze existing impacts and compare them to predicted impacts. (2) Summarize mitigation measures. (3) Summarize all existing monitoring data in one report. (4) Analyze the effectiveness of the mitigation measures.

  6. Wildlife Protection, Mitigation, and Enhancement Planning Phase II, Dworshak Reservoir, Final Report.

    SciTech Connect

    Hansen, H. Jerome; Martin, Robert C.

    1989-11-01

    The Pacific Northwest Electric Power Planning and Conservation Act of 1980 directed that measures be implemented to protect, mitigate, and enhance fish and wildlife to the extent affected by development and operation of hydropower projects on the Columbia River System. This Act created the Northwest Power Planning Council, which in turn developed the Columbia River Basin Fish and Wildlife Program. This program established a four-part process: wildlife mitigation status reports; wildlife impact assessments; wildlife protection, mitigation, and enhancement plans; and implementation of protection, mitigation, and enhancement projects. This mitigation plan for the Dworshak Reservoir Hydroelectric Facility was developed to fulfill requirements of Sections 1003(b)(2) and (3) of the Columbia River Basin Fish and Wildlife Program. Specific objectives of wildlife protection, mitigation, and enhancement planning for Dworshak Reservoir included: quantify net impacts to target wildlife species affected by hydroelectric development and operation of Dworshak Dam and Reservoir; develop protection, mitigation, and enhancement goals and objectives for the target wildlife species; recommend protection, mitigation, and enhancement actions for the target wildlife species; and coordination of project activities. 46 refs., 4 figs., 31 tabs.

  7. Mitigation Options in Forestry, Land-Use, Change and Biomass Burning in Africa

    SciTech Connect

    Makundi, Willy R.

    1998-06-01

    Mitigation options to reduce greenhouse gas emissions and sequester carbon in land use sectors are describe in some detail. The paper highlights those options in the forestry sector, which are more relevant to different parts of Africa. It briefly outlines a bottom-up methodological framework for comprehensively assessing mitigation options in land use sectors. This method emphasizes the application of end-use demand projections to construct a baseline and mitigation scenarios and explicitly addresses the carbon storage potential on land and in wood products, as well as use of wood to substitute for fossil fuels. Cost-effectiveness indicators for ranking mitigation options are proposed, including those, which account for non-carbon monetary benefits such as those derived from forest products, as well as opportunity cost of pursuing specific mitigation option. The paper finally surveys the likely policies, barriers and incentives to implement such mitigation options in African countries .

  8. Mitigation of Syngas Cooler Plugging and Fouling

    SciTech Connect

    Bockelie, Michael J.

    2015-06-29

    This Final Report summarizes research performed to develop a technology to mitigate the plugging and fouling that occurs in the syngas cooler used in many Integrated Gasification Combined Cycle (IGCC) plants. The syngas cooler is a firetube heat exchanger located downstream of the gasifier. It offers high thermal efficiency, but its’ reliability has generally been lower than other process equipment in the gasification island. The buildup of ash deposits that form on the fireside surfaces in the syngas cooler (i.e., fouling) lead to reduced equipment life and increased maintenance costs. Our approach to address this problem is that fouling of the syngas cooler cannot be eliminated, but it can be better managed. The research program was funded by DOE using two budget periods: Budget Period 1 (BP1) and Budget Period 2 (BP2). The project used a combination of laboratory scale experiments, analysis of syngas cooler deposits, modeling and guidance from industry to develop a better understanding of fouling mechanisms and to develop and evaluate strategies to mitigate syngas cooler fouling and thereby improve syngas cooler performance. The work effort in BP 1 and BP 2 focused on developing a better understanding of the mechanisms that lead to syngas cooler plugging and fouling and investigating promising concepts to mitigate syngas cooler plugging and fouling. The work effort focused on the following: • analysis of syngas cooler deposits and fuels provided by an IGCC plant collaborating with this project; • performing Jet cleaning tests in the University of Utah Laminar Entrained Flow Reactor to determine the bond strength between an ash deposit to a metal plate, as well as implementing planned equipment modifications to the University of Utah Laminar Entrained Flow Reactor and the one ton per day, pressurized Pilot Scale Gasifier; • performing Computational Fluid Dynamic modeling of industrially relevant syngas cooler configurations to develop a better

  9. The Value of Linking Mitigation and Adaptation: A Case Study of Bangladesh

    NASA Astrophysics Data System (ADS)

    Ayers, Jessica M.; Huq, Saleemul

    2009-05-01

    There are two principal strategies for managing climate change risks: mitigation and adaptation. Until recently, mitigation and adaptation have been considered separately in both climate change science and policy. Mitigation has been treated as an issue for developed countries, which hold the greatest responsibility for climate change, while adaptation is seen as a priority for the South, where mitigative capacity is low and vulnerability is high. This conceptual divide has hindered progress against the achievement of the fundamental sustainable development challenges of climate change. Recent attention to exploring the synergies between mitigation and adaptation suggests that an integrated approach could go some way to bridging the gap between the development and adaptation priorities of the South and the need to achieve global engagement in mitigation. These issues are explored through a case study analysis of climate change policy and practice in Bangladesh. Using the example of waste-to-compost projects, a mitigation-adaptation-development nexus is demonstrated, as projects contribute to mitigation through reducing methane emissions; adaptation through soil improvement in drought-prone areas; and sustainable development, because poverty is exacerbated when climate change reduces the flows of ecosystem services. Further, linking adaptation to mitigation makes mitigation action more relevant to policymakers in Bangladesh, increasing engagement in the international climate change agenda in preparation for a post-Kyoto global strategy. This case study strengthens the argument that while combining mitigation and adaptation is not a magic bullet for climate policy, synergies, particularly at the project level, can contribute to the sustainable development goals of climate change and are worth exploring.

  10. The value of linking mitigation and adaptation: a case study of Bangladesh.

    PubMed

    Ayers, Jessica M; Huq, Saleemul

    2009-05-01

    There are two principal strategies for managing climate change risks: mitigation and adaptation. Until recently, mitigation and adaptation have been considered separately in both climate change science and policy. Mitigation has been treated as an issue for developed countries, which hold the greatest responsibility for climate change, while adaptation is seen as a priority for the South, where mitigative capacity is low and vulnerability is high. This conceptual divide has hindered progress against the achievement of the fundamental sustainable development challenges of climate change. Recent attention to exploring the synergies between mitigation and adaptation suggests that an integrated approach could go some way to bridging the gap between the development and adaptation priorities of the South and the need to achieve global engagement in mitigation. These issues are explored through a case study analysis of climate change policy and practice in Bangladesh. Using the example of waste-to-compost projects, a mitigation-adaptation-development nexus is demonstrated, as projects contribute to mitigation through reducing methane emissions; adaptation through soil improvement in drought-prone areas; and sustainable development, because poverty is exacerbated when climate change reduces the flows of ecosystem services. Further, linking adaptation to mitigation makes mitigation action more relevant to policymakers in Bangladesh, increasing engagement in the international climate change agenda in preparation for a post-Kyoto global strategy. This case study strengthens the argument that while combining mitigation and adaptation is not a magic bullet for climate policy, synergies, particularly at the project level, can contribute to the sustainable development goals of climate change and are worth exploring.

  11. Blast wave mitigation by dry aqueous foams

    NASA Astrophysics Data System (ADS)

    Del Prete, E.; Chinnayya, A.; Domergue, L.; Hadjadj, A.; Haas, J.-F.

    2013-02-01

    This paper presents results of experiments and numerical modeling on the mitigation of blast waves using dry aqueous foams. The multiphase formalism is used to model the dry aqueous foam as a dense non-equilibrium two-phase medium as well as its interaction with the high explosion detonation products. New experiments have been performed to study the mass scaling effects. The experimental as well as the numerical results, which are in good agreement, show that more than an order of magnitude reduction in the peak overpressure ratio can be achieved. The positive impulse reduction is less marked than the overpressures. The Hopkinson scaling is also found to hold particularly at larger scales for these two blast parameters. Furthermore, momentum and heat transfers, which have the main dominant role in the mitigation process, are shown to modify significantly the classical blast wave profile and thereafter to disperse the energy from the peak overpressure due to the induced relaxation zone. In addition, the velocity of the fireball, which acts as a piston on its environment, is smaller than in air. Moreover, the greater inertia of the liquid phase tends to project the aqueous foam far from the fireball. The created gap tempers the amplitude of the transmitted shock wave to the aqueous foam. As a consequence, this results in a lowering of blast wave parameters of the two-phase spherical decaying shock wave.

  12. Global climate change and the mitigation challenge.

    PubMed

    Princiotta, Frank

    2009-10-01

    Anthropogenic emissions of greenhouse gases, especially carbon dioxide (CO2), have led to increasing atmospheric concentrations, very likely the primary cause of the 0.8 degrees C warming the Earth has experienced since the Industrial Revolution. With industrial activity and population expected to increase for the rest of the century, large increases in greenhouse gas emissions are projected, with substantial global additional warming predicted. This paper examines forces driving CO2 emissions, a concise sector-by-sector summary of mitigation options, and research and development (R&D) priorities. To constrain warming to below approximately 2.5 degrees C in 2100, the recent annual 3% CO2 emission growth rate needs to transform rapidly to an annual decrease rate of from 1 to 3% for decades. Furthermore, the current generation of energy generation and end-use technologies are capable of achieving less than half of the emission reduction needed for such a major mitigation program. New technologies will have to be developed and deployed at a rapid rate, especially for the key power generation and transportation sectors. Current energy technology research, development, demonstration, and deployment (RDD&D) programs fall far short of what is required.

  13. Global climate change and the mitigation challenge

    SciTech Connect

    Frank Princiotta

    2009-10-15

    Anthropogenic emissions of greenhouse gases, especially carbon dioxide (CO{sub 2}), have led to increasing atmospheric concentrations, very likely the primary cause of the 0.8{sup o}C warming the Earth has experienced since the Industrial Revolution. With industrial activity and population expected to increase for the rest of the century, large increases in greenhouse gas emissions are projected, with substantial global additional warming predicted. This paper examines forces driving CO{sub 2} emissions, a concise sector-by-sector summary of mitigation options, and research and development (R&D) priorities. To constrain warming to below approximately 2.5{sup o}C in 2100, the recent annual 3% CO{sub 2} emission growth rate needs to transform rapidly to an annual decrease rate of from 1 to 3% for decades. Furthermore, the current generation of energy generation and end-use technologies are capable of achieving less than half of the emission reduction needed for such a major mitigation program. New technologies will have to be developed and deployed at a rapid rate, especially for the key power generation and transportation sectors. Current energy technology research, development, demonstration, and deployment (RDD&D) programs fall far short of what is required. 20 refs., 18 figs., 4 tabs.

  14. Early Benefits of Mitigation in Risk of Regional Climate Extremes

    NASA Astrophysics Data System (ADS)

    Ciavarella, Andrew; Stott, Peter; Lowe, Jason

    2015-04-01

    Large differences in climate outcomes are projected over the coming century depending on whether greenhouse gas emissions continue on a business as usual path or are substantially reduced following an aggressive mitigation strategy. However, it has previously been claimed that it will take many decades for there to be any significant difference between paths of aggressive mitigation and business as usual with the emergence of differences only seen towards the middle of the century. Here we show that important differences in our exposure to risk of climate extremes in many land regions emerges much more quickly. Without substantial mitigation, in many regions of the world, extreme (one in 20-year) seasonal, regional near surface air temperatures are found to have become more than twice as likely within only 15 years (i.e. by 2030). Therefore our exposure to climate risk is reduced substantially and rapidly with aggressive mitigation. This demonstrates that the benefits of mitigation are realised rapidly and it is not necessary to wait until the middle of the century as has previously been claimed.

  15. Enhanced Practical Photosynthetic CO2 Mitigation

    SciTech Connect

    Gregory Kremer; David J. Bayless; Morgan Vis; Michael Prudich; Keith Cooksey; Jeff Muhs

    2004-10-13

    This report highlights significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation Project for the period ending 09/30/2004. The primary effort of this quarter was focused on mass transfer of carbon dioxide into the water film to study the potential effects on the photosynthetic organisms that depend on the carbon. Testing of the carbon dioxide scrubbing capability (mass transfer capability) of flowing water film appears to be relatively high and largely unaffected by transport of the gas through the bioreactor. The implications are that the transfer of carbon dioxide into the film is nearly at maximum and that it is sufficient to sustain photosynthesis at whatever rate the organisms can sustain. This finding is key to assuming that the process is an energy (photon) limited reaction and not a nutrient limited reaction.

  16. Greenhouse gas mitigation in agriculture.

    PubMed

    Smith, Pete; Martino, Daniel; Cai, Zucong; Gwary, Daniel; Janzen, Henry; Kumar, Pushpam; McCarl, Bruce; Ogle, Stephen; O'Mara, Frank; Rice, Charles; Scholes, Bob; Sirotenko, Oleg; Howden, Mark; McAllister, Tim; Pan, Genxing; Romanenkov, Vladimir; Schneider, Uwe; Towprayoon, Sirintornthep; Wattenbach, Martin; Smith, Jo

    2008-02-27

    Agricultural lands occupy 37% of the earth's land surface. Agriculture accounts for 52 and 84% of global anthropogenic methane and nitrous oxide emissions. Agricultural soils may also act as a sink or source for CO2, but the net flux is small. Many agricultural practices can potentially mitigate greenhouse gas (GHG) emissions, the most prominent of which are improved cropland and grazing land management and restoration of degraded lands and cultivated organic soils. Lower, but still significant mitigation potential is provided by water and rice management, set-aside, land use change and agroforestry, livestock management and manure management. The global technical mitigation potential from agriculture (excluding fossil fuel offsets from biomass) by 2030, considering all gases, is estimated to be approximately 5500-6000Mt CO2-eq.yr-1, with economic potentials of approximately 1500-1600, 2500-2700 and 4000-4300Mt CO2-eq.yr-1 at carbon prices of up to 20, up to 50 and up to 100 US$ t CO2-eq.-1, respectively. In addition, GHG emissions could be reduced by substitution of fossil fuels for energy production by agricultural feedstocks (e.g. crop residues, dung and dedicated energy crops). The economic mitigation potential of biomass energy from agriculture is estimated to be 640, 2240 and 16 000Mt CO2-eq.yr-1 at 0-20, 0-50 and 0-100 US$ t CO2-eq.-1, respectively.

  17. Lunar Dust: Characterization and Mitigation

    NASA Technical Reports Server (NTRS)

    Hyatt. Mark J.; Feighery, John

    2007-01-01

    Lunar dust is a ubiquitous phenomenon which must be explicitly addressed during upcoming human lunar exploration missions. Near term plans to revisit the moon as a stepping stone for further exploration of Mars, and beyond, places a primary emphasis on characterization and mitigation of lunar dust. Comprised of regolith particles ranging in size from tens of nanometers to microns, lunar dust is a manifestation of the complex interaction of the lunar soil with multiple mechanical, electrical, and gravitational effects. The environmental and anthropogenic factors effecting the perturbation, transport, and deposition of lunar dust must be studied in order to mitigate it's potentially harmful effects on exploration systems. The same hold true for assessing the risk it may pose for toxicological health problems if inhaled. This paper presents the current perspective and implementation of dust knowledge management and integration, and mitigation technology development activities within NASA's Exploration Technology Development Program. This work is presented within the context of the Constellation Program's Integrated Lunar Dust Management Strategy. This work further outlines the scientific basis for lunar dust behavior, it's characteristics and potential effects, and surveys several potential strategies for its control and mitigation both for lunar surface operations and within the working volumes of a lunar outpost. The paper also presents a perspective on lessons learned from Apollo and forensics engineering studies of Apollo hardware.

  18. Mitigating Higher Ed Cyber Attacks

    ERIC Educational Resources Information Center

    Rogers, Gary; Ashford, Tina

    2015-01-01

    In this presentation we will discuss the many and varied cyber attacks that have recently occurred in the higher ed community. We will discuss the perpetrators, the victims, the impact and how these institutions have evolved to meet this threat. Mitigation techniques and defense strategies will be covered as will a discussion of effective security…

  19. Space debris detection and mitigation

    SciTech Connect

    Allahdadi, F.

    1993-01-01

    Space debris is defined as all useless man-made objects in space. This conference covers the following areas: debris detection, tracking, and surveillance; orbital debris analytical modeling; debris environment and safety issues; and orbital debris mitigation. Separate abstracts were prepared for 26 papers in this conference.

  20. The Vulnerability Assessment & Mitigation Methodology

    DTIC Science & Technology

    2003-01-01

    Defense Systems........................................ 111 A.37. Vulnerabilities That Can Be Incurred from Vaccination ........... 112 A.38...protect against future threats or system failures while mitigating current and past threats and weaknesses. Also, sophisticated adver - saries are...and recovery • Adaptability and learning • Immunological defense systems • Vaccination ISR and Self-Awareness • Intelligence operations • Self

  1. Radiosensitizers, radioprotectors, and radiation mitigators.

    PubMed

    Raviraj, Jayam; Bokkasam, Vijay Kumar; Kumar, Venkata Suneel; Reddy, Uday Shankar; Suman, Venkata

    2014-01-01

    Radiotherapy is regarded as one of the most important therapeutic modality for the treatment of malignant lesions. This field is undergoing rapid advancements in the recent times. With the use of radiosensitizers and radioprotective agents, the course of radiotherapy has improved the sensitization of tumor cells and protection of normal cells, respectively. The aim of this paper was to critically review and analyze the available compounds used as radiosensitizers, radioprotectors, and radiation mitigators. For reviewing, the author used the electronic search for the keywords 'Radiosensitizers', 'Radioprotectors', 'Radiation mitigators' on PubMed for inclusion of previously published articles and further search of reference papers on individual radiosensitizing and radioprotecting agents was done. Radiosensitizers are agents that sensitize the tumor cells to radiation. These compounds apparently promote fixation of the free radicals produced by radiation damage at the molecular level. The mechanism of action is similar to the oxygen effect, in which biochemical reactions in the damaged molecules prevent repair of the cellular radiation damage. Free radicals such as OH + are captured by the electron affinity of the radiosensitizers, rendering the molecules incapable of repair. Radioprotectors are compounds that are designed to reduce the damage in normal tissues caused by radiation. These compounds are often antioxidants and must be present before or at the time of radiation for effectiveness. Other agents, termed mitigators, may be used to minimize toxicity even after radiation has been delivered. This article tries to discuss the various aspects of radiosensitizers, radioprotectors, and radiation mitigators including the newer agents.

  2. Mitigating Radicalism in Northern Nigeria

    DTIC Science & Technology

    2013-08-01

    radicalization in northern Nigeria. u Active engagement of youth and communities in peacebuilding programs that facilitate interactions among individuals...leaders, sustained development investments in marginalized communities , promotion of values of inclusivity to mitigate the spread of extremist ideology...claiming to have repelled Boko Haram, the militants return, regroup, and seek revenge. As a result, social and economic activities in the northern

  3. Niche shifts and energetic condition of songbirds in response to phenology of food-resource availability in a high-elevation sagebrush ecosystem

    USGS Publications Warehouse

    Cutting, Kyle A.; Anderson, Michelle L.; Beever, Erik; Schroff, Sean; Korb, Nathan; Klaphake, Eric; McWilliams, Scott R.

    2016-01-01

    Seasonal fluctuations in food availability can affect diets of consumers, which in turn may influence the physiological state of individuals and shape intra- and inter-specific patterns of resource use. High-elevation ecosystems often exhibit a pronounced seasonal “pulse” in productivity, although few studies document how resource use and energetic condition by avian consumers change in relation to food-resource availability in these ecosystems. We tested the hypothesis that seasonal increases (pulses) in food resources in high-elevation sagebrush ecosystems result in 2 changes after the pulse, relative to the before-pulse period: (1) reduced diet breadth of, and overlap between, 2 sympatric sparrow species; and (2) enhanced energetic condition in both species. We tracked breeding-season diets using stable isotopes and energetic condition using plasma metabolites of Brewer's Sparrows (Spizella breweri), Vesper Sparrows (Pooecetes gramineus), and their food resources during 2011, and of only Brewer's Sparrows and their food resources during 2013. We quantify diet breadth and overlap between both species, along with coincident physiological consequences of temporal changes in resource use. After invertebrate biomass increased following periods of rainfall in 2011, dietary breadth decreased by 35% in Brewer's Sparrows and by 48% in Vesper Sparrows, while dietary overlap decreased by 88%. Energetic condition of both species increased when dietary overlap was lower and diet breadth decreased, after the rapid rise of food-resource availability. However, energetic condition of Brewer's Sparrows remained constant in 2013, a year with low precipitation and lack of a strong pulse in food resources, even though the species' dietary breadth again decreased that year. Our results indicate that diet breadth and overlap in these sparrow species inhabiting sagebrush ecosystems generally varied as predicted in relation to intra- and interannual changes in food resources, and

  4. Trading places - an innovative SO{sub 2} trading program to mitigate potential adverse impacts on class I areas: part II. Mitigation plan

    SciTech Connect

    Louis Militana; Cindy Huber; Christopher Colbert; Chris Arrington; Don Shepherd

    2005-08-01

    This is the second of two articles describing a plan that was developed to mitigate the effects of acid deposition and visibility impairment in four Class I areas from the proposed Longview Power Project. Part I (published in July 2005) discussed the air quality impacts of the proposed coal-fired power plant. Part II discusses the mitigation plan. 2 refs., 1 fig., 3 tabs.

  5. Project: "Project!"

    ERIC Educational Resources Information Center

    Grayson, Katherine

    2007-01-01

    In November 2006, the editors of "Campus Technology" launched their first-ever High-Resolution Projection Study, to find out if the latest in projector technology could really make a significant difference in teaching, learning, and educational innovation on US campuses. The author and her colleagues asked campus educators,…

  6. Compensatory Mitigation Rule Draft Environmental Assessment

    EPA Pesticide Factsheets

    Draft Compensatory Mitigation Rule intended to promote regulatory efficiency by establishing standards and criteria that would apply to compensatory mitigation required for DA permits issued under Section 404 of the Clean Water Act.

  7. Mountain State Mitigation Credit Company (banker)

    EPA Pesticide Factsheets

    MSMCC is a mitigation bank working to restore Buffalo Creek. Buffalo Creek watershed will be successfully restored from the headwaters down to establish complete “watershed restoration” that is consistent with the Mitigation Rule.

  8. Landscape characteristics of a stream and wetland mitigation banking program.

    PubMed

    BenDor, Todd; Sholtes, Joel; Doyle, Martin W

    2009-12-01

    In the United States, stream restoration is an increasing part of environmental and land management programs, particularly under the auspices of compensatory mitigation regulations. Markets and regulations surrounding stream mitigation are beginning to mirror those of the well-established wetland mitigation industry. Recent studies have shown that wetland mitigation programs commonly shift wetlands across space from urban to rural areas, thereby changing the functional characteristics and benefits of wetlands in the landscape. However, it is not yet known if stream mitigation mirrors this behavior, and if so, what effects this may have on landscape-scale ecological and hydrological processes. This project addresses three primary research questions. (1) What are the spatial relationships between stream and wetland impact and compensation sites as a result of regulations requiring stream and wetland mitigation in the State of North Carolina? (2) How do stream impacts come about due to the actions of different types of developers, and how do the characteristics of impacts sites compare with compensation sites? (3) To what extent does stream compensation relocate high-quality streams within the river network, and how does this affect localized (intrawatershed) loss or gain of aquatic resources? Using geospatial data collected from the North Carolina Division of Water Quality and the Army Corps of Engineers' Wilmington District, we analyzed the behavior of the North Carolina Ecosystem Enhancement Program in providing stream and wetland mitigation for the State of North Carolina. Our results suggest that this program provides mitigation (1) in different ways for different types of permittees; (2) at great distances (both Euclidean and within the stream network) from original impacts; (3) in significantly different places than impacts within watersheds; and (4) in many cases, in different watersheds from original impacts. Our analysis also reveals problems with regulator

  9. 40 CFR 1508.20 - Mitigation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Mitigation. 1508.20 Section 1508.20 Protection of Environment COUNCIL ON ENVIRONMENTAL QUALITY TERMINOLOGY AND INDEX § 1508.20 Mitigation. Mitigation includes: (a) Avoiding the impact altogether by not taking a certain action or parts of an...

  10. 23 CFR 710.513 - Environmental mitigation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Environmental mitigation. 710.513 Section 710.513...-WAY AND REAL ESTATE Property Acquisition Alternatives § 710.513 Environmental mitigation. (a) The... appropriate environmental mitigation is an eligible cost under the Federal-aid program. FHWA participation...

  11. 23 CFR 710.513 - Environmental mitigation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 23 Highways 1 2011-04-01 2011-04-01 false Environmental mitigation. 710.513 Section 710.513...-WAY AND REAL ESTATE Property Acquisition Alternatives § 710.513 Environmental mitigation. (a) The... appropriate environmental mitigation is an eligible cost under the Federal-aid program. FHWA participation...

  12. Annual Adaptive Management Report for Compensatory Mitigation at Keyport Lagoon: Mitigation of Pier B Development at the Bremerton Naval Facilities - Compensatory Mitigation at Keyport Lagoon - Naval Underwater Warfare Center Division - Keyport, Washington

    SciTech Connect

    Vavrinec, John; Borde, Amy B.; Woodruff, Dana L.; Brandenberger, Jill M.; Thom, Ronald M.; Wright, Cynthia L.; Cullinan, Valerie I.

    2012-06-01

    Unites States Navy capital improvement projects are designed to modernize and improve mission capacity. Such capital improvement projects often result in unavoidable environmental impacts by increasing over-water structures, which results in a loss of subtidal habitat within industrial areas of Navy bases. In the Pacific Northwest, compensatory mitigation often targets alleviating impacts to Endangered Species Act-listed salmon species. The complexity of restoring large systems requires limited resources to target successful and more coordinated mitigation efforts to address habitat loss and improvements in water quality that will clearly contribute to an improvement at the site scale and can then be linked to a cumulative net ecosystem improvement.

  13. Mitigation alternatives for L Lake

    SciTech Connect

    Moore, D.B.

    1988-11-03

    The current condition of L Lake/Steel Creek was summarized in a report to SCDHEC in June 1988 which reported that the L Lake and Steel Creek ecosystems were adequately developing towards balanced biological communities. If mitigation for L Lake inputs, specifically temperature and nutrients, are required, several viable alternatives are available. A report prepared by Spencer in 1986 discusses the various options available for cooling L-Reactor discharges. In effect, a small cooling tower is the only realistic solution to reducing effluent temperatures. Nutrient mitigation can take several approaches including upstream sewage treatment, hypolimnetic withdrawal, dilution of input water by Par Pond water, precipitation of nutrients, and sediment oxidation. None of these systems would influence the thermal regime, but would significantly reduce nutrient input into the system. One beneficial use of L-Lake thermal effluents is algaculture, the production of useful algae. A document prepared in 1988 concludes that algaculture is a technically and economically feasible mitigation alternative for L Lake and could allow L Lake to be handled under Section 318 of the Clean Water Act.

  14. Albeni Falls Wildlife Protection, Mitigation, and Enhancement Plan, Final Report 1987.

    SciTech Connect

    Martin, Robert C.

    1988-08-01

    A wildlife impact assessment and mitigation plan has been developed for the US Army Corps of Engineers Albeni Falls Project in northern Idaho. The Habitat Evaluation Procedure (HEP) was used to evaluate pre- and post-construction habitat conditions at the Albeni Falls Project. There were 6617 acres of wetlands converted to open water due to development and operation of the project. Eight evaluation species were selected with impacts expressed in numbers of Habitat Units (HU's). For a given species, one HU is equivalent to one acre of prime habitat. The Albeni Falls Project resulted in estimated losses of 5985 mallard HU's, 4699 Canada goose HU's, 3379 redhead HU's, 4508 breeding bald eagle HU's, 4365 wintering bald eagle HU's, 2286 black-capped chickadee HU's, 1680 white-tailed deer HU's, and 1756 muskrat HU's. The yellow warbler gained 71 HU's. Therefore, total target species estimated impacts were 28,587 HU's. Impacts on peregrine falcons were not quantified in terms of HU's. Projects have been proposed by an interagency team of biologists to mitigate the impacts of Albeni Falls on wildlife. The HEP was used to estimate benefits of proposed mitigation projects to target species. Through a series of proposed protection and enhancement actions, the mitigation plan will provide benefits of an estimated 28,590 target species HU's to mitigate Albeni Falls wildlife habitat values lost. 52 refs., 9 figs., 14 tabs.

  15. NEOShield - A global approach to NEO Impact Threat Mitigation

    NASA Astrophysics Data System (ADS)

    Michel, Patrick

    2015-03-01

    NEOShield is a European-Union funded project coordinated by the German Aero-space Center, DLR, to address near-Earth object (NEO) impact hazard mitigation issues. The NEOShield consortium consists of 13 research institutes, universities, and industrial partners from 6 countries and includes leading US and Russian space organizations. The project is funded for a period of 3.5 years from January 2012 with a total of 5.8 million euros. The primary aim of the project is to investigate in detail promising mitigation techniques, such as the kinetic impactor, blast deflection, and the gravity tractor, and devise feasible demonstration missions. Options for an international strategy for implementation when an actual impact threat arises will also be investigated. The NEOShield work plan consists of scientific investigations into the nature of the impact hazard and the physical properties of NEOs, and technical and engineering studies of practical means of deflecting NEOs. There exist many ideas for asteroid deflection techniques, many of which would require considerable scientific and technological development. The emphasis of NEOShield is on techniques that are feasible with current technology, requiring a minimum of research and development work. NEOShield aims to provide detailed designs of feasible mitigation demonstration missions, targeting NEOs of the kind most likely to trigger the first space-based mitigation action. Most of the asteroid deflection techniques proposed to date require physical contact with the threatening object, an example being the kinetic impactor. NEOShield includes research into the mitigation-relevant physical properties of NEOs on the basis of remotely-sensed astronomical data and the results of rendezvous missions, the observational techniques required to efficiently gather mitigation-relevant data on the dynamical state and physical properties of a threatening NEO, and laboratory investigations using gas guns to fire projectiles into

  16. Greenhouse gas mitigation options for Washington State

    SciTech Connect

    Garcia, N.

    1996-04-01

    President Clinton, in 1993, established a goal for the United States to return emissions of greenhouse gases to 1990 levels by the year 2000. One effort established to help meet this goal was a three part Environmental Protection Agency state grant program. Washington State completed part one of this program with the release of the 1990 greenhouse gas emissions inventory and 2010 projected inventory. This document completes part two by detailing alternative greenhouse gas mitigation options. In part three of the program EPA, working in partnership with the States, may help fund innovative greenhouse gas reduction strategies. The greenhouse gas control options analyzed in this report have a wide range of greenhouse gas reductions, costs, and implementation requirements. In order to select and implement a prudent mix of control strategies, policy makers need to have some notion of the potential change in climate, the consequences of that change and the uncertainties contained therein. By understanding the risks of climate change, policy makers can better balance the use of scarce public resources for concerns that are immediate and present against those that affect future generations. Therefore, prior to analyzing alternative greenhouse gas control measures, this report briefly describes the phenomenon and uncertainties of global climate change, and then projects the likely consequences for Washington state.

  17. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    SciTech Connect

    Dr. Gregory Kremer; Dr. David J. Bayless; Dr. Morgan Vis; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2001-07-25

    This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 4/03/2001 through 7/02/2001. Most of the achievements are milestones in our efforts to complete the tasks and subtasks that constitute the project objectives. Note that this version of the quarterly technical report is a revision to add the reports from subcontractors Montana State and Oak Ridge National Laboratories The significant accomplishments for this quarter include: Development of an experimental plan and initiation of experiments to create a calibration curve that correlates algal chlorophyll levels with carbon levels (to simplify future experimental procedures); Completion of debugging of the slug flow reactor system, and development of a plan for testing the pressure drop of the slug flow reactor; Design and development of a new bioreactor screen design which integrates the nutrient delivery drip system and the harvesting system; Development of an experimental setup for testing the new integrated drip system/harvesting system; Completion of model-scale bioreactor tests examining the effects of CO{sub 2} concentration levels and lighting levels on Nostoc 86-3 growth rates; Completion of the construction of a larger model-scale bioreactor to improve and expand testing capabilities and initiation of tests; Substantial progress on construction of a pilot-scale bioreactor; and Preliminary economic analysis of photobioreactor deployment. Plans for next quarter's work are included in the conclusions. A preliminary economic analysis is included as an appendix.

  18. CO[sub 2] mitigation and energy production with microalgae

    SciTech Connect

    Ikuta, Yoshiaki; Kaneko, Masato )

    1992-01-01

    Three R D projects to mitigate CO[sub 2] by using microalgae are conducted. The objectives of each project are: (1) Maximum fixation of CO[sub 2] and high density cultivation by using optical fiber, (2) maximum production of energy and (3) hydrogen production. To increase the productivity of the biomass per area is one of the most important point for Japan, where no large area is available. The results of the experiments by Mitsubishi in cooperation with Japanese power companies are presented.

  19. Advanced CO2 Leakage Mitigation using Engineered Biomineralization Sealing Technologies

    SciTech Connect

    Spangler, Lee; Cunningham, Alfred; Phillips, Adrienne

    2015-03-31

    This research project addresses one of the goals of the DOE Carbon Sequestration Program (CSP). The CSP core R&D effort is driven by technology and is accomplished through laboratory and pilot scale research aimed at new technologies for greenhouse gas mitigation. Accordingly, this project was directed at developing novel technologies for mitigating unwanted upward leakage of carbon dioxide (CO2) injected into the subsurface as part of carbon capture and storage (CCS) activities. The technology developed by way of this research project is referred to as microbially induced calcite precipitation (MICP).

  20. Using resilience and resistance concepts to manage threats to sagebrush ecosystems, Gunnison sage-grouse, and Greater sage-grouse in their eastern range: A strategic multi-scale approach

    USGS Publications Warehouse

    Chambers, Jeanne C.; Beck, Jeffrey L.; Campbell, Steve; Carlson, John; Christiansen, Thomas J.; Clause, Karen J.; Dinkins, Jonathan B.; Doherty, Kevin E.; Griffin, Kathleen A.; Havlina, Douglas W.; Mayer, Kenneth F.; Hennig, Jacob D.; Kurth, Laurie L.; Maestas, Jeremy D.; Manning, Mary; Mealor, Brian A.; McCarthy, Clinton; Perea, Marco A.; Pyke, David A.

    2016-01-01

    This report provides a strategic approach developed by a Western Association of Fish and Wildlife Agencies interagency working group for conservation of sagebrush ecosystems, Greater sage-grouse, and Gunnison sage-grouse. It uses information on (1) factors that influence sagebrush ecosystem resilience to disturbance and resistance to nonnative invasive annual grasses and (2) distribution and relative abundance of sage-grouse populations to address persistent ecosystem threats, such as invasive annual grasses and wildfire, and land use and development threats, such as oil and gas development and cropland conversion, to develop effective management strategies. A sage-grouse habitat matrix links relative resilience and resistance of sagebrush ecosystems with modeled sage-grouse breeding habitat probabilities to help decisionmakers assess risks and determine appropriate management strategies at both landscape and site scales. Areas for targeted management are assessed by overlaying matrix components with Greater sage-grouse Priority Areas for Conservation and Gunnison sage-grouse critical habitat and linkages, breeding bird concentration areas, and specific habitat threats. Decision tools are discussed for determining the suitability of target areas for management and the most appropriate management actions. A similar approach was developed for the Great Basin that was incorporated into the Federal land use plan amendments and served as the basis of a Bureau of Land Management Fire and Invasives Assessment Tool, which was used to prioritize sage-grouse habitat for targeted management activities.