Sample records for sagittal plane lumbar

  1. Measurement of lumbar spine intervertebral motion in the sagittal plane using videofluoroscopy.

    PubMed

    Harvey, Steven; Hukins, David; Smith, Francis; Wardlaw, Douglas; Kader, Deiary

    2016-08-10

    Static radiographic techniques are unable to capture the wealth of kinematic information available from lumbar spine sagittal plane motion. Demonstration of a viable non-invasive technique for acquiring and quantifying intervertebral motion of the lumbar spine in the sagittal plane. Videofluoroscopic footage of sagittal plane lumbar spine flexion-extension in seven symptomatic volunteers (mean age = 48 yrs) and one asymptomatic volunteer (age = 54 yrs) was recorded. Vertebral bodies were digitised using customised software employing a novel vertebral digitisation scheme that was minimally affected by out-of-plane motion. Measurement errors in intervertebral rotation (± 1°) and intervertebral displacement (± 0.5 mm) compare favourably with the work of others. Some subjects presenting with an identical condition (disc prolapse) exhibited a similar column vertebral flexion-extension relative to S1 (L3: max. 5.9°, min. 5.6°), while in others (degenerative disc disease) there was paradoxically a significant variation in this measurement (L3: max. 28.1°, min. 0.7°). By means of a novel vertebral digitisation scheme and customised digitisation/analysis software, sagittal plane intervertebral motion data of the lumbar spine data has been successfully extracted from videofluoroscopic image sequences. Whilst the intervertebral motion signatures of subjects in this study differed significantly, the available sample size precluded the inference of any clinical trends.

  2. Effect of torso flexion on the lumbar torso extensor muscle sagittal plane moment arms.

    PubMed

    Jorgensen, Michael J; Marras, William S; Gupta, Purnendu; Waters, Thomas R

    2003-01-01

    Accurate anatomical inputs for biomechanical models are necessary for valid estimates of internal loading. The magnitude of the moment arm of the lumbar erector muscle group is known to vary as a function of such variables as gender. Anatomical evidence indicates that the moment arms decrease during torso flexion. However, moment arm estimates in biomechanical models that account for individual variability have been derived from imaging studies from supine postures. Quantify the sagittal plane moment arms of the lumbar erector muscle group as a function of torso flexion, and identify individual characteristics that are associated with the magnitude of the moment arms as a function of torso flexion. Utilization of a 0.3 Tesla Open magnetic resonance image (MRI) to image and quantify the moment arm of the right erector muscle group as a function of gender and torso flexion. Axial MRI images through and parallel to each of the lumbar intervertebral discs at four torso flexion angles were obtained from 12 male and 12 female subjects in a lateral recumbent posture. Multivariate analysis of variance was used to investigate the differences in the moment arms at different torso flexion angles, whereas hierarchical linear regression was used to investigate associations with individual anthropometric characteristics and spinal posture. The largest decrease in the lumbar erector muscle group moment arm from neutral to 45-degree flexion occurred at the L5-S1 level (9.7% and 8.9% for men and women, respectively). Measures of spinal curvature (L1-S1 lordosis), body mass and trunk characteristics (depth or circumference) were associated with the varying moment arm at most lumbar levels. The sagittal plane moment arms of the lumbar erector muscle mass decrease as the torso flexes forward. The change in moment arms as a function of torso flexion may have an impact on prediction of spinal loading in biomechanical models.

  3. Sagittal plane analysis of the spine and pelvis in degenerative lumbar scoliosis.

    PubMed

    Han, Fei; Weishi, Li; Zhuoran, Sun; Qingwei, Ma; Zhongqiang, Chen

    2017-01-01

    Previous studies have reported the normative values of pelvic sagittal parameters, but no study has analyzed the sagittal spino-pelvic alignment in degenerative lumbar scoliosis (DLS) and its role in the pathogenesis. Retrospective analysis was applied to 104 patients with DLS, together with 100 cases of asymptomatic young adults as a control group and another control group consisting of 145 cases with cervical spondylosis. The coronal and sagittal parameters were measured on the anteroposterior and lateral radiograph of the whole spine in the DLS group as well as in the two control groups. Statistical analysis showed that the DLS group had a higher pelvic incidence (PI) value (50.5° ± 10.2°), than the normal control group (with PI 47.2° ± 8.8°) and the cervical spondylosis group (46.9° ± 9.1°). In DLS group, there were 38 cases (36.5%) complicated with degenerative lumbar spondylolisthesis, who had higher PI values than patients without it. Besides, the lumbar lordosis (LL) and sacral slope (SS) of DLS group were lower; the scoliosis Cobb's angle was correlated with pelvic tilt (PT); thoracic kyphosis was correlated with LL, SS, and PT; and LL was correlated with other sagittal parameters. Patients with DLS may have a higher PI, which may impact the pathogenesis of DLS. A high PI value is probably associated with the high prevalence of degenerative lumbar spondylolisthesis among DLS patients. In DLS patients, the lumbar spine maintains the ability of regulating the sagittal balance, and the regulation depends more on thoracic curve.

  4. Sagittal endplate morphology of the lower lumbar spine.

    PubMed

    Lakshmanan, Palaniappan; Purushothaman, Balaji; Dvorak, Vlasta; Schratt, Walter; Thambiraj, Sathya; Boszczyk, Maximilian

    2012-05-01

    The sagittal profile of lumbar endplates is discrepant from current simplified disc replacement and fusion device design. Endplate concavity is symmetrical in the coronal plane but shows considerable variability in the sagittal plane, which may lead to implant-endplate mismatch. The aim of this investigation is to provide further analysis of the sagittal endplate morphology of the mid to lower lumbar spine study (L3–S1), thereby identifying the presence of common endplate shape patterns across these levels and providing morphological reference values complementing the findings of previous studies. Observational study. A total of 174 magnetic resonance imaging (MRI) scans of the adult lumbar spine from the digital archive of our centre, which met the inclusion criteria, were studied. Superior (SEP) and inferior (IEP) endplate shape was divided into flat (no concavity), oblong (homogeneous concavity) and ex-centric (inhomogeneous concavity). The concavity depth (ECD) and location of concavity apex (ECA) relative to endplate diameter of the vertebrae L3–S1 were determined. Flat endplates were only predominant at the sacrum SEP (84.5%). The L5 SEP was flat in 24.7% and all other endplates in less than 10%. The majority of endplates were concave with a clear trend of endplate shape becoming more ex-centric from L3 IEP (56.9% oblong vs. 37.4% ex-centric) to L5 IEP (4% oblong vs. 94.3% ex-centric). Ex-centric ECA were always found in the posterior half of the lumbar endplates. Both the oblong and ex-centric ECD was 2-3 mm on average with the IEP of a motion segment regularly possessing the greater depth. A sex- or age-related difference could not be found. The majority of lumbar endplates are concave, while the majority of sacral endplates are flat. An oblong and an ex-centric endplate shape can be distinguished, whereby the latter is more common at the lower lumbar levels. The apex of the concavity of ex-centric discs is located in the posterior half of the endplate

  5. Sagittal and transversal plane deformity in thoracic scoliosis.

    PubMed

    Kotwicki, Tomasz

    2002-01-01

    The aim of the study was to assess the sagittal and transversal plane deformity of the spine in thoracic scoliosis by the mean of 3-D radiographic analysis. 46 patients admitted for surgery for thoracic idiopathic scoliosis underwent preoperative radiographic assessment. All patients presented the same pattern of the coronal plane deformity: single right thoracic curve (Lenke 1, King 3). Neither lumbar nor proximal thoracic structural curve were present. The Cobb angle varied from 41gamma to 77 gamma (mean 55,4 gamma +/- 8,6 gamma). Long cassette standing antero-posterior and lateral radiographs were analysed. Three-dimensional reconstruction with Rachis 91TM software was performed for each pair of radiographs. The following parameters were assessed: sagittal thoracic Cobb angle (Th4-Th12), upper thoracic kyphosis angle (Th5-Th8), lower thoracic kyphosis angle (Th9-Th12), superior and inferior hemi-curve sagittal angles, lumbar lordosis, sacral slope, sacral incidence, vertebral plate index, segmental vertebral axial rotation throughout the thoracic and lumbar spine. Results showed great variability of parameters assessed. The non-harmonious distribution of kyphosis was demonstrated in the thoracic spine. Local Th9-Th12 hypokyphosis and adjacent local Th5-Th8 hyperkyphosis constitute the most typical sagittal pathologies. So called normokyphotic curves were composed of one hyperkyphotic and one hypokyphotic zone. Th1-Th4 segment revealed two patterns of segmental rotation distribution: a purely compensatory curve with no vertebral axial rotation or a rotated curve presenting the morphology intermediate between Lenke 1 and Lenke 2 types (or King 3 and King 5). curves presenting the same coronal plane deformity differ in their morphology assessed in the two other planes; global thoracic kyphosis angle is a misleading parameter because it covers hypo- and hyperkyphotic zones; local distal thoracic (Th9-Th12) hypokyphosis is present in idiopathic thoracic scoliosis.

  6. The effect of age on sagittal plane profile of the lumbar spine according to standing, supine, and various sitting positions

    PubMed Central

    2014-01-01

    Background The sagittal alignment of the spine changes depending on body posture and degenerative changes. This study aimed to observe changes in sagittal alignment of the lumbar spine with different positions (standing, supine, and various sitting postures) and to verify the effect of aging on lumbar sagittal alignment. Methods Whole-spine lateral radiographs were obtained for young volunteers (25.4 ± 2.3 years) and elderly volunteers (66.7 ± 1.7 years). Radiographs were obtained in standing, supine, and sitting (30°, 60°, and 90°) positions respectively. We compared the radiological changes in the lordotic and segmental angles in different body positions and at different ages. Upper and lower lumbar lordosis were defined according to differences in anatomical sagittal mobility and kinematic behavior. Results Lumbar lordosis was greater in a standing position (52.79° and 53.90° in young and old groups, respectively) and tended to decrease as position changed from supine to sitting. Compared with the younger group, the older group showed significantly more lumbar lordosis in supine and 60° and 90° sitting positions (P = 0.043, 0.002, 0.011). Upper lumbar lordosis in the younger group changed dynamically in all changed positions compared with the old group (P = 0.019). Lower lumbar lordosis showed a decreasing pattern in both age groups, significantly changing as position changed from 30° to 60° (P = 0.007, 0.007). Conclusions Lumbar lordosis decreases as position changes from standing to 90°sitting. The upper lumbar spine is more flexible in individuals in their twenties compared to those in their sixties. Changes in lumbar lordosis were concentrated in the lower lumbar region in the older group in sitting positions. PMID:24571953

  7. Influence of lumbar lordosis restoration on thoracic curve and sagittal position in lumbar degenerative kyphosis patients.

    PubMed

    Jang, Jee-Soo; Lee, Sang-Ho; Min, Jun-Hong; Maeng, Dae Hyeon

    2009-02-01

    A retrospective study. To determine postsurgical correlations between thoracic and lumbar sagittal curves in lumbar degenerative kyphosis (LDK) and to determine predictability of spontaneous correction of thoracic curve and sacral angle after surgical restoration of lumbar lordosis and fusion. To our knowledge, there are only a limited number of articles about the relationship between thoracic and lumbar curve in sagittal thoracic compensated LDK. Retrospective review of 53 consecutive patients treated with combined anterior and posterior spinal arthrodesis. We included patients with sagittal thoracic compensated LDK caused by sagittal imbalance in this study. Total lumbar lordosis, thoracic kyphosis, sacral slope, and C7 plumb line were measured on the pre- and postoperative whole spine lateral views. Postoperative changes in thoracic kyphosis, sacral slope, and C7 plumb line according to the surgical lumbar lordosis restoration were measured and evaluated. The mean preoperative sagittal imbalance by plumb line was 78.3 mm (+/-76.5); this improved to 13.6 mm (+/-25) after surgery (P < 0.0001). Mean lumbar lordosis was 9.4 degrees (+/-19.2) before surgery and increased to 38.4 degrees (+/-13.1) at follow-up (P < 0.0001). Mean thoracic kyphosis was 1.1 degrees (+/-12.7) before surgery and increased to 17.6 degrees (+/-12.2) at follow-up (P < 0.0001). Significant preoperative correlations existed between kyphosis and lordosis (r = 0.772, P < 0.0001) and between lordosis and sacral slope (r = 0.785, P < 0.0001). Postoperative lumbar lordosis is correlated to thoracic kyphosis increase (r = 0.620, P < 0.0001). Postoperative lumbar lordosis is correlated to sacral slope increase (r = 0.722, P < 0.0001). Reciprocal relationship exists between lumbar lordosis and thoracic kyphosis in sagittal thoracic compensated LDK. Surgical restoration of lumbar lordosis for LDK brings about high level of statistical correlation to thoracic kyphosis improvement. At the same time, the

  8. Validation, repeatability and reproducibility of a noninvasive instrument for measuring thoracic and lumbar curvature of the spine in the sagittal plane.

    PubMed

    Chaise, Fabiana O; Candotti, Cláudia T; Torre, Marcelo L; Furlanetto, Tássia S; Pelinson, Patricia P T; Loss, Jefferson F

    2011-01-01

    The need for early identification of postural abnormalities without exposing patients to constant radiation has stimulated the development of instruments aiming to measure the spinal curvatures. To verify the validity, repeatability and reproducibility of angular measures of sagittal curvatures of the spine obtained using an adapted arcometer, by comparing them with Cobb angles of the respective curvatures obtained by using X-rays. 52 participants were submitted to two procedures designed to evaluate the thoracic and lumbar curvatures: (1) X-ray examination from which the Cobb angles (CA) of both curvatures were obtained, and (2) measuring the angles with the arcometer (AA). Two evaluators collected the data using the arcometer, with the rods placed at T1, T12, L1 and L5 spinous processes levels in a way as to permit linear measurements which, with aid of trigonometry, supplied the AA. There was a very strong and significant correlation between AA and CA (r=0.94; p<0.01), with no-significant difference (p=0.32), for the thoracic curvature. There was a strong and significant correlation for the lumbar curvature (r=0.71; p<0.01) between AA and CA, with no-significant difference (p=0.30). There is a very strong correlation between intra-evaluator and inter-evaluator AA. It was possible to quantify reliably the thoracic and lumbar curvatures with the arcometer and it can thus be considered valid and reliable and for use in evaluating spinal curvatures in the sagittal plane.

  9. Video raster stereography back shape reconstruction: a reliability study for sagittal, frontal, and transversal plane parameters.

    PubMed

    Schroeder, J; Reer, R; Braumann, K M

    2015-02-01

    As reliability of raster stereography was proved only for sagittal plane parameters with repeated measures on the same day, the present study was aiming at investigating variability and reliability of back shape reconstruction for all dimensions (sagittal, frontal, transversal) and for different intervals. For a sample of 20 healthy volunteers, intra-individual variability (SEM and CV%) and reliability (ICC ± 95% CI) were proved for sagittal (thoracic kyphosis, lumbar lordosis, pelvis tilt angle, and trunk inclination), frontal (pelvis torsion, pelvis and trunk imbalance, vertebral side deviation, and scoliosis angle), transversal (vertebral rotation), and functional (hyperextension) spine shape reconstruction parameters for different test-retest intervals (on the same day, between-day, between-week) by means of video raster stereography. Reliability was high for the sagittal plane (pelvis tilt, kyphosis and lordosis angle, and trunk inclination: ICC > 0.90), and good to high for lumbar mobility (0.86 < ICC < 0.97). Apart from sagittal plane spinal alignment, there was a lack of certainty for a high reproducibility indicated by wider ICC confidence intervals. So, reliability was fair to high for vertebral side deviation and the scoliosis angle (0.71 < ICC < 0.95), and poor to good for vertebral rotation values as well as for frontal plane upper body and pelvis position parameters (0.65 < ICC < 0.92). Coefficients for the between-day and between-week interval were a little lower than for repeated measures on the same day. Variability (SEM) was less than 1.5° or 1.5 mm, except for trunk inclination. Relative variability (CV) was greater in global trunk position and pelvis parameters (35-98%) than in scoliosis (14-20%) or sagittal sway parameters (4-8 %). Although we found a lower reproducibility for the frontal plane, raster stereography is considered to be a reliable method for the non-invasive, three-dimensional assessment of spinal alignment in normal non

  10. Differences of Sagittal Lumbosacral Parameters between Patients with Lumbar Spondylolysis and Normal Adults

    PubMed Central

    Yin, Jin; Peng, Bao-Gan; Li, Yong-Chao; Zhang, Nai-Yang; Yang, Liang; Li, Duan-Ming

    2016-01-01

    Background: Recent studies have suggested an association between elevated pelvic incidence (PI) and the development of lumbar spondylolysis. However, there is still lack of investigation for Han Chinese people concerning the normal range of spinopelvic parameters and relationship between abnormal sagittal parameters and lumbar diseases. The objective of the study was to investigate sagittal lumbosacral parameters of adult lumbar spondylolysis patients in Han Chinese population. Methods: A total of 52 adult patients with symptomatic lumbar spondylolysis treated in the General Hospital of Armed Police Force (Beijing, China) were identified as the spondylolysis group. All the 52 patients were divided into two subgroups, Subgroup A: 36 patients with simple lumbar spondylolysis, and Subgroup B: 16 patients with lumbar spondylolysis accompanying with mild lumbar spondylolisthesis (slip percentage <30%). Altogether 207 healthy adults were chosen as the control group. All patients and the control group took lumbosacral lateral radiographs. Seven sagittal lumbosacral parameters, including PI, pelvic tilt (PT), sacral slope (SS), lumbar lordosis (LL), L5 incidence, L5 slope, and sacral table angle (STA), were measured in the lateral radiographs. All the parameters aforementioned were compared between the two subgroups and between the spondylolysis group and the control group with independent-sample t-test. Results: There were no statistically significant differences of all seven sagittal lumbosacral parameters between Subgroup A and Subgroup B. PI, PT, SS, and LL were higher (P < 0.05) in the spondylolysis group than those in the control group, but STA was lower (P < 0.001) in the spondylolysis group. Conclusions: Current study results suggest that increased PI and decreased STA may play important roles in the pathology of lumbar spondylolysis in Han Chinese population. PMID:27174324

  11. Differences of Sagittal Lumbosacral Parameters between Patients with Lumbar Spondylolysis and Normal Adults.

    PubMed

    Yin, Jin; Peng, Bao-Gan; Li, Yong-Chao; Zhang, Nai-Yang; Yang, Liang; Li, Duan-Ming

    2016-05-20

    Recent studies have suggested an association between elevated pelvic incidence (PI) and the development of lumbar spondylolysis. However, there is still lack of investigation for Han Chinese people concerning the normal range of spinopelvic parameters and relationship between abnormal sagittal parameters and lumbar diseases. The objective of the study was to investigate sagittal lumbosacral parameters of adult lumbar spondylolysis patients in Han Chinese population. A total of 52 adult patients with symptomatic lumbar spondylolysis treated in the General Hospital of Armed Police Force (Beijing, China) were identified as the spondylolysis group. All the 52 patients were divided into two subgroups, Subgroup A: 36 patients with simple lumbar spondylolysis, and Subgroup B: 16 patients with lumbar spondylolysis accompanying with mild lumbar spondylolisthesis (slip percentage <30%). Altogether 207 healthy adults were chosen as the control group. All patients and the control group took lumbosacral lateral radiographs. Seven sagittal lumbosacral parameters, including PI, pelvic tilt (PT), sacral slope (SS), lumbar lordosis (LL), L5 incidence, L5 slope, and sacral table angle (STA), were measured in the lateral radiographs. All the parameters aforementioned were compared between the two subgroups and between the spondylolysis group and the control group with independent-sample t- test. There were no statistically significant differences of all seven sagittal lumbosacral parameters between Subgroup A and Subgroup B. PI, PT, SS, and LL were higher (P < 0.05) in the spondylolysis group than those in the control group, but STA was lower (P < 0.001) in the spondylolysis group. Current study results suggest that increased PI and decreased STA may play important roles in the pathology of lumbar spondylolysis in Han Chinese population.

  12. [CORRELATION OF LUMBAR FACET JOINT DEGENERATION AND SPINE-PELVIC SAGITTAL BALANCE].

    PubMed

    Lo, Xin; Zhang, Bin; Liu, Yuan; Dai, Min

    2015-08-01

    To investigate the relationship between lumbar facet joint degeneration of each segment and spine-pelvic sagittal balance parameters. A retrospective analysis was made the clinical data of 120 patients with lumbar degenerative disease, who accorded with the inclusion criteria between June and November 2014. There were 58 males and 62 females with an average age of 53 years (range, 24-77 years). The disease duration ranged from 3 to 96 months (mean, 6.6 months). Affected segments included L3,4 in 32 cases, L4,5 in 47 cases, and L5, S1 in 52 cases. The CT and X-ray films of the lumbar vertebrae were taken. The facet joint degeneration was graded based on the grading system of Pathria. The spine-pelvic sagittal balance parameters were measured, including lumbar lordosis (LL), upper lumbar lordosis (ULL), lower lumbar lordosis (LLL), pelvic incidence (PI), pelvic tilt (PT), and sacral slope (SS). According to normal range of PI, the patients were divided into 3 groups: group A (PI was less than normal range), group B (PI was within normal range), and group C (PI was more than normal range). The facet joint degeneration was compared; according to the facet joint degeneration degree, the patients were divided into group N (mild degeneration group) and group M (serious degeneration group) to observe the relationship of lumbar facet joint degeneration of each segment and spine-pelvic sagittal balance parameters. At L4,5 and L5, S1, facet joint degeneration showed significant difference among groups A, B, and C (P < 0.05), more serious facet joint degeneration was observed in group C; no significant difference was found in facet joint degeneration at L3,4 (P > 0.05). There was no significant difference in the other spine-pelvic sagittal balance parameters between groups N and M at each segment (P > 0.05) except for PT (P < 0.05). PI of more than normal range may lead to or aggravate lumbar facet joint degeneration at L4,5 and L5, Si; PT and PI are significantly associated

  13. Mid-sagittal plane and mid-sagittal surface optimization in brain MRI using a local symmetry measure

    NASA Astrophysics Data System (ADS)

    Stegmann, Mikkel B.; Skoglund, Karl; Ryberg, Charlotte

    2005-04-01

    This paper describes methods for automatic localization of the mid-sagittal plane (MSP) and mid-sagittal surface (MSS). The data used is a subset of the Leukoaraiosis And DISability (LADIS) study consisting of three-dimensional magnetic resonance brain data from 62 elderly subjects (age 66 to 84 years). Traditionally, the mid-sagittal plane is localized by global measures. However, this approach fails when the partitioning plane between the brain hemispheres does not coincide with the symmetry plane of the head. We instead propose to use a sparse set of profiles in the plane normal direction and maximize the local symmetry around these using a general-purpose optimizer. The plane is parameterized by azimuth and elevation angles along with the distance to the origin in the normal direction. This approach leads to solutions confirmed as the optimal MSP in 98 percent of the subjects. Despite the name, the mid-sagittal plane is not always planar, but a curved surface resulting in poor partitioning of the brain hemispheres. To account for this, this paper also investigates an optimization strategy which fits a thin-plate spline surface to the brain data using a robust least median of squares estimator. Albeit computationally more expensive, mid-sagittal surface fitting demonstrated convincingly better partitioning of curved brains into cerebral hemispheres.

  14. Relationship between thoracic hypokyphosis, lumbar lordosis and sagittal pelvic parameters in adolescent idiopathic scoliosis.

    PubMed

    Clément, Jean-Luc; Geoffray, Anne; Yagoubi, Fatima; Chau, Edouard; Solla, Federico; Oborocianu, Ioana; Rampal, Virginie

    2013-11-01

    Sagittal spine and pelvic alignment of adolescent idiopathic scoliosis (AIS) is poorly described in the literature. It generally reports the sagittal alignment with regard to the type of curve and never correlated to the thoracic kyphosis. The objective of this study is to investigate the relationship between thoracic kyphosis, lumbar lordosis and sagittal pelvic parameters in thoracic AIS. Spinal and pelvic sagittal parameters were evaluated on lateral radiographs of 86 patients with thoracic AIS; patients were separated into hypokyphosis group (n = 42) and normokyphosis group (n = 44). Results were statistically analyzed. The lumbar lordosis was lower in the hypokyphosis group, due to the low proximal lordosis. The thoracic kyphosis was not correlated with any pelvic parameters but with the proximal lordosis. The pelvic incidence was correlated with sacral slope, pelvic tilt, lumbar lordosis and highly correlated with distal lumbar lordosis in the two groups. There was a significant linear regression between thoracic kyphosis and proximal lordosis and between pelvic incidence and distal lordosis. We can consider that the proximal part of the lordosis depends on the thoracic kyphosis and the distal part depends on the pelvic incidence. The hypokyphosis in AIS is independent of the pelvic parameters and could be described as a structural parameter, characteristic of the scoliotic deformity.

  15. Training intensity and sagittal curvature of the spine in male and female artistic gymnasts.

    PubMed

    Sanz-Mengibar, Jose M; Sainz-de-Baranda, Pilar; Santonja-Medina, Fernando

    2018-04-01

    Specific adaptations of the spine in the sagittal plane have been described according to different sports disciplines. The goal of this study was to describe the integrative diagnosis of the sagittal morphotype of the spine in male and female artistic gymnasts. Forty-eight gymnasts were measured with an inclinometer. Thoracic and lumbar curves were quantified in standing position, in Sit and Reach and Slump Sitting in order to assess the sagittal spine posture and analyze if adaptations were related to training intensity. Correlation values of the sagittal plane spine measurements showed significantly increased thoracic kyphosis in men (-0.445, P<0.001). No significant correlations have been found between training hours per year or training volume and any measurements of the spine on the sagittal plane. When data from the two sitting tests were integrated, 62.5% of gymnasts had a functional thoracic kyphosis and 39.6% had lumbar kyphotic attitude. Our hypothesis has only been partially confirmed, because training intensity did not influence the sagittal curvatures in artistic gymnastics; however, this sport seems to cause specific adaptations in postural hypolordosis, functional thoracic kyphosis and lumbar kyphotic attitude during sitting and trunk flexion. The implications of the functional adaptations observed in our results may require a preventive intervention in male and female artistic gymnasts can be assessed with the integrative diagnosis of the sagittal morphotype of the spine.

  16. Sagittal imbalance in patients with lumbar spinal stenosis and outcomes after simple decompression surgery.

    PubMed

    Shin, E Kyung; Kim, Chi Heon; Chung, Chun Kee; Choi, Yunhee; Yim, Dahae; Jung, Whei; Park, Sung Bae; Moon, Jung Hyeon; Heo, Won; Kim, Sung-Mi

    2017-02-01

    Lumbar spinal stenosis (LSS) is the most common lumbar degenerative disease, and sagittal imbalance is uncommon. Forward-bending posture, which is primarily caused by buckling of the ligamentum flavum, may be improved via simple decompression surgery. The objectives of this study were to identify the risk factors for sagittal imbalance and to describe the outcomes of simple decompression surgery. This is a retrospective nested case-control study PATIENT SAMPLE: This was a retrospective study that included 83 consecutive patients (M:F=46:37; mean age, 68.5±7.7 years) who underwent decompression surgery and a minimum of 12 months of follow-up. The primary end point was normalization of sagittal imbalance after decompression surgery. Sagittal imbalance was defined as a C7 sagittal vertical axis (SVA) ≥40 mm on a 36-inch-long lateral whole spine radiograph. Logistic regression analysis was used to identify the risk factors for sagittal imbalance. Bilateral decompression was performed via a unilateral approach with a tubular retractor. The SVA was measured on serial radiographs performed 1, 3, 6, and 12 months postoperatively. The prognostic factors for sagittal balance recovery were determined based on various clinical and radiological parameters. Sagittal imbalance was observed in 54% (45/83) of patients, and its risk factors were old age and a large mismatch between pelvic incidence and lumbar lordosis. The 1-year normalization rate was 73% after decompression surgery, and the median time to normalization was 1 to 3 months. Patients who did not experience SVA normalization exhibited low thoracic kyphosis (hazard ratio [HR], 1.04; 95% confidence interval [CI], 1.02-1.10) (p<.01) and spondylolisthesis (HR, 0.33; 95% CI, 0.17-0.61) before surgery. Sagittal imbalance was observed in more than 50% of LSS patients, but this imbalance was correctable via simple decompression surgery in 70% of patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. A systematic review of the angular values obtained by computerized photogrammetry in sagittal plane: a proposal for reference values.

    PubMed

    Krawczky, Bruna; Pacheco, Antonio G; Mainenti, Míriam R M

    2014-05-01

    Reference values for postural alignment in the coronal plane, as measured by computerized photogrammetry, have been established but not for the sagittal plane. The objective of this study is to propose reference values for angular measurements used for postural analysis in the sagittal plane for healthy adults. Electronic databases (PubMed, BVS, Cochrane, Scielo, and Science Direct) were searched using the following key words: evaluation, posture, photogrammetry, and software. Articles published between 2006 and 2012 that used the PAS/SAPO (postural assessment software) were selected. Another inclusion criterion was the presentation of, at least, one of the following measurements: head horizontal alignment, pelvic horizontal alignment, hip angle, vertical alignment of the body, thoracic kyphosis, and lumbar lordosis. Angle samples of the selected articles were grouped 2 by 2 in relation to an overall average, which made possible total average, variance, and SD calculations. Six articles were included, and the following average angular values were found: 51.42° ± 4.87° (head horizontal alignment), -12.26° ± 5.81° (pelvic horizontal alignment), -6.40° ± 3.86° (hip angle), and 1.73° ± 0.94° (vertical alignment of the body). None of the articles contained the measurements for thoracic kyphosis and lumbar lordosis. The reference values can be adopted as reference for postural assessment in future researches if the same anatomical points are considered. Copyright © 2014 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.

  18. 'Lumbar Degenerative Kyphosis' Is Not Byword for Degenerative Sagittal Imbalance: Time to Replace a Misconception.

    PubMed

    Lee, Chang-Hyun; Chung, Chun Kee; Jang, Jee-Soo; Kim, Sung-Min; Chin, Dong-Kyu; Lee, Jung-Kil

    2017-03-01

    Lumbar degenerative kyphosis (LDK) is a subgroup of the flat-back syndrome and is most commonly caused by unique life styles, such as a prolonged crouched posture during agricultural work and performing activities of daily living on the floor. Unfortunately, LDK has been used as a byword for degenerative sagittal imbalance, and this sometimes causes confusion. The aim of this review was to evaluate the exact territory of LDK, and to introduce another appropriate term for degenerative sagittal deformity. Unlike what its name suggests, LDK does not only include sagittal balance disorder of the lumbar spine and kyphosis, but also sagittal balance disorder of the whole spine and little lordosis of the lumbar spine. Moreover, this disease is closely related to the occupation of female farmers and an outdated Asian life style. These reasons necessitate a change in the nomenclature of this disorder to prevent misunderstanding. We suggest the name "primary degenerative sagittal imbalance" (PDSI), which encompasses degenerative sagittal misalignments of unknown origin in the whole spine in older-age patients, and is associated with back muscle wasting. LDK may be regarded as a subgroup of PDSI related to an occupation in agriculture. Conservative treatments such as exercise and physiotherapy are recommended as first-line treatments for patients with PDSI, and surgical treatment is considered only if conservative treatments failed. The measurement of spinopelvic parameters for sagittal balance is important prior to deformity corrective surgery. LDK can be considered a subtype of PDSI that is more likely to occur in female farmers, and hence the use of LDK as a global term for all degenerative sagittal imbalance disorders is better avoided. To avoid confusion, we recommend PDSI as a newer, more accurate diagnostic term instead of LDK.

  19. Patients with proximal junctional kyphosis requiring revision surgery have higher postoperative lumbar lordosis and larger sagittal balance corrections.

    PubMed

    Kim, Han Jo; Bridwell, Keith H; Lenke, Lawrence G; Park, Moon Soo; Song, Kwang Sup; Piyaskulkaew, Chaiwat; Chuntarapas, Tapanut

    2014-04-20

    Case control study. To evaluate risk factors in patients in 3 groups: those without proximal junctional kyphosis (PJK) (N), with PJK but not requiring revision (P), and then those with PJK requiring revision surgery (S). It is becoming clear that some patients maintain stable PJK angles, whereas others progress and develop severe PJK necessitating revision surgery. A total of 206 patients at a single institution from 2002 to 2007 with adult scoliosis with 2-year minimum follow-up (average 3.5 yr) were analyzed. Inclusion criteria were age more than 18 years and primary fusions greater than 5 levels from any thoracic upper instrumented vertebra to any lower instrumented vertebrae. Revisions were excluded. Radiographical assessment included Cobb measurements in the coronal/sagittal plane and measurements of the PJK angle at postoperative time points: 1 to 2 months, 2 years, and final follow-up. PJK was defined as an angle greater than 10°. The prevalence of PJK was 34%. The average age in N was 49.9 vs. 51.3 years in P and 60.1 years in S. Sex, body mass index, and smoking status were not significantly different between groups. Fusions extending to the pelvis were 74%, 85%, and 91% of the cases in groups N, P, and S. Instrumentation type was significantly different between groups N and S, with a higher number of upper instrumented vertebra hooks in group N. Radiographical parameters demonstrated a higher postoperative lumbar lordosis and a larger sagittal balance change, with surgery in those with PJK requiring revision surgery. Scoliosis Research Society postoperative pain scores were inferior in group N vs. P and S, and Oswestry Disability Index scores were similar between all groups. Patients with PJK requiring revision were older, had higher postoperative lumbar lordosis, and larger sagittal balance corrections than patients without PJK. Based on these data, it seems as though older patients with large corrections in their lumbar lordosis and sagittal balance

  20. Spinal sagittal imbalance in patients with lumbar disc herniation: its spinopelvic characteristics, strength changes of the spinal musculature and natural history after lumbar discectomy.

    PubMed

    Liang, Chen; Sun, Jianmin; Cui, Xingang; Jiang, Zhensong; Zhang, Wen; Li, Tao

    2016-07-22

    Spinal sagittal imbalance is a widely acknowledged problem, but there is insufficient knowledge regarding its occurrence. In some patients with lumbar disc herniation (LDH), their symptom is similar to spinal sagittal imbalance. The aim of this study is to illustrate the spinopelvic sagittal characteristics and identity the role of spinal musculature in the mechanism of sagittal imbalance in patients with LDH. Twenty-five adults with spinal sagittal imbalance who initially came to our clinic for treatment of LDH, followed by posterior discectomy were reviewed. The horizontal distance between C7 plumb line-sagittal vertical axis (C7PL-SVA) greater than 5 cm anteriorly with forward bending posture is considered as spinal sagittal imbalance. Radiographic parameters including thoracic kyphotic angle (TK), lumbar lordotic angle (LL), pelvic tilting angle (PT), sacral slope angle (SS) and an electromyography(EMG) index 'the largest recruitment order' were recorded and compared. All patients restored coronal and sagittal balance immediately after lumbar discectomy. The mean C7PL-SVA and trunk shift value decreased from (11.6 ± 6.6 cm, and 2.9 ± 6.1 cm) preoperatively to (-0.5 ± 2.6 cm and 0.2 ± 0.5 cm) postoperatively, while preoperative LL and SS increased from (25.3° ± 14.0° and 25.6° ± 9.5°) to (42.4° ± 10.2° and 30.4° ± 8.7°) after surgery (P < 0.05). The preoperative mean TK and PT (24.7° ± 11.3° and 20.7° ± 7.8°) decreased to (22.0° ± 9.8° and 15.8 ± 5.5°) postoperatively (P < 0.05). The largest recruitment order on the level of T7-T8, T12-L1 and the herniated level all improved compared with before and after surgery (P < 0.05). All patients have been followed up for more than 2 years. The mean ODI was 77.8 % before surgery to 4.2 % at the final follow-up. Spinal sagittal imbalance caused by LDH is one type of compensatory sagittal imbalance. Compensatory mechanism of

  1. Lumbar Degenerative Kyphosis’ Is Not Byword for Degenerative Sagittal Imbalance: Time to Replace a Misconception

    PubMed Central

    Lee, Chang-Hyun; Chung, Chun Kee; Jang, Jee-Soo; Kim, Sung-Min; Chin, Dong-Kyu; Lee, Jung-Kil

    2017-01-01

    Lumbar degenerative kyphosis (LDK) is a subgroup of the flat-back syndrome and is most commonly caused by unique life styles, such as a prolonged crouched posture during agricultural work and performing activities of daily living on the floor. Unfortunately, LDK has been used as a byword for degenerative sagittal imbalance, and this sometimes causes confusion. The aim of this review was to evaluate the exact territory of LDK, and to introduce another appropriate term for degenerative sagittal deformity. Unlike what its name suggests, LDK does not only include sagittal balance disorder of the lumbar spine and kyphosis, but also sagittal balance disorder of the whole spine and little lordosis of the lumbar spine. Moreover, this disease is closely related to the occupation of female farmers and an outdated Asian life style. These reasons necessitate a change in the nomenclature of this disorder to prevent misunderstanding. We suggest the name “primary degenerative sagittal imbalance” (PDSI), which encompasses degenerative sagittal misalignments of unknown origin in the whole spine in older-age patients, and is associated with back muscle wasting. LDK may be regarded as a subgroup of PDSI related to an occupation in agriculture. Conservative treatments such as exercise and physiotherapy are recommended as first-line treatments for patients with PDSI, and surgical treatment is considered only if conservative treatments failed. The measurement of spinopelvic parameters for sagittal balance is important prior to deformity corrective surgery. LDK can be considered a subtype of PDSI that is more likely to occur in female farmers, and hence the use of LDK as a global term for all degenerative sagittal imbalance disorders is better avoided. To avoid confusion, we recommend PDSI as a newer, more accurate diagnostic term instead of LDK. PMID:28264231

  2. Radiographical predictors for postoperative sagittal imbalance in patients with thoracolumbar kyphosis secondary to ankylosing spondylitis after lumbar pedicle subtraction osteotomy.

    PubMed

    Qian, Bang-ping; Jiang, Jun; Qiu, Yong; Wang, Bin; Yu, Yang; Zhu, Ze-zhang

    2013-12-15

    A retrospective radiographical study. To identify the radiographical predictors for sagittal imbalance in patients with thoracolumbar kyphosis secondary to ankylosing spondylitis (AS) after 1-level lumbar pedicle subtraction osteotomy (PSO). Few studies had correlated the preoperative sagittal parameters with postoperative sagittal alignments to determine the radiographical predictors for postoperative sagittal imbalance in patients with AS after 1-level lumbar PSO. Thirty-six patients with thoracolumbar kyphosis secondary to AS who underwent 1-level lumbar PSO were recruited with a minimal follow-up of 24 months (mean = 27.4 mo; range, 24-53 mo). Correlation analysis and subsequent stepwise multiple regression analysis were used to evaluate the correlations between preoperative parameters, including global kyphosis, local kyphosis, thoracic kyphosis, thoracolumbar Cobb angle, lumbar lordosis, pelvic incidence (PI), pelvic tilt, sacral slope, and sagittal vertical axis (SVA), as well as SVA at the last follow-up. All these patients were further divided into 2 groups according to the PI value (group A: PI >50°; group B: PI ≤50°). The correction outcomes were compared between these 2 groups. The preoperative SVA was not significantly different between group A and group B (157.6 mm vs. 124.5 mm; P> 0.05), and both groups had similar magnitudes of kyphosis corrections at the last follow-up (global kyphosis: 42.9° vs. 46.1°; local kyphosis: 42.7° vs. 40.5°; lumbar lordosis: 35.7° vs. 43.0°). However, group A patients had significantly larger SVA at the last follow-up (73.2 mm vs. 28.7 mm; P< 0.05) and a higher incidence of postoperative sagittal imbalance (77.8% vs. 25.9%; P< 0.05) than those in group B. The stepwise multiple regression analysis demonstrated that both preoperative SVA and PI were significant independent predictors of postoperative sagittal alignments, which explained 52.0% and 9.7% of the variability of SVA at the last follow-up, respectively

  3. Global analysis of sagittal spinal alignment in major deformities: correlation between lack of lumbar lordosis and flexion of the knee.

    PubMed

    Obeid, Ibrahim; Hauger, Olivier; Aunoble, Stéphane; Bourghli, Anouar; Pellet, Nicolas; Vital, Jean-Marc

    2011-09-01

    It has become well recognised that sagittal balance of the spine is the result of an interaction between the spine and the pelvis. Knee flexion is considered to be the last compensatory mechanism in case of sagittal imbalance, but only few studies have insisted on the relationship between spino-pelvic parameters and lower extremity parameters. Correlation between the lack of lumbar lordosis and knee flexion has not yet been established. A retrospective study was carried out on 28 patients with major spinal deformities. The EOS system was used to measure spinal and pelvic parameters and the knee flexion angle; the lack of lumbar lordosis was calculated after prediction of lumbar lordosis with two different formulas. Correlation analysis between the different measured parameters was performed. Lumbar lordosis correlated with sacral slope (r = -0.71) and moderately with knee flexion angle (r = 0.42). Pelvic tilt correlated moderately with knee flexion angle (r = 0.55). Lack of lumbar lordosis correlated best with knee flexion angle (r = 0.72 and r = 0.63 using the two formulas, respectively). Knee flexion as a compensatory mechanism to sagittal imbalance was well correlated to the lack of lordosis and, depending on the importance of the former parameter, the best procedure to correct sagittal imbalance could be chosen.

  4. Sagittal lumbar and pelvic alignment in the standing and sitting positions.

    PubMed

    Endo, Kenji; Suzuki, Hidekazu; Nishimura, Hirosuke; Tanaka, Hidetoshi; Shishido, Takaaki; Yamamoto, Kengo

    2012-11-01

    The sitting position has become the most common posture in today's workplace. In relation to this position, kinematic analysis of the lumbar spine is helpful in understanding the causes of low back pain and its prevention. In this study, we investigated the relationship between sagittal lumbar alignment and pelvic alignment in the standing and sitting positions for 50 healthy adults. Lumbar lordotic angle (LLA), sacral slope (SS), pelvic tilt (PT), and pelvic incidence (PI) were measured on lateral lumbar spine standing and sitting radiographs. Regarding changes from the standing to sitting positions, average LLA, SS, and PT were -16.6° (-49.8 %), -18.7° (-50.3 %), and 18.3° (284.8 %), respectively (P < 0.01). In the sitting position, lumbar lordosis was reduced and pelvic rotation became posterior. This study showed that LLA decreased by approximately 50 % and PT increased by approximately 25 % in the sitting position compared with the standing position. No significant gender differences were observed for LLA, SS, and PT in the standing position. In the sitting position, however, LLA and SS were markedly larger for women.

  5. Automatic extraction of the mid-sagittal plane using an ICP variant

    NASA Astrophysics Data System (ADS)

    Fieten, Lorenz; Eschweiler, Jörg; de la Fuente, Matías; Gravius, Sascha; Radermacher, Klaus

    2008-03-01

    Precise knowledge of the mid-sagittal plane is important for the assessment and correction of several deformities. Furthermore, the mid-sagittal plane can be used for the definition of standardized coordinate systems such as pelvis or skull coordinate systems. A popular approach for mid-sagittal plane computation is based on the selection of anatomical landmarks located either directly on the plane or symmetrically to it. However, the manual selection of landmarks is a tedious, time-consuming and error-prone task, which requires great care. In order to overcome this drawback, previously it was suggested to use the iterative closest point (ICP) algorithm: After an initial mirroring of the data points on a default mirror plane, the mirrored data points should be registered iteratively to the model points using rigid transforms. Finally, a reflection transform approximating the cumulative transform could be extracted. In this work, we present an ICP variant for the iterative optimization of the reflection parameters. It is based on a closed-form solution to the least-squares problem of matching data points to model points using a reflection. In experiments on CT pelvis and skull datasets our method showed a better ability to match homologous areas.

  6. [COMPARISON OF EFFECTIVENESS AND CHANGE OF SAGITTAL SPINO-PELVIC PARAMETERS BETWEEN MINIMALLY INVASIVE TRANSFORAMINAL AND CONVENTIONAL OPEN POSTERIOR LUMBAR INTERBODY FUSIONS IN TREATMENT OF LOW-DEGREE ISTHMIC LUMBAR SPONDYLOLISTHESIS].

    PubMed

    Sun, Xin; Zeng, Rong; Li, Guangsheng; Wei, Bo; Hu, Zibing; Lin, Hao; Chen, Guanghua; Chen, Siyuan; Sun, Jiecong

    2015-12-01

    To compare the effectiveness and changes of sagittal spino-pelvic parameters between minimally invasive transforaminal lumbar interbody fusion and conventional open posterior lumbar interbody fusion in treatment of the low-degree isthmic lumbar spondylolisthesis. Between May 2012 and May 2013, 86 patients with single segmental isthmic lumbar spondylolisthesis (Meyerding degree I or II) were treated by minimally invasive transforaminal lumbar interbody fusion (minimally invasive group) in 39 cases, and by open posterior lumbar interbody fusion in 47 cases (open group). There was no significant difference in gender, age, disease duration, degree of lumbar spondylolisthesis, preoperative visual analogue scale (VAS) score, and Oswestry disability index (ODI) between 2 groups (P>0.05). The following sagittal spino-pelvic parameters were compared between 2 groups before and after operation: the percentage of slipping (PS), intervertebral height, angle of slip (AS), thoracolumbar junction (TLJ), thoracic kyphosis (TK), lumbar lordosis (LL), sagittal vertical axis (SVA), spino-sacral angle (SSA), sacral slope (SS), pelvic tilt (PT), and pelvic incidence (PI). Pearson correlation analysis of the changes between pre- and post-operation was done. Primary healing of incision was obtained in all patients of 2 groups. The postoperative hospital stay of minimally invasive group [(5.1 ± 1.6) days] was significantly shorter than that of open group [(7.2 ± 2.1) days] (t = 2.593, P = 0.017). The patients were followed up 11-20 months (mean, 15 months). The reduction rate was 68.53% ± 20.52% in minimally invasive group, and was 64.21% ± 30.21% in open group, showing no significant difference (t = 0.725, P = 0.093). The back and leg pain VAS scores, and ODI at 3 months after operation were significantly reduced when compared with preoperative ones (P < 0.05), but no significant difference was found between 2 groups (P > 0.05). The postoperative other sagittal spino

  7. Clinical and radiographic outcomes of thoracic and lumbar pedicle subtraction osteotomy for fixed sagittal imbalance.

    PubMed

    Yang, Benson P; Ondra, Stephen L; Chen, Larry A; Jung, Hee Soo; Koski, Tyler R; Salehi, Sean A

    2006-07-01

    The authors conducted a study to evaluate the radiographically documented and functional outcomes obtained in patients who underwent pedicle subtraction osteotomy (PSO). They also compared outcomes after classification of cases into thoracic and lumbar PSO subgroups. The authors analyzed data obtained in 35 consecutive PSO-treated patients with sagittal imbalance. One surgeon performed all surgeries. The minimal follow-up period was 2 years. Events during the perioperative course and complications were noted. Standing long-film radiographs of the spine were obtained and measurements were made preoperatively, immediately postoperatively, and at most recent follow-up examination. The modified Prolo Scale and the 22-item Scoliosis Research Society (SRS-22) Outcomes Questionnaire were administered. Early complications after PSO included neurological injury, wound-related problems, and nosocomial infections. Late complications were limited to pseudarthrosis and attendant instrumentation failure. Early and late complication rates ranged from 10 to 30% for both thoracic and lumbar PSO cohorts. Lumbar PSO was associated with improvements in local, segmental, and global measures of sagittal balance, whereas thoracic PSO was only associated with local improvement. Most patients rated their functional status as fair to good according to the modified Prolo Scale and reported, according to the SRS-22 Outcomes Questionnaire, that they were satisfied with the overall treatment of their back condition. The ability to perform a PSO at both lumbar and thoracic levels is a powerful asset for the spine surgeon treating spinal deformity. In the present study radiographic and clinical outcomes were superior when PSO was used to treat lumbar deformity rather than thoracic deformity because of several anatomical and technical obstacles that hindered the thoracic procedure. Nevertheless, the thoracic PSO proved a useful addition with which to produce regional improvement in sagittal

  8. Spinal sagittal contour affecting falls: cut-off value of the lumbar spine for falls.

    PubMed

    Ishikawa, Yoshinori; Miyakoshi, Naohisa; Kasukawa, Yuji; Hongo, Michio; Shimada, Yoichi

    2013-06-01

    Spinal deformities reportedly affect postural instability or falls. To prevent falls in clinical settings, the determination of a cut-off angle of spinal sagittal contour associated with increase risk for falls would be useful for screening for high-risk fallers. The purpose of this study was to calculate the spinal sagittal contour angle associated with increased risk for falls during medical checkups in community dwelling elders. The subjects comprised 213 patients (57 men, 156 women) with a mean age of 70.1 years (range, 55-85 years). The upright and flexion/extension thoracic kyphosis and lumbar lordosis angles, and the spinal inclination were evaluated with SpinalMouse(®). Postural instability was evaluated by stabilometry, using the total track length (LNG), enveloped areas (ENV), and track lengths in the lateral and anteroposterior directions (X LNG and Y LNG, respectively). The back extensor strength (BES) was measured using a strain-gauge dynamometer. The relationships among the parameters were analyzed statistically. Age, lumbar lordosis, spinal inclination, LNG, X LNG, Y LNG, and BES were significantly associated with falls (P<0.05). Multivariate logistic regression analyses revealed that lumbar lordosis was the most significant factor (P<0.01). Univariate logistic regression analyses for falls about lumbar lordosis angles revealed that angles of 3° and less were significant for falls. The present findings suggest that increased age, spinal inclination, LNG, X LNG, Y LNG, and decreased BES and lumbar lordosis, are associated with falls. An angle of lumbar lordosis of 3° or less was associated with falls in these community-dwelling elders. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Gender difference of ankle stability in the sagittal and frontal planes.

    PubMed

    Hanzlick, Harrison; Hyunglae Lee

    2017-07-01

    This paper offers quantification of ankle stability in relation to simulated haptic environments of varying stiffness. This study analyzes the stability trends of male and female subjects independently over a wide range of simulated environments after subjects were exposed to vigorous position perturbation. Ankle stability was quantified for both degrees-of-freedom of the ankle in the sagittal and frontal planes. Subjects' stability consistently decreased when exposed to environments of negative simulated stiffness. In the frontal plane, male and female subjects exhibited nearly identical stability levels. In the sagittal plane, however, male subjects demonstrated marginally more stability than female subjects in environments with negative stiffness. Results of this study are beneficial to understanding situations in which the ankle is likely to lose stability, potentially resulting in injury.

  10. The angle of inclination of the native ACL in the coronal and sagittal planes.

    PubMed

    Reid, Jonathan C; Yonke, Bret; Tompkins, Marc

    2017-04-01

    The purpose of this cross-sectional study was to evaluate the angle of inclination of the native anterior cruciate ligament (ACL) in both the sagittal and coronal planes and to evaluate these findings based on sex, height, BMI, and skeletal maturity. Inclusion criteria for the study included patients undergoing routine magnetic resonance imaging (MRI) of the knee at a single outpatient orthopedic center who had an intact ACL on MRI. Measurements of the angle of inclination were made on MRIs in both the sagittal and coronal planes. Patients were compared based on sex, height, BMI, and skeletal maturity. One-hundred and eighty-eight patients were included (36 skeletally immature/152 skeletally mature; 98 male/90 female). The overall angle of inclination was 74.3° ± 4.8° in the coronal plane and 46.9° ± 4.9° in the sagittal plane. Skeletally immature patients (coronal: 71.8° ± 6.1°; sagittal: 44.7° ± 5.5°) were significantly different in both coronal and sagittal planes (P = 0.04 and 0.01, respectively) from skeletally mature patients (coronal: 75.3° ± 4.7°; sagittal: 47.4° ± 4.7°). There were no differences based on sex, height, or BMI. There are differences between the angle of inclination findings in this study and other studies, which could be due to MRI and measurement techniques. Clinically, skeletal maturity may be important to account for when using the ACL angle of inclination to evaluate anatomic ACL reconstruction. Prognostic retrospective study, Level of evidence III.

  11. Lumbar kinematic variability during gait in chronic low back pain and associations with pain, disability and isolated lumbar extension strength.

    PubMed

    Steele, James; Bruce-Low, Stewart; Smith, Dave; Jessop, David; Osborne, Neil

    2014-12-01

    Chronic low back pain is a multifactorial condition with many dysfunctions including gait variability. The lumbar spine and its musculature are involved during gait and in chronic low back pain the lumbar extensors are often deconditioned. It was therefore of interest to examine relationships between lumbar kinematic variability during gait, with pain, disability and isolated lumbar extension strength in participants with chronic low back pain. Twenty four participants with chronic low back pain were assessed for lumbar kinematics during gait, isolated lumbar extension strength, pain, and disability. Angular displacement and kinematic waveform pattern and offset variability were examined. Angular displacement and kinematic waveform pattern and offset variability differed across movement planes; displacement was highest and similar in frontal and transverse planes, and pattern variability and offset variability higher in the sagittal plane compared to frontal and transverse planes which were similar. Spearman's correlations showed significant correlations between transverse plane pattern variability and isolated lumbar extension strength (r=-.411) and disability (r=.401). However, pain was not correlated with pattern variability in any plane. The r(2) values suggested 80.5% to 86.3% of variance was accounted for by other variables. Considering the lumbar extensors role in gait, the relationship between both isolated lumbar extension strength and disability with transverse plane pattern variability suggests that gait variability may result in consequence of lumbar extensor deconditioning or disability accompanying chronic low back pain. However, further study should examine the temporality of these relationships and other variables might account for the unexplained variance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Lower extremity energy absorption and biomechanics during landing, part I: sagittal-plane energy absorption analyses.

    PubMed

    Norcross, Marc F; Lewek, Michael D; Padua, Darin A; Shultz, Sandra J; Weinhold, Paul S; Blackburn, J Troy

    2013-01-01

    Eccentric muscle actions of the lower extremity absorb kinetic energy during landing. Greater total sagittal-plane energy absorption (EA) during the initial impact phase (INI) of landing has been associated with landing biomechanics considered high risk for anterior cruciate ligament (ACL) injury. We do not know whether groups with different INI EA magnitudes exhibit meaningful differences in ACL-related landing biomechanics and whether INI EA might be useful to identify ACL injury-risk potential. To compare biomechanical factors associated with noncontact ACL injury among sagittal-plane INI EA groups and to determine whether an association exists between sex and sagittal-plane INI EA group assignment to evaluate the face validity of using sagittal-plane INI EA to identify ACL injury risk. Descriptive laboratory study. Research laboratory. A total of 82 (41 men, 41 women; age = 21.0 ± 2.4 years, height = 1.74 ± 0.10 m, mass = 70.3 ± 16.1 kg) healthy, physically active individuals volunteered. We assessed landing biomechanics using an electromagnetic motion-capture system and force plate during a double-legged jump-landing task. Total INI EA was used to group participants into high, moderate, and low tertiles. Sagittal- and frontal-plane knee kinematics; peak vertical and posterior ground reaction forces (GRFs); anterior tibial shear force; and internal hip extension, knee extension, and knee varus moments were identified and compared across groups using 1-way analyses of variance. We used a χ (2) analysis to compare male and female representation in the high and low groups. The high group exhibited greater knee-extension moment and posterior GRFs than both the moderate (P < .05) and low (P < .05) groups and greater anterior tibial shear force than the low group (P < .05). No other group differences were noted. Women were not represented more than men in the high group (χ(2) = 1.20, P = .27). Greater sagittal-plane INI EA likely indicates greater ACL loading

  13. Does Shoe Collar Height Influence Ankle Joint Kinematics and Kinetics in Sagittal Plane Maneuvers?

    PubMed Central

    Yang, Yang; Fang, Ying; Zhang, Xini; He, Junliang; Fu, Weijie

    2017-01-01

    The Objective of the study is to investigate the effects of basketball shoes with different collar heights on ankle kinematics and kinetics and athletic performance in different sagittal plane maneuvers. Twelve participants who wore high-top and low-top basketball shoes (hereafter, HS and LS, respectively) performed a weight-bearing dorsiflexion (WB-DF) maneuver, drop jumps (DJs), and lay-up jumps (LJs). Their sagittal plane kinematics and ground reaction forces were recorded using the Vicon motion capture system and Kistler force plates simultaneously. Moreover, ankle dorsiflexion and plantarflexion angles, moment, power, stiffness, and jump height were calculated. In the WB-DF test, the peak ankle dorsiflexion angle (p = 0.041) was significantly smaller in HS than in LS. Additionally, the peak ankle plantarflexion moment (p = 0.028) and power (p = 0.022) were significantly lower in HS than in LS during LJs but not during DJs. In both jumping maneuvers, no significant differences were found in the jump height or ankle kinematics between the two shoe types. According to the WB-DF test, increasing shoe collar height can effectively reduce the ankle range of motion in the sagittal plane. Although the HS did not restrict the flexion–extension performance of the ankle joint during two jumping maneuvers, an increased shoe collar height can reduce peak ankle plantarflexion moment and peak power during the push-off phase in LJs. Therefore, a higher shoe collar height should be used to circumvent effects on the partial kinetics of the ankle joint in the sagittal plane. Key points An increased shoe collar height effectively reduced ankle joint ROM in the sagittal plane in weight-bearing dorsiflexion maneuver. Shoe collar height did not affect sagittal plane ankle kinematics and had no effect on performance during realistic jumping. Shoe collar height can affect the ankle plantarflexion torque and peak power during the push-off phase in lay-up jump. PMID:29238255

  14. Progression of spinal deformity in wheelchair-dependent patients with Duchenne muscular dystrophy who are not treated with steroids: coronal plane (scoliosis) and sagittal plane (kyphosis, lordosis) deformity.

    PubMed

    Shapiro, F; Zurakowski, D; Bui, T; Darras, B T

    2014-01-01

    We determined the frequency, rate and extent of development of scoliosis (coronal plane deformity) in wheelchair-dependent patients with Duchenne muscular dystrophy (DMD) who were not receiving steroid treatment. We also assessed kyphosis and lordosis (sagittal plane deformity). The extent of scoliosis was assessed on sitting anteroposterior (AP) spinal radiographs in 88 consecutive non-ambulatory patients with DMD. Radiographs were studied from the time the patients became wheelchair-dependent until the time of spinal fusion, or the latest assessment if surgery was not undertaken. Progression was estimated using a longitudinal mixed-model regression analysis to handle repeated measurements. Scoliosis ≥ 10° occurred in 85 of 88 patients (97%), ≥ 20° in 78 of 88 (89%) and ≥ 30° in 66 of 88 patients (75%). The fitted longitudinal model revealed that time in a wheelchair was a highly significant predictor of the magnitude of the curve, independent of the age of the patient (p < 0.001). Scoliosis developed in virtually all DMD patients not receiving steroids once they became wheelchair-dependent, and the degree of deformity deteriorated over time. In general, scoliosis increased at a constant rate, beginning at the time of wheelchair-dependency (p < 0.001). In some there was no scoliosis for as long as three years after dependency, but scoliosis then developed and increased at a constant rate. Some patients showed a rapid increase in the rate of progression of the curve after a few years - the clinical phenomenon of a rapidly collapsing curve over a few months. A sagittal plane kyphotic deformity was seen in 37 of 60 patients (62%) with appropriate radiographs, with 23 (38%) showing lumbar lordosis (16 (27%) abnormal and seven (11%) normal). This study provides a baseline to assess the effects of steroids and other forms of treatment on the natural history of scoliosis in patients with DMD, and an approach to assessing spinal deformity in the coronal and

  15. The lumbar lordosis index: a new ratio to detect spinal malalignment with a therapeutic impact for sagittal balance correction decisions in adult scoliosis surgery.

    PubMed

    Boissière, Louis; Bourghli, Anouar; Vital, Jean-Marc; Gille, Olivier; Obeid, Ibrahim

    2013-06-01

    Sagittal malalignment is frequently observed in adult scoliosis. C7 plumb line, lumbar lordosis and pelvic tilt are the main factors to evaluate sagittal balance and the need of a vertebral osteotomy to correct it. We described a ratio: the lumbar lordosis index (ratio lumbar lordosis/pelvic incidence) (LLI) and analyzed its relationships with spinal malalignment and vertebral osteotomies. 53 consecutive patients with a surgical adult scoliosis had preoperative and postoperative full spine EOS radiographies to measure spino-pelvic parameters and LLI. The lack of lordosis was calculated after prediction of theoretical lumbar lordosis. Correlation analysis between the different parameters was performed. All parameters were correlated with spinal malalignment but LLI is the most correlated parameter (r = -0.978). It is also the best parameter in this study to predict the need of a spinal osteotomy (r = 1 if LLI <0.5). LLI is a statistically validated parameter for sagittal malalignment analysis. It can be used as a mathematical tool to detect spinal malalignment in adult scoliosis and guides the surgeon decision of realizing a vertebral osteotomy for adult scoliosis sagittal correction. It can be used as well for the interpretation of clinical series in adult scoliosis.

  16. The use of the T1 sagittal angle in predicting overall sagittal balance of the spine.

    PubMed

    Knott, Patrick T; Mardjetko, Steven M; Techy, Fernando

    2010-11-01

    A balanced sagittal alignment of the spine has been shown to strongly correlate with less pain, less disability, and greater health status scores. To restore proper sagittal balance, one must assess the position of the occiput relative to the sacrum. The assessment of spinal balance preoperatively can be challenging, whereas predicting postoperative balance is even more difficult. This study was designed to evaluate and quantify multiple factors that influence sagittal balance. Retrospective analysis of existing spinal radiographs. A retrospective review of 52 adult spine patient records was performed. All patients had full-column digital radiographs that showed all the important skeletal landmarks necessary for accurate measurement. The average age of the patient was 53 years. Both genders were equally represented. The radiographs were measured using standard techniques to obtain the following parameters: scoliosis in the coronal plane; lordosis or kyphosis of the cervical, thoracic, and lumbar spine; the T1 sagittal angle (angle between a horizontal line and the superior end plate of T1); the angle of the dens in the sagittal plane; the angle of the dens in relation to the occiput; the sacral slope; the pelvic incidence; the femoral-sacral angle; and finally, the sagittal vertical axis (SVA) measured from both the dens of C2 and from C7. It was found that the SVA when measured from the dens was on average 16 mm farther forward than the SVA measured from C7 (p<.0001). The dens plumb line (SVA(dens)) was then used in the study. An analysis was done to examine the relationship between SVA(dens) and each of the other measurements. The T1 sagittal angle was found to have a moderate positive correlation (r=0.65) with SVA(dens), p<.0001, indicating that the amount of sagittal T1 tilt can be used as a good predictor of overall sagittal balance. When examining the other variables, it was found that cervical lordosis had a weak correlation (r=0.37) with SVA(dens) that was

  17. Lower Extremity Energy Absorption and Biomechanics During Landing, Part I: Sagittal-Plane Energy Absorption Analyses

    PubMed Central

    Norcross, Marc F.; Lewek, Michael D.; Padua, Darin A.; Shultz, Sandra J.; Weinhold, Paul S.; Blackburn, J. Troy

    2013-01-01

    Context: Eccentric muscle actions of the lower extremity absorb kinetic energy during landing. Greater total sagittal-plane energy absorption (EA) during the initial impact phase (INI) of landing has been associated with landing biomechanics considered high risk for anterior cruciate ligament (ACL) injury. We do not know whether groups with different INI EA magnitudes exhibit meaningful differences in ACL-related landing biomechanics and whether INI EA might be useful to identify ACL injury-risk potential. Objective: To compare biomechanical factors associated with noncontact ACL injury among sagittal-plane INI EA groups and to determine whether an association exists between sex and sagittal-plane INI EA group assignment to evaluate the face validity of using sagittal-plane INI EA to identify ACL injury risk. Design: Descriptive laboratory study. Setting: Research laboratory. Patients or Other Participants: A total of 82 (41 men, 41 women; age = 21.0 ± 2.4 years, height = 1.74 ± 0.10 m, mass = 70.3 ± 16.1 kg) healthy, physically active individuals volunteered. Intervention(s): We assessed landing biomechanics using an electromagnetic motion-capture system and force plate during a double-legged jump-landing task. Main Outcome Measure(s): Total INI EA was used to group participants into high, moderate, and low tertiles. Sagittal- and frontal-plane knee kinematics; peak vertical and posterior ground reaction forces (GRFs); anterior tibial shear force; and internal hip extension, knee extension, and knee varus moments were identified and compared across groups using 1-way analyses of variance. We used a χ2 analysis to compare male and female representation in the high and low groups. Results: The high group exhibited greater knee-extension moment and posterior GRFs than both the moderate (P < .05) and low (P < .05) groups and greater anterior tibial shear force than the low group (P < .05). No other group differences were noted. Women were not represented more than

  18. Impact of sagittal spinopelvic alignment on clinical outcomes after decompression surgery for lumbar spinal canal stenosis without coronal imbalance.

    PubMed

    Hikata, Tomohiro; Watanabe, Kota; Fujita, Nobuyuki; Iwanami, Akio; Hosogane, Naobumi; Ishii, Ken; Nakamura, Masaya; Toyama, Yoshiaki; Matsumoto, Morio

    2015-10-01

    The object of this study was to investigate correlations between sagittal spinopelvic alignment and improvements in clinical and quality-of-life (QOL) outcomes after lumbar decompression surgery for lumbar spinal canal stenosis (LCS) without coronal imbalance. The authors retrospectively reviewed data from consecutive patients treated for LCS with decompression surgery in the period from 2009 through 2011. They examined correlations between preoperative or postoperative sagittal vertical axis (SVA) and radiological parameters, clinical outcomes, and health-related (HR)QOL scores in patients divided according to SVA. Clinical outcomes were assessed according to Japanese Orthopaedic Association (JOA) and visual analog scale (VAS) scores. Health-related QOL was evaluated using the Roland-Morris Disability Questionnaire (RMDQ) and the JOA Back Pain Evaluation Questionnaire (JOABPEQ). One hundred nine patients were eligible for inclusion in the study. Compared to patients with normal sagittal alignment prior to surgery (Group A: SVA < 50 mm), those with preoperative sagittal imbalance (Group B: SVA ≥ 50 mm) had significantly smaller lumbar lordosis and thoracic kyphosis angles and larger pelvic tilt. In Group B, there was a significant decrease in postoperative SVA compared with the preoperative SVA (76.3 ± 29.7 mm vs. 54.3 ± 39.8 mm, p = 0.004). The patients in Group B with severe preoperative sagittal imbalance (SVA > 80 mm) had residual sagittal imbalance after surgery (82.8 ± 41.6 mm). There were no significant differences in clinical and HRQOL outcomes between Groups A and B. Compared to patients with normal postoperative SVA (Group C: SVA < 50 mm), patients with a postoperative SVA ≥ 50 mm (Group D) had significantly lower JOABPEQ scores, both preoperative and postoperative, for walking ability (preop: 36.6 ± 26.3 vs. 22.7 ± 26.0, p = 0.038, respectively; postop: 71.1 ± 30.4 vs. 42.5 ± 29.6, p < 0.001) and social functioning (preop: 38.7 ± 18.5 vs. 30

  19. Sagittal Thoracic and Lumbar Spine Profiles in Upright Standing and Lying Prone Positions Among Healthy Subjects: Influence of Various Biometric Features.

    PubMed

    Salem, Walid; Coomans, Ysaline; Brismée, Jean-Michel; Klein, Paul; Sobczak, Stéphane; Dugailly, Pierre-Michel

    2015-08-01

    A prospective study was performed on the assessment of both thoracic and lumbar spine sagittal profiles (from C7 to S1). To propose a new noninvasive method for measuring the spine curvatures in standing and lying prone positions and to analyze their relationship with various biometric characteristics. Modifications of spine curvatures (i.e. lordosis or kyphosis) are of importance in the development of spinal disorders. Studies have emphasized the development of new devices to measure the spine sagittal profiles using a noninvasive and low-cost method. To date, it has not been applied for analyzing both lumbar and thoracic alterations for various positioning. Seventy-five healthy subjects (mean 22.6 ± 4.3 yr) were recruited to participate in this study. Thoracic and lumbar sagittal profiles were assessed in standing and lying prone positions using a 3D digitizer. In addition, several biometric data were collected including maximal trunk isometric strength for flexion and extension movement. Statistical analysis consisted in data comparisons of spine profiles and a multivariate analysis including biometric features, to classify individuals considering low within- and high between-variability. Kyphosis and lordosis angles decreased significantly from standing to lying prone position by an average of 13.4° and 16.6°, respectively. Multivariate analysis showed a sample clustering of 3 homogenous subgroups. The first group displayed larger lordosis and flexibility, and had low data values for height, weight, and strength. The second group had lower values than the overall trend of the whole sample, whereas the third group had larger score values for the torques, height, weight, waist, body mass index, and kyphosis angle but a reduced flexibility. The present results demonstrate a significant effect of the positioning on both thoracic and lumbar spine sagittal profiles and highlight the use of cluster analysis to categorize subgroups after biometric characteristics

  20. Metacarpal geometry changes during Thoroughbred race training are compatible with sagittal-plane cantilever bending.

    PubMed

    Merritt, J S; Davies, H M S

    2010-11-01

    Bending of the equine metacarpal bones during locomotion is poorly understood. Cantilever bending, in particular, may influence the loading of the metacarpal bones and surrounding structures in unique ways. We hypothesised that increased amounts of sagittal-plane cantilever bending may govern changes to the shape of the metacarpal bones of Thoroughbred racehorses during training. We hypothesised that this type of bending would require a linear change to occur in the combined second moment of area of the bones for sagittal-plane bending (I) during race training. Six Thoroughbred racehorses were used, who had all completed at least 4 years of race training at a commercial stable. The approximate change in I that had occurred during race training was computed from radiographic measurements at the start and end of training using a simple model of bone shape. A significant (P < 0.001), approximately linear pattern of change in I was observed in each horse, with the maximum change occurring proximally and the minimum change occurring distally. The pattern of change in I was compatible with the hypothesis that sagittal-plane cantilever bending governed changes to the shape of the metacarpal bones during race training. © 2010 EVJ Ltd.

  1. A comparison of economy and sagittal plane trunk movements among back-, back/front- and head-loading.

    PubMed

    Hudson, Sean; Cooke, Carlton; Davies, Simeon; West, Sacha; Gamieldien, Raeeq; Low, Chris; Lloyd, Ray

    2018-05-14

    It has been suggested that freedom of movement in the trunk could influence load carriage economy. This study aimed to compare the economy and sagittal plane trunk movements associated with three load carriage methods that constrain posture differently. Eighteen females walked at 3 km.h -1 with loads of 0, 3, 6, 9, 12, 15 and 20 kg carried on the back, back/front and head. Load carriage economy was assessed using the Extra Load Index (ELI). Change in sagittal plane trunk forward lean and trunk angle excursion from unloaded to loaded walking were assessed. Results show no difference in economy between methods (p = 0.483), despite differences in the change in trunk forward lean (p = 0.001) and trunk angle excursion (p = 0.021) from unloaded to loaded walking. We conclude that economy is not different among the three methods of load carriage, despite significant differences in sagittal plane trunk movements.

  2. Ipsilateral wrist-ankle movements in the sagittal plane encoded in extrinsic reference frame.

    PubMed

    Muraoka, Tetsuro; Ishida, Yuki; Obu, Takashi; Crawshaw, Larry; Kanosue, Kazuyuki

    2013-04-01

    When performing oscillatory movements of two joints in the sagittal plane, there is a directional constraint for performing such movements. Previous studies could not distinguish whether the directional constraint reflected movement direction encoded in the extrinsic (outside the body) reference frame or in the intrinsic (the participants' torso/head) reference frame since participants performed coordinated movements in a sitting position where the torso/head was stationary relative to the external world. In order to discern the reference frame in the present study, participants performed paced oscillatory movements of the ipsilateral wrist and ankle in the sagittal plane in a standing position so that the torso/head moved relative to the external world. The coordinated movements were performed in one of two modes of coordination, moving the hand upward concomitant with either ankle plantarflexion or ankle dorsiflexion. The same directional mode relative to extrinsic space was more stable and accurate as compared with the opposite directional mode. When forearm position was changed from the pronated position to the supinated position, similar results were obtained, indicating that the results were independent of a particular coupling of muscles. These findings suggest that the directional constraint on ipsilateral joints movements in the sagittal plane reflects movement direction encoded in the extrinsic reference frame. Copyright © 2013 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  3. Clinical outcomes, radiologic kinematics, and effects on sagittal balance of the 6 df LP-ESP lumbar disc prosthesis.

    PubMed

    Lazennec, Jean-Yves; Even, Julien; Skalli, Wafa; Rakover, Jean-Patrick; Brusson, Adrien; Rousseau, Marc-Antoine

    2014-09-01

    Surgical treatment of degenerative disc disease remains a controversial subject. Lumbar fusion has been associated with a potential risk of segmental junctional disease and sagittal balance misalignment. Motion preservation devices have been developed as an alternative to fusion. The LP-ESP disc is a one-piece deformable device achieving 6 df, including shock absorption and elastic return. This is the first clinical report on its use. To assess clinical outcomes and radiologic kinematics in the first 2 years after implantation. Prospective cohort of patients with LP-ESP total disc replacement (TDR) at the lumbar spine. Forty-six consecutive patients. Clinical outcomes were the visual analog scale (VAS) for pain, the Oswestry disability index (ODI), and the GHQ28 (General Health Questionnaire) psychological score. Radiologic data were the range of motion (ROM), sagittal balance parameters, and mean center of rotation (MCR). Patients had single-level TDR at L4-L5 or L5-S1. Outcomes were prospectively recorded for 2 years (before and at 3, 6, 12, and 24 months after surgery). The SpineView software was used for computed analysis of the radiographic data. Paired t tests were used for statistical comparisons. No intraoperative complication occurred. All clinical scores improved significantly at 24 months: the back pain VAS scores by a mean of 4.1 points and the ODI by 33 points. The average ROM of the instrumented level was 5.4°±4.8° at 2 years and more than 2° for 76% of prostheses. The MCR was in a physiological area in 73% of cases. The sagittal balance (pelvic tilt, sacral slope, and segmental lordosis) did not change significantly at any point of the follow-up. Results from the 2-year follow-up indicate that LP-ESP prosthesis recreates lumbar spine function similar to that of the healthy disc in terms of ROM, quality of movement, effect on sagittal balance, and absence of modification in the kinematics of the upper adjacent level. Copyright © 2014 Elsevier Inc

  4. Usefulness of the dynamic gadolinium-enhanced magnetic resonance imaging with simultaneous acquisition of coronal and sagittal planes for detection of pituitary microadenomas.

    PubMed

    Lee, Han Bee; Kim, Sung Tae; Kim, Hyung-Jin; Kim, Keon Ha; Jeon, Pyoung; Byun, Hong Sik; Choi, Jin Wook

    2012-03-01

    Does dynamic gadolinium-enhanced imaging with simultaneous acquisition of coronal and sagittal planes improve diagnostic accuracy of pituitary microadenomas compared with coronal images alone? Fifty-six patients underwent 3-T sella MRI including dynamic simultaneous acquisition of coronal and sagittal planes after gadolinium injection. According to conspicuity, lesions were divided into four scores (0, no; 1, possible; 2, probable; 3, definite delayed enhancing lesion). Additional information on supplementary sagittal images compared with coronal ones was evaluated with a 4-point score (0, no; 1, possible; 2, probable; 3, definite additional information). Accuracy of tumour detection was calculated. Average scores for lesion detection of a combination of two planes, coronal, and sagittal images were 2.59, 2.32, and 2.18. 6/10 lesions negative on coronal images were detected on sagittal ones. Accuracy of a combination of two planes, of coronal and of sagittal images was 92.86%, 82.14% and 75%. Six patients had probable or definite additional information on supplementary sagittal images compared with coronal ones alone (10.71%). Dynamic MRI with combined coronal and sagittal planes was more accurate for detection of pituitary microadenomas than routinely used coronal images. Simultaneous dynamic enhanced acquisition can make study time fast and costs low. We present a new dynamic MRI technique for evaluating pituitary microadenomas • This technique provides simultaneous acquisition of contrast enhanced coronal and sagittal images. • This technique makes the diagnosis more accurate and reduces the examination time. • Such MR imaging only requires one single bolus of contrast agent.

  5. Sagittal plane tilting deformity of the patellofemoral joint: a new concept in patients with chondromalacia patella.

    PubMed

    Aksahin, Ertugrul; Aktekin, Cem Nuri; Kocadal, Onur; Duran, Semra; Gunay, Cüneyd; Kaya, Defne; Hapa, Onur; Pepe, Murad

    2017-10-01

    The aims of this study were to evaluate sagittal plane alignment in patients with chondromalacia patella via magnetic resonance imaging (MRI), analyse the relationships between the location of the patellar cartilaginous lesions and sagittal alignment and finally investigate the relationships between the sagittal plane malalignment and patellofemoral loadings using by finite element analysis. Fifty-one patients who were diagnosed with isolated modified Outerbridge grade 3-4 patellar chondromalacia based on MRI evaluation and 51 control subjects were evaluated. Chondromalacia patella patients were divided into three subgroups according to the chondral lesion location as superior, middle and inferior. The patella-patellar tendon angle (P-PT) was used for evaluation of sagittal alignment of patellofemoral joint. Each subgroup was compared with control group by using P-PT angle. To investigate the biomechanical effects of sagittal plane malpositioning on patellofemoral joint, bone models were created at 30°, 60° and 90° knee flexion by using mean P-PT angles, which obtained from patients with chondromalacia patellae and control subjects. The total loading and contact area values of the patellofemoral joints were investigated by finite element analysis. The mean age of all participants was 52.9 ± 8.2 years. The mean P-PT angle was significantly lower in chondromalacia group (142.1° ± 3.6°) compared to control group (144.5° ± 5.3°) (p = 0.008). Chondral lesions were located in superior, middle and inferior zones in 16, 20 and 15 patients, respectively. The mean P-PT angles in patients with superior (141.8 ± 2.7) and inferior subgroups (139.2 ± 2.3) were significantly lower than the values in the control group (p < 0.05). The contact area values were detected higher in models with chondromalacia than in the control models at the same flexion degrees. There were increased loadings at 30° and 90° flexions in the sagittal patellar tilt models

  6. Quantitative evaluation of the lumbosacral sagittal alignment in degenerative lumbar spinal stenosis

    PubMed Central

    Makirov, Serik K.; Jahaf, Mohammed T.; Nikulina, Anastasia A.

    2015-01-01

    Goal of the study This study intends to develop a method of quantitative sagittal balance parameters assessment, based on a geometrical model of lumbar spine and sacrum. Methods One hundred eight patients were divided into 2 groups. In the experimental group have been included 59 patients with lumbar spinal stenosis on L1-5 level. Forty-nine healthy volunteers without history of any lumbar spine pathlogy were included in the control group. All patients have been examined with supine MRI. Lumbar lordosis has been adopted as circular arc and described either anatomical (lumbar lordosis angle), or geometrical (chord length, circle segment height, the central angle, circle radius) parameters. Moreover, 2 sacral parameters have been assessed for all patients: sacral slope and sacral deviation angle. Both parameters characterize sacrum disposition in horizontal and vertical axis respectively. Results Significant correlation was observed between anatomical and geometrical lumbo-sacral parameters. Significant differences between stenosis group and control group were observed in the value of the “central angle” and “sacral deviation” parameters. We propose additional parameters: lumbar coefficient, as ratio of the lordosis angle to the segmental angle (Kl); sacral coefficient, as ratio of the sacral tilt (ST) to the sacral deviation (SD) angle (Ks); and assessment modulus of the mathematical difference between sacral and lumbar coefficients has been used for determining lumbosacral balance (LSB). Statistically significant differences between main and control group have been obtained for all described coefficients (p = 0.006, p = 0.0001, p = 0.0001, accordingly). Median of LSB value of was 0.18 and 0.34 for stenosis and control groups, accordingly. Conclusion Based on these results we believe that that spinal stenosis is associated with an acquired deformity that is measureable by the described parameters. It's possible that spinal stenosis occurs in patients with an

  7. Differences in lumbar spine and lower extremity kinematics during a step down functional task in people with and people without low back pain.

    PubMed

    Hernandez, Alejandra; Gross, Karlie; Gombatto, Sara

    2017-08-01

    When functional movements are impaired in people with low back pain, they may be a contributing factor to chronicity and recurrence. The purpose of the current study was to examine lumbar spine, pelvis, and lower extremity kinematics during a step down functional task between people with and without a history of low back pain. A 3-dimensional motion capture system was used to analyze kinematics during a step down task. Total excursion of the lumbar spine, pelvis, and lower extremity segments in each plane were calculated from the start to end of the task. Separate analysis of variance tests (α=0.05) were conducted to determine the effect of independent variables of group and plane on lumbar spine, pelvis, and lower extremity kinematics. An exploratory analysis was conducted to examine kinematic differences among movement-based low back pain subgroups. Subjects with low back pain displayed less lumbar spine movement than controls across all three planes of movement (P-values=0.001-0.043). This group difference was most pronounced in the sagittal plane. For the lower extremity, subjects with low back pain displayed more frontal and axial plane knee movement than controls (P-values=0.001). There were no significant differences in kinematics among movement-based low back pain subgroups. People with low back pain displayed less lumbar region movement in the sagittal plane and more off-plane knee movements than the control group during a step down task. Clinicians can use this information when assessing lumbar spine and lower extremity movement during functional tasks, with the goal of developing movement-based interventions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Association of walking speed with sagittal spinal alignment, muscle thickness, and echo intensity of lumbar back muscles in middle-aged and elderly women.

    PubMed

    Masaki, Mitsuhiro; Ikezoe, Tome; Fukumoto, Yoshihiro; Minami, Seigo; Aoyama, Junichi; Ibuki, Satoko; Kimura, Misaka; Ichihashi, Noriaki

    2016-06-01

    Age-related change of spinal alignment in the standing position is known to be associated with decreases in walking speed, and alteration in muscle quantity (i.e., muscle mass) and muscle quality (i.e., increases in the amount of intramuscular non-contractile tissue) of lumbar back muscles. Additionally, the lumbar lordosis angle in the standing position is associated with walking speed, independent of lower-extremity muscle strength, in elderly individuals. However, it is unclear whether spinal alignment in the standing position is associated with walking speed in the elderly, independent of trunk muscle quantity and quality. The present study investigated the association of usual and maximum walking speed with age, sagittal spinal alignment in the standing position, muscle quantity measured as thickness, and quality measured as echo intensity of lumbar muscles in 35 middle-aged and elderly women. Sagittal spinal alignment in the standing position (thoracic kyphosis, lumbar lordosis, and sacral anterior inclination angle) using a spinal mouse, and muscle thickness and echo intensity of the lumbar muscles (erector spinae, psoas major, and lumbar multifidus) using an ultrasound imaging device were also measured. Stepwise regression analysis showed that only age was a significant determinant of usual walking speed. The thickness of the lumbar erector spinae muscle was a significant, independent determinant of maximal walking speed. The results of this study suggest that a decrease in maximal walking speed is associated with the decrease in lumbar erector spinae muscles thickness rather than spinal alignment in the standing position in middle-aged and elderly women.

  9. Two level pedicle substraction osteotomies for the treatment of severe fixed sagittal plane deformity: computer software-assisted preoperative planning and assessing.

    PubMed

    Atici, Yunus; Akman, Yunus Emre; Balioglu, Mehmet Bulent; Kargin, Deniz; Kaygusuz, Mehmet Akif

    2016-08-01

    To evaluate the efficacy of two level pedicle substraction osteotomies (PSOs) planned preoperatively with a computer software, in the patients with severe fixed sagittal plane deformities. In the literature, there are studies indicating that two level PSOs may be required in severe cases. However, the results of two level PSOs preoperatively planned with computer software-assistance have not yet been reported in the English literature. Severe fixed sagittal plane deformities of 11 patients are described. Preoperative surgical planning was done with the aid of a computer software. Two level PSOs were indicated after the process. After the application of the indicated surgical technique, clinical and radiological results were evaluated in the preoperative, the early postoperative periods and during the last follow-up. The mean sagittal vertical axis was found as 190.5 (range 161-220) mm in the preoperative period, 23.5 (range -27 to 61) mm in the early postoperative period (P < 0.001) (87.7 % correction) and 34.5 (range -3 to 55) mm during the last follow-up (P < 0.001). The mean pelvic tilt (PT) significantly decreased from 38.3° (range 21°-63°) preoperatively to 23.8° (range 18°-42°) postoperatively (P = 0.008) and to 27.5° (range 17°-42°) during the last follow-up (P = 0.042). The mean lumbar lordosis (LL) was 2.8° (range -29° to 20°) preoperatively, -35.6° (range -54° to 23°) early postoperatively (P < 0.001) and -33.6° (range -52° to 20°) during the last follow-up (P < 0.001). The average amount of bleeding was 5345 (range 2600-7415) ml. Although a statistically significant correction was obtained, the mean PT and PI-LL value could not be restored in physiological limits during the last follow-up. Thus, two level PSOs performed after computer software (surgimap) assisted preoperative planning failed to correct severe fixed sagittal plane deformities. Besides, this procedure is of possible risks for major complications such as a

  10. Alignment in the transverse plane, but not sagittal or coronal plane, affects the risk of recurrent patella dislocation.

    PubMed

    Takagi, Shigeru; Sato, Takashi; Watanabe, Satoshi; Tanifuji, Osamu; Mochizuki, Tomoharu; Omori, Go; Endo, Naoto

    2017-11-17

    Abnormalities of lower extremity alignment (LEA) in recurrent patella dislocation (RPD) have been studied mostly by two-dimensional (2D) procedures leaving three-dimensional (3D) factors unknown. This study aimed to three-dimensionally examine risk factors for RPD in lower extremity alignment under the weight-bearing conditions. The alignment of 21 limbs in 15 RPD subjects was compared to the alignment of 24 limbs of 12 healthy young control subjects by an our previously reported 2D-3D image-matching technique. The sagittal, coronal, and transverse alignment in full extension as well as the torsional position of the femur (anteversion) and tibia (tibial torsion) under weight-bearing standing conditions were assessed by our previously reported 3D technique. The correlations between lower extremity alignment and RPD were assessed using multiple logistic regression analysis. The difference of lower extremity alignment in RPD between under the weight-bearing conditions and under the non-weight-bearing conditions was assessed. In the sagittal and coronal planes, there was no relationship (statistically or by clinically important difference) between lower extremity alignment angle and RPD. However, in the transverse plane, increased external tibial rotation [odds ratio (OR) 1.819; 95% confidence interval (CI) 1.282-2.581], increased femoral anteversion (OR 1.183; 95% CI 1.029-1.360), and increased external tibial torsion (OR 0.880; 95% CI 0.782-0.991) were all correlated with RPD. The tibia was more rotated relative to femur at the knee joint in the RPD group under the weight-bearing conditions compared to under the non-weight-bearing conditions (p < 0.05). This study showed that during weight-bearing, alignment parameters in the transverse plane related to the risk of RPD, while in the sagittal and coronal plane alignment parameters did not correlate with RPD. The clinical importance of this study is that the 3D measurements more directly, precisely, and sensitively

  11. 5D CNS+ Software for Automatically Imaging Axial, Sagittal, and Coronal Planes of Normal and Abnormal Second-Trimester Fetal Brains.

    PubMed

    Rizzo, Giuseppe; Capponi, Alessandra; Persico, Nicola; Ghi, Tullio; Nazzaro, Giovanni; Boito, Simona; Pietrolucci, Maria Elena; Arduini, Domenico

    2016-10-01

    The purpose of this study was to test new 5D CNS+ software (Samsung Medison Co, Ltd, Seoul, Korea), which is designed to image axial, sagittal, and coronal planes of the fetal brain from volumes obtained by 3-dimensional sonography. The study consisted of 2 different steps. First in a prospective study, 3-dimensional fetal brain volumes were acquired in 183 normal consecutive singleton pregnancies undergoing routine sonographic examinations at 18 to 24 weeks' gestation. The 5D CNS+ software was applied, and the percentage of adequate visualization of brain diagnostic planes was evaluated by 2 independent observers. In the second step, the software was also tested in 22 fetuses with cerebral anomalies. In 180 of 183 fetuses (98.4%), 5D CNS+ successfully reconstructed all of the diagnostic planes. Using the software on healthy fetuses, the observers acknowledged the presence of diagnostic images with visualization rates ranging from 97.7% to 99.4% for axial planes, 94.4% to 97.7% for sagittal planes, and 92.2% to 97.2% for coronal planes. The Cohen κ coefficient was analyzed to evaluate the agreement rates between the observers and resulted in values of 0.96 or greater for axial planes, 0.90 or greater for sagittal planes, and 0.89 or greater for coronal planes. All 22 fetuses with brain anomalies were identified among a series that also included healthy fetuses, and in 21 of the 22 cases, a correct diagnosis was made. 5D CNS+ was efficient in successfully imaging standard axial, sagittal, and coronal planes of the fetal brain. This approach may simplify the examination of the fetal central nervous system and reduce operator dependency.

  12. Radiographic diagnosis of sagittal plane rotational displacement in pelvic fractures: a cadaveric model and clinical case study.

    PubMed

    Shui, Xiaolong; Ying, Xiaozhou; Kong, Jianzhong; Feng, Yongzeng; Hu, Wei; Guo, Xiaoshan; Wang, Gang

    2015-08-01

    Our objective was to measure the sagittal plane rotational (flexion and extension) displacement of hemipelvis radiologically and analyze the ratio of flexion and extension displacement of unstable pelvic fractures. We used 8 cadaveric models to study the radiographic evidence of pelvic fractures in the sagittal plane. We performed pelvic osteotomy on 8 cadavers to simulate anterior and posterior pelvic ring injury. Radiological data were measured in the flexion and extension group under different angles (5°, 10°, 15°, 20°, and 25°). We retrospectively reviewed 164 patients who were diagnosed with a unilateral fracture of the pelvis. Pelvic ring displacement was identified and recorded radiographically in cadaveric models. The flexion and extension displacement of pelvic fractures was measured in terms of the vertical distance of fracture from the top of iliac crest to the pubic tubercle (CD) or from the top of iliac crest to the lowest point of ischial tuberosity (AB). Fifty-seven pelves showed flexion displacement and 15 showed extension displacement. Closed reduction including internal fixation and external fixation was successfully used in 141 cases (86.0 %). The success rates of closed reduction in flexion and extension displacement groups were 77 and 73 %, respectively, which were lower than in unstable pelvic ring fractures. The sagittal plane rotation (flexion and extension) displacement of pelvic fractures could be measured by special points and lines on the radiographs. Minimally invasive reduction should be based on clearly identified differences between the sagittal plane rotation and the vertical displacement of pelvic fractures.

  13. [Tibiotalocalcaneal arthrodesis using a retrograde nail locked in the sagittal plane].

    PubMed

    Veselý, R; Procházka, V; Visna, P; Valentová, J; Savolt, J

    2008-04-01

    To evaluate our experience with the use of a retrograde nail locked in the sagittal plane for tibiotalocalcaneal arthrodesis indicated in severe post-traumatic arthritis of the ankle. Twenty patients, 16 men and four women at an average age of 58.7 years (range, 23 to 72) were evaluated. All patients had severe post-traumatic changes in the talocrural and talocalcaneal joints. Five patients also had an equinus deformity. In two patients arthrodesis followed the treatment of purulent arthritis of the talocrural joint. A local fasciocutaneous flap was used for soft tissue reconstruction in three patients. All patients were operated on using the standard surgical technique. METHODS With the patient in a supine position, reamed by hand with the use of a driving rod, a straight retrograde AAN Orthofix nail was inserted through the heel bone and talus into the distal tibia and locked in these bones in the sagittal plane. No complications such as injury to the neurovascular plexus or pseudoarthrosis were recorded. Four patients showed a reaction to the proximal locking screw on the proximal tibial surface, which was treated by earlier screw removal under topical anaesthesia. Due to infectious complications, the nail had to be removed prematurely in one patient. The average Foot Function Index was 12 points (range, 10 to 15) and the average ankle-hindfoot score was 67.6 points (range, 59 to 84). Thirteen patients (65 %) were not limited in their daily activities or recreational sports, six (30 %) experienced pain in sports but not daily activities and one patient (5 %) reported pain even when walking. All fusions healed in the correct position within 18 weeks. Tibiotalocalcaneal arthrodesis is not a frequent surgical procedure in either trauma surgery or orthopaedics. For this complicated procedure, rather than intramedullary nails, internal fixation with screws or plates or external fixation are preferred. The high rate of bony healing can be explained by maintenance of

  14. Knee joint passive stiffness and moment in sagittal and frontal planes markedly increase with compression.

    PubMed

    Marouane, H; Shirazi-Adl, A; Adouni, M

    2015-01-01

    Knee joints are subject to large compression forces in daily activities. Due to artefact moments and instability under large compression loads, biomechanical studies impose additional constraints to circumvent the compression position-dependency in response. To quantify the effect of compression on passive knee moment resistance and stiffness, two validated finite element models of the tibiofemoral (TF) joint, one refined with depth-dependent fibril-reinforced cartilage and the other less refined with homogeneous isotropic cartilage, are used. The unconstrained TF joint response in sagittal and frontal planes is investigated at different flexion angles (0°, 15°, 30° and 45°) up to 1800 N compression preloads. The compression is applied at a novel joint mechanical balance point (MBP) identified as a point at which the compression does not cause any coupled rotations in sagittal and frontal planes. The MBP of the unconstrained joint is located at the lateral plateau in small compressions and shifts medially towards the inter-compartmental area at larger compression forces. The compression force substantially increases the joint moment-bearing capacities and instantaneous angular rigidities in both frontal and sagittal planes. The varus-valgus laxities diminish with compression preloads despite concomitant substantial reductions in collateral ligament forces. While the angular rigidity would enhance the joint stability, the augmented passive moment resistance under compression preloads plays a role in supporting external moments and should as such be considered in the knee joint musculoskeletal models.

  15. Lumbar contribution to the trunk forward bending and backward return; age-related differences.

    PubMed

    Vazirian, Milad; Shojaei, Iman; Agarwal, Anuj; Bazrgari, Babak

    2017-07-01

    Age-related differences in lumbar contribution to the trunk motion in the sagittal plane were investigated. Sixty individuals between 20-70 years old in five gender-balanced age groups performed forward bending and backward return with slow and fast paces. Individuals older than 50 years old, irrespective of the gender or pace, had smaller lumbar contribution than those younger than this age. The lumbar contribution to trunk motion was also smaller in female participants than male participants, and under fast pace than under the slow pace. Age-related differences in lumbar contributions suggest the synergy between the active and passive lower back tissues is different between those above and under 50 years old, differences that are likely to affect the lower back mechanics. Therefore, detailed modelling should be conducted in future to find the age-related differences in the lower back mechanics for tasks involving large trunk motion. Practitioner Summary: Lumbar contribution to the sagittal trunk motion was observed to be smaller in individuals above 50 years old than those below this age. This could be an indication of a likely change in the synergy between the active and passive lower back tissues, which may disturb the lower back mechanics.

  16. Overcorrection of lumbar lordosis for adult spinal deformity with sagittal imbalance: comparison of radiographic outcomes between overcorrection and undercorrection.

    PubMed

    Lee, Jung-Hee; Kim, Ki-Tack; Lee, Sang-Hun; Kang, Kyung-Chung; Oh, Hyun-Seok; Kim, Young-Jun; Jung, Hyuk

    2016-08-01

    To determine the correlation of the difference between postoperative lumbar lordosis (LL) and ideal LL with the sagittal vertical axis (SVA) at the final follow-up in patients with adult spinal deformity (ASD). Fifty-one patients with degenerative lumbar kyphosis (DLK) (mean age 66.5 years) who underwent surgical correction with a minimum 2-year follow-up were evaluated. Based on the difference between postoperative LL and ideal LL using the Korean version of Legaye's formula, we divided the 51 patients into two groups: overcorrection (degree of postoperative LL > ideal LL) and undercorrection (degree of postoperative LL < ideal LL). Our clinical series of patients comprised 24 in the overcorrection and 27 in the undercorrection group. No significant differences were found in preoperative pelvic incidence (PI 52.6° vs. 57.3°), sacral slope (SS 23.3° vs. 18.3°), LL (-6.9° vs. -2.3°), thoracic kyphosis (TK 4.7° vs. 4.9°) and SVA (140 vs. 139 mm) except pelvic tilt (PT 29.4° vs. 39.0°), between the two groups. All the patients in the overcorrection group and 16 in the undercorrection group achieved postoperative optimal sagittal balance based on SVA ≤ 50 mm. In addition, significant differences in PT (10.5° vs. 26.7°), SS (42.1° vs. 30.6°), LL (-64.3° vs. -37.1°), TK (22.6° vs. 15.8°), and SVA (-1 vs. 41 mm) between the two groups were observed postoperatively. Furthermore, four patients (16.7 %) in the overcorrection group and eight (50 %) in the undercorrection group had sagittal decompensation at the final follow-up. Our results showed that the difference between postoperative LL and ideal LL had a significant correlation with postoperative and final follow-up SVA in our clinical series. Overcorrection of LL is an effective treatment modality to maintain optimal sagittal alignment in patients with DLK; this suggests that it should be considered in preoperative planning for patients with ASD with sagittal imbalance.

  17. Standardized way for imaging of the sagittal spinal balance.

    PubMed

    Morvan, Gérard; Mathieu, Philippe; Vuillemin, Valérie; Guerini, Henri; Bossard, Philippe; Zeitoun, Frédéric; Wybier, Marc

    2011-09-01

    Nowadays, conventional or digitalized teleradiography remains the most commonly used tool for the study of the sagittal balance, sometimes with secondary digitalization. The irradiation given by this technique is important and the photographic results are often poor. Some radiographic tables allow the realization of digitalized spinal radiographs by simultaneous translation of X-ray tube and receptor. EOS system is a new, very low dose system which gives good quality images, permits a simultaneous acquisition of upright frontal and sagittal views, is able to cover in the same time the spine and the lower limbs and study the axial plane on 3D envelope reconstructions. In the future, this low dose system should take a great place in the study of the pelvispinal balance. On the lateral view, several pelvic (incidence, pelvic tilt, sacral slope) and spinal (lumbar lordosis, thoracic kyphosis, Th9 sagittal offset, C7 plumb line) parameters are drawn to define the pelvispinal balance. All are interdependent. Pelvic incidence is an individual anatomic characteristic that corresponds to the "thickness" of the pelvis and governs the spinal balance. Pelvis and spine, in a harmonious whole, can be compared to an accordion, more or less compressed or stretched.

  18. Relationship between movement time and hip moment impulse in the sagittal plane during sit-to-stand movement: a combined experimental and computer simulation study.

    PubMed

    Inai, Takuma; Takabayashi, Tomoya; Edama, Mutsuaki; Kubo, Masayoshi

    2018-04-27

    The association between repetitive hip moment impulse and the progression of hip osteoarthritis is a recently recognized area of study. A sit-to-stand movement is essential for daily life and requires hip extension moment. Although a change in the sit-to-stand movement time may influence the hip moment impulse in the sagittal plane, this effect has not been examined. The purpose of this study was to clarify the relationship between sit-to-stand movement time and hip moment impulse in the sagittal plane. Twenty subjects performed the sit-to-stand movement at a self-selected natural speed. The hip, knee, and ankle joint angles obtained from experimental trials were used to perform two computer simulations. In the first simulation, the actual sit-to-stand movement time obtained from the experiment was entered. In the second simulation, sit-to-stand movement times ranging from 0.5 to 4.0 s at intervals of 0.25 s were entered. Hip joint moments and hip moment impulses in the sagittal plane during sit-to-stand movements were calculated for both computer simulations. The reliability of the simulation model was confirmed, as indicated by the similarities in the hip joint moment waveforms (r = 0.99) and the hip moment impulses in the sagittal plane between the first computer simulation and the experiment. In the second computer simulation, the hip moment impulse in the sagittal plane decreased with a decrease in the sit-to-stand movement time, although the peak hip extension moment increased with a decrease in the movement time. These findings clarify the association between the sit-to-stand movement time and hip moment impulse in the sagittal plane and may contribute to the prevention of the progression of hip osteoarthritis.

  19. An algorithm based on OmniView technology to reconstruct sagittal and coronal planes of the fetal brain from volume datasets acquired by three-dimensional ultrasound.

    PubMed

    Rizzo, G; Capponi, A; Pietrolucci, M E; Capece, A; Aiello, E; Mammarella, S; Arduini, D

    2011-08-01

    To describe a novel algorithm, based on the new display technology 'OmniView', developed to visualize diagnostic sagittal and coronal planes of the fetal brain from volumes obtained by three-dimensional (3D) ultrasonography. We developed an algorithm to image standard neurosonographic planes by drawing dissecting lines through the axial transventricular view of 3D volume datasets acquired transabdominally. The algorithm was tested on 106 normal fetuses at 18-24 weeks of gestation and the visualization rates of brain diagnostic planes were evaluated by two independent reviewers. The algorithm was also applied to nine cases with proven brain defects. The two reviewers, using the algorithm on normal fetuses, found satisfactory images with visualization rates ranging between 71.7% and 96.2% for sagittal planes and between 76.4% and 90.6% for coronal planes. The agreement rate between the two reviewers, as expressed by Cohen's kappa coefficient, was > 0.93 for sagittal planes and > 0.89 for coronal planes. All nine abnormal volumes were identified by a single observer from among a series including normal brains, and eight of these nine cases were diagnosed correctly. This novel algorithm can be used to visualize standard sagittal and coronal planes in the fetal brain. This approach may simplify the examination of the fetal brain and reduce dependency of success on operator skill. Copyright © 2011 ISUOG. Published by John Wiley & Sons, Ltd.

  20. Complete duplication of bladder and urethra in a sagittal plane in a male infant: case report and literature review.

    PubMed

    Coker, Alisa M; Allshouse, Michael J; Koyle, Martin A

    2008-08-01

    Complete duplication of the bladder and urethra is a rare entity. It may occur in the coronal and sagittal planes, and is often associated with other organ system anomalies, in particular of the gastrointestinal tract. We report an unusual variant of sagittal duplication of the bladder, in a male, associated with rudimentary hindgut duplication, and review the literature pertaining to this unusual anomaly.

  1. Sagittal plane analysis of selective posterior thoracic spinal fusion in adolescent idiopathic scoliosis: a comparison study of all pedicle screw and hybrid instrumentation.

    PubMed

    Liu, Tie; Hai, Yong

    2014-07-01

    To compare sagittal profiles of selective posterior thoracic instrumentation with segmental pedicle screws instrumentation and hybrid (hook and pedicle screw). Nowadays, thoracic screws are considered more effective than other constructs in spinal deformity correction and have become the treatment in adolescent idiopathic scoliosis surgery. However, recent research found that this enhanced correction ability may sacrifice sagittal balance. As lumbar lordosis is dependent upon thoracic kyphosis (TK), it has been important to maintain TK magnitude in selective thoracic fusions to keep balance. There is no sagittal measurement analysis between the hybrid and all-screw constructs type in cases of selective thoracic fusion. All adolescent idiopathic scoliosis (Lenke1) patients surgically treated in our department between 2003 and 2008 were reviewed. Radiographs of these patients, whose preoperative, immediately postoperative, and minimum 2-year follow-up after selective thoracic fusion (lower instrumented vertebrae not lower than L1, hybrid group the pedicle screw instrumentation not higher than T10) were evaluated, 21 patients underwent posterior hybrid instrumentation and 21 underwent pedicle screw instrumentation. No significant difference in sagittal profiles was observed between the 2 groups. At final follow-up, the proximal junctional measurement has a minor increase in both the groups. TK (T5-T12) also increased (+2.0 degrees of increase in hybrid group vs. +3.9 degrees of increase in the pedicle screw group). The effect of different instrumentation in changing TK at various time points between 2 groups was statistic different (P=0.004). Lumbar lordosis (L1-L5) was increased in both the groups. No significant changes in distal junctional measurement and thoracolumbar junction were noted. The C7 sagittal plumbline remained negative in both the groups at the final follow-up. There was no statistically significant difference comparing the sagittal alignment

  2. Analysis of sagittal spinopelvic parameters in achondroplasia.

    PubMed

    Hong, Jae-Young; Suh, Seung-Woo; Modi, Hitesh N; Park, Jong-Woong; Park, Jung-Ho

    2011-08-15

    Prospective radiological analysis of patients with achondroplasia. To analyze sagittal spinal alignment and pelvic orientation in achondroplasia patients. Knowledge of sagittal spinopelvic parameters is important for the treatment of achondroplasia, because they differ from those of the normal population and can induce pain. The study and control groups were composed of 32 achondroplasia patients and 24 healthy volunteers, respectively. All underwent lateral radiography of the whole spine including hip joints. The radiographic parameters examined were sacral slope (SS), pelvic tilt, pelvic incidence (PI), S1 overhang, thoracic kyphosis, T10-L2 kyphosis, lumbar lordosis (LL1, LL2), and sagittal balance. Statistical analysis was performed to identify significant differences between the two groups. In addition, correlations between parameters and symptoms were sought. Sagittal spinopelvic parameters, namely, pelvic tilt, pelvic incidence, S1 overhang, thoracic kyphosis, T10-L2 kyphosis, lumbar lordosis 1 and sagittal balance were found to be significantly different in the patient and control groups (P < 0.05). In addition, sagittal parameters were found to be related to each other in the patient group (P < 0.05), that is, PI was related to SS and pelvic tilt, and LL was related to thoracic kyphosis. Furthermore, in terms of relations between spinal and pelvic parameters, LL was related to SS and PI, and sagittal balance was related to SS and PI. Furthermore, LL and T10-L2 kyphosis were found to be related to pain (P < 0.05), whereas no other parameter was found to be related to VAS scores. Sagittal parameters and possible relationships between sagittal parameters and symptoms were found to be significantly different in achondroplasia patients and normal healthy controls. The present study shows that sagittal spinal and pelvic parameters can assist the treatment of spinal disorders in achondroplasia patients.

  3. Graft extrusion in both the coronal and sagittal planes is greater after medial compared with lateral meniscus allograft transplantation but is unrelated to early clinical outcomes.

    PubMed

    Lee, Dae-Hee; Lee, Chang-Rack; Jeon, Jin-Ho; Kim, Kyung-Ah; Bin, Seong-Il

    2015-01-01

    Graft extrusion after meniscus allograft transplantation (MAT) may be affected by horn fixation, which differs between medial and lateral MAT. Few studies have compared graft extrusion, especially sagittal extrusion, after medial and lateral MAT. In patients undergoing medial and lateral MAT, graft extrusion is likely similar and not correlated with postoperative Lysholm scores. Cohort study; Level of evidence, 2. Meniscus graft extrusion in the coronal and sagittal planes was compared in 51 knees undergoing medial MAT and 84 undergoing lateral MAT. Distances from the anterior and posterior articular cartilage margins to the anterior (anterior cartilage meniscus distance [ACMD]) and posterior (posterior cartilage meniscus distance [PCMD]) horns, respectively, were assessed on immediate postoperative magnetic resonance imaging and compared in patients undergoing medial and lateral MAT. Correlations between coronal and sagittal graft extrusion and between extrusion and the Lysholm score were compared in the 2 groups. In the coronal plane, mean absolute (4.3 vs 2.7 mm, respectively; P<.001) and relative (39% vs 21%, respectively; P<.001) graft extrusions were significantly greater for medial than lateral MAT. In the sagittal plane, mean absolute and relative ACMD and PCMD values were significantly greater for medial than lateral MAT (P<.001 each). For both medial and lateral MAT, mean absolute and relative ACMDs were significantly larger than PCMDs (P<.001 each). Graft extrusion>3 mm in the coronal plane was significantly more frequent in the medial (78%) than in the lateral (35%) MAT group. In the sagittal plane, the frequencies of ACMDs (72% vs 39%, respectively) and PCMDs (23% vs 4%, respectively) >3 mm were also significantly greater in the medial than in the lateral MAT group. Coronal and sagittal extrusions were not correlated with postoperative Lysholm scores for both medial and lateral MAT. The amount and incidence of graft extrusion were greater after medial

  4. Influence of Lumbar Lordosis on the Outcome of Decompression Surgery for Lumbar Canal Stenosis.

    PubMed

    Chang, Han Soo

    2018-01-01

    Although sagittal spinal balance plays an important role in spinal deformity surgery, its role in decompression surgery for lumbar canal stenosis is not well understood. To investigate the hypothesis that sagittal spinal balance also plays a role in decompression surgery for lumbar canal stenosis, a prospective cohort study analyzing the correlation between preoperative lumbar lordosis and outcome was performed. A cohort of 85 consecutive patients who underwent decompression for lumbar canal stenosis during the period 2007-2011 was analyzed. Standing lumbar x-rays and 36-item short form health survey questionnaires were obtained before and up to 2 years after surgery. Correlations between lumbar lordosis and 2 parameters of the 36-item short form health survey (average physical score and bodily pain score) were statistically analyzed using linear mixed effects models. There was a significant correlation between preoperative lumbar lordosis and the 2 outcome parameters at postoperative, 6-month, 1-year, and 2-year time points. A 10° increase of lumbar lordosis was associated with a 5-point improvement in average physical scores. This correlation was not present in preoperative scores. This study showed that preoperative lumbar lordosis significantly influences the outcome of decompression surgery on lumbar canal stenosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Changing Sagittal-Plane Landing Styles to Modulate Impact and Tibiofemoral Force Magnitude and Directions Relative to the Tibia

    PubMed Central

    Shimokochi, Yohei; Ambegaonkar, Jatin P.; Meyer, Eric G.

    2016-01-01

    Context: Ground reaction force (GRF) and tibiofemoral force magnitudes and directions have been shown to affect anterior cruciate ligament loading during landing. However, the kinematic and kinetic factors modifying these 2 forces during landing are unknown. Objective: To clarify the intersegmental kinematic and kinetic links underlying the alteration of the GRF and tibiofemoral force vectors secondary to changes in the sagittal-plane body position during single-legged landing. Design: Crossover study. Setting: Laboratory. Patients or Other Participants: Twenty recreationally active participants (age = 23.4 ± 3.6 years, height = 171.0 ± 9.4 cm, mass = 73.3 ± 12.7 kg). Intervention(s): Participants performed single-legged landings using 3 landing styles: self-selected landing (SSL), body leaning forward and landing on the toes (LFL), and body upright with flat-footed landing (URL). Three-dimensional kinetics and kinematics were recorded. Main Outcome Measure(s): Sagittal-plane tibial inclination and knee-flexion angles, GRF magnitude and inclination angles relative to the tibia, and proximal tibial forces at peak tibial axial forces. Results: The URL resulted in less time to peak tibial axial forces, smaller knee-flexion angles, and greater magnitude and a more anteriorly inclined GRF vector relative to the tibia than did the SSL. These changes led to the greatest peak tibial axial and anterior shear forces in the URL among the 3 landing styles. Conversely, the LFL resulted in longer time to peak tibial axial forces, greater knee-flexion angles, and reduced magnitude and a more posteriorly inclined GRF vector relative to the tibia than the SSL. These changes in LFL resulted in the lowest peak tibial axial and largest posterior shear forces among the 3 landing styles. Conclusions: Sagittal-plane intersegmental kinematic and kinetic links strongly affected the magnitude and direction of GRF and tibiofemoral forces during the impact phase of single-legged landing

  6. 1975 Memorial Award Paper. Image generation and display techniques for CT scan data. Thin transverse and reconstructed coronal and sagittal planes.

    PubMed

    Glenn, W V; Johnston, R J; Morton, P E; Dwyer, S J

    1975-01-01

    The various limitations to computerized axial tomographic (CT) interpretation are due in part to the 8-13 mm standard tissue plane thickness and in part to the absence of alternative planes of view, such as coronal or sagittal images. This paper describes a method for gathering multiple overlapped 8 mm transverse sections, subjecting these data to a deconvolution process, and then displaying thin (1 mm) transverse as well as reconstructed coronal and sagittal CT images. Verification of the deconvolution technique with phantom experiments is described. Application of the phantom results to human post mortem CT scan data illustrates this method's faithful reconstruction of coronal and sagittal tissue densities when correlated with actual specimen photographs of a sectioned brain. A special CT procedure, limited basal overlap scanning, is proposed for use on current first generation CT scanners without hardware modification.

  7. [Evaluation of three methods for constructing craniofacial mid-sagittal plane based on the cone beam computed tomography].

    PubMed

    Wang, S W; Li, M; Yang, H F; Zhao, Y J; Wang, Y; Liu, Y

    2016-04-18

    To compare the accuracyof interactive closet point (ICP) algorithm, Procrustes analysis (PA) algorithm,and a landmark-independent method to construct the mid-sagittal plane (MSP) of the cone beam computed tomography.To provide theoretical basis for establishing coordinate systemof CBCT images and symmetric analysis. Ten patients were selected and scanned by CBCT before orthodontic treatment.The scan data was imported into Mimics 10.0 to reconstructthree dimensional skulls.And the MSP of each skull was generated by ICP algorithm, PA algorithm and landmark-independent method. MSP extracted by ICP algorithm or PA algorithm involvedthree steps. First, the 3D skull processing was performed by reverse engineering software geomagic studio 2012 to obtain the mirror skull. Then, the original and its mirror skull was registered separately by ICP algorithm in geomagic studio 2012 and PA algorithm in NX Imageware 11.0. Finally, the registered data were united into new data to calculate the MSP of the originaldata in geomagic studio 2012. The mid-sagittal plane was determined by SELLA (S), nasion (N), basion (Ba) as traditional landmark-dependent methodconducted in software InVivoDental 5.0. The distance from 9 pairs of symmetric anatomical marked points to three sagittal plane were measured and calculated to compare the differences of the absolute value. The one-way ANOVA test was used to analyze the variable differences among the 3 MSPs. The pairwise comparison was performed with LSD method. MSPs calculated by the three methods were available for clinic analysis, which could be concluded from the front view.However, there was significant differences among the distances from the 9 pairs of symmetric anatomical marked points to the MSPs (F=10.932,P=0.001).LSD test showed there was no significant difference between the ICP algorithm and landmark-independent method (P=0.11), while there was significant difference between the PA algorithm and landmark-independent methods (P=0

  8. Lumbar lordosis in female collegiate dancers and gymnasts.

    PubMed

    Ambegaonkar, Jatin P; Caswell, Amanda M; Kenworthy, Kristen L; Cortes, Nelson; Caswell, Shane V

    2014-12-01

    Postural deviations can predispose an individual to increased injury risk. Specifically, lumbar deviations are related to increased low back pain and injury. Dancers and gymnasts are anecdotally suggested to have exaggerated lumbar lordosis and subsequently may be at increased risk of lumbar pathologies. Our objective was to examine lumbar lordosis levels in dancers and gymnasts. We examined lumbar lordosis in 47 healthy collegiate females (17 dancers, 29 gymnasts; mean age 20.2 ± 1.6 yrs) using 2-dimensional sagittal plane photographs and the Watson MacDonncha Posture Analysis instrument. Participants' lordosis levels were cross-tabulated and a Mann-Whitney U-test compared lumbar lordosis between groups (p<0.05). Most participants (89.4%, n=42) exhibited either marked (dancers 50%, n=9; gymnasts 62.1%, n=18; combined 57.4%, n=27) or moderate (dancers 27.8%, n=5; gymnasts 34.5%, n=10; combined 31.9%, n=15) lumbar lordosis deviations. The distribution of lordosis was similar across groups (p=0.22). Most dancers and gymnasts had moderate or marked lumbar lordosis. The extreme ranges of motion required during dancing and gymnastics may contribute to the participants' high lumbar lordosis. Instructors should be aware that there may be links between repetitive hyperextension activities and lumbar lordosis levels in dancers and gymnasts. Thus, they should proactively examine lumbar lordosis in their dancers and gymnasts. How much age of training onset, regimens, survivor bias, or other factors influence lumbar lordosis requires study. Longitudinal studies are also needed to determine if lumbar lordosis levels influence lumbar injury incidence in dancers and gymnasts.

  9. Comparison of erector spinae and hamstring muscle activities and lumbar motion during standing knee flexion in subjects with and without lumbar extension rotation syndrome.

    PubMed

    Kim, Si-hyun; Kwon, Oh-yun; Park, Kyue-nam; Kim, Moon-Hwan

    2013-12-01

    The aim of this study was to compare the activity of the erector spinae (ES) and hamstring muscles and the amount and onset of lumbar motion during standing knee flexion between individuals with and without lumbar extension rotation syndrome. Sixteen subjects with lumbar extension rotation syndrome (10 males, 6 females) and 14 healthy subjects (8 males, 6 females) participated in this study. During the standing knee flexion, surface electromyography (EMG) was used to measure muscle activity, and surface EMG electrodes were attached to both the ES and hamstring (medial and lateral) muscles. A three-dimensional motion analysis system was used to measure kinematic data of the lumbar spine. An independent-t test was conducted for the statistical analysis. The group suffering from lumbar extension rotation syndrome exhibited asymmetric muscle activation of the ES and decreased hamstring activity. Additionally, the group with lumbar extension rotation syndrome showed greater and earlier lumbar extension and rotation during standing knee flexion compared to the control group. These data suggest that asymmetric ES muscle activation and a greater amount of and earlier lumbar motion in the sagittal and transverse plane during standing knee flexion may be an important factor contributing to low back pain. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. A Proposal of New Reference System for the Standard Axial, Sagittal, Coronal Planes of Brain Based on the Serially-Sectioned Images

    PubMed Central

    Park, Jin Seo; Park, Hyo Seok; Shin, Dong Sun; Har, Dong-Hwan; Cho, Zang-Hee; Kim, Young-Bo; Han, Jae-Yong; Chi, Je-Geun

    2010-01-01

    Sectional anatomy of human brain is useful to examine the diseased brain as well as normal brain. However, intracerebral reference points for the axial, sagittal, and coronal planes of brain have not been standardized in anatomical sections or radiological images. We made 2,343 serially-sectioned images of a cadaver head with 0.1 mm intervals, 0.1 mm pixel size, and 48 bit color and obtained axial, sagittal, and coronal images based on the proposed reference system. This reference system consists of one principal reference point and two ancillary reference points. The two ancillary reference points are the anterior commissure and the posterior commissure. And the principal reference point is the midpoint of two ancillary reference points. It resides in the center of whole brain. From the principal reference point, Cartesian coordinate of x, y, z could be made to be the standard axial, sagittal, and coronal planes. PMID:20052359

  11. Sagittal imbalance treated with L5 pedicle subtraction osteotomy with short lumbar fusion from L4 to sacrum using four screws into L4 for enhanced fixation two additional vertebral screws: a technical note.

    PubMed

    Wangdi, Kuenzang; Otsuki, Bungo; Fujibayashi, Shunsuke; Tanida, Shimei; Masamoto, Kazutaka; Matsuda, Shuichi

    2018-02-07

    To report on suggested technique with four screws in a single vertebra (two pedicle screws and two direct vertebral body screws) for enhanced fixation with just one level cranially to a pedicle subtraction osteotomy (PSO). A 60-year-old woman underwent L4/5 fusion surgery for degenerative spondylolisthesis. Two years later, she was unable to stand upright even for a short time because of lumbar kyphosis caused by subsidence of the fusion cage and of Baastrup syndrome in the upper lumbar spine [sagittal vertical axis (SVA) of 114 mm, pelvic incidence of 75°, and lumbar lordosis (LL) of 41°]. She underwent short-segment fusion from L4 to the sacrum with L5 pedicle subtraction osteotomy. We reinforced the construct with two vertebral screws at L4 in addition to the conventional L4 pedicle screws. After the surgery, her sagittal parameters were improved (SVA, 36 mm; LL, 54°). Two years after the corrective surgery, she maintained a low sagittal vertical axis though high residual pelvic tilt indicated that the patient was still compensating for residual sagittal misalignment. PSO surgery for sagittal imbalance usually requires a long fusion at least two levels above and below the osteotomy site to achieve adequate stability and better global alignment. However, longer fixation may decrease the patients' quality of life and cause a proximal junctional failure. Our novel technique may shorten the fixation area after osteotomy surgery. These slides can be retrieved under Electronic Supplementary Material.

  12. Agreement between fiber optic and optoelectronic systems for quantifying sagittal plane spinal curvature in sitting.

    PubMed

    Cloud, Beth A; Zhao, Kristin D; Breighner, Ryan; Giambini, Hugo; An, Kai-Nan

    2014-07-01

    Spinal posture affects how individuals function from a manual wheelchair. There is a need to directly quantify spinal posture in this population to ultimately improve function. A fiber optic system, comprised of an attached series of sensors, is promising for measuring large regions of the spine in individuals sitting in a wheelchair. The purpose of this study was to determine the agreement between fiber optic and optoelectronic systems for measuring spinal curvature, and describe the range of sagittal plane spinal curvatures in natural sitting. Able-bodied adults (n = 26, 13 male) participated. Each participant assumed three sitting postures: natural, slouched (accentuated kyphosis), and extension (accentuated lordosis) sitting. Fiber optic (ShapeTape) and optoelectronic (Optotrak) systems were applied to the skin over spinous processes from S1 to C7 and used to measure sagittal plane spinal curvature. Regions of kyphosis and lordosis were identified. A Cobb angle-like method was used to quantify lordosis and kyphosis. Generalized linear model and Bland-Altman analyses were used to assess agreement. A strong correlation exists between curvature values obtained with Optotrak and ShapeTape (R(2) = 0.98). The mean difference between Optotrak and ShapeTape for kyphosis in natural, extension, and slouched postures was 4.30° (95% LOA: -3.43 to 12.04°), 3.64° (95% LOA: -1.07 to 8.36°), and 4.02° (95% LOA: -2.80 to 10.84°), respectively. The mean difference for lordosis, when present, in natural and extension postures was 2.86° (95% LOA: -1.18 to 6.90°) and 2.55° (95% LOA: -3.38 to 8.48°), respectively. In natural sitting, the mean ± SD of kyphosis values was 35.07 ± 6.75°. Lordosis was detected in 8/26 participants: 11.72 ± 7.32°. The fiber optic and optoelectronic systems demonstrate acceptable agreement for measuring sagittal plane thoracolumbar spinal curvature. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Agreement between Fiber Optic and Optoelectronic Systems for Quantifying Sagittal Plane Spinal Curvature in Sitting

    PubMed Central

    Cloud, Beth A.; Zhao, Kristin D.; Breighner, Ryan; Giambini, Hugo; An, Kai-Nan

    2014-01-01

    Spinal posture affects how individuals function from a manual wheelchair. There is a need to directly quantify spinal posture in this population to ultimately improve function. A fiber optic system, comprised of an attached series of sensors, is promising for measuring large regions of the spine in individuals sitting in a wheelchair. The purpose of this study was to determine the agreement between fiber optic and optoelectronic systems for measuring spinal curvature, and describe the range of sagittal plane spinal curvatures in natural sitting. Able-bodied adults (n=26, 13 male) participated. Each participant assumed three sitting postures: natural, slouched (accentuated kyphosis), and extension (accentuated lordosis) sitting. Fiber optic (ShapeTape) and optoelectronic (Optotrak) systems were applied to the skin over spinous processes from S1 to C7 and used to measure sagittal plane spinal curvature. Regions of kyphosis and lordosis were identified. A Cobb angle-like method was used to quantify lordosis and kyphosis. Generalized linear model and Bland-Altman analyses were used to assess agreement. A strong correlation exists between curvature values obtained with Optotrak and ShapeTape (R2=0.98). The mean difference between Optotrak and ShapeTape for kyphosis in natural, extension, and slouched postures was 4.30° (95%LOA: −3.43-12.04°), 3.64° (95%LOA: −1.07-8.36°), and 4.02° (95%LOA: −2.80-10.84°), respectively. The mean difference for lordosis, when present, in natural and extension postures is 2.86° (95%LOA: −1.18-6.90°) and 2.55° (95%LOA: −3.38-8.48°), respectively. In natural sitting, the mean±SD of kyphosis values was 35.07± 6.75°. Lordosis was detected in 8/26 participants: 11.72±7.32°. The fiber optic and optoelectronic systems demonstrate acceptable agreement for measuring sagittal plane thoracolumbar spinal curvature. PMID:24909579

  14. Morphometric study of the lumbar spinal canal in the Korean population.

    PubMed

    Lee, H M; Kim, N H; Kim, H J; Chung, I H

    1995-08-01

    The anatomic dimensions of the vertebral body and spinal canal of the lumbar spine were analyzed in Koreans. To determine the normal dimension of the lumbar spinal canal in Koreans, to determine whether there are any racial differences in the morphometry of the lumbar spinal canal, and to provide criteria for diagnosing spinal stenosis in the Far Eastern Asian. Some radiologic and anatomic studies have been conducted regarding the size of the lumbar spinal canal of whites and blacks in western and African countries. One-thousand-eight-hundred measurements were performed on the transverse and sagittal diameters of vertebral bodies and spinal canals using complete sets of 90 lumbar vertebrae. The mean mid-sagittal diameter of the lumbar spinal canal in the Korean population was less than that measured in white and African populations, but there was no significant differences between the Korean, white, and African populations regarding the transverse diameter of the lumbar spinal canal. The mid-sagittal diameter of the lumbar spinal canal is narrowest in the Far Eastern Asian population; the radiologic criteria of spinal stenosis should be reconsidered for these people.

  15. Reliability and reproducibility analysis of the Cobb angle and assessing sagittal plane by computer-assisted and manual measurement tools.

    PubMed

    Wu, Weifei; Liang, Jie; Du, Yuanli; Tan, Xiaoyi; Xiang, Xuanping; Wang, Wanhong; Ru, Neng; Le, Jinbo

    2014-02-06

    Although many studies on reliability and reproducibility of measurement have been performed on coronal Cobb angle, few results about reliability and reproducibility are reported on sagittal alignment measurement including the pelvis. We usually use SurgimapSpine software to measure the Cobb angle in our studies; however, there are no reports till date on its reliability and reproducible measurements. Sixty-eight standard standing posteroanterior whole-spine radiographs were reviewed. Three examiners carried out the measurements independently under the settings of manual measurement on X-ray radiographies and SurgimapSpine software on the computer. Parameters measured included pelvic incidence, sacral slope, pelvic tilt, Lumbar lordosis (LL), thoracic kyphosis, and coronal Cobb angle. SPSS 16.0 software was used for statistical analyses. The means, standard deviations, intraclass and interclass correlation coefficient (ICC), and 95% confidence intervals (CI) were calculated. There was no notable difference between the two tools (P = 0.21) for the coronal Cobb angle. In the sagittal plane parameters, the ICC of intraobserver reliability for the manual measures varied from 0.65 (T2-T5 angle) to 0.95 (LL angle). Further, for SurgimapSpine tool, the ICC ranged from 0.75 to 0.98. No significant difference in intraobserver reliability was found between the two measurements (P > 0.05). As for the interobserver reliability, measurements with SurgimapSpine tool had better ICC (0.71 to 0.98 vs 0.59 to 0.96) and Pearson's coefficient (0.76 to 0.99 vs 0.60 to 0.97). The reliability of SurgimapSpine measures was significantly higher in all parameters except for the coronal Cobb angle where the difference was not significant (P > 0.05). Although the differences between the two methods are very small, the results of this study indicate that the SurgimapSpine measurement is an equivalent measuring tool to the traditional manual in coronal Cobb angle, but is advantageous in spino

  16. Reliability and reproducibility analysis of the Cobb angle and assessing sagittal plane by computer-assisted and manual measurement tools

    PubMed Central

    2014-01-01

    Background Although many studies on reliability and reproducibility of measurement have been performed on coronal Cobb angle, few results about reliability and reproducibility are reported on sagittal alignment measurement including the pelvis. We usually use SurgimapSpine software to measure the Cobb angle in our studies; however, there are no reports till date on its reliability and reproducible measurements. Methods Sixty-eight standard standing posteroanterior whole-spine radiographs were reviewed. Three examiners carried out the measurements independently under the settings of manual measurement on X-ray radiographies and SurgimapSpine software on the computer. Parameters measured included pelvic incidence, sacral slope, pelvic tilt, Lumbar lordosis (LL), thoracic kyphosis, and coronal Cobb angle. SPSS 16.0 software was used for statistical analyses. The means, standard deviations, intraclass and interclass correlation coefficient (ICC), and 95% confidence intervals (CI) were calculated. Results There was no notable difference between the two tools (P = 0.21) for the coronal Cobb angle. In the sagittal plane parameters, the ICC of intraobserver reliability for the manual measures varied from 0.65 (T2–T5 angle) to 0.95 (LL angle). Further, for SurgimapSpine tool, the ICC ranged from 0.75 to 0.98. No significant difference in intraobserver reliability was found between the two measurements (P > 0.05). As for the interobserver reliability, measurements with SurgimapSpine tool had better ICC (0.71 to 0.98 vs 0.59 to 0.96) and Pearson’s coefficient (0.76 to 0.99 vs 0.60 to 0.97). The reliability of SurgimapSpine measures was significantly higher in all parameters except for the coronal Cobb angle where the difference was not significant (P > 0.05). Conclusion Although the differences between the two methods are very small, the results of this study indicate that the SurgimapSpine measurement is an equivalent measuring tool to the traditional manual

  17. Pain intensity attenuates movement control of the lumbar spine in low back pain.

    PubMed

    Bauer, C M; Rast, F M; Ernst, M J; Oetiker, S; Meichtry, A; Kool, J; Rissanen, S M; Suni, J H; Kankaanpää, M

    2015-12-01

    Pain intensity attenuates muscular activity, proprioception, and tactile acuity, with consequent changes of joint kinematics. People suffering from low back pain (LBP) frequently show movement control impairments of the lumbar spine in sagittal plane. This cross-sectional, observational study investigated if the intensity of LBP attenuates lumbar movement control. The hypothesis was that lumbar movement control becomes more limited with increased pain intensity. The effect of LBP intensity, measured with a numeric rating scale (NRS), on lumbar movement control was tested using three movement control tests. The lumbar range of motion (ROM), the ratio of lumbar and hip ROM as indicators of direction specific movement control, and the recurrence and determinism of repetitive lumbar movement patterns were assessed in ninety-four persons suffering from LBP of different intensity and measured with an inertial measurement unit system. Generalized linear models were fitted for each outcome. Lumbar ROM (+ 0.03°, p = 0.24) and ratio of lumbar and hip ROM (0.01, p = 0.84) were unaffected by LBP intensity. Each one point increase on the NRS resulted in a decrease of recurrence and determinism of lumbar movement patterns (-3.11 to -0.06, p ⩽ 0.05). Our results indicate changes in movement control in people suffering from LBP. Whether decreased recurrence and determinism of lumbar movement patterns are intensifiers of LBP intensity or a consequence thereof should be addressed in a future prospective study. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. The Effects of Frontal- and Sagittal-Plane Plyometrics on Change-of-Direction Speed and Power in Adolescent Female Basketball Players.

    PubMed

    McCormick, Brian T; Hannon, James C; Newton, Maria; Shultz, Barry; Detling, Nicole; Young, Warren B

    2016-01-01

    Plyometrics is a popular training modality for basketball players to improve power and change-of-direction speed. Most plyometric training has used sagittal-plane exercises, but improvements in change-of-direction speed have been greater in multi-direction programs. To determine the benefits of a 6-wk frontal-plane plyometric (FPP) training program compared with a 6-wk sagittal-plane plyometric (SPP) training program with regard to power and change-of-direction speed. Fourteen female varsity high school basketball players participated in the study. Multiple 2 × 2 repeated-measures ANOVAs were used to determine differences for the FPP and SPP groups from preintervention to postintervention on 4 tests of power and 2 tests of change-of-direction speed. There was a group main effect for time in all 6 tests. There was a significant group × time interaction effect in 3 of the 6 tests. The SPP improved performance of the countermovement vertical jump more than the FPP, whereas the FPP improved performance of the lateral hop (left) and lateral-shuffle test (left) more than the SPP. The standing long jump, lateral hop (right), and lateral-shuffle test (right) did not show a significant interaction effect. These results suggest that basketball players should incorporate plyometric training in all planes to improve power and change-of-direction speed.

  19. The geometric curvature of the lumbar spine during restricted and unrestricted squats.

    PubMed

    Hebling Campos, Mário; Furtado Alaman, Laizi I; Seffrin-Neto, Aldo A; Vieira, Carlos A; Costa de Paula, Marcelo; Barbosa de Lira, Claudio A

    2017-06-01

    The main purpose of this study was to analyze the behavior of the geometric curvature of the lumbar spine during restricted and unrestricted squats, using a novel investigative method. The rationale for our hypothesis is that the lumbar curvature has different patterns at different spine levels depending on the squat technique used. Spine motion was collected via stereo-photogrammetric analysis in nineteen participants (11 males, 8 females). The reconstructed spine points at the upright neutral position and at the deepest position of the squat exercise were projected onto the sagittal plane of the trunk, a polynomial was fitted to the data, and were quantified the two-dimensional geometric curvature at lower, central and higher lumbar levels, besides the inclination of trunk and lumbosacral region, the overall geometric curvature and overall angle of the lumbar spine. The mean values for each variable were analysed with paired t-test (P<0.05). The lumbar presents a flexion from upright neutral posture to deepest point of the movement, but for the lower lumbar the flexion is less intense if the knees travel anteriorly past the toes. The trunk and the lumbosacral region lean forward in both squat techniques and these effects are also reduced in unrestricted squats. The data collected in the study are evidence that during barbell squats the lumbar curvature has different patterns at different spinal levels depending on the exercise technique. The lower lumbar spine appears to be less overloaded during unrestricted squats.

  20. Femoro-tibial kinematics after TKA in fixed- and mobile-bearing knees in the sagittal plane.

    PubMed

    Daniilidis, Kiriakos; Höll, Steffen; Gosheger, Georg; Dieckmann, Ralf; Martinelli, Nicolo; Ostermeier, Sven; Tibesku, Carsten O

    2013-10-01

    Lack of the anterior cruciate ligament in total knee arthroplasty results in paradoxical movement of the femur as opposed to the tibia under deep flexion. Total knee arthroplasty with mobile-bearing inlays has been developed to provide increased physiological movement of the knee joint and to reduce polyethylene abrasion. The aim of this study was to perform an in vitro analysis of the kinematic movement in the sagittal plane in order to show differences between fixed- and mobile-bearing TKA in comparison with the natural knee joint. Seven knee joints of human cadaver material were used in a laboratory experiment. Fixed- and mobile-bearing inlays were tested in sequences under isokinetic extension in so-called kinemator for knee joints, which can simulate muscular traction power by the use of hydraulic cylinders, which crossover the knee joint. As a target parameter, the a.p. translation of the tibio-femoral relative movement was measured in the sagittal plane under ultrasound (Zebris) control. The results show a reduced tibial a.p. translation in relation to the femur in the bearing group compared to the natural joint. In the Z-axis, between 110° and 50° of flexion, linear movement decreases towards caudal movement under extension. Admittedly, the study did not show differences in the movement pattern between "mobile-bearing" and "fixed-bearing" prostheses. Results of this study cannot prove functional advantages of mobile-bearing prostheses for the knee joint kinematic after TKA. Both types of prostheses show typical kinematics of an anterior instability, hence they were incapable of performing physiological movement.

  1. Satisfactory rate of post-processing visualization of fetal cerebral axial, sagittal, and coronal planes from three-dimensional volumes acquired in routine second trimester ultrasound practice by sonographers of peripheral centers.

    PubMed

    Rizzo, Giuseppe; Pietrolucci, Maria Elena; Capece, Giuseppe; Cimmino, Ernesto; Colosi, Enrico; Ferrentino, Salvatore; Sica, Carmine; Di Meglio, Aniello; Arduini, Domenico

    2011-08-01

    The aim of this study was to evaluate the feasibility to visualize central nervous system (CNS) diagnostic planes from three-dimensional (3D) brain volumes obtained in ultrasound facilities with no specific experience in fetal neurosonography. Five sonographers prospectively recorded transabdominal 3D CNS volumes starting from an axial approach on 500 consecutive pregnancies at 19-24 weeks of gestation undergoing routine ultrasound examination. Volumes were sent to the referral center (Department of Obstetrics and Gynecology, Università Roma Tor Vergata, Italy) and two independent reviewers with experience in 3D ultrasound assessed their quality in the display of axial, coronal, and sagittal planes. CNS volumes were acquired in 491/500 pregnancies (98.2%). The two reviewers acknowledged the presence of satisfactory images with a visualization rate ranging respectively between 95.1% and 97.14% for axial planes, 73.72% and 87.16% for coronal planes, and 78.41% and 94.29% for sagittal planes. The agreement rate between the two reviewers as expressed by Cohen's kappa coefficient was >0.87 for axial planes, >0.89 for coronal planes, and >0.94 for sagittal planes. The presence of a maternal body mass index >30 alters the probability of achieving satisfactory CNS views, while existence of previous maternal lower abdomen surgery does not affect the quality of the reconstructed planes. CNS volumes acquired by 3D ultrasonography in peripheral centers showed a quality high enough to allow a detailed fetal neurosonogram.

  2. Association of low back pain with muscle stiffness and muscle mass of the lumbar back muscles, and sagittal spinal alignment in young and middle-aged medical workers.

    PubMed

    Masaki, Mitsuhiro; Aoyama, Tomoki; Murakami, Takashi; Yanase, Ko; Ji, Xiang; Tateuchi, Hiroshige; Ichihashi, Noriaki

    2017-11-01

    Muscle stiffness of the lumbar back muscles in low back pain (LBP) patients has not been clearly elucidated because quantitative assessment of the stiffness of individual muscles was conventionally difficult. This study aimed to examine the association of LBP with muscle stiffness assessed using ultrasonic shear wave elastography (SWE) and muscle mass of the lumbar back muscle, and spinal alignment in young and middle-aged medical workers. The study comprised 23 asymptomatic medical workers [control (CTR) group] and 9 medical workers with LBP (LBP group). Muscle stiffness and mass of the lumbar back muscles (lumbar erector spinae, multifidus, and quadratus lumborum) in the prone position were measured using ultrasonic SWE. Sagittal spinal alignment in the standing and prone positions was measured using a Spinal Mouse. The association with LBP was investigated by multiple logistic regression analysis with a forward selection method. The analysis was conducted using the shear elastic modulus and muscle thickness of the lumbar back muscles, and spinal alignment, age, body height, body weight, and sex as independent variables. Multiple logistic regression analysis showed that muscle stiffness of the lumbar multifidus muscle and body height were significant and independent determinants of LBP, but that muscle mass and spinal alignment were not. Muscle stiffness of the lumbar multifidus muscle in the LBP group was significantly higher than that in the CTR group. The results of this study suggest that LBP is associated with muscle stiffness of the lumbar multifidus muscle in young and middle-aged medical workers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Biomechanical Comparison of 3 Ankle Braces With and Without Free Rotation in the Sagittal Plane

    PubMed Central

    Alfuth, Martin; Klein, Dieter; Koch, Raphael; Rosenbaum, Dieter

    2014-01-01

    Context: Various designs of braces including hinged and nonhinged models are used to provide external support of the ankle. Hinged ankle braces supposedly allow almost free dorsiflexion and plantar flexion of the foot in the sagittal plane. It is unclear, however, whether this additional degree of freedom affects the stabilizing effect of the brace in the other planes of motion. Objective: To investigate the dynamic and passive stabilizing effects of 3 ankle braces, 2 hinged models that provide free plantar flexion–dorsiflexion in the sagittal plane and 1 ankle brace without a hinge. Design: Crossover study. Setting: University Movement Analysis Laboratory. Patients or Other Participants: Seventeen healthy volunteers (5 women, 12 men; age = 25.4 ± 4.8 years; height = 180.3 ± 6.5 cm; body mass = 75.5 ± 10.4 kg). Intervention(s): We dynamically induced foot inversion on a tilting platform and passively induced foot movements in 6 directions via a custom-built apparatus in 3 brace conditions and a control condition (no brace). Main Outcome Measure(s): Maximum inversion was determined dynamically using an in-shoe electrogoniometer. Passively induced maximal joint angles were measured using a torque and angle sensor. We analyzed differences among the 4 ankle-brace conditions (3 braces, 1 control) for each of the dependent variables with Friedman and post hoc tests (P < .05). Results: Each ankle brace restricted dynamic foot-inversion movements on the tilting platform as compared with the control condition, whereas only the 2 hinged ankle braces differed from each other, with greater movement restriction caused by the Ankle X model. Passive foot inversion was reduced with all ankle braces. Passive plantar flexion was greater in the hinged models as compared with the nonhinged brace. Conclusions: All ankle braces showed stabilizing effects against dynamic and passive foot inversion. Differences between the hinged braces and the nonhinged brace did not appear to be

  4. Correlation between lumbar dysfunction and fat infiltration in lumbar multifidus muscles in patients with low back pain.

    PubMed

    Hildebrandt, Markus; Fankhauser, Gabriela; Meichtry, André; Luomajoki, Hannu

    2017-01-10

    Lumbar multifidus muscles (LMM) are important for spinal motion and stability. Low back pain (LBP) is often associated with fat infiltration in LMM. An increasing fat infiltration of LMM may lead to lumbar dysfunction. The purpose of this study was to investigate whether there is a correlation between the severity of lumbar dysfunction and the severity of fat infiltration of LMM. In a cross-sectional study, 42 patients with acute or chronic LBP were recruited. Their MRI findings were visually rated and graded using three criteria for fat accumulation in LMM: Grade 0 (0-10%), Grade 1 (10-50%) and Grade 2 (>50%). Lumbar sagittal range of motion, dynamic upright and seated posture control, sagittal movement control, body awareness and self-assessed functional disability were measured to determine the patients' low back dysfunction. The main result of this study was that increased severity of fat infiltration in the lumbar multifidus muscles correlated significantly with decreased range of motion of lumbar flexion (p = 0.032). No significant correlation was found between the severity of fat infiltration in LMM and impaired movement control, posture control, body awareness or self-assessed functional disability. This is the first study investigating the relationship between the severity of fat infiltration in LMM and the severity of lumbar dysfunction. The results of this study will contribute to the understanding of the mechanisms leading to fat infiltration of LMM and its relation to spinal function. Further studies should investigate whether specific treatment strategies are effective in reducing or preventing fat infiltration of LMM.

  5. Sagittal Balance in Adolescent Idiopathic Scoliosis

    PubMed Central

    Xu, Xi-Ming; Wang, Fei; Zhou, Xiao-Yi; Liu, Zi-Xuan; Wei, Xian-Zhao; Bai, Yu-Shu; Li, Ming

    2015-01-01

    Abstract The relationship between spinal sagittal alignment and pelvic parameters is well known in adolescent idiopathic scoliosis. However, few studies have reported the sagittal spinopelvic relationship after selective posterior fusion of thoracolumbar/lumbar (TL/L) curves. We evaluated the relationship between spinal sagittal alignment and the pelvis, and analyzed how the pelvic sagittal state is adjusted in Lenke type 5C patients. We conducted a retrospective study of 36 patients with Lenke type 5C curves who received selective posterior TL/L curve fusion. Coronal and spinopelvic sagittal parameters were pre and postoperatively compared. Pearson coefficients were used to analyze the correlation between all spinopelvic sagittal parameters before and after surgery. We also evaluated 3 pelvic morphologies (anteverted, normal, and retroverted) before and after surgery. Preoperatively, the mean pelvic incidence was 46.0°, with a pelvic tilt and sacral slope (SS) of 8.2° and 37.8°, respectively, and 25% (9/36) of patients had an anteverted pelvis, whereas the other 75% had a normal pelvis. Postoperatively, 42% (15/36) of patients had a retroverted pelvis, 53% (19/36) had a normal pelvis, and 2 patients had an anteverted pelvis. Logistic regression analyses yielded 2 factors that were significantly associated with the risk for a postoperative unrecovered anteverted pelvis, including increased lumbar lordosis (LL) (odds ratio [OR] 4.8, P = 0.029) and increased SS (OR 5.6, P = 0.018). Four factors were significantly associated with the risk of a postoperative newly anteverted pelvis, including LL at the final follow-up (OR 6.9, P = 0.009), increased LL (OR 8.9, P = 0.003), LL below fusion (OR 9.4, P = 0.002), and increased SS (OR 11.5, P = 0.001). The pelvic state may be adjusted after selective posterior TL/L curve fusion in Lenke 5C adolescent idiopathic scoliosis patients. It is difficult to improve an anteverted pelvis in patients who have

  6. Effects of Lordotic Angle of a Cage on Sagittal Alignment and Clinical Outcome in One Level Posterior Lumbar Interbody Fusion with Pedicle Screw Fixation

    PubMed Central

    Lee, Ji-Ho; Lee, Dong-Oh; Lee, Jae Hyup; Shim, Hee Jong

    2015-01-01

    This study aims to assess the differences in the radiological and clinical results depending on the lordotic angles of the cage in posterior lumbar interbody fusion (PLIF). We reviewed 185 segments which underwent PLIF using two different lordotic angles of 4° and 8° of a polyetheretherketone (PEEK) cage. The segmental lordosis and total lumbar lordosis of the 4° and 8° cage groups were compared preoperatively, as well as on the first postoperative day, 6th and 12th months postoperatively. Clinical assessment was performed using the ODI and the VAS of low back pain. The pre- and immediate postoperative segmental lordosis angles were 12.9° and 12.6° in the 4° group and 12° and 12.0° in the 8° group. Both groups exhibited no significant different segmental lordosis angle and total lumbar lordosis over period and time. However, the total lumbar lordosis significantly increased from six months postoperatively compared with the immediate postoperative day in the 8° group. The ODI and the VAS in both groups had no differences. Cages with different lordotic angles of 4° and 8° showed insignificant results clinically and radiologically in short-level PLIF surgery. Clinical improvements and sagittal alignment recovery were significantly observed in both groups. PMID:25685795

  7. How is sagittal balance acquired during bipedal gait acquisition? Comparison of neonatal and adult pelves in three dimensions. Evolutionary implications.

    PubMed

    Tardieu, Christine; Bonneau, Noémie; Hecquet, Jérôme; Boulay, Christophe; Marty, Catherine; Legaye, Jean; Duval-Beaupère, Geneviève

    2013-08-01

    We compare adult and intact neonatal pelves, using a pelvic sagittal variable, the angle of sacral incidence, which presents significant correlations with vertebral curvature in adults and plays an important role in sagittal balance of the trunk on the lower limbs. Since the lumbar curvature develops in the child in association with gait acquisition, we expect a change in this angle during growth which could contribute to the acquisition of sagittal balance. To understand the mechanisms underlying the sagittal balance in the evolution of human bipedalism, we also measure the angle of incidence of hominid fossils. Fourty-seven landmarks were digitized on 50 adult and 19 intact neonatal pelves. We used a three-dimensional model of the pelvis (DE-VISU program) which calculates the angle of sacral incidence and related functional variables. Cross-sectional data from newborns and adults show that the angle of sacral incidence increases and becomes negatively correlated with the sacro-acetabular distance. During ontogeny the sacrum becomes curved, tends to sink down between the iliac blades as a wedge and moves backward in the sagittal plane relative to the acetabula, thus contributing to the backwards displacement of the center of gravity of the trunk. A chain of correlations links the degree of the sacral slope and of the angle of incidence, which is tightly linked with the lumbar lordosis. We sketch a model showing the coordinated changes occurring in the pelvis and vertebral column during the acquisition of bipedalism in infancy. In the australopithecine pelves, Sts 14 and AL 288-1, and in the Homo erectus Gona pelvis the angle of sacral incidence reaches the mean values of humans. Discussing the incomplete pelves of Ardipithecus ramidus, Australopithecus sediba and the Nariokotome Boy, we suggest how the functional linkage between pelvis and spine, observed in humans, could have emerged during hominid evolution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. A Dynamic Finite Element Analysis of Human Foot Complex in the Sagittal Plane during Level Walking

    PubMed Central

    Qian, Zhihui; Ren, Lei; Ding, Yun; Hutchinson, John R.; Ren, Luquan

    2013-01-01

    The objective of this study is to develop a computational framework for investigating the dynamic behavior and the internal loading conditions of the human foot complex during locomotion. A subject-specific dynamic finite element model in the sagittal plane was constructed based on anatomical structures segmented from medical CT scan images. Three-dimensional gait measurements were conducted to support and validate the model. Ankle joint forces and moment derived from gait measurements were used to drive the model. Explicit finite element simulations were conducted, covering the entire stance phase from heel-strike impact to toe-off. The predicted ground reaction forces, center of pressure, foot bone motions and plantar surface pressure showed reasonably good agreement with the gait measurement data over most of the stance phase. The prediction discrepancies can be explained by the assumptions and limitations of the model. Our analysis showed that a dynamic FE simulation can improve the prediction accuracy in the peak plantar pressures at some parts of the foot complex by 10%–33% compared to a quasi-static FE simulation. However, to simplify the costly explicit FE simulation, the proposed model is confined only to the sagittal plane and has a simplified representation of foot structure. The dynamic finite element foot model proposed in this study would provide a useful tool for future extension to a fully muscle-driven dynamic three-dimensional model with detailed representation of all major anatomical structures, in order to investigate the structural dynamics of the human foot musculoskeletal system during normal or even pathological functioning. PMID:24244500

  9. A dynamic finite element analysis of human foot complex in the sagittal plane during level walking.

    PubMed

    Qian, Zhihui; Ren, Lei; Ding, Yun; Hutchinson, John R; Ren, Luquan

    2013-01-01

    The objective of this study is to develop a computational framework for investigating the dynamic behavior and the internal loading conditions of the human foot complex during locomotion. A subject-specific dynamic finite element model in the sagittal plane was constructed based on anatomical structures segmented from medical CT scan images. Three-dimensional gait measurements were conducted to support and validate the model. Ankle joint forces and moment derived from gait measurements were used to drive the model. Explicit finite element simulations were conducted, covering the entire stance phase from heel-strike impact to toe-off. The predicted ground reaction forces, center of pressure, foot bone motions and plantar surface pressure showed reasonably good agreement with the gait measurement data over most of the stance phase. The prediction discrepancies can be explained by the assumptions and limitations of the model. Our analysis showed that a dynamic FE simulation can improve the prediction accuracy in the peak plantar pressures at some parts of the foot complex by 10%-33% compared to a quasi-static FE simulation. However, to simplify the costly explicit FE simulation, the proposed model is confined only to the sagittal plane and has a simplified representation of foot structure. The dynamic finite element foot model proposed in this study would provide a useful tool for future extension to a fully muscle-driven dynamic three-dimensional model with detailed representation of all major anatomical structures, in order to investigate the structural dynamics of the human foot musculoskeletal system during normal or even pathological functioning.

  10. Acute proximal junctional failure in patients with preoperative sagittal imbalance.

    PubMed

    Smith, Micah W; Annis, Prokopis; Lawrence, Brandon D; Daubs, Michael D; Brodke, Darrel S

    2015-10-01

    Proximal junctional failure (PJF) is a recognized complication of spinal deformity surgery. Acute PJF (APJF) has recently been demonstrated to be 5.6% in the adult spinal deformity (ASD) population. The incidence and rate of return to the operating room for APJF have not been specifically investigated in individuals with sagittal imbalance. The purpose of this study was to report the incidence of APJF in patients with preoperative sagittal imbalance and the rate of return to the operating room for APJF. This study is based on a retrospective review of prospectively collected database of ASD patients. One hundred seventy-three consecutive patients were included with preoperative sagittal imbalance according to one of the following common parameters: sagittal vertical axis (SVA) greater than 50 mm, global sagittal alignment greater than 45°, or pelvic incidence minus lumbar lordosis greater than 10°. Outcome measure was presence and/or absence of APJF defined as fracture at the upper instrumented vertebra (UIV) or UIV+1, failure of UIV fixation, 15° or more proximal junctional kyphosis, or need for extension of instrumentation within 6 months of surgery. We performed radiographic measurements on X-rays at preoperative, immediate postoperative, and 6-month follow-up visits. The APJF rate was reported for the entire patient population with preoperative sagittal imbalance. Acute PJF incidence was calculated postoperatively for each of the accepted sagittal balance parameters and/or formulas. Patients with persistent postoperative sagittal imbalance were compared with the sagittally balanced group. We also assessed for threshold values. Acute PJF was observed in 60 of 173 patients (35%) and was least common in fusions with the UIV in the upper thoracic (UT) spine (p=.035). Of those who developed APJF, 21.7% required surgery. Proximal junctional kyphosis 15° or more was the most common form of APJF in fusions to the UT spine but least likely to need revision (p=.014

  11. Correlations between the feature of sagittal spinopelvic alignment and facet joint degeneration: a retrospective study.

    PubMed

    Lv, Xin; Liu, Yuan; Zhou, Song; Wang, Qiang; Gu, Houyun; Fu, Xiaoxing; Ding, Yi; Zhang, Bin; Dai, Min

    2016-08-15

    Sagittal spinopelvic alignment changes associated with degenerative facet joint arthritis have been assessed in a few studies. It has been documented that patients with facet joint degeneration have higher pelvic incidence, but the relationship between facet joint degeneration and other sagittal spinopelvic alignment parameters is still disputed. Our purpose was to evaluate the correlation between the features of sagittal spinopelvic alignment and facet joint degeneration. Imaging data of 140 individuals were retrospectively analysed. Lumbar lordosis, pelvic tilt (PT), pelvic incidence (PI), sacral slope, and height of the lumbar intervertebral disc were measured on lumbar X-ray plates. Grades of facet joint degeneration were evaluated from the L2 to S1 on CT scans. Spearman's rank correlation coefficient and Student's t-test were used for statistical analyses, and a P-value <0.05 was considered statistically significant. PI was positively associated with degeneration of the facet joint at lower lumbar levels (p < 0.001 r = 0.50 at L5/S1 and P = 0.002 r = 0.25 at L4/5). A significant increase of PT was found in the severe degeneration group compared with the mild degeneration group: 22.0° vs 15.7°, P = 0.034 at L2/3;21.4°vs 15.1°, P = 0.006 at L3/4; 21.0° vs 13.5°, P = 0.000 at L4/5; 20.8° vs 12.1°, P = 0.000 at L5/S1. Our results indicate that a high PI is a predisposing factor for facet joint degeneration at the lower lumbar spine, and that severe facet joint degeneration may accompany with greater PT at lumbar spine.

  12. The influence of heel height on sagittal plane knee kinematics during landing tasks in recreationally active and athletic collegiate females.

    PubMed

    Lindenberg, Kelly M; Carcia, Christopher R; Phelps, Amy L; Martin, Robroy L; Burrows, Anne M

    2011-09-01

    To determine if heel height alters sagittal plane knee kinematics when landing from a forward hop or drop landing. Knee angles close to extension during landing are theorized to increase ACL injury risk in female athletes. Fifty collegiate females performed two single-limb landing tasks while wearing heel lifts of three different sizes (0, 12 & 24 mm) attached to the bottom of a sneaker. Using an electrogoniometer, sagittal plane kinematics (initial contact [KA(IC)], peak flexion [KA(Peak)], and rate of excursion [RE]) were examined. Repeated measures ANOVAs were used to determine the influence of heel height on the dependent measures. Forward hop task- KA(IC) with 0 mm, 12 mm, and 24 mm lifts were 8.88±6.5, 9.38±5.8 and 11.28±7.0, respectively. Significant differences were noted between 0 and 24 mm lift (p<.001) and 12 and 24 mm lifts (p=.003), but not between the 0 and 12 mm conditions (p=.423). KA(Peak) with 0 mm, 12 mm, and 24 mm lifts were 47.08±10.9, 48.18±10.3 and 48.88±9.7, respectively. A significant difference was noted between 0 and 24 mm lift (p=.004), but not between the 0 and 12 mm or 12 and 24 mm conditions (p=.071 and p=.282, respectively). The RE decreased significantly from 2128/sec±52 with the 12 mm lift to 1958/sec±55 with the 24 mm lift (p=.004). RE did not differ from 0 to 12 or 0 to 24 mm lift conditions (p=.351 and p=.086, respectively). Jump-landing task- No significant differences were found in KA(IC) (p=.531), KA(Peak) (p=.741), or the RE (p=.190) between any of the heel lift conditions. The addition of a 24 mm heel lift to the bottom of a sneaker significantly alters sagittal plane knee kinematics upon landing from a unilateral forward hop but not from a drop jump.

  13. Comprehensive comparing percutaneous endoscopic lumbar discectomy with posterior lumbar internal fixation for treatment of adjacent segment lumbar disc prolapse with stable retrolisthesis: A retrospective case-control study.

    PubMed

    Sun, Yapeng; Zhang, Wei; Qie, Suhui; Zhang, Nan; Ding, Wenyuan; Shen, Yong

    2017-07-01

    The study was to comprehensively compare the postoperative outcome and imaging parameter characters in a short/middle period between the percutaneous endoscopic lumbar discectomy (PELD) and the internal fixation of bone graft fusion (the most common form is posterior lumbar interbody fusion [PLIF]) for the treatment of adjacent segment lumbar disc prolapse with stable retrolisthesis after a previous lumbar internal fixation surgery.In this retrospective case-control study, we collected the medical records from 11 patients who received PELD operation (defined as PELD group) for and from 13 patients who received the internal fixation of bone graft fusion of lumbar posterior vertebral lamina decompression (defined as control group) for the treatment of the lumbar disc prolapse combined with stable retrolisthesis at Department of Spine Surgery, the Third Hospital of Hebei Medical University (Shijiazhuang, China) from May 2010 to December 2015. The operation time, the bleeding volume of perioperation, and the rehabilitation days of postoperation were compared between 2 groups. Before and after surgery at different time points, ODI, VAS index, and imaging parameters (including Taillard index, inter-vertebral height, sagittal dislocation, and forward bending angle of lumbar vertebrae) were compared.The average operation time, the blooding volume, and the rehabilitation days of postoperation were significantly less in PELD than in control group. The ODI and VAS index in PELD group showed a significantly immediate improving on the same day after the surgery. However, Taillard index, intervertebral height, sagittal dislocation in control group showed an immediate improving after surgery, but no changes in PELD group till 12-month after surgery. The forward bending angle of lumbar vertebrae was significantly increased and decreased in PELD and in control group, respectively.PELD operation was superior in terms of operation time, bleeding volume, recovery period, and financial

  14. A radiographic assessment of lumbar spine posture in four different upright standing positions.

    PubMed

    Gallagher, Kaitlin M; Sehl, Michael; Callaghan, Jack P

    2016-08-01

    Approximately 50% of a sample population will develop prolonged standing induced low back pain. The cause of this pain may be due to their lumbar spine posture. The purpose of this study was to investigate differences in lumbar posture between 17 participants categorized as a pain or non-pain developers during level ground standing. A secondary purpose was to evaluate the influence of two standing aids (an elevated surface to act as a foot rest and declined sloped surface) on lumbopelvic posture. Four sagittal plane radiographs were taken: a normal standing position on level ground, when using an elevated foot rest, using a declined sloped surface, and maximum lumbar spine extension as a reference posture. Lumbosacral lordosis, total lumbar lordosis, and L1/L2 and L5/S1 intervertebral joint angles were measured on each radiograph. There was a significant difference between the lumbosacral lordosis angle and L5/S1 angles in upright versus maximum extension; however, this was independent of pain group. The elevated surface was most effective at causing lumbosacral spine flexion. Potentially successful postures for eliminating low back pain during prolonged standing mainly influence the lower lumbar lordosis. Future work should assess the influence of hip posture on low back pain development during standing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Is the sagittal postural alignment different in normal and dysphonic adult speakers?

    PubMed

    Franco, Débora; Martins, Fernando; Andrea, Mário; Fragoso, Isabel; Carrão, Luís; Teles, Júlia

    2014-07-01

    Clinical research in the field of voice disorders, in particular functional dysphonia, has suggested abnormal laryngeal posture due to muscle adaptive changes, although specific evidence regarding body posture has been lacking. The aim of our study was to verify if there were significant differences in sagittal spine alignment between normal (41 subjects) and dysphonic speakers (33 subjects). Cross-sectional study. Seventy-four adults, 35 males and 39 females, were submitted to sagittal plane photographs so that spine alignment could be analyzed through the Digimizer-MedCalc Software Ltd program. Perceptual and acoustic evaluation and nasoendoscopy were used for dysphonic judgments: normal and dysphonic speakers. For thoracic length curvature (TL) and for the kyphosis index (KI), a significant effect of dysphonia was observed with mean TL and KI significantly higher for the dysphonic speakers than for the normal speakers. Concerning the TL variable, a significant effect of sex was found, in which the mean of the TL was higher for males than females. The interaction between dysphonia and sex did not have a significant effect on TL and KI variables. For the lumbar length curvature variable, a significant main effect of sex was demonstrated; there was no significant main effect of dysphonia or significant sex×dysphonia interaction. Findings indicated significant differences in some sagittal spine posture measures between normal and dysphonic speakers. Postural measures can add useful information to voice assessment protocols and should be taken into account when considering particular treatment strategies. Copyright © 2014 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  16. Failure of the lumbar pedicles under bending loading - biomed 2010.

    PubMed

    Arregui-Dalmases, Carlos; Ash, Joseph H; Del Pozo, Eduardo; Kerrigan, Jason R; Crandall, Jeff

    2010-01-01

    The purpose of this study was to investigate the magnitude of bending moment that results in fracture of the pedicles when lumbar vertebrae are loaded in four-point bending. Nine human second lumbar vertebrae (L2) were harvested from donors aged 59-75 years. The specimens were potted and then subjected to quasi-static sagittal-plane four-point bending, which allowed for a constant bending moment applied over a 3.8 cm span centered on the vertebral pedicles until fracture. The failure bending moment calculated for the pedicles varied widely (30.7 +/- 12.3 Nm) and was poorly correlated with subject age (y = -0.91x + 91.5, R(2) = -0.27). With increasing displacement, the bending moment applied to the pedicles increased, first linearly, followed by a non-linear portion, prior to specimen fracture. In general, the specimens failed at the interface of the pedicles and vertebral bodies, but failures were observed elsewhere as well. These data provide sufficient response and boundary condition information for finite element modeling and model validation.

  17. Sagittal-Plane Knee Moment During Gait and Knee Cartilage Thickness.

    PubMed

    Schmitz, Randy J; Harrison, David; Wang, Hsin-Min; Shultz, Sandra J

    2017-06-02

      Understanding the factors associated with thicker cartilage in a healthy population is important when developing strategies aimed at minimizing the cartilage thinning associated with knee osteoarthritis progression. Thicker articular cartilage is commonly thought to be healthier cartilage, but whether the sagittal-plane biomechanics important to gait are related to cartilage thickness is unknown.   To determine the relationship of a weight-bearing region of the medial femoral condyle's cartilage thickness to sagittal gait biomechanics in healthy individuals.   Descriptive laboratory study.   Laboratory.   Twenty-eight healthy participants (15 women: age = 21.1 ± 2.1 years, height = 1.63 ± 0.07 m, weight = 64.6 ± 9.9 kg; 13 men: age = 22.1 ± 2.9 years, height = 1.79 ± 0.05 m, weight = 75.2 ± 9.6 kg).   Tibiofemoral angle (°) was obtained via goniometric assessment, thickness of the medial femoral condyle cartilage (mm) was obtained via ultrasound imaging, and peak internal knee-extensor moment (% body weight · height) was measured during 10 trials of over-ground walking at a self-selected pace. We used linear regression to examine the extent to which peak internal knee-extensor moment predicted cartilage thickness after accounting for tibiofemoral angle and sex.   Sex and tibiofemoral angle (12.3° ± 3.2°) were entered in the initial step as control factors (R 2 = 0.01, P = .872). In the final step, internal knee-extensor moment (1.5% ± 1.3% body weight · height) was entered, which resulted in greater knee-extensor moment being related to greater cartilage thickness (2.0 ± 0.3 mm; R 2 Δ = 0.31, PΔ = .003).   Individuals who walked with a greater peak internal knee-extensor moment during gait had a cartilage structure that is generally considered beneficial in a healthy population. Our study offers promising findings that a potentially modifiable biomechanical factor is associated with cartilage status in a healthy population

  18. Sagittal-Plane Knee Moment During Gait and Knee Cartilage Thickness

    PubMed Central

    Harrison, David; Wang, Hsin-Min; Shultz, Sandra J.

    2017-01-01

    Context:  Understanding the factors associated with thicker cartilage in a healthy population is important when developing strategies aimed at minimizing the cartilage thinning associated with knee osteoarthritis progression. Thicker articular cartilage is commonly thought to be healthier cartilage, but whether the sagittal-plane biomechanics important to gait are related to cartilage thickness is unknown. Objective:  To determine the relationship of a weight-bearing region of the medial femoral condyle's cartilage thickness to sagittal gait biomechanics in healthy individuals. Design:  Descriptive laboratory study. Setting:  Laboratory. Patients or Other Participants:  Twenty-eight healthy participants (15 women: age = 21.1 ± 2.1 years, height = 1.63 ± 0.07 m, weight = 64.6 ± 9.9 kg; 13 men: age = 22.1 ± 2.9 years, height = 1.79 ± 0.05 m, weight = 75.2 ± 9.6 kg). Main Outcome Measure(s):  Tibiofemoral angle (°) was obtained via goniometric assessment, thickness of the medial femoral condyle cartilage (mm) was obtained via ultrasound imaging, and peak internal knee-extensor moment (% body weight · height) was measured during 10 trials of over-ground walking at a self-selected pace. We used linear regression to examine the extent to which peak internal knee-extensor moment predicted cartilage thickness after accounting for tibiofemoral angle and sex. Results:  Sex and tibiofemoral angle (12.3° ± 3.2°) were entered in the initial step as control factors (R2 = 0.01, P = .872). In the final step, internal knee-extensor moment (1.5% ± 1.3% body weight · height) was entered, which resulted in greater knee-extensor moment being related to greater cartilage thickness (2.0 ± 0.3 mm; R2Δ = 0.31, PΔ = .003). Conclusion:  Individuals who walked with a greater peak internal knee-extensor moment during gait had a cartilage structure that is generally considered beneficial in a healthy population. Our study offers promising findings that a

  19. Transverse forces versus modified ashworth scale for upper limb flexion/extension in para-sagittal plane.

    PubMed

    Seth, Nitin; Johnson, Denise; Abdullah, Hussein A

    2017-07-01

    Spasticity is a common impairment following an upper motor neuron lesion in conditions such as stroke and brain injury. A clinical issue is how to best quantify and measure spasticity. Recently, research has been performed to develop new methods of spasticity quantification using various systems. This paper follows up on previous work taking a closer look at the role of transversal forces obtained via rehabilitation robot for motions in the para-sagittal plane. Results from 45 healthy individuals and 40 individuals with acquired brain injury demonstrate that although the passive upper motions are vertical, horizontal forces into and away from the individual's body demonstrate a relationship with the Modified Ashworth Scale. This finding leads the way to new avenues of spasticity quantification and monitoring.

  20. Correlation between radiographic parameters and functional scores in degenerative lumbar and thoracolumbar scoliosis.

    PubMed

    Simon, J; Longis, P-M; Passuti, N

    2017-04-01

    Adult scoliosis is a condition in which the spinal deformity occurs because of degeneration. Although various studies have agreed on the importance of restoring the sagittal balance, few have evaluated the relationship between functional scores and radiological parameters. The primary objective of this retrospective study was to demonstrate the correlation between radiographic parameters and functional outcomes in adult patients with lumbar or thoracolumbar degenerative scoliosis. The secondary objective was to assess the long-term effects of posterolateral fusion for treating this deformity. This single-centre retrospective study included 47 patients over 50years of age who had degenerative lumbar scoliosis treated with an instrumented posterolateral fusion; the mean follow-up was 6.4years (range 2 to 20). Radiographic analysis of A/P and lateral full spine standing radiographs was carried out with the KEOPS software. Three pelvic parameters (pelvic tilt, pelvic incidence, sacral slope), two spinal parameters (lumbar lordosis and thoracic kyphosis) and three sagittal balance parameters (C7 sagittal tilt, C7 Barrey's ratio and spinosacral angle) were calculated. The functional outcomes were evaluated through three self-assessment questionnaires: Oswestry Disability Index, SRS-30 and SF-36. The correlation between clinical and radiographic parameters was calculated with Spearman's correlation test. There was a significant correlation between the SF-36 (PCS) and the following three sagittal parameters: sacral slope (r=-0.31453; P=0.04), lumbar lordosis (r=-0.30198; P=0.0491) and spinosacral angle (r=-0.311967; P=0.0366). The mean ODI score was 33.61, which corresponds to minimal to moderate disability. The mean physical (PCS) and mental (MCS) component summary scores of the SF-36 were 37.70 and 38.40, respectively. The mean SRS-30 score was 3.07. It is essential that the sagittal balance be restored when treating degenerative lumbar scoliosis to generate better

  1. Male and female runners demonstrate different sagittal plane mechanics as a function of static hamstring flexibility.

    PubMed

    Williams, D S Blaise; Welch, Lee M

    2015-01-01

    Injuries to runners are common. However, there are many potential contributing factors to injury. While lack of flexibility alone is commonly related to injury, there are clear differences in hamstring flexibility between males and females. To compare the effect of static hamstring length on sagittal plane mechanics between male and female runners. Forty subjects (30.0±6.4 years) participated and were placed in one of 4 groups: flexible males (n=10), inflexible males (n=10), flexible females (n=10), and inflexible females (n=10). All subjects were free of injury at the time of data collection. Three-dimensional kinematics and kinetics were collected while subjects ran over ground across 2 force platforms. Sagittal plane joint angles and moments were calculated at the knee and hip and compared with a 2-way (sex X flexibility) ANOVA (α=0.05). Males exhibited greater peak knee extension moment than females (M=2.80±0.47, F=2.48±0.52 Nm/kg*m, p=0.05) and inflexible runners exhibited greater peak knee extension moment than flexible runners (In=2.83±0.56, Fl=2.44±0.51 Nm/kg*m, p=0.01). For hip flexion at initial contact, a significant interaction existed (p<0.05). Flexible females (36.7±7.4º) exhibited more hip flexion than inflexible females (27.9±4.6º, p<0.01) and flexible males (30.1±9.5º, p<0.05). No differences existed for knee angle at initial contact, peak knee angle, peak hip angle, or peak hip moment. Hamstring flexibility results in different mechanical profiles in males and females. Flexibility in the hamstrings may result in decreased moments via active or passive tension. These differences may have implications for performance and injury in flexible female runners.

  2. Male and female runners demonstrate different sagittal plane mechanics as a function of static hamstring flexibility

    PubMed Central

    Williams III, D. S. Blaise; Welch, Lee M.

    2015-01-01

    ABSTRACT Background: Injuries to runners are common. However, there are many potential contributing factors to injury. While lack of flexibility alone is commonly related to injury, there are clear differences in hamstring flexibility between males and females. Objective: To compare the effect of static hamstring length on sagittal plane mechanics between male and female runners. Method: Forty subjects (30.0±6.4 years) participated and were placed in one of 4 groups: flexible males (n=10), inflexible males (n=10), flexible females (n=10), and inflexible females (n=10). All subjects were free of injury at the time of data collection. Three-dimensional kinematics and kinetics were collected while subjects ran over ground across 2 force platforms. Sagittal plane joint angles and moments were calculated at the knee and hip and compared with a 2-way (sex X flexibility) ANOVA (α=0.05). Results: Males exhibited greater peak knee extension moment than females (M=2.80±0.47, F=2.48±0.52 Nm/kg*m, p=0.05) and inflexible runners exhibited greater peak knee extension moment than flexible runners (In=2.83±0.56, Fl=2.44±0.51 Nm/kg*m, p=0.01). For hip flexion at initial contact, a significant interaction existed (p<0.05). Flexible females (36.7±7.4º) exhibited more hip flexion than inflexible females (27.9±4.6º, p<0.01) and flexible males (30.1±9.5º, p<0.05). No differences existed for knee angle at initial contact, peak knee angle, peak hip angle, or peak hip moment. Conclusion: Hamstring flexibility results in different mechanical profiles in males and females. Flexibility in the hamstrings may result in decreased moments via active or passive tension. These differences may have implications for performance and injury in flexible female runners. PMID:26537812

  3. Grizzly bear (Ursus arctos horribilis) locomotion: forelimb joint mechanics across speed in the sagittal and frontal planes.

    PubMed

    Shine, Catherine L; Robbins, Charles T; Nelson, O Lynne; McGowan, Craig P

    2017-04-01

    The majority of terrestrial locomotion studies have focused on parasagittal motion and paid less attention to forces or movement in the frontal plane. Our previous research has shown that grizzly bears produce higher medial ground reaction forces (lateral pushing from the animal) than would be expected for an upright mammal, suggesting frontal plane movement may be an important aspect of their locomotion. To examine this, we conducted an inverse dynamics analysis in the sagittal and frontal planes, using ground reaction forces and position data from three high-speed cameras of four adult female grizzly bears. Over the speed range collected, the bears used walks, running walks and canters. The scapulohumeral joint, wrist and the limb overall absorb energy (average total net work of the forelimb joints, -0.97 W kg -1 ). The scapulohumeral joint, elbow and total net work of the forelimb joints have negative relationships with speed, resulting in more energy absorbed by the forelimb at higher speeds (running walks and canters). The net joint moment and power curves maintain similar patterns across speed as in previously studied species, suggesting grizzly bears maintain similar joint dynamics to other mammalian quadrupeds. There is no significant relationship with net work and speed at any joint in the frontal plane. The total net work of the forelimb joints in the frontal plane was not significantly different from zero, suggesting that, despite the high medial ground reaction forces, the forelimb acts as a strut in that plane. © 2017. Published by The Company of Biologists Ltd.

  4. Lumbar spinal loading during bowling in cricket: a kinetic analysis using a musculoskeletal modelling approach.

    PubMed

    Zhang, Yanxin; Ma, Ye; Liu, Guangyu

    2016-01-01

    The objective of the study was to evaluate two types of cricket bowling techniques by comparing the lumbar spinal loading using a musculoskeletal modelling approach. Three-dimensional kinematic data were recorded by a Vicon motion capture system under two cricket bowling conditions: (1) participants bowled at their absolute maximal speeds (max condition), and (2) participants bowled at their absolute maximal speeds while simultaneously forcing their navel down towards their thighs starting just prior to ball release (max-trunk condition). A three-dimensional musculoskeletal model comprised of the pelvis, sacrum, lumbar vertebrae and torso segments, which enabled the motion of the individual lumbar vertebrae in the sagittal, frontal and coronal planes to be actuated by 210 muscle-tendon units, was used to simulate spinal loading based on the recorded kinematic data. The maximal lumbar spine compressive force is 4.89 ± 0.88BW for the max condition and 4.58 ± 0.54BW for the max-trunk condition. Results showed that there was no significant difference between the two techniques in trunk moments and lumbar spine forces. This indicates that the max-trunk technique may not increase lower back injury risks. The method proposed in this study could be served as a tool to evaluate lower back injury risks for cricket bowling as well as other throwing activities.

  5. [Significance of the sagittal profile and reposition of grade III-V spondylolisthesis].

    PubMed

    Dick, W; Elke, R

    1997-09-01

    The deformity in severe spondylolisthesis consists of two components: the parallel anterocaudad slip of the spondylolisthetic vertebra, and its tilt into kyphotic malposition. The influence of the two components is very different: the anterocaudad slippage has not much impact on the sagittal profile of the spine and is easily compensated for by a slight increase in lumbar lordosis. The kyphotic deformity has a high impact on trunk imbalance and the sagittal profile. There are two compensation mechanisms: hyperlordosis of the lumbar spine to its anatomical extremes and-if that is not sufficient-verticalisation of the sacral bone, performed by contracture of the hamstrings and uprighting of the pelvis around the hip joints. The latter mechanism is followed by functional disadvantages. Therefore, correction of the kyphosis of L5 may be considered during operative treatment if the lumbosacral kyphosis (angle delta) is less than 85 degrees and the sacral inclination less than 35 degrees.

  6. Does Knee Osteoarthritis Differentially Modulate Proprioceptive Acuity in the Frontal and Sagittal Planes of the Knee?

    PubMed Central

    Cammarata, Martha L; Schnitzer, Thomas J; Dhaher, Yasin Y

    2012-01-01

    Objective Impaired proprioception may alter joint loading and contribute to the progression of knee osteoarthritis (OA). Though frontal plane loading at the knee contributes to OA, proprioception and its modulation with OA in this direction have not been examined. The aim of this study was to assess knee proprioceptive acuity in the frontal and sagittal planes in knee OA and healthy participants. We hypothesized that proprioceptive acuity will be decreased in the OA population in both planes of movement. Methods Thirteen persons with knee OA and fourteen healthy age-matched subjects participated. Proprioceptive acuity was assessed in varus, valgus, flexion, and extension using the threshold to detection of passive movement (TDPM). Repeated measures analysis of variance was used to assess differences in TDPM between subject groups and across movement directions. Linear regression analyses were performed to assess the correlation of TDPM between and within planes of movement. Results TDPM was found to be significantly higher (P<0.05), in the knee OA group compared to the control group for all directions tested, indicating reduced proprioceptive acuity. Differences in TDPM between groups were consistent across all movement directions, with mean difference (95% CI) for valgus: 0.94° (0.20°, 1.65°), varus: 0.92° (0.18°, 1.68°), extension: 0.93° (0.19°, 1.66°), and flexion: 1.11° (0.38°, 1.85°). TDPM measures across planes of movement were only weakly correlated, especially in the OA group. Conclusions Consistent differences in TDPM between the OA and control groups across all movement directions suggest a global, not direction-specific, reduction in sensation in knee OA patients. PMID:21547895

  7. Making planes plain.

    PubMed

    O'Rahilly, R

    1997-01-01

    The major anatomical planes (horizontal, coronal, and sagittal, including the median plane) are discussed from a historical perspective, and their correct usage is clarified. Unofficial and unnecessary terms to be avoided (for reasons explained) include midsagittal, parasagittal, and midline.

  8. Sagittal Alignment Two Years After Selective and Nonselective Thoracic Fusion for Lenke 1C Adolescent Idiopathic Scoliosis.

    PubMed

    Celestre, Paul C; Carreon, Leah Y; Lenke, Lawrence G; Sucato, Daniel J; Glassman, Steven D

    2015-11-01

    Matched cohort. To evaluate thoracic and thoracolumbar sagittal Cobb angles in patients undergoing either selective thoracic fusion (STF) or nonselective thoracic fusion (NSTF) for Lenke 1C adolescent idiopathic scoliosis (AIS). The Lenke classification is used to guide fusion levels in AIS. For some curve types, including 1C, there is a disparity in practice regarding whether the thoracolumbar/lumbar curve should be included in the arthrodesis. The impact of performing an NSTF on sagittal parameters has not been adequately evaluated. A multicenter database of AIS was queried for patients with right-sided 1C curves treated with posterior correction and fusion. A matched cohort for each group was created based on age, gender, preoperative Cobb angles, and Scoliosis Research Society-22R domain scores. Independent t tests for continuous variables and Fisher exact test for categorical variables were used to compare the STF and NSTF groups. Thirty-eight patients who underwent NSTF were matched to 38 patients in the STF. An average of 8.0 levels were fused in the STF group and 11.6 in the NSTF group (p < .001). Preoperative and radiographic variables were similar between the two groups. Postoperatively, there was a statistically significant difference between the STF and NSTF sagittal Cobb in the thoracic spine, 26.9° and 21.7° (p = .013). The greatest difference was in the thoracolumbar sagittal Cobb, which increased to 4.3° kyphosis in the STF group and decreased to 9° of lordosis in the NSTF group (p < .001). Residual thoracolumbar/lumbar scoliosis was 25.5° in the STF group and 14.5° in the NSTF group (p < .001). STF in 1C curves preserves lumbar motion segments but may be associated with an increase in thoracic and thoracolumbar kyphosis compared to NSTF. As expected, residual thoracolumbar/lumbar scoliosis was less in the NSTF group compared to the STF group. Although the long-term implications of these changes are unknown, consideration of sagittal balance

  9. Kinematics of a selectively constrained radiolucent anterior lumbar disc: comparisons to hybrid and circumferential fusion.

    PubMed

    Daftari, Tapan K; Chinthakunta, Suresh R; Ingalhalikar, Aditya; Gudipally, Manasa; Hussain, Mir; Khalil, Saif

    2012-10-01

    Despite encouraging clinical outcomes of one-level total disc replacements reported in literature, there is no compelling evidence regarding the stability following two-level disc replacement and hybrid constructs. The current study is aimed at evaluating the multidirectional kinematics of a two-level disc arthroplasty and hybrid construct with disc replacement adjacent to rigid circumferential fusion, compared to two-level fusion using a novel selectively constrained radiolucent anterior lumbar disc. Nine osteoligamentous lumbosacral spines (L1-S1) were tested in the following sequence: 1) Intact; 2) One-level disc replacement; 3) Hybrid; 4) Two-level disc replacement; and 5) Two-level fusion. Range of motion (at both implanted and adjacent level), and center of rotation in sagittal plane were recorded and calculated. At the level of implantation, motion was restored when one-level disc replacement was used but tended to decrease with two-level disc arthroplasty. The findings also revealed that both one-level and two-level disc replacement and hybrid constructs did not significantly change adjacent level kinematics compared to the intact condition, whereas the two-level fusion construct demonstrated a significant increase in flexibility at the adjacent level. The location of center of rotation in the sagittal plane at L4-L5 for the one-level disc replacement construct was similar to that of the intact condition. The one-level disc arthroplasty tended to mimic a motion profile similar to the intact spine. However, the two-level disc replacement construct tended to reduce motion and clinical stability of a two-level disc arthroplasty requires additional investigation. Hybrid constructs may be used as a surgical alternative for treating two-level lumbar degenerative disc disease. Published by Elsevier Ltd.

  10. Congenital lumbar spinal stenosis: a prospective, control-matched, cohort radiographic analysis.

    PubMed

    Singh, Kern; Samartzis, Dino; Vaccaro, Alexander R; Nassr, Ahmad; Andersson, Gunnar B; Yoon, S Tim; Phillips, Frank M; Goldberg, Edward J; An, Howard S

    2005-01-01

    Degenerative lumbar spinal stenosis manifests primarily after the sixth decade of life as a result of facet hypertrophy and degenerative disc disease. Congenital stenosis, on the other hand, presents earlier in age with similar clinical findings but with multilevel involvement and fewer degenerative changes. These patients may have subtle anatomic variations of the lumbar spine that may increase the likelihood of thecal sac compression. However, to the authors' knowledge, no quantitative studies have addressed various radiographic parameters of symptomatic, congenitally stenotic individuals to normal subjects. To radiographically quantify and compare the anatomy of the lumbar spine in symptomatic, congenitally stenotic individuals to age- and sex-matched, asymptomatic, nonstenotic controlled individuals. A prospective, control-matched, cohort radiographic analysis. Axial and sagittal magnetic resonance imaging (MRI) and lateral, lumbar, plain radiographs of 20 surgically treated patients who were given a clinical diagnosis of congenital lumbar stenosis by the senior author were randomized with images of 20, asymptomatic age- and sex-matched subjects. MRIs and lateral, lumbar, plain radiographs were independently quantitatively assessed by two individuals. Measurements obtained from the axial MRIs included: midline anterior-posterior (AP) vertebral body diameter, vertebral body width, midline AP canal diameter, canal width, spinal canal cross-sectional area, pedicle length, and pedicle width. From the sagittal MRIs, the following measurements were calculated: AP vertebral body diameter, vertebral body height, and AP canal diameter at the mid-vertebral level. On the lateral, lumbar, plain radiograph (L3 level), the AP diameters of the vertebral body spinal canal were measured. The images of these 40 individuals were then randomized and distributed in a blinded fashion to five separate spine surgeons who graded the presence and severity of congenital stenosis

  11. Comparison of the trunk-pelvis and lower extremities sagittal plane inter-segmental coordination and variability during walking in persons with and without chronic low back pain.

    PubMed

    Ebrahimi, Samaneh; Kamali, Fahimeh; Razeghi, Mohsen; Haghpanah, Seyyed Arash

    2017-04-01

    Inter-segmental coordination can be influenced by chronic low back pain (CLBP). The sagittal plane lower extremities inter-segmental coordination pattern and variability, in conjunction with the pelvis and trunk, were assessed in subjects with and without non-specific CLBP during free-speed walking. Kinematic data were collected from 10 non-specific CLBP and 10 non-CLBP control volunteers while the subjects were walking at their preferred speed. Sagittal plane time-normalized segmental angles and velocities were used to calculate continuous relative phase for each data point. Mean absolute relative phase (MARP) and deviation phase (DP) were derived to quantify the trunk-pelvis and bilateral pelvis-thigh, thigh-shank and shank-foot coordination pattern and variability over the stance and swing phases of gait. Mann-Whitney U test was employed to compare the means of DP and MARP values between two groups (same side comparison). Statistical analysis revealed more in-phase/less variable trunk-pelvis coordination in the CLBP group (P<0.05). CLBP group demonstrated less variable right or left pelvis-thigh coordination pattern (P<0.05). Moreover, the left thigh-shank and left shank-foot MARP values in the CLBP group, were more in-phase than left MARP values in the non-CLBP control group during the swing phase (P<0.05). In conclusion, the sagittal plane lower extremities, pelvis and trunk coordination pattern and variability could be generally affected by CLBP during walking. These changes can be possible compensatory strategies of the motor control system which can be considered in the CLBP subjects. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Measurement and Finite Element Model Validation of Immature Porcine Brain-Skull Displacement during Rapid Sagittal Head Rotations.

    PubMed

    Pasquesi, Stephanie A; Margulies, Susan S

    2018-01-01

    Computational models are valuable tools for studying tissue-level mechanisms of traumatic brain injury, but to produce more accurate estimates of tissue deformation, these models must be validated against experimental data. In this study, we present in situ measurements of brain-skull displacement in the neonatal piglet head ( n  = 3) at the sagittal midline during six rapid non-impact rotations (two rotations per specimen) with peak angular velocities averaging 51.7 ± 1.4 rad/s. Marks on the sagittally cut brain and skull/rigid potting surfaces were tracked, and peak values of relative brain-skull displacement were extracted and found to be significantly less than values extracted from a previous axial plane model. In a finite element model of the sagittally transected neonatal porcine head, the brain-skull boundary condition was matched to the measured physical experiment data. Despite smaller sagittal plane displacements at the brain-skull boundary, the corresponding finite element boundary condition optimized for sagittal plane rotations is far less stiff than its axial counterpart, likely due to the prominent role of the boundary geometry in restricting interface movement. Finally, bridging veins were included in the finite element model. Varying the bridging vein mechanical behavior over a previously reported range had no influence on the brain-skull boundary displacements. This direction-specific sagittal plane boundary condition can be employed in finite element models of rapid sagittal head rotations.

  13. Measurement and Finite Element Model Validation of Immature Porcine Brain–Skull Displacement during Rapid Sagittal Head Rotations

    PubMed Central

    Pasquesi, Stephanie A.; Margulies, Susan S.

    2018-01-01

    Computational models are valuable tools for studying tissue-level mechanisms of traumatic brain injury, but to produce more accurate estimates of tissue deformation, these models must be validated against experimental data. In this study, we present in situ measurements of brain–skull displacement in the neonatal piglet head (n = 3) at the sagittal midline during six rapid non-impact rotations (two rotations per specimen) with peak angular velocities averaging 51.7 ± 1.4 rad/s. Marks on the sagittally cut brain and skull/rigid potting surfaces were tracked, and peak values of relative brain–skull displacement were extracted and found to be significantly less than values extracted from a previous axial plane model. In a finite element model of the sagittally transected neonatal porcine head, the brain–skull boundary condition was matched to the measured physical experiment data. Despite smaller sagittal plane displacements at the brain–skull boundary, the corresponding finite element boundary condition optimized for sagittal plane rotations is far less stiff than its axial counterpart, likely due to the prominent role of the boundary geometry in restricting interface movement. Finally, bridging veins were included in the finite element model. Varying the bridging vein mechanical behavior over a previously reported range had no influence on the brain–skull boundary displacements. This direction-specific sagittal plane boundary condition can be employed in finite element models of rapid sagittal head rotations. PMID:29515995

  14. Conflicting calculations of pelvic incidence and pelvic tilt secondary to transitional lumbosacral anatomy (lumbarization of S-1): case report.

    PubMed

    Crawford, Charles H; Glassman, Steven D; Gum, Jeffrey L; Carreon, Leah Y

    2017-01-01

    Advancements in the understanding of adult spinal deformity have led to a greater awareness of the role of the pelvis in maintaining sagittal balance and alignment. Pelvic incidence has emerged as a key radiographic measure and should closely match lumbar lordosis. As proper measurement of the pelvic incidence requires accurate identification of the S-1 endplate, lumbosacral transitional anatomy may lead to errors. The purpose of this study is to demonstrate how lumbosacral transitional anatomy may lead to errors in the measurement of pelvic parameters. The current case highlights one of the potential complications that can be avoided with awareness. The authors report the case of a 61-year-old man who had undergone prior lumbar surgeries and then presented with symptomatic lumbar stenosis and sagittal malalignment. Radiographs showed a lumbarized S-1. Prior numbering of the segments in previous surgical and radiology reports led to a pelvic incidence calculation of 61°. Corrected numbering of the segments using the lumbarized S-1 endplate led to a pelvic incidence calculation of 48°. Without recognition of the lumbosacral anatomy, overcorrection of the lumbar lordosis might have led to negative sagittal balance and the propensity to develop proximal junction failure. This case illustrates that improper identification of lumbosacral transitional anatomy may lead to errors that could affect clinical outcome. Awareness of this potential error may help improve patient outcomes.

  15. Interaction between thorax, lumbar, and pelvis movements in the transverse plane during gait at three velocities.

    PubMed

    Yang, Ya-Ting; Yoshida, Yasuyuki; Hortobágyi, Tibor; Suzuki, Shuji

    2013-06-01

    We determined the angular range of motion and the relative timing of displacement in the thorax, lumbar spine, and pelvis in the transverse plane during treadmill walking at three velocities. Nine healthy young females walked on a treadmill for three minutes at 0.40, 0.93, and 1.47 m/s. The position of seven reflective markers and three rigs placed on the thorax, lumbar spine, and pelvis were recorded at 200 Hz by an eight-camera motion capture system. As gait velocity increased, stride length increased, cycle time decreased, and angular displacement in the thorax and L1 decreased but increased at the pelvis and L5 (all P < .05). The time of maxi- mal angular rotation occurred in the following sequence: pelvis, L5, L3, L1, and thorax (P < .001). The thorax and L1 and L3 were in-phase for shorter duration as gait velocity increased, and this reduction was especially large, approx. 32% (P < .05), between thorax and pelvis. As gait velocity increased, the pelvis rotated earlier, causing the shortening of in-phase duration between thorax and pelvis. These data suggest that, as gait velocity increases, pelvis rotation dictates trunk rotation in the transverse plane during gait in healthy young females.

  16. The changes of lumbar muscle flexion-relaxation phenomenon due to antero-posteriorly slanted ground surfaces.

    PubMed

    Hu, Boyi; Ning, Xiaopeng; Dai, Fei; Almuhaidib, Ibrahim

    2016-09-01

    Uneven ground surface is a common occupational injury risk factor in industries such as agriculture, fishing, transportation and construction. Studies have shown that antero-posteriorly slanted ground surfaces could reduce spinal stability and increase the risk of falling. In this study, the influence of antero-posteriorly slanted ground surfaces on lumbar flexion-relaxation responses was investigated. Fourteen healthy participants performed sagittally symmetric and asymmetric trunk bending motions on one flat and two antero-posteriorly slanted surfaces (-15° (uphill facing) and 15° (downhill facing)), while lumbar muscle electromyography and trunk kinematics were recorded. Results showed that standing on a downhill facing slanted surface delays the onset of lumbar muscle flexion-relaxation phenomenon (FRP), while standing on an uphill facing ground causes lumbar muscle FRP to occur earlier. In addition, compared to symmetric bending, when performing asymmetric bending, FRP occurred earlier on the contralateral side of lumbar muscles and significantly smaller maximum lumbar flexion and trunk inclination angles were observed. Practitioner Summary: Uneven ground surface is a common risk factor among a number of industries. In this study, we investigated the influence of antero-posteriorly slanted ground surface on trunk biomechanics during trunk bending. Results showed the slanted surface alters the lumbar tissue load-sharing mechanism in both sagittally symmetric and asymmetric bending.

  17. Accuracy of a Radiological Evaluation Method for Thoracic and Lumbar Spinal Curvatures Using Spinous Processes.

    PubMed

    Marchetti, Bárbara V; Candotti, Cláudia T; Raupp, Eduardo G; Oliveira, Eduardo B C; Furlanetto, Tássia S; Loss, Jefferson F

    The purpose of this study was to assess a radiographic method for spinal curvature evaluation in children, based on spinous processes, and identify its normality limits. The sample consisted of 90 radiographic examinations of the spines of children in the sagittal plane. Thoracic and lumbar curvatures were evaluated using angular (apex angle [AA]) and linear (sagittal arrow [SA]) measurements based on the spinous processes. The same curvatures were also evaluated using the Cobb angle (CA) method, which is considered the gold standard. For concurrent validity (AA vs CA), Pearson's product-moment correlation coefficient, root-mean-square error, Pitman- Morgan test, and Bland-Altman analysis were used. For reproducibility (AA, SA, and CA), the intraclass correlation coefficient, standard error of measurement, and minimal detectable change measurements were used. A significant correlation was found between CA and AA measurements, as was a low root-mean-square error. The mean difference between the measurements was 0° for thoracic and lumbar curvatures, and the mean standard deviations of the differences were ±5.9° and 6.9°, respectively. The intraclass correlation coefficients of AA and SA were similar to or higher than the gold standard (CA). The standard error of measurement and minimal detectable change of the AA were always lower than the CA. This study determined the concurrent validity, as well as intra- and interrater reproducibility, of the radiographic measurements of kyphosis and lordosis in children. Copyright © 2017. Published by Elsevier Inc.

  18. Clinically acceptable agreement between the ViMove wireless motion sensor system and the Vicon motion capture system when measuring lumbar region inclination motion in the sagittal and coronal planes.

    PubMed

    Mjøsund, Hanne Leirbekk; Boyle, Eleanor; Kjaer, Per; Mieritz, Rune Mygind; Skallgård, Tue; Kent, Peter

    2017-03-21

    Wireless, wearable, inertial motion sensor technology introduces new possibilities for monitoring spinal motion and pain in people during their daily activities of work, rest and play. There are many types of these wireless devices currently available but the precision in measurement and the magnitude of measurement error from such devices is often unknown. This study investigated the concurrent validity of one inertial motion sensor system (ViMove) for its ability to measure lumbar inclination motion, compared with the Vicon motion capture system. To mimic the variability of movement patterns in a clinical population, a sample of 34 people were included - 18 with low back pain and 16 without low back pain. ViMove sensors were attached to each participant's skin at spinal levels T12 and S2, and Vicon surface markers were attached to the ViMove sensors. Three repetitions of end-range flexion inclination, extension inclination and lateral flexion inclination to both sides while standing were measured by both systems concurrently with short rest periods in between. Measurement agreement through the whole movement range was analysed using a multilevel mixed-effects regression model to calculate the root mean squared errors and the limits of agreement were calculated using the Bland Altman method. We calculated root mean squared errors (standard deviation) of 1.82° (±1.00°) in flexion inclination, 0.71° (±0.34°) in extension inclination, 0.77° (±0.24°) in right lateral flexion inclination and 0.98° (±0.69°) in left lateral flexion inclination. 95% limits of agreement ranged between -3.86° and 4.69° in flexion inclination, -2.15° and 1.91° in extension inclination, -2.37° and 2.05° in right lateral flexion inclination and -3.11° and 2.96° in left lateral flexion inclination. We found a clinically acceptable level of agreement between these two methods for measuring standing lumbar inclination motion in these two cardinal movement planes. Further

  19. An anatomical study of the transversus abdominis plane block: location of the lumbar triangle of Petit and adjacent nerves.

    PubMed

    Jankovic, Zorica B; du Feu, Frances M; McConnell, Patricia

    2009-09-01

    The transversus abdominis plane (TAP) block is a new technique for providing analgesia to the anterior abdominal wall. Most previous studies have used the lumbar triangle of Petit as a landmark for the block. In this cadaveric study, we determined the exact position and size of the lumbar triangle of Petit and identified the nerves affected by the TAP block. The position of the lumbar triangle of Petit was assessed unilaterally in 26 cadaveric specimens relative to reliably palpable surface landmarks. In addition, a series of dissections were performed to explore the course of the nerves blocked by the TAP. The mean distance from the midaxillary line along the iliac crest to the center of the base of the lumbar triangle of Petit at the level of the subcutaneous tissue and over the skin surface was 6.9 cm (range, 4.5-9.2 cm) and 9.3 cm (range, 4-15.1 cm), respectively. The center of the lumbar triangle of Petit was 1.4 cm above the iliac crest. The depth of the TAP at the lumbar triangle of Petit position was 0.5-4 cm and at the midaxillary line it was 0.5-2 cm. The average size of the lumbar triangle of Petit was 2.3 cm x 3.3 cm x 2.2 cm, with an average area of 3.63 +/- 1.93 cm2. The three cadaveric specimens we explored showed the nerves blocked by TAP passed lateral to the triangle. An incidental finding was that in 66% of specimens the lumbar triangle of Petit contained small branches of the subcostal artery. The lumbar triangles of Petit found in the specimens in this study were more posterior than the literature suggests. The position of the lumbar triangle of Petit varies largely and the size is relatively small. The relevant nerves to be blocked had not entered the TAP in the specimens in this study at the point of the lumbar triangle of Petit. At the midaxillary line, however, all the nerves were in the TAP.

  20. Sagittal balance and idiopathic scoliosis: does final sagittal alignment influence outcomes, degeneration rate or failure rate?

    PubMed

    Ilharreborde, Brice

    2018-02-01

    In the last decade, spine surgeons have been impacted by the "sagittal plane analysis revolution". Significant correlations have been found in adult spinal deformity (ASD) between sagittal lumbo-pelvic parameters and functional outcomes, but most of them do not apply in adolescent idiopathic scoliosis (AIS). Meanwhile, instrumentation and reduction strategies have considerably evolved. This paper aims to describe the preoperative sagittal alignment in AIS, and to report literature evidence regarding the influence of postoperative sagittal balance on complication rates, low back pain incidence and disc degeneration. A bibliographic search in Medline and Google database from 1984 to May 2017 was performed. The keywords included 'adolescent idiopathic scoliosis', 'adult scoliosis', 'sagittal alignment', 'proximal junctional kyphosis', 'distal junctional kyphosis', 'outcomes', 'low back pain' and 'complication', used individually or in combination. Algorithms of sagittal balance analysis and treatment decision have been reported in ASD, but the clinical situation is very different in children. Sagittal alignment greatly varies in AIS among the various Lenke types. Most patients are clinically balanced before surgery, but the spinal harmony is altered, with overgrowth of the anterior column and global sagittal flattening (undersestimated in 2D). The exact role of pelvic incidence and whether or not patients also use pelvic compensation to maintain balance still require further clarification. The incidence of radiological junctional failures remains highly variable, depending on definitions, cohort size and follow-up. Preoperative hyperkyphosis seems to be a consistent and relevant risk factor. Current literature does not support the recent trend to save motion segments (selective fusion), and no significant association was found between the distal level of fusion and the incidence of low back pain. Postoperative sagittal alignment seems to be more important than LIV

  1. The effects of the sagittal plane malpositioning of the patella and concomitant quadriceps hypotrophy on the patellofemoral joint: a finite element analysis.

    PubMed

    Aksahin, Ertugrul; Kocadal, Onur; Aktekin, Cem N; Kaya, Defne; Pepe, Murad; Yılmaz, Serdar; Yuksel, H Yalcin; Bicimoglu, Ali

    2016-03-01

    Anterior knee pain is a common symptom after intramedullary nailing in tibia shaft fracture. Moreover, patellofemoral malalignment is also known to be a major reason for anterior knee pain. Patellofemoral malalignment predisposes to increased loading in patellar cartilage. In the previous study, we have demonstrated the quadriceps atrophy and patellofemoral malalignment after intramedullary nailing due to tibia shaft fracture. In this study, our aim was to clarify the effects of quadriceps atrophy and patellofemoral malalignment with the pathologic loading on the joint cartilage. Mesh models of patellofemoral joint were constructed with CT images and integrated with soft tissue components such as menisci and ligaments. Physiological and sagittal tilt models during extension and flexion at 15°, 30° and 60° were created generating eight models. All the models were applied with 137 N force to present the effects of normal loading and 115.7 N force for the simulation of quadriceps atrophy. Different degrees of loading were applied to evaluate the joint contact area and pressure value with the finite element analysis. There was increased patellofemoral contact area in patellar tilt models with respect to normal models. The similar loading patterns were diagnosed in all models at 0° and 15° knee flexion when 137 N force was applied. Higher loading values were obtained at 30° and 60° knee flexions in sagittal tilt models. Furthermore, in the sagittal tilt models, in which the quadriceps atrophy was simulated, the loadings at 30° and 60° knee flexion were higher than in the physiological ones. Sagittal malalignment of the patellofemoral joint is a new concept that results in different loading patterns in the patellofemoral joint biomechanics. This malalignment in sagittal plane leads to increased loading values on the patellofemoral joint at 30° and 60° of the knee flexions. This new concept should be kept in mind during the course of diagnosis and treatment

  2. Progressive restoration of spinal sagittal balance after surgical correction of lumbosacral spondylolisthesis before skeletal maturity.

    PubMed

    Thomas, Diala; Bachy, Manon; Courvoisier, Aurélien; Dubory, Arnaud; Bouloussa, Houssam; Vialle, Raphaël

    2015-03-01

    Spinopelvic alignment is crucial in assessing an energy-efficient posture in both normal and disease states, such as high-displacement developmental spondylolisthesis (HDDS). The overall effect in patients with HDDS who have undergone local surgical correction of lumbosacral imbalance for the global correction of spinal balance remains unclear. This paper reports the progressive spontaneous improvement of global sagittal balance following surgical correction of lumbosacral imbalance in patients with HDDS. The records of 15 patients with HDDS who underwent surgery between 2005 and 2010 were reviewed. The treatment consisted of L4-sacrum reduction and fusion via a posterior approach, resulting in complete correction of lumbosacral kyphosis. Preoperative, 6-month postoperative, and final follow-up postoperative angular measurements were taken from full-spine lateral radiographs obtained with the patient in a standard standing position. Radiographic measurements included pelvic incidence, sacral slope, lumbar lordosis, and thoracic kyphosis. The degree of lumbosacral kyphosis was evaluated by the lumbosacral angle. Because of the small number of patients, nonparametric tests were considered for data analysis. Preoperative lumbosacral kyphosis and L-5 anterior slip were corrected by instrumentation. Transient neurological complications were noted in 5 patients. Statistical analysis showed a significant increase of thoracic kyphosis on 6-month postoperative and final follow-up radiographs (p < 0.001). A statistically significant decrease of lumbar lordosis was noted between preoperative and 6-month control radiographs (p < 0.001) and between preoperative and final follow-up radiographs (p < 0.001). Based on the authors' observations, this technique resulted in an effective reduction of L-5 anterior slip and significant reduction of lumbosacral kyphosis (from 69.8° to 105.13°). Due to complete reduction of lumbosacral kyphosis and anterior trunk displacement associated

  3. The distribution of lumbar intervertebral angles in upright standing and extension is related to low back pain developed during standing.

    PubMed

    Viggiani, Daniel; Gallagher, Kaitlin M; Sehl, Michael; Callaghan, Jack P

    2017-11-01

    Lumbar lordosis measures are poorly related to clinical low back pain, however using a controlled exposure such as prolonged standing to identify pain groups may clarify this relationship. The purpose of this study was to determine the distribution of lumbar intervertebral angles in asymptomatic persons who do (pain developers) and do not (non-pain developers) develop low back pain during standing. Sagittal plane lumbar spine radiographs of eight pain developers and eight non-pain developers were taken in three poses: upright standing, full extension and full flexion. Measures of vertebral end plate orientations from L1 to S1 were taken in each pose to compute: intervertebral angles, contribution of each level to the total curve, total lordosis, ranges of motion, relative pose positioning within the range of motion, vertebral shape, and lumbar spine recurve. Measures were compared between pain groups and lumbar levels. Pain group differences in intervertebral angles and level contributions were greatest in the full extension pose, with pain developers having greater contributions from higher lumbar levels and fewer contributions from lower levels than non-pain developers. Pain group differences in intervertebral angle distributions were less pronounced in upright standing and non-existent in full flexion. No other measures differentiated pain groups. Although participants had similar gross-lumbar spine curvature characteristics, non-pain developers have more curvature at lower levels in upright standing and full extension. These differences in regional vertebral kinematics may partially be responsible for standing-induced low back pain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Sagittal plane gait characteristics in hip osteoarthritis patients with mild to moderate symptoms compared to healthy controls: a cross-sectional study.

    PubMed

    Eitzen, Ingrid; Fernandes, Linda; Nordsletten, Lars; Risberg, May Arna

    2012-12-20

    Existent biomechanical studies on hip osteoarthritic gait have primarily focused on the end stage of disease. Consequently, there is no clear consensus on which specific gait parameters are of most relevance for hip osteoarthritis patients with mild to moderate symptoms. The purpose of this study was to explore sagittal plane gait characteristics during the stance phase of gait in hip osteoarthritis patients not eligible for hip replacement surgery. First, compared to healthy controls, and second, when categorized into two subgroups of radiographic severity defined from a minimal joint space of ≤/>2 mm. Sagittal plane kinematics and kinetics of the hip, knee and ankle joint were calculated for total joint excursion throughout the stance phase, as well as from the specific events initial contact, midstance, peak hip extension and toe-off following 3D gait analysis. In addition, the Western Ontario and McMaster Universities Osteoarthritis Index, passive hip range of motion, and isokinetic muscle strength of hip and knee flexion and extension were included as secondary outcomes. Data were checked for normality and differences evaluated with the independent Student's t-test, Welch's t-test and the independent Mann-Whitney U-test. A binary logistic regression model was used in order to control for velocity in key variables. Fourty-eight hip osteoarthritis patients and 22 controls were included in the final material. The patients walked significantly slower than the controls (p=0.002), revealed significantly reduced joint excursions of the hip (p<0.001) and knee (p=0.011), and a reduced hip flexion moment at midstance and peak hip extension (p<0.001). Differences were primarily manifested during the latter 50% of stance, and were persistent when controlling for velocity. Subgroup analyses of patients with minimal joint space ≤/>2 mm suggested that the observed deviations were more pronounced in patients with greater radiographic severity. The biomechanical

  5. Reproducibility of sagittal radiographic parameters in adolescent idiopathic scoliosis-a guide to reference values using serial imaging.

    PubMed

    Hey, Hwee Weng Dennis; Wong, Gordon Chengyuan; Chan, Chloe Xiaoyun; Lau, Leok-Lim; Kumar, Naresh; Thambiah, Joseph Shantakumar; Ruiz, John Nathaniel; Liu, Ka-Po Gabriel; Wong, Hee-Kit

    2017-06-01

    Knowledge of sagittal radiographic parameters in adolescent idiopathic scoliosis (AIS) patients has not yet caught up with our understanding of their roles in patients with adult spinal deformity. It is likely that more emphasis will be placed in restoring sagittal parameters for AIS patients in the future. Therefore, we need to understand how these parameters may vary in AIS to facilitate management plans. This study aimed to determine the reproducibility of sagittal spinal parameters on lateral film radiographs in patients with AIS. This was a retrospective, comparative study conducted in a tertiary health-care institution from January 2013 to February 2016 (3-year period). All AIS patients who underwent deformity correction surgery from January 2013 to February 2016 and had two preoperative serial lateral radiographs taken within the time period of a month were included in the study. Radiographic sagittal spinal parameters including sagittal vertical axis (SVA), cervical lordosis (CL), thoracic kyphosis (TK), thoracolumbar alignment (TL), lumbar lordosis (LL); standard spinopelvic measurements such as pelvic incidence (PI), pelvic tilt (PT), sacral slope (SS); as well as end and apical vertebrae of cervical, thoracic, and lumbar curves were the outcome measures. All patient data were pooled from electronic medical records, and X-ray images were retrieved from Centricity Enterprise Web. Averaged X-ray measurements by two independent assessors were analyzed by comparing two radiographs of the same patients performed within a 1-month time period. Chi-squared and Wilcoxon signed-rank tests were used for categorical and continuous variables. The study cohort comprised 138 patients, 28 men and 110 women, with a mean age of 15 years (range 11-20). Between the two lateral X-rays, there was a mean difference of 0.79 cm in SVA (p<.001), 0.70° in LL (p=.033), and 0.73° in PT (p=.010). In the combined Lenke 1 and 2 subgroup, there was a similar 0.77 cm (p=.002), 0.79

  6. Sagittal plane bending moments acting on the lower leg during running.

    PubMed

    Haris Phuah, Affendi; Schache, Anthony G; Crossley, Kay M; Wrigley, Tim V; Creaby, Mark W

    2010-02-01

    Sagittal bending moments acting on the lower leg during running may play a role in tibial stress fracture development. The purpose of this study was to evaluate these moments at nine equidistant points along the length of the lower leg (10% point-90% point) during running. Kinematic and ground reaction force data were collected for 20 male runners, who each performed 10 running trials. Inverse dynamics and musculoskeletal modelling techniques were used to estimate sagittal bending moments due to reaction forces and muscle contraction. The muscle moment was typically positive during stance, except at the most proximal location (10% point) on the lower leg. The reaction moment was predominantly negative throughout stance and greater in magnitude than the muscle moment. Hence, the net sagittal bending moment acting on the lower leg was principally negative (indicating tensile loads on the posterior tibia). Peak moments typically occurred around mid-stance, and were greater in magnitude at the distal, compared with proximal, lower leg. For example, the peak reaction moment at the most distal point was -9.61+ or - 2.07%Bw.Ht., and -2.73 + or - 1.18%Bw.Ht. at the most proximal point. These data suggest that tensile loads on the posterior tibia are likely to be higher toward the distal end of the bone. This finding may explain the higher incidence of stress fracture in the distal aspect of the tibia, observed by some authors. Stress fracture susceptibility will also be influenced by bone strength and this should also be accounted for in future studies. Copyright 2009 Elsevier B.V. All rights reserved.

  7. Sagittal alignment after lumbar interbody fusion: comparing anterior, lateral, and transforaminal approaches.

    PubMed

    Watkins, Robert G; Hanna, Robert; Chang, David; Watkins, Robert G

    2014-07-01

    Retrospective radiographic analysis. To determine which lumbar interbody technique is most effective for restoring lordosis, increasing disk height, and reducing spondylolisthesis. Lumbar interbody fusions are performed in hopes of increasing fusion potential, correcting deformity, and indirectly decompressing nerve roots. No published study has directly compared anterior, lateral, and transforaminal lumber interbody fusions in terms of ability to restore lordosis, increase disk height, and reduce spondylolisthesis. Lumbar interbody fusion techniques were retrospectively compared in terms of improvement of lordosis, disk height, and spondylolisthesis between preoperative and follow-up lateral radiographs. A total of 220 consecutive patients with 309 operative levels were compared by surgery type: anterior (184 levels), lateral (86 levels), and transforaminal (39 levels). Average follow-up was 19.2 months (range, 1-56 mo), with no statistical difference between the groups. Intragroup analysis showed that the anterior (4.5 degrees) and lateral (2.2 degrees) groups significantly improved lordosis from preoperative to follow-up, whereas the transforaminal (0.8 degrees) group did not. Intergroup analysis showed that the anterior group significantly improved lordosis more than both the lateral and transforaminal groups. The anterior (2.2 mm) and lateral (2.0 mm) groups both significantly improved disk height more than the transforaminal (0.5 mm) group. All 3 groups significantly reduced spondylolisthesis, with no difference between the groups. After lumbar interbody fusion, improvement of lordosis was significant for both the anterior and lateral groups, but not the transforaminal group. Intergroup analysis showed the anterior group had significantly improved lordosis compared to both the other groups. The anterior and lateral groups had significantly increased disk height compared to the transforaminal group. All the 3 groups significantly reduced spondylolisthesis

  8. Quantification of shoulder and elbow passive moments in the sagittal plane as a function of adjacent angle fixations.

    PubMed

    Kodek, Timotej; Munih, Marko

    2003-01-01

    The goal of this study was an assessment of the shoulder and elbow joint passive moments in the sagittal plane for six healthy individuals. Either the shoulder or elbow joints were moved at a constant speed, very slowly throughout a large portion of their range by means of an industrial robot. During the whole process the arm was held fully passively, while the end point force data and the shoulder, elbow and wrist angle data were collected. The presented method unequivocally reveals a large passive moment adjacent angle dependency in the central angular range, where most everyday actions are performed. It is expected to prove useful in the future work when examining subjects with neuromuscular disorders. Their passive moments may show a fully different pattern than the ones obtained in this study.

  9. Lumbar Spine Musculoskeletal Physiology and Biomechanics During Simulated Military Operations

    DTIC Science & Technology

    2015-06-01

    decreases at a ll l eve l s except L1L2 when s i tting . Even anteri or/posteri or d i stri but i on o f l oad maintains whole lumbar lordosis as load...more forward. Data shown is mean ± STD. Figure 4. Cobb angle was measured in each position to assess lumbar lordosis . A.) Sagittal Cobb angle is...c C/)..C C) 0 () -(/) (!) !.... (!) .Q 0, !.... (!) ~Ŕ c- =<D ro-.....,e> :!:C O><( ro..c Cl)..c 0 () Lordosis Kyphosis endplate

  10. Analysis of the Pelvic Functional Orientation in the Sagittal Plane: A Radiographic Study With EOS 2D/3D Technology.

    PubMed

    Loppini, Mattia; Longo, Umile Giuseppe; Ragucci, Pasquala; Trenti, Nicoletta; Balzarini, Luca; Grappiolo, Guido

    2017-03-01

    We investigated the relationship between pelvic incidence (PI) with anterior pelvic plane angle (APPA), pelvic tilt (PT) angle, and sacral slope (SS) in standing and sitting positions to identify the best parameter expressing the pelvic functional orientation in the sagittal plane. We enrolled 109 consecutive patients (M:F = 43:66) eligible for a primary total hip arthroplasty (THA) with an average age of 63.4 years (15-85). EOS 2D/3D radiography was performed in standing and sitting positions before THA to evaluate the functional pelvic orientation. 3D images took into account the patient-specific sagittal balance measuring APPA, PT, SS, and PI. In standing position, functional parameters measured 5° ± 7.1 for APPA, 11° ± 8.3 for PT, 43° ± 8.5 for SS, and 53° ± 10.9 for PI. In sitting position, they were -18° ± 10.4 for APPA, 34° ± 11.8 for PT, 20° ± 12.6 for SS, and 54° ± 10.9 for PI. There was no significant difference between men and women in terms of the functional parameters in both positions. No relationship was found between APPA and PI in both positions. SS correlated with PI in standing (r = 0.66; P < .0001; R 2  = 0.44) and sitting (r = 0.51; P < .0001; R 2  = 0.26). PT correlated with PI in standing (r = 0.65; P < .0001; R 2  = 0.42) and sitting (r = 0.38; P < .0001; R 2  = 0.14). SS shows the highest correlation with functional pelvic tilt. The study suggests that adjustments in acetabular anteversion during primary THA should be based on SS. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Modelling and simulation of the intervertebral movements of the lumbar spine using an inverse kinematic algorithm.

    PubMed

    Sun, L W; Lee, R Y W; Lu, W; Luk, K D K

    2004-11-01

    An inverse kinematic model is presented that was employed to determine the optimum intervertebral joint configuration for a given forward-bending posture of the human trunk. The lumbar spine was modelled as an open-end, kinematic chain of five links that represented the five vertebrae (L 1-L5). An optimisation equation with physiological constraints was employed to determine the intervertebral joint configuration. Intervertebral movements were measured from sagittal X-ray films of 22 subjects. The mean difference between the X-ray measurements of intervertebral rotations in the sagittal plane and the values predicted by the kinematic model was less than 1.6 degrees. Pearson product-moment correlation R was used to measure the relationship between the measured and predicted values. The R-values were found to be high, ranging from 0.83 to 0.97, for prediction of intervertebral rotation, but poor for intervertebral translation (R= 0.08-0.67). It is concluded that the inverse kinematic model will be clinically useful for predicting intervertebral rotation when X-ray or invasive measurements are undesirable. It will also be useful to biomechanical modelling, which requires accurate kinematic information as model input data.

  12. Can acetabular orientation be restored by lumbar pedicle subtraction osteotomy in ankylosing spondylitis patients with thoracolumbar kyphosis?

    PubMed

    Hu, Jun; Qian, Bang-Ping; Qiu, Yong; Wang, Bin; Yu, Yang; Zhu, Ze-Zhang; Jiang, Jun; Mao, Sai-Hu; Qu, Zhe; Zhang, Yun-Peng

    2017-07-01

    To evaluate whether acetabular orientation (abduction and anteversion) can be restored by lumbar pedicle subtraction osteotomy (PSO) in ankylosing spondylitis (AS) patients with thoracolumbar kyphosis. A total of 33 consecutive AS patients with thoracolumbar kyphosis undergoing one-level lumbar PSO were retrospectively reviewed. Radiographical measurements included sagittal vertical axis, global kyphosis, thoracic kyphosis, local kyphosis, lumbar lordosis, pelvic incidence, sacral slope, and pelvic tilt. Acetabular abduction and anteversion were measured on CT scans of the pelvis before and after lumbar PSO. The preoperative and postoperative parameters were compared by the paired samples t test. Pearson's correlation analysis was conducted to determine the correlations between the changes in acetabular abduction and anteversion and the changes in sagittal spinopelvic parameters. After lumbar PSO, sagittal vertical axis, global kyphosis, and pelvic tilt were corrected from 15.7 ± 6.7 cm, 66.8° ± 17.5°, and 38.6° ± 9.0° to 2.9 ± 4.9 cm, 21.3° ± 8.2°, and 23.2° ± 8.2°, respectively (p < 0.001). Of note, acetabular abduction and anteversion decreased from 59.6° ± 4.6° to 31.4° ± 6.5° before surgery to 51.4° ± 6.5° and 20.2° ± 4.4° after surgery, respectively (p < 0.001). Moreover, the changes in acetabular abduction and anteversion were observed significantly correlated with the change in pelvic tilt (r = 0.527, p = 0.002; r = 0.586, p < 0.001). Abnormal acetabular abduction and anteversion could be corrected by lumbar PSO in AS patients with thoracolumbar kyphosis. Consequently, a relatively normal acetabular orientation could be achieved after lumbar PSO, which might decrease the potential risk of dislocation in AS patients with spine and hip deformities requiring subsequent THR surgery.

  13. Effect of total lumbar disc replacement on lumbosacral lordosis.

    PubMed

    Kasliwal, Manish K; Deutsch, Harel

    2012-10-01

    Original article : To study effect of lumbar disc replacement on lumbosacral lordosis. There has been a growing interest in total disc replacement (TDR) for back pain with the rising concern of adjacent segment degeneration. Lumbar fusion surgery has been shown to lead to decrease in lumbar lordosis, which may account for postfusion pain resulting in less acceptable clinical outcome after successful fusion. TDR has recently emerged as an alternative treatment for back pain. There have been very few studies reporting lumbar sagittal outcome after TDR. Retrospective study of radiographic data of 17 patients who underwent TDR for single level degenerative disc disease at the author's institution was carried out. Study included measurement of preoperative and postoperative segmental and global lumbar lordosis and angle of lordosis. Patients age varied from 19 to 54 (mean, 35) years. Follow-up ranged from 12 to 24 months. TDR was performed at L4-5 level in 3 patients and L5-S1 level in 14 patients. The average values for segmental lordosis, global lordosis, and angle of lordosis at the operated level before and after surgery were 17.3, 49.7, and 8.6 degrees and 21.6, 54, and 9.5 degrees, respectively. There was a trend toward significant (P=0.02) and near significant (P=0.057) increase in segmental and global lordosis, respectively after TDR. Although prosthesis increased angle of lordosis at the level implanted in majority of the patients, the difference in preoperative and postoperative angle of lordosis was not significant (P=0.438). In addition, there was no correlation between the angle of implant of chosen and postoperative angle of lordosis at the operated level. The effect of TDR on sagittal balance appears favorable with an increase in global and segmental lumbar lordosis after single level TDR for degenerative disc disease. The degree of postoperative angle of lordosis was not affected by the angle of implant chosen at the operated level and varied

  14. Anterior lumbar instrumentation improves correction of severe lumbar Lenke C curves in double major idiopathic scoliosis

    PubMed Central

    Yeon, Howard B.; Weinberg, Jacob; Arlet, Vincent; Ouelett, Jean A.

    2007-01-01

    Fifteen skeletally immature patients with double major adolescent idiopathic scoliosis with large lumbar curves and notable L4 and L5 coronal plane obliquity were retrospectively studied. Seven patients who underwent anterior release and fusion of the lumbar curve with segmental anterior instrumentation and subsequent posterior instrumentation ending at L3 were compared with eight patients treated with anterior release and fusion without anterior instrumentation followed by posterior instrumentation to L3 or L4. At 4.5 years follow-up (range 2.5–7 years), curve correction, coronal balance and fusion rate were not statistically different between the two groups; however, the group with anterior instrumentation had improved coronal plane, near normalangulation in the distal unfused segment compared with the group without anterior instrumentation. In cases involving severe lumbar curvatures in the context of double major scoliosis, when as a first stage anterior release is chosen, the addition of instrumentation appears to restore normal coronal alignment of the distal unfused lumbar segment, and may in certain cases save a level compared with traditional fusions to L4. PMID:17464517

  15. The Effect of Sagittal Plane Deformities after Tibial Plateau Fractures to Functions and Instability of Knee Joint.

    PubMed

    Erdil, M; Yildiz, F; Kuyucu, E; Sayar, Ş; Polat, G; Ceylan, H H; Koçyiğit, F

    2016-01-01

    The objective of this study is to evaluate the effect of posterior tibial slope after fracture healing on antero-posterior knee laxity, functional outcome and patient satisfaction. 126 patients who were treated for tibial plateau fractures between 2008-2013 in the orthopedics and traumatology department of our institution were evaluated for the study. Patients were treated with open reduction and internal fixation, arthroscopy assisted minimally invasive osteosynthesis or conservative treatment. Mean posterior tibial slope after the treatment was 6.91 ± 5.11 and there was no significant difference when compared to the uninvolved side 6.42 ± 4,21 (p = 0.794). Knee laxity in anterior-posterior plane was 6.14 ± 2.11 and 5.95 ± 2.25 respectively on healthy and injured side. The difference of mean laxity in anterior-posterior plane between two sides was statistically significant. In this study we found no difference in laxity between the injured and healthy knees. However Tegner score decreased significantly in patients who had greater laxity difference between the knees. We did not find significant difference between fracture type and laxity, IKDC functional scores independent of the ligamentous injury. In conclusion despite coronal alignment is taken into consideration in treatment of tibial plateau fractures, sagittal alignment is reasonably important for stability and should not be ignored.

  16. Biological risk indicators for recurrent non-specific low back pain in adolescents.

    PubMed

    Jones, M A; Stratton, G; Reilly, T; Unnithan, V B

    2005-03-01

    A matched case-control study was carried out to evaluate biological risk indicators for recurrent non-specific low back pain in adolescents. Adolescents with recurrent non-specific low back pain (symptomatic; n = 28; mean (SD) age 14.9 (0.7) years) and matched controls (asymptomatic; n = 28; age 14.9 (0.7) years) with no history of non-specific low back pain participated. Measures of stature, mass, sitting height, sexual maturity (Tanner self assessment), lateral flexion of the spine, lumbar sagittal plane mobility (modified Schober), hip range of motion (Leighton flexometer), back and hamstring flexibility (sit and reach), and trunk muscle endurance (number of sit ups) were performed using standardised procedures with established reliability. Backward stepwise logistic regression analysis was performed, with the presence/absence of recurrent low back pain as the dependent variable and the biological measures as the independent variables. Hip range of motion, trunk muscle endurance, lumbar sagittal plane mobility, and lateral flexion of the spine were identified as significant risk indicators of recurrent low back pain (p<0.05). Follow up analysis indicated that symptomatic subjects had significantly reduced lateral flexion of the spine, lumbar sagittal plane mobility, and trunk muscle endurance (p<0.05). Hip range of motion, abdominal muscle endurance, lumbar flexibility, and lateral flexion of the spine were risk indicators for recurrent non-specific low back pain in a group of adolescents. These risk indicators identify the potential for exercise as a primary or secondary prevention method.

  17. Rotation of intramedullary alignment rods affects distal femoral cutting plane in total knee arthroplasty.

    PubMed

    Maderbacher, Günther; Matussek, Jan; Keshmiri, Armin; Greimel, Felix; Baier, Clemens; Grifka, Joachim; Maderbacher, Hermann

    2018-02-17

    Intramedullary rods are widely used to align the distal femoral cut in total knee arthroplasty. We hypothesised that both coronal (varus/valgus) and sagittal (extension/flexion) cutting plane are affected by rotational changes of intramedullary femoral alignment guides. Distal femoral cuts using intramedullary alignment rods were simulated by means of a computer-aided engineering software in 4°, 6°, 8°, 10°, and 12° of valgus in relation to the femoral anatomical axis and 4° extension, neutral, as well as 4°, 8°, and 12° of flexion in relation to the femoral mechanical axis. This reflects the different angles between anatomical and mechanical axis in coronal and sagittal planes. To assess the influence of rotation of the alignment guide on the effective distal femoral cutting plane, all combinations were simulated with the rod gradually aligned from 40° of external to 40° of internal rotation. Rotational changes of the distal femoral alignment guides affect both the coronal and sagittal cutting planes. When alignment rods are intruded neutrally with regards to sagittal alignment, external rotation causes flexion, while internal rotation causes extension of the sagittal cutting plane. Simultaneously the coronal effect (valgus) decreases resulting in an increased varus of the cutting plane. However, when alignment rods are intruded in extension or flexion partly contradictory effects are observed. Generally the effect increases with the degree of valgus preset, rotation and flexion. As incorrect rotation of intramedullary alignment guides for distal femoral cuts causes significant cutting errors, exact rotational alignment is crucial. Coronal cutting errors in the distal femoral plane might result in overall leg malalignment, asymmetric extension gaps and subsequent sagittal cutting errors.

  18. Mid-callosal plane determination using preferred directions from diffusion tensor images

    NASA Astrophysics Data System (ADS)

    Costa, André L.; Rittner, Letícia; Lotufo, Roberto A.; Appenzeller, Simone

    2015-03-01

    The corpus callosum is the major brain structure responsible for inter{hemispheric communication between neurons. Many studies seek to relate corpus callosum attributes to patient characteristics, cerebral diseases and psychological disorders. Most of those studies rely on 2D analysis of the corpus callosum in the mid-sagittal plane. However, it is common to find conflicting results among studies, once many ignore methodological issues and define the mid-sagittal plane based on precary or invalid criteria with respect to the corpus callosum. In this work we propose a novel method to determine the mid-callosal plane using the corpus callosum internal preferred diffusion directions obtained from diffusion tensor images. This plane is analogous to the mid-sagittal plane, but intended to serve exclusively as the corpus callosum reference. Our method elucidates the great potential the directional information of the corpus callosum fibers have to indicate its own referential. Results from experiments with five image pairs from distinct subjects, obtained under the same conditions, demonstrate the method effectiveness to find the corpus callosum symmetric axis relative to the axial plane.

  19. Effectiveness of a Rapid Lumbar Spine MRI Protocol Using 3D T2-Weighted SPACE Imaging Versus a Standard Protocol for Evaluation of Degenerative Changes of the Lumbar Spine.

    PubMed

    Sayah, Anousheh; Jay, Ann K; Toaff, Jacob S; Makariou, Erini V; Berkowitz, Frank

    2016-09-01

    Reducing lumbar spine MRI scanning time while retaining diagnostic accuracy can benefit patients and reduce health care costs. This study compares the effectiveness of a rapid lumbar MRI protocol using 3D T2-weighted sampling perfection with application-optimized contrast with different flip-angle evolutions (SPACE) sequences with a standard MRI protocol for evaluation of lumbar spondylosis. Two hundred fifty consecutive unenhanced lumbar MRI examinations performed at 1.5 T were retrospectively reviewed. Full, rapid, and complete versions of each examination were interpreted for spondylotic changes at each lumbar level, including herniations and neural compromise. The full examination consisted of sagittal T1-weighted, T2-weighted turbo spin-echo (TSE), and STIR sequences; and axial T1- and T2-weighted TSE sequences (time, 18 minutes 40 seconds). The rapid examination consisted of sagittal T1- and T2-weighted SPACE sequences, with axial SPACE reformations (time, 8 minutes 46 seconds). The complete examination consisted of the full examination plus the T2-weighted SPACE sequence. Sensitivities and specificities of the full and rapid examinations were calculated using the complete study as the reference standard. The rapid and full studies had sensitivities of 76.0% and 69.3%, with specificities of 97.2% and 97.9%, respectively, for all degenerative processes. Rapid and full sensitivities were 68.7% and 66.3% for disk herniation, 85.2% and 81.5% for canal compromise, 82.9% and 69.1% for lateral recess compromise, and 76.9% and 69.7% for foraminal compromise, respectively. Isotropic SPACE T2-weighted imaging provides high-quality imaging of lumbar spondylosis, with multiplanar reformatting capability. Our SPACE-based rapid protocol had sensitivities and specificities for herniations and neural compromise comparable to those of the protocol without SPACE. This protocol fits within a 15-minute slot, potentially reducing costs and discomfort for a large subgroup of

  20. The effects of lumbar extensor strength on disability and mobility in patients with persistent low back pain.

    PubMed

    Helmhout, Pieter H; Witjes, Marloes; Nijhuis-VAN DER Sanden, Ria W; Bron, Carel; van Aalst, Michiel; Staal, J Bart

    2017-04-01

    It is assumed that low back pain patients who use pain-avoiding immobilizing strategies may benefit from specific back flexion and extension exercises aimed at reducing sagittal lumbar hypomobility. The aim of this study was to test this potential working mechanism in chronic low back pain patients undergoing lumbar extensor strengthening training. A single-group prospective cohort design was used in this study. Patients with persistent low back complaints for at least 2 years were recruited at a specialized physical therapy clinics center. They participated in a progressive 11-week lumbar extensor strength training program, once a week. At baseline, sagittal lumbar mobility in flexion and extension was measured with a computer-assisted inclinometer. Self-rated pain intensity was measured using a visual analogue scale, back-specific functional status was assessed with the Quebec Back Pain Disability Scale and the Patient Specific Complains questionnaire. Statistically significant improvements were found in pain (28% decrease) and functional disability (23% to 36% decrease). Most progress was seen in the first 5 treatment weeks. Lumbar mobility in flexion showed non-significant increases over time (+12%). Pre-post treatment changes in flexion and extension mobility did not contribute significantly to the models. The retained factors together explained 15% to 48% of the variation in outcome. Specific lumbar strengthening showed clinically relevant improvements in pain and disability in patients with persistent chronic low back pain. These improvements did not necessarily relate to improvements in lumbar mobility. Parameters representing other domains of adaptations to exercise may be needed to evaluate the effects of back pain management.

  1. Variations of cervical lordosis and head alignment after pedicle subtraction osteotomy surgery for sagittal imbalance.

    PubMed

    Cecchinato, R; Langella, F; Bassani, R; Sansone, V; Lamartina, C; Berjano, P

    2014-10-01

    The variations of the cervical lordosis after correction of sagittal imbalance have been poorly studied. The aim of our study is to verify whether the cervical lordosis changes after surgery for sagittal imbalance. Thirty-nine patients were included in the study. Cervical, thoracic and lumbar spine, pelvic and lower-limb sagittal parameters were recorded. The cranial alignment was measured by the newly described Cranial Slope. The global cervical kyphosis (preop -43°, postop -31.5°) and the upper (preop -24.1°, postop -20.2°) and lower cervical kyphosis (preop -18.1°, postop -9.2°) were significantly reduced after surgical realignment of the trunk. A positive linear correlation was observed between the changes in T1 slope and the lower cervical lordosis, and between T1 slope and the global cervical alignment. The cervical lordosis is reduced by surgical correction of malalignment of the trunk, suggesting an adaptive role to maintain the head's neutral position.

  2. Inter- and intraobserver reliability of the vertebral, local and segmental kyphosis in 120 traumatic lumbar and thoracic burst fractures: evaluation in lateral X-rays and sagittal computed tomographies

    PubMed Central

    Brunner, Alexander; Gühring, Markus; Schmälzle, Traude; Weise, Kuno; Badke, Andreas

    2009-01-01

    Evaluation of the kyphosis angle in thoracic and lumbar burst fractures is often used to indicate surgical procedures. The kyphosis angle could be measured as vertebral, segmental and local kyphosis according to the method of Cobb. The vertebral, segmental and local kyphosis according to the method of Cobb were measured at 120 lateral X-rays and sagittal computed tomographies of 60 thoracic and 60 lumbar burst fractures by 3 independent observers on 2 separate occasions. Osteoporotic fractures were excluded. The intra- and interobserver reliability of these angles in X-ray and computed tomogram, using the intra class correlation coefficient (ICC) were evaluated. Highest reproducibility showed the segmental kyphosis followed by the vertebral kyphosis. For thoracic fractures segmental kyphosis shows in X-ray “excellent” inter- and intraobserver reliabilities (ICC 0.826, 0.802) and for lumbar fractures “good” to “excellent” inter- and intraobserver reliabilities (ICC = 0.790, 0.803). In computed tomography, the segmental kyphosis showed “excellent” inter- and intraobserver reliabilities (ICC = 0.824, 0.801) for thoracic and “excellent” inter- and intraobserver reliabilities (ICC = 0.874, 0.835) for the lumbar fractures. Regarding both diagnostic work ups (X-ray and computed tomography), significant differences were evaluated in interobserver reliabilities for vertebral kyphosis measured in lumbar fracture X-rays (p = 0.035) and interobserver reliabilities for local kyphosis, measured in thoracic fracture X-rays (p = 0.010). Regarding both fracture localizations (thoracic and lumbar fractures), significant differences could only be evaluated in interobserver reliabilities for the local kyphosis measured in computed tomographies (p = 0.045) and in intraobserver reliabilities for the vertebral kyphosis measured in X-rays (p = 0.024). “Good” to “excellent” inter- and intraobserver reliabilities for vertebral, segmental and local

  3. Comparing preseason frontal and sagittal plane plyometric programs on vertical jump height in high-school basketball players.

    PubMed

    King, Jeffrey A; Cipriani, Daniel J

    2010-08-01

    The primary purpose of this study was to evaluate whether frontal plane (FP) plyometrics, which are defined as plyometrics dominated with a lateral component, would produce similar increases in vertical jump height (VJH) compared to sagittal plane (SP) Plyometrics. Thirty-two junior varsity and varsity high-school basketball players participated in 6 weeks of plyometric training. Players participated in either FP or SP plyometrics for the entire study. Vertical jump height was measured on 3 occasions: preintervention (baseline), at week 3 of preparatory training, and at week 6 of training. Descriptive statistics were calculated for VJH. A 2-way analysis of variance (ANOVA) with repeated measures was used to test the difference in mean vertical jump scores using FP and SP training modalities. Results showed a significant effect over time for vertical jump (p < 0.001). Moreover, a significant time by protocol interaction was noted (p < 0.032). A 1-way ANOVA demonstrated that only the SP group demonstrated improvements over time, in VJH, p < 0.05. The FP group did not improve statistically. The data from this study suggest that FP plyometric training did not have a significant effect on VJH and significant improvement in VJH was seen in subjects participating in SP plyometrics thus reinforcing the specificity principle of training. However, coaches should implement both types of plyometrics because both training modalities can improve power and quickness among basketball players.

  4. Effect of Acute Alterations in Foot Strike Patterns during Running on Sagittal Plane Lower Limb Kinematics and Kinetics

    PubMed Central

    Valenzuela, Kevin A.; Lynn, Scott K.; Mikelson, Lisa R.; Noffal, Guillermo J.; Judelson, Daniel A.

    2015-01-01

    The purpose of this study was to determine the effect of foot strike patterns and converted foot strike patterns on lower limb kinematics and kinetics at the hip, knee, and ankle during a shod condition. Subjects were videotaped with a high speed camera while running a 5km at self-selected pace on a treadmill to determine natural foot strike pattern on day one. Preferred forefoot group (PFFG, n = 10) and preferred rear foot group (PRFG, n = 11) subjects were identified through slow motion video playback (n = 21, age = 22.8±2.2 years, mass = 73.1±14.5 kg, height 1.75 ± 0.10 m). On day two, subjects performed five overground run trials in both their natural and unnatural strike patterns while motion and force data were collected. Data were collected over two days so that foot strike videos could be analyzed for group placement purposes. Several 2 (Foot Strike Pattern –forefoot strike [FFS], rearfoot strike [RFS]) x 2 (Group – PFFG, PRFG) mixed model ANOVAs (p < 0.05) were run on speed, active peak vertical ground reaction force (VGRF), peak early stance and mid stance sagittal ankle moments, sagittal plane hip and knee moments, ankle dorsiflexion ROM, and sagittal plane hip and knee ROM. There were no significant interactions or between group differences for any of the measured variables. Within subject effects demonstrated that the RFS condition had significantly lower (VGRF) (RFS = 2.58 ± .21 BW, FFS = 2.71 ± 0.23 BW), dorsiflexion moment (RFS = -2.6 1± 0.61 Nm·kg-1, FFS = -3.09 ± 0.32 Nm·kg-1), and dorsiflexion range of motion (RFS = 17.63 ± 3.76°, FFS = 22.10 ± 5.08°). There was also a significantly higher peak plantarflexion moment (RFS = 0.23 ± 0.11 Nm·kg-1, FFS = 0.01 ± 0.01 Nm·kg-1), peak knee moment (RFS = 2.61 ± 0.54 Nm·kg-1, FFS = 2.39 ± 0.61 Nm·kg-1), knee ROM (RFS = 31.72 ± 2.79°, FFS = 29.58 ± 2.97°), and hip ROM (RFS = 42.72 ± 4.03°, FFS = 41.38 ± 3.32°) as compared with the FFS condition. This research suggests that

  5. Effect of Acute Alterations in Foot Strike Patterns during Running on Sagittal Plane Lower Limb Kinematics and Kinetics.

    PubMed

    Valenzuela, Kevin A; Lynn, Scott K; Mikelson, Lisa R; Noffal, Guillermo J; Judelson, Daniel A

    2015-03-01

    The purpose of this study was to determine the effect of foot strike patterns and converted foot strike patterns on lower limb kinematics and kinetics at the hip, knee, and ankle during a shod condition. Subjects were videotaped with a high speed camera while running a 5km at self-selected pace on a treadmill to determine natural foot strike pattern on day one. Preferred forefoot group (PFFG, n = 10) and preferred rear foot group (PRFG, n = 11) subjects were identified through slow motion video playback (n = 21, age = 22.8±2.2 years, mass = 73.1±14.5 kg, height 1.75 ± 0.10 m). On day two, subjects performed five overground run trials in both their natural and unnatural strike patterns while motion and force data were collected. Data were collected over two days so that foot strike videos could be analyzed for group placement purposes. Several 2 (Foot Strike Pattern -forefoot strike [FFS], rearfoot strike [RFS]) x 2 (Group - PFFG, PRFG) mixed model ANOVAs (p < 0.05) were run on speed, active peak vertical ground reaction force (VGRF), peak early stance and mid stance sagittal ankle moments, sagittal plane hip and knee moments, ankle dorsiflexion ROM, and sagittal plane hip and knee ROM. There were no significant interactions or between group differences for any of the measured variables. Within subject effects demonstrated that the RFS condition had significantly lower (VGRF) (RFS = 2.58 ± .21 BW, FFS = 2.71 ± 0.23 BW), dorsiflexion moment (RFS = -2.6 1± 0.61 Nm·kg(-1), FFS = -3.09 ± 0.32 Nm·kg(-1)), and dorsiflexion range of motion (RFS = 17.63 ± 3.76°, FFS = 22.10 ± 5.08°). There was also a significantly higher peak plantarflexion moment (RFS = 0.23 ± 0.11 Nm·kg(-1), FFS = 0.01 ± 0.01 Nm·kg(-1)), peak knee moment (RFS = 2.61 ± 0.54 Nm·kg(-1), FFS = 2.39 ± 0.61 Nm·kg(-1)), knee ROM (RFS = 31.72 ± 2.79°, FFS = 29.58 ± 2.97°), and hip ROM (RFS = 42.72 ± 4.03°, FFS = 41.38 ± 3.32°) as compared with the FFS condition. This research suggests

  6. The association between athletic training time and the sagittal curvature of the immature spine.

    PubMed

    Wojtys, E M; Ashton-Miller, J A; Huston, L J; Moga, P J

    2000-01-01

    Strenuous physical activity is known to cause structural abnormalities in the immature vertebral body. Concern that exposure to years of intense athletic training may increase the risk for developing adolescent hyperkyphosis in certain sports, as well as the known association between hyperkyphosis and adult-onset back pain, led us to examine the association between cumulative hours of athletic training and the magnitude of the sagittal curvature of the immature spine. A sample of 2,270 children (407 girls and 1,863 boys) between 8 and 18 years of age were studied. An optical raster-stereographic method was used to measure the mid-sagittal curvatures of the surface of the back while the subject was in the upright standing position to quantify the angles of thoracic kyphosis and lumbar lordosis. These data were then correlated with self-reported hours of training measured by interview and questionnaire. The possible effects of age, sex, sport, and upper and lower body weight training were investigated. The results in these young athletes showed that larger angles of thoracic kyphosis and lumbar lordosis were associated with greater cumulative training time. Gymnasts showed the largest curves. Lack of sports participation, on the other hand, was associated with the smallest curves. Age and sex did not appear to affect the degree of curvature.

  7. Can axial-based nodal size criteria be used in other imaging planes to accurately determine "enlarged" head and neck lymph nodes?

    PubMed

    Bartlett, Eric S; Walters, Thomas D; Yu, Eugene

    2013-01-01

    Objective. We evaluate if axial-based lymph node size criteria can be applied to coronal and sagittal planes. Methods. Fifty pretreatment computed tomographic (CT) neck exams were evaluated in patients with head and neck squamous cell carcinoma (SCCa) and neck lymphadenopathy. Axial-based size criteria were applied to all 3 imaging planes, measured, and classified as "enlarged" if equal to or exceeding size criteria. Results. 222 lymph nodes were "enlarged" in one imaging plane; however, 53.2% (118/222) of these were "enlarged" in all 3 planes. Classification concordance between axial versus coronal/sagittal planes was poor (kappa = -0.09 and -0.07, resp., P < 0.05). The McNemar test showed systematic misclassification when comparing axial versus coronal (P < 0.001) and axial versus sagittal (P < 0.001) planes. Conclusion. Classification of "enlarged" lymph nodes differs between axial versus coronal/sagittal imaging planes when axial-based nodal size criteria are applied independently to all three imaging planes, and exclusively used without other morphologic nodal data.

  8. Reliability of the xipho-pubic angle in patients with sagittal imbalance of the spine.

    PubMed

    Langella, Francesco; Villafañe, Jorge H; Ismael, Maryem; Buric, Josip; Piazzola, Andrea; Lamartina, Claudio; Berjano, Pedro

    2018-04-01

    Proximal junctional kyphosis (PJK) is a frequent complication that compromises the outcomes of spinal surgery, especially for adult deformity. To the date no single risk factor or cause has been identified that explains its occurrence. The purpose of this study was to investigate the test-retest reliability of the radiologic measurements using xipho-pubic angle (XPA) for subjects undergoing surgery for sagittal misalignment of the spine. Retrospective observational cross-sectional study of prospectively collected data. Full-spine standing lateral radiographs of 50 patients who underwent surgery for fixed sagittal imbalance (preoperative and postoperative) were evaluated. Internal consistency, reproducibility, concurrent validity, and discriminative ability of the XPA. Two physicians measured XPA on the 100 randomly sorted and anonymized radiographs on two occasions, one week apart (test and retest conditions), were calculated for inter and intraobserver agreement. Test-retest reliability of XPA measurement was excellent for pre- (ICC=0.98; P=0.001) and post-surgical (ICC=0.86; P=0.001) radiographs of subjects with sagittal imbalance of the spine. XPA was able to discriminate between preoperative and postoperative radiographs F=17.924, P<0.001) in patients undergoing surgery for fixed sagittal imbalance for both raters. There were significant differences between pre- vs. postoperative XPA, pelvic tilt, lumbar lordosis and sagittal vertical axis values (all P<0.001). Xipho-pubic angle had fair to excellent test-retest reliability, and it did possess validity to discriminate between preoperative and postoperative radiographs in patients undergoing surgery for fixed sagittal imbalance.

  9. "Push-Through" Rod Passage Technique for the Improvement of Lumbar Lordosis and Sagittal Balance in Minimally Invasive Adult Degenerative Scoliosis Surgery.

    PubMed

    Haque, Raqeeb M; Uddin, Omar M; Ahmed, Yousef; El Ahmadieh, Tarek Y; Hashmi, Sohaib Z; Shah, Amir; Fessler, Richard G

    2016-10-01

    Traditional open surgical techniques for correction of adult degenerative scoliosis (ADS) are often associated with increased blood loss, postoperative pain, and complications. Minimally invasive (MIS) techniques have been utilized to address these issues; however, concerns regarding improving certain alignment parameters have been raised. A new "push-through" technique for MIS correction of ADS has been developed wherein a rod is bent before its placement into the screw heads and then contoured further to yield improved correction of radiographic parameters. Preoperative and postoperative radiographic measurements of 3 patients who underwent MIS correction of scoliosis using the "push-through" technique were compared with 22 prior patients who had received traditional MIS correction. All patients received staged correction of scoliosis. The first stage involved insertion of lateral lumbar interbodies. Standing x-rays were then evaluated for overall global balance. The second stage involved appropriate MIS facetectomies, facet fusions, posterior transforaminal interbodies at lower lumbar segments, and finally the placement of rods.TECHNIQUE OVERVIEW:: (1) A long rod composed of titanium is bent with a mild lordosis and passed through the extensions of the screw heads cephalad to caudad. (2) The rod is passed fully through the incision so it extrudes from the caudal end of the construct. At this point, further lordosis is bent into the rods. (3) The rod is then pulled back into the appropriate position. (4) The unnecessary cephalad rod is then cut to appropriate length with a circular saw. (5) Rod reducers are then sequentially lowered and tightened to achieve the desired correction. Mean age for all patients was 66.02 years. Preoperative coronal Cobb, sagittal vertical axis (SVA), and pelvic incidence (PI) were similar in all patients, whereas lumbar lordosis (LL) was smaller (15.27 vs. 29.85 degrees, P=0.00389) and pelvic tilt (PT) was larger (37.00 vs. 27

  10. PROXIMAL JUNCTIONAL KYPHOSIS IN ADULT RECONSTRUCTIVE SPINE SURGERY RESULTS FROM INCOMPLETE RESTORATION OF THE LUMBAR LORDOSIS RELATIVE TO THE MAGNITUDE OF THE THORACIC KYPHOSIS

    PubMed Central

    Mendoza-Lattes, Sergio; Ries, Zachary; Gao, Yubo; Weinstein, Stuart L

    2011-01-01

    Background Proximal junctional kyphosis (PJK) is defined as: 1) Proximal junction sagittal Cobb angle >≥10°, and 2) Proximal junction sagittal Cobb angle of at least 10° greater than the pre-operative measurement PJK is a common complication which develops in 39% of adults following surgery for spinal deformity. The pathogenesis, risk factors and prevention of this complication are unclear. Methods Of 54 consecutive adults treated with spinal deformity surgery (age≥59.3±10.1 years), 19 of 54 (35%) developed PJK. The average follow-up was 26.8months (range 12 - 42). Radiographic parameters were measured at the pre-operative, early postoperative (4-6 weeks), and final follow-up visits. Sagittal alignment was measured by the ratio between the C7-plumbline and the sacral-femoral distance. Binary logistic regression model with predictor variables included: Age, BMI, C7-plumbline, and whether lumbar lordosis, thoracic kyphosis and sacral slope were present Results Patients who developed PJK and those without PJK presented with comparable age, BMI, pelvic incidence and sagittal imbalance before surgery. They also presented with comparable sacral slope and lumbar lordosis. The average magnitude of thoracic kyphosis was significantly larger than the lumbar lordosis in the proximal junctional kyphosis group, both at baseline and in the early postoperative period, as represented by [(-lumbar )lordosis - (thoracic kyphosis)]; no- PJK versus PJK; 6.6°±23.2° versus -6.6°±14.2°; p≥0.012. This was not effectively addressed with surgery in the PJK group [(-LL-TK): 6.2°±13.1° vs. -5.2°±9.6°; p≥0.004]. This group also presented with signs of pelvic retroversion with a sacral slope of 29.3°±8.2° pre-operatively that was unchanged after surgery (30.4°±8.5° postoperatively). Logistic regression determined that the magnitude of thoracic kyphosis and sagittal balance (C7-plumbline) was the most important predictor of proximal junctional kyphosis. Conclusions

  11. New insights on equid locomotor evolution from the lumbar region of fossil horses

    PubMed Central

    Jones, Katrina Elizabeth

    2016-01-01

    The specialization of equid limbs for cursoriality is a classic case of adaptive evolution, but the role of the axial skeleton in this famous transition is not well understood. Extant horses are extremely fast and efficient runners, which use a stiff-backed gallop with reduced bending of the lumbar region relative to other mammals. This study tests the hypothesis that stiff-backed running in horses evolved in response to evolutionary increases in body size by examining lumbar joint shape from a broad sample of fossil equids in a phylogenetic context. Lumbar joint shape scaling suggests that stability of the lumbar region does correlate with size through equid evolution. However, scaling effects were dampened in the posterior lumbar region, near the sacrum, which suggests strong selection for sagittal mobility in association with locomotor–respiratory coupling near the lumbosacral joint. I hypothesize that small-bodied fossil horses may have used a speed-dependent running gait, switching between stiff-backed and flex-backed galloping as speed increased. PMID:27122554

  12. Reliable sagittal plane kinematic gait assessments are feasible using low-cost webcam technology.

    PubMed

    Saner, Robert J; Washabaugh, Edward P; Krishnan, Chandramouli

    2017-07-01

    Three-dimensional (3-D) motion capture systems are commonly used for gait analysis because they provide reliable and accurate measurements. However, the downside of this approach is that it is expensive and requires technical expertise; thus making it less feasible in the clinic. To address this limitation, we recently developed and validated (using a high-precision walking robot) a low-cost, two-dimensional (2-D) real-time motion tracking approach using a simple webcam and LabVIEW Vision Assistant. The purpose of this study was to establish the repeatability and minimal detectable change values of hip and knee sagittal plane gait kinematics recorded using this system. Twenty-one healthy subjects underwent two kinematic assessments while walking on a treadmill at a range of gait velocities. Intraclass correlation coefficients (ICC) and minimal detectable change (MDC) values were calculated for commonly used hip and knee kinematic parameters to demonstrate the reliability of the system. Additionally, Bland-Altman plots were generated to examine the agreement between the measurements recorded on two different days. The system demonstrated good to excellent reliability (ICC>0.75) for all the gait parameters tested on this study. The MDC values were typically low (<5°) for most of the parameters. The Bland-Altman plots indicated that there was no systematic error or bias in kinematic measurements and showed good agreement between measurements obtained on two different days. These results indicate that kinematic gait assessments using webcam technology can be reliably used for clinical and research purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Chronic low back pain after lumbosacral fracture due to sagittal and frontal vertebral imbalance.

    PubMed

    Boyoud-Garnier, L; Boudissa, M; Ruatti, S; Kerschbaumer, G; Grobost, P; Tonetti, J

    2017-06-01

    Over time, some patients with unilateral or bilateral lumbosacral injuries experience chronic low back pain. We studied the sagittal and frontal balance in a population with these injuries to determine whether mismatch in the pelvic and lumbar angles are associated with chronic low back pain. Patients with posterior pelvic ring fractures (Tile C1, C2, C3 and A3.3) that had healed were included. Foreign patients and those with an associated spinal or acetabular fracture or nonunion were excluded. The review consisted of subjective questionnaires, a clinical examination, and standing A/P and lateral stereoradiographic views. The pelvic tilt (PT), sacral slope (SS), pelvic incidence (PI), measured lumbar lordosis (LLm), T9 sagittal offset, leg discrepancy (LD) and lateral curvature (LC). The expected lumbar lordosis (LLe) was calculated using the formula LLe=PI+9°. We defined lumbopelvic mismatch (LPM) as the difference between LLm and LLe being equal or greater than 25% of LLe. Fifteen patients were reviewed after an average follow-up of 8.8 years [5.4-15]. There were four Tile C1, five Tile C2, five Tile C3 and one Tile A3.3 fracture. Ten of the 15 patients had low back pain. The mean angles were: LLm 49.6° and LLe 71.9° (P=0.002), PT 21.3°, SS 44.1°, PI 62.9° in patients with low back pain and LLm 57.4° and LLe 63.2° (P=0.55), PT 13°, SS 43.1°, PI 54.2° in those without. LPM was present in 9 patients, 8 of who had low back pain (P=0.02). Six patients, all of whom had low back pain, had a mean LC of 7.5° [4.5-23] (P=0.02). The mean LD was 0.77cm. The findings of this small study suggest that patients who experience low back pain after their posterior arch of the pelvic ring fracture has healed, have a lumbopelvic mismatch. Early treatment of these patients should aim to reestablish the anatomy of the pelvic base relative to the frontal and sagittal balance. IV. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Countermeasures against lumbar spine deconditioning in prolonged bed rest: resistive exercise with and without whole body vibration.

    PubMed

    Belavý, Daniel L; Armbrecht, Gabriele; Gast, Ulf; Richardson, Carolyn A; Hides, Julie A; Felsenberg, Dieter

    2010-12-01

    To evaluate the effect of short-duration, high-load resistive exercise, with and without whole body vibration on lumbar muscle size, intervertebral disk and spinal morphology changes, and low back pain (LBP) incidence during prolonged bed rest, 24 subjects underwent 60 days of head-down tilt bed rest and performed either resistive vibration exercise (n = 7), resistive exercise only (n = 8), or no exercise (n = 9; 2nd Berlin Bed-Rest Study). Discal and spinal shape was measured from sagittal plane magnetic resonance images. Cross-sectional areas (CSAs) of the multifidus, erector spinae, quadratus lumborum, and psoas were measured on para-axial magnetic resonance images. LBP incidence was assessed with questionnaires at regular intervals. The countermeasures reduced CSA loss in the multifidus, lumbar erector spinae and quadratus lumborum muscles, with greater increases in psoas muscle CSA seen in the countermeasure groups (P ≤ 0.004). There was little statistical evidence for an additional effect of whole body vibration above resistive exercise alone on these muscle changes. Exercise subjects reported LBP more frequently in the first week of bed rest, but this was only significant in resistive exercise only (P = 0.011 vs. control, resistive vibration exercise vs. control: P = 0.56). No effect of the countermeasures on changes in spinal morphology was seen (P ≥ 0.22). The results suggest that high-load resistive exercise, with or without whole body vibration, performed 3 days/wk can reduce lumbar muscle atrophy, but further countermeasure optimization is required.

  15. Surgical treatment of pathological loss of lumbar lordosis (flatback) in patients with normal sagittal vertical axis achieves similar clinical improvement as surgical treatment of elevated sagittal vertical axis: clinical article.

    PubMed

    Smith, Justin S; Singh, Manish; Klineberg, Eric; Shaffrey, Christopher I; Lafage, Virginie; Schwab, Frank J; Protopsaltis, Themistocles; Ibrahimi, David; Scheer, Justin K; Mundis, Gregory; Gupta, Munish C; Hostin, Richard; Deviren, Vedat; Kebaish, Khaled; Hart, Robert; Burton, Douglas C; Bess, Shay; Ames, Christopher P

    2014-08-01

    Increased sagittal vertical axis (SVA) correlates strongly with pain and disability for adults with spinal deformity. A subset of patients with sagittal spinopelvic malalignment (SSM) have flatback deformity (pelvic incidence-lumbar lordosis [PI-LL] mismatch > 10°) but remain sagittally compensated with normal SVA. Few data exist for SSM patients with flatback deformity and normal SVA. The authors' objective was to compare baseline disability and treatment outcomes for patients with compensated (SVA < 5 cm and PI-LL mismatch > 10°) and decompensated (SVA > 5 cm) SSM. The study was a multicenter, prospective analysis of adults with spinal deformity who consecutively underwent surgical treatment for SSM. Inclusion criteria included age older than 18 years, presence of adult spinal deformity with SSM, plan for surgical treatment, and minimum 1-year follow-up data. Patients with SSM were divided into 2 groups: those with compensated SSM (SVA < 5 cm and PI-LL mismatch > 10°) and those with decompensated SSM (SVA ≥ 5 cm). Baseline and 1-year follow-up radiographic and health-related quality of life (HRQOL) outcomes included Oswestry Disability Index, Short Form-36 scores, and Scoliosis Research Society-22 scores. Percentages of patients achieving minimal clinically important difference (MCID) were also assessed. A total of 125 patients (27 compensated and 98 decompensated) met inclusion criteria. Compared with patients in the compensated group, patients in the decompensated group were older (62.9 vs. 55.1 years; p = 0.004) and had less scoliosis (43° vs 54°; p = 0.002), greater SVA (12.0 cm vs. 1.7 cm; p < 0.001), greater PI-LL mismatch (26° vs. 20°; p = 0.013), and poorer HRQOL scores (Oswestry Disability Index, Short Form-36 physical component score, Scoliosis Research Society-22 total; p ≤ 0.016). Although these baseline HRQOL differences between the groups reached statistical significance, only the mean difference in Short Form-36 physical component score

  16. Pelvic incidence-lumbar lordosis mismatch predisposes to adjacent segment disease after lumbar spinal fusion.

    PubMed

    Rothenfluh, Dominique A; Mueller, Daniel A; Rothenfluh, Esin; Min, Kan

    2015-06-01

    to predispose to adjacent segment disease. Patients with such pelvic incidence-lumbar lordosis mismatch exhibit a 10-times higher risk for undergoing revision surgery than controls if sagittal malalignment is maintained after lumbar fusion surgery.

  17. Do Lordotic Cages Provide Better Segmental Lordosis Versus Nonlordotic Cages in Lateral Lumbar Interbody Fusion (LLIF)?

    PubMed

    Sembrano, Jonathan N; Horazdovsky, Ryan D; Sharma, Amit K; Yson, Sharon C; Santos, Edward R G; Polly, David W

    2017-05-01

    A retrospective comparative radiographic review. To evaluate the radiographic changes brought about by lordotic and nonlordotic cages on segmental and regional lumbar sagittal alignment and disk height in lateral lumbar interbody fusion (LLIF). The effects of cage design on operative level segmental lordosis in posterior interbody fusion procedures have been reported. However, there are no studies comparing the effect of sagittal implant geometry in LLIF. This is a comparative radiographic analysis of consecutive LLIF procedures performed with use of lordotic and nonlordotic interbody cages. Forty patients (61 levels) underwent LLIF. Average age was 57 years (range, 30-83 y). Ten-degree lordotic PEEK cages were used at 31 lumbar interbody levels, and nonlordotic cages were used at 30 levels. The following parameters were measured on preoperative and postoperative radiographs: segmental lordosis; anterior and posterior disk heights at operative level; segmental lordosis at supra-level and subjacent level; and overall lumbar (L1-S1) lordosis. Measurement changes for each cage group were compared using paired t test analysis. The use of lordotic cages in LLIF resulted in a significant increase in lordosis at operative levels (2.8 degrees; P=0.01), whereas nonlordotic cages did not (0.6 degrees; P=0.71) when compared with preoperative segmental lordosis. Anterior and posterior disk heights were significantly increased in both groups (P<0.01). Neither cage group showed significant change in overall lumbar lordosis (lordotic P=0.86 vs. nonlordotic P=0.25). Lordotic cages provided significant increase in operative level segmental lordosis compared with nonlordotic cages although overall lumbar lordosis remained unchanged. Anterior and posterior disk heights were significantly increased by both cages, providing basis for indirect spinal decompression.

  18. Are There Age- and Sex-related Differences in Spinal Sagittal Alignment and Balance Among Taiwanese Asymptomatic Adults?

    PubMed

    Yeh, Kuang-Ting; Lee, Ru-Ping; Chen, Ing-Ho; Yu, Tzai-Chiu; Peng, Cheng-Huan; Liu, Kuan-Lin; Wang, Jen-Hung; Wu, Wen-Tien

    2018-05-01

    Sagittal spinopelvic balance and proper sagittal alignment are important when planning corrective or reconstructive spinal surgery. Prior research suggests that people from different races and countries have moderate divergence; to the best of our knowledge, the population of Taiwan has not been studied with respect to this parameter. To investigate normal age- and sex-related differences in whole-spine sagittal alignment and balance of asymptomatic adults without spinal disorders. In this prospective study, we used convenience sampling to recruit asymptomatic volunteers who accompanied patients in the outpatient orthopaedic department. One hundred forty males with a mean age of 48 ± 19 years and 252 females with a mean age of 53 ± 17 years underwent standing lateral radiographs of the whole spine. For analysis, participants were divided in three groups by age (20 to 40 years, 41 to 60 years, and 61 to 80 years) and analyzed by sex (male and female). The following eight radiologic parameters were measured: sacral slope, pelvic tilt, pelvic incidence, thoracic kyphosis, lumbar lordosis, cervical lordosis, C2-C7 sagittal vertical axis, and C7-S1 sagittal vertical axis. Three observers performed estimations of the sagittal parameters twice, and the intraclass correlation coefficients for inter- and intraobserver variability were 0.81 and 0.83. The mean pelvic incidence was 49° ± 12°; lumbar lordosis was smaller in the group that was 61 to 80 years old than in the groups that were 20 to 40 years and 41 to 60 years (95% CI of the difference, 4.50-13.64 and 1.00- 9.60; p < 0.001), while cervical lordosis was greater in the 61 to 80 years age group than the other two groups (95% CI of the difference, -14.64 to -6.57 and -11.57 to -3.45; p < 0.001). The mean C7-S1 sagittal vertical axis was 30 ± 29 mm, and there was no difference among the three groups and between males and females. Pelvic tilt was greater in the group 61 to 80 years old than the 20 to 40 years and

  19. Lower extremity energy absorption and biomechanics during landing, part II: frontal-plane energy analyses and interplanar relationships.

    PubMed

    Norcross, Marc F; Lewek, Michael D; Padua, Darin A; Shultz, Sandra J; Weinhold, Paul S; Blackburn, J Troy

    2013-01-01

    Greater sagittal-plane energy absorption (EA) during the initial impact phase (INI) of landing is consistent with sagittal-plane biomechanics that likely increase anterior cruciate ligament (ACL) loading, but it does not appear to influence frontal-plane biomechanics. We do not know whether frontal-plane INI EA is related to high-risk frontal-plane biomechanics. To compare biomechanics among INI EA groups, determine if women are represented more in the high group, and evaluate interplanar INI EA relationships. Descriptive laboratory study. Research laboratory. Participants included 82 (41 men, 41 women; age = 21.0 ± 2.4 years, height = 1.74 ± 0.10 m, mass = 70.3 ± 16.1 kg) healthy, physically active volunteers. We assessed landing biomechanics with an electromagnetic motion-capture system and force plate. We calculated frontal- and sagittal-plane total, hip, knee, and ankle INI EA. Total frontal-plane INI EA was used to create high, moderate, and low tertiles. Frontal-plane knee and hip kinematics, peak vertical and posterior ground reaction forces, and peak internal knee-varus moment (pKVM) were identified and compared across groups using 1-way analyses of variance. We used a χ (2) analysis to evaluate male and female allocation to INI EA groups. We used simple, bivariate Pearson product moment correlations to assess interplanar INI EA relationships. The high-INI EA group exhibited greater knee valgus at ground contact, hip adduction at pKVM, and peak hip adduction than the low-INI EA group (P < .05) and greater peak knee valgus, pKVM, and knee valgus at pKVM than the moderate- (P < .05) and low- (P < .05) INI EA groups. Women were more likely than men to be in the high-INI EA group (χ(2) = 4.909, P = .03). Sagittal-plane knee and frontal-plane hip INI EA (r = 0.301, P = .006) and sagittal-plane and frontal-plane ankle INI EA were associated (r = 0.224, P = .04). No other interplanar INI EA relationships were found (P > .05). Greater frontal-plane INI EA was

  20. Lower Extremity Energy Absorption and Biomechanics During Landing, Part II: Frontal-Plane Energy Analyses and Interplanar Relationships

    PubMed Central

    Norcross, Marc F.; Lewek, Michael D.; Padua, Darin A.; Shultz, Sandra J.; Weinhold, Paul S.; Blackburn, J. Troy

    2013-01-01

    Context: Greater sagittal-plane energy absorption (EA) during the initial impact phase (INI) of landing is consistent with sagittal-plane biomechanics that likely increase anterior cruciate ligament (ACL) loading, but it does not appear to influence frontal-plane biomechanics. We do not know whether frontal-plane INI EA is related to high-risk frontal-plane biomechanics. Objective: To compare biomechanics among INI EA groups, determine if women are represented more in the high group, and evaluate interplanar INI EA relationships. Design: Descriptive laboratory study. Setting: Research laboratory. Patients or Other Participants: Participants included 82 (41 men, 41 women; age = 21.0 ± 2.4 years, height = 1.74 ± 0.10 m, mass = 70.3 ± 16.1 kg) healthy, physically active volunteers. Intervention(s): We assessed landing biomechanics with an electromagnetic motion-capture system and force plate. Main Outcome Measure(s): We calculated frontal- and sagittal-plane total, hip, knee, and ankle INI EA. Total frontal-plane INI EA was used to create high, moderate, and low tertiles. Frontal-plane knee and hip kinematics, peak vertical and posterior ground reaction forces, and peak internal knee-varus moment (pKVM) were identified and compared across groups using 1-way analyses of variance. We used a χ2 analysis to evaluate male and female allocation to INI EA groups. We used simple, bivariate Pearson product moment correlations to assess interplanar INI EA relationships. Results: The high–INI EA group exhibited greater knee valgus at ground contact, hip adduction at pKVM, and peak hip adduction than the low–INI EA group (P < .05) and greater peak knee valgus, pKVM, and knee valgus at pKVM than the moderate– (P < .05) and low– (P < .05) INI EA groups. Women were more likely than men to be in the high–INI EA group (χ2 = 4.909, P = .03). Sagittal-plane knee and frontal-plane hip INI EA (r = 0.301, P = .006) and sagittal-plane and frontal-plane ankle INI EA were

  1. Effect of alignment changes on sagittal and coronal socket reaction moment interactions in transtibial prostheses.

    PubMed

    Kobayashi, Toshiki; Orendurff, Michael S; Zhang, Ming; Boone, David A

    2013-04-26

    Alignment is important for comfortable and stable gait of lower-limb prosthesis users. The magnitude of socket reaction moments in the multiple planes acting simultaneously upon the residual limb may be related to perception of comfort in individuals using prostheses through socket interface pressures. The aim of this study was to investigate the effect of prosthetic alignment changes on sagittal and coronal socket reaction moment interactions (moment-moment curves) and to characterize the curves in 11 individuals with transtibial amputation using novel moment-moment interaction parameters measured by plotting sagittal socket reaction moments versus coronal ones under various alignment conditions. A custom instrumented prosthesis alignment component was used to measure socket reaction moments during walking. Prosthetic alignment was tuned to a nominally aligned condition by a prosthetist, and from this position, angular (3° and 6° of flexion, extension, abduction or adduction of the socket) and translational (5mm and 10mm of anterior, posterior, medial or lateral translation of the socket) alignment changes were performed in either the sagittal or the coronal plane in a randomized manner. A total of 17 alignment conditions were tested. Coronal angulation and translation alignment changes demonstrated similar consistent changes in the moment-moment curves. Sagittal alignment changes demonstrated more complex changes compared to the coronal alignment changes. Effect of sagittal angulations and translations on the moment-moment curves was different during 2nd rocker (mid-stance) with extension malalignment appearing to cause medio-lateral instability. Presentation of coronal and sagittal socket reaction moment interactions may provide useful visual information for prosthetists to understand the biomechanical effects of malalignment of transtibial prostheses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Post-surgical functional recovery, lumbar lordosis, and range of motion associated with MR-detectable redundant nerve roots in lumbar spinal stenosis.

    PubMed

    Chen, Jinshui; Wang, Juying; Wang, Benhai; Xu, Hao; Lin, Songqing; Zhang, Huihao

    2016-01-01

    T1- and T2-weighted magnetic resonance images (MRI) can reveal lumbar redundant nerve roots (RNRs), a result of chronic compression and nerve elongation associated with pathogenesis of cauda equina claudication (CEC) in degenerative lumbar canal stenosis (DLCS). The study investigated effects of lumbar lordosis angle and range of motion on functional recovery in lumbar stenosis patents with and without RNRs. A retrospective study was conducted of 93 lumbar spinal stenosis patients who underwent decompressive surgery. Eligible records were assessed by 3 independent blinded radiologists for presence or absence of RNRs on sagittal T2-weighted MR (RNR and non-RNR groups), pre- and post-operative JOA score, lumbar lordosis angle, and range of motion. Of 93 total patients, the RNR group (n=37, 21/37 female) and non-RNR group (n=56; 31/56 female) had similar preoperative conditions (JOA score) and were not significantly different in age (mean 64.19 ± 8.25 vs. 62.8 ± 9.41 years), symptom duration (30.92 ± 22.43 vs. 28.64 ± 17.40 months), or follow-up periods (17.35 ± 4.02 vs. 17.75 ± 4.29 mo) (all p>0.4). The non-RNR group exhibited significantly better final JOA score (p=0.015) and recovery rate (p=0.002). RNR group patients exhibited larger lumbar lordosis angles in the neutral position (p=0.009) and extension (p=0.021) and larger range of motion (p=0.008). Poorer surgical outcomes in patients with RNRs indicated that elevated lumbar lordosis angle and range of motion increased risks of RNR formation, which in turn may cause poorer post-surgical recovery, this information is possibly useful in prognostic assessment of lumbar stenosis complicated by RNRs. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Can Axial-Based Nodal Size Criteria Be Used in Other Imaging Planes to Accurately Determine “Enlarged” Head and Neck Lymph Nodes?

    PubMed Central

    Bartlett, Eric S.; Walters, Thomas D.; Yu, Eugene

    2013-01-01

    Objective. We evaluate if axial-based lymph node size criteria can be applied to coronal and sagittal planes. Methods. Fifty pretreatment computed tomographic (CT) neck exams were evaluated in patients with head and neck squamous cell carcinoma (SCCa) and neck lymphadenopathy. Axial-based size criteria were applied to all 3 imaging planes, measured, and classified as “enlarged” if equal to or exceeding size criteria. Results. 222 lymph nodes were “enlarged” in one imaging plane; however, 53.2% (118/222) of these were “enlarged” in all 3 planes. Classification concordance between axial versus coronal/sagittal planes was poor (kappa = −0.09 and −0.07, resp., P < 0.05). The McNemar test showed systematic misclassification when comparing axial versus coronal (P < 0.001) and axial versus sagittal (P < 0.001) planes. Conclusion. Classification of “enlarged” lymph nodes differs between axial versus coronal/sagittal imaging planes when axial-based nodal size criteria are applied independently to all three imaging planes, and exclusively used without other morphologic nodal data. PMID:23984099

  4. Are we simplifying balance evaluation in adolescent idiopathic scoliosis?

    PubMed

    Pasha, Saba; Baldwin, Keith

    2018-01-01

    Clinical evaluation of the postural balance in adolescent idiopathic scoliosis has been measured by sagittal vertical axis and frontal balance. The impact of the scoliotic deformity in three planes on balance has not been fully investigated. 47 right thoracic and left lumbar curves adolescent idiopathic scoliosis and 10 non-scoliotic controls were registered prospectively. 13 spinopelvic postural parameters were calculated from the 3-dimantional reconstructions of X-rays. 7 balance variables describing the position and sway of the center of pressure were recorded using a pressure mat. A regression analysis was used to predict sagittal vertical axis and frontal balance from the 7 balance variables. A canonical correlation analysis was performed between all the postural parameters and balance variables and the significant associations between the postural and balance variables were determined. sagittal vertical axis and frontal balance were not significantly associated with the position or sway of the center of pressure (p>0.05). Canonical correlation analysis showed significant associations between the postural variables in the 3 planes and center of pressure position (R 2 =0.81) and sway (R 2 =0.62), p<0.05. Frontal Cobbs, apical rotations, distal kyphosis, pelvic incidence, sacral slope, sagittal vertical axis, and frontal balance contributed to the postural balance in the cohort. The compensatory role of the pelvis and distal kyphosis in sagittal plane was underlined. Multidimensional analyses between the postural and balance variables showed the alignment of the thoracic, lumbar, and pelvis in the 3 planes, in addition to the global head-pelvic position impact on adolescent idiopathic scoliosis balance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Task-level strategies for human sagittal-plane running maneuvers are consistent with robotic control policies.

    PubMed

    Qiao, Mu; Jindrich, Devin L

    2012-01-01

    The strategies that humans use to control unsteady locomotion are not well understood. A "spring-mass" template comprised of a point mass bouncing on a sprung leg can approximate both center of mass movements and ground reaction forces during running in humans and other animals. Legged robots that operate as bouncing, "spring-mass" systems can maintain stable motion using relatively simple, distributed feedback rules. We tested whether the changes to sagittal-plane movements during five running tasks involving active changes to running height, speed, and orientation were consistent with the rules used by bouncing robots to maintain stability. Changes to running height were associated with changes to leg force but not stance duration. To change speed, humans primarily used a "pogo stick" strategy, where speed changes were associated with adjustments to fore-aft foot placement, and not a "unicycle" strategy involving systematic changes to stance leg hip moment. However, hip moments were related to changes to body orientation and angular speed. Hip moments could be described with first order proportional-derivative relationship to trunk pitch. Overall, the task-level strategies used for body control in humans were consistent with the strategies employed by bouncing robots. Identification of these behavioral strategies could lead to a better understanding of the sensorimotor mechanisms that allow for effective unsteady locomotion.

  6. Task-Level Strategies for Human Sagittal-Plane Running Maneuvers Are Consistent with Robotic Control Policies

    PubMed Central

    Qiao, Mu; Jindrich, Devin L.

    2012-01-01

    The strategies that humans use to control unsteady locomotion are not well understood. A “spring-mass” template comprised of a point mass bouncing on a sprung leg can approximate both center of mass movements and ground reaction forces during running in humans and other animals. Legged robots that operate as bouncing, “spring-mass” systems can maintain stable motion using relatively simple, distributed feedback rules. We tested whether the changes to sagittal-plane movements during five running tasks involving active changes to running height, speed, and orientation were consistent with the rules used by bouncing robots to maintain stability. Changes to running height were associated with changes to leg force but not stance duration. To change speed, humans primarily used a “pogo stick” strategy, where speed changes were associated with adjustments to fore-aft foot placement, and not a “unicycle” strategy involving systematic changes to stance leg hip moment. However, hip moments were related to changes to body orientation and angular speed. Hip moments could be described with first order proportional-derivative relationship to trunk pitch. Overall, the task-level strategies used for body control in humans were consistent with the strategies employed by bouncing robots. Identification of these behavioral strategies could lead to a better understanding of the sensorimotor mechanisms that allow for effective unsteady locomotion. PMID:23284804

  7. Fusion Rate and Clinical Outcomes in Two-Level Posterior Lumbar Interbody Fusion.

    PubMed

    Aono, Hiroyuki; Takenaka, Shota; Nagamoto, Yukitaka; Tobimatsu, Hidekazu; Yamashita, Tomoya; Furuya, Masayuki; Iwasaki, Motoki

    2018-04-01

    Posterior lumbar interbody fusion (PLIF) has become a general surgical method for degenerative lumbar diseases. Although many reports have focused on single-level PLIF, few have focused on 2-level PLIF, and no report has covered the fusion status of 2-level PLIF. The purpose of this study is to investigate clinical outcomes and fusion for 2-level PLIF by using a combination of dynamic radiographs and multiplanar-reconstruction computed tomography scans. This study consisted of 48 consecutive patients who underwent 2-level PLIF for degenerative lumbar diseases. We assessed surgery duration, estimated blood loss, complications, clinical outcomes as measured by the Japanese Orthopaedic Association score, lumbar sagittal alignment as measured on standing lateral radiographs, and fusion status as measured by dynamic radiographs and multiplanar-reconstruction computed tomography. Patients were examined at a follow-up point of 4.8 ± 2.2 years after surgery. Thirty-eight patients who did not undergo lumbosacral fusion comprised the lumbolumbar group, and 10 patients who underwent lumbosacral fusion comprised the lumbosacral group. The mean Japanese Orthopaedic Association score improved from 12.1 to 22.4 points by the final follow-up examination. Sagittal alignment also was improved. All patients had fusion in the cranial level. Seven patients had nonunion in the caudal level, and the lumbosacral group (40%) had a significantly poorer fusion rate than the lumbolumbar group (97%) did. Surgical outcomes of 2-level PLIF were satisfactory. The fusion rate at both levels was 85%. All nonunion was observed at the caudal level and concentrated at L5-S level in L4-5-S PLIF. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Occlusal plane rotation: aesthetic enhancement in mandibular micrognathia.

    PubMed

    Rosen, H M

    1993-06-01

    Patients afflicted with extreme degrees of mandibular micrognathia typically have vertically deficient rami as well as sagittally deficient mandibular bodies. This results in deficient posterior facial height, an obtuse gonial angle, excessively steep occlusal and mandibular planes, and a compensatory increase in anterior facial height. The entire maxillomandibular complex is overrotated in a clockwise direction. Standard orthognathic surgical correction fails to address this rotational deformity. As a consequence, the achieved projection of the lower face is inadequate, posterior facial height is further reduced, and occlusal and mandibular planes remain steep. Eleven patients with severe mandibular micrognathia underwent a surgical correction involving occlusal plane rotation to its normal orientation relative to Frankfort horizontal. This was accomplished by Le Fort I osteotomy to shorten the anterior maxilla (creating open bites in seven patients and making preexisting open bites worse in four patients) and sagittal split ramus osteotomies to advance and rotate the mandibular body counterclockwise, thus closing the surgically produced open bite. Counterclockwise rotation of the mandible afforded significantly greater sagittal displacement at the B point (mean 17 mm) than at the first molar (mean 10 mm) and produced adequate degrees of projection of the lower face when accompanied by a modest sliding genioplasty (mean 6.9 mm). Total advancement at the pogonion was a mean of 25.2 mm. In addition, posterior facial height was preserved, and mandibular and occlusal planes were normalized to mean angles of 27 and 10 degrees, respectively. At follow-up, which ranged from 9 to 24 months with a mean of 14.1 months, the mean sagittal relapse at the B point was 1.9 mm. Although heretofore considered unstable and therefore not clinically accepted, maxillomandibular counterclockwise rotation to normalize the occlusal plane rotational deformity provides stable, aesthetically

  9. Noninvasive Optoelectronic Assessment of Induced Sagittal Imbalance Using the Vicon System.

    PubMed

    Ould-Slimane, Mourad; Latrobe, Charles; Michelin, Paul; Chastan, Nathalie; Dujardin, Franck; Roussignol, Xavier; Gauthé, Rémi

    2017-06-01

    Spinal diseases often induce gait disorders with multifactorial origins such as lumbar pain, radicular pain, neurologic complications, or spinal deformities. However, radiography does not permit an analysis of spinal dynamics; therefore, sagittal balance dynamics during gait remain largely unexplored. This prospective and controlled pilot study assessed the Vicon system for detecting sagittal spinopelvic imbalance, to determine the correlations between optoelectronic and radiographic parameters. Reversible anterior sagittal imbalance was induced in 24 healthy men using a thoracolumbar corset. Radiographic, optoelectronic, and comparative analyses were conducted. Corset wearing induced significant variations in radiographic parameters indicative of imbalance; the mean C7-tilt and d/D ratio increased by 15° ± 7.4° and 359%, respectively, whereas the mean spinosacral angle decreased by 16.8° ± 8° (all P < 0.001). The Vicon system detected the imbalance; the mean spinal angle increased by 15.4° ± 5.6° (P < 0.01), the mean floor projection of the C7S1 vector (C7'S1') increased by 126.3 ± 51.9 mm (P < 0.001), and the mean C7-T10-S1 angle decreased by 9.8° ± 3° (P < 0.001). Variations in C7'S1' were significantly correlated with d/D ratio (ρ = 0.58; P < 0.05) and C7-tilt (ρ = 0.636; P < 0.05) variations. Corset wearing induced radiographically confirmed anterior sagittal imbalance detected using the Vicon system. Optoelectronic C7'S1' correlated with radiographic C7-tilt and d/D ratio. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Sagittal Plane Hip, Knee, and Ankle Biomechanics and the Risk of Anterior Cruciate Ligament Injury: A Prospective Study

    PubMed Central

    Leppänen, Mari; Pasanen, Kati; Krosshaug, Tron; Kannus, Pekka; Vasankari, Tommi; Kujala, Urho M.; Bahr, Roald; Perttunen, Jarmo; Parkkari, Jari

    2017-01-01

    Background: Stiff landings with less knee flexion and high vertical ground-reaction forces have been shown to be associated with an increased risk of anterior cruciate ligament (ACL) injury. The literature on the association between other sagittal plane measures and the risk of ACL injuries with a prospective study design is lacking. Purpose: To investigate the relationship between selected sagittal plane hip, knee, and ankle biomechanics and the risk of ACL injury in young female team-sport athletes. Study Design: Case-control study; Level of evidence, 3. Methods: A total of 171 female basketball and floorball athletes (age range, 12-21 years) participated in a vertical drop jump test using 3-dimensional motion analysis. All new ACL injuries, as well as match and training exposure data, were recorded for 1 to 3 years. Biomechanical variables, including hip and ankle flexion at initial contact (IC), hip and ankle ranges of motion (ROMs), and peak external knee and hip flexion moments, were selected for analysis. Cox regression models were used to calculate hazard ratios (HRs) with 95% CIs. The combined sensitivity and specificity of significant test variables were assessed using a receiver operating characteristic (ROC) curve analysis. Results: A total of 15 noncontact ACL injuries were recorded during follow-up (0.2 injuries/1000 player-hours). Of the variables investigated, landing with less hip flexion ROM (HR for each 10° increase in hip ROM, 0.61 [95% CI, 0.38-0.99]; P < .05) and a greater knee flexion moment (HR for each 10-N·m increase in knee moment, 1.21 [95% CI, 1.04-1.40]; P = .01) was significantly associated with an increased risk of ACL injury. Hip flexion at IC, ankle flexion at IC, ankle flexion ROM, and peak external hip flexion moment were not significantly associated with the risk of ACL injury. ROC curve analysis for significant variables showed an area under the curve of 0.6, indicating a poor combined sensitivity and specificity of the test

  11. Active extravasation of gadolinium-based contrast agent into the subdural space following lumbar puncture.

    PubMed

    Kothari, Pranay D; Hanser, Evelyn M; Wang, Harrison; Farid, Nikdokht

    2016-01-01

    A 38year-old male presented with cauda equina syndrome following multiple lumbar puncture attempts. Lumbar spine magnetic resonance imaging (MRI) showed a subdural hematoma and an area of apparent contrast enhancement in the spinal canal on sagittal post-contrast images. Axial post-contrast images obtained seven minutes later demonstrated an increase in size and change in shape of the region of apparent contrast enhancement, indicating active extravasation of the contrast agent. This is the first reported case of active extravasation of gadolinium-based contrast agent in the spine. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Characterization of radiographic features of consecutive lumbar spondylolisthesis.

    PubMed

    Sun, Yapeng; Wang, Hui; Yang, Dalong; Zhang, Nan; Yang, Sidong; Zhang, Wei; Ding, Wenyuan

    2016-11-01

    Radiographic features of consecutive lumbar spondylolisthesis were retrospectively analyzed in a total of 17 patients treated for this condition at the Third Hospital of Hebei Medical University from June 2005 to March 2012.To investigate the radiographic features, pelvic compensatory mechanisms, and possible underlying etiologies of consecutive lumbar spondylolisthesis.To the best of our knowledge, there is no previous report concerning the characteristics of consecutive lumbar spondylolisthesis.The Taillard index and the lumbar lordosis (LL), pelvic incidence (PI), sacrum slope (SS), and pelvic tilt (PT) were determined on lateral X-ray images, and the angular displacement was analyzed on flexion-extension X-ray images. Correlation between LL and various pelvic parameters and correlation between Taillard index and angular displacement were assessed by Pearson correlation analysis.A total of 20 cases of isthmic spondylolisthesis and 14 of degenerative spondylolisthesis were retrospectively studied in 17 patients. The Taillard index and the angular displacement in the lower vertebrae were both larger than those in the upper vertebrae. Statistical analysis revealed that LL was correlated with PI and PT, whereas PI was correlated with PT and SS. However, no correlation was identified between Taillard index and angular displacement.In consecutive lumbar spondylolisthesis, the degree of vertebral slip and the angular displacement of the lower vertebrae were both greater than those of the upper vertebrae, indicating that the compensatory mechanism of the pelvis plays an important role in maintaining sagittal balance.

  13. Characterization of radiographic features of consecutive lumbar spondylolisthesis

    PubMed Central

    Sun, Yapeng; Wang, Hui; Yang, Dalong; Zhang, Nan; Yang, Sidong; Zhang, Wei; Ding, Wenyuan

    2016-01-01

    Abstract Radiographic features of consecutive lumbar spondylolisthesis were retrospectively analyzed in a total of 17 patients treated for this condition at the Third Hospital of Hebei Medical University from June 2005 to March 2012. To investigate the radiographic features, pelvic compensatory mechanisms, and possible underlying etiologies of consecutive lumbar spondylolisthesis. To the best of our knowledge, there is no previous report concerning the characteristics of consecutive lumbar spondylolisthesis. The Taillard index and the lumbar lordosis (LL), pelvic incidence (PI), sacrum slope (SS), and pelvic tilt (PT) were determined on lateral X-ray images, and the angular displacement was analyzed on flexion–extension X-ray images. Correlation between LL and various pelvic parameters and correlation between Taillard index and angular displacement were assessed by Pearson correlation analysis. A total of 20 cases of isthmic spondylolisthesis and 14 of degenerative spondylolisthesis were retrospectively studied in 17 patients. The Taillard index and the angular displacement in the lower vertebrae were both larger than those in the upper vertebrae. Statistical analysis revealed that LL was correlated with PI and PT, whereas PI was correlated with PT and SS. However, no correlation was identified between Taillard index and angular displacement. In consecutive lumbar spondylolisthesis, the degree of vertebral slip and the angular displacement of the lower vertebrae were both greater than those of the upper vertebrae, indicating that the compensatory mechanism of the pelvis plays an important role in maintaining sagittal balance. PMID:27861359

  14. Reliability and measurement error of sagittal spinal motion parameters in 220 patients with chronic low back pain using a three-dimensional measurement device.

    PubMed

    Mieritz, Rune M; Bronfort, Gert; Jakobsen, Markus D; Aagaard, Per; Hartvigsen, Jan

    2014-09-01

    A basic premise for any instrument measuring spinal motion is that reliable outcomes can be obtained on a relevant sample under standardized conditions. The purpose of this study was to assess the overall reliability and measurement error of regional spinal sagittal plane motion in patients with chronic low back pain (LBP), and then to evaluate the influence of body mass index, examiner, gender, stability of pain, and pain distribution on reliability and measurement error. This study comprises a test-retest design separated by 7 to 14 days. The patient cohort consisted of 220 individuals with chronic LBP. Kinematics of the lumbar spine were sampled during standardized spinal extension-flexion testing using a 6-df instrumented spatial linkage system. Test-retest reliability and measurement error were evaluated using interclass correlation coefficients (ICC(1,1)) and Bland-Altman limits of agreement (LOAs). The overall test-retest reliability (ICC(1,1)) for various motion parameters ranged from 0.51 to 0.70, and relatively wide LOAs were observed for all parameters. Reliability measures in patient subgroups (ICC(1,1)) ranged between 0.34 and 0.77. In general, greater (ICC(1,1)) coefficients and smaller LOAs were found in subgroups with patients examined by the same examiner, patients with a stable pain level, patients with a body mass index less than below 30 kg/m(2), patients who were men, and patients in the Quebec Task Force classifications Group 1. This study shows that sagittal plane kinematic data from patients with chronic LBP may be sufficiently reliable in measurements of groups of patients. However, because of the large LOAs, this test procedure appears unusable at the individual patient level. Furthermore, reliability and measurement error varies substantially among subgroups of patients. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Determination of a sagittal plane axis of rotation for a dynamic office chair.

    PubMed

    Bauer, C M; Rast, F M; Böck, C; Kuster, R P; Baumgartner, D

    2018-10-01

    This study investigated the location of the axis of rotation in sagittal plane movement of the spine in a free sitting condition to adjust the kinematics of a mobile seat for a dynamic chair. Dynamic office chairs are designed to avoid continuous isometric muscle activity, and to facilitate increased mobility of the back during sitting. However, these chairs incorporate increased upper body movement which could distract office workers from the performance of their tasks. A chair with an axis of rotation above the seat would facilitate a stable upper back during movements of the lower back. The selection of a natural kinematic pattern is of high importance in order to match the properties of the spine. Twenty-one participants performed four cycles of flexion and extension of the spine during an upper arm hang on parallel bars. The location of the axis of rotation relative to the seat was estimated using infrared cameras and reflective skin markers. The median axis of rotation across all participants was located 36 cm above the seat for the complete movement and 39 cm for both the flexion and extension phases, each with an interquartile range of 20 cm. There was no significant effect of the movement direction on the location of the axis of rotation and only a weak, non-significant correlation between body height and the location of the axis of rotation. Individual movement patterns explained the majority of the variance. The axis of rotation for a spinal flexion/extension movement is located above the seat. The recommended radius for a guide rail of a mobile seat is between 36 cm and 39 cm. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Three-dimensional lumbar segment movement characteristics during paediatric cerebral palsy gait.

    PubMed

    Kiernan, D; Malone, A; O'Brien, T; Simms, C K

    2017-03-01

    Kinematic analysis of the trunk during cerebral palsy (CP) gait has been well described. In contrast, movement of the lumbar spine is generally ignored. This is most likely due to the complex nature of the spine. As an alternative to using complex sensor protocols, this study modelled the lumbar region as a single segment and investigated characteristic patterns of movement during CP gait. In addition, the impact of functional level of impairment and the relationship with lower lumbar spinal loading were examined. Fifty-two children with CP (26 GMFCS I and 26 GMFCS II) and 26 controls were recruited. A full barefoot 3-dimensional kinematic and kinetic analysis were conducted. Lumbar segment movement demonstrated increased forward flexion for CP children. This movement became more pronounced according to GMFCS level with GMFCS II children demonstrating increases of up to 8°. In addition, a moderate correlation was present between lumbar flexion/extension and L5/S1 sagittal moments (r=0.427 in the global frame and r=0.448 with respect to the pelvis, p<0.01). Children with CP demonstrated increased movement of the lumbar region compared to TD, with movement becoming more excessive as GMFCS level increased. Excessive forward flexion and loading at the lumbar spine were linked. However, the moderate correlation suggests other contributors to increased loading were present. In conclusion, this study is a first step at identifying how lumbar segment movement is altered during CP gait. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. A clinico-radiographic analysis of sagittal condylar guidance determined by protrusive interocclusal registration and panoramic radiographic images in humans

    PubMed Central

    Prasad, Krishna D.; Shah, Namrata; Hegde, Chethan

    2012-01-01

    Purpose: To evaluate the correlation between sagittal condylar guidance obtained by protrusive interocclusal records and panoramic radiograph tracing methods in human dentulous subjects. Materials and Methods: The sagittal condylar guidance was determined in 75 dentulous subjects by protrusive interocclusal records using Aluwax through a face bow transfer (HANAU™ Spring Bow, Whip Mix Corporation, USA) to a semi-adjustable articulator (HANAU™ Wide-Vue Articulator, Whip Mix Corporation, USA). In the same subjects, the sagittal outline of the articular eminence and glenoid fossa was traced in panoramic radiographs. The sagittal condylar path inclination was constructed by joining the heights of curvature in the glenoid fossa and the corresponding articular eminence. This was then related to the constructed Frankfurt's horizontal plane to determine the radiographic angle of sagittal condylar guidance. Results: A strong positive correlation existed between right and left condylar guidance by the protrusive interocclusal method (P 0.000) and similarly by the radiographic method (P 0.013). The mean difference between the condylar guidance obtained using both methods were 1.97° for the right side and 3.18° for the left side. This difference between the values by the two methods was found to be highly significant for the right (P 0.003) and left side (P 0.000), respectively. The sagittal condylar guidance obtained from both methods showed a significant positive correlation on right (P 0.000) and left side (P 0.015), respectively. Conclusion: Panoramic radiographic tracings of the sagittal condylar path guidance may be made relative to the Frankfurt's horizontal reference plane and the resulting condylar guidance angles used to set the condylar guide settings of semi-adjustable articulators. PMID:23633793

  18. The Influence of Pelvic Incidence and Lumbar Lordosis Mismatch on Development of Symptomatic Adjacent Level Disease Following Single-Level Transforaminal Lumbar Interbody Fusion.

    PubMed

    Tempel, Zachary J; Gandhoke, Gurpreet S; Bolinger, Bryan D; Khattar, Nicolas K; Parry, Philip V; Chang, Yue-Fang; Okonkwo, David O; Kanter, Adam S

    2017-06-01

    Annual incidence of symptomatic adjacent level disease (ALD) following lumbar fusion surgery ranges from 0.6% to 3.9% per year. Sagittal malalignment may contribute to the development of ALD. To describe the relationship between pelvic incidence-lumbar lordosis (PI-LL) mismatch and the development of symptomatic ALD requiring revision surgery following single-level transforaminal lumbar interbody fusion for degenerative lumbar spondylosis and/or low-grade spondylolisthesis. All patients who underwent a single-level transforaminal lumbar interbody fusion at either L4/5 or L5/S1 between July 2006 and December 2012 were analyzed for pre- and postoperative spinopelvic parameters. Using univariate and logistic regression analysis, we compared the spinopelvic parameters of those patients who required revision surgery against those patients who did not develop symptomatic ALD. We calculated the predictive value of PI-LL mismatch. One hundred fifty-nine patients met the inclusion criteria. The results noted that, for a 1° increase in PI-LL mismatch (preop and postop), the odds of developing ALD requiring surgery increased by 1.3 and 1.4 fold, respectively, which were statistically significant increases. Based on our analysis, a PI-LL mismatch of >11° had a positive predictive value of 75% for the development of symptomatic ALD requiring revision surgery. A high PI-LL mismatch is strongly associated with the development of symptomatic ALD requiring revision lumbar spine surgery. The development of ALD may represent a global disease process as opposed to a focal condition. Spine surgeons may wish to consider assessment of spinopelvic parameters in the evaluation of degenerative lumbar spine pathology. Copyright © 2017 by the Congress of Neurological Surgeons

  19. The association of spinal osteoarthritis with lumbar lordosis

    PubMed Central

    2010-01-01

    Background Careful review of published evidence has led to the postulate that the degree of lumbar lordosis may possibly influence the development and progression of spinal osteoarthritis, just as misalignment does in other joints. Spinal degeneration can ensue from the asymmetrical distribution of loads. The resultant lesions lead to a domino- like breakdown of the normal morphology, degenerative instability and deviation from the correct configuration. The aim of this study is to investigate whether a relationship exists between the sagittal alignment of the lumbar spine, as it is expressed by lordosis, and the presence of radiographic osteoarthritis. Methods 112 female subjects, aged 40-72 years, were examined in the Outpatients Department of the Orthopedics' Clinic, University Hospital of Heraklion, Crete. Lumbar radiographs were examined on two separate occasions, independently, by two of the authors for the presence of osteoarthritis. Lordosis was measured from the top of L1 to the bottom of L5 as well as from the top of L1 to the top of S1. Furthermore, the angle between the bottom of L5 to the top of S1was also measured. Results and discussion 49 women were diagnosed with radiographic osteoarthritis of the lumbar spine, while 63 women had no evidence of osteoarthritis and served as controls. The two groups were matched for age and body build, as it is expressed by BMI. No statistically significant differences were found in the lordotic angles between the two groups Conclusions There is no difference in lordosis between those affected with lumbar spine osteoarthritis and those who are disease free. It appears that osteoarthritis is not associated with the degree of lumbar lordosis. PMID:20044932

  20. Anterior Cervical Discectomy and Fusion Alters Whole-Spine Sagittal Alignment

    PubMed Central

    Kim, Jang Hoon; Yi, Seong; Kim, Kyung Hyun; Kuh, Sung Uk; Chin, Dong Kyu; Kim, Keun Su; Cho, Yong Eun

    2015-01-01

    Purpose Anterior cervical discectomy and fusion (ACDF) has become a common spine procedure, however, there have been no previous studies on whole spine alignment changes after cervical fusion. Our purpose in this study was to determine whole spine sagittal alignment and pelvic alignment changes after ACDF. Materials and Methods Forty-eight patients who had undergone ACDF from January 2011 to December 2012 were enrolled in this study. Cervical lordosis, thoracic kyphosis, lumbar lordosis, sagittal vertical axis (SVA), and pelvic parameters were measured preoperatively and at 1, 3, 6, and 12 months postoperatively. Clinical outcomes were assessed using Visual Analog Scale (VAS) scores and Neck Disability Index (NDI) values. Results Forty-eight patients were grouped according to operative method (cage only, cage & plate), operative level (upper level: C3/4 & C4/5; lower level: C5/6 & C6/7), and cervical lordosis (high lordosis, low lordosis). All patients experienced significant improvements in VAS scores and NDI values after surgery. Among the radiologic parameters, pelvic tilt increased and sacral slope decreased at 12 months postoperatively. Only the high cervical lordosis group showed significantly-decreased cervical lordosis and a shortened SVA postoperatively. Correlation tests revealed that cervical lordosis was significantly correlated with SVA and that SVA was significantly correlated with pelvic tilt and sacral slope. Conclusion ACDF affects whole spine sagittal alignment, especially in patients with high cervical lordosis. In these patients, alteration of cervical lordosis to a normal angle shortened the SVA and resulted in reciprocal changes in pelvic tilt and sacral slope. PMID:26069131

  1. Comparative Study of the Difference of Perioperative Complication and Radiologic Results: MIS-DLIF (Minimally Invasive Direct Lateral Lumbar Interbody Fusion) Versus MIS-OLIF (Minimally Invasive Oblique Lateral Lumbar Interbody Fusion).

    PubMed

    Jin, Jie; Ryu, Kyeong-Sik; Hur, Jung-Woo; Seong, Ji-Hoon; Kim, Jin-Sung; Cho, Hyun-Jin

    2018-02-01

    Retrospective observatory analysis. The purpose of this study was to compare the incidence of perioperative complication, difference of cage location, and sagittal alignment between minimally invasive oblique lateral lumbar interbody fusion (MIS-OLIF) and MIS-direct lateral lumbar interbody fusion (DLIF) in the cases of single-level surgery at L4-L5. MIS-DLIF using tubular retractor has been used for the treatment of lumbar degenerative diseases; however, blunt transpsoas dissection poses a risk of injury to the lumbar plexus. As an alternative, MIS-OLIF uses a window between the prevertebral venous structures and psoas muscle. A total of 43 consecutive patients who underwent MIS-DLIF or MIS-OLIF for various L4/L5 level pathologies between November 2011 and April 2014 by a single surgeon were retrospectively reviewed. A complication classification based on the relation to surgical procedure and effect duration was used. Perioperative complications until 3-month postoperatively were reviewed for the patients. Radiologic results including the cage location and sagittal alignment were also assessed with plain radiography. There were no significant statistical differences in perioperative parameters and early clinical outcome between 2 groups. Overall, there were 13 (59.1%) approach-related complications in the DLIF group and 3 (14.3%) in the OLIF group. In the DLIF group, 3 (45.6%) were classified as persistent, however, there was no persistent complication in the OLIF group. In the OLIF group, cage is located mostly in the middle 1/3 of vertebral body, significantly increasing posterior disk space height and foraminal height compared with the DLIF group. Global and segmental lumbar lordosis was greater in the DLIF group due to anterior cage position without statistical significance. In our report of L4/L5 level diseases, the OLIF technique may decrease approach-related perioperative morbidities by eliminating the risk of unwanted muscle and nerve manipulations. Using

  2. Elimination of motion, pulsatile flow and cross-talk artifacts using blade sequences in lumbar spine MR imaging.

    PubMed

    Lavdas, Eleftherios; Mavroidis, Panayiotis; Kostopoulos, Spiros; Glotsos, Dimitrios; Roka, Violeta; Koutsiaris, Aristotle G; Batsikas, Georgios; Sakkas, Georgios K; Tsagkalis, Antonios; Notaras, Ioannis; Stathakis, Sotirios; Papanikolaou, Nikos; Vassiou, Katerina

    2013-07-01

    The purpose of this study is to evaluate the ability of T2 turbo spin echo (TSE) axial and sagittal BLADE sequences in reducing or even eliminating motion, pulsatile flow and cross-talk artifacts in lumbar spine MRI examinations. Forty four patients, who had routinely undergone a lumbar spine examination, participated in the study. The following pairs of sequences with and without BLADE were compared: a) T2 TSE Sagittal (SAG) in thirty two cases, and b) T2 TSE Axial (AX) also in thirty two cases. Both quantitative and qualitative analyses were performed based on measurements in different normal anatomical structures and examination of seven characteristics, respectively. The qualitative analysis was performed by experienced radiologists. Also, the presence of image motion, pulsatile flow and cross-talk artifacts was evaluated. Based on the results of the qualitative analysis for the different sequences and anatomical structures, the BLADE sequences were found to be significantly superior to the conventional ones in all the cases. The BLADE sequences eliminated the motion artifacts in all the cases. In our results, it was found that in the examined sequences (sagittal and axial) the differences between the BLADE and conventional sequences regarding the elimination of motion, pulsatile flow and cross-talk artifacts were statistically significant. In all the comparisons, the T2 TSE BLADE sequences were significantly superior to the corresponding conventional sequences regarding the classification of their image quality. In conclusion, this technique appears to be capable of potentially eliminating motion, pulsatile flow and cross-talk artifacts in lumbar spine MR images and producing high quality images in collaborative and non-collaborative patients. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Reciprocal Changes in Sagittal Alignment in Adolescent Idiopathic Scoliosis Patients Following Strategic Pedicle Screw Fixation.

    PubMed

    Dumpa, Srikanth Reddy; Shetty, Ajoy Prasad; Aiyer, Siddharth N; Kanna, Rishi Mugesh; Rajasekaran, S

    2018-04-01

    Retrospective observational study. To analyze the effect of low-density (LD) strategic pedicle screw fixation on the correction of coronal and sagittal parameters in adolescent idiopathic scoliosis (AIS) patients. LD screw fixation achieves favorable coronal correction, but its effect on sagittal parameters is not well established. AIS is often associated with decreased thoracic kyphosis (TK), and the use of multi-level pedicle screws may result in further flattening of the sagittal profile. A retrospective analysis was performed on 92 patients with AIS to compare coronal and sagittal parameters preoperatively and at 2-year follow-up. All patients underwent posterior correction via LD strategic pedicle screw fixation. Radiographs were analyzed for primary Cobb angle (PCA), coronal imbalance, cervical sagittal angle (CSA), TK, lumbar lordosis (LL), pelvic incidence, pelvic tilt (PT), sacral slope (SS), C7 plumb line, spino-sacral angle, curve flexibility, and screw density. PCA changed significantly from 57.6°±13.9° to 19°±8.4° ( p <0.0001) with 67% correction, where the mean curve flexibility was 41% and screw density was 68%. Regional sagittal parameters did not change significantly, including CSA (from 10.76° to 10.56°, p =0.893), TK (from 24.4° to 22.8°, p =0.145), and LL (from 50.3° to 51.1°, p =0.415). However, subgroup analysis of the hypokyphosis group (<10°) and the hyperkyphosis group (>40°) showed significant correction of TK ( p <0.0001 in both). Sacro-pelvic parameters showed a significant decrease of PT and increase of SS, suggesting a reduction in pelvic retroversion SS (from 37° to 40°, p =0.0001) and PT (from 15° to 14°, p =0.025). LD strategic pedicle screw fixation provides favorable coronal correction and improves overall sagittal sacro-pelvic parameters. This technique does not cause significant flattening of TK and results in a favorable restoration of TK in patients with hypokyphosis or hyperkyphosis.

  4. Reciprocal Changes in Sagittal Alignment in Adolescent Idiopathic Scoliosis Patients Following Strategic Pedicle Screw Fixation

    PubMed Central

    Dumpa, Srikanth Reddy; Aiyer, Siddharth N.; Kanna, Rishi Mugesh; Rajasekaran, S

    2018-01-01

    Study Design Retrospective observational study. Purpose To analyze the effect of low-density (LD) strategic pedicle screw fixation on the correction of coronal and sagittal parameters in adolescent idiopathic scoliosis (AIS) patients. Overview of Literature LD screw fixation achieves favorable coronal correction, but its effect on sagittal parameters is not well established. AIS is often associated with decreased thoracic kyphosis (TK), and the use of multi-level pedicle screws may result in further flattening of the sagittal profile. Methods A retrospective analysis was performed on 92 patients with AIS to compare coronal and sagittal parameters preoperatively and at 2-year follow-up. All patients underwent posterior correction via LD strategic pedicle screw fixation. Radiographs were analyzed for primary Cobb angle (PCA), coronal imbalance, cervical sagittal angle (CSA), TK, lumbar lordosis (LL), pelvic incidence, pelvic tilt (PT), sacral slope (SS), C7 plumb line, spino-sacral angle, curve flexibility, and screw density. Results PCA changed significantly from 57.6°±13.9° to 19°±8.4° (p <0.0001) with 67% correction, where the mean curve flexibility was 41% and screw density was 68%. Regional sagittal parameters did not change significantly, including CSA (from 10.76° to 10.56°, p =0.893), TK (from 24.4° to 22.8°, p =0.145), and LL (from 50.3° to 51.1°, p =0.415). However, subgroup analysis of the hypokyphosis group (<10°) and the hyperkyphosis group (>40°) showed significant correction of TK (p <0.0001 in both). Sacro-pelvic parameters showed a significant decrease of PT and increase of SS, suggesting a reduction in pelvic retroversion SS (from 37° to 40°, p =0.0001) and PT (from 15° to 14°, p =0.025). Conclusions LD strategic pedicle screw fixation provides favorable coronal correction and improves overall sagittal sacro-pelvic parameters. This technique does not cause significant flattening of TK and results in a favorable restoration of TK in

  5. Higher Improvement in Patient-Reported Outcomes Can Be Achieved After Transforaminal Lumbar Interbody Fusion for Clinical and Radiographic Degenerative Spondylolisthesis Classification Type D Degenerative Lumbar Spondylolisthesis.

    PubMed

    Chen, Xi; Xu, Liang; Qiu, Yong; Chen, Zhong-Hui; Zhou, Qing-Shuang; Li, Song; Sun, Xu

    2018-06-01

    Clinical and radiographic degenerative spondylolisthesis (CARDS) classification defines a distinct subset of patients with kyphotic angulation at the involved segment (type D). Research using CARDS classification to investigate motion characteristics at involved segments or patient-related outcomes (PROs) following surgical intervention is sparse. We investigated the relationship between CARDS type D spondylolisthesis and dynamic instability and PROs in type D versus non-type D spondylolisthesis. We reviewed consecutive patients who received transforaminal lumbar interbody fusion for L4-5 spondylolisthesis between 2009 and 2015. Patients were assigned into type D and non-type D groups. Translational motion was determined by upright lumbar lateral radiography with supine sagittal magnetic resonance imaging or flexion and extension radiography. Demographics, radiographic parameters, and PROs were evaluated. Type D and non-type D groups comprised 34 and 163 patients, respectively. Compared with non-type D, type D group was characterized by lordotic angulation loss and higher degree of olisthesis on upright radiographs and demonstrated higher translational motion on upright lumbar lateral radiography with supine sagittal magnetic resonance imaging analysis. After surgery, mean reduction rate was significantly higher in type D group; type D had less slippage, but differences in slip angle and disc height were not significant. Preoperative Oswestry Disability Index and visual analog scale for back pain scores were higher in type D group. Type D spondylolisthesis and dynamic instability were associated with achieving minimal clinically important differences in PROs. CARDS type D spondylolisthesis is a distinct subset associated with dynamic instability and worse PROs. Higher improvement in PROs can be achieved in CARDS type D spondylolisthesis after surgery. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Acute Effects of Hamstring Stretching on Sagittal Spinal Curvatures and Pelvic Tilt

    PubMed Central

    López-Miñarro, Pedro A.; Muyor, José M.; Belmonte, Felipe; Alacid, Fernando

    2012-01-01

    The aim of this study was to determine acute effects of hamstring stretching in thoracic and lumbar spinal curvatures and pelvic tilt. Fifty-five adults (29.24 ± 7.41 years) were recruited for this study. Subjects performed a hamstring stretching protocol consisting of four exercises. The session consisted of 3 sets of each exercise and subjects held the position for 20 seconds with a 30-second rest period between sets and exercises. Thoracic and lumbar spinal angles and pelvic tilt were measured with a SpinalMouse in relaxed standing, sit-and-reach test and Macrae & Wright position. Hamstring extensibility was determined by active straight leg raise test and sit-and-reach score. All measures were performed before and immediately after the hamstring stretching protocol. Active straight leg raise angle and sitand-reach score significantly improved immediately after the stretching protocol (p<0.001). Greater anterior pelvic tilt (p<0.001) and lumbar flexion (p<0.05) and a smaller thoracic kyphosis in the sit-and-reach (p<0.001) were found after the stretching protocol. However, stretching produced no significant change on spinal curvatures or pelvic tilt in standing and maximal trunk flexion with knees flexed. In conclusion, static stretching of the hamstring is associated to an immediate change in the sagittal spinal curvatures and pelvic position when performing trunk flexion with knees extended, so that allowing for greater lumbar flexion and anterior pelvic tilt and lower thoracic kyphosis. Hamstring stretching is recommended prior to sport activities involving trunk flexion with the knees straight. PMID:23486214

  7. Do intraoperative radiographs predict final lumbar sagittal alignment following single-level transforaminal lumbar interbody fusion?

    PubMed

    Salem, Khalid M I; Eranki, Aditya P; Paquette, Scott; Boyd, Michael; Street, John; Kwon, Brian K; Fisher, Charles G; Dvorak, Marcel F

    2018-05-01

    OBJECTIVE The study aimed to determine if the intraoperative segmental lordosis (as calculated on a cross-table lateral radiograph following a single-level transforaminal lumbar interbody fusion [TLIF] for degenerative spondylolisthesis/low-grade isthmic spondylolisthesis) is maintained at discharge and at 6 months postsurgery. METHODS The authors reviewed images and medical records of patients ≥ 16 years of age with a diagnosis of an isolated single-level, low-grade spondylolisthesis (degenerative or isthmic) with symptomatic spinal stenosis treated between January 2008 and April 2014. Age, sex, surgical level, surgical approach, and facetectomy (unilateral vs bilateral) were recorded. Upright standardized preoperative, early, and 6-month postoperative radiographs, as well as intraoperative lateral radiographs, were analyzed for the pelvic incidence, segmental lumbar lordosis (SLL) at the TILF level, and total LL (TLL). In addition, the anteroposterior position of the cage in the disc space was documented. Data are presented as the mean ± SD; a p value < 0.05 was considered significant. RESULTS Eighty-four patients were included in the study. The mean age of patients was 56.8 ± 13.7 years, and 46 patients (55%) were men. The mean pelvic incidence was 59.7° ± 11.9°, and a posterior midline approach was used in 47 cases (56%). All TLIF procedures were single level using a bullet-shaped cage. A bilateral facetectomy was performed in 17 patients (20.2%), and 89.3% of procedures were done at the L4-5 and L5-S1 segments. SLL significantly improved intraoperatively from 15.8° ± 7.5° to 20.9° ± 7.7°, but the correction was lost after ambulation. Compared with preoperative values, at 6 months the change in SLL was modest at 1.8° ± 6.7° (p = 0.025), whereas TLL increased by 4.3° ± 9.6° (p < 0.001). The anteroposterior position of the cage, approach, level of surgery, and use of a bilateral facetectomy did not significantly affect postoperative LL

  8. Effect of lumbar fasciae on the stability of the lower lumbar spine.

    PubMed

    Choi, Hae Won; Kim, Young Eun

    2017-10-01

    The biomechanical effect of tensioning the lumbar fasciae (LF) on the stability of the spine during sagittal plane motion was analysed using a validated finite element model of the normal lumbosacral spine (L4-S1). To apply the tension in the LF along the direction of the fibres, a local coordinate was allocated using dummy rigid beam elements that originated from the spinous process. Up to 10 Nm of flexion and 7.5 Nm of extension moment was applied with and without 20 N of lateral tension in the LF. A follower load of 400 N was additionally applied along the curvature of the spine. To identify how the magnitude of LF tension related to the stability of the spine, the tensioning on the fasciae was increased up to 40 N with an interval of 10 N under 7.5 Nm of flexion/extension moment. A fascial tension of 20 N produced a 59% decrease in angular motion at 2.5 Nm of flexion moment while there was a 12.3% decrease at 10 Nm in the L5-S1 segment. Its decrement was 53 and 9.6% at 2.5 Nm and 10 Nm, respectively, in the L4-L5 segment. Anterior translation was reduced by 12.1 and 39.0% at the L4-L5 and L5-S1 segments under 10 Nm of flexion moment, respectively. The flexion stiffness shows an almost linear increment with the increase in fascial tension. The results of this study showed that the effect of the LF on the stability of the spine is significant.

  9. Altered spinal motion in low back pain associated with lumbar strain and spondylosis.

    PubMed

    Cheng, Joseph S; Carr, Christopher B; Wong, Cyrus; Sharma, Adrija; Mahfouz, Mohamed R; Komistek, Richard D

    2013-04-01

    Study Design We present a patient-specific computer model created to translate two-dimensional (2D) fluoroscopic motion data into three-dimensional (3D) in vivo biomechanical motion data. Objective The aim of this study is to determine the in vivo biomechanical differences in patients with and without acute low back pain. Current dynamic imaging of the lumbar spine consists of flexion-extension static radiographs, which lack sensitivity to out-of-plane motion and provide incomplete information on the overall spinal motion. Using a novel technique, in-plane and coupled out-of-plane rotational motions are quantified in the lumbar spine. Methods A total of 30 participants-10 healthy asymptomatic subjects, 10 patients with low back pain without spondylosis radiologically, and 10 patients with low back pain with radiological spondylosis-underwent dynamic fluoroscopy with a 3D-to-2D image registration technique to create a 3D, patient-specific bone model to analyze in vivo kinematics using the maximal absolute rotational magnitude and the path of rotation. Results Average overall in-plane rotations (L1-L5) in patients with low back pain were less than those asymptomatic, with the dominant loss of motion during extension. Those with low back pain also had significantly greater out-of-plane rotations, with 5.5 degrees (without spondylosis) and 7.1 degrees (with spondylosis) more out-of-plane rotational motion per level compared with asymptomatic subjects. Conclusions Subjects with low back pain exhibited greater out-of-plane intersegmental motion in their lumbar spine than healthy asymptomatic subjects. Conventional flexion-extension radiographs are inadequate for evaluating motion patterns of lumbar strain, and assessment of 3D in vivo spinal motion may elucidate the association of abnormal vertebral motions and clinically significant low back pain.

  10. Adjacent segment disease after instrumented fusion for adult lumbar spondylolisthesis: Incidence and risk factors.

    PubMed

    Zhong, Zhao-Ming; Deviren, Vedat; Tay, Bobby; Burch, Shane; Berven, Sigurd H

    2017-05-01

    A potential long-term complication of lumbar fusion is the development of adjacent segment disease (ASD), which may necessitate second surgery and adversely affect outcomes. The objective of this is to determine the incidence of ASD following instrumented fusion in adult patients with lumbar spondylolisthesis and to identify the risk factors for this complication. We retrospectively assessed adult patients who had undergone decompression and instrumented fusion for lumbar spondylolisthesis between January 2006 and December 2012. The incidence of ASD was analyzed. Potential risk factors included the patient-related factors, surgery-related factors, and radiographic variables such as sagittal alignment, preexisting disc degeneration and spinal stenosis at the adjacent segment. A total of 154 patients (mean age, 58.4 years) were included. Mean duration of follow-up was 28.6 months. Eighteen patients (11.7%) underwent a reoperation for ASD; 15 patients had reoperation at cranial ASD and 3 at caudal ASD. The simultaneous decompression at adjacent segment (p=0.002) and preexisting spinal stenosis at cranial adjacent segment (p=0.01) were identified as risk factors for ASD. The occurrence of ASD was not affected by patient-related factors, the types, grades and levels of spondylolisthesis, surgical approach, fusion procedures, levels of fusion, number of levels fused, types of bone graft, use of bone morphogenetic proteins, sagittal alignment, preexisting adjacent disc degeneration and preexisting spinal stenosis at caudal adjacent segments. Our findings suggest the overall incidence of ASD is 11.7% in adult patients with lumbar spondylolisthesis after decompression and instrumented fusion at a mean follow-up of 28.6 months, the simultaneous decompression at the adjacent segment and preexisting spinal stenosis at cranial adjacent segment are risk factors for ASD. Copyright © 2017. Published by Elsevier B.V.

  11. Does restoration of focal lumbar lordosis for single level degenerative spondylolisthesis result in better patient-reported clinical outcomes? A systematic literature review.

    PubMed

    Rhee, Chanseok; Visintini, Sarah; Dunning, Cynthia E; Oxner, William M; Glennie, R Andrew

    2017-10-01

    It is controversial whether the surgical restoration of sagittal balance and spinopelvic angulation in a single level lumbar degenerative spondylolisthesis results in clinical improvements. The purpose of this study to systematically review the available literature to determine whether the surgical correction of malalignment in lumbar degenerative spondylolisthesis correlates with improvements in patient-reported clinical outcomes. Literature searches were performed via Ovid Medline, Embase, CENTRAL and Web of Science using search terms "lumbar," "degenerative/spondylolisthesis" and "surgery/surgical/surgeries/fusion". This resulted in 844 articles and after reviewing the abstracts and full-texts, 13 articles were included for summary and final analysis. There were two Level II articles, four Level III articles and five Level IV articles. Most commonly used patient-reported outcome measures (PROMs) were Oswestery disability index (ODI) and visual analogue scale (VAS). Four articles were included for the final statistical analysis. There was no statistically significant difference between the patient groups who achieved successful surgical correction of malalignment and those who did not for either ODI (mean difference -0.94, CI -8.89-7.00) or VAS (mean difference 1.57, CI -3.16-6.30). Two studies assessed the efficacy of manual reduction of lumbar degenerative spondylolisthesis and their clinical outcomes after the operation, and there was no statistically significant improvement. Overall, the restoration of focal lumbar lordosis and restoration of sagittal balance for single-level lumbar degenerative spondylolisthesis does not seem to yield clinical improvements but well-powered studies on this specific topic is lacking in the current literature. Future well-powered studies are needed for a more definitive conclusion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Normal variation in sagittal spinal alignment parameters in adult patients: an EOS study using serial imaging.

    PubMed

    Hey, Hwee Weng Dennis; Tan, Kian Loong Melvin; Moorthy, Vikaesh; Lau, Eugene Tze-Chun; Lau, Leok-Lim; Liu, Gabriel; Wong, Hee-Kit

    2018-03-01

    To describe normal variations in sagittal spinal radiographic parameters over an interval period and establish physiological norms and guidelines for which these images should be interpreted. Data were prospectively collected from a continuous series of adult patients with first-episode mild low back pain presenting to a single institution. The sagittal parameters of two serial radiographic images taken 6-months apart were obtained with the EOS ® slot scanner. Measured parameters include CL, TK, TL, LL, PI, PT, SS, and end and apical vertebrae. Chi-squared test and Wilcoxon Signed Rank test were used to compare categorical and continuous variables, respectively. Sixty patients with a total of 120 whole-body sagittal X-rays were analysed. Mean age was 52.1 years (SD 21.2). Mean interval between the first and second X-rays was 126.2 days (SD 47.2). Small variations (< 1°) occur for all except PT (1.2°), CL (1.2°), and SVA (2.9 cm). Pelvic tilt showed significant difference between two images (p = 0.035). Subgroup analysis based on the time interval between X-rays, and between the first and second X-rays, did not show significant differences. Consistent findings were found for end and apical vertebrae of the thoracic and lumbar spine between the first and second X-rays for sagittal curve shapes. Radiographic sagittal parameters vary between serial images and reflect dynamism in spinal balancing. SVA and PT are predisposed to the widest variation. SVA has the largest variation between individuals of low pelvic tilt. Therefore, interpretation of these parameters should be patient specific and relies on trends rather than a one-time assessment.

  13. Current strategies for the restoration of adequate lordosis during lumbar fusion

    PubMed Central

    Barrey, Cédric; Darnis, Alice

    2015-01-01

    Not restoring the adequate lumbar lordosis during lumbar fusion surgery may result in mechanical low back pain, sagittal unbalance and adjacent segment degeneration. The objective of this work is to describe the current strategies and concepts for restoration of adequate lordosis during fusion surgery. Theoretical lordosis can be evaluated from the measurement of the pelvic incidence and from the analysis of spatial organization of the lumbar spine with 2/3 of the lordosis given by the L4-S1 segment and 85% by the L3-S1 segment. Technical aspects involve patient positioning on the operating table, release maneuvers, type of instrumentation used (rod, screw-rod connection, interbody cages), surgical sequence and the overall surgical strategy. Spinal osteotomies may be required in case of fixed kyphotic spine. AP combined surgery is particularly efficient in restoring lordosis at L5-S1 level and should be recommended. Finally, not one but several strategies may be used to achieve the need for restoration of adequate lordosis during fusion surgery. PMID:25621216

  14. Alteration of the end-plane angle in press-fit cylindrical stem radial head prosthesis: an in vitro study.

    PubMed

    Luenam, Suriya; Chalongviriyalert, Piti; Kosiyatrakul, Arkaphat; Thanawattano, Chusak

    2012-01-01

    Many studies comparing the morphology of native radial head with the prosthesis have been published. However, there is limited information regarding the postoperative alignment of the articular surface following the radial head replacement. The purpose of this study is to evaluate the alteration of the end-plane angle in the modular radial head prosthesis with a press-fit cementless cylindrical stem. The study used 36 cadaveric radii. The press-fit size prosthesis with cylindrical stem was inserted into each specimen. The end-plane angles of the radial head before and after prosthetic replacement, were measured in coronal and sagittal planes with a digital inclinometer. The data were analyzed by paired t-test. From paired t-test, there were statistically symmetrical end-plane angles before and after radial head replacement in both coronal and sagittal planes (p-value < 0.01). The mean of radial head end-plane angle alteration in the coronal plane was 3.62° (SD, 2.76°) (range, 0.3°-8.9°). In the sagittal plane, the mean of alteration was 5.85° (SD, 3.56°) degrees (range, 0.3° - 14.2°). The modular radial head prosthesis with cylindrical stem is in vitro able to restore the native end-plane angles of radial heads statistically when used in a press-fit fashion.

  15. Influence of implant rod curvature on sagittal correction of scoliosis deformity.

    PubMed

    Salmingo, Remel Alingalan; Tadano, Shigeru; Abe, Yuichiro; Ito, Manabu

    2014-08-01

    Deformation of in vivo-implanted rods could alter the scoliosis sagittal correction. To our knowledge, no previous authors have investigated the influence of implanted-rod deformation on the sagittal deformity correction during scoliosis surgery. To analyze the changes of the implant rod's angle of curvature during surgery and establish its influence on sagittal correction of scoliosis deformity. A retrospective analysis of the preoperative and postoperative implant rod geometry and angle of curvature was conducted. Twenty adolescent idiopathic scoliosis patients underwent surgery. Average age at the time of operation was 14 years. The preoperative and postoperative implant rod angle of curvature expressed in degrees was obtained for each patient. Two implant rods were attached to the concave and convex side of the spinal deformity. The preoperative implant rod geometry was measured before surgical implantation. The postoperative implant rod geometry after surgery was measured by computed tomography. The implant rod angle of curvature at the sagittal plane was obtained from the implant rod geometry. The angle of curvature between the implant rod extreme ends was measured before implantation and after surgery. The sagittal curvature between the corresponding spinal levels of healthy adolescents obtained by previous studies was compared with the implant rod angle of curvature to evaluate the sagittal curve correction. The difference between the postoperative implant rod angle of curvature and normal spine sagittal curvature of the corresponding instrumented level was used to evaluate over or under correction of the sagittal deformity. The implant rods at the concave side of deformity of all patients were significantly deformed after surgery. The average degree of rod deformation Δθ at the concave and convex sides was 15.8° and 1.6°, respectively. The average preoperative and postoperative implant rod angle of curvature at the concave side was 33.6° and 17.8

  16. Reliability of sagittal plane hip, knee, and ankle joint angles from a single frame of video data using the GAITRite camera system.

    PubMed

    Ross, Sandy A; Rice, Clinton; Von Behren, Kristyn; Meyer, April; Alexander, Rachel; Murfin, Scott

    2015-01-01

    The purpose of this study was to establish intra-rater, intra-session, and inter-rater, reliability of sagittal plane hip, knee, and ankle angles with and without reflective markers using the GAITRite walkway and single video camera between student physical therapists and an experienced physical therapist. This study included thirty-two healthy participants age 20-59, stratified by age and gender. Participants performed three successful walks with and without markers applied to anatomical landmarks. GAITRite software was used to digitize sagittal hip, knee, and ankle angles at two phases of gait: (1) initial contact; and (2) mid-stance. Intra-rater reliability was more consistent for the experienced physical therapist, regardless of joint or phase of gait. Intra-session reliability was variable, the experienced physical therapist showed moderate to high reliability (intra-class correlation coefficient (ICC) = 0.50-0.89) and the student physical therapist showed very poor to high reliability (ICC = 0.07-0.85). Inter-rater reliability was highest during mid-stance at the knee with markers (ICC = 0.86) and lowest during mid-stance at the hip without markers (ICC = 0.25). Reliability of a single camera system, especially at the knee joint shows promise. Depending on the specific type of reliability, error can be attributed to the testers (e.g. lack of digitization practice and marker placement), participants (e.g. loose fitting clothing) and camera systems (e.g. frame rate and resolution). However, until the camera technology can be upgraded to a higher frame rate and resolution, and the software can be linked to the GAITRite walkway, the clinical utility for pre/post measures is limited.

  17. Flexion relaxation of the hamstring muscles during lumbar-pelvic rhythm.

    PubMed

    Sihvonen, T

    1997-05-01

    This study investigated the simultaneous activity of back muscles and hamstring muscles during sagittal forward body flexion and extension in healthy persons. The study was cross-sectional. A descriptive study of paraspinal and hamstring muscle activity in normal persons during lumbar-pelvic rhythm. A university hospital. Forty healthy volunteers (21 men, 19 women, ages 17 to 48 years), all without back pain or other pain syndromes. Surface electromyography (EMG) was used to follow activities in the back and the hamstring muscles. With movement sensors, real lumbar flexion was separated from simultaneous pelvic motion by monitoring the components of motion with a two-inclinometer method continuously from the initial upright posture into full flexion. All signals were sampled during real-time monitoring for off-line analyses. Back muscle activity ceased (ie, flexion relaxation [FR] occurred) at lumbar flexion with a mean of 79 degrees. Hamstring activity lasted longer and EMG activity ceased in the hamstrings when nearly full lumbar flexion (97%) was reached. After this point total flexion and pelvic flexion continued further, so that the last part of lumbar flexion and the last part of pelvic flexion happened without back muscle activity or hamstring bracing, respectively. FR of the back muscles during body flexion has been well established and its clinical significance in low back pain has been confirmed. In this study, it was shown for the first time that the hip extensors (ie, hamstring muscles) relax during forward flexion but with different timing. FR in hamstrings is not dependent on or coupled firmly with back muscle behavior in spinal disorders and the lumbar pelvic rhythm can be locally and only partially disturbed.

  18. Investigation of sagittal image acquisition for 4D-MRI with body area as respiratory surrogate.

    PubMed

    Liu, Yilin; Yin, Fang-Fang; Chang, Zheng; Czito, Brian G; Palta, Manisha; Bashir, Mustafa R; Qin, Yujiao; Cai, Jing

    2014-10-01

    The authors have recently developed a novel 4D-MRI technique for imaging organ respiratory motion employing cine acquisition in the axial plane and using body area (BA) as a respiratory surrogate. A potential disadvantage associated with axial image acquisition is the space-dependent phase shift in the superior-inferior (SI) direction, i.e., different axial slice positions reach the respiratory peak at different respiratory phases. Since respiratory motion occurs mostly in the SI and anterior-posterior (AP) directions, sagittal image acquisition, which embeds motion information in these two directions, is expected to be more robust and less affected by phase-shift than axial image acquisition. This study aims to develop and evaluate a 4D-MRI technique using sagittal image acquisition. The authors evaluated axial BA and sagittal BA using both 4D-CT images (11 cancer patients) and cine MR images (6 healthy volunteers and 1 cancer patient) by comparing their corresponding space-dependent phase-shift in the SI direction (δSPS (SI)) and in the lateral direction (δSPS (LAT)), respectively. To evaluate sagittal BA 4D-MRI method, a motion phantom study and a digital phantom study were performed. Additionally, six patients who had cancer(s) in the liver were prospectively enrolled in this study. For each patient, multislice sagittal MR images were acquired for 4D-MRI reconstruction. 4D retrospective sorting was performed based on respiratory phases. Single-slice cine MRI was also acquired in the axial, coronal, and sagittal planes across the tumor center from which tumor motion trajectories in the SI, AP, and medial-lateral (ML) directions were extracted and used as references from comparison. All MR images were acquired in a 1.5 T scanner using a steady-state precession sequence (frame rate ∼ 3 frames/s). 4D-CT scans showed that δSPS (SI) was significantly greater than δSPS (LAT) (p-value: 0.012); the median phase-shift was 16.9% and 7.7%, respectively. Body surface

  19. Lumbar Disc Replacement for Junctional Decompensation After Fusion Surgery: Clinical and Radiological Outcome at an Average Follow-Up of 33 Months

    PubMed Central

    Sliwa, Karen; Weinberg, Ian R.; Sweet, Barry MBE; de Villiers, Malan; Candy, Geoffrey P.

    2007-01-01

    Background Failed fusion surgery remains difficult to treat. Few published data on disc replacement surgery after failed fusion procedures exist. Our objective was to evaluate outcomes of junctional lumbar disc replacement after previous fusion surgery and to correlate outcome with radiological changes to parameters of sagittal balance. Methods Out of a single-center prospective registry of 290 patients with 404 lumbar disc replacements, 27 patients had had a previous lumbar fusion operation on 1 to 4 lumbar segments and had completed a mean follow- up of 33 months (range: 18–56). We correlated the clinical outcome measures (patient satisfaction, 10-point pain score, and Oswestry Disability Index [ODI] score) to parameters of spinal sagittal alignment (sacral tilt, pelvic tilt, pelvic incidence, and lumbar lordosis). Results Postoperative hospital stay averaged 3.3 days (range: 2–8). Previously-employed patients went back to their jobs with a mean of 32 days (range: 21–42) after the procedure. At the latest follow-up, 1 of the patients considered the outcome to be poor, 3 fair, 8 good, and 15 excellent. Twenty-four patients “would undergo the operation again.” Average pain score decreased from 9.1 ± 1.0 (SD) to 3.2 ± 2.1 (P < .01). Average ODI decreased from 50.2 ± 9.9 preoperatively to 21.7 ± 14.2 (P ≤ .01). We found the change in pelvic tilt to be an independent predictor of better clinical outcome by multivariate analysis (P < .05). Conclusions In patients with junctional failure adjacent to a previous posterolateral fusion, disc replacement at the junctional level(s), compared with osteotomy and fusion surgery, offers the advantage of maintaining segmental mobility and correcting the flat-back deformity through a single approach with less operative time and blood loss. Early- to intermediate-term results are promising. The influence of changes in spinal sagittal alignment on clinical outcome needs to be addressed in future research. Clinical

  20. Validity and reliability of computerized measurement of lumbar intervertebral disc height and volume from magnetic resonance images.

    PubMed

    Neubert, Ales; Fripp, Jurgen; Engstrom, Craig; Gal, Yaniv; Crozier, Stuart; Kingsley, Michael I C

    2014-11-01

    Magnetic resonance (MR) examinations of morphologic characteristics of intervertebral discs (IVDs) have been used extensively for biomechanical studies and clinical investigations of the lumbar spine. Traditionally, the morphologic measurements have been performed using time- and expertise-intensive manual segmentation techniques not well suited for analyses of large-scale studies.. The purpose of this study is to introduce and validate a semiautomated method for measuring IVD height and mean sagittal area (and volume) from MR images to determine if it can replace the manual assessment and enable analyses of large MR cohorts. This study compares semiautomated and manual measurements and assesses their reliability and agreement using data from repeated MR examinations. Seven healthy asymptomatic males underwent 1.5-T MR examinations of the lumbar spine involving sagittal T2-weighted fast spin-echo images obtained at baseline, pre-exercise, and postexercise conditions. Measures of the mean height and the mean sagittal area of lumbar IVDs (L1-L2 to L4-L5) were compared for two segmentation approaches: a conventional manual method (10-15 minutes to process one IVD) and a specifically developed semiautomated method (requiring only a few mouse clicks to process each subject). Both methods showed strong test-retest reproducibility evaluated on baseline and pre-exercise examinations with strong intraclass correlations for the semiautomated and manual methods for mean IVD height (intraclass correlation coefficient [ICC]=0.99, 0.98) and mean IVD area (ICC=0.98, 0.99), respectively. A bias (average deviation) of 0.38 mm (4.1%, 95% confidence interval 0.18-0.59 mm) was observed between the manual and semiautomated methods for the IVD height, whereas there was no statistically significant difference for the mean IVD area (0.1%±3.5%). The semiautomated and manual methods both detected significant exercise-induced changes in IVD height (0.20 and 0.28 mm) and mean IVD area (5

  1. Abdominal adipose tissue thickness measured using magnetic resonance imaging is associated with lumbar disc degeneration in a Chinese patient population.

    PubMed

    Yang, Lili; Mu, Liangshan; Huang, Kaiyu; Zhang, Tianyi; Mei, Zihan; Zeng, Wenrong; He, Jiawei; Chen, Wei; Liu, Xiaozheng; Ye, Xinjian; Yan, Zhihan

    2016-12-13

    The relationship between abdominal adiposity and disc degeneration remains largely uninvestigated. Here, we investigated the association between abdominal adipose tissue thickness and lumbar disc degeneration in a cross-sectional study of 2415 participants from The Second Affiliated Hospital of Wenzhou Medical University. All subjects were scanned with a 3T Magnetic Resonance Imaging system to evaluate the degree of lumbar disc degeneration. Multiple logistic regression analysis revealed that men in the highest quartiles for abdominal diameter (AD), sagittal diameter (SAD), and ventral subcutaneous thickness (VST) were at higher odds ratio for severe lumbar disc degeneration than men in the lowest quartiles. The adjusted model revealed that women in the highest quartiles for AD and SAD were also at higher odds ratio for severe lumbar disc degeneration than women in the lowest quartiles. Our results suggest that abdominal obesity might be one of underlying mechanisms of lumbar disc degeneration, and preventive strategies including weight control could be useful to reduce the incidence of lumbar disc degeneration. Prospective studies are needed to this confirm these results and to identify more deeper underlying mechanisms.

  2. Neuromuscular strategies for lumbopelvic control during frontal and sagittal plane movement challenges differ between people with and without low back pain.

    PubMed

    Nelson-Wong, E; Poupore, K; Ingvalson, S; Dehmer, K; Piatte, A; Alexander, S; Gallant, P; McClenahan, B; Davis, A M

    2013-12-01

    Observation-based assessments of movement are a standard component in clinical assessment of patients with non-specific low back pain. While aberrant motion patterns can be detected visually, clinicians are unable to assess underlying neuromuscular strategies during these tests. The purpose of this study was to compare coordination of the trunk and hip muscles during 2 commonly used assessments for lumbopelvic control in people with low back pain (LBP) and matched control subjects. Electromyography was recorded from hip and trunk muscles of 34 participants (17 with LBP) during performance of the Active Hip Abduction (AHAbd) and Active Straight Leg Raise (ASLR) tests. Relative muscle timing was calculated using cross-correlation. Participants with LBP demonstrated a variable strategy, while control subjects used a consistent proximal to distal activation strategy during both frontal and sagittal plane movements. Findings from this study provide insight into underlying neuromuscular control during commonly used assessment tests for patients with LBP that may help to guide targeted intervention approaches. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Three-dimensional shear wave elastography for differentiation of breast lesions: An initial study with quantitative analysis using three orthogonal planes.

    PubMed

    Wang, Qiao

    2018-05-25

    To prospectively evaluate the diagnostic performance of three-dimensional (3D) shear wave elastography (SWE) for breast lesions with quantitative stiffness information from transverse, sagittal and coronal planes. Conventional ultrasound (US), two-dimensional (2D)-SWE and 3D-SWE were performed for 122 consecutive patients with 122 breast lesions before biopsy or surgical excision. Maximum elasticity values of Young's modulus (Emax) were recorded on 2D-SWE and three planes of 3D-SWE. Area under the receiver operating characteristic curve (AUC), sensitivity and specificity of US, 2D-SWE and 3D-SWE were evaluated. Two combined sets (i.e., BI-RADS and 2D-SWE; BI-RADS and 3D-SWE) were compared in AUC. Observer consistency was also evaluated. On 3D-SWE, the AUC and sensitivity of sagittal plane were significantly higher than those of transverse and coronal planes (both P < 0.05). Compared with BI-RADS alone, both combined sets had significantly (P < 0.05) higher AUCs and specificities, whereas, the two combined sets showed no significant difference in AUC (P > 0.05). However, the combined set of BI-RADS and sagittal plane of 3D-SWE had significantly higher sensitivity than the combined set of BI-RADS and 2D-SWE. The sagittal plane shows the best diagnostic performance among 3D-SWE. The combination of BI-RADS and 3D-SWE is a useful tool for predicting breast malignant lesions in comparison with BI-RADS alone.

  4. [Muscle strength of the cervical and lumbar spine in triathletes].

    PubMed

    Miltner, O; Siebert, C H; Müller-Rath, R; Kieffer, O

    2010-12-01

    The goal of this study was to analyse the muscle strength of the cervical and lumbar spine in ironman triathletes. The values were compared to the results obtained from a reference group. The test of the triathletes was carried out in an attempt to define a specific strength profile for these athletes. In this study, 20 long-distance triathletes (∅ 37.3 ± 7.6 years of age, ∅ 1.80 ± 0.1 m, ∅ 73.7 ± 6.0 kg) were evaluated with regard to their individual and sport-specific strengths of the cervical spine in 2 planes and of the trunk strengths in all 3 planes of motion. The trunk strength profile of the triathletes revealed good average results in the trunk extensors and the lateral flexors of the left trunk. The reference group is the data base of the company Proxomed®, Alzenau. It is based on results of 1045 untrained, symptom-free subjects of different ages. Lumbar extension: The extension of the force values shows no significant difference from the reference group. Lumbar flexion: The flexion tests show highly significantly lower force values (5.025 ± 0.81 N/kg vs. 6.67 ± 0.6 N/kg) than the reference group. Flexion/extension: In the sagittal plane values for the triathletes demonstrate an imbalance in muscle strength ratios. The abdominal muscles turn in relation to the back extensor muscles too weakly to be very significant. Lumbar rotation: The force values of the athletes in both directions (right: 6.185 ± 1.46 N/kg, left: 7.1 ± 1.57 N/kg vs. 10.05 ± 0.34 N/kg) are highly significantly (p ≤ 0.001) lower than the reference values. Ratio of rotation left/right: The ratio of left/right rotation in the reference group is set at 1 and thus shows an equally strong force level between the two sides. Lumbar lateral flexion: The triathletes do not show any significant differences between the force values. Compared to the reference group there is no significant difference to the left side flexion. In the lateral bending the athletes have significantly

  5. The Reliability and Validity of the Computerized Double Inclinometer in Measuring Lumbar Mobility

    PubMed Central

    MacDermid, Joy Christine; Arumugam, Vanitha; Vincent, Joshua Israel; Carroll, Krista L

    2014-01-01

    Study Design : Repeated measures reliability/validity study. Objectives : To determine the concurrent validity, test-retest, inter-rater and intra-rater reliability of lumbar flexion and extension measurements using the Tracker M.E. computerized dual inclinometer (CDI) in comparison to the modified-modified Schober (MMS) Summary of Background : Numerous studies have evaluated the reliability and validity of the various methods of measuring spinal motion, but the results are inconsistent. Differences in equipment and techniques make it difficult to correlate results. Methods : Twenty subjects with back pain and twenty without back pain were selected through convenience sampling. Two examiners measured sagittal plane lumbar range of motion for each subject. Two separate tests with the CDI and one test with the MMS were conducted. Each test consisted of three trials. Instrument and examiner order was randomly assigned. Intra-class correlations (ICCs 2, 2 and 2, 2) and Pearson correlation coefficients (r) were used to calculate reliability and concurrent validity respectively. Results : Intra-trial reliability was high to very high for both the CDI (ICCs 0.85 - 0.96) and MMS (ICCs 0.84 - 0.98). However, the reliability was poor to moderate, when the CDI unit had to be repositioned either by the same rate (ICCs 0.16 - 0.59) or a different rater (ICCs 0.45 - 0.52). Inter-rater reliability for the MMS was moderate to high (ICCs 0.75 - 0.82) which bettered the moderate correlation obtained for the CDI (ICCs 0.45 - 0.52). Correlations between the CDI and MMS were poor for flexion (0.32; p<0.05) and poor to moderate (-0.42 - -0.51; p<0.05) for extension measurements. Conclusion : When using the CDI, an average of subsequent tests is required to obtain moderate reliability. The MMS was highly reliable than the CDI. The MMS and the CDI measure lumbar movement on a different metric that are not highly related to each other. PMID:25352928

  6. Spinal alignment in surgical, multisegmental, transpedicular correction of adolescent idiopathic scoliosis

    PubMed Central

    Nowakowski, Andrzej; Dworak, Lechosław B.; Kubaszewski, Łukasz; Kaczmarczyk, Jacek

    2012-01-01

    Summary The objective of this study was to discuss the variables influencing alignment mechanisms of the spine, with particular consideration of post-surgical alignment in adolescent idiopathic scoliosis. The analysis is based on information currently available in the literature, and on the authors’ own experience, which includes surgical material from over 2200 cases of idiopathic scoliosis. Over 50% of cases of adolescent idiopathic scoliosis are decompensated before surgical treatment. Spinal alignment is most significantly influenced by the position of the pelvis. Surgical restoration of lumbar lordosis is more important than attempting to restore thoracic kyphosis in the sagittal plane. The sagittal profile has an essential impact on spinal alignment. The same curves in the coronal plane can have various 3-dimensional configurations. Clinical difficulties in the assessment of thoracic kyphosis and lumbar lordosis result from the fact that they undergo constant change with age. Thoracic hypokyphosis diagnosed before surgery is a very frequent symptom of curve progression. The presence of proximal (thoraco-thoracic) and distal (thoraco-lumbar) junctional kyphosis is very important for planning the scope of spondylodesis. The natural tendency of the spine for alignment (compensation) after surgery nowadays occurs more naturally by applying derotational forces through pedicle screws, compared to the distraction devices (eg, Harrington rod) used in the past. PMID:23229319

  7. Spinal sagittal balance substantially influences locomotive syndrome and physical performance in community-living middle-aged and elderly women.

    PubMed

    Muramoto, Akio; Imagama, Shiro; Ito, Zenya; Hirano, Kenichi; Ishiguro, Naoki; Hasegawa, Yukiharu

    2016-03-01

    Spinal sagittal imbalance has been well known risk factor of decreased quality of life in the field of adult spinal deformity. However, the impact of spinal sagittal balance on locomotive syndrome and physical performance in community-living elderly has not yet been clarified. The present study investigated the influence of spinal sagittal alignment on locomotive syndrome (LS) and physical performance in community-living middle-aged and elderly women. A total of 125 women between the age of 40-88 years (mean 66.2 ± 9.7 years) who completed the questionnaires, spinal mouse test, physical examination and physical performance tests in Yakumo study were enrolled in this study. Participants answered the 25-Question Geriatric Locomotive Function Scale (GLFS-25), the visual analog scale (VAS) for low back pain (LBP), knee pain. LS was defined as having a score of >16 points on the GLFS-25. Using spinal mouse, spinal inclination angle (SIA), thoracic kyphosis angle (TKA), lumbar lordosis angle (LLA), sacral slope angle (SSA), thoracic spinal range of motion (TSROM), lumbar spinal range of motion (LSROM) were measured. Timed-up-and-go test (TUG), one-leg standing time with eyes open (OLS), and maximum stride, back muscle strength were also measured. The relationship between spinal sagittal parameters and GLFS-25, VAS and physical performance tests were analyzed. 26 people were diagnosed as LS and 99 were diagnosed as non-LS. LBP and knee pain were greater, physical performance tests were poorer, SIA were greater, LLA were smaller in LS group compared to non-LS group even after adjustment by age. SIA significantly correlated with GLFS-25, TUG, OLS and maximum stride even after adjustment by age. The cutoff value of SIA for locomotive syndrome was 6°. People with a SIA of 6° or greater were grouped as "Inclined" and people with a SIA of less than 6° were grouped as "Non-inclined". 21 people were "Inclined" and 104 were "Non-inclined". Odds ratio to fall in LS of

  8. Evolutionary allometry of the thoracolumbar centra in felids and bovids.

    PubMed

    Jones, Katrina E

    2015-07-01

    Mammals have evolved a remarkable range of body sizes, yet their overall body plan remains unaltered. One challenge of evolutionary biology is to understand the mechanisms by which this size diversity is achieved, and how the mechanical challenges associated with changing body size are overcome. Despite the importance of the axial skeleton in body support and locomotion, and much interest in the allometry of the appendicular skeleton, little is known about vertebral allometry outside primates. This study compares evolutionary allometry of the thoracolumbar centra in two families of quadrupedal running mammals: Felidae and Bovidae. I test the hypothesis that, as size increases, the thoracolumbar region will resist increasing loads by becoming a) craniocaudally shorter, and b) larger in cross-sectional area, particularly in the sagittal plane. Length, width, and height of the thoracolumbar centra of 23 felid and 34 bovid species were taken. Thoracic, prediaphragmatic, lumbar, and postdiaphragmatic lengths were calculated, and diameters were compared at three equivalent positions: the midthoracic, the diaphragmatic and the midlumbar vertebra. Allometric slopes were calculated using a reduced major axis regression, on both raw and independent contrasts data. Slopes and elevations were compared using an ANCOVA. As size increases the thoracolumbar centra become more robust, showing preferential reinforcement in the sagittal plane. There was less allometric shortening of the thoracic than the lumbar region, perhaps reflecting constraints due to its connection with the respiratory apparatus. The thoracic region was more robust in bovids than felids, whereas the lumbar region was longer and more robust in felids than bovids. Elongation of lumbar centra increases the outlever of sagittal bending at intervertebral joints, increasing the total pelvic displacement during dorsomobile running. Both locomotor specializations and functional regionalization of the axial skeleton

  9. Two-plane symmetry in the structural organization of man.

    PubMed

    Ermolenko, A E

    2005-01-01

    Manifestations of symmetry in the human structural organization in ontogenesis and phylogenetic development are analysed. A concept of macrobiocrystalloid with inherent complex symmetry is proposed for the description of the human organism in its integrity. The symmetry can be characterized as two-plane radial (quadrilateral), where the planar symmetry is predominant while the layout of organs of radial symmetry is subordinated to it. Out of the two planes of symmetry (sagittal and horizontal), the sagittal plane is predominant: (a) the location of the organs is governed by two principles: in compliance with the symmetry planes and in compliance with the radial symmetry around cavities; (b) the location of the radial symmetry organs is also governed by the principle of two-plane symmetry; (c) out of the four antimeres of two-plane symmetry, two are paired while the other two have merged into one organ; (d) some organs which are antimeres relative to the horizontal plane are located at the cranial end of the organism (sensory organs, cerebrum-cerebellum, heart-spleen and others). The two-plane symmetry is formed by two mechanisms--(a) the impact of morphogenetic fields of the whole crystalloid organism during embriogenesis and (b) genetic mechanisms of the development of chromosomes having two-plane symmetry. When comparing mineral and biological entities we should consider not the whole immobile crystal but only the active superficial part of a growing or dissolving crystal, the interface between the crystal surface and the crystal-forming environment which directly controls crystal growth and adapts itself to it, as well as crystal feed stock expressed in the structure of concentration flows. The symmetry of the chromosome, of the embrion at the early stages of cell cleavage as well as of some organs and systems in their phylogenetic development is described.

  10. The association between whole body sagittal balance and risk of falls among elderly patients seeking treatment for back pain.

    PubMed

    Kim, J; Hwang, J Y; Oh, J K; Park, M S; Kim, S W; Chang, H; Kim, T-H

    2017-05-01

    The objective of this study was to assess the association between whole body sagittal balance and risk of falls in elderly patients who have sought treatment for back pain. Balanced spinal sagittal alignment is known to be important for the prevention of falls. However, spinal sagittal imbalance can be markedly compensated by the lower extremities, and whole body sagittal balance including the lower extremities should be assessed to evaluate actual imbalances related to falls. Patients over 70 years old who visited an outpatient clinic for back pain treatment and underwent a standing whole-body radiograph were enrolled. Falls were prospectively assessed for 12 months using a monthly fall diary, and patients were divided into fallers and non-fallers according to the history of falls. Radiological parameters from whole-body radiographs and clinical data were compared between the two groups. A total of 144 patients (120 female patients and 24 male patients) completed a 12-month follow-up for assessing falls. A total of 31 patients (21.5%) reported at least one fall within the 12-month follow-up. In univariate logistic regression analysis, the risk of falls was significantly increased in older patients and those with more medical comorbidities, decreased lumbar lordosis, increased sagittal vertical axis, and increased horizontal distance between the C7 plumb line and the centre of the ankle (C7A). Increased C7A was significantly associated with increased risk of falls even after multivariate adjustment. Whole body sagittal balance, measured by the horizontal distance between the C7 plumb line and the centre of the ankle, was significantly associated with risk of falls among elderly patients with back pain. Cite this article : J. Kim, J. Y. Hwang, J. K. Oh, M. S. Park, S. W. Kim, H. Chang, T-H. Kim. The association between whole body sagittal balance and risk of falls among elderly patients seeking treatment for back pain. Bone Joint Res 2017;6:-344. DOI: 10

  11. Associations between lower extremity muscle mass and multiplanar knee laxity and stiffness: a potential explanation for sex differences in frontal and transverse plane knee laxity.

    PubMed

    Shultz, Sandra J; Pye, Michele L; Montgomery, Melissa M; Schmitz, Randy J

    2012-12-01

    Compared with men, women have disproportionally greater frontal (varus-valgus) and transverse (internal-external) plane laxity and lower stiffness, despite having similar sagittal (anterior-posterior) plane laxity and stiffness. While the underlying cause is unclear, the amount of lower extremity lean mass (LELM) may be a contributing factor. Lower extremity lean mass would be a stronger predictor of frontal and transverse plane laxity and incremental stiffness than the sagittal plane. Associations between LELM and stiffness would be stronger at lower force increments. Descriptive laboratory study. Sixty-three women and 30 men with no history of ligament injury were measured for knee laxity and incremental stiffness in the sagittal (-90- to 130-N posterior-to-anterior directed loads), frontal (±10-N·m varus-valgus torques), and transverse (±5-N·m internal-external rotation torques) planes and underwent dual-energy X-ray absorptiometry scans to measure LELM. Linear regressions examined the extent to which LELM predicted each laxity and stiffness value, while also accounting for a person's sex. Females (vs males) had greater laxity and less stiffness in the frontal and transverse planes but not the sagittal plane. Lower extremity lean mass was a poor predictor of sagittal laxity and stiffness (R (2) range = .021-.081; P > .06) but was a stronger predictor of frontal (R (2) range = .215-.567; P < .01) and transverse (R (2) range = .224-.356; P < .01) plane laxity and stiffness. Associations were stronger for low (R (2) = .495-.504) versus high (R (2) = .215-.435) frontal plane stiffness but were similar for low (R (2) = .233-.293) versus high (R (2) = .224-.356) transverse plane stiffness. Once we accounted for a person's LELM, sex had little effect on laxity and stiffness (change in R (2) after removal = .01-.08; P = .027-.797). Less LELM was associated with greater laxity and less stiffness in frontal and transverse planes, which may contribute to the

  12. Oblique Sagittal Images Prevent Underestimation of the Neuroforaminal Stenosis Grade Caused by Disc Herniation in Cervical Spine MRI.

    PubMed

    Kintzelé, Laurent; Rehnitz, Christoph; Kauczor, Hans-Ulrich; Weber, Marc-André

    2018-06-06

     To identify whether standard sagittal MRI images result in underestimation of the neuroforaminal stenosis grade compared to oblique sagittal MRI images in patients with cervical spine disc herniation.  74 patients with a total of 104 cervical disc herniations compromising the corresponding nerve root were evaluated. Neuroforaminal stenosis grades were evaluated in standard and oblique sagittal images by one senior and one resident radiologist experienced in musculoskeletal imaging. Oblique images were angled 30° towards the standard sagittal plane. Neuroforaminal stenosis grades were classified from 0 (no stenosis) to 3 (high grade stenosis).  Average neuroforaminal stenosis grades of both readers were significantly lower in standard compared to oblique sagittal images (p < 0.001). For 47.1 % of the cases, one or both readers reported a stenosis grade, which was at least 1 grade lower in standard compared to oblique sagittal images. There was also a significant difference when looking at patients who had neurological symptoms (p = 0.002) or underwent cervical spine surgery subsequently (p = 0.004). Interreader reliability, as measured by kappa value, and accordance rates were better for oblique sagittal images (0.94 vs. 0.88 and 99 % vs. 93 %).  Standard sagittal images tend to underestimate neuroforaminal stenosis grades compared to oblique sagittal images and are less reliable in the evaluation of disc herniations within the cervical spine MRI. In order to assess the potential therapeutic consequence, oblique images should therefore be considered as a valuable adjunct to the standard MRI protocol for patients with a radiculopathy.   · Neuroforaminal stenosis grades are underestimated in standard compared to oblique sagittal images. · Interreader reliability is higher for oblique sagittal images. · Oblique sagittal images should be performed in patients with a cervical radiculopathy. · Kintzele L, Rehnitz C, Kauczor H et

  13. Analysis of lumbar pedicle morphology in degenerative spines using multiplanar reconstruction computed tomography: what can be the reliable index for optimal pedicle screw diameter?

    PubMed

    Makino, Takahiro; Kaito, Takashi; Fujiwara, Hiroyasu; Yonenobu, Kazuo

    2012-08-01

    The measurement of transverse pedicle width is still recommended for selecting a screw diameter despite being weakly correlated with the minimum pedicle diameter, except in the upper lumbar spine. The purpose of this study was to reveal the difference between the minimum pedicle diameter and conventional transverse or sagittal pedicle width in degenerative lumbar spines. A total of 50 patients with degenerative lumbar disorders without spondylolysis or lumbar scoliosis of >10° who preoperatively underwent helical CT scans were included. The DICOM data of the scans were reconstructed by imaging software, and the transverse pedicle width (TPW), sagittal pedicle width (SPW), minimum pedicle diameter (MPD), and the cephalocaudal inclination of the pedicles were measured. The mean TPW/SPW/MPD values were 5.46/11.89/5.09 mm at L1, 5.76/10.44/5.39 mm at L2, 7.25/10.23/6.52 mm at L3, 9.01/9.36/6.83 mm at L4, and 12.86/8.95/7.36 mm at L5. There were significant differences between the TPW and MPD at L3, L4, and L5 (p < 0.01) and between the SPW and MPD at all levels (p < 0.01). The MPD was significantly smaller than the TPW and SPW at L3, L4, and L5. The actual measurements of the TPW were not appropriate for use as a direct index for the optimal pedicle screw diameter at these levels. Surgeons should be careful in determining pedicle screw diameter based on plain CT scans especially in the lower lumbar spine.

  14. Adaptations of lumbar biomechanics after four weeks of running training with minimalist footwear and technique guidance: Implications for running-related lower back pain.

    PubMed

    Lee, Szu-Ping; Bailey, Joshua P; Smith, Jo Armour; Barton, Stephanie; Brown, David; Joyce, Talia

    2018-01-01

    To investigate the changes in lumbar kinematic and paraspinal muscle activation before, during, and after a 4-week minimalist running training. Prospective cohort study. University research laboratory. Seventeen habitually shod recreational runners who run 10-50 km per week. During stance phases of running, sagittal lumbar kinematics was recorded using an electrogoniometer, and activities of the lumbar paraspinal muscles were assessed by electromyography. Runners were asked to run at a prescribed speed (3.1 m/s) and a self-selected speed. For the 3.1 m/s running speed, significant differences were found in the calculated mean lumbar posture (p = 0.001) during the stance phase, including a more extended lumbar posture after minimalist running training. A significant reduction in the contralateral lumbar paraspinal muscle activation was also observed (p = 0.039). For the preferred running speed, similar findings of a more extended lumbar posture (p = 0.002) and a reduction in contralateral lumbar paraspinal muscle activation (p = 0.047) were observed. A 4-week minimalist running training program produced significant changes in lumbar biomechanics during running. Specifically, runners adopted a more extended lumbar posture and reduced lumbar paraspinal muscle activation. These findings may have clinical implications for treating individuals with running-related lower back pain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Three-dimensional movements of the pelvis and the lumbar intervertebral joints in walking and trotting dogs.

    PubMed

    Wachs, K; Fischer, M S; Schilling, N

    2016-04-01

    Current knowledge of the physiological range of motion (ROM) in the canine axial system during locomotion is relatively limited. This is particularly problematic because dogs with back-related dysfunction frequently present for routine consultations. To collect detailed kinematic information and describe the three-dimensional motions of the pelvis and the lumbar spine (i.e. intervertebral joints S1/L7-L2/L1), we recorded ventro-dorsal and latero-lateral X-ray videos of three walking and trotting dogs and reconstructed their pelvic and intervertebral motions using X-ray reconstruction of moving morphology and scientific rotoscoping. Pelvic roll displayed a monophasic motion pattern and the largest ROM with on average 13° and 11° during walking and trotting, respectively. Pelvic yaw had the smallest ROM with on average 5° (walk) and 6° (trot). A biphasic pattern was observed for pelvic pitch with a mean ROM of 8°. At both gaits, the greatest intervertebral motions occurred either in S1/L7 or L7/L6. The intervertebral motions were mono- or biphasic in the horizontal and the transverse body planes and biphasic in the sagittal plane. Cranial to L6/5, the ROM tended to decrease from 3° to <1.5° in all three planes. Our results confirm that pelvic displacement and intervertebral joint movements are tightly linked with pelvic limb action at symmetrical gaits. The overall small movements, particularly cranial to L5, are consistent with the epaxial musculature globally stabilising the spine against the external and internal limb forces acting on the pelvis and the trunk during walking and trotting. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. A multi-level rapid prototyping drill guide template reduces the perforation risk of pedicle screw placement in the lumbar and sacral spine.

    PubMed

    Merc, Matjaz; Drstvensek, Igor; Vogrin, Matjaz; Brajlih, Tomaz; Recnik, Gregor

    2013-07-01

    The method of free-hand pedicle screw placement is generally safe although it carries potential risks. For this reason, several highly accurate computer-assisted systems were developed and are currently on the market. However, these devices have certain disadvantages. We have developed a method of pedicle screw placement in the lumbar and sacral region using a multi-level drill guide template, created with the rapid prototyping technology and have validated it in a clinical study. The aim of the study was to manufacture and evaluate the accuracy of a multi-level drill guide template for lumbar and first sacral pedicle screw placement and to compare it with the free-hand technique under fluoroscopy supervision. In 2011 and 2012, a randomized clinical trial was performed on 20 patients. 54 screws were implanted in the trial group using templates and 54 in the control group using the fluoroscopy-supervised free-hand technique. Furthermore, applicability for the first sacral level was tested. Preoperative CT-scans were taken and templates were designed using the selective laser sintering method. Postoperative evaluation and statistical analysis of pedicle violation, displacement, screw length and deviation were performed for both groups. The incidence of cortex perforation was significantly reduced in the template group; likewise, the deviation and displacement level of screws in the sagittal plane. In both groups there was no significantly important difference in deviation and displacement level in the transversal plane as not in pedicle screw length. The results for the first sacral level resembled the main investigated group. The method significantly lowers the incidence of cortex perforation and is therefore potentially applicable in clinical practice, especially in some selected cases. The applied method, however, carries a potential for errors during manufacturing and practical usage and therefore still requires further improvements.

  17. Lumbar Lordosis of Spinal Stenosis Patients during Intraoperative Prone Positioning

    PubMed Central

    Lee, Su-Keon; Song, Kyung-Sub; Park, Byung-Moon; Lim, Sang-Youn; Jang, Geun; Lee, Beom-Seok; Moon, Seong-Hwan; Lee, Hwan-Mo

    2016-01-01

    Background To evaluate the effect of spondylolisthesis on lumbar lordosis on the OSI (Jackson; Orthopaedic Systems Inc.) frame. Restoration of lumbar lordosis is important for maintaining sagittal balance. Physiologic lumbar lordosis has to be gained by intraoperative prone positioning with a hip extension and posterior instrumentation technique. There are some debates about changing lumbar lordosis on the OSI frame after an intraoperative prone position. We evaluated the effect of spondylolisthesis on lumbar lordosis after an intraoperative prone position. Methods Sixty-seven patients, who underwent spinal fusion at the Department of Orthopaedic Surgery of Gwangmyeong Sungae Hospital between May 2007 and February 2012, were included in this study. The study compared lumbar lordosis on preoperative upright, intraoperative prone and postoperative upright lateral X-rays between the simple stenosis (SS) group and spondylolisthesis group. The average age of patients was 67.86 years old. The average preoperative lordosis was 43.5° (± 14.9°), average intraoperative lordosis was 48.8° (± 13.2°), average postoperative lordosis was 46.5° (± 16.1°) and the average change on the frame was 5.3° (± 10.6°). Results Among all patients, 24 patients were diagnosed with simple spinal stenosis, 43 patients with spondylolisthesis (29 degenerative spondylolisthesis and 14 isthmic spondylolisthesis). Between the SS group and spondylolisthesis group, preoperative lordosis, intraoperative lordosis and postoperative lordosis were significantly larger in the spondylolisthesis group. The ratio of patients with increased lordosis on the OSI frame compared to preoperative lordosis was significantly higher in the spondylolisthesis group. The risk of increased lordosis on frame was significantly higher in the spondylolisthesis group (odds ratio, 3.325; 95% confidence interval, 1.101 to 10.039; p = 0.033). Conclusions Intraoperative lumbar lordosis on the OSI frame with a prone

  18. The contribution of two ears to the perception of vertical angle in sagittal planes.

    PubMed

    Morimoto, M

    2001-04-01

    Because the input signals to the left and right ears are not identical, it is important to clarify the role of these signals in the perception of the vertical angle of a sound source at any position in the upper hemisphere. To obtain basic findings on upper hemisphere localization, this paper investigates the contribution of each pinna to the perception of vertical angle. Tests measured localization of the vertical angle in five planes parallel to the median plane. In the localization tests, the pinna cavities of one or both ears were occluded. Results showed that pinna cavities of both the near and far ears play a role in determining the perceived vertical angle of a sound source in any plane, including the median plane. As a sound source shifts laterally away from the median plane, the contribution of the near ear increases and, conversely, that of the far ear decreases. For saggital planes at azimuths greater than 60 degrees from midline, the far ear no longer contributes measurably to the determination of vertical angle.

  19. Effect of Off-Axis Fluoroscopy Imaging on Two-Dimensional Kinematics in the Lumbar Spine: A Dynamic In Vitro Validation Study.

    PubMed

    Zhao, Kristin D; Ben-Abraham, Ephraim I; Magnuson, Dixon J; Camp, Jon J; Berglund, Lawrence J; An, Kai-Nan; Bronfort, Gert; Gay, Ralph E

    2016-05-01

    Spine intersegmental motion parameters and the resultant regional patterns may be useful for biomechanical classification of low back pain (LBP) as well as assessing the appropriate intervention strategy. Because of its availability and reasonable cost, two-dimensional (2D) fluoroscopy has great potential as a diagnostic and evaluative tool. However, the technique of quantifying intervertebral motion in the lumbar spine must be validated, and the sensitivity assessed. The purpose of this investigation was to (1) compare synchronous fluoroscopic and optoelectronic measures of intervertebral rotations during dynamic flexion-extension movements in vitro and (2) assess the effect of C-arm rotation to simulate off-axis patient alignment on intervertebral kinematics measures. Six cadaveric lumbar-sacrum specimens were dissected, and active marker optoelectronic sensors were rigidly attached to the bodies of L2-S1. Fluoroscopic sequences and optoelectronic kinematic data (0.15-mm linear, 0.17-0.20 deg rotational, accuracy) were obtained simultaneously. After images were obtained in a true sagittal plane, the image receptor was rotated in 5 deg increments (posterior oblique angulations) from 5 deg to 15 deg. Quantitative motion analysis (qma) software was used to determine the intersegmental rotations from the fluoroscopic images. The mean absolute rotation differences between optoelectronic values and dynamic fluoroscopic values were less than 0.5 deg for all the motion segments at each off-axis fluoroscopic rotation and were not significantly different (P > 0.05) for any of the off-axis rotations of the fluoroscope. Small misalignments of the lumbar spine relative to the fluoroscope did not introduce measurement variation in relative segmental rotations greater than that observed when the spine and fluoroscope were perpendicular to each other, suggesting that fluoroscopic measures of relative segmental rotation during flexion-extension are likely robust, even when

  20. MRI to delineate the gross tumor volume of nasopharyngeal cancers: which sequences and planes should be used?

    PubMed

    Popovtzer, Aron; Ibrahim, Mohannad; Tatro, Daniel; Feng, Felix Y; Ten Haken, Randall K; Eisbruch, Avraham

    2014-09-01

    Magnetic resonance imaging (MRI) has been found to be better than computed tomography for defining the extent of primary gross tumor volume (GTV) in advanced nasopharyngeal cancer. It is routinely applied for target delineation in planning radiotherapy. However, the specific MRI sequences/planes that should be used are unknown. Twelve patients with nasopharyngeal cancer underwent primary GTV evaluation with gadolinium-enhanced axial T1 weighted image (T1) and T2 weighted image (T2), coronal T1, and sagittal T1 sequences. Each sequence was registered with the planning computed tomography scans. Planning target volumes (PTVs) were derived by uniform expansions of the GTVs. The volumes encompassed by the various sequences/planes, and the volumes common to all sequences/planes, were compared quantitatively and anatomically to the volume delineated by the commonly used axial T1-based dataset. Addition of the axial T2 sequence increased the axial T1-based GTV by 12% on average (p = 0.004), and composite evaluations that included the coronal T1 and sagittal T1 planes increased the axial T1-based GTVs by 30% on average (p = 0.003). The axial T1-based PTVs were increased by 20% by the additional sequences (p = 0.04). Each sequence/plane added unique volume extensions. The GTVs common to all the T1 planes accounted for 38% of the total volumes of all the T1 planes. Anatomically, addition of the coronal and sagittal-based GTVs extended the axial T1-based GTV caudally and cranially, notably to the base of the skull. Adding MRI planes and sequences to the traditional axial T1 sequence yields significant quantitative and anatomically important extensions of the GTVs and PTVs. For accurate target delineation in nasopharyngeal cancer, we recommend that GTVs be outlined in all MRI sequences/planes and registered with the planning computed tomography scans.

  1. Determining the sagittal relationship between the maxilla and the mandible: a cephalometric analysis to clear up the confusion.

    PubMed

    Davis, Glen S; Cannon, James L; Messersmith, Marion L

    2013-01-01

    Establishing the sagittal jaw relationship is a key component to developing a diagnosis when treating an orthodontic patient. Several measurements, including the Wits Appraisal, ANB angle and nasion perpendicular have been and are currently used by practitioners to diagnose the sagittal jaw relationship. Unfortunately, all of these measurements have their limitations. The Cannon Analysis was created in an attempt to help overcome these limitations. One hundred untreated patients from the Vanderbilt University Medical Center database were selected, and their initial lateral cephalometric radiographs were digitally traced utilizing the Cannon Cephalometric Analysis. All of these patients had an orthognathic profile, a Class I occlusion and a good skeletal balance as judged by the authors. Normative values were established for the Cannon Analysis and then broken down by sex and age (8-11, 12-18, 19 and over). An example case was analyzed using the Cannon Analysis and several diagnostic scenarios were reviewed. The variance or difference between Porion to A Point (Po-A) and Porion to B Point (Po-B) was found to be 12.6 mm. This value remained relatively constant throughout life, with only slightly higher values for males versus females. The Cannon Analysis is an effective way to accurately establish the sagittal jaw relationship since it is not affected by the anterior / posterior position of nasion, the steepness of the mandibular plane angle, nor an improperly drawn occlusal plane.

  2. Anterior decompression and fusion for Aspergillus osteomyelitis of the lumbar spine associated with paraparesis.

    PubMed

    Korovessis, P; Repanti, M; Katsardis, T; Stamatakis, M

    1994-12-01

    A very rare case of Aspergillus fumigatus osteomyelitis of the spine is described. The differential diagnosis, medical and operative treatment, and follow-up evaluation are reported. To increase knowledge about the pathogenesis and treatment of vertebral osteomyelitis resulting from Aspergillus and to emphasize that such cases still exist. Vertebral osteomyelitis from Aspergillus species is an infrequently described disease in Europe and only few cases have been previously reported. A 48-year-old woman with Aspergillus fumigatus spondylitis in the lumbar spine and tuberculosis-lung infection and concomitant debilitating systemic disease was afflicted with incomplete paraplegia and underwent successful combined operative and medical treatment. Early anterior decompression with spinal fusion, combined with Amphotericin B therapy, was crucial in bringing about complete neurologic recovery and maintaining the sagittal lumbar profile. Excellent clinical and radiologic results were shown in the 42-month follow-up period.

  3. Validity of a smartphone protractor to measure sagittal parameters in adult spinal deformity.

    PubMed

    Kunkle, William Aaron; Madden, Michael; Potts, Shannon; Fogelson, Jeremy; Hershman, Stuart

    2017-10-01

    Smartphones have become an integral tool in the daily life of health-care professionals (Franko 2011). Their ease of use and wide availability often make smartphones the first tool surgeons use to perform measurements. This technique has been validated for certain orthopedic pathologies (Shaw 2012; Quek 2014; Milanese 2014; Milani 2014), but never to assess sagittal parameters in adult spinal deformity (ASD). This study was designed to assess the validity, reproducibility, precision, and efficiency of using a smartphone protractor application to measure sagittal parameters commonly measured in ASD assessment and surgical planning. This study aimed to (1) determine the validity of smartphone protractor applications, (2) determine the intra- and interobserver reliability of smartphone protractor applications when used to measure sagittal parameters in ASD, (3) determine the efficiency of using a smartphone protractor application to measure sagittal parameters, and (4) elucidate whether a physician's level of experience impacts the reliability or validity of using a smartphone protractor application to measure sagittal parameters in ASD. An experimental validation study was carried out. Thirty standard 36″ standing lateral radiographs were examined. Three separate measurements were performed using a marker and protractor; then at a separate time point, three separate measurements were performed using a smartphone protractor application for all 30 radiographs. The first 10 radiographs were then re-measured two more times, for a total of three measurements from both the smartphone protractor and marker and protractor. The parameters included lumbar lordosis, pelvic incidence, and pelvic tilt. Three raters performed all measurements-a junior level orthopedic resident, a senior level orthopedic resident, and a fellowship-trained spinal deformity surgeon. All data, including the time to perform the measurements, were recorded, and statistical analysis was performed to

  4. [Feasibility and accuracy of ultrasound-guided methodology in the examination of lumbar spine facet joints].

    PubMed

    Wen, Chuan-Bing; Li, Yong-Zhong; Tang, Qin-Qin; Sun, Lin; Xiao, Hong; Yang, Bang-Xiang; Song, Li; Liu, Hui

    2013-03-01

    To investigate the feasibility, accuracy of B ultrasound in the examination of joint space of lumbar spine facet joints compared with CT scan. Ten healthy adult volunteers were enrolled. The joint space of lumbar facet joints was measured by ultrasound. To identify the spinal levels, the posterior parasagittal sonograms were obtained at levels L1 to S1. The lumbar facet joints were delineated with the help of transverse sonograms at each level. Meanwhile, the lumbar facet joints were evaluated by spiral CT on the same plane, reformatted to 1-mm axial slices. A total of 88 lumbar facet joints from L1 to S1 were clearly visualized in the 10 volunteers. Both ultrasound and CT measurements showed the same average depth and lateral distance of lumbar facet joint space (P > 0.05). The lumbar facet joint space can be accurately demonstrated by ultrasound.

  5. Modification of the sagittal split osteotomy of the mandibular ramus: mobilizing vertical osteotomy of the internal ramus segment.

    PubMed

    Ricard, Daniel; Ferri, Joël

    2009-08-01

    We describe a new surgical procedure to improve stability when counterclockwise rotation of the maxillomandibular complex and the occlusal plane is intended. This preliminary prospective study evaluated 10 patients (8 female patients and 2 male patients) who each underwent maxillomandibular surgical advancement with counterclockwise rotation of the occlusal plane. A mandibular counterclockwise rotation was done in all cases with bilateral ramus sagittal split osteotomy. After the split of the ramus had been completed, a vertical osteotomy was done distally to the second molar on the internal ramus segment. With the completion of this vertical osteotomy, the internal ramus segment became completely mobile. All osteotomies were stabilized with rigid internal fixation by use of plates with monocortical screws. Ten patients have been treated with the "mobilizing vertical osteotomy of the internal ramus segment." The mean reduction of the occlusal plane angle was 10.1 degrees , showing a substantial counterclockwise rotation of the maxillomandibular complex. All patients had significant improvement of their facial balance. After a 1-year follow-up period, all cases but 1 showed very good stability of their occlusion and occlusal plane angle. An 11.4% relapse of the forward movement of the mandible was noted. On the basis of this prospective study, we conclude that when performing a counterclockwise rotation of the maxillomandibular complex, the mobilizing vertical osteotomy of the internal ramus segment combined with the sagittal split osteotomy of the mandible potentially enhances the occlusal plane angle and occlusal stability after a 1-year period.

  6. Sagittal crest formation in great apes and gibbons.

    PubMed

    Balolia, Katharine L; Soligo, Christophe; Wood, Bernard

    2017-06-01

    The frequency of sagittal crest expression and patterns of sagittal crest growth and development have been documented in hominoids, including some extinct hominin taxa, and the more frequent expression of the sagittal crest in males has been traditionally linked with the need for larger-bodied individuals to have enough attachment area for the temporalis muscle. In the present study, we investigate sagittal cresting in a dentally mature sample of four hominoid taxa (Pan troglodytes schweinfurthii, Gorilla gorilla gorilla, Pongo pygmaeus pygmaeus and Hylobates lar). We investigate whether sagittal crest size increases with age beyond dental maturity in males and females of G. g. gorilla and Po. pyg. pygmaeus, and whether these taxa show sex differences in the timing of sagittal crest development. We evaluate the hypothesis that the larger sagittal crest of males may not be solely due to the requirement for a larger surface area than the un-crested cranial vault can provide for the attachment of the temporalis muscle, and present data on sex differences in temporalis muscle attachment area and sagittal crest size relative to cranial size. Gorilla g. gorilla and Po. pyg. pygmaeus males show significant relationships between tooth wear rank and sagittal crest size, and they show sagittal crest size differences between age groups that are not found in females. The sagittal crest emerges in early adulthood in the majority of G. g. gorilla males, whereas the percentage of G. g. gorilla females possessing a sagittal crest increases more gradually. Pongo pyg. pygmaeus males experience a three-fold increase in the number of specimens exhibiting a sagittal crest in mid-adulthood, consistent with a secondary growth spurt. Gorilla g. gorilla and Po. pyg. pygmaeus show significant sex differences in the size of the temporalis muscle attachment area, relative to cranial size, with males of both taxa showing positive allometry not shown in females. Gorilla g

  7. LIMITED HIP AND KNEE FLEXION DURING LANDING IS ASSOCIATED WITH INCREASED FRONTAL PLANE KNEE MOTION AND MOMENTS

    PubMed Central

    Pollard, Christine D.; Sigward, Susan M.; Powers, Christopher M.

    2009-01-01

    Background It has been proposed that female athletes who limit knee and hip flexion during athletic tasks rely more on the passive restraints in the frontal plane to deceleration their body center of mass. This biomechanical pattern is thought to increase the risk for anterior cruciate ligament injury. To date, the relationship between sagittal plane kinematics and frontal plane knee motion and moments has not been explored. Methods Subjects consisted of fifty-eight female club soccer players (age range: 11 to 20 years) with no history of knee injury. Kinematics, ground reaction forces, and surface electromyography were collected while each subject performed a drop landing task. Subjects were divided into two groups based on combined sagittal plane knee and hip flexion angles during the deceleration phase of landing (high flexion and low flexion). Findings Subjects in the low flexion group demonstrated increased knee valgus angles (P = 0.02, effect size 0.27), increased knee adductor moments (P = 0.03, effect size 0.24), decreased energy absorption at the knee and hip (P = 0.02, effect size 0.25; and P< 0.001, effect size 0.59), and increased vastus lateralis EMG when compared to subjects in the high flexion group (P = 0.005, effect size 0.35). Interpretation Female athletes with limited sagittal plane motion during landing exhibit a biomechanical profile that may put these individuals at greater risk for anterior cruciate ligament injury. PMID:19913961

  8. Does T2 mapping of the posterior annulus fibrosus indicate the presence of lumbar intervertebral disc herniation? A 3.0 Tesla magnetic resonance study.

    PubMed

    Messner, Alina; Stelzeneder, David; Trattnig, Stefan; Welsch, Götz H; Schinhan, Martina; Apprich, Sebastian; Brix, Martin; Windhager, Reinhard; Trattnig, Siegfried

    2017-03-01

    Indicating lumbar disc herniation via magnetic resonance imaging (MRI) T2 mapping in the posterior annulus fibrosus (AF). Sagittal T2 maps of 313 lumbar discs of 64 patients with low back pain were acquired at 3.0 Tesla (3T). The discs were rated according to disc herniation and bulging. Region of interest (ROI) analysis was performed on median, sagittal T2 maps. T2 values of the AF, in the most posterior 10% (PAF-10) and 20% of the disc (PAF-20), were compared. A significant increase in the T2 values of discs with herniations affecting the imaged area, compared to bulging discs and discs with lateral herniation, was shown in the PAF-10, where no association to the NP was apparent. The PAF-20 exhibited a moderate correlation to the nucleus pulposus (NP). High T2 values in the PAF-10 suggest the presence of disc herniation (DH). The results indicate that T2 values in the PAF-20 correspond more to changes in the NP.

  9. Lumbar Spine Alignment in Six Common Postures: An ROM Analysis With Implications for Deformity Correction.

    PubMed

    Hey, Hwee Weng Dennis; Lau, Eugene Tze-Chun; Tan, Kimberly-Anne; Lim, Joel L; Choong, Denise; Lau, Leok-Lim; Liu, Ka-Po G; Wong, Hee-Kit

    2017-10-01

    A cross-sectional study of prospectively collected data. To compare lumbar spine alignment in six common postures, and estimate loss in range of motion (ROM) relative to standing. Ideal position for fusion of lumbar spine remains unknown. Although surgical fusion is necessary for deformity correction and symptom relief, the final position in which the vertebrae are immobilized should provide maximum residual function. Data were collected prospectively from 70 patients with low back pain recruited over a year. All subjects had x-rays performed in slump sitting, forward bending, supine, half squatting, standing, and backward bending postures. ROM quantified in terms of sagittal global and segmental Cobb angles was measured from L1 to S1. Loss of ROM relative to standing was calculated for each posture. Analysis of variance and unpaired t tests were used to identify differences in alignment between postures. Slump sitting gives the greatest lumbar flexion followed by forward bending, and supine postures (P < 0.001). Backward bending produces greater lumbar extension than standing (P = 0.035). Half-squatting and standing postures were not significantly different (P = 0.938). For all postures, L4-5 and L5-S1 segments remained in lordosis, with L4-5 having greater ROM than L5-S1. L1-2 turns kyphotic in lying supine, L2-3 at forward bending, and L3-4 at slump sitting in the form of a "kyphosing cascade." Should the entire lumbar spine be fused in standing position from L1-S1, there would likely be a mean loss of 47.6° of lumbar flexion and 5.9° of lumbar extension. The present study demonstrates the extent of flexibility required of the lumbar spine in assuming various postures. It also enables comparison of the differences in degree of motion occurring in the lumbar spine, both across postures and across segments. Significant loss in ROM, particularly flexion, is anticipated with fusion modeled after the lordotic standing lumbar spine. 2.

  10. Effects of myofascial release leg pull and sagittal plane isometric contract-relax techniques on passive straight-leg raise angle.

    PubMed

    Hanten, W P; Chandler, S D

    1994-09-01

    Experimental evidence does not currently exist to support the claims of clinical effectiveness for myofascial release techniques. This presents an obvious need to document the effects of myofascial release. The purpose of this study was to compare the effects of two techniques, sagittal plane isometric contract-relax and myofascial release leg pull for increasing hip flexion range of motion (ROM) as measured by the angle of passive straight-leg raise. Seventy-five nondisabled, female subjects 18-29 years of age were randomly assigned to contract-relax, leg pull, or control groups. Pretest hip flexion ROM was measured for each subject's right hip with a passive straight-leg raise test using a fluid-filled goniometer. Subjects in the treatment groups received either contract-relax or leg pull treatment applied to the right lower extremity; subjects in the control group remained supine quietly for 5 minutes. Following treatment, posttest straight-leg raise measurements were performed. A one-way analysis of variance followed by a Newman-Keuls post hoc comparison of mean gain scores showed that subjects receiving contract-relax treatment increased their ROM significantly more than those who received leg pull treatment, and the increase in ROM of subjects in both treatment groups was significantly higher than those of the control group. The results suggest that while both contract-relax and leg pull techniques can significantly increase hip flexion ROM in normal subjects, contract-relax treatment may be more effective and efficient than leg pull treatment.

  11. Effects of inter-individual lumbar spine geometry variation on load-sharing: Geometrically personalized Finite Element study.

    PubMed

    Naserkhaki, Sadegh; Jaremko, Jacob L; El-Rich, Marwan

    2016-09-06

    There is a large, at times contradictory, body of research relating spinal curvature to Low Back Pain (LBP). Mechanical load is considered as important factor in LBP etiology. Geometry of the spinal structures and sagittal curvature of the lumbar spine govern its mechanical behavior. Thus, understanding how inter-individual geometry particularly sagittal curvature variation affects the spinal load-sharing becomes of high importance in LBP assessment. This study calculated and compared kinematics and load-sharing in three ligamentous lumbosacral spines: one hypo-lordotic (Hypo-L) with low lordosis, one normal-lordotic (Norm-L) with normal lordosis, and one hyper-lordotic (Hyper-L) with high lordosis in flexed and extended postures using 3D nonlinear Finite Element (FE) modeling. These postures were simulated by applying Follower Load (FL) combined with flexion or extension moment. The Hypo-L spine demonstrated stiffer behavior in flexion but more flexible response to extension compared to the Norm-L spine. The excessive lordosis stiffened response of the Hyper-L spine to extension but did not affect its resistance to flexion compared to the Norm-L spine. Despite the different resisting actions of the posterior ligaments to flexion moment, the increase of disc compression was similar in all the spines leading to similar load-sharing. However, resistance of the facet joints to extension was more important in the Norm- and Hyper-L spines which reduced the disc compression. The spinal curvature strongly influenced the magnitude and location of load on the spinal components and also altered the kinematics and load-sharing particularly in extension. Consideration of the subject-specific geometry and sagittal curvature should be an integral part of mechanical analysis of the lumbar spine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Lumbar scoliosis associated with spinal stenosis in idiopathic and degenerative cases.

    PubMed

    Le Huec, J C; Cogniet, A; Mazas, S; Faundez, A

    2016-10-01

    Degenerative de novo scoliosis is commonly present in older adult patients. The degenerative process including disc bulging, facet arthritis, and ligamentum flavum hypertrophy contributes to the appearance of symptoms of spinal stenosis. Idiopathic scoliosis has also degenerative changes that can lead to spinal stenosis. The aetiology, prevalence, biomechanics, classification, symptomatology, and treatment of idiopathic and degenerative lumbar scoliosis in association with spinal stenosis are reviewed. Review study is based on a review of pertinent but non-exhaustive literature of the last 20 years in PubMed in English language. Retrospective analysis of studies focused on all parameters concerning scoliosis associated with stenosis. Very few publications have focused specifically on idiopathic scoliosis and stenosis, and this was before the advent of modern segmental instrumentation. On the other hand, many papers were found for degenerative scoliosis and stenosis with treatment methods based on aetiology of spinal canal stenosis and analysis of global sagittal and frontal parameters. Satisfactory clinical results after operative treatment range from 83 to 96 % but with increased percentage of complications. Recent literature analysed the importance of stabilizing or not the spine after decompression in such situation knowing the increasing risk of instability after facet resection. No prospective randomized studies were found to support short instrumentation. Long instrumentation and fusion to prevent distabilization after decompression were always associated with higher complication rates. Imbalance patients with unsatisfactory compensation capacities were at risk of complications. Operative treatment using newly proposed classification system of lumbar scoliosis with associated canal stenosis is useful. Sagittal balance and rotatory dislocation are the main parameters to analyse to determine the length of fusion.

  13. Sonoanatomy relevant for ultrasound-guided central neuraxial blocks via the paramedian approach in the lumbar region

    PubMed Central

    Karmakar, M K; Li, X; Kwok, W H; Ho, A M-H; Ngan Kee, W D

    2012-01-01

    Objectives The use of ultrasound to guide peripheral nerve blocks is now a well-established technique in regional anaesthesia. However, despite reports of ultrasound guided epidural access via the paramedian approach, there are limited data on the use of ultrasound for central neuraxial blocks, which may be due to a poor understanding of spinal sonoanatomy. The aim of this study was to define the sonoanatomy of the lumbar spine relevant for central neuraxial blocks via the paramedian approach. Methods The sonoanatomy of the lumbar spine relevant for central neuraxial blocks via the paramedian approach was defined using a “water-based spine phantom”, young volunteers and anatomical slices rendered from the Visible Human Project data set. Results The water-based spine phantom was a simple model to study the sonoanatomy of the osseous elements of the lumbar spine. Each osseous element of the lumbar spine, in the spine phantom, produced a “signature pattern” on the paramedian sagittal scans, which was comparable to its sonographic appearance in vivo. In the volunteers, despite the narrow acoustic window, the ultrasound visibility of the neuraxial structures at the L3/L4 and L4/L5 lumbar intervertebral spaces was good, and we were able to delineate the sonoanatomy relevant for ultrasound-guided central neuraxial blocks via the paramedian approach. Conclusion Using a simple water-based spine phantom, volunteer scans and anatomical slices from the Visible Human Project (cadaver) we have described the sonoanatomy relevant for ultrasound-guided central neuraxial blocks via the paramedian approach in the lumbar region. PMID:22010025

  14. The size of the supraspinatus outlet during elevation of the arm in the frontal and sagittal plane: a 3-D model study.

    PubMed

    Meskers, Carel G M; van der Helm, Frans C T; Rozing, Piet M

    2002-05-01

    To quantify the size of the supraspinatus outlet as it is dictated by both the three-dimensional geometry of the shoulder and the relative orientation of the humerus with respect to the scapula during motions of the arm. Previously obtained data of shoulder kinematics were brought into a geometrical model of the shoulder, derived from a cadaver study. Knowledge of the parameters dictating the size of the supraspinatus outlet is essential for a better understanding of the impingement syndrome of the shoulder. A geometrical model, based on fitting spheres to various anatomical items of the shoulder was derived from three-dimensional position data of the gleno-humeral joint and coraco-acromial arch of 32 cadaver shoulders. Kinematical data were collected from 10 healthy volunteers. The geometrical and kinematical data were combined to study the supraspinatus outlet during elevation of the humerus in the frontal and sagittal plane. No single geometry parameter correlated significantly with the initial size of the outlet. During arm elevation, the greater tuberosity was moved away from the coraco-acromial arch quite effectively resulting in narrowing of the outlet during elevation in the frontal plane from 60 degrees to 120 degrees only. Deviations from the average were quite substantial. This was caused by kinematical and especially geometrical variability. The size of the outlet is dictated by both the geometry and kinematics of the gleno-humeral joint. Assessment of the individual susceptibility to impingement requires three-dimensional viewing techniques including three-dimensional movements of both the scapula and humerus. Little is known about etiology and pathogenesis of various shoulder disorders such as the impingement syndrome. The supraspinatus outlet plays probably a key role. More knowledge on the architecture of the outlet is required for a better understanding.

  15. Kinetic magnetic resonance imaging analysis of lumbar segmental mobility in patients without significant spondylosis.

    PubMed

    Tan, Yanlin; Aghdasi, Bayan G; Montgomery, Scott R; Inoue, Hirokazu; Lu, Chang; Wang, Jeffrey C

    2012-12-01

    The purpose of this study was to examine lumbar segmental mobility using kinetic magnetic resonance imaging (MRI) in patients with minimal lumbar spondylosis. Mid-sagittal images of patients who underwent weight-bearing, multi-position kinetic MRI for symptomatic low back pain or radiculopathy were reviewed. Only patients with a Pfirrmann grade of I or II, indicating minimal disc disease, in all lumbar discs from L1-2 to L5-S1 were included for further analysis. Translational and angular motion was measured at each motion segment. The mean translational motion of the lumbar spine at each level was 1.38 mm at L1-L2, 1.41 mm at L2-L3, 1.14 mm at L3-L4, 1.10 mm at L4-L5 and 1.01 mm at L5-S1. Translational motion at L1-L2 and L2-L3 was significantly greater than L3-4, L4-L5 and L5-S1 levels (P < 0.007). The mean angular motion at each level was 7.34° at L1-L2, 8.56° at L2-L3, 8.34° at L3-L4, 8.87° at L4-L5, and 5.87° at L5-S1. The L5-S1 segment had significantly less angular motion when compared to all other levels (P < 0.006). The mean percentage contribution of each level to the total angular mobility of the lumbar spine was highest at L2-L3 (22.45 %) and least at L5/S1 (14.71 %) (P < 0.001). In the current study, we evaluated lumbar segmental mobility in patients without significant degenerative disc disease and found that translational motion was greatest in the proximal lumbar levels whereas angular motion was similar in the mid-lumbar levels but decreased at L1-L2 and L5-S1.

  16. Single transverse-orientation cage via MIS-TLIF approach for the treatment of degenerative lumbar disease: a technical note.

    PubMed

    Wang, Shan-Jin; Han, Ying-Chao; Pan, Fu-Min; Ma, Bin; Tan, Jun

    2015-01-01

    Single transverse cage placed in the anterior vertebral column can better maintain lumbar lordosis and sagittal alignment and is frequently used via the lateral transpsoas approach. However, there is no clear description in the literature of the steps required to place the single transverse cage during the instrumented transforaminal lumbar interbody fusion (TLIF) procedure for the treatment of degenerative lumbar disease. The objective of this study is to describe the technique using single transverse-orientation cage when performing TLIF procedures. We present 18 illustrative cases in which single transverse-orientation cage was placed according to a step-by-step technique that can be used during the TLIF procedure. Information acquired included procedure time, intraoperative blood loss and postoperative complications. The preoperative and postoperative Oswestry Disability Index (ODI) and the visual analogue scale (VAS) scores were recorded. Changes in disc height and segmental lordosis were measured at radiographs. The single transverse-orientation cage was successfully placed in 18 patients in a stepwise technique to achieve lumbar fusion. Using this technique, the patients significantly improved clinically and radiographically at postoperative visits. This is the first report demonstrating the safety and efficacy of instrumented TLIF with single transverse-orientation cage for the treatment of degenerative lumbar disease. Single transverse-orientation cage via MIS-TLIF approach can maintain greater lumbar lordosis and avoid the unique complications of lateral transpsoas approach. Understanding the options for cage placement is important for surgeons considering the use of this technique.

  17. The cat vertebral column: stance configuration and range of motion

    NASA Technical Reports Server (NTRS)

    Macpherson, J. M.; Ye, Y.; Peterson, B. W. (Principal Investigator)

    1998-01-01

    This study examined the configuration of the vertebral column of the cat during independent stance and in various flexed positions. The range of motion in the sagittal plane is similar across most thoracic and lumbar joints, with the exception of a lesser range at the transition region from thoracic-type to lumbar-type vertebrae. The upper thoracic column exhibits most of its range in dorsiflexion and the lower thoracic and lumbar in ventroflexion. Lateral flexion is limited to less than 5 degrees at all segments. The range in torsion is almost 180 degrees and occurs primarily in the midthoracic region, T4-T11. Contrary to the depiction in most atlases, the standing cat exhibits several curvatures, including a mild dorsiflexion in the lower lumbar segments, a marked ventroflexion in the lower thoracic and upper lumbar segments, and a profound dorsiflexion in the upper thoracic (above T9) and cervical segments. The curvatures are not significantly changed by altering stance distance but are affected by head posture. During stance, the top of the scapula lies well above the spines of the thoracic vertebrae, and the glenohumeral joint is just below the bodies of vertebrae T3-T5. Using a simple static model of the vertebral column in the sagittal plane, it was estimated that the bending moment due to gravity is bimodal with a dorsiflexion moment in the lower thoracic and lumbar region and a ventroflexion moment in the upper thoracic and cervical region. Given the bending moments and the position of the scapula during stance, it is proposed that two groups of scapular muscles provide the major antigravity support for the head and anterior trunk. Levator scapulae and serratus ventralis form the lateral group, inserting on the lateral processes of cervical vertebrae and on the ribs. The major and minor rhomboids form the medial group, inserting on the spinous tips of vertebrae from C4 to T4. It is also proposed that the hypaxial muscles, psoas major, minor, and quadratus

  18. 3D knee segmentation based on three MRI sequences from different planes.

    PubMed

    Zhou, L; Chav, R; Cresson, T; Chartrand, G; de Guise, J

    2016-08-01

    In clinical practice, knee MRI sequences with 3.5~5 mm slice distance in sagittal, coronal, and axial planes are often requested for the knee examination since its acquisition is faster than high-resolution MRI sequence in a single plane, thereby reducing the probability of motion artifact. In order to take advantage of the three sequences from different planes, a 3D segmentation method based on the combination of three knee models obtained from the three sequences is proposed in this paper. In the method, the sub-segmentation is respectively performed with sagittal, coronal, and axial MRI sequence in the image coordinate system. With each sequence, an initial knee model is hierarchically deformed, and then the three deformed models are mapped to reference coordinate system defined by the DICOM standard and combined to obtain a patient-specific model. The experimental results verified that the three sub-segmentation results can complement each other, and their integration can compensate for the insufficiency of boundary information caused by 3.5~5 mm gap between consecutive slices. Therefore, the obtained patient-specific model is substantially more accurate than each sub-segmentation results.

  19. Multilevel magnetic resonance imaging analysis of multifidus-longissimus cleavage planes in the lumbar spine and potential clinical applications to Wiltse's paraspinal approach.

    PubMed

    Palmer, Daniel Kyle; Allen, Jonathan L; Williams, Paul A; Voss, Ashley Elizabeth; Jadhav, Vikram; Wu, David S; Cheng, Wayne K

    2011-07-15

    Retrospective magnetic resonance imaging (MRI)-based study. Our goal was to develop Wiltse's paraspinal surgical approach by determining the precise anatomic locations of the intermuscular cleavage planes formed by the multifidus and longissimus muscles. The primary objective was to measure the distances between the midline and the intermuscular planes, bilaterally, on MRI scans at each of the five disc levels between L1 and S1. Secondary objectives included identifying the existence of any correlations between patient demographics and the measured outcomes. In 1968, Wiltse described an approach to the spine using the natural cleavage plane of the multifidus and longissimus muscles as an entry to the posterior spinal elements. The small direct incisions lessened bleeding, tissue violation, and muscle retraction, which popularized Wiltse's approach among surgeons. A detailed description of the locations of the intermuscular cleavage planes at each lumbar disc level, however, is not available. MRI scans of 200 patients taken during routine care (2007-2009) were retrospectively reviewed to gather measurements of the distances from the intermuscular cleavage planes to the midline, bilaterally, at each disc level from L1 to S1. Age, sex, and BMI (body mass index) were obtained to determine correlations. Mean measurements significantly differed between all disc levels. At L5-S1, the mean distance was 37.8 mm; at L4-L5, 28.4 mm; at L3-L4, 16.2 mm; at L2-L3, 10.4 mm; and at L1-L2, 7.9 mm. The mean female distances were significantly greater than males (2 mm) on both sides of L5-S1 only. No correlation was discovered between BMI, age, height (N = 50), or weight (N = 50) with respect to measured distances. In the absence of any significant clinical correlation between patient demographics and the entry site in Wiltse's approach, the spine surgeon may use distances described in this paper to apply to a broad base of spine patients regardless of BMI, sex, or age.

  20. A compensation of angular displacements of the hip joints and lumbosacral spine between subjects with and without idiopathic low back pain during squatting.

    PubMed

    Sung, Paul S

    2013-06-01

    Low back pain (LBP) is one of the most common symptoms reported in adults. However, the contribution of postural control on the lumbar spine and hips during squatting has not been carefully investigated in individuals with LBP. The aim of this study was to compare three-dimensional kinematic changes of the lumbar spine and hips between subjects with and without idiopathic chronic LBP during squatting activities. In total, 30 subjects enrolled in the study (15 control subjects and 15 subjects with idiopathic chronic LBP). All participants were asked to perform squatting activities five times repeatedly while holding a load of 2kg in a basket. The outcome measures included the Oswestry Disability Index (ODI) and kinematic angular displacement for the hips and lumbar spine. The LBP group demonstrated increased range of motion (ROM) in flexion of the dominant (T=-2.14, p=0.03) and non-dominant (T=-2.11, p=0.03) hips during squatting. The lumbar spine flexion ROM significantly decreased (T=2.20, p=0.03). The kinematic changes demonstrated interactions with region×group (F=5.56, p=0.02), plane×group (F=4.36, p=0.04), and region×plane (F=2292.47, p=0.001). The ODI level demonstrated significant interaction on combined effects of body region and plane (F=4.91, p=0.03). Therefore, the LBP group utilized a compensation strategy to increase hip flexion with a stiffened lumbar spine in the sagittal plane during squatting. This compensatory kinematic strategy could apply to clinical management used to enhance lumbar spine flexibility in subjects with idiopathic chronic LBP. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Ambulant adults with spastic cerebral palsy: the validity of lower limb joint angle measurements from sagittal video recordings.

    PubMed

    Larsen, Kerstin L; Maanum, Grethe; Frøslie, Kathrine F; Jahnsen, Reidun

    2012-02-01

    In the development of a clinical program for ambulant adults with cerebral palsy (CP), we investigated the validity of joint angles measured from sagittal video recordings and explored if movements in the transversal plane identified with three-dimensional gait analysis (3DGA) affected the validity of sagittal video joint angle measurements. Ten observers, and 10 persons with spastic CP (19-63 years), Gross Motor Function Classification System I-II, participated in the study. Concurrent criterion validity between video joint angle measurements and 3DGA was assessed by Bland-Altman plots with mean differences and 95% limits of agreement (LoA). Pearson's correlation coefficients (r) and scatter plots were used supplementary. Transversal kinematics ≥2 SD from our reference band were defined as increased movement in the transversal plane. The overall mean differences in degrees between joint angles measured by 3DGA and video recordings (3°, 5° and -7° for the hip, knee and ankle respectively) and corresponding LoA (18°, 10° and 15° for the hip, knee and ankle, respectively) demonstrated substantial discrepancies between the two methods. The correlations ranged from low (r=0.39) to moderate (r=0.68). Discrepancy between the two measurements was seen both among persons with and without the presence of deviating transversal kinematics. Quantifying lower limb joint angles from sagittal video recordings in ambulant adults with spastic CP demonstrated low validity, and should be conducted with caution. This gives implications for selecting evaluation method of gait. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Lumbar Corsets Can Decrease Lumbar Motion in Golf Swing

    PubMed Central

    Hashimoto, Koji; Miyamoto, Kei; Yanagawa, Takashi; Hattori, Ryo; Aoki, Takaaki; Matsuoka, Toshio; Ohno, Takatoshi; Shimizu, Katsuji

    2013-01-01

    Swinging a golf club includes the rotation and extension of the lumbar spine. Golf-related low back pain has been associated with degeneration of the lumbar facet and intervertebral discs, and with spondylolysis. Reflective markers were placed directly onto the skin of 11young male amateur golfers without a previous history of back pain. Using a VICON system (Oxford Metrics, U.K.), full golf swings were monitored without a corset (WOC), with a soft corset (SC), and with a hard corset (HC), with each subject taking 3 swings. Changes in the angle between the pelvis and the thorax (maximum range of motion and angular velocity) in 3 dimensions (lumbar rotation, flexion-extension, and lateral tilt) were analyzed, as was rotation of the hip joint. Peak changes in lumbar extension and rotation occurred just after impact with the ball. The extension angle of the lumbar spine at finish was significantly lower under SC (38°) or HC (28°) than under WOC (44°) conditions (p < 0.05). The maximum angular velocity after impact was significantly smaller under HC (94°/sec) than under SC (177°/sec) and WOC (191° /sec) conditions, as were the lumbar rotation angles at top and finish. In contrast, right hip rotation angles at top showed a compensatory increase under HC conditions. Wearing a lumbar corset while swinging a golf club can effectively decrease lumbar extension and rotation angles from impact until the end of the swing. These effects were significantly enhanced while wearing an HC. Key points Rotational and extension forces on the lumbar spine may cause golf-related low back pain Wearing lumbar corsets during a golf swing can effectively decrease lumbar extension and rotation angles and angular velocity. Wearing lumbar corsets increased the rotational motion of the hip joint while reducing the rotation of the lumbar spine. PMID:24149729

  3. Lumbar corsets can decrease lumbar motion in golf swing.

    PubMed

    Hashimoto, Koji; Miyamoto, Kei; Yanagawa, Takashi; Hattori, Ryo; Aoki, Takaaki; Matsuoka, Toshio; Ohno, Takatoshi; Shimizu, Katsuji

    2013-01-01

    Swinging a golf club includes the rotation and extension of the lumbar spine. Golf-related low back pain has been associated with degeneration of the lumbar facet and intervertebral discs, and with spondylolysis. Reflective markers were placed directly onto the skin of 11young male amateur golfers without a previous history of back pain. Using a VICON system (Oxford Metrics, U.K.), full golf swings were monitored without a corset (WOC), with a soft corset (SC), and with a hard corset (HC), with each subject taking 3 swings. Changes in the angle between the pelvis and the thorax (maximum range of motion and angular velocity) in 3 dimensions (lumbar rotation, flexion-extension, and lateral tilt) were analyzed, as was rotation of the hip joint. Peak changes in lumbar extension and rotation occurred just after impact with the ball. The extension angle of the lumbar spine at finish was significantly lower under SC (38°) or HC (28°) than under WOC (44°) conditions (p < 0.05). The maximum angular velocity after impact was significantly smaller under HC (94°/sec) than under SC (177°/sec) and WOC (191° /sec) conditions, as were the lumbar rotation angles at top and finish. In contrast, right hip rotation angles at top showed a compensatory increase under HC conditions. Wearing a lumbar corset while swinging a golf club can effectively decrease lumbar extension and rotation angles from impact until the end of the swing. These effects were significantly enhanced while wearing an HC. Key pointsRotational and extension forces on the lumbar spine may cause golf-related low back painWearing lumbar corsets during a golf swing can effectively decrease lumbar extension and rotation angles and angular velocity.Wearing lumbar corsets increased the rotational motion of the hip joint while reducing the rotation of the lumbar spine.

  4. Relationships among spinal mobility and sagittal alignment of spine and lower extremity to quality of life and risk of falls.

    PubMed

    Ishikawa, Yoshinori; Miyakoshi, Naohisa; Hongo, Michio; Kasukawa, Yuji; Kudo, Daisuke; Shimada, Yoichi

    2017-03-01

    Spinal deformities can affect quality of life (QOL) and risk of falling, but no studies have explored the relationships of spinal mobility and sagittal alignment of spine and the lower extremities simultaneously. Purpose of this study is to clarify the relationship of those postural parameters to QOL and risk of falling. The study evaluated 110 subjects (41 men, 69 women; mean age, 73 years). Upright and flexion and extension angles for thoracic kyphosis, lumbar lordosis, and spinal inclination were evaluated with SpinalMouse ® . Total-body inclination and hip and knee flexion angles in upright position were measured from lateral photographs. Subjects were divided into Fallers (n=23, 21%) and Non-fallers (n=87, 79%) based on past history of falls. QOL was assessed using the Short Form 36 Health Survey (SF-36 ® ). Age, total-body inclination, spinal inclination upright and in extension, thoracic kyphosis in flexion, lumbar lordosis upright and in extension, and knee flexion correlated significantly with the SF-36. Multiple regression analysis revealed total-body inclination and knee flexion to have the most significant relationships with the SF-36. SF-36, total-body inclination, spinal inclination in extension, thoracic kyphosis in flexion, lumbar lordosis upright and in extension, and hip and knee flexion angles differed significantly between Fallers and Non-fallers (P<0.05 for all). Multivariate logistic regression analyses revealed lumbar lordosis in extension to be a significant predictor of falling (P=0.038). Forward-stooped posture and knee-flexion deformity could be important indicator of lower QOL. Moreover, limited extension in the lumbar spine could be a useful screening examination for fall prevention in the elderly. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. A gait retraining system using augmented-reality to modify footprint parameters: Effects on lower-limb sagittal-plane kinematics.

    PubMed

    Bennour, Sami; Ulrich, Baptiste; Legrand, Thomas; Jolles, Brigitte M; Favre, Julien

    2018-01-03

    Improving lower-limb flexion/extension angles during walking is important for the treatment of numerous pathologies. Currently, these gait retraining procedures are mostly qualitative, often based on visual assessment and oral instructions. This study aimed to propose an alternative method combining motion capture and display of target footprints on the floor. The second objectives were to determine the error in footprint modifications and the effects of footprint modifications on lower-limb flexion/extension angles. An augmented-reality system made of an optoelectronic motion capture device and video projectors displaying target footprints on the floor was designed. 10 young healthy subjects performed a series of 27 trials, consisting of increased and decreased amplitudes in stride length, step width and foot progression angle. 11 standard features were used to describe and compare lower-limb flexion/extension angles among footprint modifications. Subjects became accustomed to walk on target footprints in less than 10 min, with mean (± SD) precision of 0.020 ± 0.002 m in stride length, 0.022 ± 0.006 m in step width, and 2.7 ± 0.6° in progression angle. Modifying stride length had significant effects on 3/3 hip, 2/4 knee and 4/4 ankle features. Similarly, step width and progression angle modifications affected 2/3 and 1/3 hip, 2/4 and 1/4 knee as well as 3/4 and 2/4 ankle features, respectively. In conclusion, this study introduced an augmented-reality method allowing healthy subjects to modify their footprint parameters rapidly and precisely. Walking with modified footprints changed lower-limb sagittal-plane kinematics. Further research is needed to design rehabilitation protocols for specific pathologies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. [Clinical outcomes of single-level lumbar spondylolisthesis by minimally invasive transforaminal lumbar interbody fusion with bilateral tubular channels].

    PubMed

    Zeng, Z L; Jia, L; Yu, Y; Xu, W; Hu, X; Zhan, X H; Jia, Y W; Wang, J J; Cheng, L M

    2017-04-01

    Objective: To evaluate the clinical effectiveness of minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) for single-level lumbar spondylolisthesis treatment with bilateral Spotlight tubular channels. Methods: A total of 21 patients with lumbar spondylolisthesis whom underwent MIS-TLIF via bilateral Spotlight tubular channels were retrospectively analyzed from October 2014 to November 2015. The 21 patients included 11 males and 10 females ranged from 35 to 82 years (average aged 60.7 years). In term of spondylolisthesis category, there were 18 cases of degenerative spondylolisthesis and 3 cases of isthmic spondylolisthesis. With respect to spondylolisthesis degree, 17 cases were grade Ⅰ° and 4 cases were grade Ⅱ°. Besides, 17 cases at L(4-5) and 4 cases at L(5)-S(1)were categorized by spondylolisthesis levels. Operation duration, blood loss, postoperative drainage and intraoperative exposure time were recorded, functional improvement was defined as an improvement in the Oswestry Disability Index (ODI), Visual Analog Scale (VAS) was also employed at pre and post-operation (3 months and the last follow-up), to evaluate low back and leg pain. Furthermore, to evaluate the recovery of the intervertebral foramen and of lumbar sagittal curvature, average height of intervertebral space, Cobb angles of lumbar vertebrae and operative segments, spondylolisthesis index were measured. At the last follow-up, intervertebral fusion was assessed using Siepe evaluation criteria and the clinical outcome was assessed using the MacNab scale. Radiographic and functional outcomes were compared pre- and post-operation using the paired T test to determine the effectiveness of MIS-TLIF. Statistical significance was defined as P <0.05. Results: All patients underwent a successful MIS-TLIF surgery. The operation time (235.2±30.2) mins, intraoperative blood loss (238.1±130.3) ml, postoperative drainage (95.7±57.1) ml and intraoperative radiation exposure (47.1±8

  7. Standing sagittal alignment of the whole axial skeleton with reference to the gravity line in humans.

    PubMed

    Hasegawa, Kazuhiro; Okamoto, Masashi; Hatsushikano, Shun; Shimoda, Haruka; Ono, Masatoshi; Homma, Takao; Watanabe, Kei

    2017-05-01

    Human beings stand upright with the chain of balance beginning at the feet, progressing to the lower limbs (ankles, knees, hip joints, pelvis), each of the spinal segments, and then ending at the cranium to achieve horizontal gaze and balance using minimum muscle activity. The details of the alignment and balance of the chain, however, are not clearly understood, due to the lack of information regarding the three-dimensional (3D) orientation of all bony elements in relation to the gravity line (GL). We performed a clinical study to clarify the standing sagittal alignment of whole axial skeletons in reference to the GL using the EOS slot-scanning 3D X-ray imaging system with simultaneous force plate measurement in a healthy human population. The GL was defined as a vertical line drawn through the centre of vertical pressure measured by the force plate. The present study yielded a complete set of physiological alignment measurements of the standing axial skeleton from the database of 136 healthy subjects (a mean age of 39.7 years, 20-69 years; men: 40, women: 96). The mean offset of centre of the acoustic meati from the GL was 0.0 cm. The offset of the cervical and thoracic vertebrae was posterior to the GL with the apex of thoracic kyphosis at T7, 5.0 cm posterior to the GL. The sagittal alignment changed to lordosis at the level of L2. The apex of the lumbar lordosis was L4, 0.6 cm anterior to the GL, and the centre of the base of the sacrum (CBS) was just posterior to the GL. The hip axis (HA) was 1.4 cm anterior to the GL. The knee joint was 2.4 cm posterior and the ankle joint was 4.8 cm posterior to the GL. L4-, L5- and the CBS-offset in subjects in the age decades of 40s, 50s and 60s were significantly posterior to those of subjects in their 20s. The L5- and CBS-offset in subjects in their 50s and 60s were also significantly posterior to those in subjects in their 30s. HA was never posterior to the GL. In the global alignment, there was a positive correlation

  8. The relationships between low back pain and lumbar lordosis: a systematic review and meta-analysis.

    PubMed

    Chun, Se-Woong; Lim, Chai-Young; Kim, Keewon; Hwang, Jinseub; Chung, Sun G

    2017-08-01

    Clinicians regard lumbar lordotic curvature (LLC) with respect to low back pain (LBP) in a contradictory fashion. The time-honored point of view is that LLC itself, or its increment, causes LBP. On the other hand, recently, the biomechanical role of LLC has been emphasized, and loss of lordosis is considered a possible cause of LBP. The relationship between LLC and LBP has immense clinical significance, because it serves as the basis of therapeutic exercises for treating and preventing LBP. This study aimed to (1) determine the difference in LLC in those with and without LBP and (2) investigate confounding factors that might affect the association between LLC and LBP. Systematic review and meta-analysis. The inclusion criteria consisted of observational studies that included information on lumbar lordotic angle (LLA) assessed by radiological image, in both patients with LBP and healthy controls. Studies solely involving pediatric populations, or addressing spinal conditions of nondegenerative causes, were excluded. A systematic electronic search of Medline, Embase, Cochrane Library, CINAHL, Scopus, PEDro, and Web of Science using terms related to lumbar alignment and Boolean logic was performed: (lumbar lordo*) or (lumbar alignment) or (sagittal alignment) or (sagittal balance). Standardized mean differences (SMD) and 95% confidence intervals (CI) were estimated, and chi-square and I 2 statistics were used to assess within-group heterogeneity by random effects model. Additionally, the age and gender of participants, spinal disease entity, and the severity and duration of LBP were evaluated as possible confounding factors. A total of 13 studies consisting of 796 patients with LBP and 927 healthy controls were identified. Overall, patients with LBP tended to have smaller LLA than healthy controls. However, the studies were heterogeneous. In the meta-regression analysis, the factors of age, severity of LBP, and spinal disease entity were revealed to contribute

  9. Verification of an optimized stimulation point on the abdominal wall for transcutaneous neuromuscular electrical stimulation for activation of deep lumbar stabilizing muscles.

    PubMed

    Baek, Seung Ok; Cho, Hee Kyung; Jung, Gil Su; Son, Su Min; Cho, Yun Woo; Ahn, Sang Ho

    2014-09-01

    Transcutaneous neuromuscular electrical stimulation (NMES) can stimulate contractions in deep lumbar stabilizing muscles. An optimal protocol has not been devised for the activation of these muscles by NMES, and information is lacking regarding an optimal stimulation point on the abdominal wall. The goal was to determine a single optimized stimulation point on the abdominal wall for transcutaneous NMES for the activation of deep lumbar stabilizing muscles. Ultrasound images of the spinal stabilizing muscles were captured during NMES at three sites on the lateral abdominal wall. After an optimal location for the placement of the electrodes was determined, changes in the thickness of the lumbar multifidus (LM) were measured during NMES. Three stimulation points were investigated using 20 healthy physically active male volunteers. A reference point R, 1 cm superior to the iliac crest along the midaxillary line, was used. Three study points were used: stimulation point S1 was located 2 cm superior and 2 cm medial to the anterior superior iliac spine, stimulation point S3 was 2 cm below the lowest rib along the same sagittal plane as S1, and stimulation point S2 was midway between S1 and S3. Sessions were conducted stimulating at S1, S2, or S3 using R for reference. Real-time ultrasound imaging (RUSI) of the abdominal muscles was captured during each stimulation session. In addition, RUSI images were captured of the LM during stimulation at S1. Thickness, as measured by RUSI, of the transverse abdominis (TrA), obliquus internus, and obliquus externus was greater during NMES than at rest for all three study points (p<.05). Transverse abdominis was significantly stimulated more by NMES at S1 than at the other points (p<.05). The LM thickness was also significantly greater during NMES at S1 than at rest (p<.05). Neuromuscular electrical stimulation at S1 optimally activated deep spinal stabilizing muscles, TrA and LM, as evidenced by RUSI. The authors recommend this

  10. Effects of mid-foot contact area ratio on lower body kinetics/kinematics in sagittal plane during stair descent in women.

    PubMed

    Lee, Jinkyu; Hong, Yoon No Gregory; Shin, Choongsoo S

    2016-07-01

    The mid-foot contact area relative to the total foot contact area can facilitate foot arch structure evaluation. A stair descent motion consistently provides initial fore-foot contact and utilizes the foot arch more actively for energy absorption. The purpose of this study was to compare ankle and knee joint angle, moment, and work in sagittal plane during stair descending between low and high Mid-Foot-Contact-Area (MFCA) ratio group. The twenty-two female subjects were tested and classified into two groups (high MFCA and low MFCA) using their static MFCA ratios. The ground reaction force (GRF) and kinematics of ankle and knee joints were measured while stair descending. During the period between initial contact and the first peak in vertical GRF (early absorption phase), ankle negative work for the low MFCA ratio group was 33% higher than that for the high MFCA ratio group (p<0.05). However, ankle negative work was not significantly different between the two groups during the period between initial contact and peak dorsiflexion angle (early absorption phase+late absorption phase). The peak ankle dorsiflexion angle was smaller in the low MFCA ratio group (p<0.05). Our results suggest that strategy of energy absorption at the ankle and foot differs depending upon foot arch types classified by MFCA. The low MFCA ratio group seemed to absorb more impact energy using strain in the planar fascia during early absorption phase, whereas the high MFCA ratio group absorbed more impact energy using increased dorsiflexion during late absorption phase. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Three-dimensional primary and coupled range of motions and movement coordination of the pelvis, lumbar and thoracic spine in standing posture using inertial tracking device.

    PubMed

    Narimani, M; Arjmand, N

    2018-03-01

    Evaluation of spinal range of motions (RoMs) and movement coordination between its segments (thorax, lumbar, and pelvis) has clinical and biomechanical implications. Previous studies have not recorded three-dimensional primary/coupled motions of all spinal segments simultaneously. Moreover, magnitude/direction of the coupled motions of the thorax/pelvis in standing posture and lumbopelvic rhythms in the frontal/transverse planes have not been investigated. This study, hence, used an inertial tracking device to measure T1, T5, T12, total (T1-T12) thoracic, lower (T5-T12) and upper (T1-T5) thoracic, lumbar (T12-S1), and pelvis primary and coupled RoMs as well as their movement coordination in all anatomical planes/directions in twenty-two healthy individuals. RoMs were statistically compared between the anatomical planes and spinal segments as well as with available data in the literature. The spine had different primary RoMs in different planes/directions (flexion: lumbar: 55.4 ± 12.4°, pelvis: 42.8 ± 21.6°, and T1-T12 thoracic: 19.9 ± 6.4°, extension: lumbar: 23.4 ± 10.1°, thoracic: 11.7 ± 3.4°, and pelvis: 10.2 ± 6.4°, left/right lateral bending: thoracic: 24.5 ± 7.4°/26.5 ± 6.1°, lumbar: 16.4 ± 7.2°/18.3 ± 5.7°, and pelvis: 11.0 ± 4.4°/9.3 ± 6.2°, and left/right axial rotation: thoracic: 33.5 ± 10.0°/37.1 ± 11.7°, pelvis: 31.6 ± 12.5°/27.2 ± 12.0° and lumbar: 7.5 ± 4.5°/9.2 ± 7.3°). Pelvis, lumbar and thoracic spine had different/varying contributions/rhythms to generate total trunk (T1) movement, both within and between planes. Pattern of the coupled motions was inconsistent between subjects but side bending was generally associated with twisting to the same side at the thoracic spine and to the opposite side at the lumbar spine. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. FIBRE AND INTEGRATED OPTICS. OPTICAL PROCESSING OF INFORMATION: Intrafibre rotation of the plane of polarisation

    NASA Astrophysics Data System (ADS)

    Zel'dovich, Boris Ya; Kundikova, N. D.

    1995-02-01

    Rotation of the plane of polarisation during propagation of sagittal rays in a rectilinear multimode fibre was observed experimentally. The angle of rotation was in good agreement with the results predicted on the basis of the Rytov—Vladimirskii—Berry theory.

  13. Position Between Trunk and Pelvis During Gait Depending on the Gross Motor Function Classification System.

    PubMed

    Sanz-Mengibar, Jose Manuel; Altschuck, Natalie; Sanchez-de-Muniain, Paloma; Bauer, Christian; Santonja-Medina, Fernando

    2017-04-01

    To understand whether there is a trunk postural control threshold in the sagittal plane for the transition between the Gross Motor Function Classification System (GMFCS) levels measured with 3-dimensional gait analysis. Kinematics from 97 children with spastic bilateral cerebral palsy from spine angles according to Plug-In Gait model (Vicon) were plotted relative to their GMFCS level. Only average and minimum values of the lumbar spine segment correlated with GMFCS levels. Maximal values at loading response correlated independently with age at all functional levels. Average and minimum values were significant when analyzing age in combination with GMFCS level. There are specific postural control patterns in the average and minimum values for the position between trunk and pelvis in the sagittal plane during gait, for the transition among GMFCS I-III levels. Higher classifications of gross motor skills correlate with more extended spine angles.

  14. Sagittal Plane Correction Using the Lateral Transpsoas Approach: A Biomechanical Study on the Effect of Cage Angle and Surgical Technique on Segmental Lordosis.

    PubMed

    Melikian, Rojeh; Yoon, Sangwook Tim; Kim, Jin Young; Park, Kun Young; Yoon, Caroline; Hutton, William

    2016-09-01

    Cadaveric biomechanical study. To determine the degree of segmental correction that can be achieved through lateral transpsoas approach by varying cage angle and adding anterior longitudinal ligament (ALL) release and posterior element resection. Lordotic cage insertion through the lateral transpsoas approach is being used increasingly for restoration of sagittal alignment. However, the degree of correction achieved by varying cage angle and ALL release and posterior element resection is not well defined. Thirteen lumbar motion segments between L1 and L5 were dissected into single motion segments. Segmental angles and disk heights were measured under both 50 N and 500 N compressive loads under the following conditions: intact specimen, discectomy (collapsed disk simulation), insertion of parallel cage, 10° cage, 30° cage with ALL release, 30° cage with ALL release and spinous process (SP) resection, 30° cage with ALL release, SP resection, facetectomy, and compression with pedicle screws. Segmental lordosis was not increased by either parallel or 10° cages as compared with intact disks, and contributed small amounts of lordosis when compared with the collapsed disk condition. Placement of 30° cages with ALL release increased segmental lordosis by 10.5°. Adding SP resection increased lordosis to 12.4°. Facetectomy and compression with pedicle screws further increased lordosis to approximately 26°. No interventions resulted in a decrease in either anterior or posterior disk height. Insertion of a parallel or 10° cage has little effect on lordosis. A 30° cage insertion with ALL release resulted in a modest increase in lordosis (10.5°). The addition of SP resection and facetectomy was needed to obtain a larger amount of correction (26°). None of the cages, including the 30° lordotic cage, caused a decrease in posterior disk height suggesting hyperlordotic cages do not cause foraminal stenosis. N/A.

  15. [Plain radiographs of the spine: static and relationships between spine and pelvis].

    PubMed

    Morvan, G; Wybier, M; Mathieu, P; Vuillemin, V; Guerini, H

    2008-05-01

    Man, with his erect posture, evolves in a world subject to the laws of gravity. His spine reflects these constraints. The morphology and static of human spine and biomechanical relationships between spine and pelvis are in direct relation with bipedia. Owing to this position the pelvis widened and straightened, characteristic sagittal spinal curves appeared and the perispinal muscles were deeply reorganized. Each pelvis is characterized by an important anatomical landmark: the pelvic incidence that reflects the sagittal morphology of the pelvis. Based on this anatomical characteristic, a chain of reactions determines the more efficient equilibrium of the whole body in the sagittal plane in term of energy consumption. Incidence affects the sacral slope, which determines lumbar lordosis, which itself influences pelvic tilt, thoracic kyphosis, and even hip and knee position. All these landmarks can easily be studied on a sagittal radiograph. Knowledge of these functional relationships is essential to understand the origin of low back pain, sagittal imbalance and above all before surgical treatment of spine disorders especially when arthrodesis is considered.

  16. Restoration of Lumbar Lordosis in Flat Back Deformity: Optimal Degree of Correction

    PubMed Central

    Kim, Ki-Tack; Lee, Sang-Hun; Kim, Hyo-Jong; Kim, Jung-Youn; Lee, Jung-Hee

    2015-01-01

    Study Design A retrospective comparative study. Purpose To provide an ideal correction angle of lumbar lordosis (LL) in degenerative flat back deformity. Overview of Literature The degree of correction in degenerative flat back in relation to pelvic incidence (PI) remains controversial. Methods Forty-nine patients with flat back deformity who underwent corrective surgery were enrolled. Posterior-anterior-posterior sequential operation was performed. Mean age and mean follow-up period was 65.6 years and 24.2 months, respectively. We divided the patients into two groups based on immediate postoperative radiographs-optimal correction (OC) group (PI-9°≤LLsagittal alignment (sagittal vertical axis<5 cm), as compared to patients in UC group (p<0.05). LL of low PI group significantly maintained within 9° better than high PI group (p<0.05). Oswestry disability index (ODI) significantly decreased at last follow-up, as compared to preoperative state. However, there was no significant difference in last follow-up ODI between the groups. Conclusions In flat back deformity, correction of LL to within 9° of PI will result in better sagittal balance. Thus, we recommend sufficient LL to prevent correction loss, especially in patients with high PI. PMID:26097650

  17. Correction of antebrachial angulation-rotation deformities in dogs with oblique plane inclined osteotomies.

    PubMed

    Franklin, Samuel P; Dover, Ryan K; Andrade, Natalia; Rosselli, Desiree; M Clarke, Kevin

    2017-11-01

    To describe oblique plane inclined osteotomies and report preliminary data on outcomes in dogs treated for antebrachial angulation-rotation deformities. Retrospective clinical study. Six antebrachii from 5 dogs. Records of dogs with antebrachial angulation-rotation deformities treated with oblique plane inclined osteotomies were reviewed. Postoperative frontal, sagittal, and transverse plane alignments were assessed subjectively, and alignment in the frontal and sagittal planes was quantified on radiographs. Outcomes were classified based on owner's and veterinarian's evaluation as full, acceptable, and unacceptable function. Complications were classified as minor, major, or catastrophic. Limb alignment was subjectively considered excellent in 1 case, good in 3 cases, and fair in 2 cases. Osseous union was achieved in all cases (mean 10.5 weeks; range, 6-13 weeks). Outcomes were assessed by the veterinarian as return to full function in 5 cases and acceptable function in 1 case at the final in-hospital follow-up (mean 44 weeks; range, 6-124 weeks). All owners classified their dogs as returning to full function at the final phone/email interview (mean 107 weeks; range, 72-153 weeks). Implants were removed due to infection or irritation in 3/6 limbs, while the other 3 limbs had minor dermatitis secondary to postoperative external coaptation. No catastrophic complications occurred. Oblique plane inclined osteotomies led to a successful outcome in all 6 limbs, but the technique can be challenging and does not always lead to optimal alignment. Future refinement of this technique could focus on the development of patient-specific osteotomy guides to improve accuracy and precision. © 2017 The American College of Veterinary Surgeons.

  18. [Lumbar spondylosis].

    PubMed

    Seichi, Atsushi

    2014-10-01

    Lumbar spondylosis is a chronic, noninflammatory disease caused by degeneration of lumbar disc and/or facet joints. The etiology of lumbar spondylosis is multifactorial. Patients with lumbar spondylosis complain of a broad variety of symptoms including discomfort in the low back lesion, whereas some of them have radiating leg pain or neurologenic intermittent claudication (lumbar spinal stenosis). The majority of patients with spondylosis and stenosis of the lumbosacral spine can be treated nonsurgically. Nonsteroidal anti-inflammatory drugs and COX-2 inhibitors are helpful in controlling symptoms. Prostaglandin, epidural injection, and transforaminal injection are also helpful for leg pain and intermittent claudication. Operative therapy for spinal stenosis or spondylolisthesis is reserved for patients who are totally incapacitated by their condition.

  19. Biomechanical evaluation of sagittal maxillary internal distraction osteogenesis in unilateral cleft lip and palate patient and noncleft patients: a three-dimensional finite element analysis.

    PubMed

    Olmez, Sultan; Dogan, Servet; Pekedis, Mahmut; Yildiz, Hasan

    2014-09-01

    To compare the pattern and amount of stress and displacement during maxillary sagittal distraction osteogenesis (DO) between a patient with unilateral cleft lip and palate (UCLP) and a noncleft patient. Three-dimensional finite element models for both skulls were constructed. Displacements of the surface landmarks and stress distributions in the circummaxillary sutures were analyzed after an anterior displacement of 6 mm was loaded to the elements where the inferior plates of the distractor were assumed to be fixed and were below the Le Fort I osteotomy line. In sagittal plane, more forward movement was found on the noncleft side in the UCLP model (-6.401 mm on cleft side and -6.651 mm on noncleft side for the central incisor region). However, similar amounts of forward movement were seen in the control model. In the vertical plane, a clockwise rotation occurred in the UCLP model, whereas a counterclockwise rotation was seen in the control model. The mathematical UCLP model also showed higher stress values on the sutura nasomaxillaris, frontonasalis, and zygomatiomaxillaris on the cleft side than on the normal side. Not only did the sagittal distraction forces produce advancement forces at the intermaxillary sutures, but more stress was also present on the sutura nasomaxillaris, sutura frontonasalis, and sutura zygomaticomaxillaris on the cleft side than on the noncleft side.

  20. Assessment of Lumbar Lordosis and Lumbar Core Strength in Information Technology Professionals.

    PubMed

    Mehta, Roma Satish; Nagrale, Sanket; Dabadghav, Rachana; Rairikar, Savita; Shayam, Ashok; Sancheti, Parag

    2016-06-01

    Observational study. To correlate lumbar lordosis and lumbar core strength in information technology (IT) professionals. IT professionals have to work for long hours in a sitting position, which can affect lumbar lordosis and lumbar core strength. Flexicurve was used to assess the lumbar lordosis, and pressure biofeedback was used to assess the lumbar core strength in the IT professionals. All subjects, both male and female, with and without complaint of low back pain and working for two or more years were included, and subjects with a history of spinal surgery or spinal deformity were excluded from the study. Analysis was done using Pearson's correlation. For the IT workers, no correlation was seen between lumbar lordosis and lumbar core strength (r=-0.04); however, a weak negative correlation was seen in IT people who complained of pain (r=-0.12), while there was no correlation of lumbar lordosis and lumbar core in IT people who had no complains of pain (r=0.007). The study shows that there is no correlation of lumbar lordosis and lumbar core strength in IT professionals, but a weak negative correlation was seen in IT people who complained of pain.

  1. Delayed lymphocele formation following lateral lumbar interbody fusion of the spine.

    PubMed

    Hey, Hwee Weng Dennis; Wong, Keng Lin; Gatam, Asrafi Rizki; Lim, Joel Louis; Wong, Hee-Kit

    2017-05-01

    This paper aims to describe the rare post-operative complication of a lymphocele formation after lateral lumbar interbody fusion. The patient in this case was a 76-year-old lady with a 10 year history of low back pain and neurogenic claudication. She had previously underwent multiple spine surgeries for her condition. She presented to our institution for a recurrence of her low back pain and right anterior thigh pain. She then underwent surgery in two stages; first, a mini-open lateral interbody fusion at L3/4 and L4/5; second, posterior instrumentation of T3 to S1 with sagittal spinal deformity correction. The patient recovered uneventfully in the initial post op period and was discharged within 8 days. However, she developed abdominal distension and discomfort 6 months after surgery. MRI and CT scan of her abdomen showed a retroperitoneal fluid collection compressing her left ureter, resulting in hydroureter and hydronephrosis. She was managed with a CT-guided drainage of the fluid collection. Fluid analysis was consistent with a lymphocele. Since the procedure, the patient has been asymptomatic for 2 years. Delayed lymphocele formation is a potential complication of lateral lumbar interbody fusion. When present, it can be managed conservatively with good results. This case suggests that surgeons should have a low threshold to investigate for a lymphocele development post-anterior or lateral lumbar spine surgery. The authors recommend the placement of a post surgical retroperitoneal drain, as it might assist in the early detection of a lymphocele formation.

  2. Self-Inflicted Drywall Screws in the Sagittal Sinus.

    PubMed

    Guppy, Kern H; Ochi, Calvin

    2018-02-01

    A 30-year-old right-handed man with a history of schizophrenia presented with 2 self-inflicted drywall screws in the skull. The patient was sleepy but easily arousable; blood tests showed he had taken methamphetamines. Computed tomography and computed tomography angiography of the head showed the frontal screw abutted left of the superior sagittal sinus, and the posterior screw went through the superior sagittal sinus with no extravasation of contrast material at either site. Both screws were removed with exposure of the sagittal sinus using U-shaped craniectomies. There was no bleeding on the removal of the screws. It appears the posterior screw entered between the leaflets of the sagittal sinus dura mater. The patient had returned to work without any sequelae 1 month after injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Oswestry Disability Index is a better indicator of lumbar motion than the Visual Analogue Scale.

    PubMed

    Ruiz, Ferrin K; Bohl, Daniel D; Webb, Matthew L; Russo, Glenn S; Grauer, Jonathan N

    2014-09-01

    Lumbar pathology is often associated with axial pain or neurologic complaints. It is often presumed that such pain is associated with decreased lumbar motion; however, this correlation is not well established. The utility of various outcome measures that are used in both research and clinical practice have been studied, but the connection with range of motion (ROM) has not been well documented. The current study was performed to assess objectively the postulated correlation of lumbar complaints (based on standardized outcome measures) with extremes of lumbar ROM and functional ROM (fROM) with activities of daily living (ADLs) as assessed with an electrogoniometer. This study was a clinical cohort study. Subjects slated to undergo a lumbar intervention (injection, decompression, and/or fusion) were enrolled voluntarily in the study. The two outcome measures used in the study were the Visual Analogue Scale (VAS) for axial extremity, lower extremity, and combined axial and lower extremity, as well as the Oswestry Disability Index (ODI). Pain and disability scores were assessed with the VAS score and ODI. A previously validated electrogoniometer was used to measure ROM (extremes of motion in three planes) and fROM (functional motion during 15 simulated activities of daily living). Pain and disability scores were analyzed for statistically significant association with the motion assessments using linear regression analyses. Twenty-eight men and 39 women were enrolled, with an average age of 55.6 years (range, 18-79 years). The ODI and VAS were associated positively (p<.001). Combined axial and lower extremity VAS scores were associated with lateral and rotational ROM (p<.05), but not with flexion/extension or any fROM. Similar findings were noted for separately analyzed axial and lower extremity VAS scores. On the other hand, the ODI correlated inversely with ROM in all planes, and fROM in at least one plane for 10 of 15 ADLs (p<.05). Extremes of lumbar motion and

  4. The surgical vascular anatomy of the minimally invasive lateral lumbar interbody approach: a cadaveric and radiographic analysis.

    PubMed

    Alkadhim, Mustafa; Zoccali, Carmine; Abbasifard, Salman; Avila, Mauricio J; Patel, Apar S; Sattarov, Kamran; Walter, Christina M; Baaj, Ali A

    2015-11-01

    The minimally invasive (MI) lateral lumbar interbody fusion (LLIF) approach has become increasingly popular for the treatment of degenerative lumbar spine disease. The neural anatomy of the lumbar plexus has been studied; however, the pertinent surgical vascular anatomy has not been examined in detail. The goal of this study is to examine the vascular structures that are relevant in relation to the MI-LLIF approach. Anatomic dissection of the lumbar spines and associated vasculature was performed in three embalmed, adult cadavers. Right and left surgeon perspective views during LLIF were for a total of six approaches. During the dissection, all vascular elements were noted and photographed, and anatomical relationships to the vertebral bodies and disc spaces were analyzed. In addition, several axial and sagittal MRI images of the lumbar spine were analyzed to complement the cadaveric analysis. The aorta descends along the left anterior aspect of lumbar vertebra with an average distance of 2.1 cm (range 1.9-2.3 cm) to the center of each intervertebral disc. The vena cava descends along the right anterior aspect of lumbar vertebrates with average distance of 1.4 cm (range 1.3-1.6 cm) to the center of the intervertebral disc. Each vertebral body has two lumbar arteries (direct branches from the aorta); one exits to the left and one to the right side of the vertebral body. The lumbar arteries pass underneath the sympathetic trunk, run in the superior margin of the vertebral body and extend all the way across it, with average length of 3.8 cm (range 2.5-5 cm). The mean distance between the arteries and the inferior plate of the superior disc space is 4.2 mm (range 2-5 mm) and mean distance of 3.1 cm (range 2.8-3.8 cm) between two arteries in adjacent vertebrae. One of the cadavers had an expected normal anatomical variation where the left arteries at L3-L4 anastomosed dorsally of the vertebral bodies at the middle of the intervertebral disc. Understanding the vascular

  5. Long-term Clinical and Radiographic Outcomes of Pedicle Subtraction Osteotomy for Fixed Sagittal Imbalance: Does Level of Proximal Fusion Affect the Outcome? Minimum 5-Year Follow-up.

    PubMed

    Yagi, Mitsuru; King, Akilah B; Cunningham, Matthew E; Boachie-Adjei, Oheneba

    2013-03-01

    Retrospective case series of surgically treated adult patients with fixed sagittal imbalance. To assess clinical and radiographic changes after pedicle subtraction osteotomy (PSO) to treat adult fixed sagittal imbalance. Although recent reports have shown favorable clinical outcomes for PSO, few reports have published long-term follow-up outcomes. It is also unknown whether long-term outcomes are correlated with the level of proximal fusion and the radiographic changes that are observed after PSO. We reviewed the charts, X-rays, and postoperative SRS-22 and Oswestry Disability Index (ODI) scores of 32 adult patients who presented with fixed sagittal imbalance and were treated with lumbar PSO. Long fusions were defined as those proximal to T6, and short fusions were defined as those below T8. Measured radiographic parameters included thoracic kyphosis, lumbar lordosis (LL), sacral slope, pelvic incidence, and sagittal balance (SVA). Statistical analysis included Student t test and chi-square test. A p value of < .05 and a confidence interval of 95% were considered statistically significant. Among the reviewed cases were 23 women and 9 men, with a mean age of 50.9 years (range, 33-76 years) and a mean follow-up 8.6 years (range, 5-16 years). The LL increased from -16.0° preoperatively to -52.1° postoperatively. This metric decreased to -51.0° at final follow-up. The SVA decreased from 10.4 cm preoperatively to 3.6 cm postoperatively. The SVA increased to 5.4 cm at the final follow-up visit. There were 17 long fusions and 15 short fusions. The SRS scores at the final follow-up time point were: total, 3.63; function, 3.59; pain, 3.68; self-image, 3.46; mental health, 3.56; satisfaction, 4.26. A total of 16 patients exhibited minimal disability, 11 exhibited moderate disability, and 2 exhibited severe disability in ODI scores at the final follow-up visit (average, 28.2%). The SRS and ODI scores were not significantly different between groups (p = .64 for SRS; p = .59

  6. Localizing Circuits of Atrial Macro-Reentry Using ECG Planes of Coherent Atrial Activation

    PubMed Central

    Kahn, Andrew M.; Krummen, David E.; Feld, Gregory K.; Narayan, Sanjiv M.

    2007-01-01

    Background The complexity of ablation for atrial macro-reentry (AFL) varies significantly depending upon the circuit location. Presently, surface ECG analysis poorly separates left from right atypical AFL and from some cases of typical AFL, delaying diagnosis until invasive study. Objective To differentiate and localize the intra-atrial circuits of left atypical AFL, right atypical, and typical AFL using quantitative ECG analysis. Methods We studied 66 patients (54 M, age 59±14 years) with typical (n=35), reverse typical (n=4) and atypical (n=27) AFL. For each, we generated filtered atrial waveforms from ECG leads V5 (X-axis), aVF (Y) and V1 (Z) by correlating a 120 ms F-wave sample to successive ECG regions. Atrial spatial loops were plotted for 3 orthogonal planes (frontal, XY=V5/aVF; sagittal, YZ=aVF/V1; axial, XZ=V5/V1), then cross-correlated to measure spatial regularity (‘coherence’: range −1 to 1). Results Mean coherence was greatest in the XY plane (p<10−3 vs XZ or YZ). Atypical AFL showed lower coherence than typical AFL in XY (p<10−3), YZ (p<10−6) and XZ (p<10−5) planes. Atypical left AFL could be separated from atypical right AFL by lower XY coherence (p=0.02); for this plane coherence < 0.69 detected atypical left AFL with 84% specificity and 75% sensitivity. F-wave amplitude did not separate typical, atypical right or atypical left AFL (p=NS). Conclusions Atypical AFL shows lower spatial coherence than typical AFL, particularly in sagittal and axial planes. Coherence in the Cartesian frontal plane separated left and right atypical AFL. Such analyses may be used to plan ablation strategy from the bedside. PMID:17399632

  7. Effect of Off-Axis Fluoroscopy Imaging on Two-Dimensional Kinematics in the Lumbar Spine: A Dynamic In Vitro Validation Study

    PubMed Central

    Zhao, Kristin D.; Ben-Abraham, Ephraim I.; Magnuson, Dixon J.; Camp, Jon J.; Berglund, Lawrence J.; An, Kai-Nan; Bronfort, Gert; Gay, Ralph E.

    2016-01-01

    Spine intersegmental motion parameters and the resultant regional patterns may be useful for biomechanical classification of low back pain (LBP) as well as assessing the appropriate intervention strategy. Because of its availability and reasonable cost, two-dimensional (2D) fluoroscopy has great potential as a diagnostic and evaluative tool. However, the technique of quantifying intervertebral motion in the lumbar spine must be validated, and the sensitivity assessed. The purpose of this investigation was to (1) compare synchronous fluoroscopic and optoelectronic measures of intervertebral rotations during dynamic flexion–extension movements in vitro and (2) assess the effect of C-arm rotation to simulate off-axis patient alignment on intervertebral kinematics measures. Six cadaveric lumbar–sacrum specimens were dissected, and active marker optoelectronic sensors were rigidly attached to the bodies of L2–S1. Fluoroscopic sequences and optoelectronic kinematic data (0.15-mm linear, 0.17–0.20 deg rotational, accuracy) were obtained simultaneously. After images were obtained in a true sagittal plane, the image receptor was rotated in 5 deg increments (posterior oblique angulations) from 5 deg to 15 deg. Quantitative motion analysis (qma) software was used to determine the intersegmental rotations from the fluoroscopic images. The mean absolute rotation differences between optoelectronic values and dynamic fluoroscopic values were less than 0.5 deg for all the motion segments at each off-axis fluoroscopic rotation and were not significantly different (P > 0.05) for any of the off-axis rotations of the fluoroscope. Small misalignments of the lumbar spine relative to the fluoroscope did not introduce measurement variation in relative segmental rotations greater than that observed when the spine and fluoroscope were perpendicular to each other, suggesting that fluoroscopic measures of relative segmental rotation during flexion–extension are likely

  8. Shoulder motor performance assessment in the sagittal plane in children with hemiplegia during single joint pointing tasks.

    PubMed

    Formica, Domenico; Petrarca, Maurizio; Rossi, Stefano; Zollo, Loredana; Guglielmelli, Eugenio; Cappa, Paolo

    2014-07-29

    Pointing is a motor task extensively used during daily life activities and it requires complex visuo-motor transformation to select the appropriate movement strategy. The study of invariant characteristics of human movements has led to several theories on how the brain solves the redundancy problem, but the application of these theories on children affected by hemiplegia is limited. This study aims at giving a quantitative assessment of the shoulder motor behaviour in children with hemiplegia during pointing tasks. Eight children with hemiplegia were involved in the study and were asked to perform movements on the sagittal plane with both arms, at low and high speed. Subject movements were recorded using an optoelectronic system; a 4-DOF model of children arm has been developed to calculate kinematic and dynamic variables. A set of evaluation indexes has been extracted in order to quantitatively assess whether and how children modify their motor control strategies when perform movements with the more affected or less affected arm. In low speed movements, no differences can be seen in terms of movement duration and peak velocity between the More Affected arm (MA) and the Less Affected arm (LA), as well as in the main characteristics of movement kinematics and dynamics. As regards fast movements, remarkable differences in terms of strategies of motor control can be observed: while movements with LA did not show any significant difference in Dimensionless Jerk Index (JI) and Dimensionless Torque-change Cost index (TC) between the elevation and lowering phases, suggesting that motor control optimization is similar for movements performed with or against gravity, movements with MA showed a statistically significant increase of both JI and TC during lowering phase. Results suggest the presence of a different control strategy for fast movements in particular during lowering phase. Results suggest that motor control is not able to optimize Jerk and Torque-change cost

  9. The influence of lumbar extensor muscle fatigue on lumbar-pelvic coordination during weightlifting.

    PubMed

    Hu, Boyi; Ning, Xiaopeng

    2015-01-01

    Lumbar muscle fatigue is a potential risk factor for the development of low back pain. In this study, we investigated the influence of lumbar extensor muscle fatigue on lumbar-pelvic coordination patterns during weightlifting. Each of the 15 male subjects performed five repetitions of weightlifting tasks both before and after a lumbar extensor muscle fatiguing protocol. Lumbar muscle electromyography was collected to assess fatigue. Trunk kinematics was recorded to calculate lumbar-pelvic continuous relative phase (CRP) and CRP variability. Results showed that fatigue significantly reduced the average lumbar-pelvic CRP value (from 0.33 to 0.29 rad) during weightlifting. The average CRP variability reduced from 0.17 to 0.15 rad, yet this change ws statistically not significant. Further analyses also discovered elevated spinal loading during weightlifting after the development of lumbar extensor muscle fatigue. Our results suggest that frequently experienced lumbar extensor muscle fatigue should be avoided in an occupational environment. Lumbar extensor muscle fatigue generates more in-phase lumbar-pelvic coordination patterns and elevated spinal loading during lifting. Such increase in spinal loading may indicate higher risk of back injury. Our results suggest that frequently experienced lumbar muscle fatigue should be avoided to reduce the risk of LBP.

  10. Effect of Trunk Sagittal Attitude on Shoulder, Thorax and Pelvis Three-Dimensional Kinematics in Able-Bodied Subjects during Gait

    PubMed Central

    Leardini, Alberto; Berti, Lisa; Begon, Mickaël; Allard, Paul

    2013-01-01

    It has been shown that an original attitude in forward or backward inclination of the trunk is maintained at gait initiation and during locomotion, and that this affects lower limb loading patterns. However, no studies have shown the extent to which shoulder, thorax and pelvis three-dimensional kinematics are modified during gait due to this sagittal inclination attitude. Thirty young healthy volunteers were analyzed during level walking with video-based motion analysis. Reflecting markers were mounted on anatomical landmarks to form a two-marker shoulder line segment, and a four-marker thorax and pelvis segments. Absolute and relative spatial rotations were calculated, for a total of 11 degrees of freedom. The subjects were divided into two groups of 15 according to the median of mean thorax inclination angle over the gait cycle. Preliminary MANOVA analysis assessed whether gender was an independent variable. Then two-factor nested ANOVA was used to test the possible effect of thorax inclination on body segments, planes of motion and gait periods, separately. There was no significant difference in all anthropometric and spatio-temporal parameters between the two groups, except for subject mass. The three-dimensional kinematics of the thorax and pelvis were not affected by gender. Nested ANOVA revealed group effect in all segment rotations apart those at the pelvis, in the sagittal and frontal planes, and at the push-off. Attitudes in sagittal thorax inclination altered trunk segments kinematics during gait. Subjects with a backward thorax showed less thorax-to-pelvis motion, but more shoulder-to-thorax and thorax-to-laboratory motion, less motion in flexion/extension and in lateral bending, and also less motion during push-off. This contributes to the understanding of forward propulsion and sideways load transfer mechanisms, fundamental for the maintenance of balance and the risk of falling. PMID:24204763

  11. Effect of trunk sagittal attitude on shoulder, thorax and pelvis three-dimensional kinematics in able-bodied subjects during gait.

    PubMed

    Leardini, Alberto; Berti, Lisa; Begon, Mickaël; Allard, Paul

    2013-01-01

    It has been shown that an original attitude in forward or backward inclination of the trunk is maintained at gait initiation and during locomotion, and that this affects lower limb loading patterns. However, no studies have shown the extent to which shoulder, thorax and pelvis three-dimensional kinematics are modified during gait due to this sagittal inclination attitude. Thirty young healthy volunteers were analyzed during level walking with video-based motion analysis. Reflecting markers were mounted on anatomical landmarks to form a two-marker shoulder line segment, and a four-marker thorax and pelvis segments. Absolute and relative spatial rotations were calculated, for a total of 11 degrees of freedom. The subjects were divided into two groups of 15 according to the median of mean thorax inclination angle over the gait cycle. Preliminary MANOVA analysis assessed whether gender was an independent variable. Then two-factor nested ANOVA was used to test the possible effect of thorax inclination on body segments, planes of motion and gait periods, separately. There was no significant difference in all anthropometric and spatio-temporal parameters between the two groups, except for subject mass. The three-dimensional kinematics of the thorax and pelvis were not affected by gender. Nested ANOVA revealed group effect in all segment rotations apart those at the pelvis, in the sagittal and frontal planes, and at the push-off. Attitudes in sagittal thorax inclination altered trunk segments kinematics during gait. Subjects with a backward thorax showed less thorax-to-pelvis motion, but more shoulder-to-thorax and thorax-to-laboratory motion, less motion in flexion/extension and in lateral bending, and also less motion during push-off. This contributes to the understanding of forward propulsion and sideways load transfer mechanisms, fundamental for the maintenance of balance and the risk of falling.

  12. Clinical and radiological outcomes of lumbar posterior subtraction osteotomies are correlated to pelvic incidence and FBI index : Prospective series of 63 cases.

    PubMed

    Cogniet, A; Aunoble, S; Rigal, J; Demezon, H; Sadikki, R; Le Huec, J C

    2016-08-01

    Pedicle subtraction osteotomy (PSO) is one of the surgical options for treating alignment disorders of the fused spine (due to post-surgical fusion or related to arthritis). It enables satisfactory sagittal realignment and improved function due to economic sagittal balance. The aim of this study was to analyze clinical and radiological results of PSO after a minimum follow-up of 2 years and demonstrate the benefit of sub-group analysis as a function of pelvic incidence (PI). A descriptive prospective single center study of 63 patients presenting with spinal global malalignment who underwent correction by PSO. Function was assessed by the Oswestry disability index (ODI), a visual analog scale of lumbar pain (VAS) and a SF-36 questionnaire. Radiographic analyses of pre- and post-operative pelvic-spinal parameters were performed on X-rays obtained by EOS(®) imaging after 3D modeling. Global analysis and analysis of sub-groups as a function of pelvic incidence were performed and the full balance integrated index (FBI) was calculated. this series showed a marked clinical improvement and significant progress of functional scores. Global post-operative radiological analysis showed a significant improvement in all pelvic and spinal parameters. The mean correction obtained after PSO was 31.7° ± 8.4°, hence global improvement of lumbar lordosis of 22°. The sagittal vertical angle (SVA) decreased from +9 cm before surgery to +4.3 cm after surgery. Sub-group analysis demonstrated greater improvement in pelvic tilt, sacral slope and spinal parameters of patients with a small or moderate pelvic incidence; all had an FBI index <10°. Most of the pelvic and spinal parameters of patients with a large pelvic incidence were insufficiently corrected and they had an FBI index >10° PSO is a surgical procedure enabling correction of multiplane rigid spinal deformities that require major sagittal correction. It was seen to be highly effective in patients with a small or

  13. Comprehensive Analysis of Mandibular Residual Asymmetry after Bilateral Sagittal Split Ramus Osteotomy Correction of Menton Point Deviation

    PubMed Central

    Lin, Qiuping; Huang, Xiaoqiong; Xu, Yue; Yang, Xiaoping

    2016-01-01

    Purpose Facial asymmetry often persists even after mandibular deviation corrected by the bilateral sagittal split ramus osteotomy (BSSRO) operation, since the reference facial sagittal plane for the asymmetry analysis is usually set up before the mandibular menton (Me) point correction. Our aim is to develop a predictive and quantitative method to assess the true asymmetry of the mandible after a midline correction performed by a virtual BSSRO, and to verify its availability by evaluation of the post-surgical improvement. Patients and Methods A retrospective cohort study was conducted at the Hospital of Stomatology, Sun Yat-sen University (China) of patients with pure hemi-mandibular elongation (HE) from September 2010 through May 2014. Mandibular models were reconstructed from CBCT images of patients with pre-surgical orthodontic treatment. After mandibular de-rotation and midline alignment with virtual BSSRO, the elongation hemi-mandible was virtually mirrored along the facial sagittal plane. The residual asymmetry, defined as the superimposition and boolean operation of the mirrored elongation side on the normal side, was calculated, including the volumetric differences and the length of transversal and vertical asymmetry discrepancy. For more specific evaluation, both sides of the hemi-mandible were divided into the symphysis and parasymphysis (SP), mandibular body (MB), and mandibular angle (MA) regions. Other clinical variables include deviation of Me point, dental midline and molar relationship. The measurement of volumetric discrepancy between the two sides of post-surgical hemi-mandible were also calculated to verify the availability of virtual surgery. Paired t-tests were computed and the P value was set at .05. Results This study included 45 patients. The volume differences were 407.8±64.8 mm3, 2139.1±72.5 mm3, and 422.5±36.9 mm3; residual average transversal discrepancy, 1.9 mm, 1.0 mm, and 2.2 mm; average vertical discrepancy, 1.1 mm, 2.2 mm, and 2

  14. Comprehensive Analysis of Mandibular Residual Asymmetry after Bilateral Sagittal Split Ramus Osteotomy Correction of Menton Point Deviation.

    PubMed

    Lin, Han; Zhu, Ping; Lin, Qiuping; Huang, Xiaoqiong; Xu, Yue; Yang, Xiaoping

    2016-01-01

    Facial asymmetry often persists even after mandibular deviation corrected by the bilateral sagittal split ramus osteotomy (BSSRO) operation, since the reference facial sagittal plane for the asymmetry analysis is usually set up before the mandibular menton (Me) point correction. Our aim is to develop a predictive and quantitative method to assess the true asymmetry of the mandible after a midline correction performed by a virtual BSSRO, and to verify its availability by evaluation of the post-surgical improvement. A retrospective cohort study was conducted at the Hospital of Stomatology, Sun Yat-sen University (China) of patients with pure hemi-mandibular elongation (HE) from September 2010 through May 2014. Mandibular models were reconstructed from CBCT images of patients with pre-surgical orthodontic treatment. After mandibular de-rotation and midline alignment with virtual BSSRO, the elongation hemi-mandible was virtually mirrored along the facial sagittal plane. The residual asymmetry, defined as the superimposition and boolean operation of the mirrored elongation side on the normal side, was calculated, including the volumetric differences and the length of transversal and vertical asymmetry discrepancy. For more specific evaluation, both sides of the hemi-mandible were divided into the symphysis and parasymphysis (SP), mandibular body (MB), and mandibular angle (MA) regions. Other clinical variables include deviation of Me point, dental midline and molar relationship. The measurement of volumetric discrepancy between the two sides of post-surgical hemi-mandible were also calculated to verify the availability of virtual surgery. Paired t-tests were computed and the P value was set at .05. This study included 45 patients. The volume differences were 407.8±64.8 mm3, 2139.1±72.5 mm3, and 422.5±36.9 mm3; residual average transversal discrepancy, 1.9 mm, 1.0 mm, and 2.2 mm; average vertical discrepancy, 1.1 mm, 2.2 mm, and 2.2 mm (before virtual surgery). The

  15. Role of the Middle Lumbar Fascia on Spinal Mechanics: A Human Biomechanical Assessment.

    PubMed

    Ranger, Tom A; Newell, Nicolas; Grant, Caroline A; Barker, Priscilla J; Pearcy, Mark J

    2017-04-15

    Biomechanical experiment. The aims of the present study were to test the effect of fascial tension on lumbar segmental axial rotation and lateral flexion and the effect of the angle of fascial attachment. Tension in the middle layer of lumbar fascia has been demonstrated to affect mechanical properties of lumbar segmental flexion and extension in the neutral zone. The effect of tension on segmental axial rotation and lateral flexion has, however, not been investigated. Seven unembalmed lumbar spines were divided into segments and mounted for testing. A 6 degree-of-freedom robotic testing facility was used to displace the segments in each anatomical plane (flexion-extension, lateral bending, and axial rotation) with force and moment data recorded by a load cell positioned beneath the test specimen. Tests were performed with and without a 20 N fascia load and the subsequent forces and moments were compared. In addition, forces and moments were compared when the specimens were held in a set position and the fascia loading angle was varied. A fascial tension of 20 N had no measurable effect on the forces or moments measured when the specimens were displaced in any plane of motion (P > 0.05). When 20 N of fascial load were applied to motion segments in a set position small segmental forces and moments were measured. Changing the angle of the fascial load did not significantly alter these measurements. Application of a 20 N fascial load did not produce a measureable effect on the mechanics of a motion segment, even though it did produce small measurable forces and moments on the segments when in a fixed position. Results from the present study are inconsistent with previous studies, suggesting that further investigation using multiple testing protocols and different loading conditions is required to determine the effects of fascial loading on spinal segment behavior. N/A.

  16. Test-retest reliability of sit-to-stand and stand-to-sit analysis in people with and without chronic non-specific low back pain.

    PubMed

    Pourahmadi, Mohammad Reza; Ebrahimi Takamjani, Ismail; Jaberzadeh, Shapour; Sarrafzadeh, Javad; Sanjari, Mohammad Ali; Bagheri, Rasool; Jannati, Elham

    2018-06-01

    Sit-to-stand (STD) and stand-to-sit (SIT) analysis can provide information on functional independence in daily activities in patients with low back pain (LBP). However, in order for measurements to be clinically useful, data on psychometric properties should be available. The main purpose was to investigate intra-rater reliability of STD and SIT tasks in participants with and without chronic non-specific LBP (CNLBP). The second purpose was to detect any differences in lumbar spine and hips sagittal plane kinematics and coordination between asymptomatic individuals and CNLBP patients during STD and SIT. Cross-sectional study. Twenty-three CNLBP patients and 23 demographically-matched controls were recruited. Ten markers were placed on specific anatomical landmarks. Participants were asked to perform STD and SIT at a preferred speed. Peak flexion angles, mean angular velocities, lumbar to hip movement ratios, and relative phase angles were measured. The procedure was repeated after 2 h and 6-8 days. Differences between two groups were analyzed using independent t-test. Intraclass correlation coefficient (ICC 3,k), standard error of measurement (SEM), and limits of agreement (LOAs) were also estimated. The ICC values showed moderate to excellent intra-rater reliability, with relatively low SEM values (≤10.17°). The 95% LOAs demonstrated that there were no differences between the measured parameters. Furthermore, CNLBP patients had limited sagittal plane angles, smaller angular velocities, and lumbar-hip dis-coordination compared to asymptomatic participants. The results indicated moderate to excellent test-retest reliability of STD and SIT analysis. Moreover, CNLBP patients had altered kinematics during STD and its reverse. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Multiplanar lumbopelvic control in patients with low back pain: is multiplanar assessment better than single plane assessment in discriminating between patients and healthy controls?

    PubMed

    Nelson-Wong, E; Gallant, P; Alexander, S; Dehmer, K; Ingvalson, S; McClenahan, B; Piatte, A; Poupore, K; Davis, A M

    2016-02-01

    Patients with low back pain (LBP) commonly have lumbopelvic control deficits. Lumbopelvic assessment during sagittal motion is incorporated into commonly used clinical examination algorithms for Treatment Based Classification. The purpose of this study was to investigate whether combined assessment of lumbopelvic control during sagittal and frontal plane motion discriminates between people with and without LBP better than single plane assessment alone. Nineteen patients with LBP and 18 healthy control participants volunteered for this study. The active straight leg raise (ASLR) and active hip abduction (AHAbd) tests were used to assess lumbopelvic control during sagittal and frontal plane motion, respectively. The tests were scored as positive or negative using published scoring criteria. Contingency tables were created for each test alone and for the combined tests (both positive/both negative) with presence/absence of LBP as the reference standard to calculate accuracy statistics of sensitivity (sn), specificity (sp), likelihood (+LR and -LR), and diagnostic odds ratios (OR). Active straight leg raise and AHAbd tests alone had sn of 0·63, 0·74, respectively, sp of 0·61, 0·50, respectively, and OR of 2·7, 2·8, respectively. The combined tests had sn = 0·89, sp = 0·60, and OR = 12·0. Forty percent of patients with LBP had control deficits in both planes of motion. The AHAbd and ALSR tests appear to have greater diagnostic discrimination when used in combination than when used independently. A percentage of patients with LBP had control deficits in both planes, while others demonstrated uniplanar deficits only. These findings highlight the importance of multiplanar assessment in patients with LBP.

  18. First clinical results of minimally invasive vector lumbar interbody fusion (MIS-VLIF) in spondylodiscitis and concomitant osteoporosis: a technical note.

    PubMed

    Rieger, Bernhard; Jiang, Hongzhen; Ruess, Daniel; Reinshagen, Clemens; Molcanyi, Marek; Zivcak, Jozef; Tong, Huaiyu; Schackert, Gabriele

    2017-12-01

    First description of MIS-VLIF, a minimally invasive lumbar stabilization, to evaluate its safety and feasibility in patients suffering from weak bony conditions (lumbar spondylodiscitis and/or osteoporosis). After informed consent, 12 patients suffering from lumbar spondylodiscitis underwent single level MIS-VLIF. Eight of them had a manifest osteoporosis, either. Pre- and postoperative clinical status was documented using numeric rating scale (NRS) for leg and back pain. In all cases, the optimal height for the cage was preoperatively determined using software-based range of motion and sagittal balance analysis. CT scans were obtained to evaluate correct placement of the construct and to verify fusion after 6 months. Since 2013, 12 patients with lumbar pyogenic spondylodiscitis underwent MIS-VLIF. Mean surgery time was 169 ± 28 min and average blood loss was less than 400 ml. Postoperative CT scans showed correct placement of the implants. Eleven patients showed considerable postoperative improvement in clinical scores. In one patient, we observed screw loosening. After documented bony fusion in the CT scan, the fixation system was removed in two cases to achieve lower material load. The load-bearing trajectories (vectors) of MIS-VLIF are different from those of conventional coaxial pedicle screw implantation. The dorsally converging construct combines the heads of the dorsoventral pedicle screws with laminar pedicle screws following cortical bone structures within a small approach. In case of lumbar spondylodiscitis and/or osteoporosis, MIS-VLIF relies on cortical bony structures for all screw vectors and the construct does not depend on conventional coaxial pedicle screws in the presence of inflamed, weak, cancellous or osteoporotic bone. MIS-VLIF allows full 360° lumbar fusion including cage implantation via a small, unilateral dorsal midline approach.

  19. Global tilt and lumbar lordosis index: two parameters correlating with health-related quality of life scores-but how do they truly impact disability?

    PubMed

    Boissière, Louis; Takemoto, Mitsuru; Bourghli, Anouar; Vital, Jean-Marc; Pellisé, Ferran; Alanay, Ahmet; Yilgor, Caglar; Acaroglu, Emre; Perez-Grueso, Francisco Javier; Kleinstück, Frank; Obeid, Ibrahim

    2017-04-01

    Many radiological parameters have been reported to correlate with patient's disability including sagittal vertical axis (SVA), pelvic tilt (PT), and pelvic incidence minus lumbar lordosis (PI-LL). European literature reports other parameters such as lumbar lordosis index (LLI) and the global tilt (GT). If most parameters correlate with health-related quality of life scores (HRQLs), their impact on disability remains unclear. This study aimed to validate these parameters by investigating their correlation with HRQLs. It also aimed to evaluate the relationship between each of these sagittal parameters and HRQLs to fully understand the impact in adult spinal deformity management. A retrospective review of a multicenter, prospective database was carried out. The database inclusion criteria were adults (>18 years old) presenting any of the following radiographic parameters: scoliosis (Cobb ≥20°), SVA ≥5 cm, thoracic kyphosis ≥60° or PT ≥25°. All patients with complete data at baseline were included. Health-related quality of life scores, demographic variables (DVs), and radiographic parameters were collected at baseline. Differences in HRQLs among groups of each DV were assessed with analyses of variance. Correlations between radiographic variables and HRQLs were assessed using the Spearman rank correlation. Multivariate linear regression models were fitted for each of the HRQLs (Oswestry Disability Index [ODI], Scoliosis Research Society-22 subtotal score, or physical component summaries) with sagittal parameters and covariants as independent variables. A p<.05 value was considered statistically significant. Among a total of 755 included patients (mean age, 52.1 years), 431 were non-surgical candidates and 324 were surgical candidates. Global tilt and LLI significantly correlated with HRQLs (r=0.4 and -0.3, respectively) for univariate analysis. Demographic variables such as age, gender, body mass index, past surgery, and surgical or non-surgical candidate

  20. Development of synthetic simulators for endoscope-assisted repair of metopic and sagittal craniosynostosis.

    PubMed

    Eastwood, Kyle W; Bodani, Vivek P; Haji, Faizal A; Looi, Thomas; Naguib, Hani E; Drake, James M

    2018-06-01

    OBJECTIVE Endoscope-assisted repair of craniosynostosis is a safe and efficacious alternative to open techniques. However, this procedure is challenging to learn, and there is significant variation in both its execution and outcomes. Surgical simulators may allow trainees to learn and practice this procedure prior to operating on an actual patient. The purpose of this study was to develop a realistic, relatively inexpensive simulator for endoscope-assisted repair of metopic and sagittal craniosynostosis and to evaluate the models' fidelity and teaching content. METHODS Two separate, 3D-printed, plastic powder-based replica skulls exhibiting metopic (age 1 month) and sagittal (age 2 months) craniosynostosis were developed. These models were made into consumable skull "cartridges" that insert into a reusable base resembling an infant's head. Each cartridge consists of a multilayer scalp (skin, subcutaneous fat, galea, and periosteum); cranial bones with accurate landmarks; and the dura mater. Data related to model construction, use, and cost were collected. Eleven novice surgeons (residents), 9 experienced surgeons (fellows), and 5 expert surgeons (attendings) performed a simulated metopic and sagittal craniosynostosis repair using a neuroendoscope, high-speed drill, rongeurs, lighted retractors, and suction/irrigation. All participants completed a 13-item questionnaire (using 5-point Likert scales) to rate the realism and utility of the models for teaching endoscope-assisted strip suturectomy. RESULTS The simulators are compact, robust, and relatively inexpensive. They can be rapidly reset for repeated use and contain a minimal amount of consumable material while providing a realistic simulation experience. More than 80% of participants agreed or strongly agreed that the models' anatomical features, including surface anatomy, subgaleal and subperiosteal tissue planes, anterior fontanelle, and epidural spaces, were realistic and contained appropriate detail. More

  1. The path of the superior sagittal sinus in unicoronal synostosis.

    PubMed

    Russell, Aaron J; Patel, Kamlesh B; Skolnick, Gary; Woo, Albert S; Smyth, Matthew D

    2014-10-01

    This study investigates the anatomic relationship between the superior sagittal sinus (SSS) and the sagittal suture in infants with uncorrected unicoronal synostosis. The morphology of the SSS is also evaluated postoperatively to assess whether normalization of intracranial structures occurs following reconstruction. The study sample consisted of 20 computed tomography scans (10 preoperative, 6 postoperative, and 4 unaffected controls) obtained between 2001 and 2013. The SSS and the sagittal suture were outlined using Analyze imaging software. These data were used to measure the maximum lateral discrepancy between the SSS and the sagittal suture preoperatively and to assess for postoperative changes in the morphology of the SSS. In children with uncorrected unicoronal synostosis, the SSS deviates to the side of the patent coronal suture posteriorly and tends to follow the path of the sagittal and metopic sutures. The lateral discrepancy between the SSS and the sagittal suture ranged from 5.0 to 11.8 mm, with a 99.9 % upper prediction bound of 14.4 mm. Postoperatively, the curvature of the SSS was statistically decreased following surgical intervention, though it remained significantly greater than in unaffected controls. The SSS follows a predictable course relative to surface landmarks in children with unicoronal synostosis. When creating burr holes for craniotomies, the SSS can be avoided in 99.9 % of cases by remaining at least 14.4 mm from the lateral edge of the sagittal suture. Postoperative changes in the path of the SSS provide indirect evidence for normalization of regional brain morphology following fronto-orbital advancement.

  2. Quantitative Postural Analysis of Children With Congenital Visual Impairment.

    PubMed

    de Pádua, Michelle; Sauer, Juliana F; João, Silvia M A

    2018-01-01

    The aim of this study was to compare the postural alignment of children with visual impairment with that of children without visual impairment. The sample studied was 74 children of both sexes ages 5 to 12 years. Of these, 34 had visual impairment and 40 were control children. Digital photos from the standing position were used to analyze posture. Postural variables, such as tilt of the head, shoulder position, scapula position, lateral deviation of the spine, ankle position in the frontal plane and head posture, angle of thoracic kyphosis, angle of lumbar lordosis, pelvis position, and knee position in the frontal and sagittal planes, were measured with the Postural Assessment Software 0.63, version 36 (SAPO, São Paulo, Brazil), with markers placed in predetermined bony landmarks. The main results of this study showed that children with visual impairment have increased head tilt (P < .001), shoulder deviation in frontal plane (P = .004), lateral deviation of the spine (P < .001), changes in scapula position (P = .012), higher thoracic kyphosis (P = .004), and lower lumbar lordosis (P < .001). Visual impairment influences postural alignment. Children with visual impairment had increased head tilt, uneven shoulders, greater lateral deviation of the spine, thoracic kyphosis, lower lumbar lordosis, and more severe valgus deformities on knees. Copyright © 2017. Published by Elsevier Inc.

  3. The effect of shaped wheelchair cushion and lumbar supports on under-seat pressure, comfort, and pelvic rotation.

    PubMed

    Samuelsson, Kersti; Björk, Maarit; Erdugan, Ann-Marie; Hansson, Anna-Karin; Rustner, Birgitta

    2009-09-01

    A wheelchair seat and position help clients perform daily activities. The comfort of the wheelchair can encourage clients to participate in daily activities and can help prevent future complications. This study evaluates how a shaped seat-cushion and two different back supports affect under-seat pressure, comfort, and pelvic rotation. Thirty healthy subjects were tested using two differently equipped manual wheelchairs. One wheelchair had a Velcro adjustable back seat and a plane seat-cushion. The other wheelchair had a non-adjustable sling-back seat and a plane cushion. The second wheelchair was also equipped with a shaped cushion and/or a detachable lumbar support. Under-seat pressure, estimated comfort, and pelvic rotation were measured after 10 min in each wheelchair outfit. Peak pressure increased with the shaped cushion compared to the plane cushion. No significant difference in estimated comfort was found. Pelvic posterior-rotation was reduced with the adjustable or detachable back-support irrespective of the shape of the seat cushion. To support a neutral pelvic position and spinal curvature, a combination of a shaped cushion and a marked lumbar support is most effective.

  4. Multilevel extreme lateral interbody fusion (XLIF) and osteotomies for 3-dimensional severe deformity: 25 consecutive cases

    PubMed Central

    McAfee, Paul C.; Shucosky, Erin; Chotikul, Liana; Salari, Ben; Chen, Lun; Jerrems, Dan

    2013-01-01

    Background This is a retrospective review of 25 patients with severe lumbar nerve root compression undergoing multilevel anterior retroperitoneal lumbar interbody fusion and posterior instrumentation for deformity. The objective is to analyze the outcomes and clinical results from anterior interbody fusions performed through a lateral approach and compare these with traditional surgical procedures. Methods A consecutive series of 25 patients (78 extreme lateral interbody fusion [XLIF] levels) was identified to illustrate the primary advantages of XLIF in correcting the most extreme of the 3-dimensional deformities that fulfilled the following criteria: (1) a minimum of 40° of scoliosis; (2) 2 or more levels of translation, anterior spondylolisthesis, and lateral subluxation (subluxation in 2 planes), causing symptomatic neurogenic claudication and severe spinal stenosis; and (3) lumbar hypokyphosis or flat-back syndrome. In addition, the majority had trunks that were out of balance (central sacral vertical line ≥2 cm from vertical plumb line) or had sagittal imbalance, defined by a distance between the sagittal vertical line and S1 of greater than 3 cm. There were 25 patients who had severe enough deformities fulfilling these criteria that required supplementation of the lateral XLIF with posterior osteotomies and pedicle screw instrumentation. Results In our database, with a mean follow-up of 24 months, 85% of patients showed evidence of solid arthrodesis and no subsidence on computed tomography and flexion/extension radiographs. The complication rate remained low, with a perioperative rate of 2.4% and postoperative rate of 12.2%. The lateral listhesis and anterior spondylolisthetic subluxation were anatomically reduced with minimally invasive XLIF. The main finding in these 25 cases was our isolation of the major indication for supplemental posterior surgery: truncal decompensation in patients who are out of balance by 2 cm or more, in whom posterior spinal

  5. Effect of screw position on load transfer in lumbar pedicle screws: A non-idealized finite element analysis

    PubMed Central

    Newcomb, Anna G. U. S.; Baek, Seungwon; Kelly, Brian P.; Crawford, Neil R.

    2016-01-01

    Angled screw insertion has been advocated to enhance fixation strength during posterior spine fixation. Stresses on a pedicle screw and surrounding vertebral bone with different screw angles were studied by finite element analysis during simulated multidirectional loading. Correlations between screw-specific vertebral geometric parameters and stresses were studied. Angulations in both the sagittal and axial planes affected stresses on the cortical and cancellous bones and the screw. Pedicle screws pointing laterally (vs. straight or medially) in the axial plane during superior screw angulation may be advantageous in terms of reducing the risk of both screw loosening and screw breakage. PMID:27454197

  6. Clinical anatomy and 3D virtual reconstruction of the lumbar plexus with respect to lumbar surgery.

    PubMed

    Lu, Sheng; Chang, Shan; Zhang, Yuan-zhi; Ding, Zi-hai; Xu, Xin Ming; Xu, Yong-qing

    2011-04-14

    Exposure of the anterior or lateral lumbar via the retroperitoneal approach easily causes injuries to the lumbar plexus. Lumbar plexus injuries which occur during anterior or transpsoas lumbar spine exposure and placement of instruments have been reported. This study aims is to provide more anatomical data and surgical landmarks in operations concerning the lumbar plexus in order to prevent lumbar plexus injuries and to increase the possibility of safety in anterior approach lumbar surgery. To study the applied anatomy related to the lumbar plexus of fifteen formaldehyde-preserved cadavers, Five sets of Virtual Human (VH) data set were prepared and used in the study. Three-dimensional (3D) computerized reconstructions of the lumbar plexus and their adjacent structures were conducted from the VH female data set. The order of lumbar nerves is regular. From the anterior view, lumbar plexus nerves are arranged from medial at L5 to lateral at L2. From the lateral view, lumbar nerves are arranged from ventral at L2 to dorsal at L5. The angle of each nerve root exiting outward to the corresponding intervertebral foramen increases from L1 to L5. The lumbar plexus nerves are observed to be in close contact with transverse processes (TP). All parts of the lumbar plexus were located by sectional anatomy in the dorsal third of the psoas muscle. Thus, access to the psoas major muscle at the ventral 2/3 region can safely prevent nerve injuries. 3D reconstruction of the lumbar plexus based on VCH data can clearly show the relationships between the lumbar plexus and the blood vessels, vertebral body, kidney, and psoas muscle. The psoas muscle can be considered as a surgical landmark since incision at the ventral 2/3 of the region can prevent lumbar plexus injuries for procedures requiring exposure of the lateral anterior of the lumbar. The transverse process can be considered as a landmark and reference in surgical operations by its relative position to the lumbar plexus. 3D

  7. Clinical anatomy and 3D virtual reconstruction of the lumbar plexus with respect to lumbar surgery

    PubMed Central

    2011-01-01

    Background Exposure of the anterior or lateral lumbar via the retroperitoneal approach easily causes injuries to the lumbar plexus. Lumbar plexus injuries which occur during anterior or transpsoas lumbar spine exposure and placement of instruments have been reported. This study aims is to provide more anatomical data and surgical landmarks in operations concerning the lumbar plexus in order to prevent lumbar plexus injuries and to increase the possibility of safety in anterior approach lumbar surgery. Methods To study the applied anatomy related to the lumbar plexus of fifteen formaldehyde-preserved cadavers, Five sets of Virtual Human (VH) data set were prepared and used in the study. Three-dimensional (3D) computerized reconstructions of the lumbar plexus and their adjacent structures were conducted from the VH female data set. Results The order of lumbar nerves is regular. From the anterior view, lumbar plexus nerves are arranged from medial at L5 to lateral at L2. From the lateral view, lumbar nerves are arranged from ventral at L2 to dorsal at L5. The angle of each nerve root exiting outward to the corresponding intervertebral foramen increases from L1 to L5. The lumbar plexus nerves are observed to be in close contact with transverse processes (TP). All parts of the lumbar plexus were located by sectional anatomy in the dorsal third of the psoas muscle. Thus, access to the psoas major muscle at the ventral 2/3 region can safely prevent nerve injuries. 3D reconstruction of the lumbar plexus based on VCH data can clearly show the relationships between the lumbar plexus and the blood vessels, vertebral body, kidney, and psoas muscle. Conclusion The psoas muscle can be considered as a surgical landmark since incision at the ventral 2/3 of the region can prevent lumbar plexus injuries for procedures requiring exposure of the lateral anterior of the lumbar. The transverse process can be considered as a landmark and reference in surgical operations by its relative

  8. Walking sagittal balance correction by pedicle subtraction osteotomy in adults with fixed sagittal imbalance.

    PubMed

    Yagi, Mitsuru; Kaneko, Shinjiro; Yato, Yoshiyuki; Asazuma, Takashi; Machida, Masafumi

    2016-08-01

    Pedicle subtraction osteotomy (PSO) is widely used to treat severe fixed sagittal imbalance. However, the effect of PSO on balance has not been fully documented. The aim of this study was to assess dynamic walking balance after PSO to treat fixed sagittal imbalance. Gait and balance were assessed in 15 consecutive adult female patients who had been treated by PSO for a fixed sagittal imbalance and compare patients' preop and postop dynamic walking balance with that of 15 age- and gender-matched healthy volunteers (HV). Each patient's chart, X-rays, pre and postop SRS22 outcome scores, and ODI were reviewed. Means were compared by Mann-Whitney U test and Chi-square test. The mean age was 66.3 years (51-74 years). The mean follow-up was 2.7 years (2-3.5 years). The C7PL and GL, measured on the force platform, were both improved from 24.2 ± 7.3 cm and 27.6 ± 9.4 to 5.4 ± 2.6 cm and 7.2 ± 3.4 cm, respectively. The baseline hip ROM was significantly smaller in patients compared to HV, whereas no significant difference was observed in the knee or ankle ROM. The pelvic tilt (preop -0.4° ± 1.4°, postop 8.9° ± 1.0°), and maximum hip-extension angle (preop -1.2° ± 14.2°, postop -11.2° ± 7.2°) were also improved after surgery. Cadence (116 s/min), stance-swing ratio (stance 63.2 % vs. swing 36.8 %), and stride (98.0 cm) were all increased after surgery. On the other hand, gait velocity was significantly slower in the PSO group at both pre and postop than in HV (PSO 53.3 m/min at preop and 58.8 m/min at postop vs. HV 71.1 m/min, p = 0.04). Despite a mild residual spinal-pelvic malalignment, PSO restored sagittal alignment and balance satisfactorily and has improved the gait pattern.

  9. Lumbar spine CT scan

    MedlinePlus

    CAT scan - lumbar spine; Computed axial tomography scan - lumbar spine; Computed tomography scan - lumbar spine; CT - lower back ... CT scans rapidly makes detailed pictures of the lower back. The test may be used to look for: ...

  10. Lumbar Lordosis Minus Thoracic Kyphosis: Remain Constant in Adolescent Idiopathic Scoliosis Patients Before and After Correction Surgery.

    PubMed

    Yang, Mingyuan; Yang, Changwei; Chen, Ziqiang; Wei, Xianzhao; Chen, Yuanyuan; Zhao, Jian; Shao, Jie; Zhu, Xiaodong; Li, Ming

    2016-03-01

    A retrospective study. To explore the relationship between the change of lumbar lordosis (LL) and thoracic kyphosis (TK) in AIS patients after correction surgery. TK tends to decrease in Lenke 1 and Lenke 2 AIS patients after correction surgery using pedicle screws, with the compensation of LL decrease. We hypothesize that lumbar lordosis minus thoracic kyphosis (LL-TK) remains constant after correction surgery to achieve the sagittal balance in AIS patients. Medical records of Lenke 1 or Lenke 2 AIS patients who received posterior correction surgery using pedicle screws in our hospital from January 2010 to January 2013 were reviewed. General characters of patients and radiological parameters were evaluated before the surgery and at two years' follow-up. Correlation analysis between TK and LL was conducted. LL-TK and the change of LL and TK were analyzed at preoperation and final follow-up. A total of 76 Lenke 1 and Lenke 2 AIS patients were included. Both TK and LL decreased significantly after correction surgery (P = 0.019 and P = 0.040, respectively). There were significant correlations between TK and LL before and after surgery, respectively (preoperative: r = 0.234, P = 0.042; postoperative: r = 0.310, P = 0.006). Preoperative and postoperative LL-TK was 23.80° and 25.09°, respectively, and no significant difference of LL-TK was observed (P = 0.372). The same tendency was observed in the change of LL and TK, and significant correlation was also found between the change of TK and LL (r = 0.626, P = 0.002). The same change of LL and TK and no significant difference in LL-TK indicated that LL-TK might be an important compensatory mechanism in keeping sagittal balance.

  11. The six degrees of freedom motion of the human head, spine, and pelvis in a frontal impact.

    PubMed

    Lopez-Valdes, F J; Riley, P O; Lessley, D J; Arbogast, K B; Seacrist, T; Balasubramanian, S; Maltese, M; Kent, R

    2014-01-01

    The goal of this study is to characterize the in situ 6-degree-of-freedom kinematics of the head, 3 vertebrae (T1, T8, and L2), and the pelvis in a 40 km/h frontal impact. Three postmortem human surrogates (PMHS) were exposed to a deceleration of 15 g over 125 ms and the motion of selected anatomical structures (head, T1, T8, L2, and pelvis) was tracked at 1000 Hz using an optoelectric stereophotogrammetric system. Displacements of the analyzed structures are reported in the sagittal and the transverse planes. Rotations of the structures are described using the finite helical axis of the motion. Anterior displacements were 530.5 ± 39.4 mm (head), 434.7 ± 20.0 mm (T1), 353.3 ± 29.6 mm (T8), 219.9 ± 19.3 mm (L2), and 78.9 ± 22.1 mm (pelvis). The ratio between peak anterior and lateral displacement was up to 19 percent (T1) and 26 percent (head). Magnitudes of the rotation of the head (69.9 ± 1.5°), lumbar (66.5 ± 9.1°), and pelvis (63.8 ± 11.8°) were greater than that of the thoracic vertebrae (T1: 49.1 ± 7.8°; T8: 47.7 ± 6.3°). Thoracic vertebrae exhibited a complex rotation behavior caused by the asymmetric loading of the shoulder belt. Rotation of the lumbar vertebra and pelvis occurred primarily within the sagittal plane (flexion). Despite the predominance of the sagittal motion of the occupant in a pure (12 o'clock) frontal impact, the asymmetry of belt loading induced other relevant displacements and rotations of the head and thoracic spine. Attempts to model occupant kinematics in a frontal impact should consider these results to biofidelically describe the interaction of the torso with the belt.

  12. Characterizing head motion in three planes during combined visual and base of support disturbances in healthy and visually sensitive subjects.

    PubMed

    Keshner, E A; Dhaher, Y

    2008-07-01

    Multiplanar environmental motion could generate head instability, particularly if the visual surround moves in planes orthogonal to a physical disturbance. We combined sagittal plane surface translations with visual field disturbances in 12 healthy (29-31 years) and 3 visually sensitive (27-57 years) adults. Center of pressure (COP), peak head angles, and RMS values of head motion were calculated and a three-dimensional model of joint motion was developed to examine gross head motion in three planes. We found that subjects standing quietly in front of a visual scene translating in the sagittal plane produced significantly greater (p<0.003) head motion in yaw than when on a translating platform. However, when the platform was translated in the dark or with a visual scene rotating in roll, head motion orthogonal to the plane of platform motion significantly increased (p<0.02). Visually sensitive subjects having no history of vestibular disorder produced large, delayed compensatory head motion. Orthogonal head motions were significantly greater in visually sensitive than in healthy subjects in the dark (p<0.05) and with a stationary scene (p<0.01). We concluded that motion of the visual field could modify compensatory response kinematics of a freely moving head in planes orthogonal to the direction of a physical perturbation. These results suggest that the mechanisms controlling head orientation in space are distinct from those that control trunk orientation in space. These behaviors would have been missed if only COP data were considered. Data suggest that rehabilitation training can be enhanced by combining visual and mechanical perturbation paradigms.

  13. Sagittal alignment of the cervical spine after neck injury.

    PubMed

    Beltsios, Michail; Savvidou, Olga; Mitsiokapa, Evanthia A; Mavrogenis, Andreas F; Kaspiris, Angelos; Efstathopoulos, Nikolaos; Papagelopoulos, Panayiotis J

    2013-07-01

    The normal sagittal alignment of the cervical spine is lordotic and is affected by the posture of the head and neck. The question of whether loss of cervical lordosis is the result of muscle spasm after injury or a normal variation, and the clinical significance of such changes in sagittal profile of the cervical spine has been an issue of several studies. The purpose of this paper is to study the incidence of normal cervical lordosis and its changes after neck injury compared to the healthy population. We studied the lateral radiographs of the cervical spine of 60 patients with neck injury compared to 100 patients without a neck injury. Lateral radiographs were obtained in the standing or sitting position, and the curvature of the cervical spine was measured using the angle formed between the inferior end plates of the C2 and C7 vertebrae. In the patients without neck injury, lordotic and straight cervical spine sagittal alignment was observed in 36.5% each, double curvature in 17%, and kyphotic in 10%. In the patients with neck injury, lordotic sagittal alignment was observed in 36%, straight in 34%, double curvature in 26% and kyphotic in 4%. No significant difference between the two groups regarding all types of sagittal alignment of the cervical spine was found (p > 0.100). The alterations in normal cervical lordosis in patients with neck injury must be considered coincidental. These alterations should not be associated with muscle spasm caused by neck pain.

  14. Comparison of Lumbar Lordosis in Lateral Radiographs in Standing Position with supine MR Imaging in consideration of the Sacral Slope.

    PubMed

    Benditz, Achim; Boluki, Daniel; Weber, Markus; Zeman, Florian; Grifka, Joachim; Völlner, Florian

    2017-03-01

    Purpose  To investigate the influence of sacral slope on the correlation between measurements of lumbar lordosis obtained by standing radiographs and magnetic resonance images in supine position (MRI). Little information is available on the correlation between measurements of lumbar lordosis obtained by radiographic and MR images. Most relevant studies have shown correlations for the thoracic spine, but detailed analyses on the lumbar spine are lacking. Methods  MR images and standing lateral radiographs of 63 patients without actual low back pain or radiographic pathologies of the lumbar spine were analyzed. Standing radiographic measurements included the sagittal parameters pelvic incidence (PI) pelvic tilt (PT), and sacral slope (SS); MR images were used to additionally measure lumbar L1-S1 lordosis and single level lordosis. Differences between radiographic and MRI measurements were analyzed and divided into 4 subgroups of different sacral slope according to Roussouly's classification. Results  Global lumbar lordosis (L1-S1) was 44.99° (± 10 754) on radiographs and 47.91° (± 9.170) on MRI, yielding a clinically relevant correlation (r = 0.61, p < 0.01). Measurements of single level lordosis only showed minor differences. At all levels except for L5 / S1, lordosis measured by means of standing radiographs was higher than that measured by MRI. The difference in global lumbar L1-S1 lordosis was -2.9°. Analysis of the Roussouly groups showed the largest difference for L1-S1 (-8.3°) in group 2. In group 4, when measured on MRI, L5 / S1 lordosis (25.71°) was lower than L4 / L5 lordosis (27.63°) compared to the other groups. Conclusions  Although measurements of global lumbar lordosis significantly differed between the two scanning technologies, the mean difference was just 2.9°. MRI in supine position may be used for estimating global lumbar lordosis, but single level lordosis should be determined by means of standing

  15. Diffraction crystal for sagittally focusing x-rays

    DOEpatents

    Ice, Gene E.; Sparks, Jr., Cullie J.

    1984-01-01

    The invention is a new type of diffraction crystal designed for sagittally focusing photons of various energies. The invention is based on the discovery that such focusing is not obtainable with conventional crystals because of distortion resulting from anticlastic curvature. The new crystal comprises a monocrystalline base having a front face contoured for sagittally focusing photons and a back face provided with rigid, upstanding, stiffening ribs restricting anticlastic curvature. When mounted in a suitable bending device, the reflecting face of the crystal can be adjusted to focus photons having any one of a range of energies.

  16. Diffraction crystals for sagittally focusing x-rays

    DOEpatents

    Ice, G.E.; Sparks, C.J. Jr.

    1982-06-07

    The invention is a new type of diffraction crystal designed for sagittally focusing photons of various energies. The invention is based on the discovery that such focusing is not obtainable with conventional crystals because of distortion resulting from anticlastic curvature. The new crystal comprises a monocrystalline base having a front face contoured for sagittally focusing photons and a back face provided with rigid, upstanding, stiffening ribs restricting anticlastic curvature. When mounted in a suitable bending device, the reflecting face of the crystal can be adjusted to focus photons having any one of a range of energies.

  17. The mechanism in junctional failure of thoraco-lumbar fusions. Part II: Analysis of a series of PJK after thoraco-lumbar fusion to determine parameters allowing to predict the risk of junctional breakdown.

    PubMed

    Faundez, Antonio A; Richards, Jonathon; Maxy, Philippe; Price, Rachel; Léglise, Amélie; Le Huec, Jean-Charles

    2018-02-01

    To identify risk factors, in 12 patients with junctional breakdown (JBD) after thoraco-sacral fusions and to test a software locating maximal bending moment on full spine EOS images. Twelve patients underwent long fusions for lumbar degenerative pathologies. Preop EOS images were compared to first postop EOS showing JBD. Parameters analyzed were: spinopelvic parameters [pelvic incidence (PI), pelvic tilt (PT), sacral slope (SS), sagittal vertical axis (SVA), spinosacral angle (SSA), lordosis, and kyphosis], proximal junctional angle (PJA), odontoid-hip axis angle (ODHA), and CIA. A new software estimated the location of maximum bending moment (M max ) before and after JBD. All patients except one had a JBD located between T10 and L1, diagnosed at average follow-up of 18.58 months. JBD was a fracture in six patients, severe adjacent disc degeneration in the remaining. Average PI was 52°. PT increased, SS decreased after JBD versus preop (p > 0.05). Average PJA was 34.5°. Global lordosis (GLL), upper lordosis (ULL), L4-S1 lordosis, and thoracic kyphosis (TK) were increased (p < 0.05). Lower lumbar lordosis (LLL), was not increased postJBD (p = 0.6). SVA, SSA, ODHA, and C7 slope were not modified (p > 0.05). CIA average value decreased by 7.5% after JBD. T1-T5 alignment was correlated to C7 slope before (R 2  = 0.77075) and after JBD (R 2  = 0.85409). ODHA decreased after JBD (p > 0.05). Most JBD occurred at or one level away from preoperative M max location. This study confirms the importance of harmonious distribution of lumbar (GLL, ULL, and ILL) and thoracic curves (TK, T1-T5 segment) in thoraco-sacral fusions. All patients showed an exaggerated ULL, resulting in a posterior shift and increased lever arm at the thoraco-lumbar junction, leading to JBD.

  18. Lumbar spine disc height and curvature responses to an axial load generated by a compression device compatible with magnetic resonance imaging

    NASA Technical Reports Server (NTRS)

    Kimura, S.; Steinbach, G. C.; Watenpaugh, D. E.; Hargens, A. R.

    2001-01-01

    STUDY DESIGN: Axial load-dependent changes in the lumbar spine of supine healthy volunteers were examined using a compression device compatible with magnetic resonance imaging. OBJECTIVE: To test two hypotheses: Axial loading of 50% body weight from shoulder to feet in supine posture 1) simulates the upright lumbar spine alignment and 2) decreases disc height significantly. SUMMARY OF BACKGROUND DATA: Axial compression on the lumbar spine has significantly narrowed the lumbar dural sac in patients with sciatica, neurogenic claudication or both. METHODS: Using a device compatible with magnetic resonance imaging, the lumbar spine of eight young volunteers, ages 22 to 36 years, was axially compressed with a force equivalent to 50% of body weight, approximating the normal load on the lumbar spine in upright posture. Sagittal lumbar magnetic resonance imaging was performed to measure intervertebral angle and disc height before and during compression. RESULTS: Each intervertebral angle before and during compression was as follows: T12-L1 (-0.8 degrees +/- 2.5 degrees and -1.5 degrees +/- 2.6 degrees ), L1-L2 (0.7 degrees +/- 1.4 degrees and 3.3 degrees +/- 2.9 degrees ), L2-L3 (4.7 degrees +/- 3.5 degrees and 7.3 degrees +/- 6 degrees ), L3-L4 (7.9 degrees +/- 2.4 degrees and 11.1 degrees +/- 4.6 degrees ), L4-L5 (14.3 degrees +/- 3.3 degrees and 14.9 degrees +/- 1.7 degrees ), L5-S1 (25.8 degrees +/- 5.2 degrees and 20.8 degrees +/- 6 degrees ), and L1-S1 (53.4 degrees +/- 11.9 degrees and 57.3 degrees +/- 16.7 degrees ). Negative values reflect kyphosis, and positive values reflect lordosis. A significant difference between values before and during compression was obtained at L3-L4 and L5-S1. There was a significant decrease in disc height only at L4-L5 during compression. CONCLUSIONS: The axial force of 50% body weight in supine posture simulates the upright lumbar spine morphologically. No change in intervertebral angle occurred at L4-L5. However, disc height at L4-L

  19. Spontaneous Improvement of Compensatory Knee Flexion After Surgical Correction of Mismatch Between Pelvic Incidence and Lumbar Lordosis.

    PubMed

    Cheng, Xiaofei; Zhang, Feng; Wu, Jigong; Zhu, Zhenan; Dai, Kerong; Zhao, Jie

    2016-08-15

    A retrospective study. The aim of this study was to investigate the correlation between pelvic incidence (PI) and lumbar lordosis (LL) mismatch and knee flexion during standing in patients with lumbar degenerative diseases and to examine the effects of surgical correction of the PI-LL mismatch on knee flexion. Only several studies focused on knee flexion as a compensatory mechanism of the PI-LL mismatch. Little information is currently available on the effects of lumbar correction on knee flexion in patients with the PI-LL mismatch. A group of patients with lumbar degenerative diseases were divided into PI-LL match group (PI-LL ≤ 10°) and PI-LL mismatch group (PI-LL > 10°). A series of radiographic parameters and knee flexion angle (KFA) were compared between the two groups. The PI-LL mismatch group was further subdivided into operative and nonoperative group. The changes in KFA with PI-LL were examined. The PI-LL mismatch group exhibited significantly greater sagittal vertical axis (SVA), pelvic tilt (PT) and KFA, and smaller LL, thoracic kyphosis (TK), and sacral slope than the PI-LL match group. PI-LL, LL, PI, SVA, and PT were significantly correlated with KFA in the PI-LL mismatch group. From baseline to 6-month follow-up, all variables were significantly different in the operative group with the exception of PI, although there was no significant difference in any variable in the nonoperative group. The magnitude of surgical correction in the PI-LL mismatch was significantly correlated with the degree of spontaneous changes in KFA, PT, and TK. The PI-LL mismatch would contribute to compensatory knee flexion during standing in patients with lumbar degenerative disease. Surgical correction of the PI-LL mismatch could lead to a spontaneous improvement of compensatory knee flexion. The degree of improvement in knee flexion depends in part on the amount of correction in the PI-LL mismatch. 3.

  20. Differences in male and female spino-pelvic alignment in asymptomatic young adults: a three-dimensional analysis using upright low-dose digital biplanar X-rays.

    PubMed

    Janssen, Michiel M A; Drevelle, Xavier; Humbert, Ludovic; Skalli, Wafa; Castelein, René M

    2009-11-01

    A three-dimensional analysis of spino-pelvic alignment in 60 asymptomatic young adult males and females. To analyze the differences in sagittal spino-pelvic alignment in a group of asymptomatic young adult males and females and describe gender specific reference values. Several spinal disorders like idiopathic scoliosis and Scheuermann's disease have a well-known sex-related prevalence ratio. As spino-pelvic alignment plays an important role in spinal biomechanics, it is imperative to analyze possible differences between the male and female spino-pelvic alignment. Furthermore, in spinal fusion surgery, normal sagittal balance should be recreated as closely as possible. An innovative biplanar ultra low-dose radiographic technique was used to obtain three-dimensional reconstructions of the spine (T1-L5), sacrum, and pelvis in a freestanding position of 30 asymptomatic young male and 30 young female adults. Values were calculated for thoracic kyphosis (T4-T12), lumbar lordosis (L1-S1), total and regional lumbopelvic lordosis (PRT12, PRL2, PRL4, and PRL5), sagittal plumb line of T1, T4, and T9 (HAT1, HAT4, and HAT9), T1-L5 sagittal spinal inclination, T9 sagittal offset, and pelvic parameters (pelvic tilt, sacral slope, and pelvic incidence). In addition, vertebral inclination in the sagittal plane of each vertebra was measured. Differences in spino-pelvic alignment between the sexes were analyzed. The female spine was more dorsally inclined (11 degrees vs. 8 degrees ; P = 0.003). High thoracic and thoracolumbar vertebrae were more dorsally inclined in women than in men. Thoracic kyphosis, lumbar lordosis, regional lumbopelvic lordosis, sagittal plumb lines, T9 sagittal offset, and pelvic parameters were not statistically different between the sexes. These results indicate that the female spine is definitely different from the male spine. The spine as whole and individual vertebrae in certain regions of the normal spine is more backwardly inclined in females than in

  1. How does sagittal imbalance affect the appropriateness of surgical indications and selection of procedure in the treatment of degenerative scoliosis? Findings from the RAND/UCLA Appropriate Use Criteria study.

    PubMed

    Daubs, Michael D; Brara, Harsimran S; Raaen, Laura B; Chen, Peggy Guey-Chi; Anderson, Ashaunta T; Asch, Steven M; Nuckols, Teryl K

    2018-05-01

    Degenerative lumbar scoliosis (DLS) is often associated with sagittal imbalance, which may affect patients' health outcomes before and after surgery. The appropriateness of surgery and preferred operative approaches has not been examined in detail for patients with DLS and sagittal imbalance. The goals of this article were to describe what is currently known about the relationship between sagittal imbalance and health outcomes among patients with DLS and to determine how indications for surgery in patients with DLS differ when sagittal imbalance is present. This study included a literature review and an expert panel using the RAND/University of California at Los Angeles (UCLA) Appropriateness Method. To develop appropriate use criteria for DLS, researchers at the RAND Corporation recently employed the RAND/UCLA Appropriateness Method, which involves a systematic review of the literature and multidisciplinary expert panel process. Experts reviewed a synopsis of published literature and rated the appropriateness of five common operative approaches for 260 different clinical scenarios. In the present work, we updated the literature review and compared panelists' ratings in scenarios where imbalance was present versus absent. This work was funded by the Collaborative Spine Research Foundation, a group of surgical specialty societies and device manufacturers. On the basis of 13 eligible studies that examined sagittal imbalance and outcomes in patients with DLS, imbalance was associated with worse functional status in the absence of surgery and worse symptoms and complications postoperatively. Panelists' ratings demonstrated a consistent pattern across the diverse clinical scenarios. In general, when imbalance was present, surgery was more likely to be appropriate or necessary, including in some situations where surgery would otherwise be inappropriate. For patients with moderate to severe symptoms and imbalance, a deformity correction procedure was usually appropriate

  2. [Finite element analysis of lumbar pelvic and proximal femur model with simulate lumbar rotatory manipulation].

    PubMed

    Hu, Hua; Xiong, Chang-Yuan; Han, Guo-Wu

    2012-07-01

    To study the changes of displacement and stress in the model of lumbar pelvic and proximal femur during lumbar rotatory manipulation. The date of lumbar pelvic and proximal femur CT scan by Mimics 10.01 software was established a lumbar pelvic and proximal femur geometric model, then the model was modified with Geomagic 9, at last the modified model was imported into hypermesh 10 and meshed with tetrahedron, at the same time,add disc and ligaments. According to the principle of lumbar rotatory manipulation,the lumbar rotatory manipulation were decomposed. The mechanical parameters assigned into the three-dimensional finite element model. The changes of displacement and stress in the model of lunbar pelvic and proximal femur under the four conditions were calculated with Abaqus model of Hypermesh 10. 1) Under the same condition,the displacement order of lumbar was L1>L2>L3>L5 L5, anterior column > middle column > posterior column. 2) Under the different conditions, the displacement order of lumbar,case 3>case 1>case 4>case 2. 3) Under the same conditions, the displacement order of lumbar inter-vertebral disc from L1,2 to L5S1 was L1,2>L2,3>L3,4>L4,5>L5S1, as for the same inter-vertebral disc, the order was: second quadrant>third quadrant>first quadrant>fourth quadrant. 4) Under the different conditions,the displacement order of the inter-vertebral disc was L1,2>L2,3>L3,4>L4,5>L5S1, but to same inter-vertebral disc: case 3>case 4>case 1 >case 2. 5) There were apparent displacement and stress concentration in pelvis and hip during the manipulation. 1) The principles of lumbar rotation manipulation closely related to the relative displacement caused by rotation of various parts of lumbar pelvic and proximal femur model; 2) During the process of lumbar rotatory manipulation, the angle of lateral bending and flexion can not be randomly increased; 3) During the process of lumbar rotatory manipulation, all the conditions of lumbar pelvic and proximal femur must be

  3. Sagittal band, boutonniere, and pulley injuries in the athlete.

    PubMed

    Grandizio, Louis Christopher; Klena, Joel Christian

    2017-03-01

    While hand injuries occur frequently in the athletic population, sagittal band ruptures, boutonniere deformities, and pulley ruptures are infrequently encountered. These injuries represent diagnostic challenges and can result in significant impairment. Early recognition with appropriate treatment is necessary to maximize recovery and minimize return to athletic competition. This review will focus on the underlying mechanism, pathophysiology of injury, diagnosis, and treatment of each of these injuries. With respect to sagittal band ruptures, boutonniere deformities, and pulley ruptures, the recent literature has been limited in scope. For sagittal band injuries, current efforts have focused on alternative techniques for sagittal band reconstruction. Little progress has been made in recent years with respect to boutonniere injuries in the athletic population; prevention of fixed deformities remains the backbone of treatment. The exact contribution from individual and combined pulley injuries in the creation of bowstringing remains controversial. Recent anatomical studies have failed to definitively answer the question of what degree of rupture is necessary to create symptomatic bowstringing. Favorable outcomes, with respect to both preventing bowstringing and returning to full athletic participation, have been newly reported following pulley reconstruction in rock climbers. Due to the infrequent nature of sagittal band ruptures, boutonniere deformities, and pulley ruptures, current treatment is mostly guided by historically established methods, limited case series, and case reports. Nonsurgical treatment remains the mainstay for most injuries and, if employed early, often precludes the need for surgery. Further anatomical and clinical research, including outcome studies, is necessary in guiding treatment algorithms.

  4. Etiology of lumbar lordosis and its pathophysiology: a review of the evolution of lumbar lordosis, and the mechanics and biology of lumbar degeneration.

    PubMed

    Sparrey, Carolyn J; Bailey, Jeannie F; Safaee, Michael; Clark, Aaron J; Lafage, Virginie; Schwab, Frank; Smith, Justin S; Ames, Christopher P

    2014-05-01

    The goal of this review is to discuss the mechanisms of postural degeneration, particularly the loss of lumbar lordosis commonly observed in the elderly in the context of evolution, mechanical, and biological studies of the human spine and to synthesize recent research findings to clinical management of postural malalignment. Lumbar lordosis is unique to the human spine and is necessary to facilitate our upright posture. However, decreased lumbar lordosis and increased thoracic kyphosis are hallmarks of an aging human spinal column. The unique upright posture and lordotic lumbar curvature of the human spine suggest that an understanding of the evolution of the human spinal column, and the unique anatomical features that support lumbar lordosis may provide insight into spine health and degeneration. Considering evolution of the skeleton in isolation from other scientific studies provides a limited picture for clinicians. The evolution and development of human lumbar lordosis highlight the interdependence of pelvic structure and lumbar lordosis. Studies of fossils of human lineage demonstrate a convergence on the degree of lumbar lordosis and the number of lumbar vertebrae in modern Homo sapiens. Evolution and spine mechanics research show that lumbar lordosis is dictated by pelvic incidence, spinal musculature, vertebral wedging, and disc health. The evolution, mechanics, and biology research all point to the importance of spinal posture and flexibility in supporting optimal health. However, surgical management of postural deformity has focused on restoring posture at the expense of flexibility. It is possible that the need for complex and costly spinal fixation can be eliminated by developing tools for early identification of patients at risk for postural deformities through patient history (genetics, mechanics, and environmental exposure) and tracking postural changes over time.

  5. Interceptive orthopedics for the correction of maxillary transverse and sagittal deficiency in the early mixed dentition period

    PubMed Central

    Talapaneni, Ashok Kumar; Kumar, Karnati Praveen; Kommi, Pradeep Babu; Nuvvula, Sivakumar

    2011-01-01

    Dentofacial Orthopedics directed to a hypoplastic maxilla in the prepubertal period redirects growth of the maxilla in the vertical, transverse and sagittal planes of space. The orthopedic correction of maxillary hypoplasia in the early mixed dentition period thus intercepts the establishment of permanent structural asymmetry in the mandible and helps in the achievement of optimal dentofacial esthetics. This paper presents the growth redirection in a hypoplastic maxilla of an 8-year-old girl with simultaneous rapid maxillary expansion and protraction headgear therapy for a period of 11 months which corrected the posterior unilateral cross-bite, the positional asymmetry of the mandible and established an orthognathic profile in the individual. PMID:22346162

  6. Characterizing Head Motion in 3 Planes during Combined Visual and Base of Support Disturbances in Healthy and Visually Sensitive Subjects

    PubMed Central

    Keshner, E.A.; Dhaher, Y.

    2008-01-01

    Multiplanar environmental motion could generate head instability, particularly if the visual surround moves in planes orthogonal to a physical disturbance. We combined sagittal plane surface translations with visual field disturbances in 12 healthy (29–31 years) and 3 visually sensitive (27–57 years) adults. Center of pressure (COP), peak head angles, and RMS values of head motion were calculated and a 3-dimensional model of joint motion11 was developed to examine gross head motion in 3 planes. We found that subjects standing quietly in front of a visual scene translating in the sagittal plane produced significantly greater (p<0.003) head motion in yaw than when on a translating platform. However, when the platform was translated in the dark or with a visual scene rotating in roll, head motion orthogonal to the plane of platform motion significantly increased (p<0.02). Visually sensitive subjects having no history of vestibular disorder produced large, delayed compensatory head motion. Orthogonal head motions were significantly greater in visually sensitive than in healthy subjects in the dark (p<0.05) and with a stationary scene (p<0.01). We concluded that motion of the visual field can modify compensatory response kinematics of a freely moving head in planes orthogonal to the direction of a physical perturbation. These results suggest that the mechanisms controlling head orientation in space are distinct from those that control trunk orientation in space. These behaviors would have been missed if only COP data were considered. Data suggest that rehabilitation training can be enhanced by combining visual and mechanical perturbation paradigms. PMID:18162402

  7. Results of instrumented posterolateral fusion in treatment of lumbar spondylolisthesis with and without segmental kyphosis: A retrospective investigation.

    PubMed

    Chen, Szu-Yuan; Lu, Meng-Ling; Niu, Chi-Chien; Tsai, Tsung-Ting; Liao, Jen-Chung; Chen, Lih-Huei; Chen, Wen-Jer

    2015-01-01

    Treatment by posterolateral fusion (PLF) with pedicle-screw instrumentation can be unsuccessful in one-segment and low-grade lumbar spondylolisthesis. Segmental kyphosis, either rigid or dynamic, was hypothesized to be one of the factors interfering with the fusion results. From 2004 to 2005, 239 patients with single-segment and low-grade spondylolisthesis were recruited and divided into two groups: Group 1 consisting of 129 patients without segmental kyphosis and group 2 consisting of 110 patients with segmental kyphosis. All patients underwent instrumented PLF at the same medical institute, and the average follow-up period was 31 ± 19 months. We obtained plain radiographs of the lumbosacral spine with the anteroposterior view, the lateral view, and the dynamic flexion-extension views before the operation and during the follow-ups. The results of PLF in the two groups were then compared. There was no significant difference in the demographic data of the two groups, except for gender distribution. The osseous fusion rates were 90.7% in group 1 and 68.2% in group 2 (p < 0.001). Instrumented PLF resulted in significantly higher osseous fusion rate in patients without segmental kyphosis than in the patients with segmental kyphosis. For the patients with sagittal imbalance, such as rigid or dynamic kyphosis, pedicle-screw fixation cannot ensure successful PLF. Interbody fusion by the posterior lumbar interbody fusion or transforaminal lumbar interbody fusion technique might help overcome this problem.

  8. Diagnostic Lumbar Puncture

    PubMed Central

    Doherty, Carolynne M; Forbes, Raeburn B

    2014-01-01

    Diagnostic Lumbar Puncture is one of the most commonly performed invasive tests in clinical medicine. Evaluation of an acute headache and investigation of inflammatory or infectious disease of the nervous system are the most common indications. Serious complications are rare, and correct technique will minimise diagnostic error and maximise patient comfort. We review the technique of diagnostic Lumbar Puncture including anatomy, needle selection, needle insertion, measurement of opening pressure, Cerebrospinal Fluid (CSF) specimen handling and after care. We also make some quality improvement suggestions for those designing services incorporating diagnostic Lumbar Puncture. PMID:25075138

  9. Evolution of the postoperative sagittal spinal profile in early-onset scoliosis: is there a difference between rib-based and spine-based growth-friendly instrumentation?

    PubMed

    Chen, Zhonghui; Li, Song; Qiu, Yong; Zhu, Zezhang; Chen, Xi; Xu, Liang; Sun, Xu

    2017-12-01

    OBJECTIVE Although the vertical expandable prosthetic titanium rib (VEPTR) and growing rod instrumentation (GRI) encourage spinal growth via regular lengthening, they can create different results because of their different fixation patterns and mechanisms in correcting scoliosis. Previous studies have focused comparisons on coronal plane deformity with minimal attention to the sagittal profile. In this retrospective study, the authors aimed to compare the evolution of the sagittal spinal profile in early-onset scoliosis (EOS) treated with VEPTR versus GRI. METHODS The data for 11 patients with VEPTR and 22 with GRI were reviewed. All patients had more than 2 years' follow-up with more than 2 lengthening procedures. Radiographic measurements were performed before and after the index surgery and at the latest follow-up. The complications in both groups were recorded. RESULTS Patients in both groups had similar diagnoses, age at the index surgery, and number of lengthening procedures. The changes in the major coronal Cobb angle and T1-S1 spinal height were not significantly different between the 2 groups. Compared with the GRI group, the VEPTR group had less correction in thoracic kyphosis (23% ± 12% vs 44% ± 16%, p < 0.001) after the index surgery and experienced a greater correction loss in thoracic kyphosis (46% ± 18% vs 11% ± 8%, p < 0.001) at the latest follow-up. Although the increase in the proximal junctional angle was not significantly different (VEPTR: 7° ± 4° vs GRI: 8° ± 5°, p = 0.569), the incidence of proximal junctional kyphosis was relatively lower in the VEPTR group (VEPTR: 18.2% vs GRI: 22.7%). No significant changes in the spinopelvic parameters were observed, while the sagittal vertical axis showed a tendency toward a neutral position in both groups. The overall complication rate was higher in the VEPTR group than in the GRI group (72.7% vs 54.5%). CONCLUSIONS The VEPTR had coronal correction and spinal growth results similar to those

  10. The effect of sagittal rotation of the glenoid on axial glenoid width and glenoid version in computed tomography scan imaging.

    PubMed

    Gross, Daniel J; Golijanin, Petar; Dumont, Guillaume D; Parada, Stephen A; Vopat, Bryan G; Reinert, Steven E; Romeo, Anthony A; Provencher, C D R Matthew T

    2016-01-01

    Computed tomography (CT) scans of the shoulder are often not well aligned to the axis of the scapula and glenoid. The purpose of this paper was to determine the effect of sagittal rotation of the glenoid on axial measurements of anterior-posterior (AP) glenoid width and glenoid version attained by standard CT scan. In addition, we sought to define the angle of rotation required to correct the CT scan to optimal positioning. A total of 30 CT scans of the shoulder were reformatted using OsiriX software multiplanar reconstruction. The uncorrected (UNCORR) and corrected (CORR) CT scans were compared for measurements of both (1) axial AP glenoid width and (2) glenoid version at 5 standardized axial cuts. The mean difference in glenoid version was 2.6% (2° ± 0.1°; P = .0222) and the mean difference in AP glenoid width was 5.2% (1.2 ± 0.42 mm; P = .0026) in comparing the CORR and UNCORR scans. The mean angle of correction required to align the sagittal plane was 20.1° of rotation (range, 9°-39°; standard error of mean, 1.2°). These findings demonstrate that UNCORR CT scans of the glenohumeral joint do not correct for the sagittal rotation of the glenoid, and this affects the characteristics of the axial images. Failure to align the sagittal image to the 12-o'clock to 6-o'clock axis results in measurement error in both glenoid version and AP glenoid width. Use of UNCORR CT images may have notable implications for decision-making and surgical treatment. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  11. Geometric Structure of 3D Spinal Curves: Plane Regions and Connecting Zones

    PubMed Central

    Berthonnaud, E.; Hilmi, R.; Dimnet, J.

    2012-01-01

    This paper presents a new study of the geometric structure of 3D spinal curves. The spine is considered as an heterogeneous beam, compound of vertebrae and intervertebral discs. The spine is modeled as a deformable wire along which vertebrae are beads rotating about the wire. 3D spinal curves are compound of plane regions connected together by zones of transition. The 3D spinal curve is uniquely flexed along the plane regions. The angular offsets between adjacent regions are concentrated at level of the middle zones of transition, so illustrating the heterogeneity of the spinal geometric structure. The plane regions along the 3D spinal curve must satisfy two criteria: (i) a criterion of minimum distance between the curve and the regional plane and (ii) a criterion controlling that the curve is continuously plane at the level of the region. The geometric structure of each 3D spinal curve is characterized by the sizes and orientations of regional planes, by the parameters representing flexed regions and by the sizes and functions of zones of transition. Spinal curves of asymptomatic subjects show three plane regions corresponding to spinal curvatures: lumbar, thoracic and cervical curvatures. In some scoliotic spines, four plane regions may be detected. PMID:25031873

  12. Strain distribution in the lumbar vertebrae under different loading configurations.

    PubMed

    Cristofolini, Luca; Brandolini, Nicola; Danesi, Valentina; Juszczyk, Mateusz M; Erani, Paolo; Viceconti, Marco

    2013-10-01

    The stress/strain distribution in the human vertebrae has seldom been measured, and only for a limited number of loading scenarios, at few locations on the bone surface. This in vitro study aimed at measuring how strain varies on the surface of the lumbar vertebral body and how such strain pattern depends on the loading conditions. Eight cadaveric specimens were instrumented with eight triaxial strain gauges each to measure the magnitude and direction of principal strains in the vertebral body. Each vertebra was tested in a three adjacent vertebrae segment fashion. The loading configurations included a compressive force aligned with the vertebral body but also tilted (15°) in each direction in the frontal and sagittal planes, a traction force, and torsion (both directions). Each loading configuration was tested six times on each specimen. The strain magnitude varied significantly between strain measurement locations. The strain distribution varied significantly when different loading conditions were applied (compression vs. torsion vs. traction). The strain distribution when the compressive force was tilted by 15° was also significantly different from the axial compression. Strains were minimal when the compressive force was applied coaxial with the vertebral body, compared with all other loading configurations. Also, strain was significantly more uniform for the axial compression, compared with all other loading configurations. Principal strains were aligned within 19° to the axis of the vertebral body for axial-compression and axial-traction. Conversely, when the applied force was tilted by 15°, the direction of principal strain varied by a much larger angle (15° to 28°). This is the first time, to our knowledge, that the strain distribution in the vertebral body is measured for such a variety of loading configurations and a large number of strain sensors. The present findings suggest that the structure of the vertebral body is optimized to sustain

  13. Does Lordotic Angle of Cage Determine Lumbar Lordosis in Lumbar Interbody Fusion?

    PubMed

    Hong, Taek-Ho; Cho, Kyu-Jung; Kim, Young-Tae; Park, Jae-Woo; Seo, Beom-Ho; Kim, Nak-Chul

    2017-07-01

    Retrospective, radiological analysis. To determine that 15° lordotic angle cages create higher lumbar lordosis in open transforaminal lumbar interbody fusion (TLIF) than 4° and 8° cages. Restoration of lumbar lordosis is important to obtain good outcome after lumbar fusion surgery. Various shapes and angles of cages in interbody fusion have been used; however, it is not proved that lordotic angle of cages determine lumbar lordosis. Sixty-seven patients were evaluated after TLIF using 15° cages and screw instrumentation. For comparison, TLIF using 4° lordotic angle cages in 65 patients and 8° cages in 49 patients were analyzed. Lumbar lordosis angles, segmental lordosis angles, disc height, and bony union rate were measured on the radiographs. The lumbar lordosis was 31.1° preoperatively, improved to 42.9° postoperatively, and decreased to 36.4° at the last follow-up in the 15° group. It was 35.8° before surgery, corrected to 41.5° after surgery, and changed to 33.6° at the last follow-up in the 4° group. In the 8° group, it was 32.7° preoperatively, improved to 39.1° postoperatively, and decreased to 34.5° at the last follow-up. These changes showed statistical significances (P < 0.001). The segmental lordosis at L4-5 was 6.6° before surgery, 13.1° after surgery, and 9.8° at the last follow-up in the 15° group. It was 6.9°, 9.5°, and 6.2° in the 4° group and 6.7°, 9.8°, and 8.1° in the 8° group, respectively (P < 0.001). The disc height restoration was better in the 15° group than in the 4° and 8° groups (P < 0.001). Bony union rate was not significant among the three groups (P = 0.087). The lordotic angle of the cages determined restoration of lumbar lordosis after TLIF. Cages with sufficient lordotic angle showed better restoration of lumbar lordosis and prevention of loss of correction. 4.

  14. Interrater and intrarater agreements of magnetic resonance imaging findings in the lumbar spine: significant variability across degenerative conditions.

    PubMed

    Fu, Michael C; Buerba, Rafael A; Long, William D; Blizzard, Daniel J; Lischuk, Andrew W; Haims, Andrew H; Grauer, Jonathan N

    2014-10-01

    Magnetic resonance imaging (MRI) is frequently used in the evaluation of degenerative conditions in the lumbar spine. The relative interrater and intrarater agreements of MRI findings across different pathologic conditions are underexplored, as most studies are focused on specific findings. The purpose of this study was to characterize the interrater and intrarater agreements of MRI findings used to assess the degenerative lumbar spine. A retrospective diagnostic study at a large academic medical center was undertaken with a panel of orthopedic surgeons and musculoskeletal radiologists to assess lumbar MRIs using standardized criteria. Seventy-five subjects who underwent routine lumbar spine MRI at our institution were included. Each MRI study was assessed for 10 lumbar degenerative findings using standardized criteria. Lumbar vertebral levels were assessed independently, where applicable, for a total of 52 data points collected per study. T2-weighted axial and sagittal MRI sequences were presented in random order to the four reviewers (two orthopedic spine surgeons and two musculoskeletal radiologists) independently to determine interrater agreement. The first 10 studies were reevaluated at the end to determine intrarater agreement. Images were assessed using standardized and pilot-tested criteria to assess disc degeneration, stenosis, and other degenerative changes. Interrater and intrarater absolute percent agreements were calculated. To highlight the most clinically important MRI disagreements, a modified agreement analysis was also performed (in which disagreements between the lowest two severity grades for applicable conditions were ignored). Fleiss kappa coefficients for interrater agreement were determined. The overall absolute and modified interrater agreements were 76.9% and 93.5%, respectively. The absolute and modified intrarater agreements were 81.3% and 92.7%, respectively. Average Fleiss kappa coefficient was 0.431, suggesting moderate overall

  15. Analysis of Sagittal Parameters in Patients Undergoing One- or Two-Level Closing Wedge Osteotomy for Correcting Thoracolumbar Kyphosis Secondary to Ankylosing Spondylitis.

    PubMed

    Hua, Wen-Bin; Zhang, Yu-Kun; Gao, Yong; Liu, Xian-Zhe; Yang, Shu-Hua; Wu, Xing-Huo; Wang, Jing; Yang, Cao

    2017-07-15

    Retrospective analysis of clinical records. To assess and compare the improvement in sagittal balance after one- or two-level closing wedge osteotomy for correcting thoracolumbar kyphosis secondary to ankylosing spondylitis (AS). Closing wedge osteotomy represents a common approach to correct kyphosis in AS. Although several reports have described the outcomes of one- or two-level closing wedge osteotomy in terms of sagittal parameters, data comparing the outcomes of these procedures are scarce. Between January 2010 and December 2014, 22 patients with AS underwent closing wedge osteotomy (one-level, 12 patients; two-level, 10 patients) for correcting thoracolumbar kyphosis (mean follow-up, 24.8 months; range, 12-60 months). Preoperative and postoperative chin-brow vertical angle, and the sagittal parameters of the vertebral osteotomy segment were documented and compared. Perioperative and postoperative complications were also recorded. The chin-brow vertical angle improved significantly, from 55.0° ± 27.3° to 4.7° ± 4.9° and from 38.2° ± 14.9° to 3.2° ± 5.4° in the one-level and two-level groups, respectively. The total correction (thoracic kyphosis and lumbar lordosis) was 32.8° ± 18.2° and 53.7° ± 9.4° in the one-level and two-level groups, respectively. No death, complete paralysis, or vascular complications occurred during the procedure, but cerebrospinal fluid leak was noted in one and two patients from the one-level and two-level groups, respectively. A distal pedicle screw adjacent to the osteotomy segment became loose during surgery in one patient (one-level group). Postoperatively, no transient neurological deficit, infection, delay union, or loosening or breaking of the internal fixation devices was observed. Osteotomy site fusion was achieved in all patients, and the Oswestry Disability Index scores improved significantly. Closing wedge osteotomy is effective and safe for correcting thoracolumbar kyphosis in

  16. [Biomechanics changes of lumbar spine caused by foraminotomy via percutaneous transforaminal endoscopic lumbar discectomy].

    PubMed

    Qian, J; Yu, S S; Liu, J J; Chen, L; Jing, J H

    2018-04-03

    Objective: To analyze the biomechanics changes of lumbar spine caused by foraminotomy via percutaneous transforaminal endoscopic lumbar discectomy using the finite element method. Methods: Three healthy adult males (aged 35.6 to 42.3 years) without spinal diseases were enrolled in this study and 3D-CT scans were carried out to obtain the parameters of lumbar spine. Mimics software was applied to build a 3D finite element model of lumbar spine. Graded resections (1/4, 2/4, 3/4 and 4/4) of the left superior articular process of L(5) were done via percutaneous transforaminal endoscopic lumbar discectomy. Then, the pressure of the L(4/5) right facets, the pressure of the L(4/5) intervertebral disc and the motion of lumbar spine were recorded after simulating the normal flexion and extension, lateral flexion and rotation of the lumbar spine model during different resections. The data were compared among groups with analysis of variance. Results: Comparing with the normal group, after 1/4 resection of the left superior articular process of L(5), the pressure of the L(4/5) right facets showed significant differences during left lateral flexion and rotation of lumbar spine ( q =8.823, 8.248, both P <0.05); and the pressure of L(4/5) intervertebral disc also changed significantly during extension and right rotation of lumbar spine ( q =6.918, 6.438, both P <0.05); the motion of lumbar spine showed obvious differences during right lateral flexion and rotation ( q =6.845, 7.772, 13.58, all P <0.05). Comparing with the normal group, after 2/4 resection of the left superior articular process of L(5), the pressure of the L(4/5) right facets presented significant differences during all conditions ( q =5.670-17.830, all P <0.05); the pressure of L(4/5) intervertebral disc changed significantly during flexion, extension, lateral flexion and right rotation ( q =5.260, 17.150, 5.727, 8.890, 15.660, all P <0.05); the motion of lumbar spine also existed differences during extension

  17. Reproducibility and repeatability of a new computerized software for sagittal spinopelvic and scoliosis curvature radiologic measurements: Keops(®).

    PubMed

    Maillot, C; Ferrero, E; Fort, D; Heyberger, C; Le Huec, J-C

    2015-07-01

    The purpose of this study was to evaluate the inter- and intra-observer variability of the computerized radiologic measurements using Keops(®) and to determine the bias between the software and the standard paper measurement. Four individuals measured all frontal and sagittal variables on the 30 X-rays randomly selected on two occasions (test and retest conditions). The Bland-Altman plot was used to determine the degree of agreement between the measurement on paper X-ray and the measurement using Keops(®) for all reviewers and for the two measures; the intraclass correlation coefficient (ICC) was calculated for each pair of analyses to assess interobserver reproducibility among the four reviewers for the same patient using either paper X-ray or Keops(®) measurement and finally, concordance correlation coefficient (rc) was calculated to assess intraobserver repeatability among the same reviewer for one patient between the two measure using the same method (paper or Keops(®)). The mean difference calculated between the two methods was minimal at -0, 4° ± 3.41° [-7.1; 6.4] for frontal measurement and 0.1° ± 3.52° [-6.7; 6.8] for sagittal measurement. Keops(®) has a better interobserver reproducibility than paper measurement for determination of the sagittal pelvic parameter (ICC = 0.9960 vs. 0.9931; p = 0.0001). It has a better intraobserver repeatability than paper for determination of Cobbs angle (rc = 0.9872 vs. 0.9808; p < 0.0001) and for pelvic parameter (rc = 0.9981 vs. 0.9953; p < 0.0001). We conclude that Keops(®) has no bias compared to the traditionally paper measurement, and moreover, the repeatability and the reproducibility of measurements with this method is much better than with similar standard radiologic measures done manually in both frontal and sagittal plane and that the use of this software can be recommended for clinical application. Diagnostic, level III.

  18. Transforaminal endoscopic treatment of lumbar radiculopathy after instrumented lumbar spine fusion.

    PubMed

    Telfeian, Albert E; Jasper, Gabriele P; Francisco, Gina M

    2015-01-01

    Transforaminal endoscopic discectomy and foraminotomy is a well-described minimally invasive technique for surgically treating lumbar radiculopathy caused by a herniated disc and foraminal narrowing. To describe the technique and feasibility of transforaminal foraminoplasty for the treatment of lumbar radiculopathy in patients who have already undergone instrumented spinal fusion. Retrospective study. Hospital and ambulatory surgery center After Institutional Review Board approval, charts from 18 consecutive patients with lumbar radiculopathy and instrumented spinal fusions who underwent endoscopic procedures between 2008 and 2013 were reviewed. The average pain relief one year postoperatively was reported to be 67.0%, good results as defined by MacNab. The average preoperative VAS score was 9.14, indicated in our questionnaire as severe and constant pain. The average one year postoperative VAS score was 3.00, indicated in our questionnaire as mild and intermittent pain. This is a retrospective study and only offers one year follow-up data for patients with instrumented fusions who have undergone endoscopic spine surgery. Transforaminal endoscopic discectomy and foraminotomy could be used as a safe, yet, minimally invasive and innovative technique for the treatment of lumbar radiculopathy in the setting of previous instrumented lumbar fusion. IRB approval: Meridian Health: IRB Study # 201206071J

  19. Correction Capability in the 3 Anatomic Planes of Different Pedicle Screw Designs in Scoliosis Instrumentation.

    PubMed

    Wang, Xiaoyu; Aubin, Carl-Eric; Coleman, John; Rawlinson, Jeremy

    2017-05-01

    Computer simulations to compare the correction capabilities of different pedicle screws in adolescent idiopathic scoliosis (AIS) instrumentations. To compare the correction and resulting bone-screw forces associated with different pedicle screws in scoliosis instrumentations. Pedicle screw fixation is widely used in surgical instrumentation for spinal deformity treatment. Screw design, correction philosophies, and surgical techniques are constantly evolving to achieve better control of the vertebrae and correction of the spinal deformity. Yet, there remains a lack of biomechanical studies that quantify the effects and advantages of different screw designs in terms of correction kinematics. The correction capabilities of fixed-angle, multiaxial, uniaxial, and saddle axial screws were kinematically analyzed, simulated, and compared. These simulations were based on the screw patterns and correction techniques proposed by 2 experienced surgeons for 2 AIS cases. Additional instrumentations were assessed to compare the correction and resulting bone-screw forces associated with each type of screw. The fixed-angle, uniaxial and saddle axial screws had similar kinematic behavior and performed better than multiaxial screws in the coronal and transverse planes (8% and 30% greater simulated corrections, respectively). Uniaxial and multiaxial screws were less effective than fixed-angle and saddle axial screws in transmitting compression/distraction to the anterior spine because of their sagittal plane mobility between the screw head and shank. Only the saddle axial screws allow vertebra angle in the sagittal plane to be independently adjusted. Pedicle screws of different designs performed differently for deformity corrections or for compensating screw placement variations in different anatomic planes. For a given AIS case, screw types should be determined based on the particular instrumentation objectives, the deformity's stiffness and characteristics so as to make the best of

  20. Painful lumbar spondylolysis among pediatric sports players: a pilot MRI study.

    PubMed

    Sairyo, Koichi; Sakai, Toshinori; Mase, Yasuyoshi; Kon, Tamiyo; Shibuya, Isao; Kanamori, Yasuo; Kosugi, Tatsuo; Dezawa, Akira

    2011-11-01

    For children and adolescents who are very active athletes, fresh lumbar spondylolysis is the main pathologic cause of lower back pain (LBP). However, regarding the terminal-stage spondylolysis (pars defect), there have been few studies to clarify the pathomechanism of LBP. The purpose of this study is to clarify the cause of LBP associated with pars defects in athletes. This is the first report showing a possible pathomechanism of LBP in active athletes with painful pars defect. Six pediatric athletes (5 boys and 1 girl) below 18 years old with painful bilateral lumbar spondylolysis were evaluated. In all cases, spondylolysis was identified as terminal stage (pseudoarthrosis) on CT scan. To evaluate the inflammation around the pars defects, short time inversion recovery (STIR) MRI was performed along with the sagittal section. Fluid collection, which is an indicator of inflammatory events, was evaluated in 12 pars defects as well as in 12 cranial and caudal adjoining facet joints. Inflammation (i.e., fluid collection) was observed in all 12 pars defects in six subjects at the pseudoarthrotic pars defects. In terms of facet joints, 7 of 12 (58%) pars defects showed fluid collection at the cranial and/or caudal adjoining joints on STIR MRI. The present study showed that inflammation was always present at the pars defects and in some cases at the adjoining facet joints. Thus, it is not difficult to understand how, during sports activity, inflammation may first occur at the pseudoarthrotic site and then spread to the adjoining facet joints. This mechanism could cause LBP associated with terminal-stage (pseudoarthrotics) spondylolysis in athletes.

  1. Inter-rater Reliability of Three Musculoskeletal Physical examination Techniques Used to Assess Motion in Three Planes While Standing

    PubMed Central

    Prather, Heidi; Hunt, Devyani; Steger-May, Karen; Hayes, Marcie Harris; Knaus, Evan; Clohisy, John

    2012-01-01

    Objective The objective of the study was to measure the reliability between examiners of three basic maneuvers of the Total Body Functional Profile© physical examination test. The hypothesis was musculoskeletal health care providers of different disciplines could reliably use the three basic maneuvers as part of the musculoskeletal physical examination. Design A prospective observational study was conducted. Twenty-eight adult volunteers were measured on both the left and right side by two independent raters on a single occasion. Setting The subjects were recruited through advertisements placed by the orthopedic department at a tertiary university. Participants 28 volunteers were recruited and completed the study. The volunteers were between the ages of 18 and 51 years of age, had no symptoms in the lower extremity or spine, had no previous history of surgery or tumor involving the lower extremity, and no medical conditions that would preclude participation. Assessment On a single occasion, two examiners per one volunteer were blinded to their own and each others' measurements. Each examiner assessed the distance of frontal and sagittal plane lunge and angle of motion for transverse plane testing. Main Outcome Measurements Inter-rater agreement is expressed with intraclass correlation coefficients (ICCs) and corresponding 95% confidence intervals (CIs). The difference between raters is reported with 95% CIs. Baseline demographics, UCLA, and Harris hip questionnaires were completed by all participants. Results The UCLA and Harris hip scores showed no significant activity restrictions or pain limitations in all participants. The inter-rater reliability for sagittal, frontal, and transverse plane matrix testing was good with ICCs of 0.86 (95% CI 0.77, 0.91), 0.90 (95% CI 0.84, 0.94), and 0.85 (95% CI 0.75, 0.91) respectively. The rater reliability between disciplines for transverse, sagittal and frontal plane matrix testing was good with ICCs of 0.89 (95% CI 0.80, 0

  2. Inter-rater reliability of three musculoskeletal physical examination techniques used to assess motion in three planes while standing.

    PubMed

    Prather, Heidi; Hunt, Devyani; Steger-May, Karen; Hayes, Marcie Harris; Knaus, Evan; Clohisy, John

    2009-07-01

    The objective of the study was to measure the reliability between examiners of 3 basic maneuvers of the Total Body Functional Profile physical examination test. The hypothesis was musculoskeletal health care providers of different disciplines could reliably use the 3 basic maneuvers as part of the musculoskeletal physical examination. A prospective observational study was conducted. Twenty-eight adult volunteers were measured on both the left and right side by 2 independent raters on a single occasion. The subjects were recruited through advertisements placed by the orthopedic department at a tertiary university. Twenty-eight volunteers were recruited and completed the study. The volunteers were between the ages of 18 and 51 years of age, had no symptoms in the lower extremity or spine, had no previous history of surgery or tumor involving the lower extremity, and no medical conditions that would preclude participation. On a single occasion, 2 examiners per 1 volunteer were blinded to their own and each others' measurements. Each examiner assessed the distance of frontal and sagittal plane lunge and angle of motion for transverse plane testing. Inter-rater agreement is expressed with intraclass correlation coefficients (ICCs) and corresponding 95% confidence intervals (CIs). The difference between raters is reported with 95% CIs. Baseline demographics, University of California Los Angeles (UCLA), and Harris hip questionnaires were completed by all participants. The UCLA and Harris hip scores showed no significant activity restrictions or pain limitations in all participants. The inter-rater reliability for sagittal, frontal, and transverse plane matrix testing was good with ICCs of 0.86 (95% CI 0.77-0.91), 0.90 (95% CI 0.84-0.94), and 0.85 (95% CI 0.75-0.91), respectively. The rater reliability between disciplines for transverse, sagittal, and frontal plane matrix testing was good with ICCs of 0.89 (95% CI 0.80-0.94), 0.88 (95% CI 0.79-0.94), and 0.90 (95% CI 0

  3. Automatic Recognition of Fetal Facial Standard Plane in Ultrasound Image via Fisher Vector.

    PubMed

    Lei, Baiying; Tan, Ee-Leng; Chen, Siping; Zhuo, Liu; Li, Shengli; Ni, Dong; Wang, Tianfu

    2015-01-01

    Acquisition of the standard plane is the prerequisite of biometric measurement and diagnosis during the ultrasound (US) examination. In this paper, a new algorithm is developed for the automatic recognition of the fetal facial standard planes (FFSPs) such as the axial, coronal, and sagittal planes. Specifically, densely sampled root scale invariant feature transform (RootSIFT) features are extracted and then encoded by Fisher vector (FV). The Fisher network with multi-layer design is also developed to extract spatial information to boost the classification performance. Finally, automatic recognition of the FFSPs is implemented by support vector machine (SVM) classifier based on the stochastic dual coordinate ascent (SDCA) algorithm. Experimental results using our dataset demonstrate that the proposed method achieves an accuracy of 93.27% and a mean average precision (mAP) of 99.19% in recognizing different FFSPs. Furthermore, the comparative analyses reveal the superiority of the proposed method based on FV over the traditional methods.

  4. The Lumbar Pelvic Angle, the Lumbar Component of the T1 Pelvic Angle, Correlates With HRQOL, PI-LL Mismatch, and it Predicts Global Alignment.

    PubMed

    Protopsaltis, Themistocles S; Lafage, Renaud; Smith, Justin S; Passias, Peter G; Shaffrey, Christopher I; Kim, Han Jo; Mundis, Gregory M; Ames, Christopher P; Burton, Douglas C; Bess, Shay; Klineberg, Eric; Hart, Robert A; Schwab, Frank J; Lafage, Virginie

    2018-05-15

    Prospective multicenter analysis of adult spinal deformity (ASD) patients. The aim of this study was to introduce the lumbar pelvic angle (LPA), a novel parameter of spinopelvic alignment. The T1 pelvic angle (TPA), a measure of global spinopelvic alignment, correlates with health-related quality of life (HRQOL), but it may not be measureable on all intraoperative x-rays. In patients with previous interbody fusion at L5-S1, the plane of the S1 endplate can be blurred, creating error in pelvic incidence and lumbar lordosis (PI-LL) measure. The LPA is more readily measured on intraoperative imaging than the TPA. ASD patients were included with either coronal Cobb angle >20°, sagittal vertical axis (SVA) >5 cm, thoracic kyphosis >60°, or pelvic tilt (PT) >25°. Measures of disability included Oswestry Disability Index (ODI), Scoliosis Research Society (SRS), and Short Form (SF)-36. Baseline and 2-year follow-up radiographic and HRQOL outcomes were evaluated. Linear regressions compared LPA with radiographic parameters and HRQOL. A total of 852 ASD patients (407 operative) were enrolled (mean age 53.7). Baseline LPA correlated with PI-LL (r = 0.79), PT (r = 0.78), TPA (r = 0.82), and SVA (r = 0.61) (all P < 0.001). PI-LL, LPA, and TPA correlated with ODI (r = 0.42/0.29/0.45), SF-36 physical component score (-0.43/-0.28/-0.45) SRS (-0.354/-0.23/-0.37) with all P < 0.001. At 2 years' follow-up, LPA correlated with PI-LL (r = 0.77), PT (r = 0.78), TPA (r = 0.83), and SVA (r = 0.57) (all P < 0.001). Categorizing patients by increasing LPA (<7°; 7°-15°; >15°) revealed progressive increases in all HRQOL, PI-LL (-3.2°/12.7°/32.4°), and TPA (9.7°/20.1°/34.6°) with all P < 0.001. Moderate disability (ODI = 40) corresponded to LPA 10.1°, PI-LL 12.6°, and TPA 20.6°. Mild disability (ODI = 20) corresponded to LPA 7.2°, PI-LL 4.2°, and TPA 14.7°. LPA correlates with TPA, PI-LL, and HRQOL in ASD patients

  5. Sagittal Plane Kinematics of the Jaw and Hyolingual Apparatus During Swallowing in Macaca mulatta

    PubMed Central

    Iriarte-Diaz, Jose; Arce-McShane, Fritzie; Orsbon, Courtney P.; Brown, Kevin A.; Eastment, McKenna; Avivi-Arber, Limor; Sessle, Barry J.; Inoue, Makoto; Hatsopoulos, Nicholas G.; Ross, Callum F.

    2018-01-01

    Studies of mechanisms of feeding behavior are important in a society where aging- and disease-related feeding disorders are increasingly prevalent. It is important to evaluate the clinical relevance of animal models of the disease and the control. Our present study quantifies macaque hyolingual and jaw kinematics around swallowing cycles to determine the extent to which macaque swallowing resembles that of humans. One female and one male adult Macaca mulatta were trained to feed in a primate chair. Videofluoroscopy was used to record kinematics in a sagittal view during natural feeding on solid food, and the kinematics of the hyoid bone, thyroid cartilage, mandibular jaw, and anterior-, middle-, and posterior-tongue. Jaw gape cycles were defined by consecutive maximum gapes, and the kinematics of the swallow cycles were compared with those of the two consecutive non-swallow cycles preceding and succeeding the swallow cycles. Although there are size differences between macaques and humans, and macaques have shorter durations of jaw gape cycles and hyoid and thyroid upward movements, there are several important similarities between our macaque data and human data reported in the literature: (1) The durations of jaw gape cycles during swallow cycles are longer than those of non-swallow cycles as a result of an increased duration of the jaw-opening phase; (2) Hyoid and thyroid upward movement is linked with a posterior tongue movement and is faster during swallow than non-swallow cycles; (3) Tongue elevation propagates from anterior to posterior during swallow and non-swallow cycles. These findings suggest that macaques can be a useful experimental model for human swallowing studies. PMID:28528492

  6. Lumbar lordosis.

    PubMed

    Been, Ella; Kalichman, Leonid

    2014-01-01

    Lumbar lordosis is a key postural component that has interested both clinicians and researchers for many years. Despite its wide use in assessing postural abnormalities, there remain many unanswered questions regarding lumbar lordosis measurements. Therefore, in this article we reviewed different factors associated with the lordosis angle based on existing literature and determined normal values of lordosis. We reviewed more than 120 articles that measure and describe the different factors associated with the lumbar lordosis angle. Because of a variety of factors influencing the evaluation of lumbar lordosis such as how to position the patient and the number of vertebrae included in the calculation, we recommend establishing a uniform method of evaluating the lordosis angle. Based on our review, it seems that the optimal position for radiologic measurement of lordosis is standing with arms supported while shoulders are flexed at a 30° angle. There is evidence that many factors, such as age, gender, body mass index, ethnicity, and sport, may affect the lordosis angle, making it difficult to determine uniform normal values. Normal lordosis should be determined based on the specific characteristics of each individual; we therefore presented normal lordosis values for different groups/populations. There is also evidence that the lumbar lordosis angle is positively and significantly associated with spondylolysis and isthmic spondylolisthesis. However, no association has been found with other spinal degenerative features. Inconclusive evidence exists for association between lordosis and low back pain. Additional studies are needed to evaluate these associations. The optimal lordotic range remains unknown and may be related to a variety of individual factors such as weight, activity, muscular strength, and flexibility of the spine and lower extremities. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. A three-plane architectonic atlas of the rat hippocampal region.

    PubMed

    Boccara, Charlotte N; Kjonigsen, Lisa J; Hammer, Ingvild M; Bjaalie, Jan G; Leergaard, Trygve B; Witter, Menno P

    2015-07-01

    The hippocampal region, comprising the hippocampal formation and the parahippocampal region, has been one of the most intensively studied parts of the brain for decades. Better understanding of its functional diversity and complexity has led to an increased demand for specificity in experimental procedures and manipulations. In view of the complex 3D structure of the hippocampal region, precisely positioned experimental approaches require a fine-grained architectural description that is available and readable to experimentalists lacking detailed anatomical experience. In this paper, we provide the first cyto- and chemoarchitectural description of the hippocampal formation and parahippocampal region in the rat at high resolution and in the three standard sectional planes: coronal, horizontal and sagittal. The atlas uses a series of adjacent sections stained for neurons and for a number of chemical marker substances, particularly parvalbumin and calbindin. All the borders defined in one plane have been cross-checked against their counterparts in the other two planes. The entire dataset will be made available as a web-based interactive application through the Rodent Brain WorkBench (http://www.rbwb.org) which, together with this paper, provides a unique atlas resource. © 2014 Wiley Periodicals, Inc.

  8. Morphological parameters for implantation of the screwless spring loop dynamic posterior spinous process stabilizing system.

    PubMed

    Song, Geun Soo; Lee, Yeon Soo

    2015-07-01

    This study aimed to quantify morphological characteristics of the posterior lumbar spinous process, which may affect stable implantation of screwless wire spring loops. Virtual implantations of a screwless wire spring loop onto pairs of lumbar spinous processes were performed for computed tomography (CT)-derived three-dimensional vertebral models of 40 Korean subjects. Morphological parameters of lumbar vertebrae 1 through 5 (L1-L5) were measured with regard to bone-implant interference. In males, the transspinous process fixation lengths decreased from 57.8±3.0mm to 48.8±3.2mm as the lumbar joints descend from L1-L2 to L4-L5, with those in females about 4.1±0.4mm shorter (p<0.05) than in males through all lumbar joints. The fixation angle on the sagittal plane varied from 105.0° to 101.3° relative to the transverse plane as the vertebrae descend. The clenched thickness in females was the least (6.7±1.2mm) for the L2 lower spinous process and the greatest (8.1±2.2mm) for the L4 upper spinous process; this was 1.0±10.3mm less than that for males at corresponding levels (p>0.05). The ratio of the spinous process clenched thickness to the transspinous fixation length increased from 0.133±0.016 to 0.196±0.076 for the upper spinous processes as the lumbar joints descend. The ratio of the spinous process clenched thickness to the transspinous fixation length varies, depending on gender and whether the clenched level is the upper or lower spinous process. These parameters related to the clenching fixation stability should be considered in development and implantations of the screwless wire spring loop. Copyright © 2015 Elsevier GmbH. All rights reserved.

  9. A study on difference and importance of sacral slope and pelvic sacral angle that affect lumbar curvature.

    PubMed

    Choi, Seyoung; Lee, Minsun; Kwon, Byongan

    2014-01-01

    Individual pelvic sacral angle was measured, compared and analyzed for the 6 male and female adults who were diagnosed with lumbar spinal stenosis, foraminal stenosis and mild spondylolisthesis in accordance with spinal parameters, pelvic parameters and occlusion state of sacroiliac joint presented by the author of this thesis based on the fact that the degree of lumbar excessive lordosis that was one of the causes for lumbar pain was determined by sacral slope. The measured values were compared with the standard values of the average normal range from 20 s to 40 s of normal Koreans stated in the study on the change in lumbar lordosis angle, lumbosacral angle and sacral slope in accordance with the age by Oh et al. [5] and sacral slope and pelvic sacral slope of each individual of the subjects for measurement were compared. Comparing the difference between the two tilt angles possessed by an individual is a comparison to determine how much the sacroiliac joint connecting pelvis and sacral vertebrae compensated and corrected the sacral vertebrae slope by pelvic tilt under the condition of synarthrodial joint.Under the condition that the location conforming to the line in which the sagittal line of gravity connects with pelvic ASIS and pubic pubic tuberele is the neutral location of pelvic tilt, sacral slope being greater than pelvic sacral slope means pelvic anterior tilting, whereas sacral slope being smaller than pelvic sacral slope means pelvic posterior tilting. On that account, male B, female A and female C had a pelvic posterior tilting of 16 degrees, 1 degree and 5 degrees respectively, whereas male A, male C and female B had a pelvic anterior tilting of 3 degrees, 9 degrees and 4 degrees respectively. In addition, the 6 patients the values of lumbar lordosis angle, lumbosacral angle and sacral slope that were almost twice as much as the normal standard values of Koreans. It is believed that this is because the pelvic sacral slope maintaining an angle that is

  10. Center of mass trajectory and orientation to ankle and knee in sagittal plane is maintained with forward lean when backpack load changes during treadmill walking.

    PubMed

    Caron, Robert R; Wagenaar, Robert C; Lewis, Cara L; Saltzman, Elliot; Holt, Kenneth G

    2013-01-04

    Maintaining the normal shape and amplitude of the vertical trajectory of the center of mass (COM) during stance has been shown to maximize the efficiency of unloaded gait. Kinematic adaptations to load carriage, such as forward lean have yet to be understood in relation to COM movement. The purpose of this study is to better understand how load impacts the vertical COM(TSYS) trajectory and to clarify the impact of forward lean as it relates to the dynamics of sagittal plane COM(TSYS) movement during stance with changing load. 17 subjects walked on treadmill at a constant preferred walking velocity while nine different loads ranging from 12.5% to 40% bodyweight were systematically added and removed from a backpack. Kinematic data were collected using an Optotrak, three-dimensional motion analysis system and used to estimate position of the COM as well as segment and COM-to-joint vector orientation angles. The shape and amplitude of the COM vertical trajectory was maintained across all loaded conditions. The orientations of COM-to-ankle and -knee vectors were maintained in all loaded conditions except the heaviest load (40% BW). Results suggest that forward lean changed linearly with changes in load to maintain the COM-to-ankle and -knee vector orientations. COM vertical trajectory was maintained by a combination of invariants including lower-limb segment angles and a constant direction of toe-off impulse vector. The kinematic invariants found suggest a simplified control mechanism by which the system limits degrees of freedom and potentially minimizes torque about lower-extremity joints with added load. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Assessment of Isometric Trunk Strength - The Relevance of Body Position and Relationship between Planes of Movement.

    PubMed

    Kocjan, Andrej; Sarabon, Nejc

    2014-05-01

    The aim of the study was to assess the differences in maximal isometric trunk extension and flexion strength during standing, sitting and kneeling. Additionally, we were interested in correlations between the maximal strength in sagittal, frontal and transverse plane, measured in the sitting position. Sixty healthy subjects (24 male, 36 female; age 41.3 ± 15.1 yrs; body height 1.70 ± 0.09 m; body mass 72.7 ± 13.3 kg) performed maximal voluntary isometric contractions of the trunk flexor and extensor muscles in standing, sitting and kneeling position. The subjects also performed lateral flexions and rotations in the sitting position. Each task was repeated three times and average of maximal forces was used for data analysis. RANOVA with post-hoc testing was applied to the flexion and extension data. The level of statistical significance was set to p < 0.05. Overall, in both genders together, the highest average force for trunk extension was recorded in sitting posture (910.5 ± 271.5 N), followed by kneeling (834.3 ± 242.9 N) and standing (504.0 ± 165.4 N), compared with flexion, where we observed the opposite trend (508.5 ± 213.0 N, 450.9 ± 165.7 N and 443.4 ± 153.1 N, respectively). Post-hoc tests showed significant differences in all extension positions (p < 0.0001) and between sitting/standing (p = 0.018) and kneeling/standing (p = 0.033) flexion exertions. The extension/flexion ratio for sitting was 2.1 ± 0.4, for kneeling 1.9 ± 0.4, followed by standing, where motion forward approximately equals motion backward (1.1 ± 0.6). Trunk sagittal-transverse strength showed the strongest correlation, followed by frontal-transverse and sagittal-frontal plane correlation pairs (R(2) = 0.830, 0.712 and 0.657). The baseline trunk isometric strength data provided by this study should help further strength diagnostics, more precisely, the prevention of low back disorders. Key pointsMaximal voluntary isometric force of the trunk extensors increased with the angle

  12. Degenerative lumbar spinal stenosis and lumbar spine configuration

    PubMed Central

    Hamoud, K.; May, H.; Hay, O.; Medlej, B.; Masharawi, Y.; Peled, N.; Hershkovitz, I.

    2010-01-01

    As life expectancy increases, degenerative lumbar spinal stenosis (DLSS) becomes a common health problem among the elderly. DLSS is usually caused by degenerative changes in bony and/or soft tissue elements. The poor correlation between radiological manifestations and the clinical picture emphasizes the fact that more studies are required to determine the natural course of this syndrome. Our aim was to reveal the association between lower lumbar spine configuration and DLSS. Two groups were studied: the first included 67 individuals with DLSS (mean age 66 ± 10) and the second 100 individuals (mean age 63.4 ± 13) without DLSS-related symptoms. Both groups underwent CT images (Philips Brilliance 64) and the following measurements were performed: a cross-section area of the dural sac, vertebral body dimensions (height, length and width), AP diameter of the bony spinal canal, lumbar lordosis and sacral slope angles. All measurements were taken at L3 to S1. Vertebral body lengths were significantly greater in the DLSS group at all levels compared to the control, whereas anterior vertebral body heights (L3, L4, L5) and middle vertebral heights (L3, L5) were significantly smaller in the LSS group. Lumbar lordosis, sacral slope and bony spinal canal were significantly smaller in the DLSS compared to the control. We conclude that the size and shape of vertebral bodies and canals significantly differed between the study groups. A tentative model is suggested to explain the association between these characteristics and the development of degenerative spinal stenosis. PMID:20652366

  13. Orgasmic dural tear: an unusual delayed presentation of postural headache following lumbar discectomy.

    PubMed

    Dannawi, Zaher; Lennon, Shirley Evelyn; Zaidan, Ammar; Khazim, Rabi

    2014-11-28

    A 28-year-old woman presented with a severe unremitting frontal postural headache associated with photophobia. This started immediately after standing following reaching orgasm during sexual intercourse. Fifty-two days previously, the patient underwent bilateral L4-L5 decompression laminotomies and a left L4-L5 discectomy for excision of a large herniated intervertebral disc. Subarachnoid haemorrhage was excluded with a CT scan. Brain and lumbar MRI showed enhancement of the pachymeninges and a cerebrospinal fluid (CSF) leak into the deep soft tissue planes. Conservative treatment for 5 days failed to alleviate the patient's symptoms. An exploration and repair of a dural tear was performed. Subsequently, the headache subsided but the patient developed a low-grade infection requiring 12 weeks of antibiotics. Six months later the patient was asymptomatic. This is the first case report of a delayed presentation of a dural tear occurring during sexual intercourse following lumbar surgery. 2014 BMJ Publishing Group Ltd.

  14. Surgical versus nonsurgical treatment of lumbar degenerative kyphosis.

    PubMed

    Goh, Tae Sik; Shin, Jong Ki; Youn, Myung Soo; Lee, Hong Seok; Kim, Taek Hoon; Lee, Jung Sub

    2017-08-01

    Surgery is widely performed for lumbar degenerative kyphosis (LDK), but its effectiveness as compared with nonsurgical treatment has not been demonstrated. In this prospective study, surgical candidates with LDK were enrolled at three spine centres. Two treatment options were performed either surgery using a pedicle subtraction osteotomy or nonsurgical care. Outcomes were measured using a Visual analogue scale (VAS) of back pain as a primary endpoint, the Oswestry disability index (ODI), the 36-item short-form health survey (SF-36), sagittal vertical axis (SVA) and treatment-related complications. Of the 126 LDK patients treated during the reference period, 97 patients were enrolled (47 in the surgical group and 50 in the nonsurgical group). Surgical group produced statistically reduced VAS of back pain and better functional outcomes than nonsurgical group since 12 months after treatment, but the rate of serious complications was higher after surgery. Interestingly, both surgical and nonsurgical groups had improved outcomes in terms of pain intensity and function at the 2-year follow-up period. Surgery might be a preferred treatment option for LDK, but great caution is needed. And conservative treatment could be the considerable treatment option for LDK who is unwilling or has poor medical condition to operate.

  15. Effect of Lumbar Progressive Resistance Exercise on Lumbar Muscular Strength and Core Muscular Endurance in Soldiers.

    PubMed

    Mayer, John M; Childs, John D; Neilson, Brett D; Chen, Henian; Koppenhaver, Shane L; Quillen, William S

    2016-11-01

    Low back pain is common, costly, and disabling for active duty military personnel and veterans. The evidence is unclear on which management approaches are most effective. The purpose of this study was to assess the effectiveness of lumbar extensor high-intensity progressive resistance exercise (HIPRE) training versus control on improving lumbar extension muscular strength and core muscular endurance in soldiers. A randomized controlled trial was conducted with active duty U.S. Army Soldiers (n = 582) in combat medic training at Fort Sam Houston, Texas. Soldiers were randomized by platoon to receive the experimental intervention (lumbar extensor HIPRE training, n = 298) or control intervention (core stabilization exercise training, n = 284) at one set, one time per week, for 11 weeks. Lumbar extension muscular strength and core muscular endurance were assessed before and after the intervention period. At 11-week follow-up, lumbar extension muscular strength was 9.7% greater (p = 0.001) for HIPRE compared with control. No improvements in core muscular endurance were observed for HIPRE or control. Lumbar extensor HIPRE training is effective to improve isometric lumbar extension muscular strength in U.S. Army Soldiers. Research is needed to explore the clinical relevance of these gains. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.

  16. Hybrid circumferential fixation for degenerative lumbosacral spine disease: posterior lumbar interbody fusion plus universal clamp rod-band instrumentation: a novel technique for lumbosacral fixation.

    PubMed

    Tegos, Stergios; Charitidis, Charalampos; Korovessis, Panagiotis G

    2014-04-01

    Retrospective study on circumferential hybrid instrumentation with posterior lumbar interbody fusion (PLIF) and the novel posterior Universal Clamp (UC) instrumentation. This study evaluated the roentgenographic and clinical outcome after PLIF with PEEK cage augmented with UC posterior sublaminar fixation without posterior fusion. Although UC has been successfully used in scoliosis surgery, to our knowledge, this is the first report on its use in degenerative lumbosacral disease. Rigid pedicle screw lumbosacral fixation is associated with several intraoperative screw-related complications. The use of sublaminar bands and rods combined with PEEK PLIF should increase fusion rate and avoid screw-related complications. From a total of 295 consecutive patients who experienced degenerative lumbosacral disease and received posterior decompression, implantation of PLIF with PEEK cages and semirigid posterior fixation with sublaminar UC bands-rods without posterolateral fusion, 150 patients were eligible for this study with a follow-up of more than 2 years. Interbody fusion rate and global plus segmental sagittal spinal lordosis restoration were recorded pre- and postoperatively. Visual analogue scale and Oswestry Disability Index were used to assess functional outcome. Hybrid instrumentation expanded over 1 to 5 levels. Surgical time ranged from 45 to 225 minutes. Only 12.6% of the patients were transfused. There was no nerve root lesion or deep wound infection. Laminar fracture occurred intraoperatively in one case during band insertion. Interbody fusion was achieved in 94% of the operated segments. Lumbar lordosis improved from -36 ± 9° preoperatively to -53 ± 6° postoperatively. Segmental lordosis improved in L4-L5 segment from -5 ± 3° preoperatively to -12 ± 2° postoperatively and in L5-S1 from -9 ± 4° to -14 ± 2° postoperation. Oswestry Disability Index score improved from 44.9 preoperatively to 2.2 postoperatively (P < 0.001). No patient required further

  17. Simple prediction method of lumbar lordosis for planning of lumbar corrective surgery: radiological analysis in a Korean population.

    PubMed

    Lee, Chong Suh; Chung, Sung Soo; Park, Se Jun; Kim, Dong Min; Shin, Seong Kee

    2014-01-01

    This study aimed at deriving a lordosis predictive equation using the pelvic incidence and to establish a simple prediction method of lumbar lordosis for planning lumbar corrective surgery in Asians. Eighty-six asymptomatic volunteers were enrolled in the study. The maximal lumbar lordosis (MLL), lower lumbar lordosis (LLL), pelvic incidence (PI), and sacral slope (SS) were measured. The correlations between the parameters were analyzed using Pearson correlation analysis. Predictive equations of lumbar lordosis through simple regression analysis of the parameters and simple predictive values of lumbar lordosis using PI were derived. The PI strongly correlated with the SS (r = 0.78), and a strong correlation was found between the SS and LLL (r = 0.89), and between the SS and MLL (r = 0.83). Based on these correlations, the predictive equations of lumbar lordosis were found (SS = 0.80 + 0.74 PI (r = 0.78, R (2) = 0.61), LLL = 5.20 + 0.87 SS (r = 0.89, R (2) = 0.80), MLL = 17.41 + 0.96 SS (r = 0.83, R (2) = 0.68). When PI was between 30° to 35°, 40° to 50° and 55° to 60°, the equations predicted that MLL would be PI + 10°, PI + 5° and PI, and LLL would be PI - 5°, PI - 10° and PI - 15°, respectively. This simple calculation method can provide a more appropriate and simpler prediction of lumbar lordosis for Asian populations. The prediction of lumbar lordosis should be used as a reference for surgeons planning to restore the lumbar lordosis in lumbar corrective surgery.

  18. Assessment of Isometric Trunk Strength – The Relevance of Body Position and Relationship between Planes of Movement

    PubMed Central

    Kocjan, Andrej; Sarabon, Nejc

    2014-01-01

    The aim of the study was to assess the differences in maximal isometric trunk extension and flexion strength during standing, sitting and kneeling. Additionally, we were interested in correlations between the maximal strength in sagittal, frontal and transverse plane, measured in the sitting position. Sixty healthy subjects (24 male, 36 female; age 41.3 ± 15.1 yrs; body height 1.70 ± 0.09 m; body mass 72.7 ± 13.3 kg) performed maximal voluntary isometric contractions of the trunk flexor and extensor muscles in standing, sitting and kneeling position. The subjects also performed lateral flexions and rotations in the sitting position. Each task was repeated three times and average of maximal forces was used for data analysis. RANOVA with post-hoc testing was applied to the flexion and extension data. The level of statistical significance was set to p < 0.05. Overall, in both genders together, the highest average force for trunk extension was recorded in sitting posture (910.5 ± 271.5 N), followed by kneeling (834.3 ± 242.9 N) and standing (504.0 ± 165.4 N), compared with flexion, where we observed the opposite trend (508.5 ± 213.0 N, 450.9 ± 165.7 N and 443.4 ± 153.1 N, respectively). Post-hoc tests showed significant differences in all extension positions (p < 0.0001) and between sitting/standing (p = 0.018) and kneeling/standing (p = 0.033) flexion exertions. The extension/flexion ratio for sitting was 2.1 ± 0.4, for kneeling 1.9 ± 0.4, followed by standing, where motion forward approximately equals motion backward (1.1 ± 0.6). Trunk sagittal-transverse strength showed the strongest correlation, followed by frontal-transverse and sagittal-frontal plane correlation pairs (R2 = 0.830, 0.712 and 0.657). The baseline trunk isometric strength data provided by this study should help further strength diagnostics, more precisely, the prevention of low back disorders. Key points Maximal voluntary isometric force of the trunk extensors increased with the angle at

  19. Is arch form influenced by sagittal molar relationship or Bolton tooth-size discrepancy?

    PubMed

    Aldrees, Abdullah M; Al-Shujaa, Abdulmajeed M; Alqahtani, Mohammad A; Aljhani, Ali S

    2015-06-26

    Orthodontic patients show high prevalence of tooth-size discrepancy. This study investigates the possible association between arch form, clinically significant tooth-size discrepancy, and sagittal molar relationship. Pretreatment orthodontic casts of 230 Saudi patients were classified into one of three arch form types (tapered, ovoid, and square) using digitally scanned images of the mandibular arches. Bolton ratio was calculated, sagittal molar relationship was defined according to Angle classification, and correlations were analyzed using ANOVA, chi-square, and t-tests. No single arch form was significantly more common than the others. Furthermore, no association was observed between the presence of significant Bolton discrepancy and the sagittal molar relationship or arch form. Overall Bolton discrepancy is significantly more prevalent in males. Arch form in a Saudi patient group is independent of gender, sagittal molar relationship, and Bolton discrepancy.

  20. A portable system with sample rate of 250 Hz for characterization of knee and hip angles in the sagittal plane during gait

    PubMed Central

    2014-01-01

    Background Gait analysis and research have been developed to obtain characteristics of movement patterns of people while walking. However, traditional measuring systems present different drawbacks that reduce their use and application. Among those drawbacks one can find: high price, low sampling frequency and limiting number of steps to be analyzed. Traditional measuring gait systems carry out their measurement at frequencies oscillating between 60 to 100 Hz. It can be argued about the need of higher sampling rates for gait measurements. However small displacements of the knee or hip for example, cannot be seen with low frequencies required a more detailed sampling and higher frequency sampling. Bearing this in mind, in this paper is presented a 250 Hz system based on accelerometers for gait measurement, and the particularities of knee and hip angles during gait are highlighted. Methods The system was designed with a PCI data acquisition card instrumented with an FPGA to achieve a rate sample of 250 Hz. The accelerometers were placed in thighs and legs to calculate the joint angles of hip and knee in the sagittal plane. The angles were estimated using the acceleration polygon method without integrating the acceleration and without filters. Results The gait of thirty healthy people of Mexican phenotype was analyzed over a flat floor free of obstacles. The results showed the gait phases and particularities associated with the walking style and people's laterality; the movement patterns were similar in the thirty persons. Based on the results, the particularities as the maximum amplitude in the angles and the shape in the movement patterns were related to the anthropometry and people phenotype. Conclusions The sampling frequency was essential to record 340 samples in single gait cycle and so registering the gait cycle with its particularities. In this work were recorded an average of 8 to 10 gait cycles, and the results showed variation regarding works carried out

  1. A portable system with sample rate of 250 Hz for characterization of knee and hip angles in the sagittal plane during gait.

    PubMed

    Martínez-Solís, Fermín; Claudio-Sánchez, Abraham; Rodríguez-Lelis, José M; Vergara-Limon, Sergio; Olivares-Peregrino, Víctor; Vargas-Treviño, Marciano

    2014-03-31

    Gait analysis and research have been developed to obtain characteristics of movement patterns of people while walking. However, traditional measuring systems present different drawbacks that reduce their use and application. Among those drawbacks one can find: high price, low sampling frequency and limiting number of steps to be analyzed. Traditional measuring gait systems carry out their measurement at frequencies oscillating between 60 to 100 Hz. It can be argued about the need of higher sampling rates for gait measurements. However small displacements of the knee or hip for example, cannot be seen with low frequencies required a more detailed sampling and higher frequency sampling. Bearing this in mind, in this paper is presented a 250 Hz system based on accelerometers for gait measurement, and the particularities of knee and hip angles during gait are highlighted. The system was designed with a PCI data acquisition card instrumented with an FPGA to achieve a rate sample of 250 Hz. The accelerometers were placed in thighs and legs to calculate the joint angles of hip and knee in the sagittal plane. The angles were estimated using the acceleration polygon method without integrating the acceleration and without filters. The gait of thirty healthy people of Mexican phenotype was analyzed over a flat floor free of obstacles. The results showed the gait phases and particularities associated with the walking style and people's laterality; the movement patterns were similar in the thirty persons. Based on the results, the particularities as the maximum amplitude in the angles and the shape in the movement patterns were related to the anthropometry and people phenotype. The sampling frequency was essential to record 340 samples in single gait cycle and so registering the gait cycle with its particularities. In this work were recorded an average of 8 to 10 gait cycles, and the results showed variation regarding works carried out in biomechanics laboratories; this

  2. Lumbar Radiculopathy in the Setting of Degenerative Scoliosis: MIS Decompression and Limited Correction are Better Options.

    PubMed

    Fontes, Ricardo B; Fessler, Richard G

    2017-07-01

    Surgery for adult spinal deformity (ASD) has emerged as an efficient treatment alternative, but it is fraught with potential perioperative morbidity, incompletely mitigated by emerging minimally invasive surgical techniques. In mild-to-moderate ASD balanced in the sagittal plane, there are situations in which the counterintuitive simple decompression through a foraminotomy or laminectomy, or even a short-segment fusion may be an attractive treatment. This article presents a case example and the authors' treatment rationale and reviews the limited available literature supporting it. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Pictorial essay of ultrasound-reconstructed coronal plane images of the uterus in different uterine pathologies.

    PubMed

    Grigore, Mihaela; Grigore, Anamaria; Gafitanu, Dumitru; Furnica, Cristina

    2018-04-01

    Imaging in the major planes (horizontal, coronal, and sagittal) of the uterus is important for determining anatomy and allowing the findings to be standardized, and for evaluating and diagnosing different pathological conditions in clinical practice. Examination of the coronal plane is an important step in identifying uterine pathologies and their relationships to the endometrial canal. Three-dimensional (3D) ultrasound reveals the normal anatomy better and improves the depiction of abnormal anatomy, as the coronal plane of the uterus can easily be obtained using 3D reconstruction techniques. Our pictorial essay demonstrates that adding 3D ultrasound to a routine gynecological workup can be beneficial for clinicians, enabling a precise diagnosis to be made. In addition, the volumes obtained and stored by 3D ultrasound can allow students or residents to become more familiar with normal and abnormal pelvic structures. Clin. Anat. 31:373-379, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Muscle complex saving posterior sagittal anorectoplasty.

    PubMed

    Zaiem, Maher; Zaiem, Feras

    2017-05-01

    Posterior sagittal anorectoplasty (PSARP) published by DeVries and Peña in 1982 had become the preferred surgical technique for the management of anorectal malformations (ARM). The original technique is based upon complete exposure of the anorectal region by means of a median sagittal incision that runs from the sacrum to the anal dimple, cutting through all muscle structures behind the rectum by dividing the levator muscle and the muscle complex. Then, the rectum is located in front of the levator and within the limits of the muscle complex. In this review, we described Muscle Complex Saving-Posterior Sagittal Anorectoplasty (MCS-PSARP), which is a less invasive technique that consists of keeping this funnel-shaped muscle complex completely intact and not divided, and pulling the rectum through this funnel, toward fixing the new anus to the skin. This technique aimed both to respect the lower part of the sphincter mechanism consisting of the muscle complex, and to avoid the disturbance of this important structure by dividing and resuturing it. We presented six cases of male patients who were born with anorectal malformation (ARM) and underwent MCS-PSARP. The surgical technique proved to be feasible to achieve the dissection of the rectal pouch and the division of the rectourethral fistula in all patients, by opening only the upper part of the sphincter mechanism, the levator muscle, and keeping the lower part consisting of intact muscle complex. The early results in our series are encouraging; however, long-term functional outcomes of these patients are awaited. The surgical tips were also discussed. This proposed approach in the management of anorectal malformation cases provides an opportunity to maximize preservation of the existing continence mechanisms. It preserves the muscle complex components of the levator muscle intact, allowing a better function of the continence mechanism. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Sagittal alignment after single cervical disc arthroplasty.

    PubMed

    Guérin, Patrick; Obeid, Ibrahim; Gille, Olivier; Bourghli, Anouar; Luc, Stéphane; Pointillart, Vincent; Vital, Jean-Marc

    2012-02-01

    Prospective study. To analyze the sagittal balance after single-level cervical disc replacement (CDR) and range of motion (ROM). To define clinical and radiologic parameters those have a significant correlation with segmental and overall cervical curvature after CDR. Clinical outcomes and ROM after CDR with Mobi-C (LDR, Troyes, France) prosthesis have been documented in few studies. No earlier report of this prosthesis has studied correlations between static and dynamic parameters or those between static parameters and clinical outcomes. Forty patients were evaluated. Clinical outcome was assessed using the Short Form-36 questionnaire, Neck Disability Index, and a Visual Analog Scale. Spineview software (Surgiview, Paris, France) was used to investigate sagittal balance parameters and ROM. The mean follow-up was 24.3 months (range: 12 to 36 mo). Clinical outcomes were satisfactory. There was a significant improvement of Short Form-36, Neck Disability Index, and Visual Analog Scale scores. Mean ROM was 8.3 degrees preoperatively and 11.0 degrees postoperatively (P=0.013). Mean preoperative C2C7 curvature was 12.8 and 16.0 degrees at last follow-up (P=0.001). Mean preoperative functional spinal unit (FSU) angle was 2.3 and 5.3 degrees postoperatively (P<0.0001). Mean postoperative shell angle was 5.5 degrees. There was a significant correlation between postoperative C2C7 alignment and preoperative C2C7 alignment, change of C2C7 alignment, preoperative and postoperative FSU angle, and prosthesis shell angle. There was also a significant correlation between postoperative FSU angle and preoperative C2C7 alignment, preoperative FSU angle, change of FSU angle, and prosthesis shell angle. Regression analysis showed that prosthesis shell angle and preoperative FSU angle contributed significantly to postoperative FSU angle. Moreover, preoperative C2C7 alignment, preoperative FSU angle, postoperative FSU angle, and prosthesis shell angle contributed significantly to

  6. The addition of a sagittal image fusion improves the prostate cancer detection in a sensor-based MRI /ultrasound fusion guided targeted biopsy.

    PubMed

    Günzel, Karsten; Cash, Hannes; Buckendahl, John; Königbauer, Maximilian; Asbach, Patrick; Haas, Matthias; Neymeyer, Jörg; Hinz, Stefan; Miller, Kurt; Kempkensteffen, Carsten

    2017-01-13

    To explore the diagnostic benefit of an additional image fusion of the sagittal plane in addition to the standard axial image fusion, using a sensor-based MRI/US fusion platform. During July 2013 and September 2015, 251 patients with at least one suspicious lesion on mpMRI (rated by PI-RADS) were included into the analysis. All patients underwent MRI/US targeted biopsy (TB) in combination with a 10 core systematic prostate biopsy (SB). All biopsies were performed on a sensor-based fusion system. Group A included 162 men who received TB by an axial MRI/US image fusion. Group B comprised 89 men in whom the TB was performed with an additional sagittal image fusion. The median age in group A was 67 years (IQR 61-72) and in group B 68 years (IQR 60-71). The median PSA level in group A was 8.10 ng/ml (IQR 6.05-14) and in group B 8.59 ng/ml (IQR 5.65-12.32). In group A the proportion of patients with a suspicious digital rectal examination (DRE) (14 vs. 29%, p = 0.007) and the proportion of primary biopsies (33 vs 46%, p = 0.046) were significantly lower. The rate of PI-RADS 3 lesions were overrepresented in group A compared to group B (19 vs. 9%; p = 0.044). Classified according to PI-RADS 3, 4 and 5, the detection rates of TB were 42, 48, 75% in group A and 25, 74, 90% in group B. The rate of PCa with a Gleason score ≥7 missed by TB was 33% (18 cases) in group A and 9% (5 cases) in group B; p-value 0.072. An explorative multivariate binary logistic regression analysis revealed that PI-RADS, a suspicious DRE and performing an additional sagittal image fusion were significant predictors for PCa detection in TB. 9 PCa were only detected by TB with sagittal fusion (sTB) and sTB identified 10 additional clinically significant PCa (Gleason ≥7). Performing an additional sagittal image fusion besides the standard axial fusion appears to improve the accuracy of the sensor-based MRI/US fusion platform.

  7. The effect of anterior longitudinal ligament resection on lordosis correction during minimally invasive lateral lumbar interbody fusion: Biomechanical and radiographic feasibility of an integrated spacer/plate interbody reconstruction device.

    PubMed

    Kim, Choll; Harris, Jonathan A; Muzumdar, Aditya; Khalil, Saif; Sclafani, Joseph A; Raiszadeh, Kamshad; Bucklen, Brandon S

    2017-03-01

    Lateral lumbar interbody fusion is powerful for correcting degenerative conditions, yet sagittal correction remains limited by anterior longitudinal ligament tethering. Although lordosis has been restored via ligament release, biomechanical consequences remain unknown. Investigators examined radiographic and biomechanical of ligament release for restoration of lumbar lordosis. Six fresh-frozen human cadaveric spines (L3-S1) were tested: (Miller et al., 1988) intact; (Battie et al., 1995) 8mm spacer with intact anterior longitudinal ligament; (Cho et al., 2013) 8mm spacer without intact ligament following ligament resection; (Galbusera et al., 2013) 13mm lateral lumbar interbody fusion; (Goldstein et al., 2001) integrated 13mm spacer. Focal lordosis and range of motion were assessed by applying pure moments in flexion-extension, lateral bending, and axial rotation. Cadaveric radiographs showed significant improvement in lordosis correction following ligament resection (P<0.05). The 8mm spacer with ligament construct provided greatest stability relative to intact (P>0.05) but did little to restore lordosis. Ligament release significantly destabilized the spine relative to intact in all modes and 8mm with ligament in lateral bending and axial rotation (P<0.05). Integrated lateral lumbar interbody fusion following ligament resection did not significantly differ from intact or from 8mm with ligament in all testing modes (P>0.05). Lordosis corrected by lateral lumbar interbody fusion can be improved by anterior longitudinal ligament resection, but significant construct instability and potential implant migration/dislodgment may result. This study shows that an added integrated lateral fixation system can significantly improve construct stability. Long-term multicenter studies are needed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Outcome of Percutaneous Lumbar Synovial Cyst Rupture in Patients with Lumbar Radiculopathy.

    PubMed

    Eshraghi, Yashar; Desai, Vimal; Cajigal Cajigal, Calvin; Tabbaa, Kutaiba

    2016-01-01

    Lumbar synovial cysts can result from spondylosis of facet joints. These cysts can encroach on adjacent nerve roots, causing symptoms of radiculopathy. Currently the only definitive treatment for these symptoms is surgery, which may involve laminectomy or laminotomy, with or without spinal fusion. Surgery has been reported to successfully relieve radicular pain in 83.5% of patients by Zhenbo et al. Little information is available concerning the efficacy and outcome of percutaneous fluoroscopic synovial cyst rupture for treatment of facet joint synovial cysts. The goal of this investigation was to assess the efficacy of fluoroscopically guided lumbar synovial cyst rupture, in particular for its relief of radicular symptoms and its potential to reduce the need for surgical intervention. Retrospective evaluation of a case series. University hospital and urban public health care system. With approval from the Institutional Review Board of Case Western Reserve University/ MetroHealth Medical Center, we reviewed the medical charts of patients with lumbar radiculopathy who underwent percutaneous lumbar synovial cyst rupture. The 30 patients in the cohort were treated by one pain specialist between 2006 and 2013. These patients were diagnosed with moderate to severe lower back pain, radiculopathy, and ranged in age from 42 to 80 years. Patients were followed up for a minimum of 6 months and up to 24 months. Pre- and post-procedure pain assessments were reviewed by clinical chart review. In addition post-procedure pain assessments and duration of pain relief were obtained with telephone interviews. Pain had been reported by the patients using a numeric rating scale of 0 - 10 (0 = no pain; 10 = worst possible pain). Charts were reviewed to determine if surgery was eventually performed to correct radicular symptoms. More than 6 months of pain relief was achieved in 14/30 patients (46%) and between one and 6 months of pain relief was achieved in 7/30 patients (23.3%). Nine

  9. [Surgical treatment of degenerative lumbar scoliosis with multi-segment lumbar spinal stenosis].

    PubMed

    Lan, Jiaping; Tang, Xun; Xu, Yongqing; Zhou, Tianhua; Shi, Jian; Cui, Yi; Xiang, Qili; Cai, Zhijun; Zhao, Qingkai; Yang, Xiaoyong; Zhao, Caihua

    2014-08-01

    To explore the surgical indications, decompression and fusion method, and fusion level selection of degenerative lumbar scoliosis (DLS) and multi-segment lumbar spinal stenosis. Between April 2000 and November 2011, 46 cases of DLS and multi-segment lumbar spinal stenosis were treated with multi-level decompression by fenestration and crept enlargement plus internal fixation by interbody and posterior-lateral bone graft fusion (5 segments or above). Of 46 cases, 25 were male and 21 were female, with a mean age of 70.2 years (range, 65-81 years) and with a mean disease duration of 6.4 years (range, 4 years and 6 months to 13 years). X-ray films showed that the lumbar Cobb angle was (26.7 ± 10.0) degrees, and the lumbar lordotic angle was (20.3 ± 8.8)degrees. The lumbar CT and MRI images showed three-segment stenosis in 24 cases, four-segment stenosis in 17 cases, and five-segment stenosis in 5 cases. A total of 165 stenosed segments included 12 L1,2, 34 L2,3, 43 L3,4, 45 L4,5, and 31 L5 and S1. Visual analogue scale (VAS) score, Oswestry disability index (ODI), and Japanese Orthopedic Association (JOA) score (29 points) were employed to evaluate effectiveness. Thirteen patients had leakage of cerebrospinal fluid during operation, and no infection was found after corresponding treatment; pulmonary infection and urinary system infection occurred in 4 and 2 patients respectively, who relieved after received antibiotic therapy; 8 patients with poor wound healing received dressing change, adequate drainage, debridement and suture. No death, paralysis, central nervous system infection, or other complication was observed in these patients. Forty-six cases were followed up 12-72 months (mean, 36.2 months). Lumbago and backache and intermittent claudication of lower extremity were obviously improved. During follow-up, no screw incising, loosening and broken screws, or pseudarthrosis was noted under X-ray film and CT scanning. At last follow-up, the lumbar Cobb angle was

  10. Does insertion of intramuscular electromyographic electrodes alter motor behavior during locomotion?

    PubMed

    Armour Smith, Jo; Kulig, Kornelia

    2015-06-01

    Intramuscular electromyography (EMG) is commonly used to quantify activity in the trunk musculature. However, it is unclear if the discomfort or fear of pain associated with insertion of intramuscular EMG electrodes results in altered motor behavior. This study examined whether intramuscular EMG affects locomotor speed and trunk motion, and examined the anticipated and actual pain associated with electrode insertion in healthy individuals and individuals with a history of low back pain (LBP). Before and after insertion of intramuscular electrodes into the lumbar and thoracic paraspinals, participants performed multiple repetitions of a walking turn at self-selected and controlled average speed. Low levels of anticipated and actual pain were reported in both groups. Self-selected locomotor speed was significantly increased following insertion of the electrodes. At the controlled speed, the amplitude of sagittal plane lumbo-pelvic motion decreased significantly post-insertion, but the extent of this change was the same in both groups. Lumbo-pelvic motion in the frontal and axial planes and thoraco-lumbar motion in all planes were not affected by the insertions. This study demonstrates that intramuscular EMG is an appropriate methodology to selectively quantify the activation patterns of the individual muscles in the paraspinal group, both in healthy individuals and individuals with a history of LBP. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Facet orientation and tropism: Associations with asymmetric lumbar paraspinal and psoas muscle parameters in patients with chronic low back pain.

    PubMed

    Xu, W B; Chen, S; Fan, S W; Zhao, F D; Yu, X J; Hu, Z J

    2016-08-10

    Many studies have explored the relationship between facet tropism and facet joint osteoarthritis, disc degeneration and degenerative spondylolisthesis. However, the associations between facet orientation and tropism, and paraspinal muscles have not been studied. To analyze the associations between facet orientation and tropism, and parameters of paraspinal muscles in patients with chronic low back pain. Ninety-five patients with chronic low back pain were consecutively enrolled. Their facet joint angles were measured on computed tomography (CT) while gross cross-sectional area (GCSA), functional cross-sectional area (FCSA) and T2 signal intensity of lumbar paraspinal and psoas muscle were evaluated on magnetic resonance imaging (MRI). The GCSA and FCSA were significantly smaller for multifidus muscle (P< 0.001), but significantly larger for erector spinae and psoas muscles (P< 0.001), in coronally-orientated group than those in sagittally-orientated group. The differences of bilateral GCSA and FCSA of multifidus muscle were significantly larger in facet tropism group than those in no facet tropism group (P= 0.009 and P= 0.019). Muscular asymmetries may develop in the lumbar region of the spine, which are associated with facet asymmetry in patients with chronic low back pain. Longitudinal studies are needed to understand the causal relationship between facet orientation and tropism and muscular asymmetry in future.

  12. Does core mobility of lumbar total disc arthroplasty influence sagittal and frontal intervertebral displacement? Radiologic comparison with fixed-core prosthesis

    PubMed Central

    Delécrin, Joël; Allain, Jérôme; Beaurain, Jacques; Steib, Jean-Paul; Chataigner, Hervé; Aubourg, Lucie; Huppert, Jean; Ameil, Marc; Nguyen, Jean-Michel

    2009-01-01

    Background An artificial disc prosthesis is thought to restore segmental motion in the lumbar spine. However, it is reported that disc prosthesis can increase the intervertebral translation (VT). The concept of the mobile-core prosthesis is to mimic the kinematic effects of the migration of the natural nucleus and therefore core mobility should minimize the VT. This study explored the hypothesis that core translation should influence VT and that a mobile core prosthesis may facilitate physiological motion. Methods Vertebral translation (measured with a new method presented here), core translation, range of motion (ROM), and distribution of flexion-extension were measured on flexion-extension, neutral standing, and lateral bending films in 89 patients (63 mobile-core [M]; 33 fixed-core [F]). Results At L4-5 levels the VT with M was lower than with F and similar to the VT of untreated levels. At L5-S1 levels the VT with M was lower than with F but was significantly different compared to untreated levels. At M levels a strong correlation was found between VT and core translation; the VT decreases as the core translation increases. At F levels the VT increases as the ROM increases. No significant difference was found between the ROM of untreated levels and levels implanted with either M or F. Regarding the mobility distribution with M and F we observed a deficit in extension at L5-S1 levels and a similar distribution at L4-5 levels compared to untreated levels. Conclusion The intervertebral mobility was different between M and F. The M at L4-5 levels succeeded to replicate mobility similar to L4-5 untreated levels. The M at L5-S1 succeeded in ROM, but failed regarding VT and mobility distribution. Nevertheless M minimized VT at L5-S1 levels. The F increased VT at both L4-5 and L5-S1. Clinical Relevance This study validates the concept that the core translation of an artificial lumbar disc prosthesis minimizes the VT. PMID:25802632

  13. [Enlargement in managment of lumbar spinal stenosis].

    PubMed

    Steib, J P; Averous, C; Brinckert, D; Lang, G

    1996-05-01

    flexion, obesity or quite simply overuse, involve an increase in the lumbar lordosis. The posterior articulations are worn out and the disc gets damaged by shear forces. The disc space becomes shorter with a bulging disc, and the inferior articular process of the superior vertebra goes down. This is responsible of a loss of lordosis. For restoring the sagittal balance the patient needs more extension of the spine. Above and below the considered level the degenerative disease carries on extending to the whole spine. At the level considered, because of local extension, the inferior facet moves forward, the disc bulges, the ligamentum flavum is shortened and the stenosis is increased. This situation is improved by local kyphosis: the inferior facet moves backward, the disc and the ligamentum flavum are stretched with a quite normal posterior disc height and most often there is no more stenosis. Myelograms show this very well with a quite normal appearance lying, clear compression standing, worse in extension and improved, indeed disappeared in flexion. CT scan and MRI don't show that because they are done lying. The expression of the clinical situation is the same, mute lying and maximum standing with restriction of walking. For us lumbar stenosis is operated with lumbar reconstruction without opening the canal. The patient is in moderate kyphosis on the operating table. Pedicle screws rotated to match a bent rod allow reduction of the spine. The posterior disc height is respected and not distracted, and the anterior part of the disc is stretched in lordosis. The inferior facet is cut for the arthrodesis and no longer compresses the dura. The canal is well enlarged and the lumbar segment in lordosis is the best protection of the adjacent levels at follow-up. This behaviour responds to the same analysis as the ≪recalibrage≫ (enlargement). The mobile segment is damaged by the degenerative disease, the stenosis is a consequence of this damage. It's logical to treat the

  14. Vertebral Compression Fractures after Lumbar Instrumentation.

    PubMed

    Granville, Michelle; Berti, Aldo; Jacobson, Robert E

    2017-09-29

    Lumbar spinal stenosis (LSS) is primarily found in an older population. This is a similar demographic group that develops both osteoporosis and vertebral compression fractures (VCF). This report reviewed a series of patients treated for VCF that had previous lumbar surgery for symptomatic spinal stenosis. Patients that only underwent laminectomy or fusion without instrumentation had a similar distribution of VCF as the non-surgical population in the mid-thoracic, or lower thoracic and upper lumbar spine. However, in the patients that had previous short-segment spinal instrumentation, fractures were found to be located more commonly in the mid-lumbar spine or sacrum adjacent to or within one or two spinal segments of the spinal instrumentation. Adjacent-level fractures that occur due to vertebral osteoporosis after long spinal segment instrumentation has been discussed in the literature. The purpose of this report is to highlight the previously unreported finding of frequent lumbar and sacral osteoporotic fractures in post-lumbar instrumentation surgery patients. Important additional factors found were lack of preventative medical treatment for osteoporosis, and secondary effects related to inactivity, especially during the first year after surgery.

  15. Lumbar interspinous bursitis in active polymyalgia rheumatica.

    PubMed

    Salvarani, Carlo; Barozzi, Libero; Boiardi, Luigi; Pipitone, Nicolò; Bajocchi, Gian Luigi; Macchioni, Pier Luigi; Catanoso, Mariagrazia; Pazzola, Giulia; Valentino, Massimo; De Luca, Carlo; Hunder, Gene G

    2013-01-01

    To evaluate the inflammatory involvement of lumbar interspinous bursae in patients with polymyalgia rheumatica (PMR) using magnetic resonance imaging (MRI). Ten consecutive, untreated new patients with PMR and pain in the shoulder and pelvic girdles were investigated. Seven patients with spondyloarthritis (4 with psoriatic spondyloarthrits, one with entheropatic spondyloarthritis, and 2 with ankylosing spondylitis) as well as 2 patients with spinal osteoarthritis and 2 patients with rheumatoid arthritis with lumbar pain served as controls. MRI of lumbar spine was performed in all PMR patients and controls. Nine patients (5 PMR patients and 4 controls) also had MRI of the thoracic spine. MRI evidence of interspinous lumbar bursitis was found in 9/10 patients with PMR and in 5/11 controls. A moderate to marked (grade ≥2 on a semiquantitative 0-3 scale) lumbar bursitis occurred significantly more frequently in patients with PMR than in control patients (60% vs. 9%, p=0.020). In most of the patients and controls lumbar bursitis was found at the L3-L5 interspaces. Only 2 patients had bursitis at a different level (one patient had widespread lumbar bursitis, and one control at L2-L4). No interspinous bursitis was demonstrated by MRI of the thoracic spine in patients and controls. Inflammation of lumbar bursae may be responsible for the low back pain reported by patients with PMR. The prominent inflammatory involvement of bursae including those of the lumbar spine supports the hypothesis that PMR may be a disorder affecting predominantly extra-articular synovial structures.

  16. Relationship of the lumbar plexus branches to the lumbar spine: anatomical study with application to lateral approaches.

    PubMed

    Tubbs, Richard Isaiah; Gabel, Brandon; Jeyamohan, Shiveindra; Moisi, Marc; Chapman, Jens R; Hanscom, R David; Loukas, Marios; Oskouian, Rod J; Tubbs, Richard Shane

    2017-07-01

    Injuries to the lumbar plexus during lateral approaches to the spine are not uncommon and may result in permanent deficits. However, the literature contains few studies that provide landmarks for avoiding the branches of the lumbar plexus. The present anatomical study was performed to elucidate the course of these nerves in relation to lateral approaches to the lumbar spine. This is a quantitative anatomical cadaveric study. The lumbar plexus and its branches were dissected on 12 cadaveric sides. Metal wires were laid on the nerves along their paths on the posterior abdominal wall. Fluoroscopy was performed in the anteroposterior and lateral positions. The relationships between regional bony landmarks and the branches of the lumbar plexus were observed. When viewed laterally, the greatest concentration of nerves occurred from the posteroinferior aspect of L4, inferior along the posterior one-third of the body of L5, then at the level of the sacral promontory. On the basis of our study, approaches to the anterior two-thirds of the L4 vertebra and anterior third of L5 will result in the lowest chance of lumbar plexus nerve injury. In addition, lateral muscle dissection through the psoas major should be in a superior to inferior direction in order to minimize nerve injury. Laterally, the widest corridor between branches in the abdominal wall was between the subcostal and iliohypogastric nerves. The findings of our cadaveric study provide surgeons who approach the lateral lumbar spine with data that could decrease injuries to the branches of the lumbar plexus, thus lessening patient morbidity. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Motion-plane dependency of the range of dart throw motion and the effects of tendon action due to finger extrinsic muscles during the motion.

    PubMed

    Mitsukane, Masahiro; Sekiya, Noboru; Kamono, Arinori; Nakabo, Tohru

    2018-03-01

    [Purpose] To clarify the motion-plane dependency of the range of dart throw motion and the effects of tendon action due to long finger flexors and extensors during the motion. [Subjects and Methods] Forty healthy subjects attended the experiment, and the active range of wrist motion in seven motion planes was measured with an originally designed apparatus. [Results] The reliability of the measurement was acceptable. The range of dart throw motion depended on the motion planes, with a maximum at around the motion plane of 45° from the sagittal plane (45° of pronation). The tendon action of long finger muscles was shown in dart throw motion except in 45° of pronation. [Conclusion] Motion-plane dependency of the range of dart throw motion exists in healthy subjects. The absence of tendon action due to finger extrinsic muscles in dart throw motion at 45° might be one of the causes of the advantage of dart throw motion.

  18. Cervical vertebrae maturation index estimates on cone beam CT: 3D reconstructions vs sagittal sections.

    PubMed

    Bonfim, Marco A E; Costa, André L F; Fuziy, Acácio; Ximenez, Michel E L; Cotrim-Ferreira, Flávio A; Ferreira-Santos, Rívea I

    2016-01-01

    The aim of this study was to evaluate the performance of CBCT three-dimensional (3D) reconstructions and sagittal sections for estimates of cervical vertebrae maturation index (CVMI). The sample consisted of 72 CBCT examinations from patients aged 8-16 years (45 females and 27 males) selected from the archives of two private clinics. Two calibrated observers (kappa scores: ≥0.901) interpreted the CBCT settings twice. Intra- and interobserver agreement for both imaging exhibition modes was analyzed by kappa statistics, which was also used to analyze the agreement between 3D reconstructions and sagittal sections. Correlations between cervical vertebrae maturation estimates and chronological age, as well as between the assessments by 3D reconstructions and sagittal sections, were analyzed using gamma Goodman-Kruskal coefficients (α = 0.05). The kappa scores evidenced almost perfect agreement between the first and second assessments of the cervical vertebrae by 3D reconstructions (0.933-0.983) and sagittal sections (0.983-1.000). Similarly, the agreement between 3D reconstructions and sagittal sections was almost perfect (kappa index: 0.983). In most divergent cases, the difference between 3D reconstructions and sagittal sections was one stage of CVMI. Strongly positive correlations (>0.8, p < 0.001) were found not only between chronological age and CVMI but also between the estimates by 3D reconstructions and sagittal sections (p < 0.001). Although CBCT imaging must not be used exclusively for this purpose, it may be suitable for skeletal maturity assessments.

  19. Cervical vertebrae maturation index estimates on cone beam CT: 3D reconstructions vs sagittal sections

    PubMed Central

    Bonfim, Marco A E; Costa, André L F; Ximenez, Michel E L; Cotrim-Ferreira, Flávio A; Ferreira-Santos, Rívea I

    2016-01-01

    Objectives: The aim of this study was to evaluate the performance of CBCT three-dimensional (3D) reconstructions and sagittal sections for estimates of cervical vertebrae maturation index (CVMI). Methods: The sample consisted of 72 CBCT examinations from patients aged 8–16 years (45 females and 27 males) selected from the archives of two private clinics. Two calibrated observers (kappa scores: ≥0.901) interpreted the CBCT settings twice. Intra- and interobserver agreement for both imaging exhibition modes was analyzed by kappa statistics, which was also used to analyze the agreement between 3D reconstructions and sagittal sections. Correlations between cervical vertebrae maturation estimates and chronological age, as well as between the assessments by 3D reconstructions and sagittal sections, were analyzed using gamma Goodman–Kruskal coefficients (α = 0.05). Results: The kappa scores evidenced almost perfect agreement between the first and second assessments of the cervical vertebrae by 3D reconstructions (0.933–0.983) and sagittal sections (0.983–1.000). Similarly, the agreement between 3D reconstructions and sagittal sections was almost perfect (kappa index: 0.983). In most divergent cases, the difference between 3D reconstructions and sagittal sections was one stage of CVMI. Strongly positive correlations (>0.8, p < 0.001) were found not only between chronological age and CVMI but also between the estimates by 3D reconstructions and sagittal sections (p < 0.001). Conclusions: Although CBCT imaging must not be used exclusively for this purpose, it may be suitable for skeletal maturity assessments. PMID:26509559

  20. Lumbar disc herniation in young children.

    PubMed

    Haidar, R; Ghanem, I; Saad, S; Uthman, I

    2010-01-01

    This article explores lumbar disc herniation in young children through focusing on matters relevant to patient presentation, physical examination, differential diagnosis, imaging and treatment. Major databases were searched for studies that addressed lumbar disc herniation in young children. Diagnosis of lumbar disc herniation in young children is usually delayed because of the rarity and lack of experience with this entity and the difficulty in extracting a reliable medical history. Nevertheless, lumbar disc herniation should be considered in the differential diagnosis of any young child presenting with a chief complaint of back pain and/or radiculopathy, especially in the setting of recent trauma. This should be coupled with a directed physical examination to elicit signs and narrow the differential diagnosis. Imaging studies, mainly magnetic resonance imaging, will help establish a diagnosis; yet radiographs are still required to exclude other spinal lesions. The initial management of lumbar disc herniation in children is the same as that in adults and consists of conservative treatment unless lumbar disc herniation affects the patient's motor and neurological functions in which case, early surgical treatment must be undertaken. Although the latter remains more difficult, current experience suggests a favourable outcome. Awareness of lumbar disc herniation will help the paediatrician extract a relevant medical history, perform a directed physical examination, and order appropriate imaging studies. This will aid in initiating early intervention, be it conservative or operative, and achieving a favourable outcome.

  1. The Neandertal vertebral column 2: The lumbar spine.

    PubMed

    Gómez-Olivencia, Asier; Arlegi, Mikel; Barash, Alon; Stock, Jay T; Been, Ella

    2017-05-01

    Here we provide the most extensive metric and morphological analysis performed to date on the Neandertal lumbar spine. Neandertal lumbar vertebrae show differences from modern humans in both the vertebral body and in the neural arch, although not all Neandertal lumbar vertebrae differ from modern humans in the same way. Differences in the vertebral foramen are restricted to the lowermost lumbar vertebrae (L4 and L5), differences in the orientation of the upper articular facets appear in the uppermost lumbar vertebrae (probably in L1 and L2-L3), and differences in the horizontal angle of the transverse process appear in L2-L4. Neandertals, when compared to modern humans, show a smaller degree of lumbar lordosis. Based on a still limited fossil sample, early hominins (australopiths and Homo erectus) had a lumbar lordosis that was similar to but below the mean of modern humans. Here, we hypothesize that from this ancestral degree of lumbar lordosis, the Neandertal lineage decreased their lumbar lordosis and Homo sapiens slightly increased theirs. From a postural point of view, the lower degree of lordosis is related to a more vertical position of the sacrum, which is also positioned more ventrally with respect to the dorsal end of the pelvis. This results in a spino-pelvic alignment that, though different from modern humans, maintained an economic postural equilibrium. Some features, such as a lower degree of lumbar lordosis, were already present in the middle Pleistocene populations ancestral to Neandertals. However, these middle Pleistocene populations do not show the full suite of Neandertal lumbar morphologies, which probably means that the characteristic features of the Neandertal lumbar spine did not arise all at once. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Effects of Lumbar Fusion Surgery with ISOBAR Devices Versus Posterior Lumbar Interbody Fusion Surgery on Pain and Disability in Patients with Lumbar Degenerative Diseases: A Meta-Analysis.

    PubMed

    Su, Shu-Fen; Wu, Meng-Shan; Yeh, Wen-Ting; Liao, Ying-Chin

    2018-06-01

    Purpose/Aim: Lumbar degenerative diseases (LDDs) cause pain and disability and are treated with lumbar fusion surgery. The aim of this study was to evaluate the efficacy of lumbar fusion surgery with ISOBAR devices versus posterior lumbar interbody fusion (PLIF) surgery for alleviating LDD-associated pain and disability. We performed a literature review and meta-analysis conducted in accordance with Cochrane methodology. The analysis included Group Reading Assessment and Diagnostic Evaluation assessments, Jadad Quality Score evaluations, and Risk of Bias in Non-randomized Studies of Interventions assessments. We searched PubMed, MEDLINE, the Cumulative Index to Nursing and Allied Health Literature, the Cochrane Library, ProQuest, the Airiti Library, and the China Academic Journals Full-text Database for relevant randomized controlled trials and cohort studies published in English or Chinese between 1997 and 2017. Outcome measures of interest included general pain, lower back pain, and disability. Of the 18 studies that met the inclusion criteria, 16 examined general pain (802 patients), 5 examined lower back pain (274 patients), and 15 examined disability (734 patients). General pain, lower back pain, and disability scores were significantly lower after lumbar fusion surgery with ISOBAR devices compared to presurgery. Moreover, lumbar fusion surgery with ISOBAR devices was more effective than PLIF for decreasing postoperative disability, although it did not provide any benefit in terms of general pain or lower back pain. Lumbar fusion surgery with ISOBAR devices alleviates general pain, lower back pain, and disability in LDD patients and is superior to PLIF for reducing postoperative disability. Given possible publication bias, we recommend further large-scale studies.

  3. Contact pressure in the facet joint during sagittal bending of the cadaveric cervical spine.

    PubMed

    Jaumard, Nicolas V; Bauman, Joel A; Weisshaar, Christine L; Guarino, Benjamin B; Welch, William C; Winkelstein, Beth A

    2011-07-01

    The facet joint contributes to the normal biomechanical function of the spine by transmitting loads and limiting motions via articular contact. However, little is known about the contact pressure response for this joint. Such information can provide a quantitative measure of the facet joint's local environment. The objective of this study was to measure facet pressure during physiologic bending in the cervical spine, using a joint capsule-sparing technique. Flexion and extension bending moments were applied to six human cadaveric cervical spines. Global motions (C2-T1) were defined using infra-red cameras to track markers on each vertebra. Contact pressure in the C5-C6 facet was also measured using a tip-mounted pressure transducer inserted into the joint space through a hole in the postero-inferior region of the C5 lateral mass. Facet contact pressure increased by 67.6 ± 26.9 kPa under a 2.4 Nm extension moment and decreased by 10.3 ± 9.7 kPa under a 2.7 Nm flexion moment. The mean rotation of the overall cervical specimen motion segments was 9.6 ± 0.8° and was 1.6 ± 0.7° for the C5-C6 joint, respectively, for extension. The change in pressure during extension was linearly related to both the change in moment (51.4 ± 42.6 kPa/Nm) and the change in C5-C6 angle (18.0 ± 108.9 kPa/deg). Contact pressure in the inferior region of the cervical facet joint increases during extension as the articular surfaces come in contact, and decreases in flexion as the joint opens, similar to reports in the lumbar spine despite the difference in facet orientation in those spinal regions. Joint contact pressure is linearly related to both sagittal moment and spinal rotation. Cartilage degeneration and the presence of meniscoids may account for the variation in the pressure profiles measured during physiologic sagittal bending. This study shows that cervical facet contact pressure can be directly measured with minimal disruption to the joint and is the first to provide local

  4. The longitudinal sagittal growth changes of maxilla and mandible according to quantitative cervical vertebral maturation.

    PubMed

    Chen, Lili; Lin, Jiuxiang; Xu, Tianmin; Long, Xiaosi

    2009-04-01

    To investigate the longitudinal sagittal growth changes of maxilla and mandible according to the quantitative cervical vertebral maturation (QCVM) for adolescents with normal occlusion, mixed longitudinal data were used. The samples included 87 adolescents aged from 8 to 18 y old with normal occlusion (32 males, 55 females) selected from 901 candidates. Sequential lateral cephalograms and hand-wrist films were taken once a year, lasting for 6 y. The longitudinal sagittal growth changes of maxilla and mandible according to QCVM were measured. There were some significant differences between maxilla and mandible according to QCVM. The sagittal growth change of maxilla showed a trend towards high velocity-->decelerating velocity-->completing velocity from QCVM stage I to stage IV. The sagittal growth change of mandible showed a trend towards accelerating velocity-->high velocity-->decelerating velocity-->completing velocity from QCVM stage I to stage IV. With sagittal relationship, growth magnitude was almost the same between maxilla and mandible at QCVM stage I. At stage II the growth of mandible exceeded that of maxilla and growth in mandible continued at stages III and IV, while the maxilla ceased to grow. Growth magnitude was greater and the growth duration was longer with male mandible. It is concluded that the longitudinal sagittal growth changes of maxilla and mandible on the basis of QCVM is of value in the orthodontic practice.

  5. Robotic application of a dynamic resultant force vector using real-time load-control: simulation of an ideal follower load on Cadaveric L4-L5 segments.

    PubMed

    Bennett, Charles R; Kelly, Brian P

    2013-08-09

    Standard in-vitro spine testing methods have focused on application of isolated and/or constant load components while the in-vivo spine is subject to multiple components that can be resolved into resultant dynamic load vectors. To advance towards more in-vivo like simulations the objective of the current study was to develop a methodology to apply robotically-controlled, non-zero, real-time dynamic resultant forces during flexion-extension on human lumbar motion segment units (MSU) with initial application towards simulation of an ideal follower load (FL) force vector. A proportional-integral-derivative (PID) controller with custom algorithms coordinated the motion of a Cartesian serial manipulator comprised of six axes each capable of position- or load-control. Six lumbar MSUs (L4-L5) were tested with continuously increasing sagittal plane bending to 8 Nm while force components were dynamically programmed to deliver a resultant 400 N FL that remained normal to the moving midline of the intervertebral disc. Mean absolute load-control tracking errors between commanded and experimental loads were computed. Global spinal ranges of motion and sagittal plane inter-body translations were compared to previously published values for non-robotic applications. Mean TEs for zero-commanded force and moment axes were 0.7 ± 0.4N and 0.03 ± 0.02 Nm, respectively. For non-zero force axes mean TEs were 0.8 ± 0.8 N, 1.3 ± 1.6 Nm, and 1.3 ± 1.6N for Fx, Fz, and the resolved ideal follower load vector FL(R), respectively. Mean extension and flexion ranges of motion were 2.6° ± 1.2° and 5.0° ± 1.7°, respectively. Relative vertebral body translations and rotations were very comparable to data collected with non-robotic systems in the literature. The robotically coordinated Cartesian load controlled testing system demonstrated robust real-time load-control that permitted application of a real-time dynamic non-zero load vector during flexion-extension. For single MSU

  6. Biomechanical effect of altered lumbar lordosis on intervertebral lumbar joints during the golf swing: a simulation study.

    PubMed

    Bae, Tae Soo; Cho, Woong; Kim, Kwon Hee; Chae, Soo Won

    2014-11-01

    Although the lumbar spine region is the most common site of injury in golfers, little research has been done on intervertebral loads in relation to the anatomical-morphological differences in the region. This study aimed to examine the biomechanical effects of anatomical-morphological differences in the lumbar lordosis on the lumbar spinal joints during a golf swing. The golf swing motions of ten professional golfers were analyzed. Using a subject-specific 3D musculoskeletal system model, inverse dynamic analyses were performed to compare the intervertebral load, the load on the lumbar spine, and the load in each swing phase. In the intervertebral load, the value was the highest at the L5-S1 and gradually decreased toward the T12. In each lumbar spine model, the load value was the greatest on the kypholordosis (KPL) followed by normal lordosis (NRL), hypolordosis (HPL), and excessive lordosis (EXL) before the impact phase. However, results after the follow-through (FT) phase were shown in reverse order. Finally, the load in each swing phase was greatest during the FT phase in all the lumbar spine models. The findings can be utilized in the training and rehabilitation of golfers to help reduce the risk of injury by considering individual anatomical-morphological characteristics.

  7. Instant axis of rotation of L4-5 motion segment--a biomechanical study on cadaver lumbar spine.

    PubMed

    Sengupta, Dilip K; Demetropoulos, Constantine K; Herkowitz, Harry N

    2011-06-01

    The instant axis of rotation (IAR) is an important kinematic property to characterise of lumbar spine motion. The goal of this biomechanical study on cadaver lumbar spine was to determine the excursion of the IAR for flexion (FE), lateral bending (LB) and axial rotation (AR) motion at L4-5 segment. Ten cadaver lumbar spine specimens were tested in a 6 degrees-of-freedom spine tester with continuous clyclical loading using pure moment and follower pre-load, to produce physiological motion. The specimens were x-rayed and CT scanned prior to testing to identify marker position. Continuous motion tracking was done by Optotrak motion capture device. A continuous tracking of the IAR excursion was calculated from the continuous motions capturedata using a computer programme. IAR translates forward in flexion and backwards in extension with mean excursion of 26.5 mm (+/- 5.6 SD). During LB motion, IAR translates laterally in the same direction, and the mean excursion was 15.35 mm (+/- 8.75 SD). During axial rotation the IAR translates in the horizontal plane in a semicircular arc, around the centre of the vertebral body, but the IAR translates in the opposite direction of rotation. The IAR excursion was faster and larger during neutral zone motion in FE and LB, but uniform for AR motion. This is the first published data on the continuous excursion of IAR of a lumbar motion segment. The methodology is accurate and precise, but not practicable for in vivo testing.

  8. Agreement Between Visual Assessment and 2-Dimensional Analysis During Jump Landing Among Healthy Female Athletes.

    PubMed

    Rabin, Alon; Einstein, Ofira; Kozol, Zvi

    2018-04-01

      Altered movement patterns, including increased frontal-plane knee movement and decreased sagittal-plane hip and knee movement, have been associated with several knee disorders. Nevertheless, the ability of clinicians to visually detect such altered movement patterns during high-speed athletic tasks is relatively unknown.   To explore the association between visual assessment and 2-dimensional (2D) analysis of frontal-plane knee movement and sagittal-plane hip and knee movement during a jump-landing task among healthy female athletes.   Cross-sectional study.   Gymnasiums of participating volleyball teams.   A total of 39 healthy female volleyball players (age = 21.0 ± 5.2 years, height = 172.0 ± 8.6 cm, mass = 64.2 ± 7.2 kg) from Divisions I and II of the Israeli Volleyball Association.   Frontal-plane knee movement and sagittal-plane hip and knee movement during jump landing were visually rated as good, moderate, or poor based on previously established criteria. Frontal-plane knee excursion and sagittal-plane hip and knee excursions were measured using free motion-analysis software and compared among athletes with different visual ratings of the corresponding movements.   Participants with different visual ratings of frontal-plane knee movement displayed differences in 2D frontal-plane knee excursion ( P < .01), whereas participants with different visual ratings of sagittal-plane hip and knee movement displayed differences in 2D sagittal-plane hip and knee excursions ( P < .01).   Visual ratings of frontal-plane knee movement and sagittal-plane hip and knee movement were associated with differences in the corresponding 2D hip and knee excursions. Visual rating of these movements may serve as an initial screening tool for detecting altered movement patterns during jump landings.

  9. A reappraisal of the anatomy of the human lumbar erector spinae.

    PubMed Central

    Bogduk, N

    1980-01-01

    In the lumbar region the longissimus thoracis and iliocostalis lumborum are separated by the erector spinae aponeurosis and its ventral reflection--the lumbar intermuscular aponeurosis. Lumbar fibres of the longissimus arise from the ilium and the lumbar intermuscular aponeurosis and insert into the accessory processes and proximal ends of the transverse processes of the lumbar vertebrae. Lumbar fibres of iliocostalis insert into the costal elements of the first four lumbar vertebrae. The lumbar insertions of these muscles are homologous to their thoracic insertions. The lumbar intermuscular aponeurosis is homologous to the lumbar intermuscular septum in the dog, cat and monkey. The details of attachment of the lumbar fibres of the erector spinae and of the lumbar intermuscular aponeurosis should be taken into account in biomechanical analyses of the lumbar vertebral column. Images Fig. 1(cont.) Fig. 1 Fig. 3 Fig. 4 Fig. 5 PMID:7216917

  10. Spinal pedicle subtraction osteotomy for fixed sagittal imbalance patients

    PubMed Central

    Hyun, Seung-Jae; Kim, Yongjung J; Rhim, Seung-Chul

    2013-01-01

    In addressing spinal sagittal imbalance through a posterior approach, the surgeon now may choose from among a variety of osteotomy techniques. Posterior column osteotomies such as the facetectomy or Ponte or Smith-Petersen osteotomy provide the least correction, but can be used at multiple levels with minimal blood loss and a lower operative risk. Pedicle subtraction osteotomies provide nearly 3 times the per-level correction of Ponte/Smith-Petersen osteotomies; however, they carry increased technical demands, longer operative time, and greater blood loss and associated significant morbidity, including neurological injury. The literature focusing on pedicle subtraction osteotomy for fixed sagittal imbalance patients is reviewed. The long-term overall outcomes, surgical tips to reduce the complications and suggestions for their proper application are also provided. PMID:24340276

  11. Anterioposterior spinal curvatures and magnitude of asymmetry in the trunk in musicians playing the violin compared with nonmusicians.

    PubMed

    Barczyk-Pawelec, Katarzyna; Sipko, Tomasz; Demczuk-Włodarczyk, Ewa; Boczar, Agata

    2012-05-01

    Playing an instrument often requires a certain posture and asymmetric position that may affect the anteroposterior spinal curvatures and may lead to postural asymmetry. The aim of the study was to evaluate the spinal curvatures in the sagittal plane and the magnitude of asymmetries in the trunk in the frontal plane in a group of music students in comparison with a control group. The group of 67 students aged 20 to 26 years was made up of 2 subgroups: the musicians (violin playing students of the Academy of Music in Wroclaw) and the control group (physical therapy students who played no instruments). The examination included an interview, measuring of somatic characteristics, and evaluation of body posture by means of the photogrammetric method. The spinal curvatures of the instrumentalists in the sagittal plane differ from the control group mainly in terms of length and depth parameters. Compared with the control group, the musicians were characterized by statistically more significantly longer and deeper thoracic kyphosis (P < .01) and more shallow lumbar lordosis (P < .05), a greater angle of thoracic kyphosis (P < .005), and a smaller inclination angle of the thoracolumbar and lumbosacral section of the spine (P < .01). In the group of musicians, the asymmetries in the area of shoulders and waist triangles as well as the distance of the spinous processes from the C7 to S1 line were more frequent. Copyright © 2012 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.

  12. Resolution of low back symptoms after corrective surgery for dropped-head syndrome: a report of two cases.

    PubMed

    Koda, Masao; Furuya, Takeo; Inada, Taigo; Kamiya, Koshiro; Ota, Mitsutoshi; Maki, Satoshi; Ikeda, Osamu; Aramomi, Masaaki; Takahashi, Kazuhisa; Yamazaki, Masashi; Mannoji, Chikato

    2015-10-07

    Cervical deformity can influence global sagittal balance. We report two cases of severe low back pain and lower extremity radicular pain associated with dropped-head syndrome. Symptoms were relieved by cervical corrective surgery. Two Japanese women with dropped head syndrome complained of severe low back pain and lower extremity radicular pain on walking. Radiographs showed marked cervical spine kyphosis and lumbar spine hyperlordosis. After cervicothoracic posterior corrective fusion was performed, cervical kyphosis was corrected and lumbar lordosis decreased, and low back pain and leg pain were relieved in both patients. Cervical deformity can influence global sagittal balance. Marked cervical kyphosis in patients with dropped-head syndrome can induce compensatory thoracolumbar hyperlordosis. Low back symptoms in patients with dropped-head syndrome are attributable to this compensatory lumbar hyperlordosis. Symptoms of lumbar canal stenosis may result from cervical deformity and can be improved with cervical corrective surgery.

  13. Effect of Preoperative Molding Helmet in Patients With Sagittal Synostosis.

    PubMed

    Hashmi, Asra; Marupudi, Neena I; Sood, Sandeep; Rozzelle, Arlene

    2017-06-01

    In our practice, the authors found that molding helmet used for plagiocephaly preoperatively, in patients with sagittal synostosis, decreased bathrocephaly, forehead bossing, and improved posterior vertex, as well as Cephalic Index (CI). This prompted us to investigate the impact of preoperative molding helmet in patients with sagittal synostosis. A prospective study was performed on patients undergoing surgical correction of sagittal synostosis, over a 5-year period. Patients were categorized into 2 groups. "No Helmet group" only had surgical correction, and "Helmet group" had preoperative molding helmet, prior to surgical correction. Cephalic Index for the 2 groups was compared using t-test. There were 40 patients in the No Helmet group and 18 patients in the Helmet group. For No Helmet group, mean CI at presentation, immediately preoperative, and postoperatively was 0.70 (±0.045), 0.70 (±0.020), and 0.80 (±0.030), respectively, and for Helmet group, it was 0.69 (±0.023), 0.73 (±0.036), and 0.83 (±0.036), respectively. There was no statistically significant difference between CI of the 2 groups at presentation (P = 0.45). Comparison of postoperative CI did show a statistically significant difference between the groups (P = 0.01). For Helmet group, on comparison of CI at presentation and preoperative CI (after helmet therapy), a statistically significant improvement in CI was observed (P = 0.0004). Our results suggest that preoperative molding helmet can decrease bathrocephaly, forehead bossing, and improve posterior vertex as well as CI, prior to surgery and thus can be used as a valuable adjunct in patients with sagittal synostosis.

  14. [POSTERIOR LUMBAR INTERBODY FUSION FOR DOUBLE-SEGMENTAL BILATERAL ISTHMIC LUMBAR SPONDYLOLISTHESIS].

    PubMed

    Xing, Wenhua; Huo Hongjun; Yang, Xuejun; Xiao, Yulong; Zhao, Yan; Fu, Yu; Zhu, Yong; Li, Feng; Xin, Daqi

    2015-12-01

    To explore the effectiveness of posterior lumbar interbody fusion in the treatment of double-segmental bilateral isthmic lumbar spondylolisthesis. Between February 2008 and December 2013, 17 patients with double-segmental bilateral isthmic lumbar spondylolisthesis were treated with posterior lumbar interbody fusion. There were 12 males and 5 females, with an age ranged 48-69 years (mean, 55.4 years). The disease duration ranged from 11 months to 17 years (median, 22 months). According to the Meyerding classification, 30 vertebrea were rated as degree I, 3 as degree II, and 1 as degree III. L₄,₅ was involved in 14 cases and L₃,₄ in 3 cases. The preoperative visual analogue scale (VAS) score was 8.6 ± 3.2. Cerebrospinal fluid leakage occurred in 2 cases because of intraoperative dural tear; primary healing of incision was obtained, with no operation related complication in the other patients. The patients were followed up 1-6 years (mean, 3.4 years). At last follow-up, VAS score was decreased significantly to 1.1 ± 0.4, showing significant difference when compared with preoperative score (t=7.652, P=0.008). X-ray films showed that slippage vertebral body obtained different degree of reduction, with a complete reduction rate of 85% (29/34) at 1 week after operation. All patients achieved bony union at 6-12 months (mean, 7.4 months). According to the Lenke classification, 13 cases were rated as grade A and 4 cases as grade B. No internal fixation loosening and fracture were observed during the follow-up. Intervertebral disc height was maintained, no loss of spondylolisthesis reduction was found. It can obtain satisfactory clinical result to use spinal canal decompression by posterior approach, and screw fixation for posterior fusion in treatment of double-segmental bilateral isthmic lumbar spondylolisthesis. The key points to successful operation include accurate insertion of screw, effective decompression, distraction before reduction, rational use of

  15. The effect of a lumbar support pillow on lumbar posture and comfort during a prolonged seated task

    PubMed Central

    2013-01-01

    Background Several risk factors exist for the development of low back pain, including prolonged sitting and flexed spinal curvature. Several investigators have studied lumbar support devices and spinal curvatures in sitting, however few have investigated a pain population and reported a quantitative measure of comfort. The purpose of the current project was to determine whether a lumbar support pillow, outfitted with a cut-out to accommodate the bulk of posterior pelvic soft tissue volume, is more effective than a standard chair in promoting a neutral spinal posture and improving subjective and objective measures of comfort in healthy individuals and patients with low back pain. Methods Twenty eight male participants with and without a history of low back pain sat in a standard office chair and in a chair with the lumbar support pillow for 30 minutes. Lumbar and thoracolumbar postures were measured through electromagnetic markers. Comfort was determined based on the least squares radius of centre of pressure shifting, measured at the buttock-chair interface as well as reported discomfort through visual analog scales. Chair support effects were assessed through ANOVA methods. The study was approved by the Canadian Memorial Chiropractic College research ethics board. Results There was a main effect of condition on lumbar posture (p = 0.006) and thoracolumbar posture (p = 0.014). In the lumbar region, the support and standard chair differed by 2.88° (95% CI; 1.01-4.75), with the lumbar support being closer to neutral than the standard chair. In the thoracolumbar region, the support and standard chair differed by -2.42° (95% CI; -4.22 to -0.62), with the standard chair being closer to neutral than the support device. The centre of pressure measure was significantly improved with the pillow (p = 0.017), however there were no subjective changes in comfort. Conclusions A lumbar support pillow with a cut-out for the posterior pelvic tissues improved an

  16. Determination of the human spine curve based on laser triangulation.

    PubMed

    Poredoš, Primož; Čelan, Dušan; Možina, Janez; Jezeršek, Matija

    2015-02-05

    The main objective of the present method was to automatically obtain a spatial curve of the thoracic and lumbar spine based on a 3D shape measurement of a human torso with developed scoliosis. Manual determination of the spine curve, which was based on palpation of the thoracic and lumbar spinous processes, was found to be an appropriate way to validate the method. Therefore a new, noninvasive, optical 3D method for human torso evaluation in medical practice is introduced. Twenty-four patients with confirmed clinical diagnosis of scoliosis were scanned using a specially developed 3D laser profilometer. The measuring principle of the system is based on laser triangulation with one-laser-plane illumination. The measurement took approximately 10 seconds at 700 mm of the longitudinal translation along the back. The single point measurement accuracy was 0.1 mm. Computer analysis of the measured surface returned two 3D curves. The first curve was determined by manual marking (manual curve), and the second was determined by detecting surface curvature extremes (automatic curve). The manual and automatic curve comparison was given as the root mean square deviation (RMSD) for each patient. The intra-operator study involved assessing 20 successive measurements of the same person, and the inter-operator study involved assessing measurements from 8 operators. The results obtained for the 24 patients showed that the typical RMSD between the manual and automatic curve was 5.0 mm in the frontal plane and 1.0 mm in the sagittal plane, which is a good result compared with palpatory accuracy (9.8 mm). The intra-operator repeatability of the presented method in the frontal and sagittal planes was 0.45 mm and 0.06 mm, respectively. The inter-operator repeatability assessment shows that that the presented method is invariant to the operator of the computer program with the presented method. The main novelty of the presented paper is the development of a new, non-contact method

  17. Application of Gelatin Sponge Impregnated with a Mixture of 3 Drugs to Intraoperative Nerve Root Block Combined with Robot-Assisted Minimally Invasive Transforaminal Lumbar Interbody Fusion Surgery in the Treatment of Adult Degenerative Scoliosis: A Clinical Observation Including 96 Patients.

    PubMed

    Du, Jin Peng; Fan, Yong; Liu, Ji Jun; Zhang, Jia Nan; Chang Liu, Shi; Hao, Dingjun

    2017-12-01

    Application of nerve root block is mainly for diagnosis with less application in intraoperative treatment. The aim of this study was to observe clinical and imaging outcomes of application of gelatin sponge impregnated with a mixture of 3 drugs to intraoperative nerve root block combined with robot-assisted minimally invasive transforaminal lumbar interbody fusion surgery in to treat adult degenerative lumbar scoliosis. From January 2012 to November 2014, 108 patients with adult degenerative lumbar scoliosis were treated with robot-assisted minimally invasive transforaminal lumbar interbody fusion surgery combined with intraoperative gelatin sponge impregnated with a mixture of 3 drugs. Visual analog scale and Oswestry Disability Index scores were used to evaluate postoperative improvement of back and leg pain, and clinical effects were assessed according to the 36-Item Short-Form Health Survey. Imaging was obtained preoperatively, 1 week and 3 months postoperatively, and at the last follow-up. Fusion status, complications, and other outcomes were assessed. Follow-up was complete for 96 patients. Visual analog scale scores of leg and back pain on postoperative days 1-7 were decreased compared with preoperatively. At 1 week postoperatively, 3 months postoperatively, and last follow-up, visual analog scale score, Oswestry Disability Index score, coronal Cobb angle, and coronal and sagittal deviated distance decreased significantly (P = 0.000) and lumbar lordosis angle increased (P = 0.000) compared with preoperatively. Improvement rate of Oswestry Disability Index was 81.8% ± 7.4. Fusion rate between vertebral bodies was 92.7%. Application of gelatin sponge impregnated with 3 drugs combined with robot-assisted minimally invasive transforaminal lumbar interbody fusion for treatment of adult degenerative lumbar scoliosis is safe and feasible with advantages of good short-term analgesia effect, minimal invasiveness, short length of stay, and good long-term clinical

  18. Lumbar dorsal ramus syndrome.

    PubMed

    Bogduk, N

    1980-11-15

    Low back pain, referred pain in the lower limbs, and spasm of the back, gluteal, and hamstring muscles are clinical features which can be induced in normal volunteers by stimulating structures which are innervated by the lumbar dorsal rami. Conversely, they can be relieved in certain patients by selective interruption of conduction along dorsal rami. These facts permit the definition of a lumbar dorsal ramus syndrome, which can be distinguished from the intervertebral disc syndrome and other forms of low back pain. The distinguishing feature is that, in lumbar dorsal ramus syndrome, all the clinical features are exclusively mediated by dorsal rami and do not arise from nerve-root compression. The pathophysiology, pathology, and treatment of this syndrome are described. Recognition of this syndrome, and its treatment with relatively minor procedures, can obviate the need for major surgery which might otherwise be undertaken.

  19. Isolated sagittal craniosynostosis: definition, classification, and surgical indications.

    PubMed

    Massimi, Luca; Caldarelli, Massimo; Tamburrini, Gianpiero; Paternoster, Giovanna; Di Rocco, Concezio

    2012-09-01

    Sagittal craniosynostosis (SC) remains the most common type of synostosis, accounting for about a half of all forms. It would result from a mesenchymal disorder involving the intramembranous ossification of the sagittal suture and leading to its early fusion. No specific data on the etiologic factors are currently available. The premature ossification of the sagittal suture can result in three main types of SC, according to the different segment prevalently involved: anterior, posterior, and complete SC. The diagnosis is easily obtained by clinical examination. However, a radiological work up (3D CT scan) may be necessary to rule out hidden venous or cranial anomalies possibly associated with most severe cases, or for the surgical planning. The most common indication for surgery is the improvement of the cosmetic appearance of the skull, since a cranial deformation may have a significant psychological impact on affected subjects. To relieve from raised intracranial pressure is a further indication to surgery. Although an increased intracranial pressure can be demonstrated in a minority of affected children at diagnosis, indeed, it can present later (usually after the second/third year of life) with chronic symptoms. The role of surgery in the preservation of cognitive functions in scaphocephalic patients does not seem to be relevant, since minor anomalies of the cerebral development associated with SC would occur independently from the cranial shape. On the other hand, the surgical correction may show a protective effect on some visual skills, like the ability to fix and follow, and the fixation shift.

  20. Accuracy and reliability of coronal and sagittal spinal curvature data based on patient-specific three-dimensional models created by the EOS 2D/3D imaging system.

    PubMed

    Somoskeöy, Szabolcs; Tunyogi-Csapó, Miklós; Bogyó, Csaba; Illés, Tamás

    2012-11-01

    Three-dimensional (3D) deformations of the spine are predominantly characterized by two-dimensional (2D) angulation measurements in coronal and sagittal planes, using anteroposterior and lateral X-ray images. For coronal curves, a method originally described by Cobb and for sagittal curves a modified Cobb method are most widely used in practice, and these methods have been shown to exhibit good-to-excellent reliability and reproducibility, carried out either manually or by computer-based tools. Recently, an ultralow radiation dose-integrated radioimaging solution was introduced with special software for realistic 3D visualization and parametric characterization of the spinal column. Comparison of accuracy, correlation of measurement values, intraobserver and interrater reliability of methods by conventional manual 2D and sterEOS 3D measurements in a routine clinical setting. Retrospective nonrandomized study of diagnostic X-ray images created as part of a routine clinical protocol of eligible patients examined at our clinic during a 30-month period between July 2007 and December 2009. In total, 201 individuals (170 females, 31 males; mean age, 19.88 years) including 10 healthy athletes with normal spine and patients with adolescent idiopathic scoliosis (175 cases), adult degenerative scoliosis (11 cases), and Scheuermann hyperkyphosis (5 cases). Overall range of coronal curves was between 2.4° and 117.5°. Analysis of accuracy and reliability of measurements were carried out on a group of all patients and in subgroups based on coronal plane deviation: 0° to 10° (Group 1, n=36), 10° to 25° (Group 2, n=25), 25° to 50° (Group 3, n=69), 50° to 75° (Group 4, n=49), and more than 75° (Group 5, n=22). Coronal and sagittal curvature measurements were determined by three experienced examiners, using either traditional 2D methods or automatic measurements based on sterEOS 3D reconstructions. Manual measurements were performed three times, and sterEOS 3D

  1. Lumbar Spine Surgery in Patients with Parkinson Disease.

    PubMed

    Schroeder, Joshua E; Hughes, Alexander; Sama, Andrew; Weinstein, Joseph; Kaplan, Leon; Cammisa, Frank P; Girardi, Federico P

    2015-10-21

    Parkinson disease is the second most common neurodegenerative condition. The literature on patients with Parkinson disease and spine surgery is limited, but increased complications have been reported. All patients with Parkinson disease undergoing lumbar spine surgery between 2002 and 2012 were identified. Patients' charts, radiographs, and outcome questionnaires were reviewed. Parkinson disease severity was assessed with use of the modified Hoehn and Yahr staging scale. Complications and subsequent surgeries were analyzed. Risk for reoperation was assessed. Ninety-six patients underwent lumbar spine surgery. The mean patient age was 63.0 years. The mean follow-up duration was 30.1 months. The Parkinson disease severity stage was <2 in thirteen patients, 2 in thirty patients, 2.5 in twenty-three patients, and ≥3 in thirty patients. The primary indication for surgery was spinal stenosis in seventy-two patients, spondylolisthesis in seventeen patients, and coronal and/or sagittal deformity in seven patients. There were nineteen early complications, including postoperative infections requiring surgical irrigation and debridement and long-term antibiotics in ten patients. The visual analog scale for back pain improved from 7.4 cm preoperatively to 1.8 cm postoperatively (p < 0.001). The visual analog scale for lower-limb pain improved from 7.7 cm preoperatively to 2.3 cm postoperatively (p < 0.001). The Oswestry Disability Index score dropped from 54.1 points to 17.7 points at the time of the latest follow-up (p < 0.001). The Short Form-12 Physical Component Summary score improved from 26.6 points preoperatively to 30.5 points postoperatively (p < 0.05). Twenty patients required revision surgery. Risks for further surgery included a Parkinson disease severity stage of ≥3 (p < 0.05), a history of diabetes mellitus, treatment for osteoporosis, and a combined anterior and posterior approach. Despite a higher rate of complications than in the general population, the

  2. Minimally invasive lumbar foraminotomy.

    PubMed

    Deutsch, Harel

    2013-07-01

    Lumbar radiculopathy is a common problem. Nerve root compression can occur at different places along a nerve root's course including in the foramina. Minimal invasive approaches allow easier exposure of the lateral foramina and decompression of the nerve root in the foramina. This video demonstrates a minimally invasive approach to decompress the lumbar nerve root in the foramina with a lateral to medial decompression. The video can be found here: http://youtu.be/jqa61HSpzIA.

  3. Determination of the intervertebral disc space from CT images of the lumbar spine

    NASA Astrophysics Data System (ADS)

    Korez, Robert; Å tern, Darko; Likar, Boštjan; Pernuš, Franjo; Vrtovec, Tomaž

    2014-03-01

    Degenerative changes of the intervertebral disc are among the most common causes of low back pain, where for individuals with significant symptoms surgery may be needed. One of the interventions is the total disc replacement surgery, where the degenerated disc is replaced by an artificial implant. For designing implants with good bone contact and continuous force distribution, the morphology of the intervertebral disc space and vertebral body endplates is of considerable importance. In this study we propose a method for the determination of the intervertebral disc space from three-dimensional (3D) computed tomography (CT) images of the lumbar spine. The first step of the proposed method is the construction of a model of vertebral bodies in the lumbar spine. For this purpose, a chain of five elliptical cylinders is initialized in the 3D image and then deformed to resemble vertebral bodies by introducing 25 shape parameters. The parameters are obtained by aligning the chain to the vertebral bodies in the CT image according to image intensity and appearance information. The determination of the intervertebral disc space is finally achieved by finding the planes that fit the endplates of the obtained parametric 3D models, and placing points in the space between the planes of adjacent vertebrae that enable surface reconstruction of the intervertebral disc space. The morphometric analysis of images from 20 subjects yielded 11:3 +/- 2:6, 12:1 +/- 2:4, 12:8 +/- 2:0 and 12:9 +/- 2:7 cm3 in terms of L1-L2, L2-L3, L3-L4 and L4-L5 intervertebral disc space volume, respectively.

  4. Economic impact of minimally invasive lumbar surgery.

    PubMed

    Hofstetter, Christoph P; Hofer, Anna S; Wang, Michael Y

    2015-03-18

    Cost effectiveness has been demonstrated for traditional lumbar discectomy, lumbar laminectomy as well as for instrumented and noninstrumented arthrodesis. While emerging evidence suggests that minimally invasive spine surgery reduces morbidity, duration of hospitalization, and accelerates return to activites of daily living, data regarding cost effectiveness of these novel techniques is limited. The current study analyzes all available data on minimally invasive techniques for lumbar discectomy, decompression, short-segment fusion and deformity surgery. In general, minimally invasive spine procedures appear to hold promise in quicker patient recovery times and earlier return to work. Thus, minimally invasive lumbar spine surgery appears to have the potential to be a cost-effective intervention. Moreover, novel less invasive procedures are less destabilizing and may therefore be utilized in certain indications that traditionally required arthrodesis procedures. However, there is a lack of studies analyzing the economic impact of minimally invasive spine surgery. Future studies are necessary to confirm the durability and further define indications for minimally invasive lumbar spine procedures.

  5. [Paraspinal muscle approach with winglike working channel in the treatment of thoracic and lumbar spine fracture].

    PubMed

    Qi, Lei; Li, Mu; Si, Haipeng; Zhang, Shuai; Jiang, Yunpeng; Xue, Jingsong

    2015-04-01

    To evaluate the clinical and radiological efficacy of paraspinal muscle approach with winglike working channel in the treatment of thoracic and lumbar spine fracture. From October 2010 to August 2012, a total of 51 patients with thoracic and lumbar spine fractures without neurological symptoms were enrolled in the study, including 32 males and 19 females. All patients were divided into two groups: 26 patients were treated through posterior paraspinal muscle approach with winglike working channel, and 25 patients were treated through traditional posterior approach. In all patients, the interval between injury and operation was less than two weeks; the vertebral canal blocked area was less than 1/3 in sagittal diameter; the compression of the fractured vertebra height was less than 2/3. And the patients with pathological fracture and severe osteoporosis were excluded. The perioperative index including operative blood loss, draining loss, operative time, postoperative bed time were recorded. The clinical results were evaluated by visual analogue scale (VAS) for back pain preoperatively, at 3 days, 3 months, the last follow-up postoperatively and modified Macnab criteria at the last follow-up. The radiological results were evaluated by sagittal Cobb angle and the anterior height of the fractured vertebra. The data of two groups were compared statistically with paired and independent t test, χ² test, Mann-Whitney U test and Wilcoxon test. All patients were followed up with average of 16.6 months. In the two groups, the operative blood loss was respectively (91.5 ± 36.6) ml and (209.2 ± 38.3) ml (t=-11.216, P=0.000), draining loss was (13.7±4.4) ml and (162.3 ± 56.6) ml (t=-13.352, P=0.000), postoperative bed time was (87.3 ± 11.5) hours and (118.4 ± 20.4) hours (t=-6.727, P=0.000), VAS for back pain at 3 days postoperatively was 5.5 ± 1.0 and 6.4 ± 0.8 (t=-3.304, P=0.002), also VAS at the last follow-up was 1.0 (1.0) and 2.0 (1.0) (U=191.0, P=0.008). Data

  6. Kinematic Evaluation of Association between Disc Bulge Migration, Lumbar Segmental Mobility, and Disc Degeneration in the Lumbar Spine Using Positional Magnetic Resonance Imaging

    PubMed Central

    Hu, Jonathan K.; Morishita, Yuichiro; Montgomery, Scott R.; Hymanson, Henry; Taghavi, Cyrus E.; Do, Duc; Wang, Jeff C.

    2011-01-01

    Degenerative disc disease and disc bulge in the lumbar spine are common sources of lower back pain. Little is known regarding disc bulge migration and lumbar segmental mobility as the lumbar spine moves from flexion to extension. In this study, 329 symptomatic (low back pain with or without neurological symptoms) patients with an average age of 43.5 years with varying degrees of disc degeneration were examined to characterize the kinematics of the lumbar intervertebral discs through flexion, neutral, and extension weight-bearing positions. In this population, disc bulge migration associated with dynamic motion of the lumbar spine significantly increased with increased grade of disk degeneration. Although no obvious trends relating the migration of disc bulge and angular segmental mobility were seen, translational segmental mobility tended to increase with disc bulge migration in all of the degenerative disc states. It appears that many factors, both static (intervertebral disc degeneration or disc height) and dynamic (lumbar segmental mobility), affect the mechanisms of lumbar disc bulge migration. PMID:24353937

  7. Cerebriform connective tissue nevus of lumbar.

    PubMed

    Chen, Jinbo; Chen, Liuqing; Duan, Yiqun; Li, Dongsheng; Dong, Bilin

    2015-02-01

    Connective tissue nevi represents a kind of hamartoma, and coalescence of the lesions in a cerebriform mode in the lumbar region without Proteus syndrome is rarely seen. Here, we report a 26-year-old woman presenting with nodules and plaques in her left lumbar region of 26 years in duration. Histopathological examination and Masson-trichrome stain showed increased dermal collagen bundles in a haphazard array. The diagnosis of connective tissue nevi was made. This is the first case report on cerebriform connective tissue nevi without Proteus syndrome in the lumbar region. © 2014 Japanese Dermatological Association.

  8. Management of Lumbar Conditions in the Elite Athlete.

    PubMed

    Hsu, Wellington K; Jenkins, Tyler James

    2017-07-01

    Lumbar disk herniation, degenerative disk disease, and spondylolysis are the most prevalent lumbar conditions that result in missed playing time. Lumbar disk herniation has a good prognosis. After recovery from injury, professional athletes return to play 82% of the time. Surgical management of lumbar disk herniation has been shown to be a viable option in athletes in whom nonsurgical measures have failed. Degenerative disk disease is predominately genetic but may be accelerated in athletes secondary to increased physiologic loading. Nonsurgical management is the standard of care for lumbar degenerative disk disease in the elite athlete. Spondylolysis is more common in adolescent athletes with back pain than in adult athletes. Nonsurgical management of spondylolysis is typically successful. However, if surgery is required, fusion or direct pars repair can allow the patient to return to sports.

  9. ISSLS prize winner: microstructure and mechanical disruption of the lumbar disc annulus: part II: how the annulus fails under hydrostatic pressure.

    PubMed

    Veres, Samuel P; Robertson, Peter A; Broom, Neil D

    2008-12-01

    Mechanically induced annular disruption of lumbar intervertebral discs followed by microstructural investigation. To investigate the role that elevated nuclear pressures play in disrupting the lumbar intervertebral disc's annulus fibrosus. Compound mechanical loadings have been used to recreate clinically relevant annular disruptions in vitro. However, the role that individual loading parameters play in disrupting the lumbar disc's annulus remains unclear. The nuclei of ovine lumbar intervertebral discs were gradually pressurized by injecting a viscous radio-opaque gel via their inferior vertebrae. Pressurization was conducted until catastrophic failure of the disc occurred. Investigation of the resulting annular disruption was carried out using microcomputed tomography and differential interference contrast microscopy. Gel extrusion from the posterior annulus was the most common mode of disc failure. Unlike other aspects of the annular wall, the posterior region was unable to distribute hydrostatic pressures circumferentially. In each extrusion case, severe disruption of the posterior annulus occurred. Although intralamellar disruption occurred in the mid annulus, interlamellar disruption occurred in the outer posterior annulus. Radial ruptures between lamellae always occurred in the mid-axial plane. With respect to the annular wall, the posterior region is most susceptible to failure in the presence of high nuclear pressure, even when loaded in the neutral position. Weak interlamellar cohesion of the outer posterior lamellae may explain why the majority of herniations remain contained as protrusions within the outer annular wall.

  10. Management of lumbar spinal stenosis.

    PubMed

    Lurie, Jon; Tomkins-Lane, Christy

    2016-01-04

    Lumbar spinal stenosis (LSS) affects more than 200,000 adults in the United States, resulting in substantial pain and disability. It is the most common reason for spinal surgery in patients over 65 years. Lumbar spinal stenosis is a clinical syndrome of pain in the buttocks or lower extremities, with or without back pain. It is associated with reduced space available for the neural and vascular elements of the lumbar spine. The condition is often exacerbated by standing, walking, or lumbar extension and relieved by forward flexion, sitting, or recumbency. Clinical care and research into lumbar spinal stenosis is complicated by the heterogeneity of the condition, the lack of standard criteria for diagnosis and inclusion in studies, and high rates of anatomic stenosis on imaging studies in older people who are completely asymptomatic. The options for non-surgical management include drugs, physiotherapy, spinal injections, lifestyle modification, and multidisciplinary rehabilitation. However, few high quality randomized trials have looked at conservative management. A systematic review concluded that there is insufficient evidence to recommend any specific type of non-surgical treatment. Several different surgical procedures are used to treat patients who do not improve with non-operative therapies. Given that rapid deterioration is rare and that symptoms often wax and wane or gradually improve, surgery is almost always elective and considered only if sufficiently bothersome symptoms persist despite trials of less invasive interventions. Outcomes (leg pain and disability) seem to be better for surgery than for non-operative treatment, but the evidence is heterogeneous and often of limited quality. © BMJ Publishing Group Ltd 2015.

  11. Pyogenic lumbar spondylodiscitis treated with transforaminal lumbar interbody fusion: safety and outcomes.

    PubMed

    Shetty, Ajoy Prasad; Aiyer, Siddharth N; Kanna, Rishi Mugesh; Maheswaran, Anupama; Rajasekaran, Shanmuganathan

    2016-06-01

    Our aim was to study the safety and outcomes of posterior instrumentation and transforaminal lumbar interbody fusion (TLIF) for treating pyogenic lumbar spondylodiscitis. Retrospective analysis was performed on prospectively collected data of 27 consecutive cases of lumbar pyogenic spondylodiscitis treated with posterior instrumentation and TLIF between January 2009 and December 2012. Cases were analysed for safety, radiological and clinical outcomes of transforaminal interbody fusion using bone graft ± titanium cages. Interbody metallic cages with bone graft were used in 17 cases and ten cases used only bone graft. Indications for surgical treatment were failed conservative management in 17, neurodeficit in six and significant bony destruction in four. There were no cases reporting cage migration, loosening, pseudoarthrosis or recurrence of infection at a mean follow-up of 30 months. Clinical outcomes were assessed using Kirkaldy-Willis criteria, which showed 14 excellent, nine good, three fair and one poor result. Mean focal deformity improved with the use of bone graft ± interbody cages, and the deformity correction was maintained at final follow-up. Mean pre-operative focal lordosis for the graft group was 8.5° (2-16.5°), which improved to 10.9 °(3.3-16°); mean pre-operative focal lordosis in the group treated with cages was 6.7 °(0-15°), which improved to 7°(0-15°) . TLIFs with cages in patients with pyogenic lumbar spondylodiscitis allows for acceptable clearance of infection, satisfactory deformity correction with low incidence of cage migration, loosening and infection recurrence.

  12. 49 CFR 572.115 - Lumbar spine and pelvis.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Lumbar spine and pelvis. 572.115 Section 572.115... 50th Percentile Male § 572.115 Lumbar spine and pelvis. The specifications and test procedure for the lumbar spine and pelvis are identical to those for the SID dummy as set forth in § 572.42 except that the...

  13. 49 CFR 572.115 - Lumbar spine and pelvis.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 7 2014-10-01 2014-10-01 false Lumbar spine and pelvis. 572.115 Section 572.115... 50th Percentile Male § 572.115 Lumbar spine and pelvis. The specifications and test procedure for the lumbar spine and pelvis are identical to those for the SID dummy as set forth in § 572.42 except that the...

  14. 49 CFR 572.115 - Lumbar spine and pelvis.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 7 2011-10-01 2011-10-01 false Lumbar spine and pelvis. 572.115 Section 572.115... 50th Percentile Male § 572.115 Lumbar spine and pelvis. The specifications and test procedure for the lumbar spine and pelvis are identical to those for the SID dummy as set forth in § 572.42 except that the...

  15. 49 CFR 572.115 - Lumbar spine and pelvis.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 7 2012-10-01 2012-10-01 false Lumbar spine and pelvis. 572.115 Section 572.115... 50th Percentile Male § 572.115 Lumbar spine and pelvis. The specifications and test procedure for the lumbar spine and pelvis are identical to those for the SID dummy as set forth in § 572.42 except that the...

  16. 49 CFR 572.115 - Lumbar spine and pelvis.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 7 2013-10-01 2013-10-01 false Lumbar spine and pelvis. 572.115 Section 572.115... 50th Percentile Male § 572.115 Lumbar spine and pelvis. The specifications and test procedure for the lumbar spine and pelvis are identical to those for the SID dummy as set forth in § 572.42 except that the...

  17. The robotic lumbar spine: dynamics and feedback linearization control.

    PubMed

    Karadogan, Ernur; Williams, Robert L

    2013-01-01

    The robotic lumbar spine (RLS) is a 15 degree-of-freedom, fully cable-actuated robotic lumbar spine which can mimic in vivo human lumbar spine movements to provide better hands-on training for medical students. The design incorporates five active lumbar vertebrae and the sacrum, with dimensions of an average adult human spine. It is actuated by 20 cables connected to electric motors. Every vertebra is connected to the neighboring vertebrae by spherical joints. Medical schools can benefit from a tool, system, or method that will help instructors train students and assess their tactile proficiency throughout their education. The robotic lumbar spine has the potential to satisfy these needs in palpatory diagnosis. Medical students will be given the opportunity to examine their own patient that can be programmed with many dysfunctions related to the lumbar spine before they start their professional lives as doctors. The robotic lumbar spine can be used to teach and test medical students in their capacity to be able to recognize normal and abnormal movement patterns of the human lumbar spine under flexion-extension, lateral bending, and axial torsion. This paper presents the dynamics and nonlinear control of the RLS. A new approach to solve for positive and nonzero cable tensions that are also continuous in time is introduced.

  18. Weightlifter Lumbar Physiology Health Influence Factor Analysis of Sports Medicine.

    PubMed

    Zhang, Xiangyang

    2015-01-01

    Chinese women's weightlifting project has been in the advanced world level, suggests that the Chinese coaches and athletes have many successful experience in the weight lifting training. Little weight lifting belongs to high-risk sports, however, to the lumbar spine injury, some young good athletes often due to lumbar trauma had to retire, and the national investment and athletes toil is regret things. This article from the perspective of sports medicine, weightlifting athletes training situation analysis and put forward Suggestions, aimed at avoiding lumbar injury, guarantee the health of athletes. In this paper, first of all to 50 professional women's weightlifting athletes doing investigation, found that 82% of the athletes suffer from lumbar disease symptoms, the reason is mainly composed of lumbar strain, intensity is too large, motion error caused by three factors. From the Angle of sports medicine and combined with the characteristics of the structure of human body skeleton athletes lumbar structural mechanics analysis, find out the lumbar force's two biggest technical movement, study, and regulate the action standard, so as to minimize lumbar force, for athletes to contribute to the health of the lumbar spine.

  19. Weightlifter Lumbar Physiology Health Influence Factor Analysis of Sports Medicine

    PubMed Central

    Zhang, Xiangyang

    2015-01-01

    Chinese women's weightlifting project has been in the advanced world level, suggests that the Chinese coaches and athletes have many successful experience in the weight lifting training. Little weight lifting belongs to high-risk sports, however, to the lumbar spine injury, some young good athletes often due to lumbar trauma had to retire, and the national investment and athletes toil is regret things. This article from the perspective of sports medicine, weightlifting athletes training situation analysis and put forward Suggestions, aimed at avoiding lumbar injury, guarantee the health of athletes. In this paper, first of all to 50 professional women's weightlifting athletes doing investigation, found that 82% of the athletes suffer from lumbar disease symptoms, the reason is mainly composed of lumbar strain, intensity is too large, motion error caused by three factors. From the Angle of sports medicine and combined with the characteristics of the structure of human body skeleton athletes lumbar structural mechanics analysis, find out the lumbar force's two biggest technical movement, study, and regulate the action standard, so as to minimize lumbar force, for athletes to contribute to the health of the lumbar spine. PMID:26981162

  20. Magnetic resonance imaging and dual energy X-ray absorptiometry of the lumbar spine in professional wrestlers and untrained men.

    PubMed

    Hu, M; Sheng, J; Kang, Z; Zou, L; Guo, J; Sun, P

    2014-08-01

    The aim of this study was to examine the relation between bone marrow adipose tissue (BMAT) and bone mineral density (BMD) of lumbar spine in male professional wrestlers and healthy untrained men. A total of 14 wrestlers (22.9±3.4 years) and 11 controls (24.4±1.6 years) were studied cross-sectionally. Body composition and BMD were measured by dual-energy X-ray absorptiometry. Magnetic resonance imaging of the lumbar spine was examined in a sagittal T1-weighted (T1-w) spin-echo (SE) sequence. The averaged bone marrow signal intensity (SI) of L2-L4 was related to the signal of an adjacent nondegenerative disk. Mean SI of T1-w SE in wrestlers was lower than controls (P=0.001), indicating L2-L4 BMAT in wrestlers was lower compared to controls. L2-L4 BMD in wrestlers was higher than controls (P<0.001). In the total subject population, L2-L4 BMD was inversely correlated with mean SI of T1-w SE (r=-0.62, P=0.001). This association remained strong after adjusting for body mass and whole lean mass, but became weaker after adjusting for whole body or trunk fat percentage. The inverse relationship between BMAT and BMD was confirmed in this relatively small subject sample with narrow age range, which implies that exercise training is an important determinant of this association.

  1. Retroperitoneal hemorrhage from an unrecognized puncture of the lumbar right segmental artery during lumbar chemical sympathectomy: diagnosis and management.

    PubMed

    Shin, Ho-Jin; Choi, Yun-Mi; Kim, Hye-Jin; Lee, Sun-Jae; Yoon, Seok-Hyun; Kim, Kyung-Hoon

    2014-12-01

    Lumbar chemical sympathectomy has been performed using fluoroscopic guidance for needle positioning. An 84 year old woman with atherosclerosis obliterans was referred to the pain clinic for intractable cold allodynia of her right foot. A thermogram showed decreased temperature of both feet compared with temperatures above both ankles. The patient agreed to undergo lumbar chemical sympathectomy using fluoroscopy after being informed of the associated risks of nerve injury, hemorrhage, infection, transient back pain, and transient hypotension. During the procedure and three hours afterward, no abnormal signs or symptoms were found except an increase in right leg temperature. The patient was ambulatory after the procedure. However, one day after undergoing lumbar chemical sympathectomy, she visited our emergency department for abdominal discomfort and postural dizziness. Her blood pressure was 80/50 mmHg, and flank tenderness was noted. Retroperitoneal hemorrhage from the second right lumbar segmental artery was shown on computed tomography and angiography. Vital signs were stabilized immediately after embolization into the right lumbar segmental artery. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Adult's Degenerative Scoliosis: Midterm Results of Dynamic Stabilization without Fusion in Elderly Patients—Is It Effective?

    PubMed Central

    Di Silvestre, Mario; Lolli, Francesco; Greggi, Tiziana; Vommaro, Francesco; Baioni, Andrea

    2013-01-01

    Study Design. A retrospective study. Purpose. Posterolateral fusion with pedicle screw instrumentation used for degenerative lumbar scoliosis can lead to several complications. In elderly patients without sagittal imbalance, dynamic stabilization could represent an option to avoid these adverse events. Methods. 57 patients treated by dynamic stabilization without fusion were included. All patients had degenerative lumbar de novo scoliosis (average Cobb angle 17.2°), without sagittal imbalance, associated in 52 cases (91%) with vertebral canal stenosis and in 24 (42%) with degenerative spondylolisthesis. Nineteen patients (33%) had previously undergone lumbar spinal surgery. Results. At an average followup of 77 months, clinical results improved with statistical significance. Scoliosis Cobb angle was 17.2° (range, 12° to 38°) before surgery and 11.3° (range, 4° to 26°) at last follow-up. In the patients with associated spondylolisthesis, anterior vertebral translation was 19.5% (range, 12% to 27%) before surgery, 16.7% (range, 0% to 25%) after surgery, and 17.5% (range, 0% to 27%) at followup. Complications incidence was low (14%), and few patients required revision surgery (4%). Conclusions. In elderly patients with mild degenerative lumbar scoliosis without sagittal imbalance, pedicle screw-based dynamic stabilization is an effective option, with low complications incidence, granting curve stabilization during time and satisfying clinical results. PMID:23781342

  3. Effect of posterior multilevel vertebral osteotomies on coronal and sagittal balance in fused scoliosis deformity caused by previous surgery: preliminary results.

    PubMed

    Yang, Jae Hyuk; Suh, Seung Woo; Cho, Won Tae; Hwang, Jin Ho; Hong, Jae Young; Modi, Hitesh N

    2014-10-15

    Prospective case series study. To study the effect of posterior multilevel vertebral osteotomy (posterior crack osteotomy) on coronal and sagittal balance in patients with the fusion mass over the spine caused by previous surgery. Few studies have investigated revisional scoliosis surgery with the fusion mass using osteotomy. Among patients who had a history of prior surgery for scoliosis correction and posterior fusion, those showing progression of the curve postoperatively due to nonunion, implant failure, or adding-on phenomenon were enrolled. All patients were treated using posterior crack osteotomy. For clinical evaluation, the pre- and postoperative Gross Motor Function Classification System score for walking status and the Berg balanced scale were used. For radiological evaluation, pre- and postoperative Cobb angle, and coronal and sagittal balance factors were used. Ten patients (5 males and 5 females) were enrolled. The preoperative diagnosis was neuromuscular scoliosis (3 cases), syndromic scoliosis (1 case), congenital scoliosis (5 cases), and neurofibromatosis (1 case). Osteotomies were performed at 3.3±1.3 levels on average. Pre- and postoperative Cobb angles were 70.8°±30.0° and 28.1°±20.0° (P=0.002 (0.97)), respectively. In pre- and postoperative evaluation of coronal balance, the coronal balance, clavicle angle, and T1-tilt angle were 36.8±27.1 mm and 10.4±8.5 mm, 6.7°±8.0° and 3.3°±1.5°, and 7.8°±19.0° and 4.7°±2.1°, respectively (P=0.002, 0.002, 0.002). In pre- and postoperative evaluation of sagittal balance, the spinal vertical axis, thoracic kyphosis, and lumbar alignments were 25.1±37.8 mm and 14.1±21.8 mm, 33.5°±51.1° and 29.7°±27.4°, and 45.7°±34.8° and 48.9°±23.1° (P=0.002, 0.169, 0.169). The walking and functional statuses did not change (P=0.317, 0.932). Although pulmonary and gastrointestinal complications were noted, the patients were discharged without complications. Posterior crack osteotomy can be

  4. Influences of posterior-located center of gravity on lumbar extension strength, balance, and lumbar lordosis in chronic low back pain.

    PubMed

    Kim, Dae-Hun; Park, Jin-Kyu; Jeong, Myeong-Kyun

    2014-01-01

    In patients with chronic low back pain, the center of gravity (COG) is abnormally located posterior to the center in most cases. The purpose of this study was to examine the effects of posterior-located COG on the functions (lumbar extension strength, and static and dynamic balance) and structure (lumbar lordosis angle and lumbosacral angle) of the lumbar spine. In this study, the COG of chronic low back pain patients who complained of only low back pain were examined using dynamic body balance equipment. A total of 164 subjects participated in the study (74 males and 90 females), and they were divided into two groups of 82 patients each. One group (n=82) consisted of patients whose COG was located at the center (C-COG); the other group (n=82) consisted of patients whose COG was located posterior to the center (P-COG). The following measures assessed the lumber functions and structures of the two groups: lumbar extension strength, moving speed of static and dynamic COGs, movement distance of the static and dynamic COGs, lumbar lordosis angle, and lumbosacral angle. The measured values were analyzed using independent t-tests. The group of patients with P-COG showed more decreases in lumbar extension strength, lumbar lordosis angle, and lumbosacral angle compared to the group of patients with C-COG. Also this group showed increases in moving speed and movement distance of the static COG. However, there were no differences in moving speed and movement distance of the dynamic COG between the two groups. These findings suggest that chronic LBP patients with P-COG have some disadvantages to establish lumbar extension strength and static and dynamic balance, which require specific efforts to maintain a neutral position and to control posture.

  5. Chemoembolization for Hepatocellular Carcinoma Supplied by a Lumbar Artery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Han Myun, E-mail: seoul49@naver.com; Kim, Hyo-Cheol, E-mail: angiointervention@gmail.com; Woo, Sungmin, E-mail: j-crew7@hotmail.com

    PurposeTo describe the radiologic findings and imaging response of hepatocellular carcinoma (HCC) supplied by the lumbar artery.MethodsBetween April 2004 and December 2012, we encountered HCC supplied by a lumbar artery in 21 patients. Two investigators retrospectively reviewed clinical and radiological findings of HCC supplied by the lumbar artery using computed tomography (CT) scans and digital subtraction angiograms.ResultsPatients had received 1–27 sessions of previous chemoembolization procedures (mean 7.7 sessions, median 4 sessions). Mean tumor size was 5.3 cm. The locations of HCC supplied by lumbar artery were the bare area (n = 14, 67 %) and segment VI (n = 7, 33 %). Tumor-feeding arteries arose from themore » main lumbar artery (n = 7), proximal anterior division (n = 4), and distal anterior division (n = 14). In 20 patients, selective chemoembolization through the tumor-feeding arteries of the lumbar artery was achieved. In 1 patient, nonselective embolization at the main lumbar artery was performed. There was no complication such as skin necrosis or paralysis. On the first follow-up enhanced CT scan, target tumors fed by the lumbar artery showed complete response (n = 6), partial response (n = 4), stable disease (n = 3), and progressive disease (n = 8), but overall tumor response was partial response (n = 1) and progressive disease (n = 20).ConclusionWhen HCC is located in the inferior tip or bare area of the liver, a lumbar artery may supply the tumor. Although selective chemoembolization via the tumor-feeding vessel of the lumbar artery can be achieved in most cases, overall tumor response is commonly unfavorable.« less

  6. Influence of time restriction, 20 minutes and 94.6 months, of visual information on angular displacement during the sit-to-stand (STS) task in three planes.

    PubMed

    Aylar, Mozhgan Faraji; Firouzi, Faramarz; Araghi, Mandana Rahnama

    2016-12-01

    [Purpose] The purpose of this investigation was to assess whether or not restriction of visual information influences the kinematics of sit-to-stand (STS) performance in children. [Subjects and Methods] Five girls with congenital blindness (CB) and ten healthy girls with no visual impairments were randomly selected. The girls with congenital blindness were placed in one group and the ten girls with no visual impairments were divided into two groups of five, control and treatment groups. The participants in the treatment group were asked to close their eyes (EC) for 20 minutes before the STS test, whereas those in the control group kept their eyes open (EO). The performance of the participants in all three groups was measured using a motion capture system and two force plates. [Results] The results show that the constraint duration of visual sensory information affected the range of motion (ROM), the excursion of the dominant side ankle, and the ROM of the dominant side knee in the EC group. However, only ankle excursion on the non-dominant side was affected in the CB group, and this was only observed in the sagittal plane. [Conclusion] These results indicate that visual memory does not affect the joint angles in the frontal and transverse planes. Moreover, all of the participants could perform the STS transition without falling, indicating; the participants performed the STS maneuver correctly in all planes except the sagittal one.

  7. Bad splits in bilateral sagittal split osteotomy: systematic review of fracture patterns.

    PubMed

    Steenen, S A; Becking, A G

    2016-07-01

    An unfavourable and unanticipated pattern of the mandibular sagittal split osteotomy is generally referred to as a 'bad split'. Few restorative techniques to manage the situation have been described. In this article, a classification of reported bad split pattern types is proposed and appropriate salvage procedures to manage the different types of undesired fracture are presented. A systematic review was undertaken, yielding a total of 33 studies published between 1971 and 2015. These reported a total of 458 cases of bad splits among 19,527 sagittal ramus osteotomies in 10,271 patients. The total reported incidence of bad split was 2.3% of sagittal splits. The most frequently encountered were buccal plate fractures of the proximal segment (types 1A-F) and lingual fractures of the distal segment (types 2A and 2B). Coronoid fractures (type 3) and condylar neck fractures (type 4) have seldom been reported. The various types of bad split may require different salvage approaches. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  8. Effects of frontal and sagittal thorax attitudes in gait on trunk and pelvis three-dimensional kinematics.

    PubMed

    Begon, Mickaël; Leardini, Alberto; Belvedere, Claudio; Farahpour, Nader; Allard, Paul

    2015-10-01

    While sagittal trunk inclinations alter upper body biomechanics, little is known about the extent of frontal trunk bending on upper body and pelvis kinematics in adults during gait and its relation to sagittal trunk inclinations. The objective was to determine the effect of the mean lateral trunk attitude on upper body and pelvis three-dimensional kinematics during gait in asymptomatic subjects. Three gait cycles were collected in 30 subjects using a motion analysis system (Vicon 612) and an established protocol. Sub-groups were formed based on the mean thorax lateral bending angle, bending side, and also sagittal tilt. These were compared based on 38 peak angles identified on pelvis, thorax and shoulder kinematics using MANOVAs. A main effect for bending side (p = 0.038) was found, especially for thorax peak angles. Statistics revealed also a significant interaction (p = 0.04993) between bending side and tilt for the thorax sagittal inclination during body-weight transfer. These results reinforce the existence of different gait patterns, which correlate upper body and pelvis motion measures. The results also suggest that frontal and sagittal trunk attitude should be considered carefully when treating a patient with impaired gait. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  9. [(Modic) signal alterations of vertebral endplates and their correlation to a minimally invasive treatment of lumbar disc herniation using epidural injections].

    PubMed

    Liphofer, J P; Theodoridis, T; Becker, G T; Koester, O; Schmid, G

    2006-11-01

    To study the influence of (Modic) signal alterations (SA) of the cartilage endplate (CEP) of vertebrae L3-S1 on the outcome of an in-patient minimally invasive treatment (MIT) using epidural injections on patients with lumbar disc herniation (LDH). The MR images of 59 consecutive patients with LDH within segments L3/L4 - L5/S1 undergoing in-patient minimally invasive treatment with epidural injections were evaluated in a clinical study. The (Modic) signal alterations of the CEP were recorded using T1- and T2-weighted sagittal images. On the basis of the T2-weighted sagittal images, the extension and distribution of the SA were measured by dividing each CEP into 9 areas. The outcome of the MIT was recorded using the Oswestry Disability Index (ODI) before and after therapy and in a 3-month follow-up. Within a subgroup of patients (n = 35), the distribution and extension of the signal alterations were correlated with the development of the ODI. Segments with LDH showed significantly more (p < 0.001) SA of the CEP than segments without LDH. Although the extension of the SA was not dependent on sex, it did increase significantly with age (p = 0.017). The outcome after MIT did not depend on the sex and age of the patients nor on the type of LDH. The SA extension tended to have a negative correlation with the outcome after MIT after 3 months (p = 0.071). A significant negative correlation could be established between the SA extension in the central section of the upper endplate and the outcome after 3 months (p = 0.019). 1. Lumbar disc herniation is clearly associated with the prevalence of (Modic) signal alterations. 2. Extensive signal alterations tend to correlate with a negative outcome of an MIT using epidural injections. 3. Such SA in the central portion of the upper CEP correlate significantly with a negative treatment result. 4. The central portion of the upper CEP being extensively affected by (Modic) SA is a negative predictor for the success of a minimally

  10. Interventional Radiology Management of a Ruptured Lumbar Artery Pseudoaneurysm after Cryoablation and Vertebroplasty of a Lumbar Metastasis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giordano, Aldo Victor; Arrigoni, Francesco, E-mail: arrigoni.francesco@gmail.com; Bruno, Federico

    We describe the management of a complication (a lumbar artery pseudoaneurysm and its rupture) after combined procedure (cryoablation and vertebroplasty) on a lumbar (L2) metastasis from renal cell carcinoma. Review of the literature is also presented with discussion about the measures to be taken to prevent these types of complications.

  11. ISASS Policy Statement – Lumbar Artificial Disc

    PubMed Central

    Garcia, Rolando

    2015-01-01

    Purpose The primary goal of this Policy Statement is to educate patients, physicians, medical providers, reviewers, adjustors, case managers, insurers, and all others involved or affected by insurance coverage decisions regarding lumbar disc replacement surgery. Procedures This Policy Statement was developed by a panel of physicians selected by the Board of Directors of ISASS for their expertise and experience with lumbar TDR. The panel's recommendation was entirely based on the best evidence-based scientific research available regarding the safety and effectiveness of lumbar TDR. PMID:25785243

  12. Speculum lumbar extraforaminal microdiscectomy.

    PubMed

    Obenchain, T G

    2001-01-01

    Public interest, monetary pressures and improving diagnostic techniques have placed an increasing emphasis on minimalism in lumbar disc excision. Current techniques include microlumbar discectomy and minimally invasive spinal surgery. Both are good techniques but may be painful, require a hospital stay and/or are not widely used because of difficulty acquiring the necessary skills. The author therefore developed a less invasive microscopic technique that may be performed on a consistent outpatient basis with easily acquired skills. The purpose of this study was to describe a variant of minimally invasive lumbar disc excision, while assessing the effects on a small group of patients. The treatment protocol was a prospective community hospital-based case study designed to evaluate a less invasive method of excising herniated lumbar discs residing in the canal, foraminal or far lateral space. This study is comprised of 50 patients with all anatomic forms of lumbar disc herniations, inside or outside the canal, at all levels except the lumbosacral joint. Clinical results were measured by return to work time, the criteria of MacNab and by Prolo et al.'s economic and functional criteria. Selection criteria included adult patients with intractable low back and leg pain, plus an imaging study revealing a lumbar disc herniation consistent with the patient's clinical presentation. Mean patient age was 48 years. The male:female ratio was approximately 2:1. All patients failed at least 3 weeks of conservative therapy. Herniations occurred from the L2-3 space through L4-5, with 30 herniations being within and 20 outside the spinal canal. Both contained and extruded/sequestered herniations were treated. Excluded from the study were patients with herniations inside the spinal canal at the L5-S1 level. Surgical approach was by microscopic speculum transforaminal route for discs residing both within and outside the lumbar canal. The initial 50 consecutive patients had successful

  13. Effect of Cervical Sagittal Balance on Laminoplasty in Patients With Cervical Myelopathy

    PubMed Central

    Namikawa, Takashi; Matsumura, Akira; Konishi, Sadahiko; Nakamura, Hiroaki

    2017-01-01

    Study Design: Retrospective clinical study. Objective: We evaluated the relationship between cervical sagittal alignment parameters and clinical status in patients with cervical myelopathy and analyzed the effect of cervical sagittal balance on cervical laminoplasty. Methods: Patients with cervical myelopathy (n = 110) who underwent laminoplasty were included in this study. The relationship between cervical sagittal alignment parameters and clinical status was evaluated. The changes in radiographic cervical sagittal parameters and clinical status 2 years after surgery were compared between patients with preoperative C2-7 SVA ≥35 mm (group A) and those with preoperative C2-7 SVA <35 mm (group B). Results: Preoperatively, C2-7 SVA had no correlation with defined health-related quality of life evaluation scores. At 2-year follow-up, the improvement in SF-36 physical component summary was significantly lower in group A than in group B. The postoperative change of C2-7 SVA did not significantly differ in 2 groups. Patients in group A maintained cervical regional balance after laminoplasty but experienced extensive postoperative neck pain. Conclusions: Our patients with a C2-7 SVA of ≥35 mm maintained cervical regional balance after laminoplasty and their improvement in myelopathy was equivalent to that in patients with a C2-7 SVA of <35 mm. However, the patents with a C2-7 SVA of ≥35 mm experienced severe postoperative neck pain. C2-7 SVA is a parameter worth considering because it can lead to poor QOL and axial neck pain after laminoplasty. PMID:28507885

  14. Methodological considerations in region of interest definitions for paraspinal muscles in axial MRIs of the lumbar spine.

    PubMed

    Berry, David B; Padwal, Jennifer; Johnson, Seth; Parra, Callan L; Ward, Samuel R; Shahidi, Bahar

    2018-05-07

    Magnetic Resonance Imaging (MRI) is commonly used to assess the health of the lumbar spine and supporting structures. Studies have suggested that fatty infiltration of the posterior lumbar muscles is important in predicting responses to treatment for low back pain. However, methodological differences exist in defining the region of interest (ROI) of a muscle, which limits the ability to compare data between studies. The purpose of this study was to determine reliability and systematic differences within and between two commonly utilized methodologies for ROI definitions of lumbar paraspinal muscle. T2-weighted MRIs of the mid-L4 vertebrae from 37 patients with low back pain who were scheduled for lumbar spine surgery were included from a hospital database. Fatty infiltration for these patients ranged from low to high, based on Kjaer criteria. Two methods were used to define ROI: 1) segmentation of the multifidus and erector spinae based on fascial planes including epimuscular fat, and 2) segmentation of the multifidus and erector spinae based on visible muscle boundaries, which did not include epimuscular fat. Total cross sectional area (tCSA), fat signal fraction (FSF), muscle cross sectional area, and fat cross sectional area were measured. Degree of agreement between raters for each parameter was assessed using intra-class correlation coefficients (ICC) and area fraction of overlapping voxels. Excellent inter-rater agreement (ICC > 0.75) was observed for all measures for both methods. There was no significant difference between area fraction overlap of ROIs between methods. Method 1 demonstrated a greater tCSA for both the erector spinae (14-15%, p < 0.001) and multifidus (4%, p < 0.016) but a greater FSF only for the erector spinae (11-13%, p < 0.001). The two methods of defining lumbar spine muscle ROIs demonstrated excellent inter-rater reliability, although significant differences exist as method 1 showed larger CSA and FSF values compared to

  15. Lumbar herniation following extended autologous latissimus dorsi breast reconstruction.

    PubMed

    Fraser, Sheila Margaret; Fatayer, Hiba; Achuthan, Rajgopal

    2013-05-30

    Reconstructive breast surgery is now recognized to be an important part of the treatment for breast cancer. Surgical reconstruction options consist of implants, autologous tissue transfer or a combination of the two. The latissimus dorsi flap is a pedicled musculocutaneous flap and is an established method of autologous breast reconstruction.Lumbar hernias are an unusual type of hernia, the majority occurring after surgery or trauma in this area. The reported incidence of a lumbar hernia subsequent to a latissimus dorsi reconstruction is very low. We present the unusual case of lumbar herniation after an extended autologous latissimus dorsi flap for breast reconstruction following a mastectomy. The lumbar hernia was confirmed on CT scanning and the patient underwent an open mesh repair of the hernia through the previous latissimus dorsi scar. Lumbar hernias are a rare complication that can occur following latissimus dorsi breast reconstruction. It should be considered in all patients presenting with persistent pain or swelling in the lumbar region.

  16. Automatic Lumbar Spondylolisthesis Measurement in CT Images.

    PubMed

    Liao, Shu; Zhan, Yiqiang; Dong, Zhongxing; Yan, Ruyi; Gong, Liyan; Zhou, Xiang Sean; Salganicoff, Marcos; Fei, Jun

    2016-07-01

    Lumbar spondylolisthesis is one of the most common spinal diseases. It is caused by the anterior shift of a lumbar vertebrae relative to subjacent vertebrae. In current clinical practices, staging of spondylolisthesis is often conducted in a qualitative way. Although meyerding grading opens the door to stage spondylolisthesis in a more quantitative way, it relies on the manual measurement, which is time consuming and irreproducible. Thus, an automatic measurement algorithm becomes desirable for spondylolisthesis diagnosis and staging. However, there are two challenges. 1) Accurate detection of the most anterior and posterior points on the superior and inferior surfaces of each lumbar vertebrae. Due to the small size of the vertebrae, slight errors of detection may lead to significant measurement errors, hence, wrong disease stages. 2) Automatic localize and label each lumbar vertebrae is required to provide the semantic meaning of the measurement. It is difficult since different lumbar vertebraes have high similarity of both shape and image appearance. To resolve these challenges, a new auto measurement framework is proposed with two major contributions: First, a learning based spine labeling method that integrates both the image appearance and spine geometry information is designed to detect lumbar vertebrae. Second, a hierarchical method using both the population information from atlases and domain-specific information in the target image is proposed for most anterior and posterior points positioning. Validated on 258 CT spondylolisthesis patients, our method shows very similar results to manual measurements by radiologists and significantly increases the measurement efficiency.

  17. Morphometric analysis of the working zone for endoscopic lumbar discectomy.

    PubMed

    Min, Jun-Hong; Kang, Shin-Hyuk; Lee, Jang-Bo; Cho, Tai-Hyoung; Suh, Jung-Keun; Rhyu, Im-Joo

    2005-04-01

    Our study's purpose was to analyze the working zone for the current practice of endoscopic discectomy at the lateral exit zone of the intervertebral foramen (IVF) and to define a safe point for clinical practice. One hundred eighty-six nerve roots of the lumbar IVFs of cadaveric spines were studied. Upon lateral inspection, we measured the distance from the nerve root to the most dorsolateral margin of the disc and to the lateral edge of the superior articular process of the vertebra below at the plane of the superior endplate of the vertebra below. The angle between the root and the plane of the disc was also measured. The results showed that the mean distance from the nerve root to the most dorsolateral margin of the disc was 3.4 +/- 2.7 mm (range 0.0-10.8 mm), the mean distance from the nerve root to the lateral edge of the superior articular process of the vertebra below was 11.6 +/- 4.6 mm (range 4.1-24.3 mm), and the mean angle between the nerve root and the plane of the disc was 79.1 degrees +/- 7.6 degrees (range 56.0-90.0 degrees ). The values of the base of the working zone have a wide distribution. Blind puncture of annulus by the working cannula or obturator may be dangerous. The safer procedure would be the direct viewing of the annulus by endoscopy before annulotomy; the working cannula should be inserted into the foramen as close as possible to the facet joint.

  18. Comparison of different parameters for recording sagittal maxillo mandibular relation using natural head posture: A cephalometric study

    PubMed Central

    Singh, Ashish Kumar; Ganeshkar, Sanjay V.; Mehrotra, Praveen; Bhagchandani, Jitendra

    2013-01-01

    Background: Commonly used parameters for anteroposterior assessment of the jaw relationship includes several analyses such as ANB, NA-Pog, AB-NPog, Wits appraisal, Harvold's unit length difference, Beta angle. Considering the fact that there are several parameters (with different range and values) which account for sagittal relation, and still the published literature for comparisons and correlation of these measurements is scarce. Therefore, the objective of this study was to correlate these values in subjects of Indian origin. Materials and Methods: The sample consisted of fifty adult individuals (age group 18-26 years) with equal number of males and females. The selection criteria included subjects with no previous history of orthodontic and/or orthognathic surgical treatment; orthognathic facial profile; Angle's Class I molar relation; clinical Frankfort Mandibular plane angle FMA of 30±5° and no gross facial asymmetry. The cephalograms were taken in natural head position (NHP). Seven sagittal skeletal parameters were measured in the cephalograms and subjected to statistical evaluation with Wits reading on the true horizontal as reference. A correlation coefficient analysis was done to assess the significance of association between these variables. Results: ANB angle showed statistically significant correlation for the total sample, though the values were insignificant for the individual groups and therefore may not be very accurate. Wits appraisal was seen to have a significant correlation only in the female sample group. Conclusions: If cephalograms cannot be recorded in a NHP, then the best indicator for recording A-P skeletal dimension would be angle AB-NPog, followed by Harvold's unit length difference. However, considering biologic variability, more than one reading should necessarily be used to verify the same. PMID:24987638

  19. The Influence of the "Straighten Your Back" Command on the Sagittal Spinal Curvatures in Children with Generalized Joint Hypermobility.

    PubMed

    Czaprowski, Dariusz; Pawłowska, Paulina; Kolwicz-Gańko, Aleksandra; Sitarski, Dominik; Kędra, Agnieszka

    2017-01-01

    Objectives . The aim of the study was to assess the change of sagittal spinal curvatures in children with generalized joint hypermobility (GJH) instructed with "straighten your back" command (SYB). Methods . The study included 56 children with GJH. The control group consisted of 193 children. Sacral slope (SS), lumbar lordosis (LL), global thoracic kyphosis (TK), lower thoracic kyphosis (LK), and upper thoracic kyphosis (UK) were assessed with Saunders inclinometer both in spontaneous positions (standing and sitting) and after the SYB. Results . Children with GJH after SYB presented the following: in standing, increase in SS and decrease in TK, LK, and UK ( P < 0.01), with LL not significantly changed; in sitting: decrease in global thoracic kyphosis (35.5° (SD 20.5) versus 21.0° (SD 15.5), P < 0.001) below the standards proposed in the literature (30-40°) and flattening of its lower part ( P < 0.001). The same changes were observed in the control group. Conclusions . In children with generalized joint hypermobility, the "straighten your back" command leads to excessive reduction of the global thoracic kyphosis and flattening of its lower part. Therefore, the "straighten your back" command should not be used to achieve the optimal standing and sitting positions.

  20. Intra and interrater reliability of spinal sagittal curves and mobility using pocket goniometer IncliMed® in healthy subjects.

    PubMed

    Alderighi, Marzia; Ferrari, Raffaello; Maghini, Irene; Del Felice, Alessandra; Masiero, Stefano

    2016-11-21

    Radiographic examination is the gold standard to evaluate spine curves, but ionising radiations limit routine use. Non-invasive methods, such as skin-surface goniometer (IncliMed®) should be used instead. To evaluate intra- and interrater reliability to assess sagittal curves and mobility of the spine with IncliMed®. a reliability study on agonistic football players. Thoracic kyphosis, lumbar lordosis and mobility of the spine were assessed by IncliMed®. Measurements were repeated twice by each examiner during the same session with between-rater blinding. Intrarater and interrater reliability were measured by Intraclass Correlation Coefficient (ICC), 95% Confidence Interval (CI 95%) and Standard Error of Measurement (SEM). Thirty-four healthy female football players (19.17 ± 4.52 years) were enrolled. Statistical results showed high intrarater (0.805-0.923) and interrater (0.701-0.886) reliability (ICC > 0.8). The obtained intra- and interrater SEM were low, with overall absolute intrarater values between 1.39° and 2.76° and overall interrater values between 1.71° and 4.25°. IncliMed® provides high intra- and interrater reliability in healthy subjects, with limited Standard Error of Measurement. These results encourage its use in clinical practice and scientific research.

  1. Extensor Tendon Instability Due to Sagittal Band Injury in a Martial Arts Athlete: A Case Report.

    PubMed

    Kochevar, Andrew; Rayan, Ghazi

    2017-03-01

    A Taekwondo participant sustained a hand injury from punching an opponent that resulted in painful instability of the ring finger extensor digitorum communis tendon due to sagittal band damage. His symptoms resolved after reconstructive surgery on the sagittal band (SB) with stabilization of the extensor tendon over the metacarpophalangeal joint.

  2. The Pfirrmann classification of lumbar intervertebral disc degeneration: an independent inter- and intra-observer agreement assessment.

    PubMed

    Urrutia, Julio; Besa, Pablo; Campos, Mauricio; Cikutovic, Pablo; Cabezon, Mario; Molina, Marcelo; Cruz, Juan Pablo

    2016-09-01

    Grading inter-vertebral disc degeneration (IDD) is important in the evaluation of many degenerative conditions, including patients with low back pain. Magnetic resonance imaging (MRI) is considered the best imaging instrument to evaluate IDD. The Pfirrmann classification is commonly used to grade IDD; the authors describing this classification showed an adequate agreement using it; however, there has been a paucity of independent agreement studies using this grading system. The aim of this study was to perform an independent inter- and intra-observer agreement study using the Pfirrmann classification. T2-weighted sagittal images of 79 patients consecutively studied with lumbar spine MRI were classified using the Pfirrmann grading system by six evaluators (three spine surgeons and three radiologists). After a 6-week interval, the 79 cases were presented to the same evaluators in a random sequence for repeat evaluation. The intra-class correlation coefficient (ICC) and the weighted kappa (wκ) were used to determine the inter- and intra-observer agreement. The inter-observer agreement was excellent, with an ICC = 0.94 (0.93-0.95) and wκ = 0.83 (0.74-0.91). There were no differences between spine surgeons and radiologists. Likewise, there were no differences in agreement evaluating the different lumbar discs. Most differences among observers were only of one grade. Intra-observer agreement was also excellent with ICC = 0.86 (0.83-0.89) and wκ = 0.89 (0.85-0.93). In this independent study, the Pfirrmann classification demonstrated an adequate agreement among different observers and by the same observer on separate occasions. Furthermore, it allows communication between radiologists and spine surgeons.

  3. The Lumbar Artery Perforator Flap: 3-Dimensional Anatomical Study and Clinical Applications.

    PubMed

    Bissell, Mary Beth; Greenspun, David T; Levine, Josh; Rahal, William; Al-Dhamin, Ammar; AlKhawaji, Ali; Morris, Steven F

    2016-10-01

    The lumbar region is a potential donor site for perforator-based rotational or free flaps or as a recipient site for free flaps to obtain coverage for deficits in the sacral region. Because of the lack of consensus regarding the microvascular anatomy of this potential flap site, a robust investigation of the anatomy of this region is required. Three-dimensional reconstructions (n = 6) of the microvasculature of the lumbar region were generated using MIMICS software (Materialise, Belgium) for each of the four paired lumbar vessels. Diameter, course, and pedicle length were recorded for all lumbar artery (LA) perforators. Statistical analysis was performed using SigmaStat 4.0 and graphs were generated using GraphPad Prism 6 Software. Perforators arising from the first pair of LAs are reliably detected along the inferior margin of the 12th rib, extending inferiorly and laterally from the midline while perforators arising from the fourth pair of LA perforate the fascia along a horizontal plane connecting the posterior iliac crests. There are significantly more cutaneous perforators arising from the first (L1) and fourth (L4) pairs of LA than from the second (L2) and third (L3) (mean ± SD: L1, 5.5 ± 1.2; L2, 1.4 ± 0.7; L3, 1.3 ± 0.7; L4, 4.8 ± 1.0; P < 0.05). The average perforator diameter arising from L1 is greater than those arising from L4 (diameter ± SD: L1, 1.2 mm ± 0.2 >L4, 0.8 mm ± 0.2; P < 0.0001). L1 and L4 perforators have longer pedicle lengths than those arising from L2 and L3 (length ± SD: L1, 98.2 mm ± 57.8; L4, 106.1 mm ± 23.3 >L2, 67.5 mm ± 27.4; L3, 78.5 mm ± 30.3; P < 0.05). Perforators arising from the first and fourth LAs arise in a predictable fashion, have adequate pedicle lengths, and are of suitable diameter to support a perforator flap. We present a case to support the potential use of this flap for microvascular breast reconstruction.

  4. Cost Utility Analysis of Percutaneous Adhesiolysis in Managing Pain of Post-lumbar Surgery Syndrome and Lumbar Central Spinal Stenosis.

    PubMed

    Manchikanti, Laxmaiah; Helm, Standiford; Pampati, Vidyasagar; Racz, Gabor B

    2015-06-01

    The increase in the number of interventions for the management of chronic pain and associated escalation of healthcare costs has captured the attention of health policymakers, in no small part due to the lack of documentation of efficacy, cost-effectiveness, or cost utility analysis. A recent cost utility analysis of caudal epidural injections in managing chronic low back pain of various pathologies showed a high cost utility with improvement in quality of life years, competitive with various other modalities of treatments. However, there are no analyses derived from high-quality controlled studies related to the cost utility of percutaneous adhesiolysis in the treatment of post-lumbar surgery syndrome or lumbar central spinal stenosis. This analysis is based on 2 previously published controlled studies. To assess the cost utility of percutaneous adhesiolysis procedures in managing chronic low back and lower extremity pain secondary to post-lumbar surgery syndrome and lumbar central spinal stenosis. A private, specialty referral interventional pain management center in the United States. Two controlled studies were conducted assessing the clinical effectiveness of percutaneous adhesiolysis for post-lumbar surgery syndrome and lumbar central spinal stenosis in an interventional pain management setting utilizing contemporary interventional pain management practices. A cost utility analysis was performed with direct payment data for a total of 130 patients in treatment groups over a 2-year period. Various outcome measures were included with significant improvement, defined as at least 50% improvement with reduction in pain and disability status. The results of 2 controlled studies of low back pain with 60 and 70 patients and a 2-year follow-up with the actual reimbursement data showed cost utility for 1 year of quality-adjusted life year (QALY) of USD $2,652 for post-lumbar surgery syndrome and USD $2,649 for lumbar central spinal stenosis. The results of this

  5. The top 100 classic papers in lumbar spine surgery.

    PubMed

    Steinberger, Jeremy; Skovrlj, Branko; Caridi, John M; Cho, Samuel K

    2015-05-15

    Bibliometric review of the literature. To analyze and quantify the most frequently cited papers in lumbar spine surgery and to measure their impact on the entire lumbar spine literature. Lumbar spine surgery is a dynamic and complex field. Basic science and clinical research remain paramount in understanding and advancing the field. While new literature is published at increasing rates, few studies make long-lasting impacts. The Thomson Reuters Web of Knowledge was searched for citations of all papers relevant to lumbar spine surgery. The number of citations, authorship, year of publication, journal of publication, country of publication, and institution were recorded for each paper. The most cited paper was found to be the classic paper from 1990 by Boden et al that described magnetic resonance imaging findings in individuals without back pain, sciatica, and neurogenic claudication showing that spinal stenosis and herniated discs can be incidentally found when scanning patients. The second most cited study similarly showed that asymptomatic patients who underwent lumbar spine magnetic resonance imaging frequently had lumbar pathology. The third most cited paper was the 2000 publication of Fairbank and Pynsent reviewing the Oswestry Disability Index, the outcome-measure questionnaire most commonly used to evaluate low back pain. The majority of the papers originate in the United States (n=58), and most were published in Spine (n=63). Most papers were published in the 1990s (n=49), and the 3 most common topics were low back pain, biomechanics, and disc degeneration. This report identifies the top 100 papers in lumbar spine surgery and acknowledges those individuals who have contributed the most to the advancement of the study of the lumbar spine and the body of knowledge used to guide evidence-based clinical decision making in lumbar spine surgery today. 3.

  6. Functional anatomy of the spine.

    PubMed

    Bogduk, Nikolai

    2016-01-01

    Among other important features of the functional anatomy of the spine, described in this chapter, is the remarkable difference between the design and function of the cervical spine and that of the lumbar spine. In the cervical spine, the atlas serves to transmit the load of the head to the typical cervical vertebrae. The axis adapts the suboccipital region to the typical cervical spine. In cervical intervertebrtal discs the anulus fibrosus is not circumferential but is crescentic, and serves as an interosseous ligament in the saddle joint between vertebral bodies. Cervical vertebrae rotate and translate in the sagittal plane, and rotate in the manner of an inverted cone, across an oblique coronal plane. The cervical zygapophysial joints are the most common source of chronic neck pain. By contrast, lumbar discs are well designed to sustain compression loads, but rely on posterior elements to limit axial rotation. Internal disc disruption is the most common basis for chronic low-back pain. Spinal muscles are arranged systematically in prevertebral and postvertebral groups. The intrinsic elements of the spine are innervated by the dorsal rami of the spinal nerves, and by the sinuvertebral nerves. Little modern research has been conducted into the structure of the thoracic spine, or the causes of thoracic spinal pain. © 2016 Elsevier B.V. All rights reserved.

  7. Automatic segmentation of lumbar vertebrae in CT images

    NASA Astrophysics Data System (ADS)

    Kulkarni, Amruta; Raina, Akshita; Sharifi Sarabi, Mona; Ahn, Christine S.; Babayan, Diana; Gaonkar, Bilwaj; Macyszyn, Luke; Raghavendra, Cauligi

    2017-03-01

    Lower back pain is one of the most prevalent disorders in the developed/developing world. However, its etiology is poorly understood and treatment is often determined subjectively. In order to quantitatively study the emergence and evolution of back pain, it is necessary to develop consistently measurable markers for pathology. Imaging based measures offer one solution to this problem. The development of imaging based on quantitative biomarkers for the lower back necessitates automated techniques to acquire this data. While the problem of segmenting lumbar vertebrae has been addressed repeatedly in literature, the associated problem of computing relevant biomarkers on the basis of the segmentation has not been addressed thoroughly. In this paper, we propose a Random-Forest based approach that learns to segment vertebral bodies in CT images followed by a biomarker evaluation framework that extracts vertebral heights and widths from the segmentations obtained. Our dataset consists of 15 CT sagittal scans obtained from General Electric Healthcare. Our main approach is divided into three parts: the first stage is image pre-processing which is used to correct for variations in illumination across all the images followed by preparing the foreground and background objects from images; the next stage is Machine Learning using Random-Forests, which distinguishes the interest-point vectors between foreground or background; and the last step is image post-processing, which is crucial to refine the results of classifier. The Dice coefficient was used as a statistical validation metric to evaluate the performance of our segmentations with an average value of 0.725 for our dataset.

  8. Alphabet Soup: Sagittal Balance Correction Osteotomies of the Spine-What Radiologists Should Know.

    PubMed

    Takahashi, T; Kainth, D; Marette, S; Polly, D

    2018-04-01

    Global sagittal malalignment has been demonstrated to have correlation with clinical symptoms and is a key component to be restored in adult spinal deformity. In this article, various types of sagittal balance-correction osteotomies are reviewed primarily on the basis of the 3 most commonly used procedures: Smith-Petersen osteotomy, pedicle subtraction osteotomy, and vertebral column resection. Familiarity with the expected imaging appearance and commonly encountered complications seen on postoperative imaging studies following correction osteotomies is crucial for accurate image interpretation. © 2018 by American Journal of Neuroradiology.

  9. Transforaminal lumbar interbody fusion (TLIF) versus posterior lumbar interbody fusion (PLIF) in lumbar spondylolisthesis: a systematic review and meta-analysis.

    PubMed

    de Kunder, Suzanne L; van Kuijk, Sander M J; Rijkers, Kim; Caelers, Inge J M H; van Hemert, Wouter L W; de Bie, Rob A; van Santbrink, Henk

    2017-11-01

    Transforaminal lumbar interbody fusion (TLIF) and posterior lumbar interbody fusion (PLIF) are both frequently used as a surgical treatment for lumbar spondylolisthesis. Because of the unilateral transforaminal route to the intervertebral space used in TLIF, as opposed to the bilateral route used in PLIF, TLIF could be associated with fewer complications, shorter duration of surgery, and less blood loss, whereas the effectiveness of both techniques on back or leg pain is equal. The objective of this study was to compare the effectiveness of both TLIF and PLIF in reducing disability, and to compare the intra- and postoperative complications of both techniques in patients with lumbar spondylolisthesis. A systematic literature review and meta-analysis were carried out. We conducted a Medline (using PubMed), Embase (using Ovid), Cochrane Library, Current Controlled Trials, ClinicalTrials.gov and NHS Centre for Review and Dissemination search for studies reporting TLIF, PLIF, lumbar spondylolisthesis and disability, pain, complications, duration of surgery, and estimated blood loss. A meta-analysis was performed to compute pooled estimates of the differences between TLIF and PLIF. Forest plots were constructed for each analysis group. A total of 192 studies were identified; nine studies were included (one randomized controlled trial and eight case series), including 990 patients (450 TLIF and 540 PLIF). The pooled mean difference in postoperative Oswestry Disability Index (ODI) scores between TLIF and PLIF was -3.46 (95% confidence interval [CI] -4.72 to -2.20, p≤.001). The pooled mean difference in the postoperative VAS scores was -0.05 (95% CI -0.18 to 0.09, p=.480). The overall complication rate was 8.7% (range 0%-25%) for TLIF and 17.0% (range 4.7-28.8%) for PLIF; the pooled odds ratio was 0.47 (95% CI 0.28-0.81, p=.006). The average duration of surgery was 169 minutes for TLIF and 190 minutes for PLIF (mean difference -20.1, 95% CI -33.5 to -6.6, p=.003). The

  10. A musculoskeletal model for the lumbar spine.

    PubMed

    Christophy, Miguel; Faruk Senan, Nur Adila; Lotz, Jeffrey C; O'Reilly, Oliver M

    2012-01-01

    A new musculoskeletal model for the lumbar spine is described in this paper. This model features a rigid pelvis and sacrum, the five lumbar vertebrae, and a rigid torso consisting of a lumped thoracic spine and ribcage. The motion of the individual lumbar vertebrae was defined as a fraction of the net lumbar movement about the three rotational degrees of freedom: flexion-extension lateral bending, and axial rotation. Additionally, the eight main muscle groups of the lumbar spine were incorporated using 238 muscle fascicles with prescriptions for the parameters in the Hill-type muscle models obtained with the help of an extensive literature survey. The features of the model include the abilities to predict joint reactions, muscle forces, and muscle activation patterns. To illustrate the capabilities of the model and validate its physiological similarity, the model's predictions for the moment arms of the muscles are shown for a range of flexion-extension motions of the lower back. The model uses the OpenSim platform and is freely available on https://www.simtk.org/home/lumbarspine to other spinal researchers interested in analyzing the kinematics of the spine. The model can also be integrated with existing OpenSim models to build more comprehensive models of the human body.

  11. Automatic lumbar spine measurement in CT images

    NASA Astrophysics Data System (ADS)

    Mao, Yunxiang; Zheng, Dong; Liao, Shu; Peng, Zhigang; Yan, Ruyi; Liu, Junhua; Dong, Zhongxing; Gong, Liyan; Zhou, Xiang Sean; Zhan, Yiqiang; Fei, Jun

    2017-03-01

    Accurate lumbar spine measurement in CT images provides an essential way for quantitative spinal diseases analysis such as spondylolisthesis and scoliosis. In today's clinical workflow, the measurements are manually performed by radiologists and surgeons, which is time consuming and irreproducible. Therefore, automatic and accurate lumbar spine measurement algorithm becomes highly desirable. In this study, we propose a method to automatically calculate five different lumbar spine measurements in CT images. There are three main stages of the proposed method: First, a learning based spine labeling method, which integrates both the image appearance and spine geometry information, is used to detect lumbar and sacrum vertebrae in CT images. Then, a multiatlases based image segmentation method is used to segment each lumbar vertebra and the sacrum based on the detection result. Finally, measurements are derived from the segmentation result of each vertebra. Our method has been evaluated on 138 spinal CT scans to automatically calculate five widely used clinical spine measurements. Experimental results show that our method can achieve more than 90% success rates across all the measurements. Our method also significantly improves the measurement efficiency compared to manual measurements. Besides benefiting the routine clinical diagnosis of spinal diseases, our method also enables the large scale data analytics for scientific and clinical researches.

  12. Image-based multiscale mechanical modeling shows the importance of structural heterogeneity in the human lumbar facet capsular ligament.

    PubMed

    Zarei, Vahhab; Liu, Chao J; Claeson, Amy A; Akkin, Taner; Barocas, Victor H

    2017-08-01

    The lumbar facet capsular ligament (FCL) primarily consists of aligned type I collagen fibers that are mainly oriented across the joint. The aim of this study was to characterize and incorporate in-plane local fiber structure into a multiscale finite element model to predict the mechanical response of the FCL during in vitro mechanical tests, accounting for the heterogeneity in different scales. Characterization was accomplished by using entire-domain polarization-sensitive optical coherence tomography to measure the fiber structure of cadaveric lumbar FCLs ([Formula: see text]). Our imaging results showed that fibers in the lumbar FCL have a highly heterogeneous distribution and are neither isotropic nor completely aligned. The averaged fiber orientation was [Formula: see text] ([Formula: see text] in the inferior region and [Formula: see text] in the middle and superior regions), with respect to lateral-medial direction (superior-medial to inferior-lateral). These imaging data were used to construct heterogeneous structural models, which were then used to predict experimental gross force-strain behavior and the strain distribution during equibiaxial and strip biaxial tests. For equibiaxial loading, the structural model fit the experimental data well but underestimated the lateral-medial forces by [Formula: see text]16% on average. We also observed pronounced heterogeneity in the strain field, with stretch ratios for different elements along the lateral-medial axis of sample typically ranging from about 0.95 to 1.25 during a 12% strip biaxial stretch in the lateral-medial direction. This work highlights the multiscale structural and mechanical heterogeneity of the lumbar FCL, which is significant both in terms of injury prediction and microstructural constituents' (e.g., neurons) behavior.

  13. Physiotherapy and lumbar facet joint injections as a combination treatment for chronic low back pain. A narrative review of lumbar facet joint injections, lumbar spinal mobilizations, soft tissue massage and lower back mobility exercises.

    PubMed

    Chambers, Hannah

    2013-06-01

    The aim of this study was to summarize the available evidence on lumbar facet joint injections and the physiotherapy treatments, land-based lower back mobility exercise, soft tissue massage and lumbar spinal mobilizations for chronic low back pain (CLBP). The plausibility of physiotherapy and lumbar facet joint injections as a combination treatment is discussed. Using a systematic process, an online electronic search was performed using key words utilizing all available databases and hand searching reference lists. Using a critical appraisal tool from the Critical Appraisal Skills Programme (CASP), the literature was screened to include primary research. The main aspects of the research were summarized. The evidence for lumbar facet joint injections suggests an overall short-term positive effect on CLBP. Land-based lower back mobility exercise and soft tissue massage appear to have a positive effect on CLBP in the short term and possibly in the longer term. There is insufficient evidence to draw conclusions for lumbar spinal mobilizations. The review indicates that lumbar facet joint injections create a short period when pain is reduced. Physiotherapy treatments including land-based lower back mobility exercise and soft tissue massage may be of benefit during this time to improve the longer-term outcomes of patients with CLBP. It is not possible to make generalizations or firm conclusions. The current review highlights the need for further research. A randomized controlled trial is recommended to assess the impact of physiotherapy in combination with lumbar facet joint injections on CLBP. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Magnetic Resonance Imaging (MRI): Lumbar Spine (For Parents)

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español Magnetic Resonance Imaging (MRI): Lumbar Spine KidsHealth / For Parents / Magnetic Resonance Imaging (MRI): Lumbar Spine What's in this article? What ...

  15. The effects of an exercise with a stick on the lumbar spine and hip movement patterns during forward bending in patients with lumbar flexion syndrome.

    PubMed

    Yoon, Ji-yeon; Kim, Ji-won; Kang, Min-hyeok; An, Duk-hyun; Oh, Jae-seop

    2015-01-01

    Forward bending is frequently performed in daily activities. However, excessive lumbar flexion during forward bending has been reported as a risk factor for low back pain. Therefore, we examined the effects of an exercise strategy using a stick on the angular displacement and movement onset of lumbar and hip flexion during forward-bending exercises in patients with lumbar flexion syndrome. Eighteen volunteers with lumbar flexion syndrome were recruited in this study. Subjects performed forward-bending exercises with and without a straight stick in standing. The angular displacement and movement onset of lumbar and hip flexion during forward-bending exercises were measured by using a three dimensional motion analysis system. The significances of differences between the two conditions (with stick vs. without stick) was assessed using a one-way repeated analysis of variance. When using a stick during a forward-bending exercise, the peak angular displacement of lumbar flexion decreased significantly, and those of right and left-hip flexion increased significantly compared with those without a stick. The movement onset of lumbar flexion occurred significantly later, and the onset of right-hip flexion occurred significantly earlier with than without a stick. Based on these findings, a stick exercise was an effective method to prevent excessive lumbar flexion and more helpful in developing hip flexion during a forward-bending exercise. These findings will be useful for clinicians to teach self-exercise during forward bending in patients with lumbar flexion syndrome.

  16. [A woman with a postoperative lumbar swelling].

    PubMed

    Hulshof, Hanna M; Elsenburg, Patric H J M; Frequin, Stephan T F M

    2013-01-01

    A 65-year-old woman had developed a large lumbar swelling in a period of four weeks following lumbar laminectomy. An MRI-scan revealed a large fluid collection, which had formed from the spinal canal. The diagnosis 'liquorcele', a rare complication of spine surgery, was established.

  17. The coordinated movement of the spine and pelvis during running.

    PubMed

    Preece, Stephen J; Mason, Duncan; Bramah, Christopher

    2016-02-01

    Previous research into running has demonstrated consistent patterns in pelvic, lumbar and thoracic motions between different human runners. However, to date, there has been limited attempt to explain why observed coordination patterns emerge and how they may relate to centre of mass (CoM) motion. In this study, kinematic data were collected from the thorax, lumbar spine, pelvis and lower limbs during over ground running in n=28 participants. These data was subsequently used to develop a theoretical understanding of the coordination of the spine and pelvis in all three body planes during the stance phase of running. In the sagittal plane, there appeared to be an antiphase coordinate pattern which may function to increase femoral inclination at toe off whilst minimising anterior-posterior accelerations of the CoM. In the medio-lateral direction, CoM motion appears to facilitate transition to the contralateral foot. However, an antiphase coordination pattern was also observed, most likely to minimise unnecessary accelerations of the CoM. In the transverse plane, motion of the pelvis was observed to lag slightly behind that of the thorax. However, it is possible that the close coupling between these two segments facilitates the thoracic rotation required to passively drive arm motion. This is the first study to provide a full biomechanical rationale for the coordination of the spine and pelvis during human running. This insight should help clinicians develop an improved understanding of how spinal and pelvic motions may contribute to, or result from, common running injuries. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. One-stage posterior debridement, transforaminal lumbar interbody fusion and instrumentation in treatment of lumbar spinal tuberculosis: a retrospective case series.

    PubMed

    Zhang, Hong-qi; Lin, Min-zhong; Li, Jin-song; Tang, Ming-xing; Guo, Chao-feng; Wu, Jian-huang; Liu, Jin-yang

    2013-03-01

    The purpose of this study is to compare the clinical outcomes of surgical management by one-stage posterior debridement, transforaminal lumbar interbody fusion (TLIF) and instrumentation and combined posterior and anterior approaches for lumbar spinal tuberculosis, and determine the clinical effectiveness of the posterior only surgical treatment for lumbar spinal TB at the same time. Thirty-seven patients who suffered lumbar tuberculosis were treated by two different surgical procedures in our center from May 2004 to June 2012. All the cases were divided into two groups: 19 cases in Group A underwent one-stage posterior debridement, TLIF and instrumentation, and 18 cases in Group B underwent posterior instrumentation, anterior debridement and bone graft in a single-stage procedure. The operation time, blood loss, lumbar kyphotic angle, recovery of neurological function and fusion time were, respectively, compared between Group A and Group B. The average follow-up period for Group A was 46.6 ± 16.7 months, and for Group B, 47.5 ± 15.0 months. It was obvious that the average operative duration and blood loss of Group A was less than those of Group B. Lumbar tuberculosis was completely cured and the grafted bones were fused in 10 months in all patients. There was no persistence or recurrence of infection and no differences in the radiological results in both groups. The kyphosis was significantly corrected after surgical management. The average pretreatment ESR was 60.7 ± 22.5 mm/h, which became normal (9.0 ± 2.8 mm/h) within 3 months in all patients. Surgical management by one-stage posterior debridement, TLIF and instrumentation for lumbar tuberculosis is feasible and effective. This approach obtained better clinical outcomes than combined posterior and anterior surgeries.

  19. Limited effect of fly-wheel and spinal mobilization exercise countermeasures on lumbar spine deconditioning during 90 d bed-rest in the Toulouse LTBR study

    NASA Astrophysics Data System (ADS)

    Belavý, Daniel L.; Ohshima, Hiroshi; Bareille, Marie-Pierre; Rittweger, Jörn; Felsenberg, Dieter

    2011-09-01

    We examined the effect of high-load fly-wheel (targeting the lower-limb musculature and concurrent loading of the spine via shoulder restraints) and spinal movement countermeasures against lumbar spine muscle atrophy, disc and spinal morphology changes and trunk isokinetic torque loss during prolonged bed-rest. Twenty-four male subjects underwent 90 d head-down tilt bed-rest and performed either fly-wheel (FW) exercises every three days, spinal movement exercises in lying five times daily (SpMob), or no exercise (Ctrl). There was no significant impact of countermeasures on losses of isokinetic trunk flexion/extension ( p≥0.65). Muscle volume change by day-89 of bed-rest in the psoas, iliacus, lumbar erector spinae, lumbar multifidus and quadratus lumborum, as measured via magnetic resonance imaging (MRI), was statistically similar in all three groups ( p≥0.33). No significant effect on MRI-measures of lumbar intervertebral disc volume, spinal length and lordosis ( p≥0.09) were seen either, but there was some impact ( p≤0.048) on axial plane disc dimensions (greater reduction than in Ctrl) and disc height (greater increases than in Ctrl). MRI-data from subjects measured 13 and 90-days after bed-rest showed partial recovery of the spinal extensor musculature by day-13 after bed-rest with this process complete by day-90. Some changes in lumbar spine and disc morphology parameters were still persistent 90-days after bed-rest. The present results indicate that the countermeasures tested were not optimal to maintain integrity of the spine and trunk musculature during bed rest.

  20. Lumbar puncture (image)

    MedlinePlus

    ... is a clear fluid that circulates in the space surrounding the spinal cord and brain. CSF protects the brain and spinal cord from injury by acting like a liquid cushion. CSF is usually obtained through a lumbar ...

  1. Postural Consequences of Cervical Sagittal Imbalance: A Novel Laboratory Model.

    PubMed

    Patwardhan, Avinash G; Havey, Robert M; Khayatzadeh, Saeed; Muriuki, Muturi G; Voronov, Leonard I; Carandang, Gerard; Nguyen, Ngoc-Lam; Ghanayem, Alexander J; Schuit, Dale; Patel, Alpesh A; Smith, Zachary A; Sears, William

    2015-06-01

    A biomechanical study using human spine specimens. To study postural compensations in lordosis angles that are necessary to maintain horizontal gaze in the presence of forward head posture and increasing T1 sagittal tilt. Forward head posture relative to the shoulders, assessed radiographically using the horizontal offset distance between the C2 and C7 vertebral bodies (C2-C7 [sagittal vertical alignment] SVA), is a measure of global cervical imbalance. This may result from kyphotic alignment of cervical segments, muscle imbalance, as well as malalignment of thoracolumbar spine. Ten cadaveric cervical spines (occiput-T1) were tested. The T1 vertebra was anchored to a tilting and translating base. The occiput was free to move vertically but its angular orientation was constrained to ensure horizontal gaze regardless of sagittal imbalance. A 5-kg mass was attached to the occiput to mimic head weight. Forward head posture magnitude and T1 tilt were varied and motions of individual vertebrae were measured to calculate C2-C7 SVA and lordosis across C0-C2 and C2-C7. Increasing C2-C7 SVA caused flexion of lower cervical (C2-C7) segments and hyperextension of suboccipital (C0-C1-C2) segments to maintain horizontal gaze. Increasing kyphotic T1 tilt primarily increased lordosis across the C2-C7 segments. Regression models were developed to predict the compensatory C0-C2 and C2-C7 angulation needed to maintain horizontal gaze given values of C2-C7 SVA and T1 tilt. This study established predictive relationships between radiographical measures of forward head posture, T1 tilt, and postural compensations in the cervical lordosis angles needed to maintain horizontal gaze. The laboratory model predicted that normalization of C2-C7 SVA will reduce suboccipital (C0-C2) hyperextension, whereas T1 tilt reduction will reduce the hyperextension in the C2-C7 segments. The predictive relationships may help in planning corrective strategy in patients experiencing neck pain, which may be

  2. Anterior lumbar interbody fusion versus transforaminal lumbar interbody fusion--systematic review and meta-analysis.

    PubMed

    Phan, Kevin; Thayaparan, Ganesha K; Mobbs, Ralph J

    2015-01-01

    To assess the clinical and radiographic outcomes and complications of anterior lumbar interbody fusion (ALIF) versus transforaminal lumbar interbody fusion (TLIF). A systematic literature search was conducted from six electronic databases. The relative risk and weighted mean difference (WMD) were used as statistical summary effect sizes. Fusion rates (88.6% vs. 91.9%, P = 0.23) and clinical outcomes were comparable between ALIF and TLIF. ALIF was associated with restoration of disk height (WMD, 2.71 mm, P = 0.01), segmental lordosis (WMD, 2.35, P = 0.03), and whole lumbar lordosis (WMD, 6.33, P = 0.03). ALIF was also associated with longer hospitalization (WMD, 1.8 days, P = 0.01), lower dural injury (0.4% vs. 3.8%, P = 0.05) but higher blood vessel injury (2.6% vs. 0%, P = 0.04). ALIF and TLIF appear to have similar success and clinical outcomes, with different complication profiles. ALIF may be associated with superior restoration of disk height and lordosis, but requires further validation in future studies.

  3. The Influence of the “Straighten Your Back” Command on the Sagittal Spinal Curvatures in Children with Generalized Joint Hypermobility

    PubMed Central

    Pawłowska, Paulina; Kolwicz-Gańko, Aleksandra; Sitarski, Dominik

    2017-01-01

    Objectives. The aim of the study was to assess the change of sagittal spinal curvatures in children with generalized joint hypermobility (GJH) instructed with “straighten your back” command (SYB). Methods. The study included 56 children with GJH. The control group consisted of 193 children. Sacral slope (SS), lumbar lordosis (LL), global thoracic kyphosis (TK), lower thoracic kyphosis (LK), and upper thoracic kyphosis (UK) were assessed with Saunders inclinometer both in spontaneous positions (standing and sitting) and after the SYB. Results. Children with GJH after SYB presented the following: in standing, increase in SS and decrease in TK, LK, and UK (P < 0.01), with LL not significantly changed; in sitting: decrease in global thoracic kyphosis (35.5° (SD 20.5) versus 21.0° (SD 15.5), P < 0.001) below the standards proposed in the literature (30–40°) and flattening of its lower part (P < 0.001). The same changes were observed in the control group. Conclusions. In children with generalized joint hypermobility, the “straighten your back” command leads to excessive reduction of the global thoracic kyphosis and flattening of its lower part. Therefore, the “straighten your back” command should not be used to achieve the optimal standing and sitting positions. PMID:28116313

  4. Lumbar muscle rhabdomyolysis after abdominal aortic surgery.

    PubMed

    Bertrand, M; Godet, G; Fléron, M H; Bernard, M A; Orcel, P; Riou, B; Kieffer, E; Coriat, P

    1997-07-01

    Lumbar muscle rhabdomyolysis has been very rarely reported after surgery. The aim of this study was to determine its incidence and main characteristics in a large population undergoing abdominal aortic surgery. Over a 21-mo period, 224 consecutive patients, 209 male and 15 female, mean age 65 +/- 10 yr, underwent abdominal aortic surgery (aortic aneurysm in 142 patients and occlusive aortic degenerative disease in 82 patients). Surgical incision was a midline incision with exaggerated hyperlordosis in 173 patients and a flank incision with a retroperitoneal approach in 51 patients. Postoperative rhabdomyolysis was diagnosed in 20 patients. In these patients, 9 (4%) experienced severe low back pain, and lumbar muscle rhabdomyolysis was confirmed by tomodensitometry (n = 6) or muscle biopsy (n = 3). The remaining 11 patients had lower limb muscle rhabdomyolysis. Rhabdomyolysis occurred after surgery of longer duration, which involved more frequent visceral artery reimplantation, with longer duration of aortic clamping and greater intraoperative bleeding. Lumbar rhabdomyolysis occurred in younger patients who were more frequently obese. On first postoperative day, the mean creatine kinase (CK) value was greater in lumbar rhabdomyolysis than in lower limb rhabdomyolysis (17,082 +/- 15,003 vs 3,313 +/- 3,120 IU/L, P < 0.05). Acute renal failure and postoperative death did not occur in patients with lumbar muscle rhabdomyolysis. Lumbar rhabdomyolysis was not a rare event after abdominal aortic surgery (4%). This syndrome was characterized by postoperative low back pain of unusual severity, which required analgesic therapy, and induced a very high increase in CK with typical findings at tomodensitometry or muscle biopsy but was not associated with postoperative renal failure.

  5. Sagittal balance, a useful tool for neurosurgeons?

    PubMed

    Villard, Jimmy; Ringel, Florian; Meyer, Bernhard

    2014-01-01

    New instrumentation techniques have made any correction of the spinal architecture possible. Sagittal balance has been described as an important parameter for assessing spinal deformity in the early 1970s, but over the last decade its importance has grown with the published results in terms of overall quality of life and fusion rate. Up until now, most of the studies have concentrated on spinal deformity surgery, but its use in the daily neurosurgery practice remains uncertain and may warrant further studies.

  6. MRI of the lumbar spine: comparison of 3D isotropic turbo spin-echo SPACE sequence versus conventional 2D sequences at 3.0 T.

    PubMed

    Lee, Sungwon; Jee, Won-Hee; Jung, Joon-Yong; Lee, So-Yeon; Ryu, Kyeung-Sik; Ha, Kee-Yong

    2015-02-01

    Three-dimensional (3D) fast spin-echo sequence with variable flip-angle refocusing pulse allows retrospective alignments of magnetic resonance imaging (MRI) in any desired plane. To compare isotropic 3D T2-weighted (T2W) turbo spin-echo sequence (TSE-SPACE) with standard two-dimensional (2D) T2W TSE imaging for evaluating lumbar spine pathology at 3.0 T MRI. Forty-two patients who had spine surgery for disk herniation and had 3.0 T spine MRI were included in this study. In addition to standard 2D T2W TSE imaging, sagittal 3D T2W TSE-SPACE was obtained to produce multiplanar (MPR) images. Each set of MR images from 3D T2W TSE and 2D TSE-SPACE were independently scored for the degree of lumbar neural foraminal stenosis, central spinal stenosis, and nerve compression by two reviewers. These scores were compared with operative findings and the sensitivities were evaluated by McNemar test. Inter-observer agreements and the correlation with symptoms laterality were assessed with kappa statistics. The 3D T2W TSE and 2D TSE-SPACE had similar sensitivity in detecting foraminal stenosis (78.9% versus 78.9% in 32 foramen levels), spinal stenosis (100% versus 100% in 42 spinal levels), and nerve compression (92.9% versus 81.8% in 59 spinal nerves). The inter-observer agreements (κ = 0.849 vs. 0.451 for foraminal stenosis, κ = 0.809 vs. 0.503 for spinal stenosis, and κ = 0.681 vs. 0.429 for nerve compression) and symptoms correlation (κ = 0.449 vs. κ = 0.242) were better in 3D TSE-SPACE compared to 2D TSE. 3D TSE-SPACE with oblique coronal MPR images demonstrated better inter-observer agreements compared to 3D TSE-SPACE without oblique coronal MPR images (κ = 0.930 vs. κ = 0.681). Isotropic 3D T2W TSE-SPACE at 3.0 T was comparable to 2D T2W TSE for detecting foraminal stenosis, central spinal stenosis, and nerve compression with better inter-observer agreements and symptom correlation. © The Foundation Acta Radiologica 2014 Reprints and

  7. An Assessment of Correlation between Dermatoglyphic Patterns and Sagittal Skeletal Discrepancies

    PubMed Central

    Philip, Biju; Madathody, Deepika; Mathew, Manu; Paul, Jose; Dlima, Johnson Prakash

    2017-01-01

    Introduction Investigators over years have been fascinated by dermatoglyphic patterns which has led to the development of dermatoglyphics as a science with numerous applications in various fields other than being the best and most widely used method for personal identification. Aim To assess the correlation between dermatoglyphic patterns and sagittal skeletal discrepancies. Materials and Methods A total of 180 patients, aged 18-40 years, were selected from those who attended the outpatient clinic of the Deparment of Orthodontics and Dentofacial Orthopedics, Mar Baselios Dental College, Kothamangalam, Kerala, India. The fingerprints of both hands were taken by ink and stamp method after proper hand washing. The patterns of arches, loops and whorls in fingerprints were assessed. The total ridge count was also evaluated. Data was also sent to the fingerprint experts for expert evaluation. The sagittal jaw relation was determined from the patient’s lateral cephalogram. The collected data was then statistically analyzed using Chi-square tests, ANOVA and Post-hoc tests and a Multinomial regression prediction was also done. Results A significant association was observed between the dermatoglyphic pattern exhibited by eight fingers and the sagittal skeletal discrepancies (p<0.05). An increased distribution of whorl pattern was observed in the skeletal Class II with maxillary excess group and skeletal Class II with mandibular deficiency group while an increased distribution of loop pattern was seen in the skeletal Class III with mandibular excess group and skeletal Class III with maxillary deficiency group. Higher mean of total ridge count was also seen in the groups of skeletal Class II with maxillary excess and skeletal Class II with mandibular deficiency. Multinomial regression predicting skeletal pattern with respect to the fingerprint pattern showed that the left thumb impression fits the best model for predicting the skeletal pattern. Conclusion There was a

  8. Which cardiovascular magnetic resonance planes and sequences provide accurate measurements of branch pulmonary artery size in children with right ventricular outflow tract obstruction?

    PubMed

    Vijarnsorn, Chodchanok; Rutledge, Jennifer M; Tham, Edythe B; Coe, James Y; Quinonez, Luis; Patton, David J; Noga, Michelle

    2014-02-01

    Children with right ventricular outflow tract obstructive (RVOTO) lesions require precise quantification of pulmonary artery (PA) size for proper management of branch PA stenosis. We aimed to determine which cardiovascular magnetic resonance (CMR) sequences and planes correlated best with cardiac catheterization and surgical measurements of branch PA size. Fifty-five children with RVOTO lesions and biventricular circulation underwent CMR prior to; either cardiac catheterization (n = 30) or surgery (n = 25) within a 6 month time frame. CMR sequences included axial black blood, axial, coronal oblique and sagittal oblique cine balanced steady-state free precession (bSSFP), and contrast-enhanced magnetic resonance angiography (MRA) with multiplanar reformatting in axial, coronal oblique, sagittal oblique, and cross-sectional planes. Maximal branch PA and stenosis (if present) diameter were measured. Comparisons of PA size on CMR were made to reference methods: (1) catheterization measurements performed in the anteroposterior plane at maximal expansion, and (2) surgical measurement obtained from a maximal diameter sound which could pass through the lumen. The mean differences (Δ) and intra class correlation (ICC) were used to determine agreement between different modalities. CMR branch PA measurements were compared to the corresponding cardiac catheterization measurements in 30 children (7.6 ± 5.6 years). Reformatted MRA showed better agreement for branch PA measurement (ICC > 0.8) than black blood (ICC 0.4-0.6) and cine sequences (ICC 0.6-0.8). Coronal oblique MRA and maximal cross sectional MRA provided the best correlation of right PA (RPA) size with ICC of 0.9 (Δ -0.1 ± 2.1 mm and Δ 0.5 ± 2.1 mm). Maximal cross sectional MRA and sagittal oblique MRA provided the best correlate of left PA (LPA) size (Δ 0.1 ± 2.4 and Δ -0.7 ± 2.4 mm). For stenoses, the best correlations were from coronal oblique MRA of right pulmonary artery (RPA) (Δ -0.2 ± 0.8 mm, ICC 0

  9. Hepatocellular Carcinoma Supplied by the Right Lumbar Artery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyayama, Shiro, E-mail: s-miyayama@fukui.saiseikai.or.jp; Yamashiro, Masashi; Okuda, Miho

    This study evaluated the clinical features of hepatocellular carcinoma (HCC) supplied by the right lumbar artery. Eleven patients with HCC supplied by the right lumbar artery were treated with chemoembolization. The patients' medical records were retrospectively analyzed. All patients underwent 6.7 {+-} 3.7 (mean {+-} SD) chemoembolization sessions, and the hepatic arterial branches were noted as being attenuated. The right inferior phrenic artery (IPA) was also embolized in 10 patients. The interval between initial chemoembolization and chemoembolization of the lumbar artery supply was 53.2 {+-} 26.9 months. Mean tumor diameter was 3.1 {+-} 2.4 cm and was located at themore » surface of S7 and S6. The feeding-branch arose proximal to the bifurcation of the dorsal ramus and muscular branches (n = 8) or from the muscular branches (n = 3) of the right first (n = 10) or second lumbar artery (n = 1). The anterior spinal artery originated from the tumor-feeding lumbar artery in one patient. All feeders were selected, and embolization was performed after injection of iodized oil and anticancer drugs (n = 10) or gelatin sponge alone in a patient with anterior spinal artery branching (n = 1). Eight patients died from tumor progression 10.1 {+-} 4.6 months later, and two patients survived 2 and 26 months, respectively. The remaining patient died of bone metastases after 32 months despite liver transplantation 10 months after chemoembolization. The right lumbar artery supplies HCC located in the bare area of the liver, especially in patients who undergo repeated chemoembolization, including chemoembolization by way of the right IPA. Chemoembolization by way of the right lumbar artery may be safe when the feeder is well selected.« less

  10. Correlation and Reliability of Cervical Sagittal Alignment Parameters between Lateral Cervical Radiograph and Lateral Whole-Body EOS Stereoradiograph.

    PubMed

    Singhatanadgige, Weerasak; Kang, Daniel G; Luksanapruksa, Panya; Peters, Colleen; Riew, K Daniel

    2016-09-01

    Retrospective analysis. To evaluate the correlation and reliability of cervical sagittal alignment parameters obtained from lateral cervical radiographs (XRs) compared with lateral whole-body stereoradiographs (SRs). We evaluated adults with cervical deformity using both lateral XRs and lateral SRs obtained within 1 week of each other between 2010 and 2014. XR and SR images were measured by two independent spine surgeons using the following sagittal alignment parameters: C2-C7 sagittal Cobb angle (SCA), C2-C7 sagittal vertical axis (SVA), C1-C7 translational distance (C1-7), T1 slope (T1-S), neck tilt (NT), and thoracic inlet angle (TIA). Pearson correlation and paired t test were used for statistical analysis, with intra- and interrater reliability analyzed using intraclass correlation coefficient (ICC). A total of 35 patients were included in the study. We found excellent intrarater reliability for all sagittal alignment parameters in both the XR and SR groups with ICC ranging from 0.799 to 0.994 for XR and 0.791 to 0.995 for SR. Interrater reliability was also excellent for all parameters except NT and TIA, which had fair reliability. We also found excellent correlations between XR and SR measurements for most sagittal alignment parameters; SCA, SVA, and C1-C7 had r > 0.90, and only NT had r < 0.70. There was a significant difference between groups, with SR having lower measurements compared with XR for both SVA (0.68 cm lower, p < 0.001) and C1-C7 (1.02 cm lower, p < 0.001). There were no differences between groups for SCA, T1-S, NT, and TIA. Whole-body stereoradiography appears to be a viable alternative for measuring cervical sagittal alignment parameters compared with standard radiography. XR and SR demonstrated excellent correlation for most sagittal alignment parameters except NT. However, SR had significantly lower average SVA and C1-C7 measurements than XR. The lower radiation exposure using single SR has to be weighed against its

  11. Return to Golf After Lumbar Fusion.

    PubMed

    Shifflett, Grant D; Hellman, Michael D; Louie, Philip K; Mikhail, Christopher; Park, Kevin U; Phillips, Frank M

    Spinal fusion surgery is being increasingly performed, yet few studies have focused on return to recreational sports after lumbar fusion and none have specifically analyzed return to golf. Most golfers successfully return to sport after lumbar fusion surgery. Case series. Level 4. All patients who underwent 1- or 2-level primary lumbar fusion surgery for degenerative pathologies performed by a single surgeon between January 2008 and October 2012 and had at least 1-year follow-up were included. Patients completed a specifically designed golf survey. Surveys were mailed, given during follow-up clinic, or answered during telephone contact. A total of 353 patients met the inclusion and exclusion criteria, with 200 responses (57%) to the questionnaire producing 34 golfers. The average age of golfers was 57 years (range, 32-79 years). In 79% of golfers, preoperative back and/or leg pain significantly affected their ability to play golf. Within 1 year from surgery, 65% of patients returned to practice and 52% returned to course play. Only 29% of patients stated that continued back/leg pain limited their play. Twenty-five patients (77%) were able to play the same amount of golf or more than before fusion surgery. Of those providing handicaps, 12 (80%) reported the same or an improved handicap. More than 50% of golfers return to on-course play within 1 year of lumbar fusion surgery. The majority of golfers can return to preoperative levels in terms of performance (handicap) and frequency of play. This investigation offers insight into when golfers return to sport after lumbar fusion surgery and provides surgeons with information to set realistic expectations postoperatively.

  12. Effects of ipsilateral anterior thigh soft tissue stretching on passive unilateral straight-leg raise.

    PubMed

    Clark, S; Christiansen, A; Hellman, D F; Hugunin, J W; Hurst, K M

    1999-01-01

    Randomized 3-group pretest-posttest with blind assessment of outcome. The purpose of this study was to examine the effect of sagittal plane hold-relax exercise applied to the ipsilateral anterior thigh, and prone positioning on passive unilateral straight-leg raise measurements. Straight-leg raising has been viewed as a measurement for hamstring muscle length, but literature suggests that other structures may affect this measurement. Sixty subjects (45 men, 15 women) qualified for inclusion into the study based on a straight-leg raise measurement of < or = 65 degrees. Subjects were randomly assigned to one of three groups: control, static stretch, or sagittal plane hold-relax exercise. Pretest and posttest straight-leg raise measurements of the right lower extremity were performed for each subject. A 1-way ANOVA of the change scores showed a significant difference between groups. A Tukey post hoc analysis of the change scores showed that both treatment groups' means differed significantly from the control group and from each other, with the sagittal plane hold-relax group exhibiting the largest change (mean of 7.8 degrees +/- 2.8 degrees). The results of this study show that sagittal plane hold-relax exercise and passive prone results of this study show that sagittal plane hold-relax and passive prone positioning can significantly increase straight-leg raise range of motion, however the sagittal plane hold-relax stretching of the anterior thigh is more effective than passive prone positioning.

  13. Will immediate postoperative imbalance improve in patients with thoracolumbar/lumbar degenerative kyphoscoliosis? A comparison between Smith-Petersen osteotomy and pedicle subtraction osteotomy with an average 4 years of follow-up.

    PubMed

    Bao, Hongda; He, Shouyu; Liu, Zhen; Zhu, Zezhang; Qiu, Yong; Zhu, Feng

    2015-03-01

    A retrospective radiographical study. To compare compensatory behavior of coronal and sagittal alignment after pedicle subtraction osteotomy (PSO) and Smith-Petersen osteotomy (SPO) for degenerative kyphoscoliosis. There was a paucity of literature paying attention to the postoperative imbalance after PSO or SPO and natural evolution of the imbalance. A retrospective study was performed on 68 consecutive patients with degenerative kyphoscoliosis treated by lumbar PSO (25 patients) or SPO (43 patients) procedures at a single institution. Long-cassette standing radiographs were taken preoperatively, postoperatively, and at the last follow-up and radiographical parameters were measured. The lower instrumented vertebral level and level of osteotomy were compared between the patients with and without improvement. Negative sagittal vertical axis (SVA) was observed in the PSO group postoperatively, implying an overcorrection of SVA. This negative SVA improved spontaneously during follow-up (P < 0.05). Coronal balance was found to worsen immediately postoperatively in the SPO group (P < 0.05). At the last follow-up, spontaneous improvement was observed in 15 patients and the average coronal balance decreased to 16.35 mm. For the 15 patients with improved coronal balance, fusion at L5 or above was more common compared with the 11 patients with persisted postoperative imbalance (P = 0.027), whereas no difference in term of levels of osteotomy was found (P > 0.05). The overcorrection of SVA is more often seen in the PSO group. The coronal imbalance is more likely to occur in the SPO group. The postoperative sagittal imbalance often spontaneously improves with time. Lower instrumented vertebra at S1 or with pelvic fixation should be regarded as potential risk factors for persistent coronal imbalance in patients with SPO. 3.

  14. 49 CFR 572.85 - Lumbar spine flexure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) of this section, the lumbar spine assembly shall flex by an amount that permits the thoracic spine to... to the thoracic spine box. Apply the force at any torso deflection rate between 0.5 and 1.5 degrees... 49 Transportation 7 2011-10-01 2011-10-01 false Lumbar spine flexure. 572.85 Section 572.85...

  15. Spontaneous regression of posterior epidural migrated lumbar disc fragments: case series.

    PubMed

    Tarukado, Kiyoshi; Ikuta, Ko; Fukutoku, Yoshiaki; Tono, Osamu; Doi, Toshio

    2015-06-01

    Posterior epidural migrated lumbar disc fragments is an extremely rare disorder. Surgical treatment was performed in all reported cases. To the best of our knowledge, there are no reported cases of the use of conservative treatment for posterior epidural migrated lumbar disc fragments. To report the possibility of a spontaneous regression of posterior epidural migrated lumbar disc fragments. Case series. Four patients with posterior epidural migrated lumbar disc fragments were treated at Karatsu Red Cross Hospital between April 2008 and August 2010. Spontaneous regression of the posterior epidural migrated lumbar disc fragments with relief of symptoms was observed on magnetic resonance imaging (MRI) in three cases. Another patient underwent surgical treatment. The present and previously reported cases of posterior epidural migrated lumbar disc fragments were analyzed with respect to patient age, imaging features on MRI, the level of the lesion, clinical symptoms, treatment, and outcomes. Conservative treatment was successful, and spontaneous lesion regression was seen on MRI with symptom relief in three cases. Although posterior epidural migrated lumbar disc fragment cases are generally treated surgically, the condition can regress spontaneously over time, as do sequestrated disc fragments. Spontaneous regression of lumbar disc herniations is a widely accepted observation at present. Posterior epidural migrated lumbar disc fragments fall under the sequestrated type of disc herniation. In fact, the course of treatment for posterior epidural migrated lumbar disc fragments should be determined based on the symptoms and examination findings, as in cases of ordinary herniation. However, providing early surgical treatment is important if the patient has acute cauda equina syndrome or the neurologic symptoms worsen over time. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Caudal lumbar vertebral fractures in California Quarter Horse and Thoroughbred racehorses.

    PubMed

    Collar, E M; Zavodovskaya, R; Spriet, M; Hitchens, P L; Wisner, T; Uzal, F A; Stover, S M

    2015-09-01

    To gain insight into the pathophysiology of equine lumbar vertebral fractures in racehorses. To characterise equine lumbar vertebral fractures in California racehorses. Retrospective case series and prospective case-control study. Racehorse post mortem reports and jockey injury reports were retrospectively reviewed. Vertebral specimens from 6 racehorses affected with lumbar vertebral fractures and 4 control racehorses subjected to euthanasia for nonspinal fracture were assessed using visual, radiographic, computed tomography and histological examinations. Lumbar vertebral fractures occurred in 38 Quarter Horse and 29 Thoroughbred racehorses over a 22 year period, primarily involving the 5th and/or 6th lumbar vertebrae (L5-L6; 87% of Quarter Horses and 48% of Thoroughbreds). Lumbar vertebral fractures were the third most common musculoskeletal cause of death in Quarter Horses and frequently involved a jockey injury. Lumbar vertebral specimens contained anatomical variations in the number of vertebrae, dorsal spinous processes and intertransverse articulations. Lumbar vertebral fractures examined in 6 racehorse specimens (5 Quarter Horses and one Thoroughbred) coursed obliquely in a cranioventral to caudodorsal direction across the adjacent L5-L6 vertebral endplates and intervertebral disc, although one case involved only one endplate. All cases had evidence of abnormalities on the ventral aspect of the vertebral bodies consistent with pre-existing, maladaptive pathology. Lumbar vertebral fractures occur in racehorses with pre-existing pathology at the L5-L6 vertebral junction that is likely predisposes horses to catastrophic fracture. Knowledge of these findings should encourage assessment of the lumbar vertebrae, therefore increasing detection of mild vertebral injuries and preventing catastrophic racehorse and associated jockey injuries. © 2014 EVJ Ltd.

  17. [Lumbar canal stenosis in achondroplasia. Prevention and correction of lumbosacral lordosis].

    PubMed

    Gómez Prat, A; García Ollé, L; Ginebreda Martí, I; Gairí Tahull, J; Vilarrubias Guillamet, J

    2001-02-01

    To determine through the measurement of different angles the correction of lumbar hyperlordosis after bilateral femoral lengthening using the Icatme technique and to assess the absence of neurological symptomatology secondary to stenosis of the lumbar canal after femoral lengthening. Thirty-four patients with achondroplasia were studied. Mean age was 22.3 years. The patients underwent femoral lengthening using the Icatme technique. X rays of the lateral rachis taken before and after lengthening were used to measure a series of angles. The lumbar lordosis angle, Sez's angle and the L5S1 angle decreased while the lumbosacral angle, Jungham's angle and the sacrum angle increased, leading to correction of lumbar hyperlordosis, verticalization of the sacrum and improvement in thoracolumbar and lumbosacral inflection. Values were similar to the standard for individuals without achondroplasia. Femoral lengthening using the Icatme technique in achondroplastics modifies the statics of the lumbar spine, making them similar to those of nonachondroplastics. The procedure corrects lumbar hyperlordosis and prevents the appearance of neurological symptomatology due to stenosis of the lumbar canal. The incidence of neurological complications due to stenosis of the lumbar canal in achondroplastics who have undergone femoral lengthening is low compared with that of achondroplastics of the same age and sex who have not undergone this procedure.

  18. Transforaminal Lumbar Puncture: An Alternative Technique in Patients with Challenging Access.

    PubMed

    Nascene, D R; Ozutemiz, C; Estby, H; McKinney, A M; Rykken, J B

    2018-05-01

    Interlaminar lumbar puncture and cervical puncture may not be ideal in all circumstances. Recently, we have used a transforaminal approach in selected situations. Between May 2016 and December 2017, twenty-six transforaminal lumbar punctures were performed in 9 patients (25 CT-guided, 1 fluoroscopy-guided). Seven had spinal muscular atrophy and were referred for intrathecal nusinersen administration. In 2, CT myelography was performed via transforaminal lumbar puncture. The lumbar posterior elements were completely fused in 8, and there was an overlying abscess in 1. The L1-2 level was used in 2; the L2-3 level, in 10; the L3-4 level, in 12; and the L4-5 level, in 2 procedures. Post-lumbar puncture headache was observed on 4 occasions, which resolved without blood patching. One patient felt heat and pain at the injection site that resolved spontaneously within hours. One patient had radicular pain that resolved with conservative treatment. Transforaminal lumbar puncture may become an effective alternative to classic interlaminar lumbar puncture or cervical puncture. © 2018 by American Journal of Neuroradiology.

  19. Lumbar lordosis and sacral slope in lumbar spinal stenosis: standard values and measurement accuracy.

    PubMed

    Bredow, J; Oppermann, J; Scheyerer, M J; Gundlfinger, K; Neiss, W F; Budde, S; Floerkemeier, T; Eysel, P; Beyer, F

    2015-05-01

    Radiological study. To asses standard values, intra- and interobserver reliability and reproducibility of sacral slope (SS) and lumbar lordosis (LL) and the correlation of these parameters in patients with lumbar spinal stenosis (LSS). Anteroposterior and lateral X-rays of the lumbar spine of 102 patients with LSS were included in this retrospective, radiologic study. Measurements of SS and LL were carried out by five examiners. Intraobserver correlation and correlation between LL and SS were calculated with Pearson's r linear correlation coefficient and intraclass correlation coefficients (ICC) were calculated for inter- and intraobserver reliability. In addition, patients were examined in subgroups with respect to previous surgery and the current therapy. Lumbar lordosis averaged 45.6° (range 2.5°-74.9°; SD 14.2°), intraobserver correlation was between Pearson r = 0.93 and 0.98. The measurement of SS averaged 35.3° (range 13.8°-66.9°; SD 9.6°), intraobserver correlation was between Pearson r = 0.89 and 0.96. Intraobserver reliability ranged from 0.966 to 0.992 ICC in LL measurements and 0.944-0.983 ICC in SS measurements. There was an interobserver reliability ICC of 0.944 in LL and 0.990 in SS. Correlation between LL and SS averaged r = 0.79. No statistically significant differences were observed between the analyzed subgroups. Manual measurement of LL and SS in patients with LSS on lateral radiographs is easily performed with excellent intra- and interobserver reliability. Correlation between LL and SS is very high. Differences between patients with and without previous decompression were not statistically significant.

  20. [THE ALTERNATIVE MODEL IN TRAINING FOR OPERATION MANAGEMENT ON LUMBAR SPINE].

    PubMed

    Zakondyrin, D E

    2015-01-01

    The authors proposed to use a lumbar part of calf carcass as a new biological model for training of basic practical skills in order to perform the neurosurgical operative interventions on the spine. The proximity of anatomico-surgical parameters of given model and human cavader lumbar spine was estimated. The study proved the possibility of use of lumbar part of calf carcass for training techniques of transpedicular fixation and microdiskectomy in lumbar part.

  1. Comparison of prostate contours between conventional stepping transverse imaging and Twister-based sagittal imaging in permanent interstitial prostate brachytherapy.

    PubMed

    Kawakami, Shogo; Ishiyama, Hiromichi; Satoh, Takefumi; Tsumura, Hideyasu; Sekiguchi, Akane; Takenaka, Kouji; Tabata, Ken-Ichi; Iwamura, Masatsugu; Hayakawa, Kazushige

    2017-08-01

    To compare prostate contours on conventional stepping transverse image acquisitions with those on twister-based sagittal image acquisitions. Twenty prostate cancer patients who were planned to have permanent interstitial prostate brachytherapy were prospectively accrued. A transrectal ultrasonography probe was inserted, with the patient in lithotomy position. Transverse images were obtained with stepping movement of the transverse transducer. In the same patient, sagittal images were also obtained through rotation of the sagittal transducer using the "Twister" mode. The differences of prostate size among the two types of image acquisitions were compared. The relationships among the difference of the two types of image acquisitions, dose-volume histogram (DVH) parameters on the post-implant computed tomography (CT) analysis, as well as other factors were analyzed. The sagittal image acquisitions showed a larger prostate size compared to the transverse image acquisitions especially in the anterior-posterior (AP) direction ( p < 0.05). Interestingly, relative size of prostate apex in AP direction in sagittal image acquisitions compared to that in transverse image acquisitions was correlated to DVH parameters such as D 90 ( R = 0.518, p = 0.019), and V 100 ( R = 0.598, p = 0.005). There were small but significant differences in the prostate contours between the transverse and the sagittal planning image acquisitions. Furthermore, our study suggested that the differences between the two types of image acquisitions might correlated to dosimetric results on CT analysis.

  2. Slump sitting X-ray of the lumbar spine is superior to the conventional flexion view in assessing lumbar spine instability.

    PubMed

    Hey, Hwee Weng Dennis; Lau, Eugene Tze-Chun; Lim, Joel-Louis; Choong, Denise Ai-Wen; Tan, Chuen-Seng; Liu, Gabriel Ka-Po; Wong, Hee-Kit

    2017-03-01

    Flexion radiographs have been used to identify cases of spinal instability. However, current methods are not standardized and are not sufficiently sensitive or specific to identify instability. This study aimed to introduce a new slump sitting method for performing lumbar spine flexion radiographs and comparison of the angular range of motions (ROMs) and displacements between the conventional method and this new method. This study used is a prospective study on radiological evaluation of the lumbar spine flexion ROMs and displacements using dynamic radiographs. Sixty patients were recruited from a single spine tertiary center. Angular and displacement measurements of lumbar spine flexion were carried out. Participants were randomly allocated into two groups: those who did the new method first, followed by the conventional method versus those who did the conventional method first, followed by the new method. A comparison of the angular and displacement measurements of lumbar spine flexion between the conventional method and the new method was performed and tested for superiority and non-inferiority. The measurements of global lumbar angular ROM were, on average, 17.3° larger (p<.0001) using the new slump sitting method compared with the conventional method. They were most significant at the levels of L3-L4, L4-L5, and L5-S1 (p<.0001, p<.0001 and p=.001, respectively). There was no significant difference between both methods when measuring lumbar displacements (p=.814). The new method of slump sitting dynamic radiograph was shown to be superior to the conventional method in measuring the angular ROM and non-inferior to the conventional method in the measurement of displacement. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Posteroanterior versus anteroposterior lumbar spine radiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuno, M.M.; Shu, G.J.

    The posteroanterior view of the lumbar spine has important features including radiation protection and image quality; these have been studied by various investigators. Investigators have shown that sensitive tissues receive less radiation dosage in the posteroanterior view of the spine for scoliosis screening and intracranial tomography without altering the image quality. This paper emphasizes the importance of the radiation safety aspect of the posteroanterior view and shows the improvement in shape distortion in the lumbar vertebrae.

  4. Return to Golf After Lumbar Fusion

    PubMed Central

    Shifflett, Grant D.; Hellman, Michael D.; Louie, Philip K.; Mikhail, Christopher; Park, Kevin U.; Phillips, Frank M.

    2016-01-01

    Background: Spinal fusion surgery is being increasingly performed, yet few studies have focused on return to recreational sports after lumbar fusion and none have specifically analyzed return to golf. Hypothesis: Most golfers successfully return to sport after lumbar fusion surgery. Study Design: Case series. Level of Evidence: Level 4. Methods: All patients who underwent 1- or 2-level primary lumbar fusion surgery for degenerative pathologies performed by a single surgeon between January 2008 and October 2012 and had at least 1-year follow-up were included. Patients completed a specifically designed golf survey. Surveys were mailed, given during follow-up clinic, or answered during telephone contact. Results: A total of 353 patients met the inclusion and exclusion criteria, with 200 responses (57%) to the questionnaire producing 34 golfers. The average age of golfers was 57 years (range, 32-79 years). In 79% of golfers, preoperative back and/or leg pain significantly affected their ability to play golf. Within 1 year from surgery, 65% of patients returned to practice and 52% returned to course play. Only 29% of patients stated that continued back/leg pain limited their play. Twenty-five patients (77%) were able to play the same amount of golf or more than before fusion surgery. Of those providing handicaps, 12 (80%) reported the same or an improved handicap. Conclusion: More than 50% of golfers return to on-course play within 1 year of lumbar fusion surgery. The majority of golfers can return to preoperative levels in terms of performance (handicap) and frequency of play. Clinical Relevance: This investigation offers insight into when golfers return to sport after lumbar fusion surgery and provides surgeons with information to set realistic expectations postoperatively. PMID:27879299

  5. Coexisting lumbar spondylosis in patients undergoing TKA: how common and how serious?

    PubMed

    Chang, Chong Bum; Park, Kun Woo; Kang, Yeon Gwi; Kim, Tae Kyun

    2014-02-01

    Information on the coexistence of lumbar spondylosis and its influence on overall levels of pain and function in patients with advanced knee osteoarthritis (OA) undergoing total knee arthroplasty (TKA) would be valuable for patient consultation and management. The purposes of this study were to document the prevalence and severity of coexisting lumbar spondylosis in patients with advanced knee OA undergoing TKA and to determine whether the coexisting lumbar spondylosis at the time of TKA adversely affects clinical scores in affected patients before and 2 years after TKA. Radiographic lumbar spine degeneration and lumbar spine symptoms including lower back pain, radiating pain at rest, and radiating pain with activity were assessed in 225 patients undergoing TKA. In addition, the WOMAC score and the SF-36 scores were evaluated before and 2 years after TKA. Potential associations of radiographic lumbar spine degeneration and lumbar spine symptom severities with pre- and postoperative WOMAC subscales and SF-36 scores were examined. All 225 patients had radiographic degeneration of the lumbar spine, and the large majority (89% [200 of 225]) had either moderate or severe spondylosis (72% and 17%, respectively). A total of 114 patients (51%) had at least one moderate or severe lumbar spine symptom. No association was found between radiographic severity of lumbar spine degeneration and pre- and postoperative clinical scores. In terms of lumbar spine symptoms, more severe symptoms were likely to adversely affect the preoperative WOMAC and SF-36 physical component summary (PCS) scores, but most of these adverse effects improved by 2 years after TKA with the exception of the association between severe radiating pain during activity and a poorer postoperative SF-36 PCS score (regression coefficient = -5.41, p = 0.015). Radiographic lumbar spine degeneration and lumbar spine symptoms are common among patients with advanced knee OA undergoing TKA. Severe lumbar spine symptoms

  6. Planer orientation of the bilateral semicircular canals in dizzy patients.

    PubMed

    Aoki, Sachiko; Takei, Yasuhiko; Suzuki, Kazufumi; Masukawa, Ai; Arai, Yasuko

    2012-10-01

    Recent development of 3-dimensional analysis of eye movement enabled to detect the eye rotation axis, which is used to determine the responsible semicircular canal(s) in dizzy patients. Therefore, the knowledge of anatomical orientation of bilateral semicircular canals is essential, as all 6 canals influence the eye movements. Employing the new head coordinate system suitable for MR imaging, we calculated the angles of semicircular canal planes of both ears in 11 dizzy patients who had normal caloric response in both ears. The angles between adjacent canal pairs were nearly perpendicular in both ears. The angle between the posterior canal planes and head sagittal plane was 51° and significantly larger the angle between the anterior canal planes and head sagittal plane, which was 35°. The angle between the horizontal canal plane and head sagittal plane was almost orthogonal. Pairs of contralateral synergistic canal planes were not parallel, forming 10° between right and left horizontal canal planes, 17° between right anterior and left posterior canal planes and 19° between the right posterior and left anterior canal planes. Our measurement of the angles of adjacent canal pairs and the angle between each semicircular canal and head sagittal plane coincided with those of previous reports obtained from CT images and skull specimens. However, the angles between contralateral synergistic canal planes were more parallel than those of previous reports. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  7. The relationship between EMG activity and extensor moment generation in the erector spinae muscles during bending and lifting activities.

    PubMed

    Dolan, P; Adams, M A

    1993-01-01

    The relationship between EMG activity and extensor moment generation in the erector spinae muscles was investigated under isometric and concentric conditions. The full-wave rectified and averaged EMG signal was recorded from skin-surface electrodes located over the belly of the erector spinae at the levels of T10 and L3, and compared with measurements of extensor moment. The effects of muscle length and contraction velocity were studied by measuring the overall curvature (theta) and rate of change of curvature (d theta/dt) of the lumbar spine in the sagittal plane, using the '3-Space Isotrak' system. Isometric contractions were investigated with the subjects pulling up on a load cell attached to the floor. Hand height was varied to produce different amounts of lumbar flexion, as indicated by changes in lumbar curvature. The extensor moment was found to be linearly related to EMG activity, and the 'gradient' and 'intercept' of the relationship were themselves dependent upon the lumbar curvature at the time of testing. Concentric contractions were investigated with the subjects extending from a seated toe-touching position, at various speeds, while the torque exerted on the arm of a Cybex dynamometer was continuously measured. Under these conditions the EMG signal (E) was higher than the isometric signal (E0) associated with the same torque. E and E0 were related as follows: E0 = E/(1 + A d theta/dt), where A = 0.0014 exp (0.045P) and P = percentage lumbar flexion. This equation was used to correct the EMG data for the effect of contraction velocity. The corrected data were then used, in conjunction with the results of the isometric calibrations, to calculate the extensor moment generated by the erector spinae muscles during bending and lifting activities. The extensor moment can itself be used to calculate the compressive force acting on the lumbar spine.

  8. Sagittal-lung CT measurements in the evaluation of asthma-COPD overlap syndrome: a distinctive phenotype from COPD alone.

    PubMed

    Qu, Yanjuan; Cao, Yiyuan; Liao, Meiyan; Lu, Zhiyan

    2017-07-01

    This study aimed at investigating the capability of sagittal-lung computed tomography (CT) measurements in differentiating chronic obstructive pulmonary disease (COPD) and asthma-COPD overlap syndrome (ACOS). Clinical and high-resolution CT of 229 patients including 123 pure COPD patients and 106 ACOS patients were included. Sagittal-lung CT measurements in terms of bilateral lung height (LH), anterior-posterior lung diameter (APLD), diaphragm height (DH), and anterior sterno-diaphragmatic angle (ASDA), as well as inter-pulmonary septum length (IPSL) on axial images were measured both before and after bronchodilator (BD) administration. Comparisons of clinical characteristics and CT measurements between patient groups were performed. All pre-BD quantitative sagittal features measuring diaphragm flattening and hyperinflation were not significantly different between patients with COPD and patients with ACOS (P values all >0.05). Following BD administration, the ACOS patients exhibited lower left LH, bilateral APLD, and bilateral ASDA, but higher right DH, compared to pure COPD patients (P values all <0.05). Right LH, left DH and IPSL were not significantly different between patient groups. Besides, variations of all sagittal-lung CT measurements were significantly larger in patients with ACOS than in patients with pure COPD (P values all <0.001) and showed high performance in differentiating these two kinds of patient, with diagnostic sensitivities ranging from 76.4 to 97.2%, specificities ranging from 86.2 to 100.0%, and accuracies ranging from 80.9 to 90.7%. Sagittal-lung CT measurements allow for differentiating patients with ACOS from those with pure COPD. The ACOS patients had larger post-BD variations of sagittal-lung CT measurements than patients with pure COPD.

  9. The evaluation of lumbar paraspinal muscle quantity and quality using the Goutallier classification and lumbar indentation value.

    PubMed

    Tamai, Koji; Chen, Jessica; Stone, Michael; Arakelyan, Anush; Paholpak, Permsak; Nakamura, Hiroaki; Buser, Zorica; Wang, Jeffrey C

    2018-05-01

    The cross-sectional area and fat infiltration are accepted as standard parameters for quantitative and qualitative evaluation of muscle degeneration. However, they are time-consuming, which prevents them from being used in a clinical setting. The aim of this study was to analyze the relationship between lumbar muscle degeneration and spinal degenerative disorders, using lumbar indentation value (LIV) as quantitative and Goutallier classification as qualitative measures. This is a retrospective analysis of kinematic magnetic resonance images (kMRI). Two-hundred and thirty patients with kMRIs taken in weight-bearing positions were selected randomly. The LIV and Goutallier classification were evaluated at L4-5. The correlation of these two parameters with patients' age, gender, lumbar lordosis (LL), range of motion, disc degeneration, disc height, and Modic change were analyzed. There was no significant trend of LIV among the different grades of Goutallier classification (p = 0.943). There was a significant increase in age with higher grades of Goutallier classification (p < 0.001). In contrast, there was no correlation between LIV and age (p = 0.799). The Goutallier classification positively correlated with LL (r = 0.377) and severe disc degeneration (r = 0.249). The LIV positively correlated with LL (r = 0.476) and degenerative spondylolisthesis (r = 0.184). Multinomial logistic regression analysis showed that age (p = 0.026), gender (p = 0.003), and LIV (p < 0.001) were significant predictors for patients with low LL (< 10°). Lumbar muscle quantity and quality showed specific correlation with age and spine disorders. Additionally, LL can be predicted by the muscle quantity, but not the quality. These time-saving evaluation tools potentially accelerate the study of lumbar muscles. These slides can be retrieved under Electronic Supplementary Material.

  10. Quadratus lumborum asymmetry and lumbar spine injury in cricket fast bowlers.

    PubMed

    Kountouris, Alex; Portus, Marc; Cook, Jill

    2012-09-01

    Previous studies have demonstrated quadratus lumborum asymmetry in cricket fast bowlers, but there has been conflicting evidence regarding the relationship to lumbar spine injury, particularly vertebral bone stress injuries. This study investigated the relationship between quadratus lumborum asymmetry and lumbar spine injury in adolescent cricket fast bowlers. The study was a prospective cohort design. Magnetic resonance imaging of 38 adolescent cricket fast bowlers was completed prior to a cricket season, and the cross sectional area of the quadratus lumborum muscle was measured at each lumbar spinal level. The bowlers were followed through the cricket season and those that reported lumbar spine injuries were investigated and classified as either having a soft tissue injury or a bone stress injury. The pre-season cross sectional area of quadratus lumborum was associated with injury status at the conclusion of the cricket season. Twenty-one percent of the cohort developed lumbar bone stress injuries during the cricket season. There was no significant relationship between lumbar spine injury and quadratus lumborum cross sectional area. A high incidence of lumbar bone stress injuries was demonstrated in adolescent fast bowlers. Unlike previous research that demonstrated a link between lumbar spine bone stress injuries and quadratus lumborum cross-sectional area, no such relationship was found. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  11. Changes of lumbar posture and tissue loading during static trunk bending.

    PubMed

    Alessa, Faisal; Ning, Xiaopeng

    2018-02-01

    Static trunk bending is an occupational risk factor for lower back pain (LBP). When assessing relative short duration trunk bending tasks, existing studies mostly assumed unchanged spine biomechanical responses during task performance. The purpose of the current study was to assess the biomechanical changes of lumbar spine during the performance of relatively short duration, sustained trunk bending tasks. Fifteen participants performed 40-s static trunk bending tasks in two different trunk angles (30° or 60°) with two different hand load levels (0 or 6.8 kg). Results of the current study revealed significantly increased lumbar flexion and lumbar passive moment during the 40 s of trunk bending. Significantly reduced lumbar and abdominal muscle activities were also observed in most conditions. These findings suggest that, during the performance of short duration, static trunk bending tasks, a shift of loading from lumbar active tissues to passive tissues occurs naturally. This mechanism is beneficial in reducing the accumulation of lumbar muscle fatigue; however, lumbar passive tissue creep could be introduced due to prolonged or repetitive exposure. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Validation of spinal motion with the spine reposition sense device

    PubMed Central

    Petersen, Cheryl M; Rundquist, Peter J

    2009-01-01

    Background A sagittal plane spine reposition sense device (SRSD) has been developed. Two questions were addressed with this study concerning the new SRSD: 1) whether spine movement was occurring with the methodology, and 2) where movement was taking place. Methods Sixty-five subjects performed seven trials of repositioning to a two-thirds full flexion position in sitting with X and Y displacement measurements taken at the T4 and L3 levels. The thoracolumbar angle between the T4 and the L3 level was computed and compared between the positions tested. A two (vertebral level of thoracic and lumbar) by seven (trials) mixed model repeated measures ANOVA indicated whether significant differences were present between the thoracic (T4) and lumbar (L3) angular measurements. Results Calculated thoracolumbar angles between T4 and L3 were significantly different for all positions tested indicating spinal movement was occurring with testing. No interactions were found between the seven trials and the two vertebral levels. No significant findings were found between the seven trials but significant differences were found between the two vertebral levels. Conclusion This study indicated spine motion was taking place with the SRSD methodology and movement was found specific to the lumbar spine. These findings support utilizing the SRSD to evaluate changes in spine reposition sense during future intervention studies dealing with low back pain. PMID:19386126

  13. The transverse ligament as a landmark for tibial sagittal insertions of the anterior cruciate ligament: a cadaveric study.

    PubMed

    Kongcharoensombat, Wirat; Ochi, Mitsuo; Abouheif, Mohamed; Adachi, Nobuo; Ohkawa, Shingo; Kamei, Goki; Okuhara, Atushi; Shibuya, Hoyatoshi; Niimoto, Takuya; Nakasa, Tomoyuki; Nakamae, Atsuo; Deie, Masataka

    2011-10-01

    The purpose of this study was to determine the relation between the position of the transverse ligament, the anterior edge of the anterior cruciate ligament (ACL) tibial footprint, and the center of the ACL tibial insertion. We used arthroscopy for localization of the anatomic landmarks, followed by insertions of guide pins under direct visualization, and then the position of these guide pins was checked on plain lateral radiographs. The transverse ligament and the anterior aspect of the ACL tibial footprint were identified by arthroscopy in 20 unpaired cadaveric knees (10 left and 10 right). Guide pins were inserted with tibial ACL adapter drill guides under direct observation at the transverse ligament, the anterior aspect of the tibial footprint, and the center of tibial insertion of the ACL. Then, plain lateral radiographs of specimens were taken. The Amis and Jakob line was used to define the attachment of the ACL tibial insertion and the transverse ligament. A sagittal percentage of the location of the insertion point was determined and calculated from the anterior margin of the tibia in the anteroposterior direction. The transverse ligament averaged 21.20% ± 4.1%, the anterior edge of the ACL tibial insertion averaged 21.60% ± 4.0%, and the center of the ACL tibial insertion averaged 40.30% ± 4.8%. There were similar percent variations between the transverse ligament and the anterior edge of the ACL tibial insertion, with no significant difference between them (P = .38). Intraobserver and interobserver reliability was high, with small standard errors of measurement. This study shows that the transverse ligament coincides with the anterior edge of the ACL tibial footprint in the sagittal plane. The transverse ligament can be considered as a new landmark for tibial tunnel positioning during anatomic ACL reconstruction. Copyright © 2011 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  14. Comparison of ultrasound imaging in transverse median and parasagittal oblique planes for thoracic epidurals: A pilot study.

    PubMed

    Khemka, Rakhi; Rastogi, Sonal; Desai, Neha; Chakraborty, Arunangshu; Sinha, Subir

    2016-06-01

    The use of ultrasound (US) scanning to assess the depth of epidural space to prevent neurological complications is established in current practice. In this study, we hypothesised that pre-puncture US scanning for estimating the depth of epidural space for thoracic epidurals is comparable between transverse median (TM) and paramedian sagittal oblique (PSO) planes. We performed pre-puncture US scanning in 32 patients, posted for open abdominal surgeries. The imaging was done to detect the depth of epidural space from skin (ultrasound depth [UD]) and needle insertion point, in parasagittal oblique plane in PSO group and transverse median plane in TM group. Subsequently, epidural space was localised through the predetermined insertion point by 'loss of resistance' technique and needle depth (ND) to the epidural space was marked. Correlation between the UD and actual ND was calculated and concordance correlation coefficient (CCC) was used to determine the degree of agreement between UD and ND in both the planes. The primary outcome, i.e., the comparison between UD and ND, done using Pearson correlation coefficient, was 0.99 in both PSO and TM groups, and the CCC was 0.93 (95% confidence interval [95% CI]: 0.81-0.97) and 0.90 (95% CI: 0.74-0.96) in PSO and TM groups respectively, which shows a strong positive association between UD and ND in both groups. The use of pre-puncture US scanning in both PSO and TM planes for estimating the depth of epidural space at the level of mid- and lower-thoracic spine is comparable.

  15. Riding position and lumbar spine angle in recreational cyclists: A pilot study

    PubMed Central

    SCHULZ, SAMANTHA J.; GORDON, SUSAN J.

    2010-01-01

    This pilot study investigated the reliability of an inclinometer to assess lumbar spine angle in three different cycling positions, and explored the relationship between lumbar spine angle and riding position, anthropometry, bike measures and low back pain (LBP). Cyclists were recruited from two cycle clubs. Anthropometric variables and bike setup were measured before participants’ bikes were secured in a wind trainer. Cyclists then adopted three positions for riding, upright on the handlebars, on the brake levers and on the drops, according to a random allocation. The angle of the lumbar spine was measured; using an inclinometer, at zero minutes and after cyclists had completed 10 minutes of cycling. Intra-measurer reliability for inclinometer use to measure lumbar spine angle in each position was excellent (ICC=0.97). The angle of the lumbar spine changed significantly over 10 minutes in the brake position (p=0.004). Lumbar spine angle at 10 minutes was significantly different between the brake and drop positions (p=0.018, p<0.05), and between upright and drop positions (p=0.012, p<0.05). Lumbar spine angle was not related to anthropometric measures. The change in lumbar spine angle varied from one degree of extension to 12 degrees of flexion, with increased flexion occurring in 95% of trials. An inclinometer has excellent intra-measurer reliability to measure lumbar spine angle in cycling positions. Future research with a sample of 72 or more participants is required to determine if there is a significant relationship between LBP and lumbar spine angle in different cycling positions. PMID:27182345

  16. Thoracic and lumbar spine responses in high-speed rear sled tests.

    PubMed

    Viano, David C; Parenteau, Chantal S; Burnett, Roger

    2018-07-04

    This study analyzed thoracic and lumbar spine responses with in-position and out-of-position (OOP) seated dummies in 40.2 km/h (25 mph) rear sled tests with conventional and all-belts-to-seat (ABTS) seats. Occupant kinematics and spinal responses were determined with modern (≥2000 MY), older (<2000 MY), and ABTS seats. The seats were fixed in a sled buck subjected to a 40.2 km/h (25 mph) rear sled test. The pulse was a 15 g double-peak acceleration with 150 ms duration. The 50th percentile Hybrid III was lap-shoulder belted in the FMVSS 208 design position or OOP, including leaning forward and leaning inboard and forward. There were 26 in-position tests with 11 <2000 MY, 8 ≥2000 MY, and 7 ABTS and 14 OOP tests with 6 conventional and 8 ABTS seats. The dummy was fully instrumented. This study addressed the thoracic and lumbar spine responses. Injury assessment reference values are not approved for the thoracic and lumbar spine. Conservative thresholds exist. The peak responses were normalized by a threshold to compare responses. High-speed video documented occupant kinematics. The extension moments were higher in the thoracic than lumbar spine in the in-position tests. For <2000 MY seats, the thoracic extension moment was 76.8 ± 14.6% of threshold and the lumbar extension moment was 50.5 ± 17.9%. For the ≥2000 MY seats, the thoracic extension moment was 54.2 ± 26.6% of threshold and the lumbar extension moment was 49.8 ± 27.7%. ABTS seats provided similar thoracic and lumbar responses. Modern seat designs lowered thoracic and lumbar responses. For example, the 1996 Taurus had -1,696 N anterior lumbar shear force and -205.2 Nm extension moment. There was -1,184 N lumbar compression force and 1,512 N tension. In contrast, the 2015 F-150 had -500 N shear force and -49.7 Nm extension moment. There was -839 N lumbar compression force and 535 N tension. On average, the 2015 F-150 had 40% lower lumbar spine responses than the 1996 Taurus. The OOP tests had

  17. Femoral head retroposition as a potential compensatory mechanism in patients with a severe mismatch between pelvic incidence and lumbar lordosis.

    PubMed

    Cheng, Xiaofei; Zhang, Kai; Sun, Xiaojiang; Zhao, Changqing; Li, Hua; Zhao, Jie

    2017-12-01

    Severe mismatch between pelvic incidence (PI) and lumbar lordosis (LL) leads to extra anterior displacement of the gravity line. The objective of this study is to investigate whether femoral head retroposition is a separate compensatory mechanism responsible for the extra anterior displacement. Based on the values of PI and LL, 94 patients were divided into the PI-LL match group (PI-LL ≤ 0°), the mild PI-LL mismatch group (20°> PI-LL >0°), and the severe PI-LL mismatch group (PI-LL ≥ 20°). A series of parameters including PI, LL, PI-LL, thoracic kyphosis (TK), pelvic tilt (PT), sacral slope (SS), knee flexion angle (KFA), tibial obliquity angle (TOA), sagittal vertical axis (SVA), S1 overhang, femoral head shift (FHS), and pelvic shift (PS) were measured and compared among the three groups. The severe PI-LL mismatch group exhibited significantly greater PI, PI-LL, PT, KFA, SVA, PS, and FHS, and less LL and TK, compared with the control and mild PI-LL mismatch group. The mild PI-LL mismatch group had significantly greater PI-LL, PT, KFA, TOA, and S1 overhang, and less LL and SS than the control group. SS, TOA, and S1 overhang in the severe PI-LL mismatch group differed significantly from that in the control group, but did not differ significantly from that in the mild PI-LL mismatch group. Femoral head retroposition is an entirely separate compensatory mechanism and, in this study, participated in the compensation for the anterior displacement of the gravity line induced by extra-sagittal spinal malalignment in patients with severe PI-LL mismatch.

  18. An empirical study of preferred settings for lumbar support on adjustable office chairs.

    PubMed

    Coleman, N; Hull, B P; Ellitt, G

    1998-04-01

    The preferred settings for lumbar support height and depth of 43 male and 80 female office workers were investigated. All subjects were equipped with identical modern office chairs with foam-padded backrests adjustable in both height and depth. Measurements of lumbar support settings were recorded in the workplace, outside of working hours, on four different occasions, over a 5 week period. Preferred lumbar support height and depth settings extended to both extremes of the adjustment range. The mean preferred height setting was 190 mm above the compressed seat surface. The mean depth setting (horizontal distance from front of seat to lumbar support point) was 387 mm. A regression model examining the effects of standing height, Body Mass Index (BMI) and gender on mean preferred lumbar support height showed a significant relationship between preferred height and BMI. Higher lumbar supports were chosen by subjects with greater BMIs. Gender and standing height were not associated with preferred lumbar support height settings. Preferred lumbar support depth was not significantly associated with standing height, gender or BMI. Older subjects were more likely to readjust their lumbar support from a disrupted position than younger subjects, indicating that older users are more sensitive to the position of their lumbar support. Subjects who reported recent back pain or discomfort that they believed to be associated with their chair or office work were found to set their lumbar support significantly closer to the front of the seat, probably to ensure greater support for their back. Based on the evidence that a high proportion of users do make adjustments to the height and depth of their lumbar support, and the finding that different groups of users, with different physical characteristics, adjust the position of their lumbar support in distinct and predictable ways, the researchers conclude that office chairs with traditional padded fixed-height lumbar supports are unlikely

  19. Contribution of hamstring fatigue to quadriceps inhibition following lumbar extension exercise.

    PubMed

    Hart, Joseph M; Kerrigan, D Casey; Fritz, Julie M; Saliba, Ethan N; Gansneder, Bruce; Ingersoll, Christopher D

    2006-01-01

    The purpose of this study was to determine the contribution of hamstrings and quadriceps fatigue to quadriceps inhibition following lumbar extension exercise. Regression models were calculated consisting of the outcome variable: quadriceps inhibition and predictor variables: change in EMG median frequency in the quadriceps and hamstrings during lumbar fatiguing exercise. Twenty-five subjects with a history of low back pain were matched by gender, height and mass to 25 healthy controls. Subjects performed two sets of fatiguing isometric lumbar extension exercise until mild (set 1) and moderate (set 2) fatigue of the lumbar paraspinals. Quadriceps and hamstring EMG median frequency were measured while subjects performed fatiguing exercise. A burst of electrical stimuli was superimposed while subjects performed an isometric maximal quadriceps contraction to estimate quadriceps inhibition after each exercise set. Results indicate the change in hamstring median frequency explained variance in quadriceps inhibition following the exercise sets in the history of low back pain group only. Change in quadriceps median frequency explained variance in quadriceps inhibition following the first exercise set in the control group only. In conclusion, persons with a history of low back pain whose quadriceps become inhibited following lumbar paraspinal exercise may be adapting to the fatigue by using their hamstring muscles more than controls. Key PointsA neuromuscular relationship between the lumbar paraspinals and quadriceps while performing lumbar extension exercise may be influenced by hamstring muscle fatigue.QI following lumbar extension exercise in persons with a history of LBP group may involve significant contribution from the hamstring muscle group.More hamstring muscle contribution may be a necessary adaptation in the history of LBP group due to weaker and more fatigable lumbar extensors.

  20. Ultrasound-guided lumbar puncture in pediatric patients: technical success and safety.

    PubMed

    Pierce, David B; Shivaram, Giri; Koo, Kevin S H; Shaw, Dennis W W; Meyer, Kirby F; Monroe, Eric J

    2018-06-01

    Disadvantages of fluoroscopically guided lumbar puncture include delivery of ionizing radiation and limited resolution of incompletely ossified posterior elements. Ultrasound (US) allows visualization of critical soft tissues and the cerebrospinal fluid (CSF) space without ionizing radiation. To determine the technical success and safety of US-guided lumbar puncture in pediatric patients. A retrospective review identified all patients referred to interventional radiology for lumbar puncture between June 2010 and June 2017. Patients who underwent lumbar puncture with fluoroscopic guidance alone were excluded. For the remaining procedures, technical success and procedural complications were assessed. Two hundred and one image-guided lumbar punctures in 161 patients were included. Eighty patients (43%) had previously failed landmark-based attempts. One hundred ninety-six (97.5%) patients underwent lumbar puncture. Five procedures (2.5%) were not attempted after US assessment, either due to a paucity of CSF or unsafe window for needle placement. Technical success was achieved in 187 (95.4%) of lumbar punctures attempted with US guidance. One hundred seventy-seven (90.3%) were technically successful with US alone (age range: 2 days-15 years, weight range: 1.9-53.1 kg) and an additional 10 (5.1%) were successful with US-guided thecal access and subsequent fluoroscopic confirmation. Three (1.5%) cases were unsuccessful with US guidance but were subsequently successful with fluoroscopic guidance. Of the 80 previously failed landmark-based lumbar punctures, 77 (96.3%) were successful with US guidance alone. There were no reported complications. US guidance is safe and effective for lumbar punctures and has specific advantages over fluoroscopy in pediatric patients.

  1. Flank and Lumbar Hernia Repair.

    PubMed

    Beffa, Lucas R; Margiotta, Alyssa L; Carbonell, Alfredo M

    2018-06-01

    Flank and lumbar hernias are challenging because of their rarity and anatomic location. Several challenges exist when approaching these specific abdominal wall defects, including location, innervation of the lateral abdominal wall musculature, and their proximity to bony landmarks. These hernias are confined by the costal margin, spine, and pelvic brim, which makes closure of the defect, including mesh placement, difficult. This article discusses the anatomy of lumbar and flank hernias, the various etiologies for these hernias, and the procedural steps for open and robotic preperitoneal approaches. The available clinical evidence regarding outcomes for various repair techniques is also reviewed. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Ureter Injury as a Complication of Oblique Lumbar Interbody Fusion.

    PubMed

    Lee, Hyeong-Jin; Kim, Jin-Sung; Ryu, Kyeong-Sik; Park, Choon Keun

    2017-06-01

    Oblique lumbar interbody fusion is a commonly used surgical method of achieving lumbar interbody fusion. There have been some reports about complications of oblique lumbar interbody fusion at the L2-L3 level. However, to our knowledge, there have been no reports about ureter injury during oblique lumbar interbody fusion. We report a case of ureter injury during oblique lumbar interbody fusion to share our experience. A 78-year-old male patient presented with a history of lower back pain and neurogenic intermittent claudication. He was diagnosed with spinal stenosis at L2-L3, L4-L5 level and spondylolisthesis at L4-L5 level. Symptoms were not improved after several months of medical treatments. Then, oblique lumbar interbody fusion was performed at L2-L3, L4-L5 level. During the surgery, anesthesiologist noticed hematuria. A retrourethrogram was performed immediately by urologist, and ureter injury was found. Ureteroureterostomy and double-J catheter insertion were performed. The patient was discharged 2 weeks after surgery without urologic or neurologic complications. At 2 months after surgery, an intravenous pyelogram was performed, which showed an intact ureter. Our study shows that a low threshold of suspicion of ureter injury and careful manipulation of retroperitoneal fat can be helpful to prevent ureter injury during oblique lumbar interbody fusion at the upper level. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Management options of non-syndromic sagittal craniosynostosis.

    PubMed

    Lee, Bryan S; Hwang, Lee S; Doumit, Gaby D; Wooley, Joseph; Papay, Francis A; Luciano, Mark G; Recinos, Violette M

    2017-05-01

    There have been various effective surgical procedures for the treatment of non-syndromic sagittal craniosynostosis, but no definitive guidelines for management have been established. We conducted a study to elucidate the current state of practice and establish a warranted standard of care. An Internet-based study was sent to 180 pediatric neurosurgeons across the country and 102 craniofacial plastic surgeons in fourteen different countries, to collect data for primary indication for surgical management, preference for timing and choice of surgery, and pre-, peri-, and post-operative management options. The overall response rate from both groups was 32% (n=90/284). Skull deformity was the primary indication for surgical treatment in patients without signs of hydrocephalus for both neurosurgeons and craniofacial surgeons (80% and 63%, respectively). Open surgical management was most commonly performed at six months of age by neurosurgeons (46%) and also by craniofacial surgeons (35%). Open surgical approach was favored for patients younger than four months of age by neurosurgeons (50%), but endoscopic approach was favored by craniofacial surgeons (35%). When performing an open surgical intervention, most neurosurgeons preferred pi or reversed pi procedure (27%), whereas total cranial vault remodeling was the most commonly performed procedure by craniofacial surgeons (37%). The data demonstrated a discrepancy in the treatment options for non-syndromic sagittal craniosynostosis. By conducting/comparing a wide survey to collect consolidative data from both groups of pediatric neurosurgeons and craniofacial plastic surgeons, we can attempt to facilitate the establishment of standard of care. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Reliability analysis for radiographic measures of lumbar lordosis in adult scoliosis: a case–control study comparing 6 methods

    PubMed Central

    Hong, Jae Young; Modi, Hitesh N.; Hur, Chang Yong; Song, Hae Ryong; Park, Jong Hoon

    2010-01-01

    Several methods are used to measure lumbar lordosis. In adult scoliosis patients, the measurement is difficult due to degenerative changes in the vertebral endplate as well as the coronal and sagittal deformity. We did the observational study with three examiners to determine the reliability of six methods for measuring the global lumbar lordosis in adult scoliosis patients. Ninety lateral lumbar radiographs were collected for the study. The radiographs were divided into normal (Cobb < 10°), low-grade (Cobb 10°–19°), high-grade (Cobb  ≥ 20°) group to determine the reliability of Cobb L1–S1, Cobb L1–L5, centroid, posterior tangent L1–S1, posterior tangent L1–L5 and TRALL method in adult scoliosis. The 90 lateral radiographs were measured twice by each of the three examiners using the six measurement methods. The data was analyzed to determine the inter- and intra-observer reliability. In general, for the six radiographic methods, the inter- and intra-class correlation coefficients (ICCs) were all ≥0.82. A comparison of the ICCs and 95% CI for the inter- and intra-observer reliability between the groups with varying degrees of scoliosis showed that, the reliability of the lordosis measurement decreased with increasing severity of scoliosis. In Cobb L1–S1, centroid and posterior tangent L1–S1 methods, the ICCs were relatively lower in the high-grade scoliosis group (≥0.60). And, the mean absolute difference (MAD) in these methods was high in the high-grade scoliosis group (≤7.17°). However, in the Cobb L1–L5 and posterior tangent L1–L5 method, the ICCs were ≥0.86 in all groups. And, in the TRALL method, the ICCs were ≥0.76 in all groups. In addition, in the Cobb L1–L5 and posterior tangent L1–L5 method, the MAD was ≤3.63°. And, in the TRALL method, the MAD was ≤3.84° in all groups. We concluded that the Cobb L1–L5 and the posterior tangent L1–L5 methods are reliable methods for measuring the global lumbar lordosis

  5. The hybrid assisted limb (HAL) for Care Support, a motion assisting robot providing exoskeletal lumbar support, can potentially reduce lumbar load in repetitive snow-shoveling movements.

    PubMed

    Miura, Kousei; Kadone, Hideki; Koda, Masao; Abe, Tetsuya; Endo, Hirooki; Murakami, Hideki; Doita, Minoru; Kumagai, Hiroshi; Nagashima, Katsuya; Fujii, Kengo; Noguchi, Hiroshi; Funayama, Toru; Kawamoto, Hiroaki; Sankai, Yoshiyuki; Yamazaki, Masashi

    2018-03-01

    An excessive lumbar load with snow-shoveling is a serious problem in snowfall areas. Various exoskeletal robots have been developed to reduce lumbar load in lifting work. However, few studies have reported the attempt of snow-shoveling work using exoskeletal robots. The purpose of the present study was to test the hypothesis that the HAL for Care Support robot would reduce lumbar load in repetitive snow-shoveling movements. Nine healthy male volunteers performed repetitive snow-shoveling movements outdoors in a snowfall area for as long as possible until they were fatigued. The snow-shoveling trial was performed under two conditions: with and without HAL for Care Support. Outcome measures were defined as the lumbar load assessed by the VAS of lumbar fatigue after the snow-shoveling trial and the snow-shoveling performance, including the number of scoops, and snow shoveling time and distance. The mean of VAS of lumbar fatigue, the number of scoops, and snow-shoveling time and distance without HAL for Care Support were 75.4 mm, 50.3, 145 s, and 9.6 m, while with HAL for Care Support were 39.8 mm, 144, 366 s, and 35.4 m. The reduction of lumbar fatigue and improvement of snow-shoveling performance using HAL for Care Support were statistically significant. There was no adverse event during snow-shoveling with HAL for Care Support. In conclusion, the HAL for Care Support can reduce lumbar load in repetitive snow-shoveling movements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Navigation and Image Injection for Control of Bone Removal and Osteotomy Planes in Spine Surgery.

    PubMed

    Kosterhon, Michael; Gutenberg, Angelika; Kantelhardt, Sven Rainer; Archavlis, Elefterios; Giese, Alf

    2017-04-01

    In contrast to cranial interventions, neuronavigation in spinal surgery is used in few applications, not tapping into its full technological potential. We have developed a method to preoperatively create virtual resection planes and volumes for spinal osteotomies and export 3-D operation plans to a navigation system controlling intraoperative visualization using a surgical microscope's head-up display. The method was developed using a Sawbone ® model of the lumbar spine, demonstrating feasibility with high precision. Computer tomographic and magnetic resonance image data were imported into Amira ® , a 3-D visualization software. Resection planes were positioned, and resection volumes representing intraoperative bone removal were defined. Fused to the original Digital Imaging and Communications in Medicine data, the osteotomy planes were exported to the cranial version of a Brainlab ® navigation system. A navigated surgical microscope with video connection to the navigation system allowed intraoperative image injection to visualize the preplanned resection planes. The workflow was applied to a patient presenting with a congenital hemivertebra of the thoracolumbar spine. Dorsal instrumentation with pedicle screws and rods was followed by resection of the deformed vertebra guided by the in-view image injection of the preplanned resection planes into the optical path of a surgical microscope. Postoperatively, the patient showed no neurological deficits, and the spine was found to be restored in near physiological posture. The intraoperative visualization of resection planes in a microscope's head-up display was found to assist the surgeon during the resection of a complex-shaped bone wedge and may help to further increase accuracy and patient safety. Copyright © 2017 by the Congress of Neurological Surgeons

  7. Does change in isolated lumbar extensor muscle function correlate with good clinical outcome? A secondary analysis of data on change in isolated lumbar extension strength, pain, and disability in chronic low back pain.

    PubMed

    Steele, James; Fisher, James; Perrin, Craig; Conway, Rebecca; Bruce-Low, Stewart; Smith, Dave

    2018-01-12

    Secondary analysis of data from studies utilising isolated lumbar extension exercise interventions for correlations among changes in isolated lumbar extension strength, pain, and disability. Studies reporting isolated lumbar extension strength changes were examined for inclusion criteria including: (1) participants with chronic low back pain, (2) intervention ≥ four weeks including isolated lumbar extension exercise, (3) outcome measures including isolated lumbar extension strength, pain (Visual Analogue Scale), and disability (Oswestry Disability Index). Six studies encompassing 281 participants were included. Correlations among change in isolated lumbar extension strength, pain, and disability. Participants were grouped as "met" or "not met" based on minimal clinically important changes and between groups comparisons conducted. Isolated lumbar extension strength and Visual Analogue Scale pooled analysis showed significant weak to moderate correlations (r = -0.391 to -0.539, all p < 0.001). Isolated lumbar extension strength and Oswestry Disability Index pooled analysis showed significant weak correlations (r = -0.349 to -0.470, all p < 0.001). For pain and disability, isolated lumbar extension strength changes were greater for those "met" compared with those "not met" (p < 0.001-0.008). Improvements in isolated lumbar extension strength may be related to positive and meaningful clinical outcomes. As many other performance outcomes and clinical outcomes are not related, isolated lumbar extension strength change may be a mechanism of action affecting symptom improvement. Implications for Rehabilitation Chronic low back pain is often associated with deconditioning of the lumbar extensor musculature. Isolated lumbar extension exercise has been shown to condition this musculature and also reduce pain and disability. This study shows significant correlations between increases in isolated lumbar extension strength and reductions in pain and

  8. High-Force Versus Low-Force Lumbar Traction in Acute Lumbar Sciatica Due to Disc Herniation: A Preliminary Randomized Trial.

    PubMed

    Isner-Horobeti, Marie-Eve; Dufour, Stéphane Pascal; Schaeffer, Michael; Sauleau, Erik; Vautravers, Philippe; Lecocq, Jehan; Dupeyron, Arnaud

    This study compared the effects of high-force versus low-force lumbar traction in the treatment of acute lumbar sciatica secondary to disc herniation. A randomized double blind trial was performed, and 17 subjects with acute lumbar sciatica secondary to disc herniation were assigned to high-force traction at 50% body weight (BW; LT50, n = 8) or low force traction at 10% BW (LT10, n = 9) for 10 sessions in 2 weeks. Radicular pain (visual analogue scale [VAS]), lumbo-pelvic-hip complex motion (finger-to-toe test), lumbar-spine mobility (Schöber-Macrae test), nerve root compression (straight-leg-raising test), disability (EIFEL score), drug consumption, and overall evaluation of each patient were measured at days 0, 7, 1, 4, and 28. Significant (P < .05) improvements were observed in the LT50 and LT10 groups, respectively, between day 0 and day 14 (end of treatment) for VAS (-44% and -36%), EIFEL score (-43% and -28%) and overall patient evaluation (+3.1 and +2.0 points). At that time, LT50 specifically improved in the finger-to-toe test (-42%), the straight-leg-raising test (+58), and drug consumption (-50%). No significant interaction effect (group-by-time) was revealed, and the effect of traction treatment was independent of the level of medication. During the 2-week follow-up at day 28, only the LT10 group improved (P < .05) in VAS (-52%) and EIFEL scores (-46%). During this period, no interaction effect (group-by-time) was identified, and the observed responses were independent of the level of medication. For this preliminary study, patients with acute lumbar sciatica secondary to disc herniation who received 2 weeks of lumbar traction reported reduced radicular pain and functional impairment and improved well-being regardless of the traction force group to which they were assigned. The effects of the traction treatment were independent of the initial level of medication and appeared to be maintained at the 2-week follow-up. Copyright © 2016. Published by

  9. Intrinsic and Extrinsic Contributions to Seated Balance in the Sagittal and Coronal Planes: Implications for Trunk Control After Spinal Cord Injury.

    PubMed

    Audu, Musa L; Triolo, Ronald J

    2015-08-01

    The contributions of intrinsic (passive) and extrinsic (active) properties of the human trunk, in terms of the simultaneous actions about the hip and spinal joints, to the control of sagittal and coronal seated balance were examined. Able-bodied (ABD) and spinal-cord-injured (SCI) volunteers sat on a moving platform which underwent small amplitude perturbations in the anterior-posterior (AP) and medial-lateral (ML) directions while changes to trunk orientation were measured. A linear parametric model that related platform movement to trunk angle was fit to the experimental data by identifying model parameters in the time domain. The results showed that spinal cord injury leads to a systematic reduction in the extrinsic characteristics, while most of the intrinsic characteristics were rarely affected. In both SCI and ABD individuals, passive characteristics alone were not enough to maintain seated balance. Passive stiffness in the ML direction was almost 3 times that in the AP direction, making more extrinsic mechanisms necessary for balance in the latter direction. Proportional and derivative terms of the extrinsic model made the largest contribution to the overall output from the active system, implying that a simple proportional plus derivative (PD) controller structure will suffice for restoring seated balance after spinal cord injury.

  10. [Precision of navigation-assisted surgery of the thoracic and lumbar spine].

    PubMed

    Arand, M; Schempf, M; Hebold, D; Teller, S; Kinzl, L; Gebhard, F

    2003-11-01

    The goal of these studies was to evaluate the accuracy of in vivo and in vitro application of CT- and C-arm-based navigation at the thoracic and lumbar spine. With CT based navigation, 82 pedicle screws were consecutively inserted, 53 into the thoracic and 29 into the lumbar spine. Seven (13%) perforations were detected at the thoracic spine and two (7%) at the lumbar spine. Additionally, minor perforations below the thread depth were seen in six (11%) thoracic and in two (7%) lumbar instrumentation. With C-arm-based navigation, 74 screws were consecutively placed into 38 thoracic and 36 lumbar pedicles. Perforations were noted in ten (26%) thoracic and four (11%) lumbar implants. Minor perforations were observed in another nine (24%) thoracic and ten (28%) lumbar pedicles. The observer-independent and standardized in vitro study based on a transpedicular 3.2-mm drill hole aiming a 4-mm steel ball in a plastic bone model showed pedicle perforations of the drill canal only in thoracic vertebrae, 1 of 15 in CT-based and 3 of 15 in C-arm navigation. The quantitative calculation of the smallest distance between the central line through the drill canal and the center of the steel ball resulted in 1.4 mm (0.5-4.8 mm) for the CT-based navigation at the thoracic spine and in 1.8 mm (0.5-3 mm) at the lumbar spine. For the C-arm based navigation the distance was 2.6 mm (0.9-4.8 mm) for the thoracic spine and 2 mm (1.2-3 mm) for the lumbar spine. In our opinion, the clinical results of the comparative accuracy of CT- and C-arm-based navigation in the present study showed moderate advantages of the CT-based technique in the thoracic spine, whereas CT- and C-arm based navigation had comparable perforation rates at the lumbar pedicle. The results of the experimental study correlated with the clinical data.

  11. Efficacy and safety of posteromedial translation for correction of thoracic curves in adolescent idiopathic scoliosis using a new connection to the spine: the Universal Clamp

    PubMed Central

    Mazda, Keyvan; Even, Julien; Lefevre, Yan; Fitoussi, Franck; Penneçot, Georges-François

    2008-01-01

    Correction of adolescent idiopathic scoliosis (AIS) has been reported with various systems. All-screw constructs are currently the most popular, but they have been associated with a significant decrease in thoracic kyphosis, with a potential risk of junctional kyphosis, not observed with hybrid constructs in the literature. In addition, it is important to weigh potential advantages of pedicle screw fixation against risks specific to its use. Because hybrid constructs are associated with a lower risk of complications and better sagittal correction than all-screw constructs, at present we use lumbar pedicle screws combined with a new sublaminar connection to the spine (Universal Clamps) at thoracic levels. The purpose of this study was to determine the efficacy and safety of the Universal Clamp (UC) posteromedial translation technique for correction of AIS. Seventy-five consecutive patients underwent posterior spinal fusion and hybrid instrumentation for progressive AIS. Correction was performed at the thoracic level using posteromedial translation. At the lumbar level, correction was performed using in situ contouring and compression/distractions maneuvers. A minimum 2-year follow-up was required. Medical data and radiographs were prospectively analyzed and compared using a paired t test. The average age at surgery was 15 years and 4 months (±19 months). The average number of levels fused was 12 ± 1.6. The mean follow-up was 30 ± 5 months. The average preoperative Cobb angle of the major curve was 60° ± 20°. The immediate postoperative major curve correction averaged 66 ± 13%. The average loss of correction of the major curve between the early postoperative assessment and latest follow-up was 3.5° ± 1.4°. The mean Cincinnati correction index was 1.7 ± 0.8 postoperatively, and 1.57 ± 1 at last follow up. The mean rotation of the apical vertebra was corrected from 23.3° ± 9° preoperatively to 7.3° ± 5° at last follow up (69

  12. Supra-acetabular line is better than supra-iliac line for coronal balance referencing-a study of perioperative whole spine X-rays in degenerative lumbar scoliosis and ankylosing spondylitis patients.

    PubMed

    Hey, Hwee Weng Dennis; Kim, Cheung-Kue; Lee, Won-Gyu; Juh, Hyung-Suk; Kim, Ki-Tack

    2017-12-01

    The aim of spinal deformity correction is to restore the spine's functional alignment by balancing it in both the sagittal and coronal planes. Regardless of posture, the ideal coronal profile is straight, and therefore readily assessable. This study compares two radiological methods to determine which better predicts postoperative standing coronal balance. We conducted a single-center, radiographic comparative study between 2011 and 2015. A total of 199 patients with a mean age of 55.1 years were studied. Ninety patients with degenerative lumbar scoliosis (DLS) and 109 ankylosing spondylitis (AS) were treated with posterior surgery during this period. Baseline clinical and radiographic parameters (sagittal and coronal) were recorded. Comparison was performed between the new supra-acetabular line (central sacral vertical line [CSVL1]) and conventional supra-iliac line (CSVL2) perpendicular methods of coronal balance assessment. These methods were also compared with the gold standard standing C7 plumb line. Each patient underwent standardized operative procedures and had perioperative spine X-rays obtained for assessment of spinal balance. Adjusted multivariate analysis was used to determine predictors of coronal balance. Significant differences in baseline characteristics (age, gender, and radiographic parameters) were found between patients with DLS and AS. CSVL1, CSVL2, and C7 plumb line differed in all the perioperative measurements. These three radiological methods showed a mean right coronal imbalance for both diagnoses in all pre-, intra-, and postoperative radiographs. The magnitude of imbalance was the greatest for CSVL2 followed by CSVL1 and subsequently the C7 plumb line. A larger discrepancy between CSVL and C7 plumb line measurements intraoperatively than those postoperatively suggests a postural effect on these parameters, which is greater for CSVL2. Multivariate analysis identified that in DLS, the preoperative C7 plumb line was predictive of its

  13. Fracture of fusion mass after hardware removal in patients with high sagittal imbalance.

    PubMed

    Sedney, Cara L; Daffner, Scott D; Stefanko, Jared J; Abdelfattah, Hesham; Emery, Sanford E; France, John C

    2016-04-01

    As spinal fusions become more common and more complex, so do the sequelae of these procedures, some of which remain poorly understood. The authors report on a series of patients who underwent removal of hardware after CT-proven solid fusion, confirmed by intraoperative findings. These patients later developed a spontaneous fracture of the fusion mass that was not associated with trauma. A series of such patients has not previously been described in the literature. An unfunded, retrospective review of the surgical logs of 3 fellowship-trained spine surgeons yielded 7 patients who suffered a fracture of a fusion mass after hardware removal. Adult patients from the West Virginia University Department of Orthopaedics who underwent hardware removal in the setting of adjacent-segment disease (ASD), and subsequently experienced fracture of the fusion mass through the uninstrumented segment, were studied. The medical records and radiological studies of these patients were examined for patient demographics and comorbidities, initial indication for surgery, total number of surgeries, timeline of fracture occurrence, risk factors for fracture, as well as sagittal imbalance. All 7 patients underwent hardware removal in conjunction with an extension of fusion for ASD. All had CT-proven solid fusion of their previously fused segments, which was confirmed intraoperatively. All patients had previously undergone multiple operations for a variety of indications, 4 patients were smokers, and 3 patients had osteoporosis. Spontaneous fracture of the fusion mass occurred in all patients and was not due to trauma. These fractures occurred 4 months to 4 years after hardware removal. All patients had significant sagittal imbalance of 13-15 cm. The fracture level was L-5 in 6 of the 7 patients, which was the first uninstrumented level caudal to the newly placed hardware in all 6 of these patients. Six patients underwent surgery due to this fracture. The authors present a case series of 7

  14. Differences between clinical "snap-shot" and "real-life" assessments of lumbar spine alignment and motion - What is the "real" lumbar lordosis of a human being?

    PubMed

    Dreischarf, Marcel; Pries, Esther; Bashkuev, Maxim; Putzier, Michael; Schmidt, Hendrik

    2016-03-21

    The individual lumbar lordosis and lumbar motion have been identified to play an important role in pathogenesis of low back pain and are essential references for preoperative planning and postoperative evaluation. The clinical "gold-standard" for measuring lumbar lordosis and its motion are radiological "snap-shots" taken while standing and during upper-body flexion and extension. The extent to which these clinically assessed values characterise lumbar alignment and its motion in daily life merits discussion. A non-invasive measurement-system was employed to measure lumbar lordosis and lumbar motion in 208 volunteers (age: 20-74yrs; ♀/♂: 115/93). For an initial short-term measurement, comparable with the clinical "snap-shot", lumbar lordosis and its motion were assessed while standing and during flexion and extension. Subsequently, volunteers were released to their daily lives while wearing the device, and measurements were performed during the following 24h. The average lumbar lordosis during 24h (8.0°) differed significantly from the standardised measurement while standing (33.3°). Ranges of motion were significantly different throughout the day compared to standing measurements. The influence of the factors age and gender on lordosis and its motion resulted in conflicting results between long- and short-term-measurements. In conclusion, results of short-term examinations differ considerably from the average values during real-life. These findings might be important for surgical planning and increase the awareness of the biomechanical challenges that spinal structures and implants face in real-life. Furthermore, long-term assessments of spinal alignment and motion during daily life can provide valid data on spinal function and can reveal the importance of influential factors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Superior Recess Access of the Lumbar Facet Joint.

    PubMed

    Demir-Deviren, Sibel; Singh, Sukhminder; Hanelin, Joshua

    2017-04-01

    Descriptive approach to accessing the lumbar facet joint by superior recess. This study is aimed to describe an approach to accessing the lumbar facet joint through targeting the superior recess during lumbar facet joint injections. Lumbar facet joint injections are routinely performed for both the diagnosis and treatment of chronic low back pain. Previous studies either did not specify which part of the joint to target, or recommended targeting the inferior aspect of the joint to access the inferior recess. One study did mention the superior recess as an alternative to injecting the inferior recess, but none has focused on description of the technique. This is the first time this technique has been described. The records and fluoroscopic images were reviewed for all patients over a period of 9 months (January-September 2012) using the proposed technique. This resulted in a total of 48 patients; 15 men, 29 women, and a total of 117 facet joint intra-articular injections. Among these 48 patients, injections were repeated in total of 4 cases. The average time of injections among 4 repeat cases was 121 days. The success of the procedure was confirmed with an arthrogram demonstrating contrast flowing from the superior recess inferiorly through the joint space. Successful access of the lumbar facet joint through puncture of the superior recess was seen in 114 cases, with 3 unsuccessful attempts to enter facet joints due to osteophytes at involved levels. There were no complications observed during the procedure. We find this approach to be highly successful, safe, and well tolerated by the patient and recommend it as a technique for access of the lumbar facet joint in those patients in whom direct puncture of the inferior recess is difficult.

  16. Lateral interbody fusion combined with open posterior surgery for adult spinal deformity.

    PubMed

    Strom, Russell G; Bae, Junseok; Mizutani, Jun; Valone, Frank; Ames, Christopher P; Deviren, Vedat

    2016-12-01

    OBJECTIVE Lateral interbody fusion (LIF) with percutaneous screw fixation can treat adult spinal deformity (ASD) in the coronal plane, but sagittal correction is limited. The authors combined LIF with open posterior (OP) surgery using facet osteotomies and a rod-cantilever technique to enhance lumbar lordosis (LL). It is unclear how this hybrid strategy compares to OP surgery alone. The goal of this study was to evaluate the combination of LIF and OP surgery (LIF+OP) for ASD. METHODS All thoracolumbar ASD cases from 2009 to 2014 were reviewed. Patients with < 6 months follow-up, prior fusion, severe sagittal imbalance (sagittal vertical axis > 200 mm or pelvic incidence-LL > 40°), and those undergoing anterior lumbar interbody fusion were excluded. Deformity correction, complications, and outcomes were compared between LIF+OP and OP-only surgery patients. RESULTS LIF+OP (n = 32) and OP-only patients (n = 60) had similar baseline features and posterior fusion levels. On average, 3.8 LIFs were performed. Patients who underwent LIF+OP had less blood loss (1129 vs 1833 ml, p = 0.016) and lower durotomy rates (0% vs 23%, p = 0.002). Patients in the LIF+OP group required less ICU care (0.7 vs 2.8 days, p < 0.001) and inpatient rehabilitation (63% vs 87%, p = 0.015). The incidence of new leg pain, numbness, or weakness was similar between groups (28% vs 22%, p = 0.609). All leg symptoms resolved within 6 months, except in 1 OP-only patient. Follow-up duration was similar (28 vs 25 months, p = 0.462). LIF+OP patients had significantly less pseudarthrosis (6% vs 27%, p = 0.026) and greater improvement in visual analog scale back pain (mean decrease 4.0 vs 1.9, p = 0.046) and Oswestry Disability Index (mean decrease 21 vs 12, p = 0.035) scores. Lumbar coronal correction was greater with LIF+OP surgery (mean [± SD] 22° ± 13° vs 14° ± 13°, p = 0.010). LL restoration was 22° ± 13°, intermediately between OP-only with facet osteotomies (11° ± 7°, p < 0.001) and

  17. Barriers to and Budget Impact of Lumbar Total Disc Replacement Utilization.

    PubMed

    Sandhu, Faheem; Blumenthal, Scott; Grunch, Betsy; Kimball, Bent; Ferko, Nicole; Hollmann, Sarah

    2017-12-15

    : Evidence on the favorable efficacy, safety, and cost effectiveness of lumbar total disc replacement (TDR) compared with fusion for lumbar degenerative disc disease is mounting; however, a key barrier identified for TDR utilization is lack of coverage by US health insurers. Although economic considerations in a fee-for-service model should not be a determining factor in patient access, concerns regarding the budget impact of lumbar TDR surgery may unfortunately underlie coverage decisions. On the basis of the data available and economic modeling, the panel agreed that there is no indication that there would be a dramatic increase in patients seeking lumbar TDR. Considering several possible scenarios on potential growth in TDR utilization with coverage, as well as growth in the overall surgical pool of patients, economic modeling demonstrated that adoption of lumbar TDR would result in minimal or no budget impact for commercial insurance plans. Considering these model results and the economic literature, the panel concluded that adopting lumbar TDR within a coverage policy is expected to remain cost neutral for the insurer.

  18. Complications and Morbidities of Mini-open Anterior Retroperitoneal Lumbar Interbody Fusion: Oblique Lumbar Interbody Fusion in 179 Patients

    PubMed Central

    Mac-Thiong, Jean-Marc; Hilmi, Radwan; Roussouly, Pierre

    2012-01-01

    Study Design A retrospective study including 179 patients who underwent oblique lumbar interbody fusion (OLIF) at one institution. Purpose To report the complications associated with a minimally invasive technique of a retroperitoneal anterolateral approach to the lumbar spine. Overview of Literature Different approaches to the lumbar spine have been proposed, but they are associated with an increased risk of complications and a longer operation. Methods A total of 179 patients with previous posterior instrumented fusion undergoing OLIF were included. The technique is described in terms of: the number of levels fused, operative time and blood loss. Persurgical and postsurgical complications were noted. Results Patients were age 54.1 ± 10.6 with a BMI of 24.8 ± 4.1 kg/m2. The procedure was performed in the lumbar spine at L1-L2 in 4, L2-L3 in 54, L3-L4 in 120, L4-L5 in 134, and L5-S1 in 6 patients. It was done at 1 level in 56, 2 levels in 107, and 3 levels in 16 patients. Surgery time and blood loss were, respectively, 32.5 ± 13.2 minutes and 57 ± 131 ml per level fused. There were 19 patients with a single complication and one with two complications, including two patients with postoperative radiculopathy after L3-5 OLIF. There was no abdominal weakness or herniation. Conclusions Minimally invasive OLIF can be performed easily and safely in the lumbar spine from L2 to L5, and at L1-2 for selected cases. Up to 3 levels can be addressed through a 'sliding window'. It is associated with minimal blood loss and short operations, and with decreased risk of abdominal wall weakness or herniation. PMID:22708012

  19. Complications and Morbidities of Mini-open Anterior Retroperitoneal Lumbar Interbody Fusion: Oblique Lumbar Interbody Fusion in 179 Patients.

    PubMed

    Silvestre, Clément; Mac-Thiong, Jean-Marc; Hilmi, Radwan; Roussouly, Pierre

    2012-06-01

    A retrospective study including 179 patients who underwent oblique lumbar interbody fusion (OLIF) at one institution. To report the complications associated with a minimally invasive technique of a retroperitoneal anterolateral approach to the lumbar spine. Different approaches to the lumbar spine have been proposed, but they are associated with an increased risk of complications and a longer operation. A total of 179 patients with previous posterior instrumented fusion undergoing OLIF were included. The technique is described in terms of: the number of levels fused, operative time and blood loss. Persurgical and postsurgical complications were noted. Patients were age 54.1 ± 10.6 with a BMI of 24.8 ± 4.1 kg/m(2). The procedure was performed in the lumbar spine at L1-L2 in 4, L2-L3 in 54, L3-L4 in 120, L4-L5 in 134, and L5-S1 in 6 patients. It was done at 1 level in 56, 2 levels in 107, and 3 levels in 16 patients. Surgery time and blood loss were, respectively, 32.5 ± 13.2 minutes and 57 ± 131 ml per level fused. There were 19 patients with a single complication and one with two complications, including two patients with postoperative radiculopathy after L3-5 OLIF. There was no abdominal weakness or herniation. Minimally invasive OLIF can be performed easily and safely in the lumbar spine from L2 to L5, and at L1-2 for selected cases. Up to 3 levels can be addressed through a 'sliding window'. It is associated with minimal blood loss and short operations, and with decreased risk of abdominal wall weakness or herniation.

  20. A comparison of lumbopelvic motion patterns and erector spinae behavior between asymptomatic subjects and patients with recurrent low back pain during pain-free periods.

    PubMed

    Sánchez-Zuriaga, Daniel; López-Pascual, Juan; Garrido-Jaén, David; García-Mas, Maria Amparo

    2015-02-01

    The purpose of this study was to determine the patterns of lumbopelvic motion and erector spinae (ES) activity during trunk flexion-extension movements and to compare these patterns between patients with recurrent low back pain (LBP) in their pain-free periods and matched asymptomatic subjects. Thirty subjects participated (15 patients with disc herniation and recurrent LBP in their pain-free periods and 15 asymptomatic control subjects). A 3-dimensional videophotogrammetric system and surface electromyography (EMG) were used to record the angular displacements of the lumbar spine and hip in the sagittal plane and the EMG activity of the ES during standardized trunk flexion-extension cycles. Variables were maximum ranges of spine and hip flexion; percentages of maximum lumbar and hip flexion at the start and end of ES relaxation; average percentages of EMG activity during flexion, relaxation, and extension; and flexion-extension ratio of myoelectrical activity. Recurrent LBP patients during their pain-free period showed significantly greater ES activation both in flexion and extension, with a higher flexion-extension ratio than controls. Maximum ranges of lumbar and hip flexion showed no differences between controls and patients, although patients spent less time with their lumbar spine maximally flexed. This study showed that reduced maximum ranges of motion and absence of ES flexion-relaxation phenomenon were not useful to identify LBP patients in the absence of acute pain. However, these patients showed subtle alterations of their lumbopelvic motion and ES activity patterns, which may have important clinical implications. Copyright © 2015 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.