Sample records for sagittal plane motion

  1. Measurement of lumbar spine intervertebral motion in the sagittal plane using videofluoroscopy.

    PubMed

    Harvey, Steven; Hukins, David; Smith, Francis; Wardlaw, Douglas; Kader, Deiary

    2016-08-10

    Static radiographic techniques are unable to capture the wealth of kinematic information available from lumbar spine sagittal plane motion. Demonstration of a viable non-invasive technique for acquiring and quantifying intervertebral motion of the lumbar spine in the sagittal plane. Videofluoroscopic footage of sagittal plane lumbar spine flexion-extension in seven symptomatic volunteers (mean age = 48 yrs) and one asymptomatic volunteer (age = 54 yrs) was recorded. Vertebral bodies were digitised using customised software employing a novel vertebral digitisation scheme that was minimally affected by out-of-plane motion. Measurement errors in intervertebral rotation (± 1°) and intervertebral displacement (± 0.5 mm) compare favourably with the work of others. Some subjects presenting with an identical condition (disc prolapse) exhibited a similar column vertebral flexion-extension relative to S1 (L3: max. 5.9°, min. 5.6°), while in others (degenerative disc disease) there was paradoxically a significant variation in this measurement (L3: max. 28.1°, min. 0.7°). By means of a novel vertebral digitisation scheme and customised digitisation/analysis software, sagittal plane intervertebral motion data of the lumbar spine data has been successfully extracted from videofluoroscopic image sequences. Whilst the intervertebral motion signatures of subjects in this study differed significantly, the available sample size precluded the inference of any clinical trends.

  2. Does Shoe Collar Height Influence Ankle Joint Kinematics and Kinetics in Sagittal Plane Maneuvers?

    PubMed Central

    Yang, Yang; Fang, Ying; Zhang, Xini; He, Junliang; Fu, Weijie

    2017-01-01

    The Objective of the study is to investigate the effects of basketball shoes with different collar heights on ankle kinematics and kinetics and athletic performance in different sagittal plane maneuvers. Twelve participants who wore high-top and low-top basketball shoes (hereafter, HS and LS, respectively) performed a weight-bearing dorsiflexion (WB-DF) maneuver, drop jumps (DJs), and lay-up jumps (LJs). Their sagittal plane kinematics and ground reaction forces were recorded using the Vicon motion capture system and Kistler force plates simultaneously. Moreover, ankle dorsiflexion and plantarflexion angles, moment, power, stiffness, and jump height were calculated. In the WB-DF test, the peak ankle dorsiflexion angle (p = 0.041) was significantly smaller in HS than in LS. Additionally, the peak ankle plantarflexion moment (p = 0.028) and power (p = 0.022) were significantly lower in HS than in LS during LJs but not during DJs. In both jumping maneuvers, no significant differences were found in the jump height or ankle kinematics between the two shoe types. According to the WB-DF test, increasing shoe collar height can effectively reduce the ankle range of motion in the sagittal plane. Although the HS did not restrict the flexion–extension performance of the ankle joint during two jumping maneuvers, an increased shoe collar height can reduce peak ankle plantarflexion moment and peak power during the push-off phase in LJs. Therefore, a higher shoe collar height should be used to circumvent effects on the partial kinetics of the ankle joint in the sagittal plane. Key points An increased shoe collar height effectively reduced ankle joint ROM in the sagittal plane in weight-bearing dorsiflexion maneuver. Shoe collar height did not affect sagittal plane ankle kinematics and had no effect on performance during realistic jumping. Shoe collar height can affect the ankle plantarflexion torque and peak power during the push-off phase in lay-up jump. PMID:29238255

  3. Mid-sagittal plane and mid-sagittal surface optimization in brain MRI using a local symmetry measure

    NASA Astrophysics Data System (ADS)

    Stegmann, Mikkel B.; Skoglund, Karl; Ryberg, Charlotte

    2005-04-01

    This paper describes methods for automatic localization of the mid-sagittal plane (MSP) and mid-sagittal surface (MSS). The data used is a subset of the Leukoaraiosis And DISability (LADIS) study consisting of three-dimensional magnetic resonance brain data from 62 elderly subjects (age 66 to 84 years). Traditionally, the mid-sagittal plane is localized by global measures. However, this approach fails when the partitioning plane between the brain hemispheres does not coincide with the symmetry plane of the head. We instead propose to use a sparse set of profiles in the plane normal direction and maximize the local symmetry around these using a general-purpose optimizer. The plane is parameterized by azimuth and elevation angles along with the distance to the origin in the normal direction. This approach leads to solutions confirmed as the optimal MSP in 98 percent of the subjects. Despite the name, the mid-sagittal plane is not always planar, but a curved surface resulting in poor partitioning of the brain hemispheres. To account for this, this paper also investigates an optimization strategy which fits a thin-plate spline surface to the brain data using a robust least median of squares estimator. Albeit computationally more expensive, mid-sagittal surface fitting demonstrated convincingly better partitioning of curved brains into cerebral hemispheres.

  4. Lower extremity energy absorption and biomechanics during landing, part I: sagittal-plane energy absorption analyses.

    PubMed

    Norcross, Marc F; Lewek, Michael D; Padua, Darin A; Shultz, Sandra J; Weinhold, Paul S; Blackburn, J Troy

    2013-01-01

    Eccentric muscle actions of the lower extremity absorb kinetic energy during landing. Greater total sagittal-plane energy absorption (EA) during the initial impact phase (INI) of landing has been associated with landing biomechanics considered high risk for anterior cruciate ligament (ACL) injury. We do not know whether groups with different INI EA magnitudes exhibit meaningful differences in ACL-related landing biomechanics and whether INI EA might be useful to identify ACL injury-risk potential. To compare biomechanical factors associated with noncontact ACL injury among sagittal-plane INI EA groups and to determine whether an association exists between sex and sagittal-plane INI EA group assignment to evaluate the face validity of using sagittal-plane INI EA to identify ACL injury risk. Descriptive laboratory study. Research laboratory. A total of 82 (41 men, 41 women; age = 21.0 ± 2.4 years, height = 1.74 ± 0.10 m, mass = 70.3 ± 16.1 kg) healthy, physically active individuals volunteered. We assessed landing biomechanics using an electromagnetic motion-capture system and force plate during a double-legged jump-landing task. Total INI EA was used to group participants into high, moderate, and low tertiles. Sagittal- and frontal-plane knee kinematics; peak vertical and posterior ground reaction forces (GRFs); anterior tibial shear force; and internal hip extension, knee extension, and knee varus moments were identified and compared across groups using 1-way analyses of variance. We used a χ (2) analysis to compare male and female representation in the high and low groups. The high group exhibited greater knee-extension moment and posterior GRFs than both the moderate (P < .05) and low (P < .05) groups and greater anterior tibial shear force than the low group (P < .05). No other group differences were noted. Women were not represented more than men in the high group (χ(2) = 1.20, P = .27). Greater sagittal-plane INI EA likely indicates greater ACL loading

  5. Lower Extremity Energy Absorption and Biomechanics During Landing, Part I: Sagittal-Plane Energy Absorption Analyses

    PubMed Central

    Norcross, Marc F.; Lewek, Michael D.; Padua, Darin A.; Shultz, Sandra J.; Weinhold, Paul S.; Blackburn, J. Troy

    2013-01-01

    Context: Eccentric muscle actions of the lower extremity absorb kinetic energy during landing. Greater total sagittal-plane energy absorption (EA) during the initial impact phase (INI) of landing has been associated with landing biomechanics considered high risk for anterior cruciate ligament (ACL) injury. We do not know whether groups with different INI EA magnitudes exhibit meaningful differences in ACL-related landing biomechanics and whether INI EA might be useful to identify ACL injury-risk potential. Objective: To compare biomechanical factors associated with noncontact ACL injury among sagittal-plane INI EA groups and to determine whether an association exists between sex and sagittal-plane INI EA group assignment to evaluate the face validity of using sagittal-plane INI EA to identify ACL injury risk. Design: Descriptive laboratory study. Setting: Research laboratory. Patients or Other Participants: A total of 82 (41 men, 41 women; age = 21.0 ± 2.4 years, height = 1.74 ± 0.10 m, mass = 70.3 ± 16.1 kg) healthy, physically active individuals volunteered. Intervention(s): We assessed landing biomechanics using an electromagnetic motion-capture system and force plate during a double-legged jump-landing task. Main Outcome Measure(s): Total INI EA was used to group participants into high, moderate, and low tertiles. Sagittal- and frontal-plane knee kinematics; peak vertical and posterior ground reaction forces (GRFs); anterior tibial shear force; and internal hip extension, knee extension, and knee varus moments were identified and compared across groups using 1-way analyses of variance. We used a χ2 analysis to compare male and female representation in the high and low groups. Results: The high group exhibited greater knee-extension moment and posterior GRFs than both the moderate (P < .05) and low (P < .05) groups and greater anterior tibial shear force than the low group (P < .05). No other group differences were noted. Women were not represented more than

  6. Motion-plane dependency of the range of dart throw motion and the effects of tendon action due to finger extrinsic muscles during the motion.

    PubMed

    Mitsukane, Masahiro; Sekiya, Noboru; Kamono, Arinori; Nakabo, Tohru

    2018-03-01

    [Purpose] To clarify the motion-plane dependency of the range of dart throw motion and the effects of tendon action due to long finger flexors and extensors during the motion. [Subjects and Methods] Forty healthy subjects attended the experiment, and the active range of wrist motion in seven motion planes was measured with an originally designed apparatus. [Results] The reliability of the measurement was acceptable. The range of dart throw motion depended on the motion planes, with a maximum at around the motion plane of 45° from the sagittal plane (45° of pronation). The tendon action of long finger muscles was shown in dart throw motion except in 45° of pronation. [Conclusion] Motion-plane dependency of the range of dart throw motion exists in healthy subjects. The absence of tendon action due to finger extrinsic muscles in dart throw motion at 45° might be one of the causes of the advantage of dart throw motion.

  7. Sagittal and transversal plane deformity in thoracic scoliosis.

    PubMed

    Kotwicki, Tomasz

    2002-01-01

    The aim of the study was to assess the sagittal and transversal plane deformity of the spine in thoracic scoliosis by the mean of 3-D radiographic analysis. 46 patients admitted for surgery for thoracic idiopathic scoliosis underwent preoperative radiographic assessment. All patients presented the same pattern of the coronal plane deformity: single right thoracic curve (Lenke 1, King 3). Neither lumbar nor proximal thoracic structural curve were present. The Cobb angle varied from 41gamma to 77 gamma (mean 55,4 gamma +/- 8,6 gamma). Long cassette standing antero-posterior and lateral radiographs were analysed. Three-dimensional reconstruction with Rachis 91TM software was performed for each pair of radiographs. The following parameters were assessed: sagittal thoracic Cobb angle (Th4-Th12), upper thoracic kyphosis angle (Th5-Th8), lower thoracic kyphosis angle (Th9-Th12), superior and inferior hemi-curve sagittal angles, lumbar lordosis, sacral slope, sacral incidence, vertebral plate index, segmental vertebral axial rotation throughout the thoracic and lumbar spine. Results showed great variability of parameters assessed. The non-harmonious distribution of kyphosis was demonstrated in the thoracic spine. Local Th9-Th12 hypokyphosis and adjacent local Th5-Th8 hyperkyphosis constitute the most typical sagittal pathologies. So called normokyphotic curves were composed of one hyperkyphotic and one hypokyphotic zone. Th1-Th4 segment revealed two patterns of segmental rotation distribution: a purely compensatory curve with no vertebral axial rotation or a rotated curve presenting the morphology intermediate between Lenke 1 and Lenke 2 types (or King 3 and King 5). curves presenting the same coronal plane deformity differ in their morphology assessed in the two other planes; global thoracic kyphosis angle is a misleading parameter because it covers hypo- and hyperkyphotic zones; local distal thoracic (Th9-Th12) hypokyphosis is present in idiopathic thoracic scoliosis.

  8. Automatic extraction of the mid-sagittal plane using an ICP variant

    NASA Astrophysics Data System (ADS)

    Fieten, Lorenz; Eschweiler, Jörg; de la Fuente, Matías; Gravius, Sascha; Radermacher, Klaus

    2008-03-01

    Precise knowledge of the mid-sagittal plane is important for the assessment and correction of several deformities. Furthermore, the mid-sagittal plane can be used for the definition of standardized coordinate systems such as pelvis or skull coordinate systems. A popular approach for mid-sagittal plane computation is based on the selection of anatomical landmarks located either directly on the plane or symmetrically to it. However, the manual selection of landmarks is a tedious, time-consuming and error-prone task, which requires great care. In order to overcome this drawback, previously it was suggested to use the iterative closest point (ICP) algorithm: After an initial mirroring of the data points on a default mirror plane, the mirrored data points should be registered iteratively to the model points using rigid transforms. Finally, a reflection transform approximating the cumulative transform could be extracted. In this work, we present an ICP variant for the iterative optimization of the reflection parameters. It is based on a closed-form solution to the least-squares problem of matching data points to model points using a reflection. In experiments on CT pelvis and skull datasets our method showed a better ability to match homologous areas.

  9. Gender difference of ankle stability in the sagittal and frontal planes.

    PubMed

    Hanzlick, Harrison; Hyunglae Lee

    2017-07-01

    This paper offers quantification of ankle stability in relation to simulated haptic environments of varying stiffness. This study analyzes the stability trends of male and female subjects independently over a wide range of simulated environments after subjects were exposed to vigorous position perturbation. Ankle stability was quantified for both degrees-of-freedom of the ankle in the sagittal and frontal planes. Subjects' stability consistently decreased when exposed to environments of negative simulated stiffness. In the frontal plane, male and female subjects exhibited nearly identical stability levels. In the sagittal plane, however, male subjects demonstrated marginally more stability than female subjects in environments with negative stiffness. Results of this study are beneficial to understanding situations in which the ankle is likely to lose stability, potentially resulting in injury.

  10. The angle of inclination of the native ACL in the coronal and sagittal planes.

    PubMed

    Reid, Jonathan C; Yonke, Bret; Tompkins, Marc

    2017-04-01

    The purpose of this cross-sectional study was to evaluate the angle of inclination of the native anterior cruciate ligament (ACL) in both the sagittal and coronal planes and to evaluate these findings based on sex, height, BMI, and skeletal maturity. Inclusion criteria for the study included patients undergoing routine magnetic resonance imaging (MRI) of the knee at a single outpatient orthopedic center who had an intact ACL on MRI. Measurements of the angle of inclination were made on MRIs in both the sagittal and coronal planes. Patients were compared based on sex, height, BMI, and skeletal maturity. One-hundred and eighty-eight patients were included (36 skeletally immature/152 skeletally mature; 98 male/90 female). The overall angle of inclination was 74.3° ± 4.8° in the coronal plane and 46.9° ± 4.9° in the sagittal plane. Skeletally immature patients (coronal: 71.8° ± 6.1°; sagittal: 44.7° ± 5.5°) were significantly different in both coronal and sagittal planes (P = 0.04 and 0.01, respectively) from skeletally mature patients (coronal: 75.3° ± 4.7°; sagittal: 47.4° ± 4.7°). There were no differences based on sex, height, or BMI. There are differences between the angle of inclination findings in this study and other studies, which could be due to MRI and measurement techniques. Clinically, skeletal maturity may be important to account for when using the ACL angle of inclination to evaluate anatomic ACL reconstruction. Prognostic retrospective study, Level of evidence III.

  11. Characterizing head motion in three planes during combined visual and base of support disturbances in healthy and visually sensitive subjects.

    PubMed

    Keshner, E A; Dhaher, Y

    2008-07-01

    Multiplanar environmental motion could generate head instability, particularly if the visual surround moves in planes orthogonal to a physical disturbance. We combined sagittal plane surface translations with visual field disturbances in 12 healthy (29-31 years) and 3 visually sensitive (27-57 years) adults. Center of pressure (COP), peak head angles, and RMS values of head motion were calculated and a three-dimensional model of joint motion was developed to examine gross head motion in three planes. We found that subjects standing quietly in front of a visual scene translating in the sagittal plane produced significantly greater (p<0.003) head motion in yaw than when on a translating platform. However, when the platform was translated in the dark or with a visual scene rotating in roll, head motion orthogonal to the plane of platform motion significantly increased (p<0.02). Visually sensitive subjects having no history of vestibular disorder produced large, delayed compensatory head motion. Orthogonal head motions were significantly greater in visually sensitive than in healthy subjects in the dark (p<0.05) and with a stationary scene (p<0.01). We concluded that motion of the visual field could modify compensatory response kinematics of a freely moving head in planes orthogonal to the direction of a physical perturbation. These results suggest that the mechanisms controlling head orientation in space are distinct from those that control trunk orientation in space. These behaviors would have been missed if only COP data were considered. Data suggest that rehabilitation training can be enhanced by combining visual and mechanical perturbation paradigms.

  12. Transverse forces versus modified ashworth scale for upper limb flexion/extension in para-sagittal plane.

    PubMed

    Seth, Nitin; Johnson, Denise; Abdullah, Hussein A

    2017-07-01

    Spasticity is a common impairment following an upper motor neuron lesion in conditions such as stroke and brain injury. A clinical issue is how to best quantify and measure spasticity. Recently, research has been performed to develop new methods of spasticity quantification using various systems. This paper follows up on previous work taking a closer look at the role of transversal forces obtained via rehabilitation robot for motions in the para-sagittal plane. Results from 45 healthy individuals and 40 individuals with acquired brain injury demonstrate that although the passive upper motions are vertical, horizontal forces into and away from the individual's body demonstrate a relationship with the Modified Ashworth Scale. This finding leads the way to new avenues of spasticity quantification and monitoring.

  13. Characterizing Head Motion in 3 Planes during Combined Visual and Base of Support Disturbances in Healthy and Visually Sensitive Subjects

    PubMed Central

    Keshner, E.A.; Dhaher, Y.

    2008-01-01

    Multiplanar environmental motion could generate head instability, particularly if the visual surround moves in planes orthogonal to a physical disturbance. We combined sagittal plane surface translations with visual field disturbances in 12 healthy (29–31 years) and 3 visually sensitive (27–57 years) adults. Center of pressure (COP), peak head angles, and RMS values of head motion were calculated and a 3-dimensional model of joint motion11 was developed to examine gross head motion in 3 planes. We found that subjects standing quietly in front of a visual scene translating in the sagittal plane produced significantly greater (p<0.003) head motion in yaw than when on a translating platform. However, when the platform was translated in the dark or with a visual scene rotating in roll, head motion orthogonal to the plane of platform motion significantly increased (p<0.02). Visually sensitive subjects having no history of vestibular disorder produced large, delayed compensatory head motion. Orthogonal head motions were significantly greater in visually sensitive than in healthy subjects in the dark (p<0.05) and with a stationary scene (p<0.01). We concluded that motion of the visual field can modify compensatory response kinematics of a freely moving head in planes orthogonal to the direction of a physical perturbation. These results suggest that the mechanisms controlling head orientation in space are distinct from those that control trunk orientation in space. These behaviors would have been missed if only COP data were considered. Data suggest that rehabilitation training can be enhanced by combining visual and mechanical perturbation paradigms. PMID:18162402

  14. LIMITED HIP AND KNEE FLEXION DURING LANDING IS ASSOCIATED WITH INCREASED FRONTAL PLANE KNEE MOTION AND MOMENTS

    PubMed Central

    Pollard, Christine D.; Sigward, Susan M.; Powers, Christopher M.

    2009-01-01

    Background It has been proposed that female athletes who limit knee and hip flexion during athletic tasks rely more on the passive restraints in the frontal plane to deceleration their body center of mass. This biomechanical pattern is thought to increase the risk for anterior cruciate ligament injury. To date, the relationship between sagittal plane kinematics and frontal plane knee motion and moments has not been explored. Methods Subjects consisted of fifty-eight female club soccer players (age range: 11 to 20 years) with no history of knee injury. Kinematics, ground reaction forces, and surface electromyography were collected while each subject performed a drop landing task. Subjects were divided into two groups based on combined sagittal plane knee and hip flexion angles during the deceleration phase of landing (high flexion and low flexion). Findings Subjects in the low flexion group demonstrated increased knee valgus angles (P = 0.02, effect size 0.27), increased knee adductor moments (P = 0.03, effect size 0.24), decreased energy absorption at the knee and hip (P = 0.02, effect size 0.25; and P< 0.001, effect size 0.59), and increased vastus lateralis EMG when compared to subjects in the high flexion group (P = 0.005, effect size 0.35). Interpretation Female athletes with limited sagittal plane motion during landing exhibit a biomechanical profile that may put these individuals at greater risk for anterior cruciate ligament injury. PMID:19913961

  15. Video raster stereography back shape reconstruction: a reliability study for sagittal, frontal, and transversal plane parameters.

    PubMed

    Schroeder, J; Reer, R; Braumann, K M

    2015-02-01

    As reliability of raster stereography was proved only for sagittal plane parameters with repeated measures on the same day, the present study was aiming at investigating variability and reliability of back shape reconstruction for all dimensions (sagittal, frontal, transversal) and for different intervals. For a sample of 20 healthy volunteers, intra-individual variability (SEM and CV%) and reliability (ICC ± 95% CI) were proved for sagittal (thoracic kyphosis, lumbar lordosis, pelvis tilt angle, and trunk inclination), frontal (pelvis torsion, pelvis and trunk imbalance, vertebral side deviation, and scoliosis angle), transversal (vertebral rotation), and functional (hyperextension) spine shape reconstruction parameters for different test-retest intervals (on the same day, between-day, between-week) by means of video raster stereography. Reliability was high for the sagittal plane (pelvis tilt, kyphosis and lordosis angle, and trunk inclination: ICC > 0.90), and good to high for lumbar mobility (0.86 < ICC < 0.97). Apart from sagittal plane spinal alignment, there was a lack of certainty for a high reproducibility indicated by wider ICC confidence intervals. So, reliability was fair to high for vertebral side deviation and the scoliosis angle (0.71 < ICC < 0.95), and poor to good for vertebral rotation values as well as for frontal plane upper body and pelvis position parameters (0.65 < ICC < 0.92). Coefficients for the between-day and between-week interval were a little lower than for repeated measures on the same day. Variability (SEM) was less than 1.5° or 1.5 mm, except for trunk inclination. Relative variability (CV) was greater in global trunk position and pelvis parameters (35-98%) than in scoliosis (14-20%) or sagittal sway parameters (4-8 %). Although we found a lower reproducibility for the frontal plane, raster stereography is considered to be a reliable method for the non-invasive, three-dimensional assessment of spinal alignment in normal non

  16. Metacarpal geometry changes during Thoroughbred race training are compatible with sagittal-plane cantilever bending.

    PubMed

    Merritt, J S; Davies, H M S

    2010-11-01

    Bending of the equine metacarpal bones during locomotion is poorly understood. Cantilever bending, in particular, may influence the loading of the metacarpal bones and surrounding structures in unique ways. We hypothesised that increased amounts of sagittal-plane cantilever bending may govern changes to the shape of the metacarpal bones of Thoroughbred racehorses during training. We hypothesised that this type of bending would require a linear change to occur in the combined second moment of area of the bones for sagittal-plane bending (I) during race training. Six Thoroughbred racehorses were used, who had all completed at least 4 years of race training at a commercial stable. The approximate change in I that had occurred during race training was computed from radiographic measurements at the start and end of training using a simple model of bone shape. A significant (P < 0.001), approximately linear pattern of change in I was observed in each horse, with the maximum change occurring proximally and the minimum change occurring distally. The pattern of change in I was compatible with the hypothesis that sagittal-plane cantilever bending governed changes to the shape of the metacarpal bones during race training. © 2010 EVJ Ltd.

  17. A comparison of economy and sagittal plane trunk movements among back-, back/front- and head-loading.

    PubMed

    Hudson, Sean; Cooke, Carlton; Davies, Simeon; West, Sacha; Gamieldien, Raeeq; Low, Chris; Lloyd, Ray

    2018-05-14

    It has been suggested that freedom of movement in the trunk could influence load carriage economy. This study aimed to compare the economy and sagittal plane trunk movements associated with three load carriage methods that constrain posture differently. Eighteen females walked at 3 km.h -1 with loads of 0, 3, 6, 9, 12, 15 and 20 kg carried on the back, back/front and head. Load carriage economy was assessed using the Extra Load Index (ELI). Change in sagittal plane trunk forward lean and trunk angle excursion from unloaded to loaded walking were assessed. Results show no difference in economy between methods (p = 0.483), despite differences in the change in trunk forward lean (p = 0.001) and trunk angle excursion (p = 0.021) from unloaded to loaded walking. We conclude that economy is not different among the three methods of load carriage, despite significant differences in sagittal plane trunk movements.

  18. Ipsilateral wrist-ankle movements in the sagittal plane encoded in extrinsic reference frame.

    PubMed

    Muraoka, Tetsuro; Ishida, Yuki; Obu, Takashi; Crawshaw, Larry; Kanosue, Kazuyuki

    2013-04-01

    When performing oscillatory movements of two joints in the sagittal plane, there is a directional constraint for performing such movements. Previous studies could not distinguish whether the directional constraint reflected movement direction encoded in the extrinsic (outside the body) reference frame or in the intrinsic (the participants' torso/head) reference frame since participants performed coordinated movements in a sitting position where the torso/head was stationary relative to the external world. In order to discern the reference frame in the present study, participants performed paced oscillatory movements of the ipsilateral wrist and ankle in the sagittal plane in a standing position so that the torso/head moved relative to the external world. The coordinated movements were performed in one of two modes of coordination, moving the hand upward concomitant with either ankle plantarflexion or ankle dorsiflexion. The same directional mode relative to extrinsic space was more stable and accurate as compared with the opposite directional mode. When forearm position was changed from the pronated position to the supinated position, similar results were obtained, indicating that the results were independent of a particular coupling of muscles. These findings suggest that the directional constraint on ipsilateral joints movements in the sagittal plane reflects movement direction encoded in the extrinsic reference frame. Copyright © 2013 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  19. Usefulness of the dynamic gadolinium-enhanced magnetic resonance imaging with simultaneous acquisition of coronal and sagittal planes for detection of pituitary microadenomas.

    PubMed

    Lee, Han Bee; Kim, Sung Tae; Kim, Hyung-Jin; Kim, Keon Ha; Jeon, Pyoung; Byun, Hong Sik; Choi, Jin Wook

    2012-03-01

    Does dynamic gadolinium-enhanced imaging with simultaneous acquisition of coronal and sagittal planes improve diagnostic accuracy of pituitary microadenomas compared with coronal images alone? Fifty-six patients underwent 3-T sella MRI including dynamic simultaneous acquisition of coronal and sagittal planes after gadolinium injection. According to conspicuity, lesions were divided into four scores (0, no; 1, possible; 2, probable; 3, definite delayed enhancing lesion). Additional information on supplementary sagittal images compared with coronal ones was evaluated with a 4-point score (0, no; 1, possible; 2, probable; 3, definite additional information). Accuracy of tumour detection was calculated. Average scores for lesion detection of a combination of two planes, coronal, and sagittal images were 2.59, 2.32, and 2.18. 6/10 lesions negative on coronal images were detected on sagittal ones. Accuracy of a combination of two planes, of coronal and of sagittal images was 92.86%, 82.14% and 75%. Six patients had probable or definite additional information on supplementary sagittal images compared with coronal ones alone (10.71%). Dynamic MRI with combined coronal and sagittal planes was more accurate for detection of pituitary microadenomas than routinely used coronal images. Simultaneous dynamic enhanced acquisition can make study time fast and costs low. We present a new dynamic MRI technique for evaluating pituitary microadenomas • This technique provides simultaneous acquisition of contrast enhanced coronal and sagittal images. • This technique makes the diagnosis more accurate and reduces the examination time. • Such MR imaging only requires one single bolus of contrast agent.

  20. Sagittal plane tilting deformity of the patellofemoral joint: a new concept in patients with chondromalacia patella.

    PubMed

    Aksahin, Ertugrul; Aktekin, Cem Nuri; Kocadal, Onur; Duran, Semra; Gunay, Cüneyd; Kaya, Defne; Hapa, Onur; Pepe, Murad

    2017-10-01

    The aims of this study were to evaluate sagittal plane alignment in patients with chondromalacia patella via magnetic resonance imaging (MRI), analyse the relationships between the location of the patellar cartilaginous lesions and sagittal alignment and finally investigate the relationships between the sagittal plane malalignment and patellofemoral loadings using by finite element analysis. Fifty-one patients who were diagnosed with isolated modified Outerbridge grade 3-4 patellar chondromalacia based on MRI evaluation and 51 control subjects were evaluated. Chondromalacia patella patients were divided into three subgroups according to the chondral lesion location as superior, middle and inferior. The patella-patellar tendon angle (P-PT) was used for evaluation of sagittal alignment of patellofemoral joint. Each subgroup was compared with control group by using P-PT angle. To investigate the biomechanical effects of sagittal plane malpositioning on patellofemoral joint, bone models were created at 30°, 60° and 90° knee flexion by using mean P-PT angles, which obtained from patients with chondromalacia patellae and control subjects. The total loading and contact area values of the patellofemoral joints were investigated by finite element analysis. The mean age of all participants was 52.9 ± 8.2 years. The mean P-PT angle was significantly lower in chondromalacia group (142.1° ± 3.6°) compared to control group (144.5° ± 5.3°) (p = 0.008). Chondral lesions were located in superior, middle and inferior zones in 16, 20 and 15 patients, respectively. The mean P-PT angles in patients with superior (141.8 ± 2.7) and inferior subgroups (139.2 ± 2.3) were significantly lower than the values in the control group (p < 0.05). The contact area values were detected higher in models with chondromalacia than in the control models at the same flexion degrees. There were increased loadings at 30° and 90° flexions in the sagittal patellar tilt models

  1. Alignment in the transverse plane, but not sagittal or coronal plane, affects the risk of recurrent patella dislocation.

    PubMed

    Takagi, Shigeru; Sato, Takashi; Watanabe, Satoshi; Tanifuji, Osamu; Mochizuki, Tomoharu; Omori, Go; Endo, Naoto

    2017-11-17

    Abnormalities of lower extremity alignment (LEA) in recurrent patella dislocation (RPD) have been studied mostly by two-dimensional (2D) procedures leaving three-dimensional (3D) factors unknown. This study aimed to three-dimensionally examine risk factors for RPD in lower extremity alignment under the weight-bearing conditions. The alignment of 21 limbs in 15 RPD subjects was compared to the alignment of 24 limbs of 12 healthy young control subjects by an our previously reported 2D-3D image-matching technique. The sagittal, coronal, and transverse alignment in full extension as well as the torsional position of the femur (anteversion) and tibia (tibial torsion) under weight-bearing standing conditions were assessed by our previously reported 3D technique. The correlations between lower extremity alignment and RPD were assessed using multiple logistic regression analysis. The difference of lower extremity alignment in RPD between under the weight-bearing conditions and under the non-weight-bearing conditions was assessed. In the sagittal and coronal planes, there was no relationship (statistically or by clinically important difference) between lower extremity alignment angle and RPD. However, in the transverse plane, increased external tibial rotation [odds ratio (OR) 1.819; 95% confidence interval (CI) 1.282-2.581], increased femoral anteversion (OR 1.183; 95% CI 1.029-1.360), and increased external tibial torsion (OR 0.880; 95% CI 0.782-0.991) were all correlated with RPD. The tibia was more rotated relative to femur at the knee joint in the RPD group under the weight-bearing conditions compared to under the non-weight-bearing conditions (p < 0.05). This study showed that during weight-bearing, alignment parameters in the transverse plane related to the risk of RPD, while in the sagittal and coronal plane alignment parameters did not correlate with RPD. The clinical importance of this study is that the 3D measurements more directly, precisely, and sensitively

  2. 2-tier in-plane motion correction and out-of-plane motion filtering for contrast-enhanced ultrasound.

    PubMed

    Ta, Casey N; Eghtedari, Mohammad; Mattrey, Robert F; Kono, Yuko; Kummel, Andrew C

    2014-11-01

    Contrast-enhanced ultrasound (CEUS) cines of focal liver lesions (FLLs) can be quantitatively analyzed to measure tumor perfusion on a pixel-by-pixel basis for diagnostic indication. However, CEUS cines acquired freehand and during free breathing cause nonuniform in-plane and out-of-plane motion from frame to frame. These motions create fluctuations in the time-intensity curves (TICs), reducing the accuracy of quantitative measurements. Out-of-plane motion cannot be corrected by image registration in 2-dimensional CEUS and degrades the quality of in-plane motion correction (IPMC). A 2-tier IPMC strategy and adaptive out-of-plane motion filter (OPMF) are proposed to provide a stable correction of nonuniform motion to reduce the impact of motion on quantitative analyses. A total of 22 cines of FLLs were imaged with dual B-mode and contrast specific imaging to acquire a 3-minute TIC. B-mode images were analyzed for motion, and the motion correction was applied to both B-mode and contrast images. For IPMC, the main reference frame was automatically selected for each cine, and subreference frames were selected in each respiratory cycle and sequentially registered toward the main reference frame. All other frames were sequentially registered toward the local subreference frame. Four OPMFs were developed and tested: subsample normalized correlation (NC), subsample sum of absolute differences, mean frame NC, and histogram. The frames that were most dissimilar to the OPMF reference frame using 1 of the 4 above criteria in each respiratory cycle were adaptively removed by thresholding against the low-pass filter of the similarity curve. Out-of-plane motion filter was quantitatively evaluated by an out-of-plane motion metric (OPMM) that measured normalized variance in the high-pass filtered TIC within the tumor region-of-interest with low OPMM being the goal. Results for IPMC and OPMF were qualitatively evaluated by 2 blinded observers who ranked the motion in the cines

  3. 5D CNS+ Software for Automatically Imaging Axial, Sagittal, and Coronal Planes of Normal and Abnormal Second-Trimester Fetal Brains.

    PubMed

    Rizzo, Giuseppe; Capponi, Alessandra; Persico, Nicola; Ghi, Tullio; Nazzaro, Giovanni; Boito, Simona; Pietrolucci, Maria Elena; Arduini, Domenico

    2016-10-01

    The purpose of this study was to test new 5D CNS+ software (Samsung Medison Co, Ltd, Seoul, Korea), which is designed to image axial, sagittal, and coronal planes of the fetal brain from volumes obtained by 3-dimensional sonography. The study consisted of 2 different steps. First in a prospective study, 3-dimensional fetal brain volumes were acquired in 183 normal consecutive singleton pregnancies undergoing routine sonographic examinations at 18 to 24 weeks' gestation. The 5D CNS+ software was applied, and the percentage of adequate visualization of brain diagnostic planes was evaluated by 2 independent observers. In the second step, the software was also tested in 22 fetuses with cerebral anomalies. In 180 of 183 fetuses (98.4%), 5D CNS+ successfully reconstructed all of the diagnostic planes. Using the software on healthy fetuses, the observers acknowledged the presence of diagnostic images with visualization rates ranging from 97.7% to 99.4% for axial planes, 94.4% to 97.7% for sagittal planes, and 92.2% to 97.2% for coronal planes. The Cohen κ coefficient was analyzed to evaluate the agreement rates between the observers and resulted in values of 0.96 or greater for axial planes, 0.90 or greater for sagittal planes, and 0.89 or greater for coronal planes. All 22 fetuses with brain anomalies were identified among a series that also included healthy fetuses, and in 21 of the 22 cases, a correct diagnosis was made. 5D CNS+ was efficient in successfully imaging standard axial, sagittal, and coronal planes of the fetal brain. This approach may simplify the examination of the fetal central nervous system and reduce operator dependency.

  4. A Dynamic Finite Element Analysis of Human Foot Complex in the Sagittal Plane during Level Walking

    PubMed Central

    Qian, Zhihui; Ren, Lei; Ding, Yun; Hutchinson, John R.; Ren, Luquan

    2013-01-01

    The objective of this study is to develop a computational framework for investigating the dynamic behavior and the internal loading conditions of the human foot complex during locomotion. A subject-specific dynamic finite element model in the sagittal plane was constructed based on anatomical structures segmented from medical CT scan images. Three-dimensional gait measurements were conducted to support and validate the model. Ankle joint forces and moment derived from gait measurements were used to drive the model. Explicit finite element simulations were conducted, covering the entire stance phase from heel-strike impact to toe-off. The predicted ground reaction forces, center of pressure, foot bone motions and plantar surface pressure showed reasonably good agreement with the gait measurement data over most of the stance phase. The prediction discrepancies can be explained by the assumptions and limitations of the model. Our analysis showed that a dynamic FE simulation can improve the prediction accuracy in the peak plantar pressures at some parts of the foot complex by 10%–33% compared to a quasi-static FE simulation. However, to simplify the costly explicit FE simulation, the proposed model is confined only to the sagittal plane and has a simplified representation of foot structure. The dynamic finite element foot model proposed in this study would provide a useful tool for future extension to a fully muscle-driven dynamic three-dimensional model with detailed representation of all major anatomical structures, in order to investigate the structural dynamics of the human foot musculoskeletal system during normal or even pathological functioning. PMID:24244500

  5. A dynamic finite element analysis of human foot complex in the sagittal plane during level walking.

    PubMed

    Qian, Zhihui; Ren, Lei; Ding, Yun; Hutchinson, John R; Ren, Luquan

    2013-01-01

    The objective of this study is to develop a computational framework for investigating the dynamic behavior and the internal loading conditions of the human foot complex during locomotion. A subject-specific dynamic finite element model in the sagittal plane was constructed based on anatomical structures segmented from medical CT scan images. Three-dimensional gait measurements were conducted to support and validate the model. Ankle joint forces and moment derived from gait measurements were used to drive the model. Explicit finite element simulations were conducted, covering the entire stance phase from heel-strike impact to toe-off. The predicted ground reaction forces, center of pressure, foot bone motions and plantar surface pressure showed reasonably good agreement with the gait measurement data over most of the stance phase. The prediction discrepancies can be explained by the assumptions and limitations of the model. Our analysis showed that a dynamic FE simulation can improve the prediction accuracy in the peak plantar pressures at some parts of the foot complex by 10%-33% compared to a quasi-static FE simulation. However, to simplify the costly explicit FE simulation, the proposed model is confined only to the sagittal plane and has a simplified representation of foot structure. The dynamic finite element foot model proposed in this study would provide a useful tool for future extension to a fully muscle-driven dynamic three-dimensional model with detailed representation of all major anatomical structures, in order to investigate the structural dynamics of the human foot musculoskeletal system during normal or even pathological functioning.

  6. Radiographic diagnosis of sagittal plane rotational displacement in pelvic fractures: a cadaveric model and clinical case study.

    PubMed

    Shui, Xiaolong; Ying, Xiaozhou; Kong, Jianzhong; Feng, Yongzeng; Hu, Wei; Guo, Xiaoshan; Wang, Gang

    2015-08-01

    Our objective was to measure the sagittal plane rotational (flexion and extension) displacement of hemipelvis radiologically and analyze the ratio of flexion and extension displacement of unstable pelvic fractures. We used 8 cadaveric models to study the radiographic evidence of pelvic fractures in the sagittal plane. We performed pelvic osteotomy on 8 cadavers to simulate anterior and posterior pelvic ring injury. Radiological data were measured in the flexion and extension group under different angles (5°, 10°, 15°, 20°, and 25°). We retrospectively reviewed 164 patients who were diagnosed with a unilateral fracture of the pelvis. Pelvic ring displacement was identified and recorded radiographically in cadaveric models. The flexion and extension displacement of pelvic fractures was measured in terms of the vertical distance of fracture from the top of iliac crest to the pubic tubercle (CD) or from the top of iliac crest to the lowest point of ischial tuberosity (AB). Fifty-seven pelves showed flexion displacement and 15 showed extension displacement. Closed reduction including internal fixation and external fixation was successfully used in 141 cases (86.0 %). The success rates of closed reduction in flexion and extension displacement groups were 77 and 73 %, respectively, which were lower than in unstable pelvic ring fractures. The sagittal plane rotation (flexion and extension) displacement of pelvic fractures could be measured by special points and lines on the radiographs. Minimally invasive reduction should be based on clearly identified differences between the sagittal plane rotation and the vertical displacement of pelvic fractures.

  7. Biomechanical Comparison of 3 Ankle Braces With and Without Free Rotation in the Sagittal Plane

    PubMed Central

    Alfuth, Martin; Klein, Dieter; Koch, Raphael; Rosenbaum, Dieter

    2014-01-01

    Context: Various designs of braces including hinged and nonhinged models are used to provide external support of the ankle. Hinged ankle braces supposedly allow almost free dorsiflexion and plantar flexion of the foot in the sagittal plane. It is unclear, however, whether this additional degree of freedom affects the stabilizing effect of the brace in the other planes of motion. Objective: To investigate the dynamic and passive stabilizing effects of 3 ankle braces, 2 hinged models that provide free plantar flexion–dorsiflexion in the sagittal plane and 1 ankle brace without a hinge. Design: Crossover study. Setting: University Movement Analysis Laboratory. Patients or Other Participants: Seventeen healthy volunteers (5 women, 12 men; age = 25.4 ± 4.8 years; height = 180.3 ± 6.5 cm; body mass = 75.5 ± 10.4 kg). Intervention(s): We dynamically induced foot inversion on a tilting platform and passively induced foot movements in 6 directions via a custom-built apparatus in 3 brace conditions and a control condition (no brace). Main Outcome Measure(s): Maximum inversion was determined dynamically using an in-shoe electrogoniometer. Passively induced maximal joint angles were measured using a torque and angle sensor. We analyzed differences among the 4 ankle-brace conditions (3 braces, 1 control) for each of the dependent variables with Friedman and post hoc tests (P < .05). Results: Each ankle brace restricted dynamic foot-inversion movements on the tilting platform as compared with the control condition, whereas only the 2 hinged ankle braces differed from each other, with greater movement restriction caused by the Ankle X model. Passive foot inversion was reduced with all ankle braces. Passive plantar flexion was greater in the hinged models as compared with the nonhinged brace. Conclusions: All ankle braces showed stabilizing effects against dynamic and passive foot inversion. Differences between the hinged braces and the nonhinged brace did not appear to be

  8. [Tibiotalocalcaneal arthrodesis using a retrograde nail locked in the sagittal plane].

    PubMed

    Veselý, R; Procházka, V; Visna, P; Valentová, J; Savolt, J

    2008-04-01

    To evaluate our experience with the use of a retrograde nail locked in the sagittal plane for tibiotalocalcaneal arthrodesis indicated in severe post-traumatic arthritis of the ankle. Twenty patients, 16 men and four women at an average age of 58.7 years (range, 23 to 72) were evaluated. All patients had severe post-traumatic changes in the talocrural and talocalcaneal joints. Five patients also had an equinus deformity. In two patients arthrodesis followed the treatment of purulent arthritis of the talocrural joint. A local fasciocutaneous flap was used for soft tissue reconstruction in three patients. All patients were operated on using the standard surgical technique. METHODS With the patient in a supine position, reamed by hand with the use of a driving rod, a straight retrograde AAN Orthofix nail was inserted through the heel bone and talus into the distal tibia and locked in these bones in the sagittal plane. No complications such as injury to the neurovascular plexus or pseudoarthrosis were recorded. Four patients showed a reaction to the proximal locking screw on the proximal tibial surface, which was treated by earlier screw removal under topical anaesthesia. Due to infectious complications, the nail had to be removed prematurely in one patient. The average Foot Function Index was 12 points (range, 10 to 15) and the average ankle-hindfoot score was 67.6 points (range, 59 to 84). Thirteen patients (65 %) were not limited in their daily activities or recreational sports, six (30 %) experienced pain in sports but not daily activities and one patient (5 %) reported pain even when walking. All fusions healed in the correct position within 18 weeks. Tibiotalocalcaneal arthrodesis is not a frequent surgical procedure in either trauma surgery or orthopaedics. For this complicated procedure, rather than intramedullary nails, internal fixation with screws or plates or external fixation are preferred. The high rate of bony healing can be explained by maintenance of

  9. Knee joint passive stiffness and moment in sagittal and frontal planes markedly increase with compression.

    PubMed

    Marouane, H; Shirazi-Adl, A; Adouni, M

    2015-01-01

    Knee joints are subject to large compression forces in daily activities. Due to artefact moments and instability under large compression loads, biomechanical studies impose additional constraints to circumvent the compression position-dependency in response. To quantify the effect of compression on passive knee moment resistance and stiffness, two validated finite element models of the tibiofemoral (TF) joint, one refined with depth-dependent fibril-reinforced cartilage and the other less refined with homogeneous isotropic cartilage, are used. The unconstrained TF joint response in sagittal and frontal planes is investigated at different flexion angles (0°, 15°, 30° and 45°) up to 1800 N compression preloads. The compression is applied at a novel joint mechanical balance point (MBP) identified as a point at which the compression does not cause any coupled rotations in sagittal and frontal planes. The MBP of the unconstrained joint is located at the lateral plateau in small compressions and shifts medially towards the inter-compartmental area at larger compression forces. The compression force substantially increases the joint moment-bearing capacities and instantaneous angular rigidities in both frontal and sagittal planes. The varus-valgus laxities diminish with compression preloads despite concomitant substantial reductions in collateral ligament forces. While the angular rigidity would enhance the joint stability, the augmented passive moment resistance under compression preloads plays a role in supporting external moments and should as such be considered in the knee joint musculoskeletal models.

  10. In-plane and out-of-plane motions of the human tympanic membrane

    PubMed Central

    Khaleghi, Morteza; Cheng, Jeffrey Tao; Furlong, Cosme; Rosowski, John J.

    2016-01-01

    Computer-controlled digital holographic techniques are developed and used to measure shape and four-dimensional nano-scale displacements of the surface of the tympanic membrane (TM) in cadaveric human ears in response to tonal sounds. The combination of these measurements (shape and sound-induced motions) allows the calculation of the out-of-plane (perpendicular to the surface) and in-plane (tangential) motion components at over 1 000 000 points on the TM surface with a high-degree of accuracy and sensitivity. A general conclusion is that the in-plane motion components are 10–20 dB smaller than the out-of-plane motions. These conditions are most often compromised with higher-frequency sound stimuli where the overall displacements are smaller, or the spatial density of holographic fringes is higher, both of which increase the uncertainty of the measurements. The results are consistent with the TM acting as a Kirchhoff–Love's thin shell dominated by out-of-plane motion with little in-plane motion, at least with stimulus frequencies up to 8 kHz. PMID:26827009

  11. Grizzly bear (Ursus arctos horribilis) locomotion: forelimb joint mechanics across speed in the sagittal and frontal planes.

    PubMed

    Shine, Catherine L; Robbins, Charles T; Nelson, O Lynne; McGowan, Craig P

    2017-04-01

    The majority of terrestrial locomotion studies have focused on parasagittal motion and paid less attention to forces or movement in the frontal plane. Our previous research has shown that grizzly bears produce higher medial ground reaction forces (lateral pushing from the animal) than would be expected for an upright mammal, suggesting frontal plane movement may be an important aspect of their locomotion. To examine this, we conducted an inverse dynamics analysis in the sagittal and frontal planes, using ground reaction forces and position data from three high-speed cameras of four adult female grizzly bears. Over the speed range collected, the bears used walks, running walks and canters. The scapulohumeral joint, wrist and the limb overall absorb energy (average total net work of the forelimb joints, -0.97 W kg -1 ). The scapulohumeral joint, elbow and total net work of the forelimb joints have negative relationships with speed, resulting in more energy absorbed by the forelimb at higher speeds (running walks and canters). The net joint moment and power curves maintain similar patterns across speed as in previously studied species, suggesting grizzly bears maintain similar joint dynamics to other mammalian quadrupeds. There is no significant relationship with net work and speed at any joint in the frontal plane. The total net work of the forelimb joints in the frontal plane was not significantly different from zero, suggesting that, despite the high medial ground reaction forces, the forelimb acts as a strut in that plane. © 2017. Published by The Company of Biologists Ltd.

  12. Sagittal back motion of college football athletes and nonathletes.

    PubMed

    Strong, L R; Titlow, L

    1997-08-01

    The study was designed as an ex post facto study using volunteers. To compare sagittal back motion of male college athletes with that of nonathletes and to compare data from both groups with normative data. Few studies have evaluated athletic demands on the spine. Much of the information on athletic demands comes from electromyographic studies, flexibility comparisons, and lift task studies. Although these studies provide a basis for back testing and evaluation, they do not present direct evidence of athletic low back performance. Fifteen male college football athletes and 15 male college nonathletes volunteered for testing using the IsoStation B-200 BSCAN 2.0 protocol (Isotechnologies, Inc., Hillsborough, NC). Measures were recorded for range of motion, isometric flexion and extension, and moderate and high dynamic flexion and extension. Data were analyzed using multivariate analysis of variance. The results of Hotelling's multivariate test were significant. Univariate follow-up analysis showed that athletes had significantly better isometric flexion, isometric extension, moderate dynamic flexion, high dynamic flexion, and high dynamic extension. Athletic data were compared with the BSCAN population data at the 50th and 80th percentile. Athletes were significantly better (P < 0.007) for all variables at the 50th percentile and for all dynamic variables at the 80th percentile. Within the limitations of the study, college football athletes had better sagittal back motion strength and speed as tested with the B-200 than nonathletes. Population data for the B-200 were representative for nonathletes but nonrepresentative for football players.

  13. Investigation of sagittal image acquisition for 4D-MRI with body area as respiratory surrogate.

    PubMed

    Liu, Yilin; Yin, Fang-Fang; Chang, Zheng; Czito, Brian G; Palta, Manisha; Bashir, Mustafa R; Qin, Yujiao; Cai, Jing

    2014-10-01

    The authors have recently developed a novel 4D-MRI technique for imaging organ respiratory motion employing cine acquisition in the axial plane and using body area (BA) as a respiratory surrogate. A potential disadvantage associated with axial image acquisition is the space-dependent phase shift in the superior-inferior (SI) direction, i.e., different axial slice positions reach the respiratory peak at different respiratory phases. Since respiratory motion occurs mostly in the SI and anterior-posterior (AP) directions, sagittal image acquisition, which embeds motion information in these two directions, is expected to be more robust and less affected by phase-shift than axial image acquisition. This study aims to develop and evaluate a 4D-MRI technique using sagittal image acquisition. The authors evaluated axial BA and sagittal BA using both 4D-CT images (11 cancer patients) and cine MR images (6 healthy volunteers and 1 cancer patient) by comparing their corresponding space-dependent phase-shift in the SI direction (δSPS (SI)) and in the lateral direction (δSPS (LAT)), respectively. To evaluate sagittal BA 4D-MRI method, a motion phantom study and a digital phantom study were performed. Additionally, six patients who had cancer(s) in the liver were prospectively enrolled in this study. For each patient, multislice sagittal MR images were acquired for 4D-MRI reconstruction. 4D retrospective sorting was performed based on respiratory phases. Single-slice cine MRI was also acquired in the axial, coronal, and sagittal planes across the tumor center from which tumor motion trajectories in the SI, AP, and medial-lateral (ML) directions were extracted and used as references from comparison. All MR images were acquired in a 1.5 T scanner using a steady-state precession sequence (frame rate ∼ 3 frames/s). 4D-CT scans showed that δSPS (SI) was significantly greater than δSPS (LAT) (p-value: 0.012); the median phase-shift was 16.9% and 7.7%, respectively. Body surface

  14. Relationship between movement time and hip moment impulse in the sagittal plane during sit-to-stand movement: a combined experimental and computer simulation study.

    PubMed

    Inai, Takuma; Takabayashi, Tomoya; Edama, Mutsuaki; Kubo, Masayoshi

    2018-04-27

    The association between repetitive hip moment impulse and the progression of hip osteoarthritis is a recently recognized area of study. A sit-to-stand movement is essential for daily life and requires hip extension moment. Although a change in the sit-to-stand movement time may influence the hip moment impulse in the sagittal plane, this effect has not been examined. The purpose of this study was to clarify the relationship between sit-to-stand movement time and hip moment impulse in the sagittal plane. Twenty subjects performed the sit-to-stand movement at a self-selected natural speed. The hip, knee, and ankle joint angles obtained from experimental trials were used to perform two computer simulations. In the first simulation, the actual sit-to-stand movement time obtained from the experiment was entered. In the second simulation, sit-to-stand movement times ranging from 0.5 to 4.0 s at intervals of 0.25 s were entered. Hip joint moments and hip moment impulses in the sagittal plane during sit-to-stand movements were calculated for both computer simulations. The reliability of the simulation model was confirmed, as indicated by the similarities in the hip joint moment waveforms (r = 0.99) and the hip moment impulses in the sagittal plane between the first computer simulation and the experiment. In the second computer simulation, the hip moment impulse in the sagittal plane decreased with a decrease in the sit-to-stand movement time, although the peak hip extension moment increased with a decrease in the movement time. These findings clarify the association between the sit-to-stand movement time and hip moment impulse in the sagittal plane and may contribute to the prevention of the progression of hip osteoarthritis.

  15. Linearized motion estimation for articulated planes.

    PubMed

    Datta, Ankur; Sheikh, Yaser; Kanade, Takeo

    2011-04-01

    In this paper, we describe the explicit application of articulation constraints for estimating the motion of a system of articulated planes. We relate articulations to the relative homography between planes and show that these articulations translate into linearized equality constraints on a linear least-squares system, which can be solved efficiently using a Karush-Kuhn-Tucker system. The articulation constraints can be applied for both gradient-based and feature-based motion estimation algorithms and to illustrate this, we describe a gradient-based motion estimation algorithm for an affine camera and a feature-based motion estimation algorithm for a projective camera that explicitly enforces articulation constraints. We show that explicit application of articulation constraints leads to numerically stable estimates of motion. The simultaneous computation of motion estimates for all of the articulated planes in a scene allows us to handle scene areas where there is limited texture information and areas that leave the field of view. Our results demonstrate the wide applicability of the algorithm in a variety of challenging real-world cases such as human body tracking, motion estimation of rigid, piecewise planar scenes, and motion estimation of triangulated meshes.

  16. An algorithm based on OmniView technology to reconstruct sagittal and coronal planes of the fetal brain from volume datasets acquired by three-dimensional ultrasound.

    PubMed

    Rizzo, G; Capponi, A; Pietrolucci, M E; Capece, A; Aiello, E; Mammarella, S; Arduini, D

    2011-08-01

    To describe a novel algorithm, based on the new display technology 'OmniView', developed to visualize diagnostic sagittal and coronal planes of the fetal brain from volumes obtained by three-dimensional (3D) ultrasonography. We developed an algorithm to image standard neurosonographic planes by drawing dissecting lines through the axial transventricular view of 3D volume datasets acquired transabdominally. The algorithm was tested on 106 normal fetuses at 18-24 weeks of gestation and the visualization rates of brain diagnostic planes were evaluated by two independent reviewers. The algorithm was also applied to nine cases with proven brain defects. The two reviewers, using the algorithm on normal fetuses, found satisfactory images with visualization rates ranging between 71.7% and 96.2% for sagittal planes and between 76.4% and 90.6% for coronal planes. The agreement rate between the two reviewers, as expressed by Cohen's kappa coefficient, was > 0.93 for sagittal planes and > 0.89 for coronal planes. All nine abnormal volumes were identified by a single observer from among a series including normal brains, and eight of these nine cases were diagnosed correctly. This novel algorithm can be used to visualize standard sagittal and coronal planes in the fetal brain. This approach may simplify the examination of the fetal brain and reduce dependency of success on operator skill. Copyright © 2011 ISUOG. Published by John Wiley & Sons, Ltd.

  17. Complete duplication of bladder and urethra in a sagittal plane in a male infant: case report and literature review.

    PubMed

    Coker, Alisa M; Allshouse, Michael J; Koyle, Martin A

    2008-08-01

    Complete duplication of the bladder and urethra is a rare entity. It may occur in the coronal and sagittal planes, and is often associated with other organ system anomalies, in particular of the gastrointestinal tract. We report an unusual variant of sagittal duplication of the bladder, in a male, associated with rudimentary hindgut duplication, and review the literature pertaining to this unusual anomaly.

  18. Graft extrusion in both the coronal and sagittal planes is greater after medial compared with lateral meniscus allograft transplantation but is unrelated to early clinical outcomes.

    PubMed

    Lee, Dae-Hee; Lee, Chang-Rack; Jeon, Jin-Ho; Kim, Kyung-Ah; Bin, Seong-Il

    2015-01-01

    Graft extrusion after meniscus allograft transplantation (MAT) may be affected by horn fixation, which differs between medial and lateral MAT. Few studies have compared graft extrusion, especially sagittal extrusion, after medial and lateral MAT. In patients undergoing medial and lateral MAT, graft extrusion is likely similar and not correlated with postoperative Lysholm scores. Cohort study; Level of evidence, 2. Meniscus graft extrusion in the coronal and sagittal planes was compared in 51 knees undergoing medial MAT and 84 undergoing lateral MAT. Distances from the anterior and posterior articular cartilage margins to the anterior (anterior cartilage meniscus distance [ACMD]) and posterior (posterior cartilage meniscus distance [PCMD]) horns, respectively, were assessed on immediate postoperative magnetic resonance imaging and compared in patients undergoing medial and lateral MAT. Correlations between coronal and sagittal graft extrusion and between extrusion and the Lysholm score were compared in the 2 groups. In the coronal plane, mean absolute (4.3 vs 2.7 mm, respectively; P<.001) and relative (39% vs 21%, respectively; P<.001) graft extrusions were significantly greater for medial than lateral MAT. In the sagittal plane, mean absolute and relative ACMD and PCMD values were significantly greater for medial than lateral MAT (P<.001 each). For both medial and lateral MAT, mean absolute and relative ACMDs were significantly larger than PCMDs (P<.001 each). Graft extrusion>3 mm in the coronal plane was significantly more frequent in the medial (78%) than in the lateral (35%) MAT group. In the sagittal plane, the frequencies of ACMDs (72% vs 39%, respectively) and PCMDs (23% vs 4%, respectively) >3 mm were also significantly greater in the medial than in the lateral MAT group. Coronal and sagittal extrusions were not correlated with postoperative Lysholm scores for both medial and lateral MAT. The amount and incidence of graft extrusion were greater after medial

  19. Reliable sagittal plane kinematic gait assessments are feasible using low-cost webcam technology.

    PubMed

    Saner, Robert J; Washabaugh, Edward P; Krishnan, Chandramouli

    2017-07-01

    Three-dimensional (3-D) motion capture systems are commonly used for gait analysis because they provide reliable and accurate measurements. However, the downside of this approach is that it is expensive and requires technical expertise; thus making it less feasible in the clinic. To address this limitation, we recently developed and validated (using a high-precision walking robot) a low-cost, two-dimensional (2-D) real-time motion tracking approach using a simple webcam and LabVIEW Vision Assistant. The purpose of this study was to establish the repeatability and minimal detectable change values of hip and knee sagittal plane gait kinematics recorded using this system. Twenty-one healthy subjects underwent two kinematic assessments while walking on a treadmill at a range of gait velocities. Intraclass correlation coefficients (ICC) and minimal detectable change (MDC) values were calculated for commonly used hip and knee kinematic parameters to demonstrate the reliability of the system. Additionally, Bland-Altman plots were generated to examine the agreement between the measurements recorded on two different days. The system demonstrated good to excellent reliability (ICC>0.75) for all the gait parameters tested on this study. The MDC values were typically low (<5°) for most of the parameters. The Bland-Altman plots indicated that there was no systematic error or bias in kinematic measurements and showed good agreement between measurements obtained on two different days. These results indicate that kinematic gait assessments using webcam technology can be reliably used for clinical and research purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Sagittal fresh blood imaging with interleaved acquisition of systolic and diastolic data for improved robustness to motion.

    PubMed

    Atanasova, Iliyana P; Kim, Daniel; Storey, Pippa; Rosenkrantz, Andrew B; Lim, Ruth P; Lee, Vivian S

    2013-02-01

    To improve robustness to patient motion of "fresh blood imaging" (FBI) for lower extremity noncontrast MR angiography. In FBI, two sets of three-dimensional fast spin echo images are acquired at different cardiac phases and subtracted to generate bright-blood angiograms. Routinely performed with a single coronal slab and sequential acquisition of systolic and diastolic data, FBI is prone to subtraction errors due to patient motion. In this preliminary feasibility study, FBI was implemented with two sagittal imaging slabs, and the systolic and diastolic acquisitions were interleaved to minimize sensitivity to motion. The proposed technique was evaluated in volunteers and patients. In 10 volunteers, imaged while performing controlled movements, interleaved FBI demonstrated better tolerance to subject motion than sequential FBI. In one patient with peripheral arterial disease, interleaved FBI offered better depiction of collateral flow by reducing sensitivity to inadvertent motion. FBI with interleaved acquisition of diastolic and systolic data in two sagittal imaging slabs offers improved tolerance to patient motion. Copyright © 2013 Wiley Periodicals, Inc.

  1. Effect of Acute Alterations in Foot Strike Patterns during Running on Sagittal Plane Lower Limb Kinematics and Kinetics

    PubMed Central

    Valenzuela, Kevin A.; Lynn, Scott K.; Mikelson, Lisa R.; Noffal, Guillermo J.; Judelson, Daniel A.

    2015-01-01

    The purpose of this study was to determine the effect of foot strike patterns and converted foot strike patterns on lower limb kinematics and kinetics at the hip, knee, and ankle during a shod condition. Subjects were videotaped with a high speed camera while running a 5km at self-selected pace on a treadmill to determine natural foot strike pattern on day one. Preferred forefoot group (PFFG, n = 10) and preferred rear foot group (PRFG, n = 11) subjects were identified through slow motion video playback (n = 21, age = 22.8±2.2 years, mass = 73.1±14.5 kg, height 1.75 ± 0.10 m). On day two, subjects performed five overground run trials in both their natural and unnatural strike patterns while motion and force data were collected. Data were collected over two days so that foot strike videos could be analyzed for group placement purposes. Several 2 (Foot Strike Pattern –forefoot strike [FFS], rearfoot strike [RFS]) x 2 (Group – PFFG, PRFG) mixed model ANOVAs (p < 0.05) were run on speed, active peak vertical ground reaction force (VGRF), peak early stance and mid stance sagittal ankle moments, sagittal plane hip and knee moments, ankle dorsiflexion ROM, and sagittal plane hip and knee ROM. There were no significant interactions or between group differences for any of the measured variables. Within subject effects demonstrated that the RFS condition had significantly lower (VGRF) (RFS = 2.58 ± .21 BW, FFS = 2.71 ± 0.23 BW), dorsiflexion moment (RFS = -2.6 1± 0.61 Nm·kg-1, FFS = -3.09 ± 0.32 Nm·kg-1), and dorsiflexion range of motion (RFS = 17.63 ± 3.76°, FFS = 22.10 ± 5.08°). There was also a significantly higher peak plantarflexion moment (RFS = 0.23 ± 0.11 Nm·kg-1, FFS = 0.01 ± 0.01 Nm·kg-1), peak knee moment (RFS = 2.61 ± 0.54 Nm·kg-1, FFS = 2.39 ± 0.61 Nm·kg-1), knee ROM (RFS = 31.72 ± 2.79°, FFS = 29.58 ± 2.97°), and hip ROM (RFS = 42.72 ± 4.03°, FFS = 41.38 ± 3.32°) as compared with the FFS condition. This research suggests that

  2. Effect of Acute Alterations in Foot Strike Patterns during Running on Sagittal Plane Lower Limb Kinematics and Kinetics.

    PubMed

    Valenzuela, Kevin A; Lynn, Scott K; Mikelson, Lisa R; Noffal, Guillermo J; Judelson, Daniel A

    2015-03-01

    The purpose of this study was to determine the effect of foot strike patterns and converted foot strike patterns on lower limb kinematics and kinetics at the hip, knee, and ankle during a shod condition. Subjects were videotaped with a high speed camera while running a 5km at self-selected pace on a treadmill to determine natural foot strike pattern on day one. Preferred forefoot group (PFFG, n = 10) and preferred rear foot group (PRFG, n = 11) subjects were identified through slow motion video playback (n = 21, age = 22.8±2.2 years, mass = 73.1±14.5 kg, height 1.75 ± 0.10 m). On day two, subjects performed five overground run trials in both their natural and unnatural strike patterns while motion and force data were collected. Data were collected over two days so that foot strike videos could be analyzed for group placement purposes. Several 2 (Foot Strike Pattern -forefoot strike [FFS], rearfoot strike [RFS]) x 2 (Group - PFFG, PRFG) mixed model ANOVAs (p < 0.05) were run on speed, active peak vertical ground reaction force (VGRF), peak early stance and mid stance sagittal ankle moments, sagittal plane hip and knee moments, ankle dorsiflexion ROM, and sagittal plane hip and knee ROM. There were no significant interactions or between group differences for any of the measured variables. Within subject effects demonstrated that the RFS condition had significantly lower (VGRF) (RFS = 2.58 ± .21 BW, FFS = 2.71 ± 0.23 BW), dorsiflexion moment (RFS = -2.6 1± 0.61 Nm·kg(-1), FFS = -3.09 ± 0.32 Nm·kg(-1)), and dorsiflexion range of motion (RFS = 17.63 ± 3.76°, FFS = 22.10 ± 5.08°). There was also a significantly higher peak plantarflexion moment (RFS = 0.23 ± 0.11 Nm·kg(-1), FFS = 0.01 ± 0.01 Nm·kg(-1)), peak knee moment (RFS = 2.61 ± 0.54 Nm·kg(-1), FFS = 2.39 ± 0.61 Nm·kg(-1)), knee ROM (RFS = 31.72 ± 2.79°, FFS = 29.58 ± 2.97°), and hip ROM (RFS = 42.72 ± 4.03°, FFS = 41.38 ± 3.32°) as compared with the FFS condition. This research suggests

  3. Changing Sagittal-Plane Landing Styles to Modulate Impact and Tibiofemoral Force Magnitude and Directions Relative to the Tibia

    PubMed Central

    Shimokochi, Yohei; Ambegaonkar, Jatin P.; Meyer, Eric G.

    2016-01-01

    Context: Ground reaction force (GRF) and tibiofemoral force magnitudes and directions have been shown to affect anterior cruciate ligament loading during landing. However, the kinematic and kinetic factors modifying these 2 forces during landing are unknown. Objective: To clarify the intersegmental kinematic and kinetic links underlying the alteration of the GRF and tibiofemoral force vectors secondary to changes in the sagittal-plane body position during single-legged landing. Design: Crossover study. Setting: Laboratory. Patients or Other Participants: Twenty recreationally active participants (age = 23.4 ± 3.6 years, height = 171.0 ± 9.4 cm, mass = 73.3 ± 12.7 kg). Intervention(s): Participants performed single-legged landings using 3 landing styles: self-selected landing (SSL), body leaning forward and landing on the toes (LFL), and body upright with flat-footed landing (URL). Three-dimensional kinetics and kinematics were recorded. Main Outcome Measure(s): Sagittal-plane tibial inclination and knee-flexion angles, GRF magnitude and inclination angles relative to the tibia, and proximal tibial forces at peak tibial axial forces. Results: The URL resulted in less time to peak tibial axial forces, smaller knee-flexion angles, and greater magnitude and a more anteriorly inclined GRF vector relative to the tibia than did the SSL. These changes led to the greatest peak tibial axial and anterior shear forces in the URL among the 3 landing styles. Conversely, the LFL resulted in longer time to peak tibial axial forces, greater knee-flexion angles, and reduced magnitude and a more posteriorly inclined GRF vector relative to the tibia than the SSL. These changes in LFL resulted in the lowest peak tibial axial and largest posterior shear forces among the 3 landing styles. Conclusions: Sagittal-plane intersegmental kinematic and kinetic links strongly affected the magnitude and direction of GRF and tibiofemoral forces during the impact phase of single-legged landing

  4. Three-Dimensional Scapular Kinematics in Patients with Reverse Total Shoulder Arthroplasty during Arm Motion.

    PubMed

    Lee, Kwang Won; Kim, Yong In; Kim, Ha Yong; Yang, Dae Suk; Lee, Gyu Sang; Choy, Won Sik

    2016-09-01

    There have been few reports on altered kinematics of the shoulder after reverse total shoulder arthroplasty (RTSA). We investigated differences in 3-dimensional (3D) scapular motions assessed using an optical tracking system between RTSA treated shoulders and asymptomatic contralateral shoulders during arm motion. Thirteen patients who underwent RTSA were assessed for active arm elevation in 2 distinct elevation planes (sagittal plane flexion and scapular plane abduction). Their mean age was 72 years (range, 69 to 79 years) and the mean follow-up was 24.4 months (range, 13 to 48 months). The dominant side was the right side in all the 13 patients, and it was also the side treated with RTSA. Scapular kinematics was recorded with an optical tracking system. The scapular kinematics and the scapulohumeral rhythm (SHR) of the RTSA shoulders and asymptomatic contralateral shoulders were recorded and analyzed during arm elevation. There were no significant differences in internal/external rotation and anterior/posterior tilting of the scapula between shoulders during arm motion (p > 0.05). However, upward rotation of the scapula differed significantly during arm motion (p = 0.035 for sagittal plane flexion; p = 0.046 for scapular plane abduction). There were significant differences in the SHR between the two shoulders (p = 0.016 for sagittal plane flexion; p = 0.021 for scapular plane abduction). The shoulder kinematics after RTSA showed significant differences from the contralateral asymptomatic shoulders. Increased upward rotation and decreased SHR after RTSA indicate that RTSA shoulders use more scapulothoracic motion and less glenohumeral motion to elevate the arm.

  5. Three-Dimensional Scapular Kinematics in Patients with Reverse Total Shoulder Arthroplasty during Arm Motion

    PubMed Central

    Lee, Kwang Won; Kim, Ha Yong; Yang, Dae Suk; Lee, Gyu Sang; Choy, Won Sik

    2016-01-01

    Background There have been few reports on altered kinematics of the shoulder after reverse total shoulder arthroplasty (RTSA). We investigated differences in 3-dimensional (3D) scapular motions assessed using an optical tracking system between RTSA treated shoulders and asymptomatic contralateral shoulders during arm motion. Methods Thirteen patients who underwent RTSA were assessed for active arm elevation in 2 distinct elevation planes (sagittal plane flexion and scapular plane abduction). Their mean age was 72 years (range, 69 to 79 years) and the mean follow-up was 24.4 months (range, 13 to 48 months). The dominant side was the right side in all the 13 patients, and it was also the side treated with RTSA. Scapular kinematics was recorded with an optical tracking system. The scapular kinematics and the scapulohumeral rhythm (SHR) of the RTSA shoulders and asymptomatic contralateral shoulders were recorded and analyzed during arm elevation. Results There were no significant differences in internal/external rotation and anterior/posterior tilting of the scapula between shoulders during arm motion (p > 0.05). However, upward rotation of the scapula differed significantly during arm motion (p = 0.035 for sagittal plane flexion; p = 0.046 for scapular plane abduction). There were significant differences in the SHR between the two shoulders (p = 0.016 for sagittal plane flexion; p = 0.021 for scapular plane abduction). Conclusions The shoulder kinematics after RTSA showed significant differences from the contralateral asymptomatic shoulders. Increased upward rotation and decreased SHR after RTSA indicate that RTSA shoulders use more scapulothoracic motion and less glenohumeral motion to elevate the arm. PMID:27583116

  6. 1975 Memorial Award Paper. Image generation and display techniques for CT scan data. Thin transverse and reconstructed coronal and sagittal planes.

    PubMed

    Glenn, W V; Johnston, R J; Morton, P E; Dwyer, S J

    1975-01-01

    The various limitations to computerized axial tomographic (CT) interpretation are due in part to the 8-13 mm standard tissue plane thickness and in part to the absence of alternative planes of view, such as coronal or sagittal images. This paper describes a method for gathering multiple overlapped 8 mm transverse sections, subjecting these data to a deconvolution process, and then displaying thin (1 mm) transverse as well as reconstructed coronal and sagittal CT images. Verification of the deconvolution technique with phantom experiments is described. Application of the phantom results to human post mortem CT scan data illustrates this method's faithful reconstruction of coronal and sagittal tissue densities when correlated with actual specimen photographs of a sectioned brain. A special CT procedure, limited basal overlap scanning, is proposed for use on current first generation CT scanners without hardware modification.

  7. [Evaluation of three methods for constructing craniofacial mid-sagittal plane based on the cone beam computed tomography].

    PubMed

    Wang, S W; Li, M; Yang, H F; Zhao, Y J; Wang, Y; Liu, Y

    2016-04-18

    To compare the accuracyof interactive closet point (ICP) algorithm, Procrustes analysis (PA) algorithm,and a landmark-independent method to construct the mid-sagittal plane (MSP) of the cone beam computed tomography.To provide theoretical basis for establishing coordinate systemof CBCT images and symmetric analysis. Ten patients were selected and scanned by CBCT before orthodontic treatment.The scan data was imported into Mimics 10.0 to reconstructthree dimensional skulls.And the MSP of each skull was generated by ICP algorithm, PA algorithm and landmark-independent method. MSP extracted by ICP algorithm or PA algorithm involvedthree steps. First, the 3D skull processing was performed by reverse engineering software geomagic studio 2012 to obtain the mirror skull. Then, the original and its mirror skull was registered separately by ICP algorithm in geomagic studio 2012 and PA algorithm in NX Imageware 11.0. Finally, the registered data were united into new data to calculate the MSP of the originaldata in geomagic studio 2012. The mid-sagittal plane was determined by SELLA (S), nasion (N), basion (Ba) as traditional landmark-dependent methodconducted in software InVivoDental 5.0. The distance from 9 pairs of symmetric anatomical marked points to three sagittal plane were measured and calculated to compare the differences of the absolute value. The one-way ANOVA test was used to analyze the variable differences among the 3 MSPs. The pairwise comparison was performed with LSD method. MSPs calculated by the three methods were available for clinic analysis, which could be concluded from the front view.However, there was significant differences among the distances from the 9 pairs of symmetric anatomical marked points to the MSPs (F=10.932,P=0.001).LSD test showed there was no significant difference between the ICP algorithm and landmark-independent method (P=0.11), while there was significant difference between the PA algorithm and landmark-independent methods (P=0

  8. Reliability and measurement error of sagittal spinal motion parameters in 220 patients with chronic low back pain using a three-dimensional measurement device.

    PubMed

    Mieritz, Rune M; Bronfort, Gert; Jakobsen, Markus D; Aagaard, Per; Hartvigsen, Jan

    2014-09-01

    A basic premise for any instrument measuring spinal motion is that reliable outcomes can be obtained on a relevant sample under standardized conditions. The purpose of this study was to assess the overall reliability and measurement error of regional spinal sagittal plane motion in patients with chronic low back pain (LBP), and then to evaluate the influence of body mass index, examiner, gender, stability of pain, and pain distribution on reliability and measurement error. This study comprises a test-retest design separated by 7 to 14 days. The patient cohort consisted of 220 individuals with chronic LBP. Kinematics of the lumbar spine were sampled during standardized spinal extension-flexion testing using a 6-df instrumented spatial linkage system. Test-retest reliability and measurement error were evaluated using interclass correlation coefficients (ICC(1,1)) and Bland-Altman limits of agreement (LOAs). The overall test-retest reliability (ICC(1,1)) for various motion parameters ranged from 0.51 to 0.70, and relatively wide LOAs were observed for all parameters. Reliability measures in patient subgroups (ICC(1,1)) ranged between 0.34 and 0.77. In general, greater (ICC(1,1)) coefficients and smaller LOAs were found in subgroups with patients examined by the same examiner, patients with a stable pain level, patients with a body mass index less than below 30 kg/m(2), patients who were men, and patients in the Quebec Task Force classifications Group 1. This study shows that sagittal plane kinematic data from patients with chronic LBP may be sufficiently reliable in measurements of groups of patients. However, because of the large LOAs, this test procedure appears unusable at the individual patient level. Furthermore, reliability and measurement error varies substantially among subgroups of patients. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. A Proposal of New Reference System for the Standard Axial, Sagittal, Coronal Planes of Brain Based on the Serially-Sectioned Images

    PubMed Central

    Park, Jin Seo; Park, Hyo Seok; Shin, Dong Sun; Har, Dong-Hwan; Cho, Zang-Hee; Kim, Young-Bo; Han, Jae-Yong; Chi, Je-Geun

    2010-01-01

    Sectional anatomy of human brain is useful to examine the diseased brain as well as normal brain. However, intracerebral reference points for the axial, sagittal, and coronal planes of brain have not been standardized in anatomical sections or radiological images. We made 2,343 serially-sectioned images of a cadaver head with 0.1 mm intervals, 0.1 mm pixel size, and 48 bit color and obtained axial, sagittal, and coronal images based on the proposed reference system. This reference system consists of one principal reference point and two ancillary reference points. The two ancillary reference points are the anterior commissure and the posterior commissure. And the principal reference point is the midpoint of two ancillary reference points. It resides in the center of whole brain. From the principal reference point, Cartesian coordinate of x, y, z could be made to be the standard axial, sagittal, and coronal planes. PMID:20052359

  10. Sagittal Fresh Blood Imaging with Interleaved Acquisition of Systolic and Diastolic Data for Improved Robustness to Motion

    PubMed Central

    Atanasova, Iliyana P.; Kim, Daniel; Storey, Pippa; Rosenkrantz, Andrew B; Lim, Ruth P.; Lee, Vivian S.

    2012-01-01

    Purpose To improve robustness to patient motion of ‘fresh blood imaging’ (FBI) for lower extremity non-contrast MRA. Methods In FBI, two sets of 3D fast spin echo images are acquired at different cardiac phases and subtracted to generate bright-blood angiograms. Routinely performed with a single coronal slab and sequential acquisition of systolic and diastolic data, FBI is prone to subtraction errors due to patient motion. In this preliminary feasibility study, FBI was implemented with two sagittal imaging slabs, and the systolic and diastolic acquisitions were interleaved to minimize sensitivity to motion. The proposed technique was evaluated in volunteers and patients. Results In ten volunteers, imaged while performing controlled movements, interleaved FBI demonstrated better tolerance to subject motion than sequential FBI. In one patient with peripheral arterial disease, interleaved FBI offered better depiction of collateral flow by reducing sensitivity to inadvertent motion. Conclusions FBI with interleaved acquisition of diastolic and systolic data in two sagittal imaging slabs offers improved tolerance to patient motion. PMID:23300129

  11. Agreement between fiber optic and optoelectronic systems for quantifying sagittal plane spinal curvature in sitting.

    PubMed

    Cloud, Beth A; Zhao, Kristin D; Breighner, Ryan; Giambini, Hugo; An, Kai-Nan

    2014-07-01

    Spinal posture affects how individuals function from a manual wheelchair. There is a need to directly quantify spinal posture in this population to ultimately improve function. A fiber optic system, comprised of an attached series of sensors, is promising for measuring large regions of the spine in individuals sitting in a wheelchair. The purpose of this study was to determine the agreement between fiber optic and optoelectronic systems for measuring spinal curvature, and describe the range of sagittal plane spinal curvatures in natural sitting. Able-bodied adults (n = 26, 13 male) participated. Each participant assumed three sitting postures: natural, slouched (accentuated kyphosis), and extension (accentuated lordosis) sitting. Fiber optic (ShapeTape) and optoelectronic (Optotrak) systems were applied to the skin over spinous processes from S1 to C7 and used to measure sagittal plane spinal curvature. Regions of kyphosis and lordosis were identified. A Cobb angle-like method was used to quantify lordosis and kyphosis. Generalized linear model and Bland-Altman analyses were used to assess agreement. A strong correlation exists between curvature values obtained with Optotrak and ShapeTape (R(2) = 0.98). The mean difference between Optotrak and ShapeTape for kyphosis in natural, extension, and slouched postures was 4.30° (95% LOA: -3.43 to 12.04°), 3.64° (95% LOA: -1.07 to 8.36°), and 4.02° (95% LOA: -2.80 to 10.84°), respectively. The mean difference for lordosis, when present, in natural and extension postures was 2.86° (95% LOA: -1.18 to 6.90°) and 2.55° (95% LOA: -3.38 to 8.48°), respectively. In natural sitting, the mean ± SD of kyphosis values was 35.07 ± 6.75°. Lordosis was detected in 8/26 participants: 11.72 ± 7.32°. The fiber optic and optoelectronic systems demonstrate acceptable agreement for measuring sagittal plane thoracolumbar spinal curvature. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Agreement between Fiber Optic and Optoelectronic Systems for Quantifying Sagittal Plane Spinal Curvature in Sitting

    PubMed Central

    Cloud, Beth A.; Zhao, Kristin D.; Breighner, Ryan; Giambini, Hugo; An, Kai-Nan

    2014-01-01

    Spinal posture affects how individuals function from a manual wheelchair. There is a need to directly quantify spinal posture in this population to ultimately improve function. A fiber optic system, comprised of an attached series of sensors, is promising for measuring large regions of the spine in individuals sitting in a wheelchair. The purpose of this study was to determine the agreement between fiber optic and optoelectronic systems for measuring spinal curvature, and describe the range of sagittal plane spinal curvatures in natural sitting. Able-bodied adults (n=26, 13 male) participated. Each participant assumed three sitting postures: natural, slouched (accentuated kyphosis), and extension (accentuated lordosis) sitting. Fiber optic (ShapeTape) and optoelectronic (Optotrak) systems were applied to the skin over spinous processes from S1 to C7 and used to measure sagittal plane spinal curvature. Regions of kyphosis and lordosis were identified. A Cobb angle-like method was used to quantify lordosis and kyphosis. Generalized linear model and Bland-Altman analyses were used to assess agreement. A strong correlation exists between curvature values obtained with Optotrak and ShapeTape (R2=0.98). The mean difference between Optotrak and ShapeTape for kyphosis in natural, extension, and slouched postures was 4.30° (95%LOA: −3.43-12.04°), 3.64° (95%LOA: −1.07-8.36°), and 4.02° (95%LOA: −2.80-10.84°), respectively. The mean difference for lordosis, when present, in natural and extension postures is 2.86° (95%LOA: −1.18-6.90°) and 2.55° (95%LOA: −3.38-8.48°), respectively. In natural sitting, the mean±SD of kyphosis values was 35.07± 6.75°. Lordosis was detected in 8/26 participants: 11.72±7.32°. The fiber optic and optoelectronic systems demonstrate acceptable agreement for measuring sagittal plane thoracolumbar spinal curvature. PMID:24909579

  13. Sagittal balance and idiopathic scoliosis: does final sagittal alignment influence outcomes, degeneration rate or failure rate?

    PubMed

    Ilharreborde, Brice

    2018-02-01

    In the last decade, spine surgeons have been impacted by the "sagittal plane analysis revolution". Significant correlations have been found in adult spinal deformity (ASD) between sagittal lumbo-pelvic parameters and functional outcomes, but most of them do not apply in adolescent idiopathic scoliosis (AIS). Meanwhile, instrumentation and reduction strategies have considerably evolved. This paper aims to describe the preoperative sagittal alignment in AIS, and to report literature evidence regarding the influence of postoperative sagittal balance on complication rates, low back pain incidence and disc degeneration. A bibliographic search in Medline and Google database from 1984 to May 2017 was performed. The keywords included 'adolescent idiopathic scoliosis', 'adult scoliosis', 'sagittal alignment', 'proximal junctional kyphosis', 'distal junctional kyphosis', 'outcomes', 'low back pain' and 'complication', used individually or in combination. Algorithms of sagittal balance analysis and treatment decision have been reported in ASD, but the clinical situation is very different in children. Sagittal alignment greatly varies in AIS among the various Lenke types. Most patients are clinically balanced before surgery, but the spinal harmony is altered, with overgrowth of the anterior column and global sagittal flattening (undersestimated in 2D). The exact role of pelvic incidence and whether or not patients also use pelvic compensation to maintain balance still require further clarification. The incidence of radiological junctional failures remains highly variable, depending on definitions, cohort size and follow-up. Preoperative hyperkyphosis seems to be a consistent and relevant risk factor. Current literature does not support the recent trend to save motion segments (selective fusion), and no significant association was found between the distal level of fusion and the incidence of low back pain. Postoperative sagittal alignment seems to be more important than LIV

  14. Optimal sagittal motion axis for trunk extension and flexion tests in chronic low back trouble.

    PubMed

    Rantanen, P; Nykvist, F

    2000-11-01

    To find the optimal height for sagittal motion axis for trunk strength test in chronic low back trouble. Cross-sectional study. The strength of trunk muscles of low back pain patients is decreased. The measured strength depends on the height of the sagittal motion axis but the differences between patients and controls are not known. 114 (67 female) patients with chronic low back trouble are classified according to Quebec Task Force, 50 (31 female) patients with rheumatic disorder, but without low back trouble, and 33 (22 female) healthy controls, no appreciable physical differences but clear differences in Oswestry score. Isometric trunk extension-flexion test with different heights for the pelvic fulcrum. Force decreased in extension, increased in flexion, and torque increased both in flexion and extension in every group (P<0.001) as the fulcrum was moved caudally. The male controls were stronger than patients with low back trouble (P<0.01). The female controls were stronger only if the fulcrum was set at the hip joint level (P<0.05). There were no differences between patients with rheumatic disorder and low back trouble, except in extension if the fulcrum was at the hip joint level (P<0.02). The rotation axis in trunk extension-flexion strength test should be set at the level of the hip joint. Trunk muscle weakness is a common sign of different rheumatic disorders. Proper setting of sagittal motion axis and concomitant measurement of trunk and hip extensor or flexor muscles increases the specificity of the strength test for low back trouble.

  15. Progression of spinal deformity in wheelchair-dependent patients with Duchenne muscular dystrophy who are not treated with steroids: coronal plane (scoliosis) and sagittal plane (kyphosis, lordosis) deformity.

    PubMed

    Shapiro, F; Zurakowski, D; Bui, T; Darras, B T

    2014-01-01

    We determined the frequency, rate and extent of development of scoliosis (coronal plane deformity) in wheelchair-dependent patients with Duchenne muscular dystrophy (DMD) who were not receiving steroid treatment. We also assessed kyphosis and lordosis (sagittal plane deformity). The extent of scoliosis was assessed on sitting anteroposterior (AP) spinal radiographs in 88 consecutive non-ambulatory patients with DMD. Radiographs were studied from the time the patients became wheelchair-dependent until the time of spinal fusion, or the latest assessment if surgery was not undertaken. Progression was estimated using a longitudinal mixed-model regression analysis to handle repeated measurements. Scoliosis ≥ 10° occurred in 85 of 88 patients (97%), ≥ 20° in 78 of 88 (89%) and ≥ 30° in 66 of 88 patients (75%). The fitted longitudinal model revealed that time in a wheelchair was a highly significant predictor of the magnitude of the curve, independent of the age of the patient (p < 0.001). Scoliosis developed in virtually all DMD patients not receiving steroids once they became wheelchair-dependent, and the degree of deformity deteriorated over time. In general, scoliosis increased at a constant rate, beginning at the time of wheelchair-dependency (p < 0.001). In some there was no scoliosis for as long as three years after dependency, but scoliosis then developed and increased at a constant rate. Some patients showed a rapid increase in the rate of progression of the curve after a few years - the clinical phenomenon of a rapidly collapsing curve over a few months. A sagittal plane kyphotic deformity was seen in 37 of 60 patients (62%) with appropriate radiographs, with 23 (38%) showing lumbar lordosis (16 (27%) abnormal and seven (11%) normal). This study provides a baseline to assess the effects of steroids and other forms of treatment on the natural history of scoliosis in patients with DMD, and an approach to assessing spinal deformity in the coronal and

  16. Inter-rater Reliability of Three Musculoskeletal Physical examination Techniques Used to Assess Motion in Three Planes While Standing

    PubMed Central

    Prather, Heidi; Hunt, Devyani; Steger-May, Karen; Hayes, Marcie Harris; Knaus, Evan; Clohisy, John

    2012-01-01

    Objective The objective of the study was to measure the reliability between examiners of three basic maneuvers of the Total Body Functional Profile© physical examination test. The hypothesis was musculoskeletal health care providers of different disciplines could reliably use the three basic maneuvers as part of the musculoskeletal physical examination. Design A prospective observational study was conducted. Twenty-eight adult volunteers were measured on both the left and right side by two independent raters on a single occasion. Setting The subjects were recruited through advertisements placed by the orthopedic department at a tertiary university. Participants 28 volunteers were recruited and completed the study. The volunteers were between the ages of 18 and 51 years of age, had no symptoms in the lower extremity or spine, had no previous history of surgery or tumor involving the lower extremity, and no medical conditions that would preclude participation. Assessment On a single occasion, two examiners per one volunteer were blinded to their own and each others' measurements. Each examiner assessed the distance of frontal and sagittal plane lunge and angle of motion for transverse plane testing. Main Outcome Measurements Inter-rater agreement is expressed with intraclass correlation coefficients (ICCs) and corresponding 95% confidence intervals (CIs). The difference between raters is reported with 95% CIs. Baseline demographics, UCLA, and Harris hip questionnaires were completed by all participants. Results The UCLA and Harris hip scores showed no significant activity restrictions or pain limitations in all participants. The inter-rater reliability for sagittal, frontal, and transverse plane matrix testing was good with ICCs of 0.86 (95% CI 0.77, 0.91), 0.90 (95% CI 0.84, 0.94), and 0.85 (95% CI 0.75, 0.91) respectively. The rater reliability between disciplines for transverse, sagittal and frontal plane matrix testing was good with ICCs of 0.89 (95% CI 0.80, 0

  17. Inter-rater reliability of three musculoskeletal physical examination techniques used to assess motion in three planes while standing.

    PubMed

    Prather, Heidi; Hunt, Devyani; Steger-May, Karen; Hayes, Marcie Harris; Knaus, Evan; Clohisy, John

    2009-07-01

    The objective of the study was to measure the reliability between examiners of 3 basic maneuvers of the Total Body Functional Profile physical examination test. The hypothesis was musculoskeletal health care providers of different disciplines could reliably use the 3 basic maneuvers as part of the musculoskeletal physical examination. A prospective observational study was conducted. Twenty-eight adult volunteers were measured on both the left and right side by 2 independent raters on a single occasion. The subjects were recruited through advertisements placed by the orthopedic department at a tertiary university. Twenty-eight volunteers were recruited and completed the study. The volunteers were between the ages of 18 and 51 years of age, had no symptoms in the lower extremity or spine, had no previous history of surgery or tumor involving the lower extremity, and no medical conditions that would preclude participation. On a single occasion, 2 examiners per 1 volunteer were blinded to their own and each others' measurements. Each examiner assessed the distance of frontal and sagittal plane lunge and angle of motion for transverse plane testing. Inter-rater agreement is expressed with intraclass correlation coefficients (ICCs) and corresponding 95% confidence intervals (CIs). The difference between raters is reported with 95% CIs. Baseline demographics, University of California Los Angeles (UCLA), and Harris hip questionnaires were completed by all participants. The UCLA and Harris hip scores showed no significant activity restrictions or pain limitations in all participants. The inter-rater reliability for sagittal, frontal, and transverse plane matrix testing was good with ICCs of 0.86 (95% CI 0.77-0.91), 0.90 (95% CI 0.84-0.94), and 0.85 (95% CI 0.75-0.91), respectively. The rater reliability between disciplines for transverse, sagittal, and frontal plane matrix testing was good with ICCs of 0.89 (95% CI 0.80-0.94), 0.88 (95% CI 0.79-0.94), and 0.90 (95% CI 0

  18. Effect of Trunk Sagittal Attitude on Shoulder, Thorax and Pelvis Three-Dimensional Kinematics in Able-Bodied Subjects during Gait

    PubMed Central

    Leardini, Alberto; Berti, Lisa; Begon, Mickaël; Allard, Paul

    2013-01-01

    It has been shown that an original attitude in forward or backward inclination of the trunk is maintained at gait initiation and during locomotion, and that this affects lower limb loading patterns. However, no studies have shown the extent to which shoulder, thorax and pelvis three-dimensional kinematics are modified during gait due to this sagittal inclination attitude. Thirty young healthy volunteers were analyzed during level walking with video-based motion analysis. Reflecting markers were mounted on anatomical landmarks to form a two-marker shoulder line segment, and a four-marker thorax and pelvis segments. Absolute and relative spatial rotations were calculated, for a total of 11 degrees of freedom. The subjects were divided into two groups of 15 according to the median of mean thorax inclination angle over the gait cycle. Preliminary MANOVA analysis assessed whether gender was an independent variable. Then two-factor nested ANOVA was used to test the possible effect of thorax inclination on body segments, planes of motion and gait periods, separately. There was no significant difference in all anthropometric and spatio-temporal parameters between the two groups, except for subject mass. The three-dimensional kinematics of the thorax and pelvis were not affected by gender. Nested ANOVA revealed group effect in all segment rotations apart those at the pelvis, in the sagittal and frontal planes, and at the push-off. Attitudes in sagittal thorax inclination altered trunk segments kinematics during gait. Subjects with a backward thorax showed less thorax-to-pelvis motion, but more shoulder-to-thorax and thorax-to-laboratory motion, less motion in flexion/extension and in lateral bending, and also less motion during push-off. This contributes to the understanding of forward propulsion and sideways load transfer mechanisms, fundamental for the maintenance of balance and the risk of falling. PMID:24204763

  19. Effect of trunk sagittal attitude on shoulder, thorax and pelvis three-dimensional kinematics in able-bodied subjects during gait.

    PubMed

    Leardini, Alberto; Berti, Lisa; Begon, Mickaël; Allard, Paul

    2013-01-01

    It has been shown that an original attitude in forward or backward inclination of the trunk is maintained at gait initiation and during locomotion, and that this affects lower limb loading patterns. However, no studies have shown the extent to which shoulder, thorax and pelvis three-dimensional kinematics are modified during gait due to this sagittal inclination attitude. Thirty young healthy volunteers were analyzed during level walking with video-based motion analysis. Reflecting markers were mounted on anatomical landmarks to form a two-marker shoulder line segment, and a four-marker thorax and pelvis segments. Absolute and relative spatial rotations were calculated, for a total of 11 degrees of freedom. The subjects were divided into two groups of 15 according to the median of mean thorax inclination angle over the gait cycle. Preliminary MANOVA analysis assessed whether gender was an independent variable. Then two-factor nested ANOVA was used to test the possible effect of thorax inclination on body segments, planes of motion and gait periods, separately. There was no significant difference in all anthropometric and spatio-temporal parameters between the two groups, except for subject mass. The three-dimensional kinematics of the thorax and pelvis were not affected by gender. Nested ANOVA revealed group effect in all segment rotations apart those at the pelvis, in the sagittal and frontal planes, and at the push-off. Attitudes in sagittal thorax inclination altered trunk segments kinematics during gait. Subjects with a backward thorax showed less thorax-to-pelvis motion, but more shoulder-to-thorax and thorax-to-laboratory motion, less motion in flexion/extension and in lateral bending, and also less motion during push-off. This contributes to the understanding of forward propulsion and sideways load transfer mechanisms, fundamental for the maintenance of balance and the risk of falling.

  20. Sagittal plane gait characteristics in hip osteoarthritis patients with mild to moderate symptoms compared to healthy controls: a cross-sectional study.

    PubMed

    Eitzen, Ingrid; Fernandes, Linda; Nordsletten, Lars; Risberg, May Arna

    2012-12-20

    Existent biomechanical studies on hip osteoarthritic gait have primarily focused on the end stage of disease. Consequently, there is no clear consensus on which specific gait parameters are of most relevance for hip osteoarthritis patients with mild to moderate symptoms. The purpose of this study was to explore sagittal plane gait characteristics during the stance phase of gait in hip osteoarthritis patients not eligible for hip replacement surgery. First, compared to healthy controls, and second, when categorized into two subgroups of radiographic severity defined from a minimal joint space of ≤/>2 mm. Sagittal plane kinematics and kinetics of the hip, knee and ankle joint were calculated for total joint excursion throughout the stance phase, as well as from the specific events initial contact, midstance, peak hip extension and toe-off following 3D gait analysis. In addition, the Western Ontario and McMaster Universities Osteoarthritis Index, passive hip range of motion, and isokinetic muscle strength of hip and knee flexion and extension were included as secondary outcomes. Data were checked for normality and differences evaluated with the independent Student's t-test, Welch's t-test and the independent Mann-Whitney U-test. A binary logistic regression model was used in order to control for velocity in key variables. Fourty-eight hip osteoarthritis patients and 22 controls were included in the final material. The patients walked significantly slower than the controls (p=0.002), revealed significantly reduced joint excursions of the hip (p<0.001) and knee (p=0.011), and a reduced hip flexion moment at midstance and peak hip extension (p<0.001). Differences were primarily manifested during the latter 50% of stance, and were persistent when controlling for velocity. Subgroup analyses of patients with minimal joint space ≤/>2 mm suggested that the observed deviations were more pronounced in patients with greater radiographic severity. The biomechanical

  1. Sagittal Plane Hip, Knee, and Ankle Biomechanics and the Risk of Anterior Cruciate Ligament Injury: A Prospective Study

    PubMed Central

    Leppänen, Mari; Pasanen, Kati; Krosshaug, Tron; Kannus, Pekka; Vasankari, Tommi; Kujala, Urho M.; Bahr, Roald; Perttunen, Jarmo; Parkkari, Jari

    2017-01-01

    Background: Stiff landings with less knee flexion and high vertical ground-reaction forces have been shown to be associated with an increased risk of anterior cruciate ligament (ACL) injury. The literature on the association between other sagittal plane measures and the risk of ACL injuries with a prospective study design is lacking. Purpose: To investigate the relationship between selected sagittal plane hip, knee, and ankle biomechanics and the risk of ACL injury in young female team-sport athletes. Study Design: Case-control study; Level of evidence, 3. Methods: A total of 171 female basketball and floorball athletes (age range, 12-21 years) participated in a vertical drop jump test using 3-dimensional motion analysis. All new ACL injuries, as well as match and training exposure data, were recorded for 1 to 3 years. Biomechanical variables, including hip and ankle flexion at initial contact (IC), hip and ankle ranges of motion (ROMs), and peak external knee and hip flexion moments, were selected for analysis. Cox regression models were used to calculate hazard ratios (HRs) with 95% CIs. The combined sensitivity and specificity of significant test variables were assessed using a receiver operating characteristic (ROC) curve analysis. Results: A total of 15 noncontact ACL injuries were recorded during follow-up (0.2 injuries/1000 player-hours). Of the variables investigated, landing with less hip flexion ROM (HR for each 10° increase in hip ROM, 0.61 [95% CI, 0.38-0.99]; P < .05) and a greater knee flexion moment (HR for each 10-N·m increase in knee moment, 1.21 [95% CI, 1.04-1.40]; P = .01) was significantly associated with an increased risk of ACL injury. Hip flexion at IC, ankle flexion at IC, ankle flexion ROM, and peak external hip flexion moment were not significantly associated with the risk of ACL injury. ROC curve analysis for significant variables showed an area under the curve of 0.6, indicating a poor combined sensitivity and specificity of the test

  2. The Effects of Frontal- and Sagittal-Plane Plyometrics on Change-of-Direction Speed and Power in Adolescent Female Basketball Players.

    PubMed

    McCormick, Brian T; Hannon, James C; Newton, Maria; Shultz, Barry; Detling, Nicole; Young, Warren B

    2016-01-01

    Plyometrics is a popular training modality for basketball players to improve power and change-of-direction speed. Most plyometric training has used sagittal-plane exercises, but improvements in change-of-direction speed have been greater in multi-direction programs. To determine the benefits of a 6-wk frontal-plane plyometric (FPP) training program compared with a 6-wk sagittal-plane plyometric (SPP) training program with regard to power and change-of-direction speed. Fourteen female varsity high school basketball players participated in the study. Multiple 2 × 2 repeated-measures ANOVAs were used to determine differences for the FPP and SPP groups from preintervention to postintervention on 4 tests of power and 2 tests of change-of-direction speed. There was a group main effect for time in all 6 tests. There was a significant group × time interaction effect in 3 of the 6 tests. The SPP improved performance of the countermovement vertical jump more than the FPP, whereas the FPP improved performance of the lateral hop (left) and lateral-shuffle test (left) more than the SPP. The standing long jump, lateral hop (right), and lateral-shuffle test (right) did not show a significant interaction effect. These results suggest that basketball players should incorporate plyometric training in all planes to improve power and change-of-direction speed.

  3. Task-level strategies for human sagittal-plane running maneuvers are consistent with robotic control policies.

    PubMed

    Qiao, Mu; Jindrich, Devin L

    2012-01-01

    The strategies that humans use to control unsteady locomotion are not well understood. A "spring-mass" template comprised of a point mass bouncing on a sprung leg can approximate both center of mass movements and ground reaction forces during running in humans and other animals. Legged robots that operate as bouncing, "spring-mass" systems can maintain stable motion using relatively simple, distributed feedback rules. We tested whether the changes to sagittal-plane movements during five running tasks involving active changes to running height, speed, and orientation were consistent with the rules used by bouncing robots to maintain stability. Changes to running height were associated with changes to leg force but not stance duration. To change speed, humans primarily used a "pogo stick" strategy, where speed changes were associated with adjustments to fore-aft foot placement, and not a "unicycle" strategy involving systematic changes to stance leg hip moment. However, hip moments were related to changes to body orientation and angular speed. Hip moments could be described with first order proportional-derivative relationship to trunk pitch. Overall, the task-level strategies used for body control in humans were consistent with the strategies employed by bouncing robots. Identification of these behavioral strategies could lead to a better understanding of the sensorimotor mechanisms that allow for effective unsteady locomotion.

  4. Task-Level Strategies for Human Sagittal-Plane Running Maneuvers Are Consistent with Robotic Control Policies

    PubMed Central

    Qiao, Mu; Jindrich, Devin L.

    2012-01-01

    The strategies that humans use to control unsteady locomotion are not well understood. A “spring-mass” template comprised of a point mass bouncing on a sprung leg can approximate both center of mass movements and ground reaction forces during running in humans and other animals. Legged robots that operate as bouncing, “spring-mass” systems can maintain stable motion using relatively simple, distributed feedback rules. We tested whether the changes to sagittal-plane movements during five running tasks involving active changes to running height, speed, and orientation were consistent with the rules used by bouncing robots to maintain stability. Changes to running height were associated with changes to leg force but not stance duration. To change speed, humans primarily used a “pogo stick” strategy, where speed changes were associated with adjustments to fore-aft foot placement, and not a “unicycle” strategy involving systematic changes to stance leg hip moment. However, hip moments were related to changes to body orientation and angular speed. Hip moments could be described with first order proportional-derivative relationship to trunk pitch. Overall, the task-level strategies used for body control in humans were consistent with the strategies employed by bouncing robots. Identification of these behavioral strategies could lead to a better understanding of the sensorimotor mechanisms that allow for effective unsteady locomotion. PMID:23284804

  5. 3-D scapular kinematics during arm elevation: effect of motion velocity.

    PubMed

    Fayad, F; Hoffmann, G; Hanneton, S; Yazbeck, C; Lefevre-Colau, M M; Poiraudeau, S; Revel, M; Roby-Brami, A

    2006-11-01

    No three-dimensional (3-D) data exist on the influence of motion velocity on scapular kinematics. The effect of arm elevation velocity has been studied only in a two-dimensional setting. Thirty healthy subjects performed dominant (right) arm elevation in two planes, sagittal and frontal, and at slow and fast self-selected arm speed. Scapular orientation and humeral elevation were measured at 30 Hz recording frequency with use of a 6-degree-of-freedom electromagnetic system (Polhemus Fastraka). Motion was computed according to the International Society of Biomechanics standards. Scapular orientation was also determined with the arm held in different static positions. We obtained a full 3-D kinematic description of scapula achieving a reliable, complex 3-D motion during humeral elevation and lowering. The maximal sagittal arm elevation showed a characteristic "M"-shape pattern of protraction/retraction curve. Scapular rotations did not differ significantly between slow and fast movements. Moreover, protraction/retraction and tilt angular values did not differ significantly between static and dynamic tasks. However, scapular lateral rotation values differed between static and dynamic measurements during sagittal and frontal arm elevation. Lateral scapular rotation appears to be less in static than in dynamic measurement, particularly in the sagittal plane. Interpolation of statically recorded positions of the bones cannot reflect the kinematics of the scapula.

  6. Femoro-tibial kinematics after TKA in fixed- and mobile-bearing knees in the sagittal plane.

    PubMed

    Daniilidis, Kiriakos; Höll, Steffen; Gosheger, Georg; Dieckmann, Ralf; Martinelli, Nicolo; Ostermeier, Sven; Tibesku, Carsten O

    2013-10-01

    Lack of the anterior cruciate ligament in total knee arthroplasty results in paradoxical movement of the femur as opposed to the tibia under deep flexion. Total knee arthroplasty with mobile-bearing inlays has been developed to provide increased physiological movement of the knee joint and to reduce polyethylene abrasion. The aim of this study was to perform an in vitro analysis of the kinematic movement in the sagittal plane in order to show differences between fixed- and mobile-bearing TKA in comparison with the natural knee joint. Seven knee joints of human cadaver material were used in a laboratory experiment. Fixed- and mobile-bearing inlays were tested in sequences under isokinetic extension in so-called kinemator for knee joints, which can simulate muscular traction power by the use of hydraulic cylinders, which crossover the knee joint. As a target parameter, the a.p. translation of the tibio-femoral relative movement was measured in the sagittal plane under ultrasound (Zebris) control. The results show a reduced tibial a.p. translation in relation to the femur in the bearing group compared to the natural joint. In the Z-axis, between 110° and 50° of flexion, linear movement decreases towards caudal movement under extension. Admittedly, the study did not show differences in the movement pattern between "mobile-bearing" and "fixed-bearing" prostheses. Results of this study cannot prove functional advantages of mobile-bearing prostheses for the knee joint kinematic after TKA. Both types of prostheses show typical kinematics of an anterior instability, hence they were incapable of performing physiological movement.

  7. MPI CyberMotion Simulator: implementation of a novel motion simulator to investigate multisensory path integration in three dimensions.

    PubMed

    Barnett-Cowan, Michael; Meilinger, Tobias; Vidal, Manuel; Teufel, Harald; Bülthoff, Heinrich H

    2012-05-10

    Path integration is a process in which self-motion is integrated over time to obtain an estimate of one's current position relative to a starting point (1). Humans can do path integration based exclusively on visual (2-3), auditory (4), or inertial cues (5). However, with multiple cues present, inertial cues - particularly kinaesthetic - seem to dominate (6-7). In the absence of vision, humans tend to overestimate short distances (<5 m) and turning angles (<30°), but underestimate longer ones (5). Movement through physical space therefore does not seem to be accurately represented by the brain. Extensive work has been done on evaluating path integration in the horizontal plane, but little is known about vertical movement (see (3) for virtual movement from vision alone). One reason for this is that traditional motion simulators have a small range of motion restricted mainly to the horizontal plane. Here we take advantage of a motion simulator (8-9) with a large range of motion to assess whether path integration is similar between horizontal and vertical planes. The relative contributions of inertial and visual cues for path navigation were also assessed. 16 observers sat upright in a seat mounted to the flange of a modified KUKA anthropomorphic robot arm. Sensory information was manipulated by providing visual (optic flow, limited lifetime star field), vestibular-kinaesthetic (passive self motion with eyes closed), or visual and vestibular-kinaesthetic motion cues. Movement trajectories in the horizontal, sagittal and frontal planes consisted of two segment lengths (1st: 0.4 m, 2nd: 1 m; ±0.24 m/s(2) peak acceleration). The angle of the two segments was either 45° or 90°. Observers pointed back to their origin by moving an arrow that was superimposed on an avatar presented on the screen. Observers were more likely to underestimate angle size for movement in the horizontal plane compared to the vertical planes. In the frontal plane observers were more likely to

  8. Motion of a carrier with a mobile load along a rough inclined plane

    NASA Astrophysics Data System (ADS)

    Bilchenko, G. G.

    2018-03-01

    The mechanical system consisting of a carrier and a load is considered. The load can move respectively the carrier according to the preset given motion law. The carrier motion from rest caused the load motion is investigated. The carrier can move translationally along rectilinear trajectory along rough inclined plane. The trajectory is the line of the greatest descent. The axis of rectilinear channel along which the load moves is situated in vertical plane containing the carrier trajectory. The Coulomb model is taken to describe the friction forces on sloped plane. Differential equations of motion of carrier with load are obtained. The sufficient condition of the carrier motion without detachment from inclined plane is given. For two special cases of the channel installation angle and the plane inclination angle combination the motion types are described. The computation experiments results are presented: the carrier motions in the special cases are illustrated, the phase portraits for some types of motions are constructed.

  9. Satisfactory rate of post-processing visualization of fetal cerebral axial, sagittal, and coronal planes from three-dimensional volumes acquired in routine second trimester ultrasound practice by sonographers of peripheral centers.

    PubMed

    Rizzo, Giuseppe; Pietrolucci, Maria Elena; Capece, Giuseppe; Cimmino, Ernesto; Colosi, Enrico; Ferrentino, Salvatore; Sica, Carmine; Di Meglio, Aniello; Arduini, Domenico

    2011-08-01

    The aim of this study was to evaluate the feasibility to visualize central nervous system (CNS) diagnostic planes from three-dimensional (3D) brain volumes obtained in ultrasound facilities with no specific experience in fetal neurosonography. Five sonographers prospectively recorded transabdominal 3D CNS volumes starting from an axial approach on 500 consecutive pregnancies at 19-24 weeks of gestation undergoing routine ultrasound examination. Volumes were sent to the referral center (Department of Obstetrics and Gynecology, Università Roma Tor Vergata, Italy) and two independent reviewers with experience in 3D ultrasound assessed their quality in the display of axial, coronal, and sagittal planes. CNS volumes were acquired in 491/500 pregnancies (98.2%). The two reviewers acknowledged the presence of satisfactory images with a visualization rate ranging respectively between 95.1% and 97.14% for axial planes, 73.72% and 87.16% for coronal planes, and 78.41% and 94.29% for sagittal planes. The agreement rate between the two reviewers as expressed by Cohen's kappa coefficient was >0.87 for axial planes, >0.89 for coronal planes, and >0.94 for sagittal planes. The presence of a maternal body mass index >30 alters the probability of achieving satisfactory CNS views, while existence of previous maternal lower abdomen surgery does not affect the quality of the reconstructed planes. CNS volumes acquired by 3D ultrasonography in peripheral centers showed a quality high enough to allow a detailed fetal neurosonogram.

  10. Effect of torso flexion on the lumbar torso extensor muscle sagittal plane moment arms.

    PubMed

    Jorgensen, Michael J; Marras, William S; Gupta, Purnendu; Waters, Thomas R

    2003-01-01

    Accurate anatomical inputs for biomechanical models are necessary for valid estimates of internal loading. The magnitude of the moment arm of the lumbar erector muscle group is known to vary as a function of such variables as gender. Anatomical evidence indicates that the moment arms decrease during torso flexion. However, moment arm estimates in biomechanical models that account for individual variability have been derived from imaging studies from supine postures. Quantify the sagittal plane moment arms of the lumbar erector muscle group as a function of torso flexion, and identify individual characteristics that are associated with the magnitude of the moment arms as a function of torso flexion. Utilization of a 0.3 Tesla Open magnetic resonance image (MRI) to image and quantify the moment arm of the right erector muscle group as a function of gender and torso flexion. Axial MRI images through and parallel to each of the lumbar intervertebral discs at four torso flexion angles were obtained from 12 male and 12 female subjects in a lateral recumbent posture. Multivariate analysis of variance was used to investigate the differences in the moment arms at different torso flexion angles, whereas hierarchical linear regression was used to investigate associations with individual anthropometric characteristics and spinal posture. The largest decrease in the lumbar erector muscle group moment arm from neutral to 45-degree flexion occurred at the L5-S1 level (9.7% and 8.9% for men and women, respectively). Measures of spinal curvature (L1-S1 lordosis), body mass and trunk characteristics (depth or circumference) were associated with the varying moment arm at most lumbar levels. The sagittal plane moment arms of the lumbar erector muscle mass decrease as the torso flexes forward. The change in moment arms as a function of torso flexion may have an impact on prediction of spinal loading in biomechanical models.

  11. A systematic review of the angular values obtained by computerized photogrammetry in sagittal plane: a proposal for reference values.

    PubMed

    Krawczky, Bruna; Pacheco, Antonio G; Mainenti, Míriam R M

    2014-05-01

    Reference values for postural alignment in the coronal plane, as measured by computerized photogrammetry, have been established but not for the sagittal plane. The objective of this study is to propose reference values for angular measurements used for postural analysis in the sagittal plane for healthy adults. Electronic databases (PubMed, BVS, Cochrane, Scielo, and Science Direct) were searched using the following key words: evaluation, posture, photogrammetry, and software. Articles published between 2006 and 2012 that used the PAS/SAPO (postural assessment software) were selected. Another inclusion criterion was the presentation of, at least, one of the following measurements: head horizontal alignment, pelvic horizontal alignment, hip angle, vertical alignment of the body, thoracic kyphosis, and lumbar lordosis. Angle samples of the selected articles were grouped 2 by 2 in relation to an overall average, which made possible total average, variance, and SD calculations. Six articles were included, and the following average angular values were found: 51.42° ± 4.87° (head horizontal alignment), -12.26° ± 5.81° (pelvic horizontal alignment), -6.40° ± 3.86° (hip angle), and 1.73° ± 0.94° (vertical alignment of the body). None of the articles contained the measurements for thoracic kyphosis and lumbar lordosis. The reference values can be adopted as reference for postural assessment in future researches if the same anatomical points are considered. Copyright © 2014 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.

  12. Sagittal endplate morphology of the lower lumbar spine.

    PubMed

    Lakshmanan, Palaniappan; Purushothaman, Balaji; Dvorak, Vlasta; Schratt, Walter; Thambiraj, Sathya; Boszczyk, Maximilian

    2012-05-01

    The sagittal profile of lumbar endplates is discrepant from current simplified disc replacement and fusion device design. Endplate concavity is symmetrical in the coronal plane but shows considerable variability in the sagittal plane, which may lead to implant-endplate mismatch. The aim of this investigation is to provide further analysis of the sagittal endplate morphology of the mid to lower lumbar spine study (L3–S1), thereby identifying the presence of common endplate shape patterns across these levels and providing morphological reference values complementing the findings of previous studies. Observational study. A total of 174 magnetic resonance imaging (MRI) scans of the adult lumbar spine from the digital archive of our centre, which met the inclusion criteria, were studied. Superior (SEP) and inferior (IEP) endplate shape was divided into flat (no concavity), oblong (homogeneous concavity) and ex-centric (inhomogeneous concavity). The concavity depth (ECD) and location of concavity apex (ECA) relative to endplate diameter of the vertebrae L3–S1 were determined. Flat endplates were only predominant at the sacrum SEP (84.5%). The L5 SEP was flat in 24.7% and all other endplates in less than 10%. The majority of endplates were concave with a clear trend of endplate shape becoming more ex-centric from L3 IEP (56.9% oblong vs. 37.4% ex-centric) to L5 IEP (4% oblong vs. 94.3% ex-centric). Ex-centric ECA were always found in the posterior half of the lumbar endplates. Both the oblong and ex-centric ECD was 2-3 mm on average with the IEP of a motion segment regularly possessing the greater depth. A sex- or age-related difference could not be found. The majority of lumbar endplates are concave, while the majority of sacral endplates are flat. An oblong and an ex-centric endplate shape can be distinguished, whereby the latter is more common at the lower lumbar levels. The apex of the concavity of ex-centric discs is located in the posterior half of the endplate

  13. Neuromuscular strategies for lumbopelvic control during frontal and sagittal plane movement challenges differ between people with and without low back pain.

    PubMed

    Nelson-Wong, E; Poupore, K; Ingvalson, S; Dehmer, K; Piatte, A; Alexander, S; Gallant, P; McClenahan, B; Davis, A M

    2013-12-01

    Observation-based assessments of movement are a standard component in clinical assessment of patients with non-specific low back pain. While aberrant motion patterns can be detected visually, clinicians are unable to assess underlying neuromuscular strategies during these tests. The purpose of this study was to compare coordination of the trunk and hip muscles during 2 commonly used assessments for lumbopelvic control in people with low back pain (LBP) and matched control subjects. Electromyography was recorded from hip and trunk muscles of 34 participants (17 with LBP) during performance of the Active Hip Abduction (AHAbd) and Active Straight Leg Raise (ASLR) tests. Relative muscle timing was calculated using cross-correlation. Participants with LBP demonstrated a variable strategy, while control subjects used a consistent proximal to distal activation strategy during both frontal and sagittal plane movements. Findings from this study provide insight into underlying neuromuscular control during commonly used assessment tests for patients with LBP that may help to guide targeted intervention approaches. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Multiplanar lumbopelvic control in patients with low back pain: is multiplanar assessment better than single plane assessment in discriminating between patients and healthy controls?

    PubMed

    Nelson-Wong, E; Gallant, P; Alexander, S; Dehmer, K; Ingvalson, S; McClenahan, B; Piatte, A; Poupore, K; Davis, A M

    2016-02-01

    Patients with low back pain (LBP) commonly have lumbopelvic control deficits. Lumbopelvic assessment during sagittal motion is incorporated into commonly used clinical examination algorithms for Treatment Based Classification. The purpose of this study was to investigate whether combined assessment of lumbopelvic control during sagittal and frontal plane motion discriminates between people with and without LBP better than single plane assessment alone. Nineteen patients with LBP and 18 healthy control participants volunteered for this study. The active straight leg raise (ASLR) and active hip abduction (AHAbd) tests were used to assess lumbopelvic control during sagittal and frontal plane motion, respectively. The tests were scored as positive or negative using published scoring criteria. Contingency tables were created for each test alone and for the combined tests (both positive/both negative) with presence/absence of LBP as the reference standard to calculate accuracy statistics of sensitivity (sn), specificity (sp), likelihood (+LR and -LR), and diagnostic odds ratios (OR). Active straight leg raise and AHAbd tests alone had sn of 0·63, 0·74, respectively, sp of 0·61, 0·50, respectively, and OR of 2·7, 2·8, respectively. The combined tests had sn = 0·89, sp = 0·60, and OR = 12·0. Forty percent of patients with LBP had control deficits in both planes of motion. The AHAbd and ALSR tests appear to have greater diagnostic discrimination when used in combination than when used independently. A percentage of patients with LBP had control deficits in both planes, while others demonstrated uniplanar deficits only. These findings highlight the importance of multiplanar assessment in patients with LBP.

  15. Clinically acceptable agreement between the ViMove wireless motion sensor system and the Vicon motion capture system when measuring lumbar region inclination motion in the sagittal and coronal planes.

    PubMed

    Mjøsund, Hanne Leirbekk; Boyle, Eleanor; Kjaer, Per; Mieritz, Rune Mygind; Skallgård, Tue; Kent, Peter

    2017-03-21

    Wireless, wearable, inertial motion sensor technology introduces new possibilities for monitoring spinal motion and pain in people during their daily activities of work, rest and play. There are many types of these wireless devices currently available but the precision in measurement and the magnitude of measurement error from such devices is often unknown. This study investigated the concurrent validity of one inertial motion sensor system (ViMove) for its ability to measure lumbar inclination motion, compared with the Vicon motion capture system. To mimic the variability of movement patterns in a clinical population, a sample of 34 people were included - 18 with low back pain and 16 without low back pain. ViMove sensors were attached to each participant's skin at spinal levels T12 and S2, and Vicon surface markers were attached to the ViMove sensors. Three repetitions of end-range flexion inclination, extension inclination and lateral flexion inclination to both sides while standing were measured by both systems concurrently with short rest periods in between. Measurement agreement through the whole movement range was analysed using a multilevel mixed-effects regression model to calculate the root mean squared errors and the limits of agreement were calculated using the Bland Altman method. We calculated root mean squared errors (standard deviation) of 1.82° (±1.00°) in flexion inclination, 0.71° (±0.34°) in extension inclination, 0.77° (±0.24°) in right lateral flexion inclination and 0.98° (±0.69°) in left lateral flexion inclination. 95% limits of agreement ranged between -3.86° and 4.69° in flexion inclination, -2.15° and 1.91° in extension inclination, -2.37° and 2.05° in right lateral flexion inclination and -3.11° and 2.96° in left lateral flexion inclination. We found a clinically acceptable level of agreement between these two methods for measuring standing lumbar inclination motion in these two cardinal movement planes. Further

  16. Helmet Fit and Cervical Spine Motion in Collegiate Men's Lacrosse Athletes Secured to a Spine Board

    PubMed Central

    Petschauer, Meredith A.; Schmitz, Randy; Gill, Diane L.

    2010-01-01

    Abstract Context: Proper management of cervical spine injuries in men's lacrosse players depends in part upon the ability of the helmet to immobilize the head. Objective: To determine if properly and improperly fitted lacrosse helmets provide adequate stabilization of the head in the spine-boarded athlete. Design: Crossover study. Setting: Sports medicine research laboratory. Patients or Other Participants: Eighteen healthy collegiate men's lacrosse players. Intervention(s): Participants were asked to move their heads through 3 planes of motion after being secured to a spine board under 3 helmet conditions. Main Outcome Measure(s): Change in range of motion in the cervical spine was calculated for the sagittal, frontal, and transverse planes for both head-to-thorax and helmet-to-thorax range of motion in all 3 helmet conditions (properly fitted, improperly fitted, and no helmet). Results: Head-to-thorax range of motion with the properly fitted and improperly fitted helmets was greater than in the no-helmet condition (P < .0001). In the sagittal plane, range of motion was greater with the improperly fitted helmet than with the properly fitted helmet. No difference was observed in helmet-to-thorax range of motion between properly and improperly fitted helmet conditions. Head-to-thorax range of motion was greater than helmet-to-thorax range of motion in all 3 planes (P < .0001). Conclusions: Cervical spine motion was minimized the most in the no-helmet condition, indicating that in lacrosse players, unlike football players, the helmet may need to be removed before stabilization. PMID:20446833

  17. Lower extremity energy absorption and biomechanics during landing, part II: frontal-plane energy analyses and interplanar relationships.

    PubMed

    Norcross, Marc F; Lewek, Michael D; Padua, Darin A; Shultz, Sandra J; Weinhold, Paul S; Blackburn, J Troy

    2013-01-01

    Greater sagittal-plane energy absorption (EA) during the initial impact phase (INI) of landing is consistent with sagittal-plane biomechanics that likely increase anterior cruciate ligament (ACL) loading, but it does not appear to influence frontal-plane biomechanics. We do not know whether frontal-plane INI EA is related to high-risk frontal-plane biomechanics. To compare biomechanics among INI EA groups, determine if women are represented more in the high group, and evaluate interplanar INI EA relationships. Descriptive laboratory study. Research laboratory. Participants included 82 (41 men, 41 women; age = 21.0 ± 2.4 years, height = 1.74 ± 0.10 m, mass = 70.3 ± 16.1 kg) healthy, physically active volunteers. We assessed landing biomechanics with an electromagnetic motion-capture system and force plate. We calculated frontal- and sagittal-plane total, hip, knee, and ankle INI EA. Total frontal-plane INI EA was used to create high, moderate, and low tertiles. Frontal-plane knee and hip kinematics, peak vertical and posterior ground reaction forces, and peak internal knee-varus moment (pKVM) were identified and compared across groups using 1-way analyses of variance. We used a χ (2) analysis to evaluate male and female allocation to INI EA groups. We used simple, bivariate Pearson product moment correlations to assess interplanar INI EA relationships. The high-INI EA group exhibited greater knee valgus at ground contact, hip adduction at pKVM, and peak hip adduction than the low-INI EA group (P < .05) and greater peak knee valgus, pKVM, and knee valgus at pKVM than the moderate- (P < .05) and low- (P < .05) INI EA groups. Women were more likely than men to be in the high-INI EA group (χ(2) = 4.909, P = .03). Sagittal-plane knee and frontal-plane hip INI EA (r = 0.301, P = .006) and sagittal-plane and frontal-plane ankle INI EA were associated (r = 0.224, P = .04). No other interplanar INI EA relationships were found (P > .05). Greater frontal-plane INI EA was

  18. Lower Extremity Energy Absorption and Biomechanics During Landing, Part II: Frontal-Plane Energy Analyses and Interplanar Relationships

    PubMed Central

    Norcross, Marc F.; Lewek, Michael D.; Padua, Darin A.; Shultz, Sandra J.; Weinhold, Paul S.; Blackburn, J. Troy

    2013-01-01

    Context: Greater sagittal-plane energy absorption (EA) during the initial impact phase (INI) of landing is consistent with sagittal-plane biomechanics that likely increase anterior cruciate ligament (ACL) loading, but it does not appear to influence frontal-plane biomechanics. We do not know whether frontal-plane INI EA is related to high-risk frontal-plane biomechanics. Objective: To compare biomechanics among INI EA groups, determine if women are represented more in the high group, and evaluate interplanar INI EA relationships. Design: Descriptive laboratory study. Setting: Research laboratory. Patients or Other Participants: Participants included 82 (41 men, 41 women; age = 21.0 ± 2.4 years, height = 1.74 ± 0.10 m, mass = 70.3 ± 16.1 kg) healthy, physically active volunteers. Intervention(s): We assessed landing biomechanics with an electromagnetic motion-capture system and force plate. Main Outcome Measure(s): We calculated frontal- and sagittal-plane total, hip, knee, and ankle INI EA. Total frontal-plane INI EA was used to create high, moderate, and low tertiles. Frontal-plane knee and hip kinematics, peak vertical and posterior ground reaction forces, and peak internal knee-varus moment (pKVM) were identified and compared across groups using 1-way analyses of variance. We used a χ2 analysis to evaluate male and female allocation to INI EA groups. We used simple, bivariate Pearson product moment correlations to assess interplanar INI EA relationships. Results: The high–INI EA group exhibited greater knee valgus at ground contact, hip adduction at pKVM, and peak hip adduction than the low–INI EA group (P < .05) and greater peak knee valgus, pKVM, and knee valgus at pKVM than the moderate– (P < .05) and low– (P < .05) INI EA groups. Women were more likely than men to be in the high–INI EA group (χ2 = 4.909, P = .03). Sagittal-plane knee and frontal-plane hip INI EA (r = 0.301, P = .006) and sagittal-plane and frontal-plane ankle INI EA were

  19. The influence of heel height on sagittal plane knee kinematics during landing tasks in recreationally active and athletic collegiate females.

    PubMed

    Lindenberg, Kelly M; Carcia, Christopher R; Phelps, Amy L; Martin, Robroy L; Burrows, Anne M

    2011-09-01

    To determine if heel height alters sagittal plane knee kinematics when landing from a forward hop or drop landing. Knee angles close to extension during landing are theorized to increase ACL injury risk in female athletes. Fifty collegiate females performed two single-limb landing tasks while wearing heel lifts of three different sizes (0, 12 & 24 mm) attached to the bottom of a sneaker. Using an electrogoniometer, sagittal plane kinematics (initial contact [KA(IC)], peak flexion [KA(Peak)], and rate of excursion [RE]) were examined. Repeated measures ANOVAs were used to determine the influence of heel height on the dependent measures. Forward hop task- KA(IC) with 0 mm, 12 mm, and 24 mm lifts were 8.88±6.5, 9.38±5.8 and 11.28±7.0, respectively. Significant differences were noted between 0 and 24 mm lift (p<.001) and 12 and 24 mm lifts (p=.003), but not between the 0 and 12 mm conditions (p=.423). KA(Peak) with 0 mm, 12 mm, and 24 mm lifts were 47.08±10.9, 48.18±10.3 and 48.88±9.7, respectively. A significant difference was noted between 0 and 24 mm lift (p=.004), but not between the 0 and 12 mm or 12 and 24 mm conditions (p=.071 and p=.282, respectively). The RE decreased significantly from 2128/sec±52 with the 12 mm lift to 1958/sec±55 with the 24 mm lift (p=.004). RE did not differ from 0 to 12 or 0 to 24 mm lift conditions (p=.351 and p=.086, respectively). Jump-landing task- No significant differences were found in KA(IC) (p=.531), KA(Peak) (p=.741), or the RE (p=.190) between any of the heel lift conditions. The addition of a 24 mm heel lift to the bottom of a sneaker significantly alters sagittal plane knee kinematics upon landing from a unilateral forward hop but not from a drop jump.

  20. Sagittal-Plane Knee Moment During Gait and Knee Cartilage Thickness.

    PubMed

    Schmitz, Randy J; Harrison, David; Wang, Hsin-Min; Shultz, Sandra J

    2017-06-02

      Understanding the factors associated with thicker cartilage in a healthy population is important when developing strategies aimed at minimizing the cartilage thinning associated with knee osteoarthritis progression. Thicker articular cartilage is commonly thought to be healthier cartilage, but whether the sagittal-plane biomechanics important to gait are related to cartilage thickness is unknown.   To determine the relationship of a weight-bearing region of the medial femoral condyle's cartilage thickness to sagittal gait biomechanics in healthy individuals.   Descriptive laboratory study.   Laboratory.   Twenty-eight healthy participants (15 women: age = 21.1 ± 2.1 years, height = 1.63 ± 0.07 m, weight = 64.6 ± 9.9 kg; 13 men: age = 22.1 ± 2.9 years, height = 1.79 ± 0.05 m, weight = 75.2 ± 9.6 kg).   Tibiofemoral angle (°) was obtained via goniometric assessment, thickness of the medial femoral condyle cartilage (mm) was obtained via ultrasound imaging, and peak internal knee-extensor moment (% body weight · height) was measured during 10 trials of over-ground walking at a self-selected pace. We used linear regression to examine the extent to which peak internal knee-extensor moment predicted cartilage thickness after accounting for tibiofemoral angle and sex.   Sex and tibiofemoral angle (12.3° ± 3.2°) were entered in the initial step as control factors (R 2 = 0.01, P = .872). In the final step, internal knee-extensor moment (1.5% ± 1.3% body weight · height) was entered, which resulted in greater knee-extensor moment being related to greater cartilage thickness (2.0 ± 0.3 mm; R 2 Δ = 0.31, PΔ = .003).   Individuals who walked with a greater peak internal knee-extensor moment during gait had a cartilage structure that is generally considered beneficial in a healthy population. Our study offers promising findings that a potentially modifiable biomechanical factor is associated with cartilage status in a healthy population

  1. Sagittal-Plane Knee Moment During Gait and Knee Cartilage Thickness

    PubMed Central

    Harrison, David; Wang, Hsin-Min; Shultz, Sandra J.

    2017-01-01

    Context:  Understanding the factors associated with thicker cartilage in a healthy population is important when developing strategies aimed at minimizing the cartilage thinning associated with knee osteoarthritis progression. Thicker articular cartilage is commonly thought to be healthier cartilage, but whether the sagittal-plane biomechanics important to gait are related to cartilage thickness is unknown. Objective:  To determine the relationship of a weight-bearing region of the medial femoral condyle's cartilage thickness to sagittal gait biomechanics in healthy individuals. Design:  Descriptive laboratory study. Setting:  Laboratory. Patients or Other Participants:  Twenty-eight healthy participants (15 women: age = 21.1 ± 2.1 years, height = 1.63 ± 0.07 m, weight = 64.6 ± 9.9 kg; 13 men: age = 22.1 ± 2.9 years, height = 1.79 ± 0.05 m, weight = 75.2 ± 9.6 kg). Main Outcome Measure(s):  Tibiofemoral angle (°) was obtained via goniometric assessment, thickness of the medial femoral condyle cartilage (mm) was obtained via ultrasound imaging, and peak internal knee-extensor moment (% body weight · height) was measured during 10 trials of over-ground walking at a self-selected pace. We used linear regression to examine the extent to which peak internal knee-extensor moment predicted cartilage thickness after accounting for tibiofemoral angle and sex. Results:  Sex and tibiofemoral angle (12.3° ± 3.2°) were entered in the initial step as control factors (R2 = 0.01, P = .872). In the final step, internal knee-extensor moment (1.5% ± 1.3% body weight · height) was entered, which resulted in greater knee-extensor moment being related to greater cartilage thickness (2.0 ± 0.3 mm; R2Δ = 0.31, PΔ = .003). Conclusion:  Individuals who walked with a greater peak internal knee-extensor moment during gait had a cartilage structure that is generally considered beneficial in a healthy population. Our study offers promising findings that a

  2. Two level pedicle substraction osteotomies for the treatment of severe fixed sagittal plane deformity: computer software-assisted preoperative planning and assessing.

    PubMed

    Atici, Yunus; Akman, Yunus Emre; Balioglu, Mehmet Bulent; Kargin, Deniz; Kaygusuz, Mehmet Akif

    2016-08-01

    To evaluate the efficacy of two level pedicle substraction osteotomies (PSOs) planned preoperatively with a computer software, in the patients with severe fixed sagittal plane deformities. In the literature, there are studies indicating that two level PSOs may be required in severe cases. However, the results of two level PSOs preoperatively planned with computer software-assistance have not yet been reported in the English literature. Severe fixed sagittal plane deformities of 11 patients are described. Preoperative surgical planning was done with the aid of a computer software. Two level PSOs were indicated after the process. After the application of the indicated surgical technique, clinical and radiological results were evaluated in the preoperative, the early postoperative periods and during the last follow-up. The mean sagittal vertical axis was found as 190.5 (range 161-220) mm in the preoperative period, 23.5 (range -27 to 61) mm in the early postoperative period (P < 0.001) (87.7 % correction) and 34.5 (range -3 to 55) mm during the last follow-up (P < 0.001). The mean pelvic tilt (PT) significantly decreased from 38.3° (range 21°-63°) preoperatively to 23.8° (range 18°-42°) postoperatively (P = 0.008) and to 27.5° (range 17°-42°) during the last follow-up (P = 0.042). The mean lumbar lordosis (LL) was 2.8° (range -29° to 20°) preoperatively, -35.6° (range -54° to 23°) early postoperatively (P < 0.001) and -33.6° (range -52° to 20°) during the last follow-up (P < 0.001). The average amount of bleeding was 5345 (range 2600-7415) ml. Although a statistically significant correction was obtained, the mean PT and PI-LL value could not be restored in physiological limits during the last follow-up. Thus, two level PSOs performed after computer software (surgimap) assisted preoperative planning failed to correct severe fixed sagittal plane deformities. Besides, this procedure is of possible risks for major complications such as a

  3. Simple Harmonic Motion in Harmonic Plane Waves.

    ERIC Educational Resources Information Center

    Benumof, Reuben

    1980-01-01

    Discusses the distribution of kinetic and potential energy in transverse and longitudinal waves and examines the transmission of power and momentum. This discussion is intended to aid in understanding the simple harmonic motion of a particle involved in the propagation of a harmonic mechanical plane wave. (HM)

  4. Motion estimation in the frequency domain using fuzzy c-planes clustering.

    PubMed

    Erdem, C E; Karabulut, G Z; Yanmaz, E; Anarim, E

    2001-01-01

    A recent work explicitly models the discontinuous motion estimation problem in the frequency domain where the motion parameters are estimated using a harmonic retrieval approach. The vertical and horizontal components of the motion are independently estimated from the locations of the peaks of respective periodogram analyses and they are paired to obtain the motion vectors using a procedure proposed. In this paper, we present a more efficient method that replaces the motion component pairing task and hence eliminates the problems of the pairing method described. The method described in this paper uses the fuzzy c-planes (FCP) clustering approach to fit planes to three-dimensional (3-D) frequency domain data obtained from the peaks of the periodograms. Experimental results are provided to demonstrate the effectiveness of the proposed method.

  5. Male and female runners demonstrate different sagittal plane mechanics as a function of static hamstring flexibility.

    PubMed

    Williams, D S Blaise; Welch, Lee M

    2015-01-01

    Injuries to runners are common. However, there are many potential contributing factors to injury. While lack of flexibility alone is commonly related to injury, there are clear differences in hamstring flexibility between males and females. To compare the effect of static hamstring length on sagittal plane mechanics between male and female runners. Forty subjects (30.0±6.4 years) participated and were placed in one of 4 groups: flexible males (n=10), inflexible males (n=10), flexible females (n=10), and inflexible females (n=10). All subjects were free of injury at the time of data collection. Three-dimensional kinematics and kinetics were collected while subjects ran over ground across 2 force platforms. Sagittal plane joint angles and moments were calculated at the knee and hip and compared with a 2-way (sex X flexibility) ANOVA (α=0.05). Males exhibited greater peak knee extension moment than females (M=2.80±0.47, F=2.48±0.52 Nm/kg*m, p=0.05) and inflexible runners exhibited greater peak knee extension moment than flexible runners (In=2.83±0.56, Fl=2.44±0.51 Nm/kg*m, p=0.01). For hip flexion at initial contact, a significant interaction existed (p<0.05). Flexible females (36.7±7.4º) exhibited more hip flexion than inflexible females (27.9±4.6º, p<0.01) and flexible males (30.1±9.5º, p<0.05). No differences existed for knee angle at initial contact, peak knee angle, peak hip angle, or peak hip moment. Hamstring flexibility results in different mechanical profiles in males and females. Flexibility in the hamstrings may result in decreased moments via active or passive tension. These differences may have implications for performance and injury in flexible female runners.

  6. Male and female runners demonstrate different sagittal plane mechanics as a function of static hamstring flexibility

    PubMed Central

    Williams III, D. S. Blaise; Welch, Lee M.

    2015-01-01

    ABSTRACT Background: Injuries to runners are common. However, there are many potential contributing factors to injury. While lack of flexibility alone is commonly related to injury, there are clear differences in hamstring flexibility between males and females. Objective: To compare the effect of static hamstring length on sagittal plane mechanics between male and female runners. Method: Forty subjects (30.0±6.4 years) participated and were placed in one of 4 groups: flexible males (n=10), inflexible males (n=10), flexible females (n=10), and inflexible females (n=10). All subjects were free of injury at the time of data collection. Three-dimensional kinematics and kinetics were collected while subjects ran over ground across 2 force platforms. Sagittal plane joint angles and moments were calculated at the knee and hip and compared with a 2-way (sex X flexibility) ANOVA (α=0.05). Results: Males exhibited greater peak knee extension moment than females (M=2.80±0.47, F=2.48±0.52 Nm/kg*m, p=0.05) and inflexible runners exhibited greater peak knee extension moment than flexible runners (In=2.83±0.56, Fl=2.44±0.51 Nm/kg*m, p=0.01). For hip flexion at initial contact, a significant interaction existed (p<0.05). Flexible females (36.7±7.4º) exhibited more hip flexion than inflexible females (27.9±4.6º, p<0.01) and flexible males (30.1±9.5º, p<0.05). No differences existed for knee angle at initial contact, peak knee angle, peak hip angle, or peak hip moment. Conclusion: Hamstring flexibility results in different mechanical profiles in males and females. Flexibility in the hamstrings may result in decreased moments via active or passive tension. These differences may have implications for performance and injury in flexible female runners. PMID:26537812

  7. A gait retraining system using augmented-reality to modify footprint parameters: Effects on lower-limb sagittal-plane kinematics.

    PubMed

    Bennour, Sami; Ulrich, Baptiste; Legrand, Thomas; Jolles, Brigitte M; Favre, Julien

    2018-01-03

    Improving lower-limb flexion/extension angles during walking is important for the treatment of numerous pathologies. Currently, these gait retraining procedures are mostly qualitative, often based on visual assessment and oral instructions. This study aimed to propose an alternative method combining motion capture and display of target footprints on the floor. The second objectives were to determine the error in footprint modifications and the effects of footprint modifications on lower-limb flexion/extension angles. An augmented-reality system made of an optoelectronic motion capture device and video projectors displaying target footprints on the floor was designed. 10 young healthy subjects performed a series of 27 trials, consisting of increased and decreased amplitudes in stride length, step width and foot progression angle. 11 standard features were used to describe and compare lower-limb flexion/extension angles among footprint modifications. Subjects became accustomed to walk on target footprints in less than 10 min, with mean (± SD) precision of 0.020 ± 0.002 m in stride length, 0.022 ± 0.006 m in step width, and 2.7 ± 0.6° in progression angle. Modifying stride length had significant effects on 3/3 hip, 2/4 knee and 4/4 ankle features. Similarly, step width and progression angle modifications affected 2/3 and 1/3 hip, 2/4 and 1/4 knee as well as 3/4 and 2/4 ankle features, respectively. In conclusion, this study introduced an augmented-reality method allowing healthy subjects to modify their footprint parameters rapidly and precisely. Walking with modified footprints changed lower-limb sagittal-plane kinematics. Further research is needed to design rehabilitation protocols for specific pathologies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Sagittal plane analysis of the spine and pelvis in degenerative lumbar scoliosis.

    PubMed

    Han, Fei; Weishi, Li; Zhuoran, Sun; Qingwei, Ma; Zhongqiang, Chen

    2017-01-01

    Previous studies have reported the normative values of pelvic sagittal parameters, but no study has analyzed the sagittal spino-pelvic alignment in degenerative lumbar scoliosis (DLS) and its role in the pathogenesis. Retrospective analysis was applied to 104 patients with DLS, together with 100 cases of asymptomatic young adults as a control group and another control group consisting of 145 cases with cervical spondylosis. The coronal and sagittal parameters were measured on the anteroposterior and lateral radiograph of the whole spine in the DLS group as well as in the two control groups. Statistical analysis showed that the DLS group had a higher pelvic incidence (PI) value (50.5° ± 10.2°), than the normal control group (with PI 47.2° ± 8.8°) and the cervical spondylosis group (46.9° ± 9.1°). In DLS group, there were 38 cases (36.5%) complicated with degenerative lumbar spondylolisthesis, who had higher PI values than patients without it. Besides, the lumbar lordosis (LL) and sacral slope (SS) of DLS group were lower; the scoliosis Cobb's angle was correlated with pelvic tilt (PT); thoracic kyphosis was correlated with LL, SS, and PT; and LL was correlated with other sagittal parameters. Patients with DLS may have a higher PI, which may impact the pathogenesis of DLS. A high PI value is probably associated with the high prevalence of degenerative lumbar spondylolisthesis among DLS patients. In DLS patients, the lumbar spine maintains the ability of regulating the sagittal balance, and the regulation depends more on thoracic curve.

  9. Training intensity and sagittal curvature of the spine in male and female artistic gymnasts.

    PubMed

    Sanz-Mengibar, Jose M; Sainz-de-Baranda, Pilar; Santonja-Medina, Fernando

    2018-04-01

    Specific adaptations of the spine in the sagittal plane have been described according to different sports disciplines. The goal of this study was to describe the integrative diagnosis of the sagittal morphotype of the spine in male and female artistic gymnasts. Forty-eight gymnasts were measured with an inclinometer. Thoracic and lumbar curves were quantified in standing position, in Sit and Reach and Slump Sitting in order to assess the sagittal spine posture and analyze if adaptations were related to training intensity. Correlation values of the sagittal plane spine measurements showed significantly increased thoracic kyphosis in men (-0.445, P<0.001). No significant correlations have been found between training hours per year or training volume and any measurements of the spine on the sagittal plane. When data from the two sitting tests were integrated, 62.5% of gymnasts had a functional thoracic kyphosis and 39.6% had lumbar kyphotic attitude. Our hypothesis has only been partially confirmed, because training intensity did not influence the sagittal curvatures in artistic gymnastics; however, this sport seems to cause specific adaptations in postural hypolordosis, functional thoracic kyphosis and lumbar kyphotic attitude during sitting and trunk flexion. The implications of the functional adaptations observed in our results may require a preventive intervention in male and female artistic gymnasts can be assessed with the integrative diagnosis of the sagittal morphotype of the spine.

  10. On motions of a carrier with a mobile load along a rough inclined plane

    NASA Astrophysics Data System (ADS)

    Bilchenko, Grigory; Bilchenko, Grigory; Bilchenko, Nataly

    2018-05-01

    A mechanical system consisting of a carrier and a load is considered. The load can move respectively to the carrier according to a predetermined motion law. The carrier can move translationally along a rectilinear trajectory on a rough inclined plane. The trajectory is the line of the greatest descent. The axis of the rectilinear channel, along which the load moves, is located in a vertical plane passing through the trajectory of the carrier. The Coulomb dry friction model is applied for simulation the forces of resistance to the motion of the carrier from the side of the underlying inclined plane. The extreme value of plane inclination angle at which the carrier is at rest, when the load is stationary, is obtained by taking into account the frictional forces of sliding at rest. Differential equations of motion of a carrier with a load moving with respect to the carrier are obtained taking into account the requirement of motion of the carrier along an inclined plane without detachment. The determining relationships are given which made it possible to classify the types of carrier motion when the channel setting angle and the plane inclination angle are related by a certain inequality. The results of computational experiments are presented.

  11. Does Knee Osteoarthritis Differentially Modulate Proprioceptive Acuity in the Frontal and Sagittal Planes of the Knee?

    PubMed Central

    Cammarata, Martha L; Schnitzer, Thomas J; Dhaher, Yasin Y

    2012-01-01

    Objective Impaired proprioception may alter joint loading and contribute to the progression of knee osteoarthritis (OA). Though frontal plane loading at the knee contributes to OA, proprioception and its modulation with OA in this direction have not been examined. The aim of this study was to assess knee proprioceptive acuity in the frontal and sagittal planes in knee OA and healthy participants. We hypothesized that proprioceptive acuity will be decreased in the OA population in both planes of movement. Methods Thirteen persons with knee OA and fourteen healthy age-matched subjects participated. Proprioceptive acuity was assessed in varus, valgus, flexion, and extension using the threshold to detection of passive movement (TDPM). Repeated measures analysis of variance was used to assess differences in TDPM between subject groups and across movement directions. Linear regression analyses were performed to assess the correlation of TDPM between and within planes of movement. Results TDPM was found to be significantly higher (P<0.05), in the knee OA group compared to the control group for all directions tested, indicating reduced proprioceptive acuity. Differences in TDPM between groups were consistent across all movement directions, with mean difference (95% CI) for valgus: 0.94° (0.20°, 1.65°), varus: 0.92° (0.18°, 1.68°), extension: 0.93° (0.19°, 1.66°), and flexion: 1.11° (0.38°, 1.85°). TDPM measures across planes of movement were only weakly correlated, especially in the OA group. Conclusions Consistent differences in TDPM between the OA and control groups across all movement directions suggest a global, not direction-specific, reduction in sensation in knee OA patients. PMID:21547895

  12. Two case reports-Use of relative motion orthoses to manage extensor tendon zones III and IV and sagittal band injuries in adjacent fingers.

    PubMed

    Hirth, Melissa J; Howell, Julianne W; O'Brien, Lisa

    Case report. Injuries to adjacent fingers with differing extensor tendon (ET) zones and/or sagittal band pose a challenge to therapists as no treatment guidelines exist. This report highlights how the relative motion flexion/extension (RMF/RME) concepts were combined into one orthosis to manage a zone IV ET repair (RME) and a zone III central slip repair (RMF) in adjacent fingers (Case 1); and how a single RME orthosis was adapted to limit proximal interphalangeal joint motion to manage multi-level ET zone III-IV injuries and a sagittal band repair in adjacent fingers (case 2). Adapted relative motion orthoses allowed early active motion and graded exercises based on clinical reasoning and evidence. Outcomes were standard TAM% and Miller's criteria. 'Excellent' and 'good' outcomes were achieved by twelve weeks post surgery. Both cases returned to unrestricted work at 6 and 7 weeks. Neither reported functional deficits at discharge. Outcomes in 2 cases involving multiple digit injuries exceeded those previously reported for ET zone III-IV repairs. Relative motion orthoses can be adapted and applied to multi-finger injuries, eliminating the need for multiple, bulky or functionally-limiting orthoses. 4. Copyright © 2017 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  13. Sonographic evaluation of tongue motions during upper airway stimulation for obstructive sleep apnea-a pilot study.

    PubMed

    Hofauer, Benedikt; Strohl, Kingman; Knopf, Andreas; Bas, Murat; Wirth, Markus; Stock, Konrad; Heiser, Clemens

    2017-03-01

    The objective was to evaluate the feasibility of sonographic evaluation of functional tongue motion as a tool to evaluate postoperative outcomes in human subjects using breathing-synchronized stimulation of the hypoglossal nerve-a novel therapy option for patients with obstructive sleep apnea (OSA). Sixteen patients with OSA (n = 16, age 60.4 ± 10.2, BMI 28.7 ± 2.4, AHI 35.0 ± 11.8) underwent sonographic evaluation of tongue motion after initiation of therapy with the Inspire II Upper Airway Stimulation system. Sonographic examination was performed in four different planes (A = floor of the mouth frontal, B = base of the tongue horizontal, C = floor of the mouth parallel to mandible, and D = floor of the mouth median sagittal) in an attempt to visualize tongue surface, tongue and hyoid motion, and the distance of protrusion. Identification of the tongue surface was achieved in all cases in planes B, C, and D and 81 % of patients in plane A. Tongue motion was evident on the right (implant) side in 63 % in plane A and 75 % in plane B. Distance of protrusion was measured in plane B at 1.04 cm (±0.51), in plane C at 1.08 cm (±0.47), and in plane D at 0.96 cm (±0.45). Hyoid protrusion was measured in plane C or D and was 0.57 cm (±0.39). Significant correlations among the three planes were observed, but there was no correlation to the reduction of apnea-hypopnea index. The results indicate feasibility of sonography to identify tongue and hyoid motions during upper airway stimulation. Useful sonographic planes and landmarks, which allow visualization of dynamic effects of upper airway stimulation, could be established. The evaluation of the tongue in a horizontal (B) and in a sagittal plane (D) appears to be superior to the other investigated planes. The approximate tongue protrusion needed to generate a significant reduction of AHI and ODI was 1 cm.

  14. Making planes plain.

    PubMed

    O'Rahilly, R

    1997-01-01

    The major anatomical planes (horizontal, coronal, and sagittal, including the median plane) are discussed from a historical perspective, and their correct usage is clarified. Unofficial and unnecessary terms to be avoided (for reasons explained) include midsagittal, parasagittal, and midline.

  15. Piecewise-Planar StereoScan: Sequential Structure and Motion using Plane Primitives.

    PubMed

    Raposo, Carolina; Antunes, Michel; P Barreto, Joao

    2017-08-09

    The article describes a pipeline that receives as input a sequence of stereo images, and outputs the camera motion and a Piecewise-Planar Reconstruction (PPR) of the scene. The pipeline, named Piecewise-Planar StereoScan (PPSS), works as follows: the planes in the scene are detected for each stereo view using semi-dense depth estimation; the relative pose is computed by a new closed-form minimal algorithm that only uses point correspondences whenever plane detections do not fully constrain the motion; the camera motion and the PPR are jointly refined by alternating between discrete optimization and continuous bundle adjustment; and, finally, the detected 3D planes are segmented in images using a new framework that handles low texture and visibility issues. PPSS is extensively validated in indoor and outdoor datasets, and benchmarked against two popular point-based SfM pipelines. The experiments confirm that plane-based visual odometry is resilient to situations of small image overlap, poor texture, specularity, and perceptual aliasing where the fast LIBVISO2 pipeline fails. The comparison against VisualSfM+CMVS/PMVS shows that, for a similar computational complexity, PPSS is more accurate and provides much more compelling and visually pleasant 3D models. These results strongly suggest that plane primitives are an advantageous alternative to point correspondences for applications of SfM and 3D reconstruction in man-made environments.

  16. Image-Guided Internal Fixation of an Oblique Sagittal Split Fracture of C1 Lateral Mass with Motion Preservation: A Technical Report

    PubMed Central

    Malcolm, James G; Johnson, Andrew K

    2017-01-01

    A sagittal split fracture of the C1 lateral mass is an unstable subtype of C1 fractures and has a high propensity for developing late deformities and pain with nonoperative management. A primary internal fixation of this type of fracture has been recently described with good clinical outcomes and preservation of motion. We present a modified technique of primary internal fixation using an obliquely inserted C1 lag screw with imaging guidance. We successfully treated a 55-year-old woman with a unilateral C1 oblique sagittal split fracture who failed nonoperative management. Technical nuances are discussed with a review of pertinent literature. PMID:28948116

  17. Image-Guided Internal Fixation of an Oblique Sagittal Split Fracture of C1 Lateral Mass with Motion Preservation: A Technical Report.

    PubMed

    Malcolm, James G; Tan, Lee A; Johnson, Andrew K

    2017-07-20

    A sagittal split fracture of the C1 lateral mass is an unstable subtype of C1 fractures and has a high propensity for developing late deformities and pain with nonoperative management. A primary internal fixation of this type of fracture has been recently described with good clinical outcomes and preservation of motion. We present a modified technique of primary internal fixation using an obliquely inserted C1 lag screw with imaging guidance. We successfully treated a 55-year-old woman with a unilateral C1 oblique sagittal split fracture who failed nonoperative management. Technical nuances are discussed with a review of pertinent literature.

  18. Spatial filtering velocimetry of objective speckles for measuring out-of-plane motion.

    PubMed

    Jakobsen, M L; Yura, H T; Hanson, S G

    2012-03-20

    This paper analyzes the dynamics of objective laser speckles as the distance between the object and the observation plane continuously changes. With the purpose of applying optical spatial filtering velocimetry to the speckle dynamics, in order to measure out-of-plane motion in real time, a rotational symmetric spatial filter is designed. The spatial filter converts the speckle dynamics into a photocurrent with a quasi-sinusoidal response to the out-of-plane motion. The spatial filter is here emulated with a CCD camera, and is tested on speckles arising from a real application. The analysis discusses the selectivity of the spatial filter, the nonlinear response between speckle motion and observation distance, and the influence of the distance-dependent speckle size. Experiments with the emulated filters illustrate performance and potential applications of the technology. © 2012 Optical Society of America

  19. Comparison of the trunk-pelvis and lower extremities sagittal plane inter-segmental coordination and variability during walking in persons with and without chronic low back pain.

    PubMed

    Ebrahimi, Samaneh; Kamali, Fahimeh; Razeghi, Mohsen; Haghpanah, Seyyed Arash

    2017-04-01

    Inter-segmental coordination can be influenced by chronic low back pain (CLBP). The sagittal plane lower extremities inter-segmental coordination pattern and variability, in conjunction with the pelvis and trunk, were assessed in subjects with and without non-specific CLBP during free-speed walking. Kinematic data were collected from 10 non-specific CLBP and 10 non-CLBP control volunteers while the subjects were walking at their preferred speed. Sagittal plane time-normalized segmental angles and velocities were used to calculate continuous relative phase for each data point. Mean absolute relative phase (MARP) and deviation phase (DP) were derived to quantify the trunk-pelvis and bilateral pelvis-thigh, thigh-shank and shank-foot coordination pattern and variability over the stance and swing phases of gait. Mann-Whitney U test was employed to compare the means of DP and MARP values between two groups (same side comparison). Statistical analysis revealed more in-phase/less variable trunk-pelvis coordination in the CLBP group (P<0.05). CLBP group demonstrated less variable right or left pelvis-thigh coordination pattern (P<0.05). Moreover, the left thigh-shank and left shank-foot MARP values in the CLBP group, were more in-phase than left MARP values in the non-CLBP control group during the swing phase (P<0.05). In conclusion, the sagittal plane lower extremities, pelvis and trunk coordination pattern and variability could be generally affected by CLBP during walking. These changes can be possible compensatory strategies of the motor control system which can be considered in the CLBP subjects. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Measurement and Finite Element Model Validation of Immature Porcine Brain-Skull Displacement during Rapid Sagittal Head Rotations.

    PubMed

    Pasquesi, Stephanie A; Margulies, Susan S

    2018-01-01

    Computational models are valuable tools for studying tissue-level mechanisms of traumatic brain injury, but to produce more accurate estimates of tissue deformation, these models must be validated against experimental data. In this study, we present in situ measurements of brain-skull displacement in the neonatal piglet head ( n  = 3) at the sagittal midline during six rapid non-impact rotations (two rotations per specimen) with peak angular velocities averaging 51.7 ± 1.4 rad/s. Marks on the sagittally cut brain and skull/rigid potting surfaces were tracked, and peak values of relative brain-skull displacement were extracted and found to be significantly less than values extracted from a previous axial plane model. In a finite element model of the sagittally transected neonatal porcine head, the brain-skull boundary condition was matched to the measured physical experiment data. Despite smaller sagittal plane displacements at the brain-skull boundary, the corresponding finite element boundary condition optimized for sagittal plane rotations is far less stiff than its axial counterpart, likely due to the prominent role of the boundary geometry in restricting interface movement. Finally, bridging veins were included in the finite element model. Varying the bridging vein mechanical behavior over a previously reported range had no influence on the brain-skull boundary displacements. This direction-specific sagittal plane boundary condition can be employed in finite element models of rapid sagittal head rotations.

  1. Measurement and Finite Element Model Validation of Immature Porcine Brain–Skull Displacement during Rapid Sagittal Head Rotations

    PubMed Central

    Pasquesi, Stephanie A.; Margulies, Susan S.

    2018-01-01

    Computational models are valuable tools for studying tissue-level mechanisms of traumatic brain injury, but to produce more accurate estimates of tissue deformation, these models must be validated against experimental data. In this study, we present in situ measurements of brain–skull displacement in the neonatal piglet head (n = 3) at the sagittal midline during six rapid non-impact rotations (two rotations per specimen) with peak angular velocities averaging 51.7 ± 1.4 rad/s. Marks on the sagittally cut brain and skull/rigid potting surfaces were tracked, and peak values of relative brain–skull displacement were extracted and found to be significantly less than values extracted from a previous axial plane model. In a finite element model of the sagittally transected neonatal porcine head, the brain–skull boundary condition was matched to the measured physical experiment data. Despite smaller sagittal plane displacements at the brain–skull boundary, the corresponding finite element boundary condition optimized for sagittal plane rotations is far less stiff than its axial counterpart, likely due to the prominent role of the boundary geometry in restricting interface movement. Finally, bridging veins were included in the finite element model. Varying the bridging vein mechanical behavior over a previously reported range had no influence on the brain–skull boundary displacements. This direction-specific sagittal plane boundary condition can be employed in finite element models of rapid sagittal head rotations. PMID:29515995

  2. Recurrence plots and recurrence quantification analysis of human motion data

    NASA Astrophysics Data System (ADS)

    Josiński, Henryk; Michalczuk, Agnieszka; Świtoński, Adam; Szczesna, Agnieszka; Wojciechowski, Konrad

    2016-06-01

    The authors present exemplary application of recurrence plots, cross recurrence plots and recurrence quantification analysis for the purpose of exploration of experimental time series describing selected aspects of human motion. Time series were extracted from treadmill gait sequences which were recorded in the Human Motion Laboratory (HML) of the Polish-Japanese Academy of Information Technology in Bytom, Poland by means of the Vicon system. Analysis was focused on the time series representing movements of hip, knee, ankle and wrist joints in the sagittal plane.

  3. The use of the T1 sagittal angle in predicting overall sagittal balance of the spine.

    PubMed

    Knott, Patrick T; Mardjetko, Steven M; Techy, Fernando

    2010-11-01

    A balanced sagittal alignment of the spine has been shown to strongly correlate with less pain, less disability, and greater health status scores. To restore proper sagittal balance, one must assess the position of the occiput relative to the sacrum. The assessment of spinal balance preoperatively can be challenging, whereas predicting postoperative balance is even more difficult. This study was designed to evaluate and quantify multiple factors that influence sagittal balance. Retrospective analysis of existing spinal radiographs. A retrospective review of 52 adult spine patient records was performed. All patients had full-column digital radiographs that showed all the important skeletal landmarks necessary for accurate measurement. The average age of the patient was 53 years. Both genders were equally represented. The radiographs were measured using standard techniques to obtain the following parameters: scoliosis in the coronal plane; lordosis or kyphosis of the cervical, thoracic, and lumbar spine; the T1 sagittal angle (angle between a horizontal line and the superior end plate of T1); the angle of the dens in the sagittal plane; the angle of the dens in relation to the occiput; the sacral slope; the pelvic incidence; the femoral-sacral angle; and finally, the sagittal vertical axis (SVA) measured from both the dens of C2 and from C7. It was found that the SVA when measured from the dens was on average 16 mm farther forward than the SVA measured from C7 (p<.0001). The dens plumb line (SVA(dens)) was then used in the study. An analysis was done to examine the relationship between SVA(dens) and each of the other measurements. The T1 sagittal angle was found to have a moderate positive correlation (r=0.65) with SVA(dens), p<.0001, indicating that the amount of sagittal T1 tilt can be used as a good predictor of overall sagittal balance. When examining the other variables, it was found that cervical lordosis had a weak correlation (r=0.37) with SVA(dens) that was

  4. 3D knee segmentation based on three MRI sequences from different planes.

    PubMed

    Zhou, L; Chav, R; Cresson, T; Chartrand, G; de Guise, J

    2016-08-01

    In clinical practice, knee MRI sequences with 3.5~5 mm slice distance in sagittal, coronal, and axial planes are often requested for the knee examination since its acquisition is faster than high-resolution MRI sequence in a single plane, thereby reducing the probability of motion artifact. In order to take advantage of the three sequences from different planes, a 3D segmentation method based on the combination of three knee models obtained from the three sequences is proposed in this paper. In the method, the sub-segmentation is respectively performed with sagittal, coronal, and axial MRI sequence in the image coordinate system. With each sequence, an initial knee model is hierarchically deformed, and then the three deformed models are mapped to reference coordinate system defined by the DICOM standard and combined to obtain a patient-specific model. The experimental results verified that the three sub-segmentation results can complement each other, and their integration can compensate for the insufficiency of boundary information caused by 3.5~5 mm gap between consecutive slices. Therefore, the obtained patient-specific model is substantially more accurate than each sub-segmentation results.

  5. Comparison of Multisegmental Foot and Ankle Motion Between Total Ankle Replacement and Ankle Arthrodesis in Adults.

    PubMed

    Seo, Sang Gyo; Kim, Eo Jin; Lee, Doo Jae; Bae, Kee Jeong; Lee, Kyoung Min; Lee, Dong Yeon

    2017-09-01

    Total ankle replacement (TAR) and ankle arthrodesis (AA) are usually performed for severe ankle arthritis. We compared postoperative foot segmental motion during gait in patients treated with TAR and AA. Gait analysis was performed in 17 and 7 patients undergoing TAR and AA, respectively. Subjects were evaluated using a 3-dimensional multisegmental foot model with 15 markers. Temporal gait parameters were calculated. The maximum and minimum values and the differences in hallux, forefoot, hindfoot, and arch in 3 planes (sagittal, coronal, transverse) were compared between the 2 groups. One hundred healthy adults were evaluated as a control. Gait speed was faster in the TAR ( P = .028). On analysis of foot and ankle segmental motion, the range of hindfoot sagittal motion was significantly greater in the TAR (15.1 vs 10.2 degrees in AA; P = .004). The main component of motion increase was hindfoot dorsiflexion (12.3 and 8.6 degrees). The range of forefoot sagittal motion was greater in the TAR (9.3 vs 5.8 degrees in AA; P = .004). Maximum ankle power in the TAR (1.16) was significantly higher than 0.32 in AA; P = .008). However, the range of hindfoot and forefoot sagittal motion was decreased in both TAR and AA compared with the control group ( P = .000). Although biomechanical results of TAR and AA were not similar to those in the normal controls, joint motions in the TAR more closely matched normal values. Treatment decision making should involve considerations of the effect of surgery on the adjacent joints. Level III, case-control study.

  6. Effects of myofascial release leg pull and sagittal plane isometric contract-relax techniques on passive straight-leg raise angle.

    PubMed

    Hanten, W P; Chandler, S D

    1994-09-01

    Experimental evidence does not currently exist to support the claims of clinical effectiveness for myofascial release techniques. This presents an obvious need to document the effects of myofascial release. The purpose of this study was to compare the effects of two techniques, sagittal plane isometric contract-relax and myofascial release leg pull for increasing hip flexion range of motion (ROM) as measured by the angle of passive straight-leg raise. Seventy-five nondisabled, female subjects 18-29 years of age were randomly assigned to contract-relax, leg pull, or control groups. Pretest hip flexion ROM was measured for each subject's right hip with a passive straight-leg raise test using a fluid-filled goniometer. Subjects in the treatment groups received either contract-relax or leg pull treatment applied to the right lower extremity; subjects in the control group remained supine quietly for 5 minutes. Following treatment, posttest straight-leg raise measurements were performed. A one-way analysis of variance followed by a Newman-Keuls post hoc comparison of mean gain scores showed that subjects receiving contract-relax treatment increased their ROM significantly more than those who received leg pull treatment, and the increase in ROM of subjects in both treatment groups was significantly higher than those of the control group. The results suggest that while both contract-relax and leg pull techniques can significantly increase hip flexion ROM in normal subjects, contract-relax treatment may be more effective and efficient than leg pull treatment.

  7. The effect of sinusoidal rolling ground motion on lifting biomechanics.

    PubMed

    Ning, Xiaopeng; Mirka, Gary A

    2010-12-01

    The objective of this study was to quantify the effects of ground surface motion on the biomechanical responses of a person performing a lifting task. A boat motion simulator (BMS) was built to provide a sinusoidal ground motion (simultaneous vertical linear translation and a roll angular displacement) that simulates the deck motion on a small fishing boat. Sixteen participants performed lifting, lowering and static holding tasks under conditions of two levels of mass (5 and 10 kg) and five ground moving conditions. Each ground moving condition was specified by its ground angular displacement and instantaneous vertical acceleration: A): +6°, -0.54 m/s(2); B): +3°, -0.27 m/s(2); C): 0°, 0m/s(2); D): -3°, 0.27 m/s(2); and E): -6°, 0.54 m/s(2). As they performed these tasks, trunk kinematics were captured using the lumbar motion monitor and trunk muscle activities were evaluated through surface electromyography. The results showed that peak sagittal plane angular acceleration was significantly higher in Condition A than in Conditions C, D and E (698°/s(2) vs. 612-617°/s(2)) while peak sagittal plane angular deceleration during lowering was significantly higher in moving conditions (conditions A and E) than in the stationary condition C (538-542°/s(2) vs. 487°/s(2)). The EMG results indicate that the boat motions tend to amplify the effects of the slant of the lifting surface and the external oblique musculature plays an important role in stabilizing the torso during these dynamic lifting tasks. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Evaluating Stiffness of Fibreglass and Thermoplastic Splint Materials and Inter-fragmentary Motion in a Canine Tibial Fracture Model.

    PubMed

    Wagoner, Amanda L; Allen, Matthew J; Zindl, Claudia; Litsky, Alan; Orsher, Robert; Ben-Amotz, Ron

    2018-04-16

     Various materials are used to construct splints for mid-diaphyseal tibial fracture stabilization. The objective of this study was to compare construct stiffness and inter-fragmentary bone motion when fibreglass (FG) or thermoplastic (TP) splints are applied to either the lateral or cranial aspect of the tibia in a mid-diaphyseal fracture model.  A coaptation bandage was applied to eight cadaveric canine pelvic limbs, with a custom-formed splint made of either FG or TP material applied to either the lateral or cranial aspect of the osteotomized tibia. Four-point bending tests were performed to evaluate construct stiffness and inter-fragmentary motion in both frontal and sagittal planes.  For a given material, FG or TP, construct stiffness was not affected by splint location. Construct stiffness was significantly greater with cranial FG splints than with cranial TP splints ( p  < 0.05), but this difference was not significant when comparing splints applied laterally ( p  = 0.15). Inter-fragmentary motions in the sagittal and frontal planes were similar across splint types for cranial splints, but for lateral splints there was a 64% reduction in frontal plane motion when FG was used as the splint material ( p  = 0.03).  FG produces a stiffer construct, but the difference is not reflected in a reduction in inter-fragmentary motion. For lateral splints, FG splints are associated with reduced inter-fragmentary motion as compared with TP and may therefore have slight superiority for this application. Schattauer GmbH Stuttgart.

  9. Localized, Non-Harmonic Active Flap Motions for Low Frequency In-Plane Rotor Noise Reduction

    NASA Technical Reports Server (NTRS)

    Sim, Ben W.; Potsdam, Mark; Kitaplioglu, Cahit; LeMasurier, Philip; Lorber, Peter; Andrews, Joseph

    2012-01-01

    A first-of-its-kind demonstration of the use of localized, non-harmonic active flap motions, for suppressing low frequency, in-plane rotor noise, is reported in this paper. Operational feasibility is verified via testing of the full-scale AATD/Sikorsky/UTRC active flap demonstration rotor in the NFAC's 40- by 80-Foot anechoic wind tunnel. Effectiveness of using localized, non-harmonic active flap motions are compared to conventional four-per-rev harmonic flap motions, and also active flap motions derived from closed-loop acoustics implementations. All three approaches resulted in approximately the same noise reductions over an in-plane three-by-three microphone array installed forward and near in-plane of the rotor in the nearfield. It is also reported that using an active flap in this localized, non-harmonic manner, resulted in no more that 2% rotor performance penalty, but had the tendency to incur higher hub vibration levels.

  10. Knee motion variability in patients with knee osteoarthritis: the effect of self-reported instability

    PubMed Central

    Gustafson, Jonathan A.; Robinson, Megan E.; Fitzgerald, G. Kelley; Tashman, Scott; Farrokhi, Shawn

    2015-01-01

    Background Knee osteoarthritis has been previously associated with a stereotypical knee-stiffening gait pattern and reduced knee joint motion variability due to increased antagonist muscle co-contractions and smaller utilized arc of motion during gait. However, episodic self-reported instability may be a sign of excessive motion variability for a large subgroup of patients with knee osteoarthritis. The objective of this work was to evaluate the differences in knee joint motion variability during gait in patients with knee osteoarthritis with and without self-reported instability compared to a control group of older adults with asymptomatic knees. Methods Forty-three subjects, 8 with knee osteoarthritis but no reports of instability (stable), 11 with knee osteoarthritis and self-reported instability (unstable), and 24 without knee osteoarthritis or instability (control) underwent Dynamic Stereo X-ray analysis during a decline gait task on a treadmill. Knee motion variability was assessed using parametric phase plots during the loading response phase of decline gait. Findings The stable group demonstrated decreased sagittal-plane motion variability compared to the control group (p=0.04), while the unstable group demonstrated increased sagittal-plane motion variability compared to the control (p=0.003) and stable groups (p<0.001). The unstable group also demonstrated increased anterior-posterior joint contact point motion variability for the medial tibiofemoral compartment compared to the control (p=0.03) and stable groups (p=0.03). Interpretation The finding of decreased knee motion variability in patients with knee osteoarthritis without self-reported instability supports previous research. However, presence of self-reported instability is associated with increased knee motion variability in patients with knee osteoarthritis and warrants further investigation. PMID:25796536

  11. The effects of the sagittal plane malpositioning of the patella and concomitant quadriceps hypotrophy on the patellofemoral joint: a finite element analysis.

    PubMed

    Aksahin, Ertugrul; Kocadal, Onur; Aktekin, Cem N; Kaya, Defne; Pepe, Murad; Yılmaz, Serdar; Yuksel, H Yalcin; Bicimoglu, Ali

    2016-03-01

    Anterior knee pain is a common symptom after intramedullary nailing in tibia shaft fracture. Moreover, patellofemoral malalignment is also known to be a major reason for anterior knee pain. Patellofemoral malalignment predisposes to increased loading in patellar cartilage. In the previous study, we have demonstrated the quadriceps atrophy and patellofemoral malalignment after intramedullary nailing due to tibia shaft fracture. In this study, our aim was to clarify the effects of quadriceps atrophy and patellofemoral malalignment with the pathologic loading on the joint cartilage. Mesh models of patellofemoral joint were constructed with CT images and integrated with soft tissue components such as menisci and ligaments. Physiological and sagittal tilt models during extension and flexion at 15°, 30° and 60° were created generating eight models. All the models were applied with 137 N force to present the effects of normal loading and 115.7 N force for the simulation of quadriceps atrophy. Different degrees of loading were applied to evaluate the joint contact area and pressure value with the finite element analysis. There was increased patellofemoral contact area in patellar tilt models with respect to normal models. The similar loading patterns were diagnosed in all models at 0° and 15° knee flexion when 137 N force was applied. Higher loading values were obtained at 30° and 60° knee flexions in sagittal tilt models. Furthermore, in the sagittal tilt models, in which the quadriceps atrophy was simulated, the loadings at 30° and 60° knee flexion were higher than in the physiological ones. Sagittal malalignment of the patellofemoral joint is a new concept that results in different loading patterns in the patellofemoral joint biomechanics. This malalignment in sagittal plane leads to increased loading values on the patellofemoral joint at 30° and 60° of the knee flexions. This new concept should be kept in mind during the course of diagnosis and treatment

  12. The size of the supraspinatus outlet during elevation of the arm in the frontal and sagittal plane: a 3-D model study.

    PubMed

    Meskers, Carel G M; van der Helm, Frans C T; Rozing, Piet M

    2002-05-01

    To quantify the size of the supraspinatus outlet as it is dictated by both the three-dimensional geometry of the shoulder and the relative orientation of the humerus with respect to the scapula during motions of the arm. Previously obtained data of shoulder kinematics were brought into a geometrical model of the shoulder, derived from a cadaver study. Knowledge of the parameters dictating the size of the supraspinatus outlet is essential for a better understanding of the impingement syndrome of the shoulder. A geometrical model, based on fitting spheres to various anatomical items of the shoulder was derived from three-dimensional position data of the gleno-humeral joint and coraco-acromial arch of 32 cadaver shoulders. Kinematical data were collected from 10 healthy volunteers. The geometrical and kinematical data were combined to study the supraspinatus outlet during elevation of the humerus in the frontal and sagittal plane. No single geometry parameter correlated significantly with the initial size of the outlet. During arm elevation, the greater tuberosity was moved away from the coraco-acromial arch quite effectively resulting in narrowing of the outlet during elevation in the frontal plane from 60 degrees to 120 degrees only. Deviations from the average were quite substantial. This was caused by kinematical and especially geometrical variability. The size of the outlet is dictated by both the geometry and kinematics of the gleno-humeral joint. Assessment of the individual susceptibility to impingement requires three-dimensional viewing techniques including three-dimensional movements of both the scapula and humerus. Little is known about etiology and pathogenesis of various shoulder disorders such as the impingement syndrome. The supraspinatus outlet plays probably a key role. More knowledge on the architecture of the outlet is required for a better understanding.

  13. Sagittal plane bending moments acting on the lower leg during running.

    PubMed

    Haris Phuah, Affendi; Schache, Anthony G; Crossley, Kay M; Wrigley, Tim V; Creaby, Mark W

    2010-02-01

    Sagittal bending moments acting on the lower leg during running may play a role in tibial stress fracture development. The purpose of this study was to evaluate these moments at nine equidistant points along the length of the lower leg (10% point-90% point) during running. Kinematic and ground reaction force data were collected for 20 male runners, who each performed 10 running trials. Inverse dynamics and musculoskeletal modelling techniques were used to estimate sagittal bending moments due to reaction forces and muscle contraction. The muscle moment was typically positive during stance, except at the most proximal location (10% point) on the lower leg. The reaction moment was predominantly negative throughout stance and greater in magnitude than the muscle moment. Hence, the net sagittal bending moment acting on the lower leg was principally negative (indicating tensile loads on the posterior tibia). Peak moments typically occurred around mid-stance, and were greater in magnitude at the distal, compared with proximal, lower leg. For example, the peak reaction moment at the most distal point was -9.61+ or - 2.07%Bw.Ht., and -2.73 + or - 1.18%Bw.Ht. at the most proximal point. These data suggest that tensile loads on the posterior tibia are likely to be higher toward the distal end of the bone. This finding may explain the higher incidence of stress fracture in the distal aspect of the tibia, observed by some authors. Stress fracture susceptibility will also be influenced by bone strength and this should also be accounted for in future studies. Copyright 2009 Elsevier B.V. All rights reserved.

  14. Quantification of shoulder and elbow passive moments in the sagittal plane as a function of adjacent angle fixations.

    PubMed

    Kodek, Timotej; Munih, Marko

    2003-01-01

    The goal of this study was an assessment of the shoulder and elbow joint passive moments in the sagittal plane for six healthy individuals. Either the shoulder or elbow joints were moved at a constant speed, very slowly throughout a large portion of their range by means of an industrial robot. During the whole process the arm was held fully passively, while the end point force data and the shoulder, elbow and wrist angle data were collected. The presented method unequivocally reveals a large passive moment adjacent angle dependency in the central angular range, where most everyday actions are performed. It is expected to prove useful in the future work when examining subjects with neuromuscular disorders. Their passive moments may show a fully different pattern than the ones obtained in this study.

  15. Influence of Visual Motion, Suggestion, and Illusory Motion on Self-Motion Perception in the Horizontal Plane.

    PubMed

    Rosenblatt, Steven David; Crane, Benjamin Thomas

    2015-01-01

    A moving visual field can induce the feeling of self-motion or vection. Illusory motion from static repeated asymmetric patterns creates a compelling visual motion stimulus, but it is unclear if such illusory motion can induce a feeling of self-motion or alter self-motion perception. In these experiments, human subjects reported the perceived direction of self-motion for sway translation and yaw rotation at the end of a period of viewing set visual stimuli coordinated with varying inertial stimuli. This tested the hypothesis that illusory visual motion would influence self-motion perception in the horizontal plane. Trials were arranged into 5 blocks based on stimulus type: moving star field with yaw rotation, moving star field with sway translation, illusory motion with yaw, illusory motion with sway, and static arrows with sway. Static arrows were used to evaluate the effect of cognitive suggestion on self-motion perception. Each trial had a control condition; the illusory motion controls were altered versions of the experimental image, which removed the illusory motion effect. For the moving visual stimulus, controls were carried out in a dark room. With the arrow visual stimulus, controls were a gray screen. In blocks containing a visual stimulus there was an 8s viewing interval with the inertial stimulus occurring over the final 1s. This allowed measurement of the visual illusion perception using objective methods. When no visual stimulus was present, only the 1s motion stimulus was presented. Eight women and five men (mean age 37) participated. To assess for a shift in self-motion perception, the effect of each visual stimulus on the self-motion stimulus (cm/s) at which subjects were equally likely to report motion in either direction was measured. Significant effects were seen for moving star fields for both translation (p = 0.001) and rotation (p<0.001), and arrows (p = 0.02). For the visual motion stimuli, inertial motion perception was shifted in the

  16. Analysis of the Pelvic Functional Orientation in the Sagittal Plane: A Radiographic Study With EOS 2D/3D Technology.

    PubMed

    Loppini, Mattia; Longo, Umile Giuseppe; Ragucci, Pasquala; Trenti, Nicoletta; Balzarini, Luca; Grappiolo, Guido

    2017-03-01

    We investigated the relationship between pelvic incidence (PI) with anterior pelvic plane angle (APPA), pelvic tilt (PT) angle, and sacral slope (SS) in standing and sitting positions to identify the best parameter expressing the pelvic functional orientation in the sagittal plane. We enrolled 109 consecutive patients (M:F = 43:66) eligible for a primary total hip arthroplasty (THA) with an average age of 63.4 years (15-85). EOS 2D/3D radiography was performed in standing and sitting positions before THA to evaluate the functional pelvic orientation. 3D images took into account the patient-specific sagittal balance measuring APPA, PT, SS, and PI. In standing position, functional parameters measured 5° ± 7.1 for APPA, 11° ± 8.3 for PT, 43° ± 8.5 for SS, and 53° ± 10.9 for PI. In sitting position, they were -18° ± 10.4 for APPA, 34° ± 11.8 for PT, 20° ± 12.6 for SS, and 54° ± 10.9 for PI. There was no significant difference between men and women in terms of the functional parameters in both positions. No relationship was found between APPA and PI in both positions. SS correlated with PI in standing (r = 0.66; P < .0001; R 2  = 0.44) and sitting (r = 0.51; P < .0001; R 2  = 0.26). PT correlated with PI in standing (r = 0.65; P < .0001; R 2  = 0.42) and sitting (r = 0.38; P < .0001; R 2  = 0.14). SS shows the highest correlation with functional pelvic tilt. The study suggests that adjustments in acetabular anteversion during primary THA should be based on SS. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Effects of mid-foot contact area ratio on lower body kinetics/kinematics in sagittal plane during stair descent in women.

    PubMed

    Lee, Jinkyu; Hong, Yoon No Gregory; Shin, Choongsoo S

    2016-07-01

    The mid-foot contact area relative to the total foot contact area can facilitate foot arch structure evaluation. A stair descent motion consistently provides initial fore-foot contact and utilizes the foot arch more actively for energy absorption. The purpose of this study was to compare ankle and knee joint angle, moment, and work in sagittal plane during stair descending between low and high Mid-Foot-Contact-Area (MFCA) ratio group. The twenty-two female subjects were tested and classified into two groups (high MFCA and low MFCA) using their static MFCA ratios. The ground reaction force (GRF) and kinematics of ankle and knee joints were measured while stair descending. During the period between initial contact and the first peak in vertical GRF (early absorption phase), ankle negative work for the low MFCA ratio group was 33% higher than that for the high MFCA ratio group (p<0.05). However, ankle negative work was not significantly different between the two groups during the period between initial contact and peak dorsiflexion angle (early absorption phase+late absorption phase). The peak ankle dorsiflexion angle was smaller in the low MFCA ratio group (p<0.05). Our results suggest that strategy of energy absorption at the ankle and foot differs depending upon foot arch types classified by MFCA. The low MFCA ratio group seemed to absorb more impact energy using strain in the planar fascia during early absorption phase, whereas the high MFCA ratio group absorbed more impact energy using increased dorsiflexion during late absorption phase. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Kinetic magnetic resonance imaging analysis of abnormal segmental motion of the functional spine unit.

    PubMed

    Kong, Min Ho; Hymanson, Henry J; Song, Kwan Young; Chin, Dong Kyu; Cho, Yong Eun; Yoon, Do Heum; Wang, Jeffrey C

    2009-04-01

    The authors conducted a retrospective observational study using kinetic MR imaging to investigate the relationship between instability, abnormal sagittal segmental motion, and radiographic variables consisting of intervertebral disc degeneration, facet joint osteoarthritis (FJO), degeneration of the interspinous ligaments, ligamentum flavum hypertrophy (LFH), and the status of the paraspinal muscles. Abnormal segmental motion, defined as > 10 degrees angulation and > 3 mm of translation in the sagittal plane, was investigated in 1575 functional spine units (315 patients) in flexion, neutral, and extension postures using kinetic MR imaging. Each segment was assessed based on the extent of disc degeneration (Grades I-V), FJO (Grades 1-4), interspinous ligament degeneration (Grades 1-4), presence of LFH, and paraspinal muscle fatty infiltration observed on kinetic MR imaging. These factors are often noted in patients with degenerative disease, and there are grading systems to describe these changes. For the first time, the authors attempted to address the relationship between these radiographic observations and the effects on the motion and instability of the functional spine unit. The prevalence of abnormal translational motion was significantly higher in patients with Grade IV degenerative discs and Grade 3 arthritic facet joints (p < 0.05). In patients with advanced disc degeneration and FJO, there was a lesser amount of motion in both segmental translation and angulation when compared with lower grades of degeneration, and this difference was statistically significant for angular motion (p < 0.05). Patients with advanced degenerative Grade 4 facet joint arthritis had a significantly lower percentage of abnormal angular motion compared to patients with normal facet joints (p < 0.001). The presence of LFH was strongly associated with abnormal translational and angular motion. Grade 4 interspinous ligament degeneration and the presence of paraspinal muscle fatty

  19. Feedforward ankle strategy of balance during quiet stance in adults

    PubMed Central

    Gatev, Plamen; Thomas, Sherry; Kepple, Thomas; Hallett, Mark

    1999-01-01

    We studied quiet stance investigating strategies for maintaining balance. Normal subjects stood with natural stance and with feet together, with eyes open or closed. Kinematic, kinetic and EMG data were evaluated and cross-correlated.Cross-correlation analysis revealed a high, positive, zero-phased correlation between anteroposterior motions of the centre of gravity (COG) and centre of pressure (COP), head and COG, and between linear motions of the shoulder and knee in both sagittal and frontal planes. There was a moderate, negative, zero-phased correlation between the anteroposterior motion of COP and ankle angular motion.Narrow stance width increased ankle angular motion, hip angular motion, mediolateral sway of the COG, and the correlation between linear motions of the shoulder and knee in the frontal plane. Correlations between COG and COP and linear motions of the shoulder and knee in the sagittal plane were decreased. The correlation between the hip angular sway in the sagittal and frontal planes was dependent on interaction between support and vision.Low, significant positive correlations with time lags of the maximum of cross-correlation of 250-300 ms were found between the EMG activity of the lateral gastrocnemius muscle and anteroposterior motions of the COG and COP during normal stance. Narrow stance width decreased both correlations whereas absence of vision increased the correlation with COP.Ankle mechanisms dominate during normal stance especially in the sagittal plane. Narrow stance width decreased the role of the ankle and increased the role of hip mechanisms in the sagittal plane, while in the frontal plane both increased.The modulation pattern of the lateral gastrocnemius muscle suggests a central program of control of the ankle joint stiffness working to predict the loading pattern. PMID:9882761

  20. Three-dimensional liver motion tracking using real-time two-dimensional MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brix, Lau, E-mail: lau.brix@stab.rm.dk; Ringgaard, Steffen; Sørensen, Thomas Sangild

    2014-04-15

    Purpose: Combined magnetic resonance imaging (MRI) systems and linear accelerators for radiotherapy (MR-Linacs) are currently under development. MRI is noninvasive and nonionizing and can produce images with high soft tissue contrast. However, new tracking methods are required to obtain fast real-time spatial target localization. This study develops and evaluates a method for tracking three-dimensional (3D) respiratory liver motion in two-dimensional (2D) real-time MRI image series with high temporal and spatial resolution. Methods: The proposed method for 3D tracking in 2D real-time MRI series has three steps: (1) Recording of a 3D MRI scan and selection of a blood vessel (ormore » tumor) structure to be tracked in subsequent 2D MRI series. (2) Generation of a library of 2D image templates oriented parallel to the 2D MRI image series by reslicing and resampling the 3D MRI scan. (3) 3D tracking of the selected structure in each real-time 2D image by finding the template and template position that yield the highest normalized cross correlation coefficient with the image. Since the tracked structure has a known 3D position relative to each template, the selection and 2D localization of a specific template translates into quantification of both the through-plane and in-plane position of the structure. As a proof of principle, 3D tracking of liver blood vessel structures was performed in five healthy volunteers in two 5.4 Hz axial, sagittal, and coronal real-time 2D MRI series of 30 s duration. In each 2D MRI series, the 3D localization was carried out twice, using nonoverlapping template libraries, which resulted in a total of 12 estimated 3D trajectories per volunteer. Validation tests carried out to support the tracking algorithm included quantification of the breathing induced 3D liver motion and liver motion directionality for the volunteers, and comparison of 2D MRI estimated positions of a structure in a watermelon with the actual positions. Results: Axial

  1. The Effect of Sagittal Plane Deformities after Tibial Plateau Fractures to Functions and Instability of Knee Joint.

    PubMed

    Erdil, M; Yildiz, F; Kuyucu, E; Sayar, Ş; Polat, G; Ceylan, H H; Koçyiğit, F

    2016-01-01

    The objective of this study is to evaluate the effect of posterior tibial slope after fracture healing on antero-posterior knee laxity, functional outcome and patient satisfaction. 126 patients who were treated for tibial plateau fractures between 2008-2013 in the orthopedics and traumatology department of our institution were evaluated for the study. Patients were treated with open reduction and internal fixation, arthroscopy assisted minimally invasive osteosynthesis or conservative treatment. Mean posterior tibial slope after the treatment was 6.91 ± 5.11 and there was no significant difference when compared to the uninvolved side 6.42 ± 4,21 (p = 0.794). Knee laxity in anterior-posterior plane was 6.14 ± 2.11 and 5.95 ± 2.25 respectively on healthy and injured side. The difference of mean laxity in anterior-posterior plane between two sides was statistically significant. In this study we found no difference in laxity between the injured and healthy knees. However Tegner score decreased significantly in patients who had greater laxity difference between the knees. We did not find significant difference between fracture type and laxity, IKDC functional scores independent of the ligamentous injury. In conclusion despite coronal alignment is taken into consideration in treatment of tibial plateau fractures, sagittal alignment is reasonably important for stability and should not be ignored.

  2. Rotation of intramedullary alignment rods affects distal femoral cutting plane in total knee arthroplasty.

    PubMed

    Maderbacher, Günther; Matussek, Jan; Keshmiri, Armin; Greimel, Felix; Baier, Clemens; Grifka, Joachim; Maderbacher, Hermann

    2018-02-17

    Intramedullary rods are widely used to align the distal femoral cut in total knee arthroplasty. We hypothesised that both coronal (varus/valgus) and sagittal (extension/flexion) cutting plane are affected by rotational changes of intramedullary femoral alignment guides. Distal femoral cuts using intramedullary alignment rods were simulated by means of a computer-aided engineering software in 4°, 6°, 8°, 10°, and 12° of valgus in relation to the femoral anatomical axis and 4° extension, neutral, as well as 4°, 8°, and 12° of flexion in relation to the femoral mechanical axis. This reflects the different angles between anatomical and mechanical axis in coronal and sagittal planes. To assess the influence of rotation of the alignment guide on the effective distal femoral cutting plane, all combinations were simulated with the rod gradually aligned from 40° of external to 40° of internal rotation. Rotational changes of the distal femoral alignment guides affect both the coronal and sagittal cutting planes. When alignment rods are intruded neutrally with regards to sagittal alignment, external rotation causes flexion, while internal rotation causes extension of the sagittal cutting plane. Simultaneously the coronal effect (valgus) decreases resulting in an increased varus of the cutting plane. However, when alignment rods are intruded in extension or flexion partly contradictory effects are observed. Generally the effect increases with the degree of valgus preset, rotation and flexion. As incorrect rotation of intramedullary alignment guides for distal femoral cuts causes significant cutting errors, exact rotational alignment is crucial. Coronal cutting errors in the distal femoral plane might result in overall leg malalignment, asymmetric extension gaps and subsequent sagittal cutting errors.

  3. Mid-callosal plane determination using preferred directions from diffusion tensor images

    NASA Astrophysics Data System (ADS)

    Costa, André L.; Rittner, Letícia; Lotufo, Roberto A.; Appenzeller, Simone

    2015-03-01

    The corpus callosum is the major brain structure responsible for inter{hemispheric communication between neurons. Many studies seek to relate corpus callosum attributes to patient characteristics, cerebral diseases and psychological disorders. Most of those studies rely on 2D analysis of the corpus callosum in the mid-sagittal plane. However, it is common to find conflicting results among studies, once many ignore methodological issues and define the mid-sagittal plane based on precary or invalid criteria with respect to the corpus callosum. In this work we propose a novel method to determine the mid-callosal plane using the corpus callosum internal preferred diffusion directions obtained from diffusion tensor images. This plane is analogous to the mid-sagittal plane, but intended to serve exclusively as the corpus callosum reference. Our method elucidates the great potential the directional information of the corpus callosum fibers have to indicate its own referential. Results from experiments with five image pairs from distinct subjects, obtained under the same conditions, demonstrate the method effectiveness to find the corpus callosum symmetric axis relative to the axial plane.

  4. Distal radius fractures result in alterations in scapular kinematics: a three-dimensional motion analysis.

    PubMed

    Ayhan, Cigdem; Turgut, Elif; Baltaci, Gul

    2015-03-01

    Scapular motion is closely integrated with arm motion. Injury to a distal segment requires compensatory changes in the proximal segments leading to alterations in scapular motion. Since the effects of distal injuries on scapular kinematics remain unknown, in the present study we investigated the influences on scapular motion in patients with distal injuries. Sixteen subjects with a history of distal radius fracture and 20 asymptomatic healthy subjects (controls) participated in the study. Three-dimensional scapular and humeral kinematic data were collected on all 3 planes of shoulder elevation: frontal, sagittal, and scapular. All testing was performed in a single session; therefore, the sensors remained attached to the participants for all testing. The position and orientation data of the scapula at 30°, 60°, 90°, and 120° humerothoracic elevation and 120°, 90°, 60°, and 30° lowering were used for statistical comparisons. Independent samples t-test was used to compare the scapular internal/external rotation, upward/downward rotation, and anterior/posterior tilt between the affected side of subjects with a distal radius fracture and the dominant side of asymptomatic subjects at the same stage of humerothoracic elevation. Scapular internal rotation was significantly increased at 30° elevation (P=0.01), 90° elevation (P=0.03), and 30° lowering (P=0.03), and upward rotation was increased at 30° and 60° elevation (P<0.001) on the affected side during frontal plane elevation. Scapular upward rotation and anterior tilt were significantly increased during 30° lowering on both the scapular (P=0.002 and 0.02, respectively) and sagittal planes (P=0.01 and 0.02. respectively). Patients with distal radius fractures exhibit altered scapular kinematics, which may further contribute to the development of secondary musculoskeletal pathologies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. An examination of the degrees of freedom of human jaw motion in speech and mastication.

    PubMed

    Ostry, D J; Vatikiotis-Bateson, E; Gribble, P L

    1997-12-01

    The kinematics of human jaw movements were assessed in terms of the three orientation angles and three positions that characterize the motion of the jaw as a rigid body. The analysis focused on the identification of the jaw's independent movement dimensions, and was based on an examination of jaw motion paths that were plotted in various combinations of linear and angular coordinate frames. Overall, both behaviors were characterized by independent motion in four degrees of freedom. In general, when jaw movements were plotted to show orientation in the sagittal plane as a function of horizontal position, relatively straight paths were observed. In speech, the slopes and intercepts of these paths varied depending on the phonetic material. The vertical position of the jaw was observed to shift up or down so as to displace the overall form of the sagittal plane motion path of the jaw. Yaw movements were small but independent of pitch, and vertical and horizontal position. In mastication, the slope and intercept of the relationship between pitch and horizontal position were affected by the type of food and its size. However, the range of variation was less than that observed in speech. When vertical jaw position was plotted as a function of horizontal position, the basic form of the path of the jaw was maintained but could be shifted vertically. In general, larger bolus diameters were associated with lower jaw positions throughout the movement. The timing of pitch and yaw motion differed. The most common pattern involved changes in pitch angle during jaw opening followed by a phase predominated by lateral motion (yaw). Thus, in both behaviors there was evidence of independent motion in pitch, yaw, horizontal position, and vertical position. This is consistent with the idea that motions in these degrees of freedom are independently controlled.

  6. Inter-segmental motions of the foot: differences between younger and older healthy adult females.

    PubMed

    Lee, Dong Yeon; Seo, Sang Gyo; Kim, Eo Jin; Lee, Doo Jae; Bae, Kee Jeong; Lee, Kyoung Min; Choi, In Ho

    2017-01-01

    Although accumulative evidence exists that support the applicability of multi-segmental foot models (MFMs) in evaluating foot motion in various pathologic conditions, little is known of the effect of aging on inter-segmental foot motion. The objective of this study was to evaluate differences in inter-segmental motion of the foot between older and younger adult healthy females during gait using a MFM with 15-marker set. One hundred symptom-free females, who had no radiographic evidence of osteoarthritis, were evaluated using MFM with 15-marker set. They were divided into young ( n  = 50, 20-35 years old) and old ( n  = 50, 60-69 years old) groups. Coefficients of multiple correlations were evaluated to assess the similarity of kinematic curve. Inter-segmental angles (hindfoot, forefoot, and hallux) were calculated at each gait phase. To evaluate the effect of gait speed on intersegmental foot motion, subgroup analysis was performed according to the similar speed of walking. Kinematic curves showed good or excellent similarity in most parameters. Range of motion in the sagittal ( p  < 0.001) and transverse ( p  = 0.001) plane of the hallux, and sagittal ( p  = 0.023) plane of the forefoot was lower in older females. The dorsiflexion ( p  = 0.001) of the hallux at terminal stance and pre-swing phases was significantly lower in older females. When we compared young and older females with similar speed, these differences remained. Although the overall kinematic pattern was similar between young and older females, reduced range of inter-segmental motion was observed in the older group. Our results suggest that age-related changes need to be considered in studies evaluating inter-segmental motion of the foot.

  7. A Comparison of Cervical Spine Motion After Immobilization With a Traditional Spine Board and Full-Body Vacuum-Mattress Splint.

    PubMed

    Etier, Brian E; Norte, Grant E; Gleason, Megan M; Richter, Dustin L; Pugh, Kelli F; Thomson, Keith B; Slater, Lindsay V; Hart, Joe M; Brockmeier, Stephen F; Diduch, David R

    2017-12-01

    The National Athletic Trainers' Association (NATA) advocates for cervical spine immobilization on a rigid board or vacuum splint and for removal of athletic equipment before transfer to an emergency medical facility. To (1) compare triplanar cervical spine motion using motion capture between a traditional rigid spine board and a full-body vacuum splint in equipped and unequipped athletes, (2) assess cervical spine motion during the removal of a football helmet and shoulder pads, and (3) evaluate the effect of body mass on cervical spine motion. Controlled laboratory study. Twenty healthy male participants volunteered for this study to examine the influence of immobilization type and presence of equipment on triplanar angular cervical spine motion. Three-dimensional cervical spine kinematics was measured using an electromagnetic motion analysis system. Independent variables included testing condition (static lift and hold, 30° tilt, transfer, equipment removal), immobilization type (rigid, vacuum-mattress), and equipment (on, off). Peak sagittal-, frontal-, and transverse-plane angular motions were the primary outcome measures of interest. Subjective ratings of comfort and security did not differ between immobilization types ( P > .05). Motion between the rigid board and vacuum splint did not differ by more than 2° under any testing condition, either with or without equipment. In removing equipment, the mean peak motion ranged from 12.5° to 14.0° for the rigid spine board and from 11.4° to 15.4° for the vacuum-mattress splint, and more transverse-plane motion occurred when using the vacuum-mattress splint compared with the rigid spine board (mean difference, 0.14 deg/s [95% CI, 0.05-0.23 deg/s]; P = .002). In patients weighing more than 250 lb, the rigid board provided less motion in the frontal plane ( P = .027) and sagittal plane ( P = .030) during the tilt condition and transfer condition, respectively. The current study confirms similar motion in the

  8. Topological analysis of the motion of an ellipsoid on a smooth plane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivochkin, M Yu

    2008-06-30

    The problem of the motion of a dynamically and geometrically symmetric heavy ellipsoid on a smooth horizontal plane is investigated. The problem is integrable and can be considered a generalization of the problem of motion of a heavy rigid body with fixed point in the Lagrangian case. The Smale bifurcation diagrams are constructed. Surgeries of tori are investigated using methods developed by Fomenko and his students. Bibliography: 9 titles.

  9. Motion on an Inclined Plane and the Nature of Science

    ERIC Educational Resources Information Center

    Pendrill, Ann-Marie; Ekström, Peter; Hansson, Lena; Mars, Patrik; Ouattara, Lassana; Ryan, Ulrika

    2014-01-01

    Friction is an important phenomenon in everyday life. All children are familiar with playground slides, which may thus be a good starting point for investigating friction. Motion on an inclined plane is a standard physics example. This paper presents an investigation of friction by a group of 11-year olds. How did they plan their investigations?…

  10. A high bandwidth three-axis out-of-plane motion measurement system based on optical beam deflection

    NASA Astrophysics Data System (ADS)

    Piyush, P.; Giridhar, M. S.; Jayanth, G. R.

    2018-03-01

    Multi-axis measurement of motion is indispensable for characterization of dynamic systems and control of motion stages. This paper presents an optical beam deflection-based measurement system to simultaneously measure three-axis out-of-plane motion of both micro- and macro-scale targets. Novel strategies are proposed to calibrate the sensitivities of the measurement system. Subsequently the measurement system is experimentally realized and calibrated. The system is employed to characterize coupled linear and angular motion of a piezo-actuated stage. The measured motion is shown to be in agreement with theoretical expectation. Next, the high bandwidth of the measurement system has been showcased by utilizing it to measure coupled two-axis transient motion of a Radio Frequency Micro-Electro-Mechanical System switch with a rise time of about 60 μs. Finally, the ability of the system to measure out-of-plane angular motion about the second axis has been demonstrated by measuring the deformation of a micro-cantilever beam.

  11. On the motion of a rigid body with an internal moving point mass on a horizontal plane

    NASA Astrophysics Data System (ADS)

    Bardin, B. S.; Panev, A. S.

    2018-05-01

    We consider motions of a body carrying movable internal mass. The internal mass is a particle moving in a circle inside the body, which performs a rectilinear motion on a horizontal plane. We suppose that viscous and dry friction acts between the plane and the body. We also assume that the body moves without jumps on the plane. Our study has shown that depending on values of parameters the body moves either periodically stoping and resting for certain time intervals or it approaches a periodic mode of motion without quiescence intervals. The above conclusions are in good correspondence with results obtained in our previous papers, where the above problem has been studied under assumption that the viscous friction is absent.

  12. Comparing preseason frontal and sagittal plane plyometric programs on vertical jump height in high-school basketball players.

    PubMed

    King, Jeffrey A; Cipriani, Daniel J

    2010-08-01

    The primary purpose of this study was to evaluate whether frontal plane (FP) plyometrics, which are defined as plyometrics dominated with a lateral component, would produce similar increases in vertical jump height (VJH) compared to sagittal plane (SP) Plyometrics. Thirty-two junior varsity and varsity high-school basketball players participated in 6 weeks of plyometric training. Players participated in either FP or SP plyometrics for the entire study. Vertical jump height was measured on 3 occasions: preintervention (baseline), at week 3 of preparatory training, and at week 6 of training. Descriptive statistics were calculated for VJH. A 2-way analysis of variance (ANOVA) with repeated measures was used to test the difference in mean vertical jump scores using FP and SP training modalities. Results showed a significant effect over time for vertical jump (p < 0.001). Moreover, a significant time by protocol interaction was noted (p < 0.032). A 1-way ANOVA demonstrated that only the SP group demonstrated improvements over time, in VJH, p < 0.05. The FP group did not improve statistically. The data from this study suggest that FP plyometric training did not have a significant effect on VJH and significant improvement in VJH was seen in subjects participating in SP plyometrics thus reinforcing the specificity principle of training. However, coaches should implement both types of plyometrics because both training modalities can improve power and quickness among basketball players.

  13. Evaluation of COPD's diaphragm motion extracted from 4D-MRI

    NASA Astrophysics Data System (ADS)

    Swastika, Windra; Masuda, Yoshitada; Kawata, Naoko; Matsumoto, Koji; Suzuki, Toshio; Iesato, Ken; Tada, Yuji; Sugiura, Toshihiko; Tanabe, Nobuhiro; Tatsumi, Koichiro; Ohnishi, Takashi; Haneishi, Hideaki

    2015-03-01

    We have developed a method called intersection profile method to construct a 4D-MRI (3D+time) from time-series of 2D-MRI. The basic idea is to find the best matching of the intersection profile from the time series of 2D-MRI in sagittal plane (navigator slice) and time series of 2D-MRI in coronal plane (data slice). In this study, we use 4D-MRI to semiautomatically extract the right diaphragm motion of 16 subjects (8 healthy subjects and 8 COPD patients). The diaphragm motion is then evaluated quantitatively by calculating the displacement of each subjects and normalized it. We also generate phase-length map to view and locate paradoxical motion of the COPD patients. The quantitative results of the normalized displacement shows that COPD patients tend to have smaller displacement compared to healthy subjects. The average normalized displacement of total 8 COPD patients is 9.4mm and the average of normalized displacement of 8 healthy volunteers is 15.3mm. The generated phase-length maps show that not all of the COPD patients have paradoxical motion, however if it has paradoxical motion, the phase-length map is able to locate where does it occur.

  14. Motion at the Tibial and Polyethylene Component Interface in a Mobile-Bearing Total Ankle Replacement.

    PubMed

    Lundeen, Gregory A; Clanton, Thomas O; Dunaway, Linda J; Lu, Minggen

    2016-08-01

    Normal biomechanics of the ankle joint includes sagittal as well as axial rotation. Current understanding of mobile-bearing motion at the tibial-polyethylene interface in total ankle arthroplasty (TAA) is limited to anterior-posterior (AP) motion of the polyethylene component. The purpose of our study was to define the motion of the polyethylene component in relation to the tibial component in a mobile-bearing TAA in both the sagittal and axial planes in postoperative patients. Patients who were a minimum of 12 months postoperative from a third-generation mobile-bearing TAA were identified. AP images were saved at maximum internal and external rotation, and the lateral images were saved in maximum plantarflexion and dorsiflexion. Sagittal range of motion and AP translation of the polyethylene component were measured from the lateral images. Axial rotation was determined by measuring the relative position of the 2 wires within the polyethylene component on AP internal and external rotation imaging. This relationship was compared to a table developed from fluoroscopic images taken at standardized degrees of axial rotation of a nonimplanted polyethylene with the associated length relationship of the 2 imbedded wires. Sixteen patients were included in this investigation, 9 (56%) were male and average age was 68 (range, 49-80) years. Time from surgery averaged 25 (range, 12-38) months. Total sagittal range of motion averaged 23±9 (range, 9-33) degrees. Axial motion for total internal and external rotation of the polyethylene component on the tibial component averaged 6±5 (range, 0-18) degrees. AP translation of the polyethylene component relative to the tibial component averaged 1±1 (range, 0-3) mm. There was no relationship between axial rotation or AP translation of the polyethylene component and ankle joint range of motion (P > .05). To our knowledge, this is the first investigation to measure axial and sagittal motion of the polyethylene component at the tibial

  15. Hippotherapy effects on trunk, pelvic, and hip motion during ambulation in children with neurological impairments.

    PubMed

    Encheff, Jenna L; Armstrong, Charles; Masterson, Michelle; Fox, Christine; Gribble, Phillip

    2012-01-01

    This study investigated the effects of a 10-week hippotherapy program on trunk, pelvis, and hip joint positioning during the stance phase of gait. Eleven children (6 boys and 5 girls; 7.9 ± 2.7 years) with neurological disorders and impaired ambulation participated. Joint range of motion data were collected via 3-dimensional computerized gait analysis before and after the program. Paired t tests were performed on kinematic data for each joint. Significant improvements (P ≤ .008) and large effect sizes (ESs) for sagittal plane hip positions at initial contact and toe-off were found. No differences in pelvic or trunk positioning were determined, although sagittal plane pelvic positioning displayed a trend toward improvement with large ESs. Several trunk variables displayed moderate ESs with a trend toward more upright positioning. Improvements in pelvic and hip joint positioning and more normalized vertical trunk position may indicate increased postural control during gait after 10 sessions of hippotherapy.

  16. The sagittal stem alignment and the stem version clearly influence the impingement-free range of motion in total hip arthroplasty: a computer model-based analysis.

    PubMed

    Müller, Michael; Duda, Georg; Perka, Carsten; Tohtz, Stephan

    2016-03-01

    The component alignment in total hip arthroplasty influences the impingement-free range of motion (ROM). While substantiated data is available for the cup positioning, little is known about the stem alignment. Especially stem rotation and the sagittal alignment influence the position of the cone in relation to the edge of the socket and thus the impingement-free functioning. Hence, the question arises as to what influence do these parameters have on the impingement-free ROM? With the help of a computer model the influence of the sagittal stem alignment and rotation on the impingement-free ROM were investigated. The computer model was based on the CT dataset of a patient with a non-cemented THA. In the model the stem version was set at 10°/0°/-10° and the sagittal alignment at 5°/0°/-5°, which resulted in nine alternative stem positions. For each position, the maximum impingement-free ROM was investigated. Both stem version and sagittal stem alignment have a relevant influence on the impingement-free ROM. In particular, flexion and extension as well as internal and external rotation capability present evident differences. In the position intervals of 10° sagittal stem alignment and 20° stem version a difference was found of about 80° in the flexion and 50° in the extension capability. Likewise, differences were evidenced of up to 72° in the internal and up to 36° in the external rotation. The sagittal stem alignment and the stem torsion have a relevant influence on the impingement-free ROM. To clarify the causes of an impingement or accompanying problems, both parameters should be examined and, if possible, a combined assessment of these factors should be made.

  17. Varus Thrust and Knee Frontal Plane Dynamic Motion in Persons with Knee Osteoarthritis

    PubMed Central

    Chang, Alison H.; Chmiel, Joan S.; Moisio, Kirsten C.; Almagor, Orit; Zhang, Yunhui; Cahue, September; Sharma, Leena

    2013-01-01

    Objective Varus thrust visualized during walking is associated with a greater medial knee and an increased risk of medial knee osteoarthritis (OA) progression. Little is known about varus thrust presence determined by visual observation relates to quantitative gait kinematic We hypothesized that varus thrust presence is associated with greater knee frontal plane dynamic movement during the stance phase of gait. Methods Participants had knee OA in at least one knee. Trained examiners assessed participants for varus thrust presence during ambulation. Frontal plane knee motion during ambulation captured using external passive reflective markers and an 8-camera motion analysis system. To examine the cross-sectional relationship between varus thrust and frontal plane knee motion, used multivariable regression models with the quantitative motion measures as dependent variables and varus thrust (present/absent) as predictor; models were adjusted for age, gender, BMI, gait speed, and knee static alignment. Results 236 persons [mean BMI: 28.5 kg/m2 (SD 5.5), mean age: 64.9 years (SD 10.4), 75.8% women] contributing 440 knees comprised the study sample. 82 knees (18.6%) had definite varus thrust. Knees with varus thrust had greater peak varus angle and greater peak varus angular velocity during stance than knees without varus thrust (mean differences 0.90° and 6.65°/sec, respectively). These patterns remained significant after adjusting for age, gender, BMI, gait speed, and knee static alignment. Conclusion Visualized varus thrust during walking was associated with a greater peak knee varus angular velocity and a greater peak knee varus angle during stance phase of gait. PMID:23948980

  18. Can axial-based nodal size criteria be used in other imaging planes to accurately determine "enlarged" head and neck lymph nodes?

    PubMed

    Bartlett, Eric S; Walters, Thomas D; Yu, Eugene

    2013-01-01

    Objective. We evaluate if axial-based lymph node size criteria can be applied to coronal and sagittal planes. Methods. Fifty pretreatment computed tomographic (CT) neck exams were evaluated in patients with head and neck squamous cell carcinoma (SCCa) and neck lymphadenopathy. Axial-based size criteria were applied to all 3 imaging planes, measured, and classified as "enlarged" if equal to or exceeding size criteria. Results. 222 lymph nodes were "enlarged" in one imaging plane; however, 53.2% (118/222) of these were "enlarged" in all 3 planes. Classification concordance between axial versus coronal/sagittal planes was poor (kappa = -0.09 and -0.07, resp., P < 0.05). The McNemar test showed systematic misclassification when comparing axial versus coronal (P < 0.001) and axial versus sagittal (P < 0.001) planes. Conclusion. Classification of "enlarged" lymph nodes differs between axial versus coronal/sagittal imaging planes when axial-based nodal size criteria are applied independently to all three imaging planes, and exclusively used without other morphologic nodal data.

  19. The six degrees of freedom motion of the human head, spine, and pelvis in a frontal impact.

    PubMed

    Lopez-Valdes, F J; Riley, P O; Lessley, D J; Arbogast, K B; Seacrist, T; Balasubramanian, S; Maltese, M; Kent, R

    2014-01-01

    The goal of this study is to characterize the in situ 6-degree-of-freedom kinematics of the head, 3 vertebrae (T1, T8, and L2), and the pelvis in a 40 km/h frontal impact. Three postmortem human surrogates (PMHS) were exposed to a deceleration of 15 g over 125 ms and the motion of selected anatomical structures (head, T1, T8, L2, and pelvis) was tracked at 1000 Hz using an optoelectric stereophotogrammetric system. Displacements of the analyzed structures are reported in the sagittal and the transverse planes. Rotations of the structures are described using the finite helical axis of the motion. Anterior displacements were 530.5 ± 39.4 mm (head), 434.7 ± 20.0 mm (T1), 353.3 ± 29.6 mm (T8), 219.9 ± 19.3 mm (L2), and 78.9 ± 22.1 mm (pelvis). The ratio between peak anterior and lateral displacement was up to 19 percent (T1) and 26 percent (head). Magnitudes of the rotation of the head (69.9 ± 1.5°), lumbar (66.5 ± 9.1°), and pelvis (63.8 ± 11.8°) were greater than that of the thoracic vertebrae (T1: 49.1 ± 7.8°; T8: 47.7 ± 6.3°). Thoracic vertebrae exhibited a complex rotation behavior caused by the asymmetric loading of the shoulder belt. Rotation of the lumbar vertebra and pelvis occurred primarily within the sagittal plane (flexion). Despite the predominance of the sagittal motion of the occupant in a pure (12 o'clock) frontal impact, the asymmetry of belt loading induced other relevant displacements and rotations of the head and thoracic spine. Attempts to model occupant kinematics in a frontal impact should consider these results to biofidelically describe the interaction of the torso with the belt.

  20. Effect of alignment changes on sagittal and coronal socket reaction moment interactions in transtibial prostheses.

    PubMed

    Kobayashi, Toshiki; Orendurff, Michael S; Zhang, Ming; Boone, David A

    2013-04-26

    Alignment is important for comfortable and stable gait of lower-limb prosthesis users. The magnitude of socket reaction moments in the multiple planes acting simultaneously upon the residual limb may be related to perception of comfort in individuals using prostheses through socket interface pressures. The aim of this study was to investigate the effect of prosthetic alignment changes on sagittal and coronal socket reaction moment interactions (moment-moment curves) and to characterize the curves in 11 individuals with transtibial amputation using novel moment-moment interaction parameters measured by plotting sagittal socket reaction moments versus coronal ones under various alignment conditions. A custom instrumented prosthesis alignment component was used to measure socket reaction moments during walking. Prosthetic alignment was tuned to a nominally aligned condition by a prosthetist, and from this position, angular (3° and 6° of flexion, extension, abduction or adduction of the socket) and translational (5mm and 10mm of anterior, posterior, medial or lateral translation of the socket) alignment changes were performed in either the sagittal or the coronal plane in a randomized manner. A total of 17 alignment conditions were tested. Coronal angulation and translation alignment changes demonstrated similar consistent changes in the moment-moment curves. Sagittal alignment changes demonstrated more complex changes compared to the coronal alignment changes. Effect of sagittal angulations and translations on the moment-moment curves was different during 2nd rocker (mid-stance) with extension malalignment appearing to cause medio-lateral instability. Presentation of coronal and sagittal socket reaction moment interactions may provide useful visual information for prosthetists to understand the biomechanical effects of malalignment of transtibial prostheses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Effects of frontal and sagittal thorax attitudes in gait on trunk and pelvis three-dimensional kinematics.

    PubMed

    Begon, Mickaël; Leardini, Alberto; Belvedere, Claudio; Farahpour, Nader; Allard, Paul

    2015-10-01

    While sagittal trunk inclinations alter upper body biomechanics, little is known about the extent of frontal trunk bending on upper body and pelvis kinematics in adults during gait and its relation to sagittal trunk inclinations. The objective was to determine the effect of the mean lateral trunk attitude on upper body and pelvis three-dimensional kinematics during gait in asymptomatic subjects. Three gait cycles were collected in 30 subjects using a motion analysis system (Vicon 612) and an established protocol. Sub-groups were formed based on the mean thorax lateral bending angle, bending side, and also sagittal tilt. These were compared based on 38 peak angles identified on pelvis, thorax and shoulder kinematics using MANOVAs. A main effect for bending side (p = 0.038) was found, especially for thorax peak angles. Statistics revealed also a significant interaction (p = 0.04993) between bending side and tilt for the thorax sagittal inclination during body-weight transfer. These results reinforce the existence of different gait patterns, which correlate upper body and pelvis motion measures. The results also suggest that frontal and sagittal trunk attitude should be considered carefully when treating a patient with impaired gait. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  2. Can Axial-Based Nodal Size Criteria Be Used in Other Imaging Planes to Accurately Determine “Enlarged” Head and Neck Lymph Nodes?

    PubMed Central

    Bartlett, Eric S.; Walters, Thomas D.; Yu, Eugene

    2013-01-01

    Objective. We evaluate if axial-based lymph node size criteria can be applied to coronal and sagittal planes. Methods. Fifty pretreatment computed tomographic (CT) neck exams were evaluated in patients with head and neck squamous cell carcinoma (SCCa) and neck lymphadenopathy. Axial-based size criteria were applied to all 3 imaging planes, measured, and classified as “enlarged” if equal to or exceeding size criteria. Results. 222 lymph nodes were “enlarged” in one imaging plane; however, 53.2% (118/222) of these were “enlarged” in all 3 planes. Classification concordance between axial versus coronal/sagittal planes was poor (kappa = −0.09 and −0.07, resp., P < 0.05). The McNemar test showed systematic misclassification when comparing axial versus coronal (P < 0.001) and axial versus sagittal (P < 0.001) planes. Conclusion. Classification of “enlarged” lymph nodes differs between axial versus coronal/sagittal imaging planes when axial-based nodal size criteria are applied independently to all three imaging planes, and exclusively used without other morphologic nodal data. PMID:23984099

  3. Varus thrust and knee frontal plane dynamic motion in persons with knee osteoarthritis.

    PubMed

    Chang, A H; Chmiel, J S; Moisio, K C; Almagor, O; Zhang, Y; Cahue, S; Sharma, L

    2013-11-01

    Varus thrust visualized during walking is associated with a greater medial knee load and an increased risk of medial knee osteoarthritis (OA) progression. Little is known about how varus thrust presence determined by visual observation relates to quantitative gait kinematic data. We hypothesized that varus thrust presence is associated with greater knee frontal plane dynamic movement during the stance phase of gait. Participants had knee OA in at least one knee. Trained examiners assessed participants for varus thrust presence during ambulation. Frontal plane knee motion during ambulation was captured using external passive reflective markers and an 8-camera motion analysis system. To examine the cross-sectional relationship between varus thrust and frontal plane knee motion, we used multivariable regression models with the quantitative motion measures as dependent variables and varus thrust (present/absent) as predictor; models were adjusted for age, gender, body mass index (BMI), gait speed, and knee static alignment. 236 persons [mean BMI: 28.5 kg/m(2) (standard deviation (SD) 5.5), mean age: 64.9 years (SD 10.4), 75.8% women] contributing 440 knees comprised the study sample. 82 knees (18.6%) had definite varus thrust. Knees with varus thrust had greater peak varus angle and greater peak varus angular velocity during stance than knees without varus thrust (mean differences 0.90° and 6.65°/s, respectively). These patterns remained significant after adjusting for age, gender, BMI, gait speed, and knee static alignment. Visualized varus thrust during walking was associated with a greater peak knee varus angular velocity and a greater peak knee varus angle during stance phase of gait. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  4. Chaotic motion of a harmonically bound charged particle in a magnetic field, in the presence of a half-plane barrier

    NASA Astrophysics Data System (ADS)

    Geurts, Bernard J.; Wiegel, Frederik W.; Creswick, Richard J.

    1990-05-01

    The motion in the plane of an harmonically bound charged particle interacting with a magnetic field and a half-plane barrier along the positive x-axis is studied. The magnetic field is perpendicular to the plane in which the particle moves. This motion is integrable in between collisions of the particle with the barrier. However, the overall motion of the particle is very complicated. Chaotic regions in phase space exist next to island structures associated with linearly stable periodic orbits. We study in detail periodic orbits of low period and in particular their bifurcation behavior. Independent sequences of period doubling bifurcations and resonant bifurcations are observed associated with independent fixed points in the Poincaré section. Due to the perpendicular magnetic field an orientation is induced on the plane and time-reversal symmetry is broken.

  5. Validation, repeatability and reproducibility of a noninvasive instrument for measuring thoracic and lumbar curvature of the spine in the sagittal plane.

    PubMed

    Chaise, Fabiana O; Candotti, Cláudia T; Torre, Marcelo L; Furlanetto, Tássia S; Pelinson, Patricia P T; Loss, Jefferson F

    2011-01-01

    The need for early identification of postural abnormalities without exposing patients to constant radiation has stimulated the development of instruments aiming to measure the spinal curvatures. To verify the validity, repeatability and reproducibility of angular measures of sagittal curvatures of the spine obtained using an adapted arcometer, by comparing them with Cobb angles of the respective curvatures obtained by using X-rays. 52 participants were submitted to two procedures designed to evaluate the thoracic and lumbar curvatures: (1) X-ray examination from which the Cobb angles (CA) of both curvatures were obtained, and (2) measuring the angles with the arcometer (AA). Two evaluators collected the data using the arcometer, with the rods placed at T1, T12, L1 and L5 spinous processes levels in a way as to permit linear measurements which, with aid of trigonometry, supplied the AA. There was a very strong and significant correlation between AA and CA (r=0.94; p<0.01), with no-significant difference (p=0.32), for the thoracic curvature. There was a strong and significant correlation for the lumbar curvature (r=0.71; p<0.01) between AA and CA, with no-significant difference (p=0.30). There is a very strong correlation between intra-evaluator and inter-evaluator AA. It was possible to quantify reliably the thoracic and lumbar curvatures with the arcometer and it can thus be considered valid and reliable and for use in evaluating spinal curvatures in the sagittal plane.

  6. Human pelvis motions when walking and when riding a therapeutic horse.

    PubMed

    Garner, Brian A; Rigby, B Rhett

    2015-02-01

    A prevailing rationale for equine assisted therapies is that the motion of a horse can provide sensory stimulus and movement patterns that mimic those of natural human activities such as walking. The purpose of this study was to quantitatively measure and compare human pelvis motions when walking to those when riding a horse. Six able-bodied children (inexperienced riders, 8-12years old) participated in over-ground trials of self-paced walking and leader-paced riding on four different horses. Five kinematic measures were extracted from three-dimensional pelvis motion data: anteroposterior, superoinferior, and mediolateral translations, list angle about the anteroposterior axis, and twist angle about the superoinferior axis. There was generally as much or more variability in motion range observed between riding on the different horses as between riding and walking. Pelvis trajectories exhibited many similar features between walking and riding, including distorted lemniscate patterns in the transverse and frontal planes. In the sagittal plane the pelvis trajectory during walking exhibited a somewhat circular pattern whereas during riding it exhibited a more diagonal pattern. This study shows that riding on a horse can generate movement patterns in the human pelvis that emulate many, but not all, characteristics of those during natural walking. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Assessment of planarity of the golf swing based on the functional swing plane of the clubhead and motion planes of the body points.

    PubMed

    Kwon, Young-Hoo; Como, Christopher S; Singhal, Kunal; Lee, Sangwoo; Han, Ki Hoon

    2012-06-01

    The purposes of this study were (1) to determine the functional swing plane (FSP) of the clubhead and the motion planes (MPs) of the shoulder/arm points and (2) to assess planarity of the golf swing based on the FSP and the MPs. The swing motions of 14 male skilled golfers (mean handicap = -0.5 +/- 2.0) using three different clubs (driver, 5-iron, and pitching wedge) were captured by an optical motion capture system (250Hz). The FSP and MPs along with their slope/relative inclination and direction/direction of inclination were obtained using a new trajectory-plane fitting method. The slope and direction of the FSP revealed a significant club effect (p < 0.001). The relative inclination and direction of inclination of the MP showed significant point (p < 0.001) and club (p < 0.001) effects and interaction (p < 0.001). Maximum deviations of the points from the FSP revealed a significant point effect (p < 0.001) and point-club interaction (p < 0.001). It was concluded that skilled golfers exhibited well-defined and consistent FSP and MPs, and the shoulder/arm points moved on vastly different MPs and exhibited large deviations from the FSP. Skilled golfers in general exhibited semi-planar downswings with two distinct phases: a transition phase and a planar execution phase.

  8. Occlusal plane rotation: aesthetic enhancement in mandibular micrognathia.

    PubMed

    Rosen, H M

    1993-06-01

    Patients afflicted with extreme degrees of mandibular micrognathia typically have vertically deficient rami as well as sagittally deficient mandibular bodies. This results in deficient posterior facial height, an obtuse gonial angle, excessively steep occlusal and mandibular planes, and a compensatory increase in anterior facial height. The entire maxillomandibular complex is overrotated in a clockwise direction. Standard orthognathic surgical correction fails to address this rotational deformity. As a consequence, the achieved projection of the lower face is inadequate, posterior facial height is further reduced, and occlusal and mandibular planes remain steep. Eleven patients with severe mandibular micrognathia underwent a surgical correction involving occlusal plane rotation to its normal orientation relative to Frankfort horizontal. This was accomplished by Le Fort I osteotomy to shorten the anterior maxilla (creating open bites in seven patients and making preexisting open bites worse in four patients) and sagittal split ramus osteotomies to advance and rotate the mandibular body counterclockwise, thus closing the surgically produced open bite. Counterclockwise rotation of the mandible afforded significantly greater sagittal displacement at the B point (mean 17 mm) than at the first molar (mean 10 mm) and produced adequate degrees of projection of the lower face when accompanied by a modest sliding genioplasty (mean 6.9 mm). Total advancement at the pogonion was a mean of 25.2 mm. In addition, posterior facial height was preserved, and mandibular and occlusal planes were normalized to mean angles of 27 and 10 degrees, respectively. At follow-up, which ranged from 9 to 24 months with a mean of 14.1 months, the mean sagittal relapse at the B point was 1.9 mm. Although heretofore considered unstable and therefore not clinically accepted, maxillomandibular counterclockwise rotation to normalize the occlusal plane rotational deformity provides stable, aesthetically

  9. Skyrmion motion induced by plane stress waves

    NASA Astrophysics Data System (ADS)

    Gungordu, Utkan; Kovalev, Alexey A.

    Skyrmions are typically driven by currents and magnetic fields. We propose an alternative method of driving skyrmions using plane stress waves in a chiral ferromagnetic nanotrack. We find that the effective force due to surface acoustic waves couples both to the helicity and the topological charge of the skyrmion. This coupling can be used to probe the helicity of the skyrmion as well as the nature of the Dzyaloshinskii-Moriya interaction. This is particularly important when a ferromagnet lacks both surface- and bulk-inversion symmetry. Plane stress waves can be generated using a pair of interdigital transducers (IDTs). As the nanowire is subject to half-open space boundary conditions, the skyrmion is driven by normal stress in this setup. We find that skyrmions get pinned at the antinodes of the stress wave, much similar to domain walls, which enables skyrmion motion by detuned IDTs. We also consider a nanotrack sandwiched between a piezoelectric layer and a substrate, with electrical contacts placed on top, which results in shear stress in addition to normal stress in nanotrack. We find that unlike domain walls, skyrmions can be driven using shear component of a standing stress wave. This work was supported primarily by the DOE Early Career Award DE-SC0014189, and in part by the NSF under Grants Nos. Phy-1415600, and DMR-1420645 (UG).

  10. Assessment of Isometric Trunk Strength - The Relevance of Body Position and Relationship between Planes of Movement.

    PubMed

    Kocjan, Andrej; Sarabon, Nejc

    2014-05-01

    The aim of the study was to assess the differences in maximal isometric trunk extension and flexion strength during standing, sitting and kneeling. Additionally, we were interested in correlations between the maximal strength in sagittal, frontal and transverse plane, measured in the sitting position. Sixty healthy subjects (24 male, 36 female; age 41.3 ± 15.1 yrs; body height 1.70 ± 0.09 m; body mass 72.7 ± 13.3 kg) performed maximal voluntary isometric contractions of the trunk flexor and extensor muscles in standing, sitting and kneeling position. The subjects also performed lateral flexions and rotations in the sitting position. Each task was repeated three times and average of maximal forces was used for data analysis. RANOVA with post-hoc testing was applied to the flexion and extension data. The level of statistical significance was set to p < 0.05. Overall, in both genders together, the highest average force for trunk extension was recorded in sitting posture (910.5 ± 271.5 N), followed by kneeling (834.3 ± 242.9 N) and standing (504.0 ± 165.4 N), compared with flexion, where we observed the opposite trend (508.5 ± 213.0 N, 450.9 ± 165.7 N and 443.4 ± 153.1 N, respectively). Post-hoc tests showed significant differences in all extension positions (p < 0.0001) and between sitting/standing (p = 0.018) and kneeling/standing (p = 0.033) flexion exertions. The extension/flexion ratio for sitting was 2.1 ± 0.4, for kneeling 1.9 ± 0.4, followed by standing, where motion forward approximately equals motion backward (1.1 ± 0.6). Trunk sagittal-transverse strength showed the strongest correlation, followed by frontal-transverse and sagittal-frontal plane correlation pairs (R(2) = 0.830, 0.712 and 0.657). The baseline trunk isometric strength data provided by this study should help further strength diagnostics, more precisely, the prevention of low back disorders. Key pointsMaximal voluntary isometric force of the trunk extensors increased with the angle

  11. Influence of time restriction, 20 minutes and 94.6 months, of visual information on angular displacement during the sit-to-stand (STS) task in three planes.

    PubMed

    Aylar, Mozhgan Faraji; Firouzi, Faramarz; Araghi, Mandana Rahnama

    2016-12-01

    [Purpose] The purpose of this investigation was to assess whether or not restriction of visual information influences the kinematics of sit-to-stand (STS) performance in children. [Subjects and Methods] Five girls with congenital blindness (CB) and ten healthy girls with no visual impairments were randomly selected. The girls with congenital blindness were placed in one group and the ten girls with no visual impairments were divided into two groups of five, control and treatment groups. The participants in the treatment group were asked to close their eyes (EC) for 20 minutes before the STS test, whereas those in the control group kept their eyes open (EO). The performance of the participants in all three groups was measured using a motion capture system and two force plates. [Results] The results show that the constraint duration of visual sensory information affected the range of motion (ROM), the excursion of the dominant side ankle, and the ROM of the dominant side knee in the EC group. However, only ankle excursion on the non-dominant side was affected in the CB group, and this was only observed in the sagittal plane. [Conclusion] These results indicate that visual memory does not affect the joint angles in the frontal and transverse planes. Moreover, all of the participants could perform the STS transition without falling, indicating; the participants performed the STS maneuver correctly in all planes except the sagittal one.

  12. Motion on an inclined plane and the nature of science

    NASA Astrophysics Data System (ADS)

    Pendrill, Ann-Marie; Ekström, Peter; Hansson, Lena; Mars, Patrik; Ouattara, Lassana; Ryan, Ulrika

    2014-03-01

    Friction is an important phenomenon in everyday life. All children are familiar with playground slides, which may thus be a good starting point for investigating friction. Motion on an inclined plane is a standard physics example. This paper presents an investigation of friction by a group of 11-year olds. How did they plan their investigations? What aspects of friction could they discern? What understanding of the nature of science was revealed—and developed—during their investigation and subsequent discussion with the teacher?

  13. Efficient use of bit planes in the generation of motion stimuli

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.; Stone, Leland S.

    1988-01-01

    The production of animated motion sequences on computer-controlled display systems presents a technical problem because large images cannot be transferred from disk storage to image memory at conventional frame rates. A technique is described in which a single base image can be used to generate a broad class of motion stimuli without the need for such memory transfers. This technique was applied to the generation of drifting sine-wave gratings (and by extension, sine wave plaids). For each drifting grating, sine and cosine spatial phase components are first reduced to 1 bit/pixel using a digital halftoning technique. The resulting pairs of 1-bit images are then loaded into pairs of bit planes of the display memory. To animate the patterns, the display hardware's color lookup table is modified on a frame-by-frame basis; for each frame the lookup table is set to display a weighted sum of the spatial sine and cosine phase components. Because the contrasts and temporal frequencies of the various components are mutually independent in each frame, the sine and cosine components can be counterphase modulated in temporal quadrature, yielding a single drifting grating. Using additional bit planes, multiple drifting gratings can be combined to form sine-wave plaid patterns. A large number of resultant plaid motions can be produced from a single image file because the temporal frequencies of all the components can be varied independently. For a graphics device having 8 bits/pixel, up to four drifting gratings may be combined, each having independently variable contrast and speed.

  14. Coded Excitation Plane Wave Imaging for Shear Wave Motion Detection

    PubMed Central

    Song, Pengfei; Urban, Matthew W.; Manduca, Armando; Greenleaf, James F.; Chen, Shigao

    2015-01-01

    Plane wave imaging has greatly advanced the field of shear wave elastography thanks to its ultrafast imaging frame rate and the large field-of-view (FOV). However, plane wave imaging also has decreased penetration due to lack of transmit focusing, which makes it challenging to use plane waves for shear wave detection in deep tissues and in obese patients. This study investigated the feasibility of implementing coded excitation in plane wave imaging for shear wave detection, with the hypothesis that coded ultrasound signals can provide superior detection penetration and shear wave signal-to-noise-ratio (SNR) compared to conventional ultrasound signals. Both phase encoding (Barker code) and frequency encoding (chirp code) methods were studied. A first phantom experiment showed an approximate penetration gain of 2-4 cm for the coded pulses. Two subsequent phantom studies showed that all coded pulses outperformed the conventional short imaging pulse by providing superior sensitivity to small motion and robustness to weak ultrasound signals. Finally, an in vivo liver case study on an obese subject (Body Mass Index = 40) demonstrated the feasibility of using the proposed method for in vivo applications, and showed that all coded pulses could provide higher SNR shear wave signals than the conventional short pulse. These findings indicate that by using coded excitation shear wave detection, one can benefit from the ultrafast imaging frame rate and large FOV provided by plane wave imaging while preserving good penetration and shear wave signal quality, which is essential for obtaining robust shear elasticity measurements of tissue. PMID:26168181

  15. Standardized way for imaging of the sagittal spinal balance.

    PubMed

    Morvan, Gérard; Mathieu, Philippe; Vuillemin, Valérie; Guerini, Henri; Bossard, Philippe; Zeitoun, Frédéric; Wybier, Marc

    2011-09-01

    Nowadays, conventional or digitalized teleradiography remains the most commonly used tool for the study of the sagittal balance, sometimes with secondary digitalization. The irradiation given by this technique is important and the photographic results are often poor. Some radiographic tables allow the realization of digitalized spinal radiographs by simultaneous translation of X-ray tube and receptor. EOS system is a new, very low dose system which gives good quality images, permits a simultaneous acquisition of upright frontal and sagittal views, is able to cover in the same time the spine and the lower limbs and study the axial plane on 3D envelope reconstructions. In the future, this low dose system should take a great place in the study of the pelvispinal balance. On the lateral view, several pelvic (incidence, pelvic tilt, sacral slope) and spinal (lumbar lordosis, thoracic kyphosis, Th9 sagittal offset, C7 plumb line) parameters are drawn to define the pelvispinal balance. All are interdependent. Pelvic incidence is an individual anatomic characteristic that corresponds to the "thickness" of the pelvis and governs the spinal balance. Pelvis and spine, in a harmonious whole, can be compared to an accordion, more or less compressed or stretched.

  16. Thresholds for the perception of whole-body linear sinusoidal motion in the horizontal plane

    NASA Technical Reports Server (NTRS)

    Mah, Robert W.; Young, Laurence R.; Steele, Charles R.; Schubert, Earl D.

    1989-01-01

    An improved linear sled has been developed to provide precise motion stimuli without generating perceptible extraneous motion cues (a noiseless environment). A modified adaptive forced-choice method was employed to determine perceptual thresholds to whole-body linear sinusoidal motion in 25 subjects. Thresholds for the detection of movement in the horizontal plane were found to be lower than those reported previously. At frequencies of 0.2 to 0.5 Hz, thresholds were shown to be independent of frequency, while at frequencies of 1.0 to 3.0 Hz, thresholds showed a decreasing sensitivity with increasing frequency, indicating that the perceptual process is not sensitive to the rate change of acceleration of the motion stimulus. The results suggest that the perception of motion behaves as an integrating accelerometer with a bandwidth of at least 3 Hz.

  17. Kinematic analysis of dynamic shoulder motion in patients with reverse total shoulder arthroplasty.

    PubMed

    Kwon, Young W; Pinto, Vivek J; Yoon, Jangwhon; Frankle, Mark A; Dunning, Page E; Sheikhzadeh, Ali

    2012-09-01

    Reverse total shoulder arthroplasty (rTSA) has been used to treat patients with irreparable rotator cuff dysfunction. Despite the proven clinical efficacy, there is minimal information regarding the underlying changes to the shoulder kinematics associated with this construct. Therefore, we sought to examine the kinematics of dynamic shoulder motion in patients with well-functioning rTSA. We tested 12 healthy subjects and 17 patients with rTSA. All rTSA patients were able to elevate their arms to at least 90° and received the implant as the primary arthroplasty at least 6 months before testing. On average, the rTSA patients elevated their arms to 112° ± 12° (mean ± SD) and reported an American Shoulder and Elbow Surgeons outcome score of 90.6 ± 6.3. A 3-dimensional electromagnetic motion capture device was used to detect the dynamic motion of the trunk, scapula, and humerus during bilateral active shoulder elevation along the sagittal, scapular, and coronal planes. In both healthy and rTSA shoulders, the majority of the humeral-thoracic motion was provided by the glenohumeral motion. Therefore, the ratio of glenohumeral to scapulothoracic (ST) motion was always greater than 1.62 during elevation along the scapular plane. In comparison to healthy subjects, however, the contribution of ST motion to overall shoulder motion was significantly increased in the rTSA shoulders. This increased contribution was noted in all planes of shoulder elevation and was maintained when weights were attached to the arm. Kinematics of the rTSA shoulders are significantly altered, and more ST motion is used to achieve shoulder elevation. Copyright © 2012 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  18. Improved ankle push-off power following cheilectomy for hallux rigidus: a prospective gait analysis study.

    PubMed

    Smith, Sheryl M; Coleman, Scott C; Bacon, Stacy A; Polo, Fabian E; Brodsky, James W

    2012-06-01

    There is limited objective scientific information on the functional effects of cheilectomy. The purpose of this study was to test the hypothesis that cheilectomy for hallux rigidus improves gait by increasing ankle push-off power. Seventeen patients with symptomatic Stage 1 or Stage 2 hallux rigidus were studied. Pre- and postoperative first metatarsophalangeal (MTP) range of motion and AOFAS hallux scores were recorded. A gait analysis was performed within 4 weeks prior to surgery and repeated at a minimum of 1 year after surgery. Gait analysis was done using a three-dimensional motion capture system and a force platform embedded in a 10-m walkway. Gait velocity sagittal plane ankle range of motion and peak sagittal plane ankle push-off power were analyzed. Following cheilectomy, significant increases were noted for first MTP range of motion and AOFAS hallux score. First MTP motion improved an average of 16.7 degrees, from means of 33.9 degrees preoperatively to 50.6 degrees postoperatively (p<0.001). AOFAS hallux score increased from 62 to 81 (p<0.007). As demonstrated through gait anaylsis, a significant increase in postoperative peak sagittal plane ankle push-off power from 1.71±0.92 W/kg to 2.05±0.75 W/kg (p<0.04). In addition to clinically increased range of motion and improved AOFAS Hallux score, first MTP joint cheilectomy produced objective improvement in gait, as measured by increased peak sagittal-plane ankle push-off power.

  19. Determination of a sagittal plane axis of rotation for a dynamic office chair.

    PubMed

    Bauer, C M; Rast, F M; Böck, C; Kuster, R P; Baumgartner, D

    2018-10-01

    This study investigated the location of the axis of rotation in sagittal plane movement of the spine in a free sitting condition to adjust the kinematics of a mobile seat for a dynamic chair. Dynamic office chairs are designed to avoid continuous isometric muscle activity, and to facilitate increased mobility of the back during sitting. However, these chairs incorporate increased upper body movement which could distract office workers from the performance of their tasks. A chair with an axis of rotation above the seat would facilitate a stable upper back during movements of the lower back. The selection of a natural kinematic pattern is of high importance in order to match the properties of the spine. Twenty-one participants performed four cycles of flexion and extension of the spine during an upper arm hang on parallel bars. The location of the axis of rotation relative to the seat was estimated using infrared cameras and reflective skin markers. The median axis of rotation across all participants was located 36 cm above the seat for the complete movement and 39 cm for both the flexion and extension phases, each with an interquartile range of 20 cm. There was no significant effect of the movement direction on the location of the axis of rotation and only a weak, non-significant correlation between body height and the location of the axis of rotation. Individual movement patterns explained the majority of the variance. The axis of rotation for a spinal flexion/extension movement is located above the seat. The recommended radius for a guide rail of a mobile seat is between 36 cm and 39 cm. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Remarkably enhanced current-driven 360° domain wall motion in nanostripe by tuning in-plane biaxial anisotropy.

    PubMed

    Su, Yuanchang; Weng, Lianghao; Dong, Wenjun; Xi, Bin; Xiong, Rui; Hu, Jingguo

    2017-10-17

    By micromagnetic simulations, we study the current-driven 360° domain wall (360DW) motion in ferromagnetic nanostripe with an in-plane biaxial anisotropy. We observe the critical annihilation current of 360° domain wall can be enhanced through such a type of anisotropy, the reason of which is the suppression of out-of-plane magnetic moments generated simultaneously with domain-wall motion. In details, We have found that the domain-wall width is only related to K y  - K x , with K x(y) the anisotropy constant in x(y) direction. Taking domain-wall width into consideration, a prior choice is to keep K y  ≈ K x with large enough K. The mode of domain-wall motion has been investigated as well. The traveling-wave-motion region increases with K, while the average DW velocity is almost unchanged. Another noteworthy feature is that a Walker-breakdown-like motion exists before annihilation. In this region, though domain wall moves with an oscillating behavior, the average velocity does not reduce dramatically, but even rise again for a large K.

  1. Assessment of Isometric Trunk Strength – The Relevance of Body Position and Relationship between Planes of Movement

    PubMed Central

    Kocjan, Andrej; Sarabon, Nejc

    2014-01-01

    The aim of the study was to assess the differences in maximal isometric trunk extension and flexion strength during standing, sitting and kneeling. Additionally, we were interested in correlations between the maximal strength in sagittal, frontal and transverse plane, measured in the sitting position. Sixty healthy subjects (24 male, 36 female; age 41.3 ± 15.1 yrs; body height 1.70 ± 0.09 m; body mass 72.7 ± 13.3 kg) performed maximal voluntary isometric contractions of the trunk flexor and extensor muscles in standing, sitting and kneeling position. The subjects also performed lateral flexions and rotations in the sitting position. Each task was repeated three times and average of maximal forces was used for data analysis. RANOVA with post-hoc testing was applied to the flexion and extension data. The level of statistical significance was set to p < 0.05. Overall, in both genders together, the highest average force for trunk extension was recorded in sitting posture (910.5 ± 271.5 N), followed by kneeling (834.3 ± 242.9 N) and standing (504.0 ± 165.4 N), compared with flexion, where we observed the opposite trend (508.5 ± 213.0 N, 450.9 ± 165.7 N and 443.4 ± 153.1 N, respectively). Post-hoc tests showed significant differences in all extension positions (p < 0.0001) and between sitting/standing (p = 0.018) and kneeling/standing (p = 0.033) flexion exertions. The extension/flexion ratio for sitting was 2.1 ± 0.4, for kneeling 1.9 ± 0.4, followed by standing, where motion forward approximately equals motion backward (1.1 ± 0.6). Trunk sagittal-transverse strength showed the strongest correlation, followed by frontal-transverse and sagittal-frontal plane correlation pairs (R2 = 0.830, 0.712 and 0.657). The baseline trunk isometric strength data provided by this study should help further strength diagnostics, more precisely, the prevention of low back disorders. Key points Maximal voluntary isometric force of the trunk extensors increased with the angle at

  2. A clinico-radiographic analysis of sagittal condylar guidance determined by protrusive interocclusal registration and panoramic radiographic images in humans

    PubMed Central

    Prasad, Krishna D.; Shah, Namrata; Hegde, Chethan

    2012-01-01

    Purpose: To evaluate the correlation between sagittal condylar guidance obtained by protrusive interocclusal records and panoramic radiograph tracing methods in human dentulous subjects. Materials and Methods: The sagittal condylar guidance was determined in 75 dentulous subjects by protrusive interocclusal records using Aluwax through a face bow transfer (HANAU™ Spring Bow, Whip Mix Corporation, USA) to a semi-adjustable articulator (HANAU™ Wide-Vue Articulator, Whip Mix Corporation, USA). In the same subjects, the sagittal outline of the articular eminence and glenoid fossa was traced in panoramic radiographs. The sagittal condylar path inclination was constructed by joining the heights of curvature in the glenoid fossa and the corresponding articular eminence. This was then related to the constructed Frankfurt's horizontal plane to determine the radiographic angle of sagittal condylar guidance. Results: A strong positive correlation existed between right and left condylar guidance by the protrusive interocclusal method (P 0.000) and similarly by the radiographic method (P 0.013). The mean difference between the condylar guidance obtained using both methods were 1.97° for the right side and 3.18° for the left side. This difference between the values by the two methods was found to be highly significant for the right (P 0.003) and left side (P 0.000), respectively. The sagittal condylar guidance obtained from both methods showed a significant positive correlation on right (P 0.000) and left side (P 0.015), respectively. Conclusion: Panoramic radiographic tracings of the sagittal condylar path guidance may be made relative to the Frankfurt's horizontal reference plane and the resulting condylar guidance angles used to set the condylar guide settings of semi-adjustable articulators. PMID:23633793

  3. How does knee pain affect trunk and knee motion during badminton forehand lunges?

    PubMed

    Huang, Ming-Tung; Lee, Hsing-Hsan; Lin, Cheng-Feng; Tsai, Yi-Ju; Liao, Jen-Chieh

    2014-01-01

    Badminton requires extensive lower extremity movement and a precise coordination of the upper extremity and trunk movements. Accordingly, this study investigated motions of the trunk and the knee, control of dynamic stability and muscle activation patterns of individuals with and without knee pain. Seventeen participants with chronic knee pain and 17 healthy participants participated in the study and performed forehand forward and backward diagonal lunges. This study showed that those with knee pain exhibited smaller knee motions in frontal and horizontal planes during forward lunge but greater knee motions in sagittal plane during backward lunge. By contrast, in both tasks, the injured group showed a smaller value on the activation level of the paraspinal muscles in pre-impact phase, hip-shoulder separation angle, trunk forward inclination range and peak centre of mass (COM) velocity. Badminton players with knee pain adopt a more conservative movement pattern of the knee to minimise recurrence of knee pain. The healthy group exhibit better weight-shifting ability due to a greater control of the trunk and knee muscles. Training programmes for badminton players with knee pain should be designed to improve both the neuromuscular control and muscle strength of the core muscles and the knee extensor with focus on the backward lunge motion.

  4. SU-C-17A-05: Quantification of Intra-Fraction Motion of Breast Tumors Using Cine-MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heijst, T van; Philippens, M; Bongard, D van den

    2014-06-01

    Purpose: Magnetic resonance imaging (MRI) enables direct characterization of intra-fraction motion ofbreast tumors, due to high softtissue contrast and geometric accuracy. The purpose is to analyzethis motion in early-stage breast-cancer patients using pre-operative supine cine-MRI. Methods: MRI was performed in 12 female early-stage breast-cancer patients on a 1.5-T Ingenia (Philips)wide-bore scanner in supine radiotherapy (RT) position, prior to breast-conserving surgery. Twotwodimensional (2D) T2-weighted balanced fast-field echo (cine-MRI) sequences were added tothe RT protocol, oriented through the tumor. They were alternately acquired in the transverse andsagittal planes, every 0.3 s during 1 min. A radiation oncologist delineated gross target volumes(GTVs) onmore » 3D contrast-enhanced MRI. Clinical target volumes (CTV = GTV + 15 mm isotropic)were generated and transferred onto the fifth time-slice of the time-series, to which subsequents lices were registered using a non-rigid Bspline algorithm; delineations were transformed accordingly. To evaluate intra-fraction CTV motion, deformation fields between the transformed delineations were derived to acquire the distance ensuring 95% surface coverage during scanning(P95%), for all in-plane directions: anteriorposterior (AP), left-right (LR), and caudal-cranial(CC). Information on LR was derived from transverse scans, CC from sagittal scans, AP fromboth sets. Results: Time-series with registration errors - induced by motion artifacts - were excluded by visual inspection. For our analysis, 11 transverse, and 8 sagittal time-series were taken into account. Themedian P95% calculated in AP (19 series), CC (8), and LR (11) was 1.8 mm (range: 0.9–4.8), 1.7mm (0.8–3.6), and 1.0 mm (0.6–3.5), respectively. Conclusion: Intra-fraction motion analysis of breast tumors was achieved using cine-MRI. These first results show that in supine RT position, motion amplitudes are limited. This information can be used for

  5. Active ankle motion may result in changes to the talofibular interval in individuals with chronic ankle instability and ankle sprain copers: a preliminary study.

    PubMed

    Croy, Theodore; Cosby, Nicole L; Hertel, Jay

    2013-08-01

    Alterations in talocrural joint arthrokinematics related to repositioning of the talus or fibula following ankle sprain have been reported in radiological and clinical studies. It is unclear if these changes can result from normal active ankle motion. The study objective was to determine if active movement created changes in the sagittal plane talofibular interval in ankles with a history of lateral ankle sprain and instability. Three subject groups [control (n = 17), ankle sprain copers (n = 20), and chronic ankle instability (n = 20)] underwent ultrasound imaging of the anterolateral ankle gutter to identify the lateral malleolus and talus over three trials. Between trials, subjects actively plantar and dorsiflexed the ankle three times. The sagittal plane talofibular interval was assessed by measuring the anteroposterior distance (mm) between the lateral malleolus and talus from an ultrasound image. Between group and trial differences were analyzed with repeated measures analysis of variance and post-hoc t-tests. Fifty-seven subjects participated. A significant group-by-trial interaction was observed (F4,108 = 3.5; P = 0.009). The talofibular interval was increased in both copers [2.4±3.6 mm; 95% confidence interval (CI): 0.73-4.1; P = 0.007] and chronic ankle instability (4.1±4.6 mm; 95% CI: 1.9-6.2; P = 0.001) at trial 3 while no changes were observed in control ankle talar position (0.06±2.8mm; 95% CI: -1.5-1.4; P = 0.93). The talofibular interval increased only in subjects with a history of lateral ankle sprain with large clinical effect sizes observed. These findings suggest that an alteration in the position of the talus or fibula occurred with non-weight bearing sagittal plane motion. These findings may have diagnostic and therapeutic implications for manual therapists.

  6. The Effect of Military Load Carriage on Postural Sway, Forward Trunk Lean, and Pelvic Girdle Motion

    PubMed Central

    STRUBE, EILEEN M.; SUMNER, ANDREA; KOLLOCK, ROGER; GAMES, KENNETH E.; LACKAMP, MARIE A.; MIZUTANI, MASAHIRO; SEFTON, JOELLEN M.

    2017-01-01

    Musculoskeletal injuries are a common occurrence in military service members. It is believed that the load carried by the service member impedes stability and alters back and pelvis kinematics, increasing their susceptibility to musculoskeletal injuries, specifically in the lower extremities. The purpose of this study was to examine the effects of two different loads on postural sway, forward trunk lean, and pelvic girdle motion in United States Army Cadets. Twenty male Army Reserve Officers’ Training Corps Cadets participated in this study. Each participant performed the Modified Clinical Testing of Sensory Interaction (mCTSIB) Protocol and the Unilateral Stance (ULS) Protocol under three different rucksack load conditions (unloaded, 16.0 kg, and 20.5 kg loads). Mean postural sway velocity was recorded along with 2-D kinematics of the trunk in the sagittal plane and the pelvis in the frontal and sagittal planes. External loads of 16.0 kg (p < 0.001) and 20.5 kg (p ≤ 0.003) significantly increased mean sway velocity by 16% to 52% depending on stance and visual condition, but did not produce significant changes in trunk and pelvic kinematics. PMID:28479946

  7. Extreme-scale motions in turbulent plane Couette flows

    NASA Astrophysics Data System (ADS)

    Lee, Myoungkyu; Moser, Robert D.

    2018-05-01

    We study the size of large-scale motions in turbulent plane Couette flows at moderate Reynolds number up to $Re_\\tau$ = 500. Direct numerical simulation domains were as large as $100\\pi\\delta\\times2\\delta\\times5\\pi\\delta$, where $\\delta$ is half the distance between the walls. The results indicate that there are structures with streamwise extent, as measured by the wavelength, as long as 78$\\delta$ and at least 310$\\delta$ at $Re_\\tau$ = 220 and 500, respectively. The presence of these very long structures is apparent in the spectra of all three velocity components and the Reynolds stress. In DNS using a smaller domain, the large structures are constrained, eliminating the streamwise variations present in the larger domain. Effects of a smaller domain are also present in the mean velocity and the streamwise velocity variance in the outer flow.

  8. Biomechanics of the L5-S1 motion segment after total disc replacement - Influence of iatrogenic distraction, implant positioning and preoperative disc height on the range of motion and loading of facet joints.

    PubMed

    Dreischarf, Marcel; Schmidt, Hendrik; Putzier, Michael; Zander, Thomas

    2015-09-18

    Total disc replacement has been introduced to overcome negative side effects of spinal fusion. The amount of iatrogenic distraction, preoperative disc height and implant positioning have been considered important for surgical success. However, their effect on the postoperative range of motion (RoM) and loading of the facets merits further discussion. A validated osteoligamentous finite element model of the lumbosacral spine was employed and extended with four additional models to account for different disc heights. An artificial disc with a fixed center of rotation (CoR) was implemented in L5-S1. In 4000 simulations, the influence of distraction and the CoR's location on the RoM, facet joint forces (FJFs) and facet capsule ligament forces (FCLFs) was investigated. Distraction substantially altered segmental kinematics in the sagittal plane by decreasing range of flexion (0.5° per 1mm of distraction), increasing range of extension (0.7°/mm) and slightly affecting complete sagittal RoM (0.2°/mm). The distraction already strongly increased the FCLFs during surgery (up to 230N) and in flexion (~12N/mm), with higher values in models with larger preoperative disc heights, and increased FJFs in extension. A more anterior implant location decreased the RoM in all planes. In most loading cases, a more posterior location of the implant's CoR increased the FJFs and FCLFs, whereas a more caudal location increased the FCLFs but decreased the FJFs. The results of this study may explain the worse clinical results in patients with overdistraction after TDR. The complete RoM in the sagittal plane appears to be insensitive to detecting surgery-related biomechanical changes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Reliability and reproducibility analysis of the Cobb angle and assessing sagittal plane by computer-assisted and manual measurement tools.

    PubMed

    Wu, Weifei; Liang, Jie; Du, Yuanli; Tan, Xiaoyi; Xiang, Xuanping; Wang, Wanhong; Ru, Neng; Le, Jinbo

    2014-02-06

    Although many studies on reliability and reproducibility of measurement have been performed on coronal Cobb angle, few results about reliability and reproducibility are reported on sagittal alignment measurement including the pelvis. We usually use SurgimapSpine software to measure the Cobb angle in our studies; however, there are no reports till date on its reliability and reproducible measurements. Sixty-eight standard standing posteroanterior whole-spine radiographs were reviewed. Three examiners carried out the measurements independently under the settings of manual measurement on X-ray radiographies and SurgimapSpine software on the computer. Parameters measured included pelvic incidence, sacral slope, pelvic tilt, Lumbar lordosis (LL), thoracic kyphosis, and coronal Cobb angle. SPSS 16.0 software was used for statistical analyses. The means, standard deviations, intraclass and interclass correlation coefficient (ICC), and 95% confidence intervals (CI) were calculated. There was no notable difference between the two tools (P = 0.21) for the coronal Cobb angle. In the sagittal plane parameters, the ICC of intraobserver reliability for the manual measures varied from 0.65 (T2-T5 angle) to 0.95 (LL angle). Further, for SurgimapSpine tool, the ICC ranged from 0.75 to 0.98. No significant difference in intraobserver reliability was found between the two measurements (P > 0.05). As for the interobserver reliability, measurements with SurgimapSpine tool had better ICC (0.71 to 0.98 vs 0.59 to 0.96) and Pearson's coefficient (0.76 to 0.99 vs 0.60 to 0.97). The reliability of SurgimapSpine measures was significantly higher in all parameters except for the coronal Cobb angle where the difference was not significant (P > 0.05). Although the differences between the two methods are very small, the results of this study indicate that the SurgimapSpine measurement is an equivalent measuring tool to the traditional manual in coronal Cobb angle, but is advantageous in spino

  10. Reliability and reproducibility analysis of the Cobb angle and assessing sagittal plane by computer-assisted and manual measurement tools

    PubMed Central

    2014-01-01

    Background Although many studies on reliability and reproducibility of measurement have been performed on coronal Cobb angle, few results about reliability and reproducibility are reported on sagittal alignment measurement including the pelvis. We usually use SurgimapSpine software to measure the Cobb angle in our studies; however, there are no reports till date on its reliability and reproducible measurements. Methods Sixty-eight standard standing posteroanterior whole-spine radiographs were reviewed. Three examiners carried out the measurements independently under the settings of manual measurement on X-ray radiographies and SurgimapSpine software on the computer. Parameters measured included pelvic incidence, sacral slope, pelvic tilt, Lumbar lordosis (LL), thoracic kyphosis, and coronal Cobb angle. SPSS 16.0 software was used for statistical analyses. The means, standard deviations, intraclass and interclass correlation coefficient (ICC), and 95% confidence intervals (CI) were calculated. Results There was no notable difference between the two tools (P = 0.21) for the coronal Cobb angle. In the sagittal plane parameters, the ICC of intraobserver reliability for the manual measures varied from 0.65 (T2–T5 angle) to 0.95 (LL angle). Further, for SurgimapSpine tool, the ICC ranged from 0.75 to 0.98. No significant difference in intraobserver reliability was found between the two measurements (P > 0.05). As for the interobserver reliability, measurements with SurgimapSpine tool had better ICC (0.71 to 0.98 vs 0.59 to 0.96) and Pearson’s coefficient (0.76 to 0.99 vs 0.60 to 0.97). The reliability of SurgimapSpine measures was significantly higher in all parameters except for the coronal Cobb angle where the difference was not significant (P > 0.05). Conclusion Although the differences between the two methods are very small, the results of this study indicate that the SurgimapSpine measurement is an equivalent measuring tool to the traditional manual

  11. Alteration of the end-plane angle in press-fit cylindrical stem radial head prosthesis: an in vitro study.

    PubMed

    Luenam, Suriya; Chalongviriyalert, Piti; Kosiyatrakul, Arkaphat; Thanawattano, Chusak

    2012-01-01

    Many studies comparing the morphology of native radial head with the prosthesis have been published. However, there is limited information regarding the postoperative alignment of the articular surface following the radial head replacement. The purpose of this study is to evaluate the alteration of the end-plane angle in the modular radial head prosthesis with a press-fit cementless cylindrical stem. The study used 36 cadaveric radii. The press-fit size prosthesis with cylindrical stem was inserted into each specimen. The end-plane angles of the radial head before and after prosthetic replacement, were measured in coronal and sagittal planes with a digital inclinometer. The data were analyzed by paired t-test. From paired t-test, there were statistically symmetrical end-plane angles before and after radial head replacement in both coronal and sagittal planes (p-value < 0.01). The mean of radial head end-plane angle alteration in the coronal plane was 3.62° (SD, 2.76°) (range, 0.3°-8.9°). In the sagittal plane, the mean of alteration was 5.85° (SD, 3.56°) degrees (range, 0.3° - 14.2°). The modular radial head prosthesis with cylindrical stem is in vitro able to restore the native end-plane angles of radial heads statistically when used in a press-fit fashion.

  12. Center of mass trajectory and orientation to ankle and knee in sagittal plane is maintained with forward lean when backpack load changes during treadmill walking.

    PubMed

    Caron, Robert R; Wagenaar, Robert C; Lewis, Cara L; Saltzman, Elliot; Holt, Kenneth G

    2013-01-04

    Maintaining the normal shape and amplitude of the vertical trajectory of the center of mass (COM) during stance has been shown to maximize the efficiency of unloaded gait. Kinematic adaptations to load carriage, such as forward lean have yet to be understood in relation to COM movement. The purpose of this study is to better understand how load impacts the vertical COM(TSYS) trajectory and to clarify the impact of forward lean as it relates to the dynamics of sagittal plane COM(TSYS) movement during stance with changing load. 17 subjects walked on treadmill at a constant preferred walking velocity while nine different loads ranging from 12.5% to 40% bodyweight were systematically added and removed from a backpack. Kinematic data were collected using an Optotrak, three-dimensional motion analysis system and used to estimate position of the COM as well as segment and COM-to-joint vector orientation angles. The shape and amplitude of the COM vertical trajectory was maintained across all loaded conditions. The orientations of COM-to-ankle and -knee vectors were maintained in all loaded conditions except the heaviest load (40% BW). Results suggest that forward lean changed linearly with changes in load to maintain the COM-to-ankle and -knee vector orientations. COM vertical trajectory was maintained by a combination of invariants including lower-limb segment angles and a constant direction of toe-off impulse vector. The kinematic invariants found suggest a simplified control mechanism by which the system limits degrees of freedom and potentially minimizes torque about lower-extremity joints with added load. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Influence of implant rod curvature on sagittal correction of scoliosis deformity.

    PubMed

    Salmingo, Remel Alingalan; Tadano, Shigeru; Abe, Yuichiro; Ito, Manabu

    2014-08-01

    Deformation of in vivo-implanted rods could alter the scoliosis sagittal correction. To our knowledge, no previous authors have investigated the influence of implanted-rod deformation on the sagittal deformity correction during scoliosis surgery. To analyze the changes of the implant rod's angle of curvature during surgery and establish its influence on sagittal correction of scoliosis deformity. A retrospective analysis of the preoperative and postoperative implant rod geometry and angle of curvature was conducted. Twenty adolescent idiopathic scoliosis patients underwent surgery. Average age at the time of operation was 14 years. The preoperative and postoperative implant rod angle of curvature expressed in degrees was obtained for each patient. Two implant rods were attached to the concave and convex side of the spinal deformity. The preoperative implant rod geometry was measured before surgical implantation. The postoperative implant rod geometry after surgery was measured by computed tomography. The implant rod angle of curvature at the sagittal plane was obtained from the implant rod geometry. The angle of curvature between the implant rod extreme ends was measured before implantation and after surgery. The sagittal curvature between the corresponding spinal levels of healthy adolescents obtained by previous studies was compared with the implant rod angle of curvature to evaluate the sagittal curve correction. The difference between the postoperative implant rod angle of curvature and normal spine sagittal curvature of the corresponding instrumented level was used to evaluate over or under correction of the sagittal deformity. The implant rods at the concave side of deformity of all patients were significantly deformed after surgery. The average degree of rod deformation Δθ at the concave and convex sides was 15.8° and 1.6°, respectively. The average preoperative and postoperative implant rod angle of curvature at the concave side was 33.6° and 17.8

  14. Reliability of sagittal plane hip, knee, and ankle joint angles from a single frame of video data using the GAITRite camera system.

    PubMed

    Ross, Sandy A; Rice, Clinton; Von Behren, Kristyn; Meyer, April; Alexander, Rachel; Murfin, Scott

    2015-01-01

    The purpose of this study was to establish intra-rater, intra-session, and inter-rater, reliability of sagittal plane hip, knee, and ankle angles with and without reflective markers using the GAITRite walkway and single video camera between student physical therapists and an experienced physical therapist. This study included thirty-two healthy participants age 20-59, stratified by age and gender. Participants performed three successful walks with and without markers applied to anatomical landmarks. GAITRite software was used to digitize sagittal hip, knee, and ankle angles at two phases of gait: (1) initial contact; and (2) mid-stance. Intra-rater reliability was more consistent for the experienced physical therapist, regardless of joint or phase of gait. Intra-session reliability was variable, the experienced physical therapist showed moderate to high reliability (intra-class correlation coefficient (ICC) = 0.50-0.89) and the student physical therapist showed very poor to high reliability (ICC = 0.07-0.85). Inter-rater reliability was highest during mid-stance at the knee with markers (ICC = 0.86) and lowest during mid-stance at the hip without markers (ICC = 0.25). Reliability of a single camera system, especially at the knee joint shows promise. Depending on the specific type of reliability, error can be attributed to the testers (e.g. lack of digitization practice and marker placement), participants (e.g. loose fitting clothing) and camera systems (e.g. frame rate and resolution). However, until the camera technology can be upgraded to a higher frame rate and resolution, and the software can be linked to the GAITRite walkway, the clinical utility for pre/post measures is limited.

  15. Exploiting Inherent Robustness and Natural Dynamics in the Control of Bipedal Walking Robots

    DTIC Science & Technology

    2000-06-01

    physical models of bipedal walking. The insight gained from these models is used in the development of three planar (motion only in the sagittal plane ...ground is implemented and tested in simulation. The dynamics of the sagittal plane are suffciently decoupled from the dynamics of the frontal and...transverse planes such that control of each can be treated separately. We achieve three-dimensional walking by adding lateral balance to the planar algorithms

  16. Isochronous extension of the Hamiltonian describing free motion in the Poincaré half-plane: Classical and quantum treatments

    NASA Astrophysics Data System (ADS)

    Calogero, F. A.; Leyvraz, F.

    2007-09-01

    We modify (in two different manners) the Hamiltonian describing motions in the Poincaré half-plane so that the modified Hamiltonians thereby obtained are entirely isochronous: indeed, in the classical context, all the motions they entail are periodic with the same period. We then investigate suitably quantized versions of these systems and show that their spectra are equispaced.

  17. Three-dimensional shear wave elastography for differentiation of breast lesions: An initial study with quantitative analysis using three orthogonal planes.

    PubMed

    Wang, Qiao

    2018-05-25

    To prospectively evaluate the diagnostic performance of three-dimensional (3D) shear wave elastography (SWE) for breast lesions with quantitative stiffness information from transverse, sagittal and coronal planes. Conventional ultrasound (US), two-dimensional (2D)-SWE and 3D-SWE were performed for 122 consecutive patients with 122 breast lesions before biopsy or surgical excision. Maximum elasticity values of Young's modulus (Emax) were recorded on 2D-SWE and three planes of 3D-SWE. Area under the receiver operating characteristic curve (AUC), sensitivity and specificity of US, 2D-SWE and 3D-SWE were evaluated. Two combined sets (i.e., BI-RADS and 2D-SWE; BI-RADS and 3D-SWE) were compared in AUC. Observer consistency was also evaluated. On 3D-SWE, the AUC and sensitivity of sagittal plane were significantly higher than those of transverse and coronal planes (both P < 0.05). Compared with BI-RADS alone, both combined sets had significantly (P < 0.05) higher AUCs and specificities, whereas, the two combined sets showed no significant difference in AUC (P > 0.05). However, the combined set of BI-RADS and sagittal plane of 3D-SWE had significantly higher sensitivity than the combined set of BI-RADS and 2D-SWE. The sagittal plane shows the best diagnostic performance among 3D-SWE. The combination of BI-RADS and 3D-SWE is a useful tool for predicting breast malignant lesions in comparison with BI-RADS alone.

  18. Changes in active ankle dorsiflexion range of motion after acute inversion ankle sprain.

    PubMed

    Youdas, James W; McLean, Timothy J; Krause, David A; Hollman, John H

    2009-08-01

    Posterior calf stretching is believed to improve active ankle dorsiflexion range of motion (AADFROM) after acute ankle-inversion sprain. To describe AADFROM at baseline (postinjury) and at 2-wk time periods for 6 wk after acute inversion sprain. Randomized trial. Sports clinic. 11 men and 11 women (age range 11-54 y) with acute inversion sprain. Standardized home exercise program for acute inversion sprain. AADFROM with the knee extended. Time main effect on AADFROM was significant (F3,57 = 108, P < .001). At baseline, mean active sagittal-plane motion of the ankle was 6 degrees of plantar flexion, whereas at 2, 4, and 6 wk AADFROM was 7 degrees, 11 degrees, and 11 degrees, respectively. AADFROM increased significantly from baseline to week 2 and from week 2 to week 4. Normal AADFROM was restored within 4 wk after acute inversion sprain.

  19. Bounded parametric control of plane motions of space tethered system

    NASA Astrophysics Data System (ADS)

    Bezglasnyi, S. P.; Mukhametzyanova, A. A.

    2018-05-01

    This paper is focused on the problem of control of plane motions of a space tethered system (STS). The STS is modeled as a heavy rod with two point masses. Point masses are fixed on the rod. A third point mass can move along the rod. The control is realized as a continuous change of the distance from the centre of mass of the tethered system to the movable mass. New limited control laws processes of excitation and damping are built. Diametric reorientation and gravitational stabilization to the local vertical of an STS were obtained. The problem is solved by the method of Lyapunov's functions of the classical theory of stability. The theoretical results are confirmed by numerical calculations.

  20. WE-G-BRD-01: A Data-Driven 4D-MRI Motion Model to Estimate Full Field-Of-View Abdominal Motion From 2D Image Navigators During MR-Linac Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stemkens, B; Tijssen, RHN; Denis de Senneville, B Denis

    2015-06-15

    Purpose: To estimate full field-of-view abdominal respiratory motion from fast 2D image navigators using a 4D-MRI based motion model. This will allow for radiation dose accumulation mapping during MR-Linac treatment. Methods: Experiments were conducted on a Philips Ingenia 1.5T MRI. First, a retrospectively ordered 4D-MRI was constructed using 3D transient-bSSFP with radial in-plane sampling. Motion fields were calculated through 3D non-rigid registration. From these motion fields a PCA-based abdominal motion model was constructed and used to warp a 3D reference volume to fast 2D cine-MR image navigators that can be used for real-time tracking. To test this procedure, a time-seriesmore » consisting of two interleaved orthogonal slices (sagittal and coronal), positioned on the pancreas or kidneys, were acquired for 1m38s (dynamic scan-time=0.196ms), during normal, shallow, or deep breathing. The coronal slices were used to update the optimal weights for the first two PCA components, in order to warp the 3D reference image and construct a dynamic 4D-MRI time-series. The interleaved sagittal slices served as an independent measure to test the model’s accuracy and fit. Spatial maps of the root-mean-squared error (RMSE) and histograms of the motion differences within the pancreas and kidneys were used to evaluate the method. Results: Cranio-caudal motion was accurately calculated within the pancreas using the model for normal and shallow breathing with an RMSE of 1.6mm and 1.5mm and a histogram median and standard deviation below 0.2 and 1.7mm, respectively. For deep-breathing an underestimation of the inhale amplitude was observed (RMSE=4.1mm). Respiratory-induced antero-posterior and lateral motion were correctly mapped (RMSE=0.6/0.5mm). Kidney motion demonstrated good motion estimation with RMSE-values of 0.95 and 2.4mm for the right and left kidney, respectively. Conclusion: We have demonstrated a method that can calculate dynamic 3D abdominal motion in a large

  1. Motion analysis study on sensitivity of finite element model of the cervical spine to geometry.

    PubMed

    Zafarparandeh, Iman; Erbulut, Deniz U; Ozer, Ali F

    2016-07-01

    Numerous finite element models of the cervical spine have been proposed, with exact geometry or with symmetric approximation in the geometry. However, few researches have investigated the sensitivity of predicted motion responses to the geometry of the cervical spine. The goal of this study was to evaluate the effect of symmetric assumption on the predicted motion by finite element model of the cervical spine. We developed two finite element models of the cervical spine C2-C7. One model was based on the exact geometry of the cervical spine (asymmetric model), whereas the other was symmetric (symmetric model) about the mid-sagittal plane. The predicted range of motion of both models-main and coupled motions-was compared with published experimental data for all motion planes under a full range of loads. The maximum differences between the asymmetric model and symmetric model predictions for the principal motion were 31%, 78%, and 126% for flexion-extension, right-left lateral bending, and right-left axial rotation, respectively. For flexion-extension and lateral bending, the minimum difference was 0%, whereas it was 2% for axial rotation. The maximum coupled motions predicted by the symmetric model were 1.5° axial rotation and 3.6° lateral bending, under applied lateral bending and axial rotation, respectively. Those coupled motions predicted by the asymmetric model were 1.6° axial rotation and 4° lateral bending, under applied lateral bending and axial rotation, respectively. In general, the predicted motion response of the cervical spine by the symmetric model was in the acceptable range and nonlinearity of the moment-rotation curve for the cervical spine was properly predicted. © IMechE 2016.

  2. Inter-segment foot motion in girls using a three-dimensional multi-segment foot model.

    PubMed

    Jang, Woo Young; Lee, Dong Yeon; Jung, Hae Woon; Lee, Doo Jae; Yoo, Won Joon; Choi, In Ho

    2018-05-06

    Several multi-segment foot models (MFMs) have been introduced for in vivo analyses of dynamic foot kinematics. However, the normal gait patterns of healthy children and adolescents remain uncharacterized. We sought to determine normal foot kinematics according to age in clinically normal female children and adolescents using a Foot 3D model. Fifty-eight girls (age 7-17 years) with normal function and without radiographic abnormalities were tested. Three representative strides from five separate trials were analyzed. Kinematic data of foot segment motion were tracked and evaluated using an MFM with a 15-marker set (Foot 3D model). As controls, 50 symptom-free female adults (20-35 years old) were analyzed. In the hindfoot kinematic analysis, plantar flexion motion in the pre-swing phase was significantly greater in girls aged 11 years or older than in girls aged <11 years, thereby resulting in a larger sagittal range of motion. Coronal plane hindfoot motion exhibited pronation, whereas transverse plane hindfoot motion exhibited increased internal rotation in girls aged <11 years. Hallux valgus angles increased significantly in girls aged 11 years or older. The foot progression angle showed mildly increased internal rotation in the loading response phase and the swing phase in girls aged <11 years old. The patterns of inter-segment foot motion in girls aged 11 years or older showed low-arch kinematic characteristics, whereas those in girls aged 11 years or older were more similar to the patterns in young adult women. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Active ankle motion may result in changes to the talofibular interval in individuals with chronic ankle instability and ankle sprain copers: a preliminary study

    PubMed Central

    Croy, Theodore; Cosby, Nicole L; Hertel, Jay

    2013-01-01

    Introduction: Alterations in talocrural joint arthrokinematics related to repositioning of the talus or fibula following ankle sprain have been reported in radiological and clinical studies. It is unclear if these changes can result from normal active ankle motion. The study objective was to determine if active movement created changes in the sagittal plane talofibular interval in ankles with a history of lateral ankle sprain and instability. Methods: Three subject groups [control (n = 17), ankle sprain copers (n = 20), and chronic ankle instability (n = 20)] underwent ultrasound imaging of the anterolateral ankle gutter to identify the lateral malleolus and talus over three trials. Between trials, subjects actively plantar and dorsiflexed the ankle three times. The sagittal plane talofibular interval was assessed by measuring the anteroposterior distance (mm) between the lateral malleolus and talus from an ultrasound image. Between group and trial differences were analyzed with repeated measures analysis of variance and post-hoc t-tests. Results: Fifty-seven subjects participated. A significant group-by-trial interaction was observed (F4,108 = 3.5; P = 0.009). The talofibular interval was increased in both copers [2.4±3.6 mm; 95% confidence interval (CI): 0.73–4.1; P = 0.007] and chronic ankle instability (4.1±4.6 mm; 95% CI: 1.9–6.2; P = 0.001) at trial 3 while no changes were observed in control ankle talar position (0.06±2.8mm; 95% CI: −1.5–1.4; P = 0.93). Discussion: The talofibular interval increased only in subjects with a history of lateral ankle sprain with large clinical effect sizes observed. These findings suggest that an alteration in the position of the talus or fibula occurred with non-weight bearing sagittal plane motion. These findings may have diagnostic and therapeutic implications for manual therapists. PMID:24421623

  4. [Influence of Restricting the Ankle Joint Complex Motions on Gait Stability of Human Body].

    PubMed

    Li, Yang; Zhang, Junxia; Su, Hailong; Wang, Xinting; Zhang, Yan

    2016-10-01

    The purpose of this study is to determine how restricting inversion-eversion and pronation-supination motions of the ankle joint complex influences the stability of human gait.The experiment was carried out on a slippery level ground walkway.Spatiotemporal gait parameter,kinematics and kinetics data as well as utilized coefficient of friction(UCOF)were compared between two conditions,i.e.with restriction of the ankle joint complex inversion-eversion and pronation-supination motions(FIXED)and without restriction(FREE).The results showed that FIXED could lead to a significant increase in velocity and stride length and an obvious decrease in double support time.Furthermore,FIXED might affect the motion angle range of knee joint and ankle joint in the sagittal plane.In FIXED condition,UCOF was significantly increased,which could lead to an increase of slip probability and a decrease of gait stability.Hence,in the design of a walker,bipedal robot or prosthetic,the structure design which is used to achieve the ankle joint complex inversion-eversion and pronation-supination motions should be implemented.

  5. On the dynamics aspects for the plane motion of a particle under the action of potential forces in the presence of a magnetic field

    NASA Astrophysics Data System (ADS)

    Mnasri, C.; Elmandouh, A. A.

    2018-06-01

    This article deals with the general motion of a particle moving in the Euclidean plane under the influence of a conservative potential force in the presence of a magnetic field perpendicular to the plane of the motion. We introduce the conditions for which this motion is not algebraically integrable by using Kowalevski's exponents. We present the equilibrium positions and study their stability and moreover, we clarify that the existence of the magnetic field acts as a stabilizer for maximum unstable equilibrium points for the effective potential. We employ Lyapunov theorem to construct the periodic solutions near the equilibrium points. The allowed regions of motion are specified and illustrated graphically.

  6. Two-plane symmetry in the structural organization of man.

    PubMed

    Ermolenko, A E

    2005-01-01

    Manifestations of symmetry in the human structural organization in ontogenesis and phylogenetic development are analysed. A concept of macrobiocrystalloid with inherent complex symmetry is proposed for the description of the human organism in its integrity. The symmetry can be characterized as two-plane radial (quadrilateral), where the planar symmetry is predominant while the layout of organs of radial symmetry is subordinated to it. Out of the two planes of symmetry (sagittal and horizontal), the sagittal plane is predominant: (a) the location of the organs is governed by two principles: in compliance with the symmetry planes and in compliance with the radial symmetry around cavities; (b) the location of the radial symmetry organs is also governed by the principle of two-plane symmetry; (c) out of the four antimeres of two-plane symmetry, two are paired while the other two have merged into one organ; (d) some organs which are antimeres relative to the horizontal plane are located at the cranial end of the organism (sensory organs, cerebrum-cerebellum, heart-spleen and others). The two-plane symmetry is formed by two mechanisms--(a) the impact of morphogenetic fields of the whole crystalloid organism during embriogenesis and (b) genetic mechanisms of the development of chromosomes having two-plane symmetry. When comparing mineral and biological entities we should consider not the whole immobile crystal but only the active superficial part of a growing or dissolving crystal, the interface between the crystal surface and the crystal-forming environment which directly controls crystal growth and adapts itself to it, as well as crystal feed stock expressed in the structure of concentration flows. The symmetry of the chromosome, of the embrion at the early stages of cell cleavage as well as of some organs and systems in their phylogenetic development is described.

  7. Associations between lower extremity muscle mass and multiplanar knee laxity and stiffness: a potential explanation for sex differences in frontal and transverse plane knee laxity.

    PubMed

    Shultz, Sandra J; Pye, Michele L; Montgomery, Melissa M; Schmitz, Randy J

    2012-12-01

    Compared with men, women have disproportionally greater frontal (varus-valgus) and transverse (internal-external) plane laxity and lower stiffness, despite having similar sagittal (anterior-posterior) plane laxity and stiffness. While the underlying cause is unclear, the amount of lower extremity lean mass (LELM) may be a contributing factor. Lower extremity lean mass would be a stronger predictor of frontal and transverse plane laxity and incremental stiffness than the sagittal plane. Associations between LELM and stiffness would be stronger at lower force increments. Descriptive laboratory study. Sixty-three women and 30 men with no history of ligament injury were measured for knee laxity and incremental stiffness in the sagittal (-90- to 130-N posterior-to-anterior directed loads), frontal (±10-N·m varus-valgus torques), and transverse (±5-N·m internal-external rotation torques) planes and underwent dual-energy X-ray absorptiometry scans to measure LELM. Linear regressions examined the extent to which LELM predicted each laxity and stiffness value, while also accounting for a person's sex. Females (vs males) had greater laxity and less stiffness in the frontal and transverse planes but not the sagittal plane. Lower extremity lean mass was a poor predictor of sagittal laxity and stiffness (R (2) range = .021-.081; P > .06) but was a stronger predictor of frontal (R (2) range = .215-.567; P < .01) and transverse (R (2) range = .224-.356; P < .01) plane laxity and stiffness. Associations were stronger for low (R (2) = .495-.504) versus high (R (2) = .215-.435) frontal plane stiffness but were similar for low (R (2) = .233-.293) versus high (R (2) = .224-.356) transverse plane stiffness. Once we accounted for a person's LELM, sex had little effect on laxity and stiffness (change in R (2) after removal = .01-.08; P = .027-.797). Less LELM was associated with greater laxity and less stiffness in frontal and transverse planes, which may contribute to the

  8. Sagittal plane analysis of selective posterior thoracic spinal fusion in adolescent idiopathic scoliosis: a comparison study of all pedicle screw and hybrid instrumentation.

    PubMed

    Liu, Tie; Hai, Yong

    2014-07-01

    To compare sagittal profiles of selective posterior thoracic instrumentation with segmental pedicle screws instrumentation and hybrid (hook and pedicle screw). Nowadays, thoracic screws are considered more effective than other constructs in spinal deformity correction and have become the treatment in adolescent idiopathic scoliosis surgery. However, recent research found that this enhanced correction ability may sacrifice sagittal balance. As lumbar lordosis is dependent upon thoracic kyphosis (TK), it has been important to maintain TK magnitude in selective thoracic fusions to keep balance. There is no sagittal measurement analysis between the hybrid and all-screw constructs type in cases of selective thoracic fusion. All adolescent idiopathic scoliosis (Lenke1) patients surgically treated in our department between 2003 and 2008 were reviewed. Radiographs of these patients, whose preoperative, immediately postoperative, and minimum 2-year follow-up after selective thoracic fusion (lower instrumented vertebrae not lower than L1, hybrid group the pedicle screw instrumentation not higher than T10) were evaluated, 21 patients underwent posterior hybrid instrumentation and 21 underwent pedicle screw instrumentation. No significant difference in sagittal profiles was observed between the 2 groups. At final follow-up, the proximal junctional measurement has a minor increase in both the groups. TK (T5-T12) also increased (+2.0 degrees of increase in hybrid group vs. +3.9 degrees of increase in the pedicle screw group). The effect of different instrumentation in changing TK at various time points between 2 groups was statistic different (P=0.004). Lumbar lordosis (L1-L5) was increased in both the groups. No significant changes in distal junctional measurement and thoracolumbar junction were noted. The C7 sagittal plumbline remained negative in both the groups at the final follow-up. There was no statistically significant difference comparing the sagittal alignment

  9. Oblique Sagittal Images Prevent Underestimation of the Neuroforaminal Stenosis Grade Caused by Disc Herniation in Cervical Spine MRI.

    PubMed

    Kintzelé, Laurent; Rehnitz, Christoph; Kauczor, Hans-Ulrich; Weber, Marc-André

    2018-06-06

     To identify whether standard sagittal MRI images result in underestimation of the neuroforaminal stenosis grade compared to oblique sagittal MRI images in patients with cervical spine disc herniation.  74 patients with a total of 104 cervical disc herniations compromising the corresponding nerve root were evaluated. Neuroforaminal stenosis grades were evaluated in standard and oblique sagittal images by one senior and one resident radiologist experienced in musculoskeletal imaging. Oblique images were angled 30° towards the standard sagittal plane. Neuroforaminal stenosis grades were classified from 0 (no stenosis) to 3 (high grade stenosis).  Average neuroforaminal stenosis grades of both readers were significantly lower in standard compared to oblique sagittal images (p < 0.001). For 47.1 % of the cases, one or both readers reported a stenosis grade, which was at least 1 grade lower in standard compared to oblique sagittal images. There was also a significant difference when looking at patients who had neurological symptoms (p = 0.002) or underwent cervical spine surgery subsequently (p = 0.004). Interreader reliability, as measured by kappa value, and accordance rates were better for oblique sagittal images (0.94 vs. 0.88 and 99 % vs. 93 %).  Standard sagittal images tend to underestimate neuroforaminal stenosis grades compared to oblique sagittal images and are less reliable in the evaluation of disc herniations within the cervical spine MRI. In order to assess the potential therapeutic consequence, oblique images should therefore be considered as a valuable adjunct to the standard MRI protocol for patients with a radiculopathy.   · Neuroforaminal stenosis grades are underestimated in standard compared to oblique sagittal images. · Interreader reliability is higher for oblique sagittal images. · Oblique sagittal images should be performed in patients with a cervical radiculopathy. · Kintzele L, Rehnitz C, Kauczor H et

  10. The association of visually-assessed quality of movement during jump-landing with ankle dorsiflexion range-of-motion and hip abductor muscle strength among healthy female athletes.

    PubMed

    Rabin, Alon; Einstein, Ofira; Kozol, Zvi

    2018-05-01

    To explore the association between ankle dorsiflexion (DF) range of motion (ROM), and hip abductor muscle strength, to visually-assessed quality of movement during jump-landing. Cross-sectional. Gymnasium of participating teams. 37 female volleyball players. Quality of movement in the frontal-plane, sagittal-plane, and overall (both planes) was visually rated as "good/moderate" or "poor". Weight-bearing Ankle DF ROM and hip abductor muscle strength were compared between participants with differing quality of movement. Weight-bearing DF ROM on both sides was decreased among participants with "poor" sagittal-plane quality of movement (dominant side: 50.8° versus 43.6°, P = .02; non-dominant side: 54.6° versus 45.9°, P = .01), as well as among participants with an overall "poor" quality of movement (dominant side: 51.8° versus 44.0°, P < .01; non-dominant side: 56.5° versus 45.1°, P < .01). Weight-bearing ankle DF on the non-dominant side was decreased among participants with a "poor" frontal-plane quality of movement (53.9° versus 46.0°, P = .02). No differences in hip abductor muscle strength were noted between participants with differing quality of movement. Visual assessment of jump-landing can detect differences in quality of movement that are associated with ankle DF ROM. Clinicians observing a poor quality of movement may wish to assess ankle DF ROM. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. No Differences Identified in Transverse Plane Biomechanics Between Medial Pivot and Rotating Platform Total Knee Implant Designs.

    PubMed

    Papagiannis, Georgios I; Roumpelakis, Ilias M; Triantafyllou, Athanasios I; Makris, Ioannis N; Babis, George C

    2016-08-01

    Total knee arthroplasties (TKAs) using well-designed, fixed bearing prostheses, such as medial pivot (MP), have produced good long-term results. Rotating-platform, posterior-stabilized (RP-PS) mobile bearing implants were designed to decrease polyethylene wear. Sagittal and coronal plane TKA biomechanics are well examined and correlated to polyethylene wear. However, limited research findings describe this relationship in transverse plane. We assumed that although axial plane biomechanics might not be the most destructive parameters on polyethylene wear, it is important to clarify their role because both joint kinematics and kinetics in all 3 planes are important input parameters for TKA wear testing (International Organization for Standardization 14243-1 and 14343-3). Our hypothesis was that transverse plane overall range of motion (ROM) and/or peak moment show differences that reflect on wear advantages when compared RP-PS implants to MP designs. Two groups (MPs = 24 and RP-PSs = 22 subjects) were examined by using 3D gait analysis. The variables were total internal-external rotation (IER) ROM and peak IER moments. No statistically significant difference was demonstrated between the 2 groups in kinetics (P = .389) or kinematics (P = .275). In the present study, no wear advantages were found between 2 TKAs. Both designs showed identical kinetics at the transverse plane in level-ground walking. Kinematic analysis could not illustrate any statistically significant difference in terms of overall IER ROM. Nevertheless, kinematic gait pattern differences observed possibly reflect different patterns of joint surface motion or abnormal gait patterns. Thus, wear testing with various input waveforms combined with functional data analysis will be necessary to identify the actual effects of gait variability on polyethylene wear. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Hydrodynamics of a robotic fish tail: effects of the caudal peduncle, fin ray motions and the flow speed.

    PubMed

    Ren, Ziyu; Yang, Xingbang; Wang, Tianmiao; Wen, Li

    2016-02-08

    Recent advances in understanding fish locomotion with robotic devices have included the use of biomimetic flapping based and fin undulatory locomotion based robots, treating two locomotions separately from each other. However, in most fish species, patterns of active movements of fins occur in concert with the body undulatory deformation during swimming. In this paper, we describe a biomimetic robotic caudal fin programmed with individually actuated fin rays to mimic the fin motion of the Bluegill Sunfish (Lepomis macrochirus) and coupled with heave and pitch oscillatory motions adding to the robot to mimic the peduncle motion which is derived from the undulatory fish body. Multiple-axis force and digital particle image velocimetry (DPIV) experiments from both the vertical and horizontal planes behind the robotic model were conducted under different motion programs and flow speeds. We found that both mean thrust and lift could be altered by changing the phase difference (φ) from 0° to 360° between the robotic caudal peduncle and the fin ray motion (spanning from 3 mN to 124 mN). Notably, DPIV results demonstrated that the caudal fin generated multiple wake flow patterns in both the vertical and horizontal planes by varying φ. Vortex jet angle and thrust impulse also varied significantly both in these two planes. In addition, the vortex shedding position along the spanwise tail direction could be shifted around the mid-sagittal position between the upper and lower lobes by changing the phase difference. We hypothesize that the fish caudal fin may serve as a flexible vectoring propeller during swimming and may be critical for the high maneuverability of fish.

  13. The contribution of two ears to the perception of vertical angle in sagittal planes.

    PubMed

    Morimoto, M

    2001-04-01

    Because the input signals to the left and right ears are not identical, it is important to clarify the role of these signals in the perception of the vertical angle of a sound source at any position in the upper hemisphere. To obtain basic findings on upper hemisphere localization, this paper investigates the contribution of each pinna to the perception of vertical angle. Tests measured localization of the vertical angle in five planes parallel to the median plane. In the localization tests, the pinna cavities of one or both ears were occluded. Results showed that pinna cavities of both the near and far ears play a role in determining the perceived vertical angle of a sound source in any plane, including the median plane. As a sound source shifts laterally away from the median plane, the contribution of the near ear increases and, conversely, that of the far ear decreases. For saggital planes at azimuths greater than 60 degrees from midline, the far ear no longer contributes measurably to the determination of vertical angle.

  14. Agreement Between Visual Assessment and 2-Dimensional Analysis During Jump Landing Among Healthy Female Athletes.

    PubMed

    Rabin, Alon; Einstein, Ofira; Kozol, Zvi

    2018-04-01

      Altered movement patterns, including increased frontal-plane knee movement and decreased sagittal-plane hip and knee movement, have been associated with several knee disorders. Nevertheless, the ability of clinicians to visually detect such altered movement patterns during high-speed athletic tasks is relatively unknown.   To explore the association between visual assessment and 2-dimensional (2D) analysis of frontal-plane knee movement and sagittal-plane hip and knee movement during a jump-landing task among healthy female athletes.   Cross-sectional study.   Gymnasiums of participating volleyball teams.   A total of 39 healthy female volleyball players (age = 21.0 ± 5.2 years, height = 172.0 ± 8.6 cm, mass = 64.2 ± 7.2 kg) from Divisions I and II of the Israeli Volleyball Association.   Frontal-plane knee movement and sagittal-plane hip and knee movement during jump landing were visually rated as good, moderate, or poor based on previously established criteria. Frontal-plane knee excursion and sagittal-plane hip and knee excursions were measured using free motion-analysis software and compared among athletes with different visual ratings of the corresponding movements.   Participants with different visual ratings of frontal-plane knee movement displayed differences in 2D frontal-plane knee excursion ( P < .01), whereas participants with different visual ratings of sagittal-plane hip and knee movement displayed differences in 2D sagittal-plane hip and knee excursions ( P < .01).   Visual ratings of frontal-plane knee movement and sagittal-plane hip and knee movement were associated with differences in the corresponding 2D hip and knee excursions. Visual rating of these movements may serve as an initial screening tool for detecting altered movement patterns during jump landings.

  15. Sagittal alignment after single cervical disc arthroplasty.

    PubMed

    Guérin, Patrick; Obeid, Ibrahim; Gille, Olivier; Bourghli, Anouar; Luc, Stéphane; Pointillart, Vincent; Vital, Jean-Marc

    2012-02-01

    Prospective study. To analyze the sagittal balance after single-level cervical disc replacement (CDR) and range of motion (ROM). To define clinical and radiologic parameters those have a significant correlation with segmental and overall cervical curvature after CDR. Clinical outcomes and ROM after CDR with Mobi-C (LDR, Troyes, France) prosthesis have been documented in few studies. No earlier report of this prosthesis has studied correlations between static and dynamic parameters or those between static parameters and clinical outcomes. Forty patients were evaluated. Clinical outcome was assessed using the Short Form-36 questionnaire, Neck Disability Index, and a Visual Analog Scale. Spineview software (Surgiview, Paris, France) was used to investigate sagittal balance parameters and ROM. The mean follow-up was 24.3 months (range: 12 to 36 mo). Clinical outcomes were satisfactory. There was a significant improvement of Short Form-36, Neck Disability Index, and Visual Analog Scale scores. Mean ROM was 8.3 degrees preoperatively and 11.0 degrees postoperatively (P=0.013). Mean preoperative C2C7 curvature was 12.8 and 16.0 degrees at last follow-up (P=0.001). Mean preoperative functional spinal unit (FSU) angle was 2.3 and 5.3 degrees postoperatively (P<0.0001). Mean postoperative shell angle was 5.5 degrees. There was a significant correlation between postoperative C2C7 alignment and preoperative C2C7 alignment, change of C2C7 alignment, preoperative and postoperative FSU angle, and prosthesis shell angle. There was also a significant correlation between postoperative FSU angle and preoperative C2C7 alignment, preoperative FSU angle, change of FSU angle, and prosthesis shell angle. Regression analysis showed that prosthesis shell angle and preoperative FSU angle contributed significantly to postoperative FSU angle. Moreover, preoperative C2C7 alignment, preoperative FSU angle, postoperative FSU angle, and prosthesis shell angle contributed significantly to

  16. Effect of spine motion on mobility in quadruped running

    NASA Astrophysics Data System (ADS)

    Chen, Dongliang; Liu, Qi; Dong, Litao; Wang, Hong; Zhang, Qun

    2014-11-01

    Most of current running quadruped robots have similar construction: a stiff body and four compliant legs. Many researches have indicated that the stiff body without spine motion is a main factor in limitation of robots' mobility. Therefore, investigating spine motion is very important to build robots with better mobility. A planar quadruped robot is designed based on cheetahs' morphology. There is a spinal driving joint in the body of the robot. When the spinal driving joint acts, the robot has spine motion; otherwise, the robot has not spine motion. Six group prototype experiments with the robot are carried out to study the effect of spine motion on mobility. In each group, there are two comparative experiments: the spinal driving joint acts in one experiment but does not in the other experiment. The results of the prototype experiments indicate that the average speeds of the robot with spine motion are 8.7%-15.9% larger than those of the robot without spine motion. Furthermore, a simplified sagittal plane model of quadruped mammals is introduced. The simplified model also has a spinal driving joint. Using a similar process as the prototype experiments, six group simulation experiments with the simplified model are conducted. The results of the simulation experiments show that the maximum rear leg horizontal thrusts of the simplified mode with spine motion are 68.2%-71.3% larger than those of the simplified mode without spine motion. Hence, it is found that spine motion can increase the average running speed and the intrinsic reason of speed increase is the improvement of the maximum rear leg horizontal thrust.

  17. MRI to delineate the gross tumor volume of nasopharyngeal cancers: which sequences and planes should be used?

    PubMed

    Popovtzer, Aron; Ibrahim, Mohannad; Tatro, Daniel; Feng, Felix Y; Ten Haken, Randall K; Eisbruch, Avraham

    2014-09-01

    Magnetic resonance imaging (MRI) has been found to be better than computed tomography for defining the extent of primary gross tumor volume (GTV) in advanced nasopharyngeal cancer. It is routinely applied for target delineation in planning radiotherapy. However, the specific MRI sequences/planes that should be used are unknown. Twelve patients with nasopharyngeal cancer underwent primary GTV evaluation with gadolinium-enhanced axial T1 weighted image (T1) and T2 weighted image (T2), coronal T1, and sagittal T1 sequences. Each sequence was registered with the planning computed tomography scans. Planning target volumes (PTVs) were derived by uniform expansions of the GTVs. The volumes encompassed by the various sequences/planes, and the volumes common to all sequences/planes, were compared quantitatively and anatomically to the volume delineated by the commonly used axial T1-based dataset. Addition of the axial T2 sequence increased the axial T1-based GTV by 12% on average (p = 0.004), and composite evaluations that included the coronal T1 and sagittal T1 planes increased the axial T1-based GTVs by 30% on average (p = 0.003). The axial T1-based PTVs were increased by 20% by the additional sequences (p = 0.04). Each sequence/plane added unique volume extensions. The GTVs common to all the T1 planes accounted for 38% of the total volumes of all the T1 planes. Anatomically, addition of the coronal and sagittal-based GTVs extended the axial T1-based GTV caudally and cranially, notably to the base of the skull. Adding MRI planes and sequences to the traditional axial T1 sequence yields significant quantitative and anatomically important extensions of the GTVs and PTVs. For accurate target delineation in nasopharyngeal cancer, we recommend that GTVs be outlined in all MRI sequences/planes and registered with the planning computed tomography scans.

  18. Determining the sagittal relationship between the maxilla and the mandible: a cephalometric analysis to clear up the confusion.

    PubMed

    Davis, Glen S; Cannon, James L; Messersmith, Marion L

    2013-01-01

    Establishing the sagittal jaw relationship is a key component to developing a diagnosis when treating an orthodontic patient. Several measurements, including the Wits Appraisal, ANB angle and nasion perpendicular have been and are currently used by practitioners to diagnose the sagittal jaw relationship. Unfortunately, all of these measurements have their limitations. The Cannon Analysis was created in an attempt to help overcome these limitations. One hundred untreated patients from the Vanderbilt University Medical Center database were selected, and their initial lateral cephalometric radiographs were digitally traced utilizing the Cannon Cephalometric Analysis. All of these patients had an orthognathic profile, a Class I occlusion and a good skeletal balance as judged by the authors. Normative values were established for the Cannon Analysis and then broken down by sex and age (8-11, 12-18, 19 and over). An example case was analyzed using the Cannon Analysis and several diagnostic scenarios were reviewed. The variance or difference between Porion to A Point (Po-A) and Porion to B Point (Po-B) was found to be 12.6 mm. This value remained relatively constant throughout life, with only slightly higher values for males versus females. The Cannon Analysis is an effective way to accurately establish the sagittal jaw relationship since it is not affected by the anterior / posterior position of nasion, the steepness of the mandibular plane angle, nor an improperly drawn occlusal plane.

  19. Analysis of sagittal spinopelvic parameters in achondroplasia.

    PubMed

    Hong, Jae-Young; Suh, Seung-Woo; Modi, Hitesh N; Park, Jong-Woong; Park, Jung-Ho

    2011-08-15

    Prospective radiological analysis of patients with achondroplasia. To analyze sagittal spinal alignment and pelvic orientation in achondroplasia patients. Knowledge of sagittal spinopelvic parameters is important for the treatment of achondroplasia, because they differ from those of the normal population and can induce pain. The study and control groups were composed of 32 achondroplasia patients and 24 healthy volunteers, respectively. All underwent lateral radiography of the whole spine including hip joints. The radiographic parameters examined were sacral slope (SS), pelvic tilt, pelvic incidence (PI), S1 overhang, thoracic kyphosis, T10-L2 kyphosis, lumbar lordosis (LL1, LL2), and sagittal balance. Statistical analysis was performed to identify significant differences between the two groups. In addition, correlations between parameters and symptoms were sought. Sagittal spinopelvic parameters, namely, pelvic tilt, pelvic incidence, S1 overhang, thoracic kyphosis, T10-L2 kyphosis, lumbar lordosis 1 and sagittal balance were found to be significantly different in the patient and control groups (P < 0.05). In addition, sagittal parameters were found to be related to each other in the patient group (P < 0.05), that is, PI was related to SS and pelvic tilt, and LL was related to thoracic kyphosis. Furthermore, in terms of relations between spinal and pelvic parameters, LL was related to SS and PI, and sagittal balance was related to SS and PI. Furthermore, LL and T10-L2 kyphosis were found to be related to pain (P < 0.05), whereas no other parameter was found to be related to VAS scores. Sagittal parameters and possible relationships between sagittal parameters and symptoms were found to be significantly different in achondroplasia patients and normal healthy controls. The present study shows that sagittal spinal and pelvic parameters can assist the treatment of spinal disorders in achondroplasia patients.

  20. Modification of the sagittal split osteotomy of the mandibular ramus: mobilizing vertical osteotomy of the internal ramus segment.

    PubMed

    Ricard, Daniel; Ferri, Joël

    2009-08-01

    We describe a new surgical procedure to improve stability when counterclockwise rotation of the maxillomandibular complex and the occlusal plane is intended. This preliminary prospective study evaluated 10 patients (8 female patients and 2 male patients) who each underwent maxillomandibular surgical advancement with counterclockwise rotation of the occlusal plane. A mandibular counterclockwise rotation was done in all cases with bilateral ramus sagittal split osteotomy. After the split of the ramus had been completed, a vertical osteotomy was done distally to the second molar on the internal ramus segment. With the completion of this vertical osteotomy, the internal ramus segment became completely mobile. All osteotomies were stabilized with rigid internal fixation by use of plates with monocortical screws. Ten patients have been treated with the "mobilizing vertical osteotomy of the internal ramus segment." The mean reduction of the occlusal plane angle was 10.1 degrees , showing a substantial counterclockwise rotation of the maxillomandibular complex. All patients had significant improvement of their facial balance. After a 1-year follow-up period, all cases but 1 showed very good stability of their occlusion and occlusal plane angle. An 11.4% relapse of the forward movement of the mandible was noted. On the basis of this prospective study, we conclude that when performing a counterclockwise rotation of the maxillomandibular complex, the mobilizing vertical osteotomy of the internal ramus segment combined with the sagittal split osteotomy of the mandible potentially enhances the occlusal plane angle and occlusal stability after a 1-year period.

  1. Sagittal crest formation in great apes and gibbons.

    PubMed

    Balolia, Katharine L; Soligo, Christophe; Wood, Bernard

    2017-06-01

    The frequency of sagittal crest expression and patterns of sagittal crest growth and development have been documented in hominoids, including some extinct hominin taxa, and the more frequent expression of the sagittal crest in males has been traditionally linked with the need for larger-bodied individuals to have enough attachment area for the temporalis muscle. In the present study, we investigate sagittal cresting in a dentally mature sample of four hominoid taxa (Pan troglodytes schweinfurthii, Gorilla gorilla gorilla, Pongo pygmaeus pygmaeus and Hylobates lar). We investigate whether sagittal crest size increases with age beyond dental maturity in males and females of G. g. gorilla and Po. pyg. pygmaeus, and whether these taxa show sex differences in the timing of sagittal crest development. We evaluate the hypothesis that the larger sagittal crest of males may not be solely due to the requirement for a larger surface area than the un-crested cranial vault can provide for the attachment of the temporalis muscle, and present data on sex differences in temporalis muscle attachment area and sagittal crest size relative to cranial size. Gorilla g. gorilla and Po. pyg. pygmaeus males show significant relationships between tooth wear rank and sagittal crest size, and they show sagittal crest size differences between age groups that are not found in females. The sagittal crest emerges in early adulthood in the majority of G. g. gorilla males, whereas the percentage of G. g. gorilla females possessing a sagittal crest increases more gradually. Pongo pyg. pygmaeus males experience a three-fold increase in the number of specimens exhibiting a sagittal crest in mid-adulthood, consistent with a secondary growth spurt. Gorilla g. gorilla and Po. pyg. pygmaeus show significant sex differences in the size of the temporalis muscle attachment area, relative to cranial size, with males of both taxa showing positive allometry not shown in females. Gorilla g

  2. The effect of age on sagittal plane profile of the lumbar spine according to standing, supine, and various sitting positions

    PubMed Central

    2014-01-01

    Background The sagittal alignment of the spine changes depending on body posture and degenerative changes. This study aimed to observe changes in sagittal alignment of the lumbar spine with different positions (standing, supine, and various sitting postures) and to verify the effect of aging on lumbar sagittal alignment. Methods Whole-spine lateral radiographs were obtained for young volunteers (25.4 ± 2.3 years) and elderly volunteers (66.7 ± 1.7 years). Radiographs were obtained in standing, supine, and sitting (30°, 60°, and 90°) positions respectively. We compared the radiological changes in the lordotic and segmental angles in different body positions and at different ages. Upper and lower lumbar lordosis were defined according to differences in anatomical sagittal mobility and kinematic behavior. Results Lumbar lordosis was greater in a standing position (52.79° and 53.90° in young and old groups, respectively) and tended to decrease as position changed from supine to sitting. Compared with the younger group, the older group showed significantly more lumbar lordosis in supine and 60° and 90° sitting positions (P = 0.043, 0.002, 0.011). Upper lumbar lordosis in the younger group changed dynamically in all changed positions compared with the old group (P = 0.019). Lower lumbar lordosis showed a decreasing pattern in both age groups, significantly changing as position changed from 30° to 60° (P = 0.007, 0.007). Conclusions Lumbar lordosis decreases as position changes from standing to 90°sitting. The upper lumbar spine is more flexible in individuals in their twenties compared to those in their sixties. Changes in lumbar lordosis were concentrated in the lower lumbar region in the older group in sitting positions. PMID:24571953

  3. TU-AB-BRA-10: Treatment of Gastric MALT Lymphoma Utilizing a Magnetic Resonance Image-Guided Radiation Therapy (MR-IGRT) System: Evaluation of Gating Feasibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazur, T; Gach, H; Chundury, A

    Purpose: To evaluate the feasibility of real-time, real-anatomy tracking and gating for gastric lymphoma patients treated with magnetic resonance image-guided radiation therapy (MR-IGRT) Methods: Over the last 2 years, 8 patients with gastric lymphoma were treated with 0.3-T, Co-60 MR-IGRT. Post-treatment analysis of real-time cine imaging in the sagittal plane during each patient’s treatment revealed significant motion of the stomach. While this motion was accounted for with generous PTV margins, the system’s capability for real-time, real-anatomy tracking could be used to reduce treatment margins by gating. However, analysis was needed for the feasibility of gating using only the single availablemore » sagittal imaging plane. While any plane may be chosen, if the stomach moves differently where it is not being observed, there may potentially be a mistreatment. To that end, imaging with healthy volunteers was done to ascertain stomach motion over 2–4 min by analyzing multiple parallel sagittal and coronal planes 0.75 cm apart. The stomach was contoured on every slice, and the mean displacement between pairs of contour centroids was used to determine the amount of overall motion. Results: The mean displacement of the centroid in the image plane was 4.3 ± 0.7 mm. The greatest observed motion was more medial with respect to the patient, and less motion laterally, which implies that gating on a plane located closer to MRI isocenter will provide the more conservative scenario as it will turn the radiation delivery off when the stomach is observed to move outside a predetermined boundary. Conclusion: The stomach was observed to move relatively uniformly throughout, with maximum extent of motion closer to where most MRI systems have the best spatial integrity (near isocenter). Analysis of possible PTV margins from the healthy volunteer study (coupled with previous patient data on interfraction volumetric stomach deformation) is pending.« less

  4. Neural Extrapolation of Motion for a Ball Rolling Down an Inclined Plane

    PubMed Central

    La Scaleia, Barbara; Lacquaniti, Francesco; Zago, Myrka

    2014-01-01

    It is known that humans tend to misjudge the kinematics of a target rolling down an inclined plane. Because visuomotor responses are often more accurate and less prone to perceptual illusions than cognitive judgments, we asked the question of how rolling motion is extrapolated for manual interception or drawing tasks. In three experiments a ball rolled down an incline with kinematics that differed as a function of the starting position (4 different positions) and slope (30°, 45° or 60°). In Experiment 1, participants had to punch the ball as it fell off the incline. In Experiment 2, the ball rolled down the incline but was stopped at the end; participants were asked to imagine that the ball kept moving and to punch it. In Experiment 3, the ball rolled down the incline and was stopped at the end; participants were asked to draw with the hand in air the trajectory that would be described by the ball if it kept moving. We found that performance was most accurate when motion of the ball was visible until interception and haptic feedback of hand-ball contact was available (Experiment 1). However, even when participants punched an imaginary moving ball (Experiment 2) or drew in air the imaginary trajectory (Experiment 3), they were able to extrapolate to some extent global aspects of the target motion, including its path, speed and arrival time. We argue that the path and kinematics of a ball rolling down an incline can be extrapolated surprisingly well by the brain using both visual information and internal models of target motion. PMID:24940874

  5. Neural extrapolation of motion for a ball rolling down an inclined plane.

    PubMed

    La Scaleia, Barbara; Lacquaniti, Francesco; Zago, Myrka

    2014-01-01

    It is known that humans tend to misjudge the kinematics of a target rolling down an inclined plane. Because visuomotor responses are often more accurate and less prone to perceptual illusions than cognitive judgments, we asked the question of how rolling motion is extrapolated for manual interception or drawing tasks. In three experiments a ball rolled down an incline with kinematics that differed as a function of the starting position (4 different positions) and slope (30°, 45° or 60°). In Experiment 1, participants had to punch the ball as it fell off the incline. In Experiment 2, the ball rolled down the incline but was stopped at the end; participants were asked to imagine that the ball kept moving and to punch it. In Experiment 3, the ball rolled down the incline and was stopped at the end; participants were asked to draw with the hand in air the trajectory that would be described by the ball if it kept moving. We found that performance was most accurate when motion of the ball was visible until interception and haptic feedback of hand-ball contact was available (Experiment 1). However, even when participants punched an imaginary moving ball (Experiment 2) or drew in air the imaginary trajectory (Experiment 3), they were able to extrapolate to some extent global aspects of the target motion, including its path, speed and arrival time. We argue that the path and kinematics of a ball rolling down an incline can be extrapolated surprisingly well by the brain using both visual information and internal models of target motion.

  6. Quantifying frontal plane knee motion during single limb squats: reliability and validity of 2-dimensional measures.

    PubMed

    Gwynne, Craig R; Curran, Sarah A

    2014-12-01

    Clinical assessment of lower limb kinematics during dynamic tasks may identify individuals who demonstrate abnormal movement patterns that may lead to etiology of exacerbation of knee conditions such as patellofemoral joint (PFJt) pain. The purpose of this study was to determine the reliability, validity and associated measurement error of a clinically appropriate two-dimensional (2-D) procedure of quantifying frontal plane knee alignment during single limb squats. Nine female and nine male recreationally active subjects with no history of PFJt pain had frontal plane limb alignment assessed using three-dimensional (3-D) motion analysis and digital video cameras (2-D analysis) while performing single limb squats. The association between 2-D and 3-D measures was quantified using Pearson's product correlation coefficients. Intraclass correlation coefficients (ICCs) were determined for within- and between-session reliability of 2-D data and standard error of measurement (SEM) was used to establish measurement error. Frontal plane limb alignment assessed with 2-D analysis demonstrated good correlation compared with 3-D methods (r = 0.64 to 0.78, p < 0.001). Within-session (0.86) and between-session ICCs (0.74) demonstrated good reliability for 2-D measures and SEM scores ranged from 2° to 4°. 2-D measures have good consistency and may provide a valid measure of lower limb alignment when compared to existing 3-D methods. Assessment of lower limb kinematics using 2-D methods may be an accurate and clinically useful alternative to 3-D motion analysis when identifying individuals who demonstrate abnormal movement patterns associated with PFJt pain. 2b.

  7. Various anti-motion sickness drugs and core body temperature changes.

    PubMed

    Cheung, Bob; Nakashima, Ann M; Hofer, Kevin D

    2011-04-01

    Blood flow changes and inactivity associated with motion sickness appear to exacerbate the rate of core temperature decrease during subsequent body cooling. We investigated the effects of various classes of anti-motion sickness drugs on core temperature changes. There were 12 healthy male and female subjects (20-35 yr old) who were given selected classes of anti-motion sickness drugs prior to vestibular Coriolis cross coupling induced by graded yaw rotation and periodic pitch-forward head movements in the sagittal plane. All subjects were then immersed in water at 18 degrees C for a maximum of 90 min or until their core temperature reached 35 degrees C. Double-blind randomized trials were administered, including a placebo, a non-immersion control with no drug, and six anti-motion sickness drugs: meclizine, dimenhydrinate, chlorpheniramine, promethazine + dexamphetamine, promethazine + caffeine, and scopolamine + dexamphetamine. A 7-d washout period was observed between trials. Core temperature and the severity of sickness were monitored throughout each trial. A repeated measures design was performed on the severity of sickness and core temperature changes prior to motion provocation, immediately after the motion sickness end point, and throughout the period of cold-water immersion. The most effective anti-motion sickness drugs, promethazine + dexamphetamine (with a sickness score/duration of 0.65 +/- 0.17) and scopolamine + dexamphetamine (with a sickness score/duration of 0.79 +/- 0.17), significantly attenuated the decrease in core temperature. The effect of this attenuation was lower in less effective drugs. Our results suggest that the two most effective anti-motion sickness drugs are also the most effective in attenuating the rate of core temperature decrease.

  8. Effects of ipsilateral anterior thigh soft tissue stretching on passive unilateral straight-leg raise.

    PubMed

    Clark, S; Christiansen, A; Hellman, D F; Hugunin, J W; Hurst, K M

    1999-01-01

    Randomized 3-group pretest-posttest with blind assessment of outcome. The purpose of this study was to examine the effect of sagittal plane hold-relax exercise applied to the ipsilateral anterior thigh, and prone positioning on passive unilateral straight-leg raise measurements. Straight-leg raising has been viewed as a measurement for hamstring muscle length, but literature suggests that other structures may affect this measurement. Sixty subjects (45 men, 15 women) qualified for inclusion into the study based on a straight-leg raise measurement of < or = 65 degrees. Subjects were randomly assigned to one of three groups: control, static stretch, or sagittal plane hold-relax exercise. Pretest and posttest straight-leg raise measurements of the right lower extremity were performed for each subject. A 1-way ANOVA of the change scores showed a significant difference between groups. A Tukey post hoc analysis of the change scores showed that both treatment groups' means differed significantly from the control group and from each other, with the sagittal plane hold-relax group exhibiting the largest change (mean of 7.8 degrees +/- 2.8 degrees). The results of this study show that sagittal plane hold-relax exercise and passive prone results of this study show that sagittal plane hold-relax and passive prone positioning can significantly increase straight-leg raise range of motion, however the sagittal plane hold-relax stretching of the anterior thigh is more effective than passive prone positioning.

  9. Cervical range of motion discriminates between asymptomatic persons and those with whiplash.

    PubMed

    Dall'Alba, P T; Sterling, M M; Treleaven, J M; Edwards, S L; Jull, G A

    2001-10-01

    A comparative study of cervical range of motion in asymptomatic persons and those with whiplash. To compare the primary and conjunct ranges of motion of the cervical spine in asymptomatic persons and those with persistent whiplash-associated disorders, and to investigate the ability of these measures of range of motion to discriminate between the groups. Evidence that range of motion is an effective indicator of physical impairment in the cervical spine is not conclusive. Few studies have evaluated the ability to discriminate between asymptomatic persons and those with whiplash on the basis of range of motion or compared three-dimensional in vivo measures of range of motion in asymptomatic persons and those with whiplash-associated disorders. The study participants were 89 asymptomatic volunteers (41 men, 48 women; mean age 39.2 years) and 114 patients with persistent whiplash-associated disorders (22 men, 93 women; mean age 37.2 years) referred to a whiplash research unit for assessment of their cervical region. Range of cervical motion was measured in three dimensions with a computerized, electromagnetic, motion-tracking device. The movements assessed were flexion, extension, left and right lateral flexion, and left and right rotation. Range of motion was reduced in all primary movements in patients with persistent whiplash-associated disorder. Sagittal plane movements were proportionally the most affected. On the basis of primary and conjunct range of motion, age, and gender, 90.3% of study participants could be correctly categorized as asymptomatic or as having whiplash (sensitivity 86.2%, specificity 95.3%). Range of motion was capable of discriminating between asymptomatic persons and those with persistent whiplash-associated disorders.

  10. Quasicharacteristic radiation of relativistic electrons at orientation motion in lithium halides crystals along charged planes and axes

    NASA Astrophysics Data System (ADS)

    Maksyuta, N. V.; Vysotskii, V. I.; Efimenko, S. V.

    2016-07-01

    The paper deals with the investigation of the orientation motion of relativistic electrons in charged (111) planes and charged [110] axes of lithium halides ionic crystals of LiF, LiCl, LiBr and LiI. On the basis of these investigations the spectra of quasicharacteristic radiation for the electron beams with various Lorentz-factors both in planar and axial cases have been calculated numerically.

  11. Ambulant adults with spastic cerebral palsy: the validity of lower limb joint angle measurements from sagittal video recordings.

    PubMed

    Larsen, Kerstin L; Maanum, Grethe; Frøslie, Kathrine F; Jahnsen, Reidun

    2012-02-01

    In the development of a clinical program for ambulant adults with cerebral palsy (CP), we investigated the validity of joint angles measured from sagittal video recordings and explored if movements in the transversal plane identified with three-dimensional gait analysis (3DGA) affected the validity of sagittal video joint angle measurements. Ten observers, and 10 persons with spastic CP (19-63 years), Gross Motor Function Classification System I-II, participated in the study. Concurrent criterion validity between video joint angle measurements and 3DGA was assessed by Bland-Altman plots with mean differences and 95% limits of agreement (LoA). Pearson's correlation coefficients (r) and scatter plots were used supplementary. Transversal kinematics ≥2 SD from our reference band were defined as increased movement in the transversal plane. The overall mean differences in degrees between joint angles measured by 3DGA and video recordings (3°, 5° and -7° for the hip, knee and ankle respectively) and corresponding LoA (18°, 10° and 15° for the hip, knee and ankle, respectively) demonstrated substantial discrepancies between the two methods. The correlations ranged from low (r=0.39) to moderate (r=0.68). Discrepancy between the two measurements was seen both among persons with and without the presence of deviating transversal kinematics. Quantifying lower limb joint angles from sagittal video recordings in ambulant adults with spastic CP demonstrated low validity, and should be conducted with caution. This gives implications for selecting evaluation method of gait. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Three-dimensional scapular dyskinesis in hook-plated acromioclavicular dislocation including hook motion.

    PubMed

    Kim, Eugene; Lee, Seunghee; Jeong, Hwa-Jae; Park, Jai Hyung; Park, Se-Jin; Lee, Jaewook; Kim, Woosub; Park, Hee Jin; Lee, So Yeon; Murase, Tsuyoshi; Sugamoto, Kazuomi; Ikemoto, Sumika

    2018-06-01

    The purpose of this study is to analyze the 3-dimensional scapular dyskinesis and the kinematics of a hook plate relative to the acromion after hook-plated acromioclavicular dislocation in vivo. Reported complications of acromioclavicular reduction using a hook plate include subacromial erosion and impingement. However, there are few reports of the 3-dimensional kinematics of the hook and scapula after the aforementioned surgical procedure. We studied 15 cases of acromioclavicular dislocation treated with a hook plate and 15 contralateral normal shoulders using computed tomography in the neutral and full forward flexion positions. Three-dimensional motion of the scapula relative to the thorax during arm elevation was analyzed using a computer simulation program. We also measured the distance from the tip of the hook plate to the greater tuberosity, as well as the angular motion of the plate tip in the subacromial space. Decreased posterior tilting (22° ± 10° vs 31° ± 8°) in the sagittal plane and increased external rotation (19° ± 9° vs 7° ± 5°) in the axial plane were evident in the affected shoulders. The mean values of translation of the hook plate and angular motion against the acromion were 4.0 ± 1.6 mm and 15° ± 8°, respectively. The minimum value of the distance from the hook plate to the humeral head tuberosity was 6.9 mm during arm elevation. Acromioclavicular reduction using a hook plate may cause scapular dyskinesis. Translational and angular motion of the hook plate against the acromion could lead to subacromial erosion. However, the hook does not seem to impinge directly on the humeral head. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  13. Comparative analysis of methods for modeling the penetration and plane-parallel motion of conical projectiles in soil

    NASA Astrophysics Data System (ADS)

    Bazhenov, V. G.; Bragov, A. M.; Konstantinov, A. Yu.; Kotov, V. L.

    2015-05-01

    This paper presents an analysis of the accuracy of known and new modeling methods using the hypothesis of local and plane sections for solution of problems of the impact and plane-parallel motion of conical bodies at an angle to the free surface of the half-space occupied by elastoplastic soil. The parameters of the local interaction model that is quadratic in velocity are determined by solving the one-dimensional problem of the expansion of a spherical cavity. Axisymmetric problems for each of the meridional section are solved simultaneously neglecting mass and momentum transfer in the circumferential direction and using an approach based on the hypothesis of plane sections. The dynamic and kinematic parameters of oblique penetration obtained using modified models are compared with the results of computer simulation in a three-dimensional formulation. The results obtained with regard to the contact stress distribution along the generator of the pointed cone are in satisfactory agreement.

  14. Ankle Dorsiflexion Displacement During Landing is Associated With Initial Contact Kinematics but not Joint Displacement.

    PubMed

    Begalle, Rebecca L; Walsh, Meghan C; McGrath, Melanie L; Boling, Michelle C; Blackburn, J Troy; Padua, Darin A

    2015-08-01

    The ankle, knee, and hip joints work together in the sagittal plane to absorb landing forces. Reduced sagittal plane motion at the ankle may alter landing strategies at the knee and hip, potentially increasing injury risk; however, no studies have examined the kinematic relationships between the joints during jump landings. Healthy adults (N = 30; 15 male, 15 female) performed jump landings onto a force plate while three-dimensional kinematic data were collected. Joint displacement values were calculated during the loading phase as the difference between peak and initial contact angles. No relationship existed between ankle dorsiflexion displacement during landing and three-dimensional knee and hip displacements. However, less ankle dorsiflexion displacement was associated with landing at initial ground contact with larger hip flexion, hip internal rotation, knee flexion, knee varus, and smaller plantar flexion angles. Findings of the current study suggest that restrictions in ankle motion during landing may contribute to contacting the ground in a more flexed position but continuing through little additional motion to absorb the landing. Transverse plane hip and frontal plane knee positioning may also occur, which are known to increase the risk of lower extremity injury.

  15. T1-weighted brain imaging with a 32-channel coil at 3T using TurboFLASH BLADE compared with standard cartesian k-space sampling.

    PubMed

    Attenberger, Ulrike I; Runge, Val M; Williams, Kenneth D; Stemmer, Alto; Michaely, Henrik J; Schoenberg, Stefan O; Reiser, Maximilian F; Wintersperger, Bernd J

    2009-03-01

    Motion artifacts often markedly degrade image quality in clinical scans. The BLADE technique offers an alternative k-space sampling scheme reducing the effect of patient related motion on image quality. The purpose of this study is the comparison of imaging artifacts, signal-to-noise (SNR), and contrast-to-noise ratio (CNR) of a new turboFLASH BLADE k-space trajectory with the standard Cartesian k-space sampling for brain imaging, using a 32-channel coil at 3T. The results from 32 patients included after informed consent are reported. This study was performed with a 32-channel head coil on a 3T scanner. Sagittal and axial T1-weighted FLASH sequences (TR/TE 250/2.46 milliseconds, flip angle 70-degree), acquired with Cartesian k-space sampling and T1-weighted turboFLASH sequences (TR/TE/TIsag/TIax 3200/2.77/1144/1056 milliseconds, flip angle 20-degree), using PROPELLER (BLADE) k-space trajectory, were compared. SNR and CNR were evaluated using a paired student t test. The frequency of motion artifacts was assessed in a blinded read. To analyze the differences between both techniques a McNemar test was performed. A P value <0.05 was considered statistically significant. From the blinded read, the overall preference in terms of diagnostic image quality was statistically significant in favor of the BLADE turboFLASH data sets, compared with standard FLASH for both sagittal (P < 0.0001) and axial (P < 0.0001) planes. The frequency of motion artifacts from the scalp was higher for standard FLASH sequences than for BLADE sequences on both axial (47%, P < 0.0003) and sagittal (69%, P < 0.0001) planes. BLADE was preferred in 100% (sagittal plane) and 80% (axial plane) of in-patient data sets and in 68% (sagittal plane) and 73% (axial plane) of out-patient data sets.The BLADE T1 scan did have lower SNRmean (BLADEax 179 +/- 98, Cartesianax 475 +/- 145, BLADEsag 171 +/- 51, and Cartesiansag 697 +/- 129) with P values indicating accordingly a statistically significant difference

  16. Slipping and Rolling on an Inclined Plane

    ERIC Educational Resources Information Center

    Aghamohammadi, Cina; Aghamohammadi, Amir

    2011-01-01

    In the first part of the paper, using a direct calculation two-dimensional motion of a particle sliding on an inclined plane is investigated for general values of friction coefficient ([mu]). A parametric equation for the trajectory of the particle is also obtained. In the second part of the paper, the motion of a sphere on the inclined plane is…

  17. Is the sagittal postural alignment different in normal and dysphonic adult speakers?

    PubMed

    Franco, Débora; Martins, Fernando; Andrea, Mário; Fragoso, Isabel; Carrão, Luís; Teles, Júlia

    2014-07-01

    Clinical research in the field of voice disorders, in particular functional dysphonia, has suggested abnormal laryngeal posture due to muscle adaptive changes, although specific evidence regarding body posture has been lacking. The aim of our study was to verify if there were significant differences in sagittal spine alignment between normal (41 subjects) and dysphonic speakers (33 subjects). Cross-sectional study. Seventy-four adults, 35 males and 39 females, were submitted to sagittal plane photographs so that spine alignment could be analyzed through the Digimizer-MedCalc Software Ltd program. Perceptual and acoustic evaluation and nasoendoscopy were used for dysphonic judgments: normal and dysphonic speakers. For thoracic length curvature (TL) and for the kyphosis index (KI), a significant effect of dysphonia was observed with mean TL and KI significantly higher for the dysphonic speakers than for the normal speakers. Concerning the TL variable, a significant effect of sex was found, in which the mean of the TL was higher for males than females. The interaction between dysphonia and sex did not have a significant effect on TL and KI variables. For the lumbar length curvature variable, a significant main effect of sex was demonstrated; there was no significant main effect of dysphonia or significant sex×dysphonia interaction. Findings indicated significant differences in some sagittal spine posture measures between normal and dysphonic speakers. Postural measures can add useful information to voice assessment protocols and should be taken into account when considering particular treatment strategies. Copyright © 2014 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  18. FIBRE AND INTEGRATED OPTICS. OPTICAL PROCESSING OF INFORMATION: Intrafibre rotation of the plane of polarisation

    NASA Astrophysics Data System (ADS)

    Zel'dovich, Boris Ya; Kundikova, N. D.

    1995-02-01

    Rotation of the plane of polarisation during propagation of sagittal rays in a rectilinear multimode fibre was observed experimentally. The angle of rotation was in good agreement with the results predicted on the basis of the Rytov—Vladimirskii—Berry theory.

  19. Weight-Bearing Dorsiflexion Range of Motion and Landing Biomechanics in Individuals With Chronic Ankle Instability

    PubMed Central

    Hoch, Matthew C.; Farwell, Kelley E.; Gaven, Stacey L.; Weinhandl, Joshua T.

    2015-01-01

    Context People with chronic ankle instability (CAI) exhibit less weight-bearing dorsiflexion range of motion (ROM) and less knee flexion during landing than people with stable ankles. Examining the relationship between dorsiflexion ROM and landing biomechanics may identify a modifiable factor associated with altered kinematics and kinetics during landing tasks. Objective To examine the relationship between weight-bearing dorsiflexion ROM and single-legged landing biomechanics in persons with CAI. Design Cross-sectional study. Setting Laboratory. Patients or Other Participants Fifteen physically active persons with CAI (5 men, 10 women; age = 21.9 ± 2.1 years, height = 168.7 ± 9.0 cm, mass = 69.4 ± 13.3 kg) participated. Intervention(s) Participants performed dorsiflexion ROM and single-legged landings from a 40-cm height. Sagittal-plane kinematics of the lower extremity and ground reaction forces (GRFs) were captured during landing. Main Outcome Measure(s) Static dorsiflexion was measured using the weight-bearing–lunge test. Kinematics of the ankle, knee, and hip were observed at initial contact, maximum angle, and sagittal displacement. Sagittal displacements of the ankle, knee, and hip were summed to examine overall sagittal displacement. Kinetic variables were maximum posterior and vertical GRFs normalized to body weight. We used Pearson product moment correlations to evaluate the relationships between dorsiflexion ROM and landing biomechanics. Correlations (r) were interpreted as weak (0.00–0.40), moderate (0.41–0.69), or strong (0.70–1.00). The coefficient of determination (r2) was used to determine the amount of explained variance among variables. Results Static dorsiflexion ROM was moderately correlated with maximum dorsiflexion (r = 0.49, r2 = 0.24), ankle displacement (r = 0.47, r2 = 0.22), and total displacement (r = 0.67, r2 = 0.45) during landing. Dorsiflexion ROM measured statically and during landing demonstrated moderate to strong

  20. Postural Consequences of Cervical Sagittal Imbalance: A Novel Laboratory Model.

    PubMed

    Patwardhan, Avinash G; Havey, Robert M; Khayatzadeh, Saeed; Muriuki, Muturi G; Voronov, Leonard I; Carandang, Gerard; Nguyen, Ngoc-Lam; Ghanayem, Alexander J; Schuit, Dale; Patel, Alpesh A; Smith, Zachary A; Sears, William

    2015-06-01

    A biomechanical study using human spine specimens. To study postural compensations in lordosis angles that are necessary to maintain horizontal gaze in the presence of forward head posture and increasing T1 sagittal tilt. Forward head posture relative to the shoulders, assessed radiographically using the horizontal offset distance between the C2 and C7 vertebral bodies (C2-C7 [sagittal vertical alignment] SVA), is a measure of global cervical imbalance. This may result from kyphotic alignment of cervical segments, muscle imbalance, as well as malalignment of thoracolumbar spine. Ten cadaveric cervical spines (occiput-T1) were tested. The T1 vertebra was anchored to a tilting and translating base. The occiput was free to move vertically but its angular orientation was constrained to ensure horizontal gaze regardless of sagittal imbalance. A 5-kg mass was attached to the occiput to mimic head weight. Forward head posture magnitude and T1 tilt were varied and motions of individual vertebrae were measured to calculate C2-C7 SVA and lordosis across C0-C2 and C2-C7. Increasing C2-C7 SVA caused flexion of lower cervical (C2-C7) segments and hyperextension of suboccipital (C0-C1-C2) segments to maintain horizontal gaze. Increasing kyphotic T1 tilt primarily increased lordosis across the C2-C7 segments. Regression models were developed to predict the compensatory C0-C2 and C2-C7 angulation needed to maintain horizontal gaze given values of C2-C7 SVA and T1 tilt. This study established predictive relationships between radiographical measures of forward head posture, T1 tilt, and postural compensations in the cervical lordosis angles needed to maintain horizontal gaze. The laboratory model predicted that normalization of C2-C7 SVA will reduce suboccipital (C0-C2) hyperextension, whereas T1 tilt reduction will reduce the hyperextension in the C2-C7 segments. The predictive relationships may help in planning corrective strategy in patients experiencing neck pain, which may be

  1. Correction of antebrachial angulation-rotation deformities in dogs with oblique plane inclined osteotomies.

    PubMed

    Franklin, Samuel P; Dover, Ryan K; Andrade, Natalia; Rosselli, Desiree; M Clarke, Kevin

    2017-11-01

    To describe oblique plane inclined osteotomies and report preliminary data on outcomes in dogs treated for antebrachial angulation-rotation deformities. Retrospective clinical study. Six antebrachii from 5 dogs. Records of dogs with antebrachial angulation-rotation deformities treated with oblique plane inclined osteotomies were reviewed. Postoperative frontal, sagittal, and transverse plane alignments were assessed subjectively, and alignment in the frontal and sagittal planes was quantified on radiographs. Outcomes were classified based on owner's and veterinarian's evaluation as full, acceptable, and unacceptable function. Complications were classified as minor, major, or catastrophic. Limb alignment was subjectively considered excellent in 1 case, good in 3 cases, and fair in 2 cases. Osseous union was achieved in all cases (mean 10.5 weeks; range, 6-13 weeks). Outcomes were assessed by the veterinarian as return to full function in 5 cases and acceptable function in 1 case at the final in-hospital follow-up (mean 44 weeks; range, 6-124 weeks). All owners classified their dogs as returning to full function at the final phone/email interview (mean 107 weeks; range, 72-153 weeks). Implants were removed due to infection or irritation in 3/6 limbs, while the other 3 limbs had minor dermatitis secondary to postoperative external coaptation. No catastrophic complications occurred. Oblique plane inclined osteotomies led to a successful outcome in all 6 limbs, but the technique can be challenging and does not always lead to optimal alignment. Future refinement of this technique could focus on the development of patient-specific osteotomy guides to improve accuracy and precision. © 2017 The American College of Veterinary Surgeons.

  2. Sagittal Plane Correction Using the Lateral Transpsoas Approach: A Biomechanical Study on the Effect of Cage Angle and Surgical Technique on Segmental Lordosis.

    PubMed

    Melikian, Rojeh; Yoon, Sangwook Tim; Kim, Jin Young; Park, Kun Young; Yoon, Caroline; Hutton, William

    2016-09-01

    Cadaveric biomechanical study. To determine the degree of segmental correction that can be achieved through lateral transpsoas approach by varying cage angle and adding anterior longitudinal ligament (ALL) release and posterior element resection. Lordotic cage insertion through the lateral transpsoas approach is being used increasingly for restoration of sagittal alignment. However, the degree of correction achieved by varying cage angle and ALL release and posterior element resection is not well defined. Thirteen lumbar motion segments between L1 and L5 were dissected into single motion segments. Segmental angles and disk heights were measured under both 50 N and 500 N compressive loads under the following conditions: intact specimen, discectomy (collapsed disk simulation), insertion of parallel cage, 10° cage, 30° cage with ALL release, 30° cage with ALL release and spinous process (SP) resection, 30° cage with ALL release, SP resection, facetectomy, and compression with pedicle screws. Segmental lordosis was not increased by either parallel or 10° cages as compared with intact disks, and contributed small amounts of lordosis when compared with the collapsed disk condition. Placement of 30° cages with ALL release increased segmental lordosis by 10.5°. Adding SP resection increased lordosis to 12.4°. Facetectomy and compression with pedicle screws further increased lordosis to approximately 26°. No interventions resulted in a decrease in either anterior or posterior disk height. Insertion of a parallel or 10° cage has little effect on lordosis. A 30° cage insertion with ALL release resulted in a modest increase in lordosis (10.5°). The addition of SP resection and facetectomy was needed to obtain a larger amount of correction (26°). None of the cages, including the 30° lordotic cage, caused a decrease in posterior disk height suggesting hyperlordotic cages do not cause foraminal stenosis. N/A.

  3. Biomechanical evaluation of sagittal maxillary internal distraction osteogenesis in unilateral cleft lip and palate patient and noncleft patients: a three-dimensional finite element analysis.

    PubMed

    Olmez, Sultan; Dogan, Servet; Pekedis, Mahmut; Yildiz, Hasan

    2014-09-01

    To compare the pattern and amount of stress and displacement during maxillary sagittal distraction osteogenesis (DO) between a patient with unilateral cleft lip and palate (UCLP) and a noncleft patient. Three-dimensional finite element models for both skulls were constructed. Displacements of the surface landmarks and stress distributions in the circummaxillary sutures were analyzed after an anterior displacement of 6 mm was loaded to the elements where the inferior plates of the distractor were assumed to be fixed and were below the Le Fort I osteotomy line. In sagittal plane, more forward movement was found on the noncleft side in the UCLP model (-6.401 mm on cleft side and -6.651 mm on noncleft side for the central incisor region). However, similar amounts of forward movement were seen in the control model. In the vertical plane, a clockwise rotation occurred in the UCLP model, whereas a counterclockwise rotation was seen in the control model. The mathematical UCLP model also showed higher stress values on the sutura nasomaxillaris, frontonasalis, and zygomatiomaxillaris on the cleft side than on the normal side. Not only did the sagittal distraction forces produce advancement forces at the intermaxillary sutures, but more stress was also present on the sutura nasomaxillaris, sutura frontonasalis, and sutura zygomaticomaxillaris on the cleft side than on the noncleft side.

  4. The effects of plane and arc of elevation on electromyography of shoulder musculature in patients with rotator cuff tears.

    PubMed

    Alenabi, Talia; Dal Maso, Fabien; Tétreault, Patrice; Begon, Mickaël

    2016-02-01

    Arm elevations in different planes are commonly assessed in clinics and are included in rehabilitation protocols for patients with rotator cuff pathology. The aim of this study was to quantify the effect of plane and angle of elevation on shoulder muscles activity in patients with symptomatic rotator cuff tear to be used for rehabilitation purposes. Eight symptomatic patients with rotator cuff tears were assessed by using EMG (11 surface and 2 fine wire electrodes) synchronized with a motion analysis. The subjects completed five elevations in full can position (arm externally rotated and thumb up) in frontal, scapular and sagittal planes. Muscle activity in three elevation arcs of 20° (from 0° to 60°) was presented as the percentage of mean activity. Data were analyzed by mixed linear models (α=0.003), and Tuckey Post-hoc comparisons for significant effects (α=0.05). The effect of plane was significant for supraspinatus, middle trapezius, anterior, middle, and posterior deltoid, triceps, and pectoralis major (P<0.001). Supraspinatus was more active during abduction than scaption and flexion (P<0.05), and its activity did not increase significantly after 40° of elevation (P>0.05). Infraspinatus had similar activity pattern in the three planes of elevation (P>0.003) with increasing trend in accordance with the elevation angle. In any rehabilitation protocol, if less activity of supraspinatus is desired, active arm elevation should be directed toward flexion and scaption and postponed abduction to prevent high level of activity in this muscle. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Improvement in gait following combined ankle and subtalar arthrodesis.

    PubMed

    Tenenbaum, Shay; Coleman, Scott C; Brodsky, James W

    2014-11-19

    This study assessed the hypothesis that arthrodesis of both the ankle and the hindfoot joints produces an objective improvement of function as measured by gait analysis of patients with severe ankle and hindfoot arthritis. Twenty-one patients with severe ankle and hindfoot arthritis who underwent unilateral tibiotalocalcaneal arthrodesis with an intramedullary nail were prospectively studied with three-dimensional (3D) gait analysis at a minimum of one year postoperatively. The mean age at the time of the operation was fifty-nine years, and the mean duration of follow-up was seventeen months (range, twelve to thirty-one months). Temporospatial measurements included cadence, step length, walking velocity, and total support time. The kinematic parameters were sagittal plane motion of the ankle, knee, and hip. The kinetic parameters were sagittal plane ankle power and moment and hip power. Symmetry of gait was analyzed by comparing the step lengths on the affected and unaffected sides. There was significant improvement in multiple parameters of postoperative gait as compared with the patients' own preoperative function. Temporospatial data showed significant increases in cadence (p = 0.03) and walking speed (p = 0.001) and decreased total support time (p = 0.02). Kinematic results showed that sagittal plane ankle motion had decreased, from 13.2° preoperatively to 10.2° postoperatively, in the operatively treated limb (p = 0.02), and increased from 22.2° to 24.1° (p = 0.01) in the contralateral limb. Hip motion on the affected side increased from 39° to 43° (p = 0.007), and knee motion increased from 56° to 60° (p = 0.054). Kinetic results showed significant increases in ankle moment (p < 0.0001) of the operatively treated limb, ankle power of the contralateral limb (p = 0.009), and hip power on the affected side (p = 0.005) postoperatively. There was a significant improvement in gait symmetry (p = 0.01). There was a small loss of sagittal plane motion in the

  6. Kinematics of the thoracic T10-T11 motion segment: locus of instantaneous axes of rotation in flexion and extension.

    PubMed

    Qiu, Tian-Xia; Teo, Ee-Chon; Lee, Kim-Kheng; Ng, Hong-Wan; Yang, Kai

    2004-04-01

    The purpose of this study was to determine the locations and loci of instantaneous axes of rotation (IARs) of the T10-T11 motion segment in flexion and extension. An anatomically accurate three-dimensional model of thoracic T10-T11 functional spinal unit (FSU) was developed and validated against published experimental data under flexion, extension, lateral bending, and axial rotation loading configurations. The validated model was exercised under six load configurations that produced motions only in the sagittal plane to characterize the loci of IARs for flexion and extension. The IARs for both flexion and extension under these six load types were directly below the geometric center of the moving vertebra, and all the loci of IARs were tracked superoanteriorly for flexion and inferoposteriorly for extension with rotation. These findings may offer an insight to better understanding of the kinematics of the human thoracic spine and provide clinically relevant information for the evaluation of spinal stability and implant device functionality.

  7. Self-Inflicted Drywall Screws in the Sagittal Sinus.

    PubMed

    Guppy, Kern H; Ochi, Calvin

    2018-02-01

    A 30-year-old right-handed man with a history of schizophrenia presented with 2 self-inflicted drywall screws in the skull. The patient was sleepy but easily arousable; blood tests showed he had taken methamphetamines. Computed tomography and computed tomography angiography of the head showed the frontal screw abutted left of the superior sagittal sinus, and the posterior screw went through the superior sagittal sinus with no extravasation of contrast material at either site. Both screws were removed with exposure of the sagittal sinus using U-shaped craniectomies. There was no bleeding on the removal of the screws. It appears the posterior screw entered between the leaflets of the sagittal sinus dura mater. The patient had returned to work without any sequelae 1 month after injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Clinical outcomes, radiologic kinematics, and effects on sagittal balance of the 6 df LP-ESP lumbar disc prosthesis.

    PubMed

    Lazennec, Jean-Yves; Even, Julien; Skalli, Wafa; Rakover, Jean-Patrick; Brusson, Adrien; Rousseau, Marc-Antoine

    2014-09-01

    Surgical treatment of degenerative disc disease remains a controversial subject. Lumbar fusion has been associated with a potential risk of segmental junctional disease and sagittal balance misalignment. Motion preservation devices have been developed as an alternative to fusion. The LP-ESP disc is a one-piece deformable device achieving 6 df, including shock absorption and elastic return. This is the first clinical report on its use. To assess clinical outcomes and radiologic kinematics in the first 2 years after implantation. Prospective cohort of patients with LP-ESP total disc replacement (TDR) at the lumbar spine. Forty-six consecutive patients. Clinical outcomes were the visual analog scale (VAS) for pain, the Oswestry disability index (ODI), and the GHQ28 (General Health Questionnaire) psychological score. Radiologic data were the range of motion (ROM), sagittal balance parameters, and mean center of rotation (MCR). Patients had single-level TDR at L4-L5 or L5-S1. Outcomes were prospectively recorded for 2 years (before and at 3, 6, 12, and 24 months after surgery). The SpineView software was used for computed analysis of the radiographic data. Paired t tests were used for statistical comparisons. No intraoperative complication occurred. All clinical scores improved significantly at 24 months: the back pain VAS scores by a mean of 4.1 points and the ODI by 33 points. The average ROM of the instrumented level was 5.4°±4.8° at 2 years and more than 2° for 76% of prostheses. The MCR was in a physiological area in 73% of cases. The sagittal balance (pelvic tilt, sacral slope, and segmental lordosis) did not change significantly at any point of the follow-up. Results from the 2-year follow-up indicate that LP-ESP prosthesis recreates lumbar spine function similar to that of the healthy disc in terms of ROM, quality of movement, effect on sagittal balance, and absence of modification in the kinematics of the upper adjacent level. Copyright © 2014 Elsevier Inc

  9. The effect of ankle distraction on arthroscopic evaluation of syndesmotic instability: A cadaveric study.

    PubMed

    Lubberts, Bart; Guss, Daniel; Vopat, Bryan G; Wolf, Jonathon C; Moon, Daniel K; DiGiovanni, Christopher W

    2017-12-01

    To assist with visualization, orthopaedic surgeons often apply ankle distraction during arthroscopic procedures. The study aimed to investigate whether ankle distraction suppresses fibular motion in cadaveric specimens with an unstable syndesmotic injury. Fourteen fresh-frozen above knee specimens underwent arthroscopic assessment with 1) intact ligaments, 2) after sectioning of the anterior inferior tibiofibular ligament, the interosseous ligament, and the posterior inferior tibiofibular ligament, and 3) after sectioning of the deep and superficial deltoid ligament. In all scenarios, the lateral hook test, anterior-posterior hook test, and posterior-anterior hook test were applied. Each test was performed with and without ankle distraction. Coronal plane anterior and posterior tibiofibular diastasis as well as sagittal plane tibiofibular translation due to the applied load were arthroscopically measured. Tibiofibular diastasis in the coronal plane, as measured at both the anterior and posterior third of the incisura, was found to be significantly less when ankle distraction was applied, as compared to arthroscopic evaluation in the absence of distraction. In contrast, measurement of sagittal plane tibiofibular translation was not affected by ankle distraction. Since arthroscopic findings of syndesmotic instability are subtle the differential values of the syndesmotic measurements taken on and off distraction are clinically relevant. To optimally assess syndesmotic instability one should evaluate the syndesmosis without distraction or focus on fibular motion in the sagittal plane when distraction is required. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Angle measures, general rotations, and roulettes in normed planes

    NASA Astrophysics Data System (ADS)

    Balestro, Vitor; Horváth, Ákos G.; Martini, Horst

    2017-12-01

    In this paper a special group of bijective maps of a normed plane (or, more generally, even of a plane with a suitable Jordan curve as unit circle) is introduced which we call the group of general rotations of that plane. It contains the isometry group as a subgroup. The concept of general rotations leads to the notion of flexible motions of the plane, and to the concept of Minkowskian roulettes. As a nice consequence of this new approach to motions the validity of strong analogues to the Euler-Savary equations for Minkowskian roulettes is proved.

  11. Anatomical Calibration through Post-Processing of Standard Motion Tests Data.

    PubMed

    Kong, Weisheng; Sessa, Salvatore; Zecca, Massimiliano; Takanishi, Atsuo

    2016-11-28

    The inertial measurement unit is popularly used as a wearable and flexible tool for human motion tracking. Sensor-to-body alignment, or anatomical calibration (AC), is fundamental to improve accuracy and reliability. Current AC methods either require extra movements or are limited to specific joints. In this research, the authors propose a novel method to achieve AC from standard motion tests (such as walking, or sit-to-stand), and compare the results with the AC obtained from specially designed movements. The proposed method uses the limited acceleration range on medial-lateral direction, and applies principal component analysis to estimate the sagittal plane, while the vertical direction is estimated from acceleration during quiet stance. The results show a good correlation between the two sets of IMUs placed on frontal/back and lateral sides of head, trunk and lower limbs. Moreover, repeatability and convergence were verified. The AC obtained from sit-to-stand and walking achieved similar results as the movements specifically designed for upper and lower body AC, respectively, except for the feet. Therefore, the experiments without AC performed can be recovered through post-processing on the walking and sit-to-stand data. Moreover, extra movements for AC can be avoided during the experiment and instead achieved through the proposed method.

  12. Adding In-Plane Flexibility to the Equations of Motion of a Single Rotor Helicopter

    NASA Technical Reports Server (NTRS)

    Curtiss, H. C., Jr.

    2000-01-01

    This report describes a way to add the effects of main rotor blade flexibility in the in- plane or lead-lag direction to a large set of non-linear equations of motion for a single rotor helicopter with rigid blades(l). Differences between the frequency of the regressing lag mode predicted by the equations of (1) and that measured in flight (2) for a UH-60 helicopter indicate that some element is missing from the analytical model of (1) which assumes rigid blades. A previous study (3) noted a similar discrepancy for the CH-53 helicopter. Using a relatively simple analytical model in (3), compared to (1), it was shown that a mechanical lag damper increases significantly the coupling between the rigid lag mode and the first flexible mode. This increased coupling due to a powerful lag damper produces an increase in the lowest lag frequency when viewed in a frame rotating with the blade. Flight test measurements normally indicate the frequency of this mode in a non-rotating or fixed frame. This report presents the additions necessary to the full equations of motion, to include main rotor blade lag flexibility. Since these additions are made to a very complex nonlinear dynamic model, in order to provide physical insight, a discussion of the results obtained from a simplified set of equations of motion is included. The reduced model illustrates the physics involved in the coupling and should indicate trends in the full model.

  13. Effect of halo-vest components on stabilizing the injured cervical spine.

    PubMed

    Ivancic, Paul C; Beauchman, Naseem N; Tweardy, Lisa

    2009-01-15

    An in vitro biomechanical study. The objectives were to develop a new biofidelic skull-neck-thorax model capable of quantifying motion patterns of the cervical spine in the presence of a halo-vest; to investigate the effects of vest loosening, superstructure loosening, and removal of the posterior uprights; and to evaluate the ability of the halo-vest to stabilize the neck within physiological motion limits. Previous clinical and biomechanical studies have investigated neck motion with the halo-vest only in the sagittal plane or only at the injured spinal level. No previous studies have quantified three-dimensional intervertebral motion patterns throughout the injured cervical spine stabilized with the halo-vest or studied the effect of halo-vest components on these motions. The halo-vest was applied to the skull-neck-thorax model. Six osteoligamentous whole cervical spine specimens (occiput through T1 vertebra) were used that had sustained multiplanar ligamentous injuries at C3/4 through C7-T1 during a previous protocol. Flexibility tests were performed with normal halo-vest application, loose vest, loose superstructure, and following removal of the posterior uprights. Average total range of motion for each experimental condition was statistically compared (P < 0.05) with the physiologic rotation limit for each spinal level. Cervical spine snaking was observed in both the sagittal and frontal planes. The halo-vest, applied normally, generally limited average spinal motions to within average physiological limits. No significant increases in average spinal motions above physiologic were observed due to loose vest, loose superstructure, or removal of the posterior uprights. However, a trend toward increased motion at C6/7 in lateral bending was observed due to loose superstructure. The halo-vest, applied normally, effectively immobilized the cervical spine. Sagittal or frontal plane snaking of the cervical spine due to the halo-vest may reduce its immobilization

  14. Young Infants Detect the Direction of Biological Motion in Point-Light Displays

    ERIC Educational Resources Information Center

    Kuhlmeier, Valerie A.; Troje, Nikolaus F.; Lee, Vivian

    2010-01-01

    In the present study, we examined if young infants can extract information regarding the directionality of biological motion. We report that 6-month-old infants can differentiate leftward and rightward motions from a movie depicting the sagittal view of an upright human point-light walker, walking as if on a treadmill. Inversion of the stimuli…

  15. Localizing Circuits of Atrial Macro-Reentry Using ECG Planes of Coherent Atrial Activation

    PubMed Central

    Kahn, Andrew M.; Krummen, David E.; Feld, Gregory K.; Narayan, Sanjiv M.

    2007-01-01

    Background The complexity of ablation for atrial macro-reentry (AFL) varies significantly depending upon the circuit location. Presently, surface ECG analysis poorly separates left from right atypical AFL and from some cases of typical AFL, delaying diagnosis until invasive study. Objective To differentiate and localize the intra-atrial circuits of left atypical AFL, right atypical, and typical AFL using quantitative ECG analysis. Methods We studied 66 patients (54 M, age 59±14 years) with typical (n=35), reverse typical (n=4) and atypical (n=27) AFL. For each, we generated filtered atrial waveforms from ECG leads V5 (X-axis), aVF (Y) and V1 (Z) by correlating a 120 ms F-wave sample to successive ECG regions. Atrial spatial loops were plotted for 3 orthogonal planes (frontal, XY=V5/aVF; sagittal, YZ=aVF/V1; axial, XZ=V5/V1), then cross-correlated to measure spatial regularity (‘coherence’: range −1 to 1). Results Mean coherence was greatest in the XY plane (p<10−3 vs XZ or YZ). Atypical AFL showed lower coherence than typical AFL in XY (p<10−3), YZ (p<10−6) and XZ (p<10−5) planes. Atypical left AFL could be separated from atypical right AFL by lower XY coherence (p=0.02); for this plane coherence < 0.69 detected atypical left AFL with 84% specificity and 75% sensitivity. F-wave amplitude did not separate typical, atypical right or atypical left AFL (p=NS). Conclusions Atypical AFL shows lower spatial coherence than typical AFL, particularly in sagittal and axial planes. Coherence in the Cartesian frontal plane separated left and right atypical AFL. Such analyses may be used to plan ablation strategy from the bedside. PMID:17399632

  16. SU-E-J-234: Application of a Breathing Motion Model to ViewRay Cine MR Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Connell, D. P.; Thomas, D. H.; Dou, T. H.

    2015-06-15

    Purpose: A respiratory motion model previously used to generate breathing-gated CT images was used with cine MR images. Accuracy and predictive ability of the in-plane models were evaluated. Methods: Sagittalplane cine MR images of a patient undergoing treatment on a ViewRay MRI/radiotherapy system were acquired before and during treatment. Images were acquired at 4 frames/second with 3.5 × 3.5 mm resolution and a slice thickness of 5 mm. The first cine frame was deformably registered to following frames. Superior/inferior component of the tumor centroid position was used as a breathing surrogate. Deformation vectors and surrogate measurements were used to determinemore » motion model parameters. Model error was evaluated and subsequent treatment cines were predicted from breathing surrogate data. A simulated CT cine was created by generating breathing-gated volumetric images at 0.25 second intervals along the measured breathing trace, selecting a sagittal slice and downsampling to the resolution of the MR cines. A motion model was built using the first half of the simulated cine data. Model accuracy and error in predicting the remaining frames of the cine were evaluated. Results: Mean difference between model predicted and deformably registered lung tissue positions for the 28 second preview MR cine acquired before treatment was 0.81 +/− 0.30 mm. The model was used to predict two minutes of the subsequent treatment cine with a mean accuracy of 1.59 +/− 0.63 mm. Conclusion: Inplane motion models were built using MR cine images and evaluated for accuracy and ability to predict future respiratory motion from breathing surrogate measurements. Examination of long term predictive ability is ongoing. The technique was applied to simulated CT cines for further validation, and the authors are currently investigating use of in-plane models to update pre-existing volumetric motion models used for generation of breathing-gated CT planning images.« less

  17. Quantifying skin motion artifact error of the hindfoot and forefoot marker clusters with the optical tracking of a multi-segment foot model using single-plane fluoroscopy.

    PubMed

    Shultz, R; Kedgley, A E; Jenkyn, T R

    2011-05-01

    The trajectories of skin-mounted markers tracked with optical motion capture are assumed to be an adequate representation of the underlying bone motions. However, it is well known that soft tissue artifact (STA) exists between marker and bone. This study quantifies the STA associated with the hindfoot and midfoot marker clusters of a multi-segment foot model. To quantify STA of the hindfoot and midfoot marker clusters with respect to the calcaneus and navicular respectively, fluoroscopic images were collected on 27 subjects during four quasi-static positions, (1) quiet standing (non-weight bearing), (2) at heel strike (weight-bearing), (3) at midstance (weight-bearing) and (4) at toe-off (weight-bearing). The translation and rotation components of STA were calculated in the sagittal plane. Translational STA at the calcaneus varied from 5.9±7.3mm at heel-strike to 12.1±0.3mm at toe-off. For the navicular the translational STA ranged from 7.6±7.6mm at heel strike to 16.4±16.7mm at toe-off. Rotational STA was relatively smaller for both bones at all foot positions. For the calcaneus they varied between 0.1±2.2° at heel-strike to 0.2±0.6° at toe-off. For the navicular, the rotational STA ranged from 0.6±0.9° at heel-strike to 0.7±0.7° at toe-off. The largest translational STA found in this study (16mm for the navicular) was smaller than those reported in the literature for the thigh and the lower leg, but was larger than the STA of individual spherical markers affixed to the foot. The largest errors occurred at toe-off position for all subjects for both the hindfoot and midfoot clusters. Future studies are recommended to quantify true three-dimensional STA of the entire foot during gait. Copyright © 2011. Published by Elsevier B.V.

  18. Biological risk indicators for recurrent non-specific low back pain in adolescents.

    PubMed

    Jones, M A; Stratton, G; Reilly, T; Unnithan, V B

    2005-03-01

    A matched case-control study was carried out to evaluate biological risk indicators for recurrent non-specific low back pain in adolescents. Adolescents with recurrent non-specific low back pain (symptomatic; n = 28; mean (SD) age 14.9 (0.7) years) and matched controls (asymptomatic; n = 28; age 14.9 (0.7) years) with no history of non-specific low back pain participated. Measures of stature, mass, sitting height, sexual maturity (Tanner self assessment), lateral flexion of the spine, lumbar sagittal plane mobility (modified Schober), hip range of motion (Leighton flexometer), back and hamstring flexibility (sit and reach), and trunk muscle endurance (number of sit ups) were performed using standardised procedures with established reliability. Backward stepwise logistic regression analysis was performed, with the presence/absence of recurrent low back pain as the dependent variable and the biological measures as the independent variables. Hip range of motion, trunk muscle endurance, lumbar sagittal plane mobility, and lateral flexion of the spine were identified as significant risk indicators of recurrent low back pain (p<0.05). Follow up analysis indicated that symptomatic subjects had significantly reduced lateral flexion of the spine, lumbar sagittal plane mobility, and trunk muscle endurance (p<0.05). Hip range of motion, abdominal muscle endurance, lumbar flexibility, and lateral flexion of the spine were risk indicators for recurrent non-specific low back pain in a group of adolescents. These risk indicators identify the potential for exercise as a primary or secondary prevention method.

  19. Shoulder motor performance assessment in the sagittal plane in children with hemiplegia during single joint pointing tasks.

    PubMed

    Formica, Domenico; Petrarca, Maurizio; Rossi, Stefano; Zollo, Loredana; Guglielmelli, Eugenio; Cappa, Paolo

    2014-07-29

    Pointing is a motor task extensively used during daily life activities and it requires complex visuo-motor transformation to select the appropriate movement strategy. The study of invariant characteristics of human movements has led to several theories on how the brain solves the redundancy problem, but the application of these theories on children affected by hemiplegia is limited. This study aims at giving a quantitative assessment of the shoulder motor behaviour in children with hemiplegia during pointing tasks. Eight children with hemiplegia were involved in the study and were asked to perform movements on the sagittal plane with both arms, at low and high speed. Subject movements were recorded using an optoelectronic system; a 4-DOF model of children arm has been developed to calculate kinematic and dynamic variables. A set of evaluation indexes has been extracted in order to quantitatively assess whether and how children modify their motor control strategies when perform movements with the more affected or less affected arm. In low speed movements, no differences can be seen in terms of movement duration and peak velocity between the More Affected arm (MA) and the Less Affected arm (LA), as well as in the main characteristics of movement kinematics and dynamics. As regards fast movements, remarkable differences in terms of strategies of motor control can be observed: while movements with LA did not show any significant difference in Dimensionless Jerk Index (JI) and Dimensionless Torque-change Cost index (TC) between the elevation and lowering phases, suggesting that motor control optimization is similar for movements performed with or against gravity, movements with MA showed a statistically significant increase of both JI and TC during lowering phase. Results suggest the presence of a different control strategy for fast movements in particular during lowering phase. Results suggest that motor control is not able to optimize Jerk and Torque-change cost

  20. Preliminary Study on Continuous Recognition of Elbow Flexion/Extension Using sEMG Signals for Bilateral Rehabilitation

    PubMed Central

    Song, Zhibin; Zhang, Songyuan

    2016-01-01

    Surface electromyography (sEMG) signals are closely related to the activation of human muscles and the motion of the human body, which can be used to estimate the dynamics of human limbs in the rehabilitation field. They also have the potential to be used in the application of bilateral rehabilitation, where hemiplegic patients can train their affected limbs following the motion of unaffected limbs via some rehabilitation devices. Traditional methods to process the sEMG focused on motion pattern recognition, namely, discrete patterns, which are not satisfactory for use in bilateral rehabilitation. In order to overcome this problem, in this paper, we built a relationship between sEMG signals and human motion in elbow flexion and extension on the sagittal plane. During the conducted experiments, four participants were required to perform elbow flexion and extension on the sagittal plane smoothly with only an inertia sensor in their hands, where forearm dynamics were not considered. In these circumstances, sEMG signals were weak compared to those with heavy loads or high acceleration. The contrastive experimental results show that continuous motion can also be obtained within an acceptable precision range. PMID:27775573

  1. Preliminary Study on Continuous Recognition of Elbow Flexion/Extension Using sEMG Signals for Bilateral Rehabilitation.

    PubMed

    Song, Zhibin; Zhang, Songyuan

    2016-10-19

    Surface electromyography (sEMG) signals are closely related to the activation of human muscles and the motion of the human body, which can be used to estimate the dynamics of human limbs in the rehabilitation field. They also have the potential to be used in the application of bilateral rehabilitation, where hemiplegic patients can train their affected limbs following the motion of unaffected limbs via some rehabilitation devices. Traditional methods to process the sEMG focused on motion pattern recognition, namely, discrete patterns, which are not satisfactory for use in bilateral rehabilitation. In order to overcome this problem, in this paper, we built a relationship between sEMG signals and human motion in elbow flexion and extension on the sagittal plane. During the conducted experiments, four participants were required to perform elbow flexion and extension on the sagittal plane smoothly with only an inertia sensor in their hands, where forearm dynamics were not considered. In these circumstances, sEMG signals were weak compared to those with heavy loads or high acceleration. The contrastive experimental results show that continuous motion can also be obtained within an acceptable precision range.

  2. Audiovisual biofeedback improves the correlation between internal/external surrogate motion and lung tumor motion.

    PubMed

    Lee, Danny; Greer, Peter B; Paganelli, Chiara; Ludbrook, Joanna Jane; Kim, Taeho; Keall, Paul

    2018-03-01

    Breathing management can reduce breath-to-breath (intrafraction) and day-by-day (interfraction) variability in breathing motion while utilizing the respiratory motion of internal and external surrogates for respiratory guidance. Audiovisual (AV) biofeedback, an interactive personalized breathing motion management system, has been developed to improve reproducibility of intra- and interfraction breathing motion. However, the assumption of the correlation of respiratory motion between surrogates and tumors is not always verified during medical imaging and radiation treatment. Therefore, the aim of the study was to test the hypothesis that the correlation of respiratory motion between surrogates and tumors is the same under free breathing without guidance (FB) and with AV biofeedback guidance for voluntary motion management. For 13 lung cancer patients receiving radiotherapy, 2D coronal and sagittal cine-MR images were acquired across two MRI sessions (pre- and mid-treatment) with two breathing conditions: (a) FB and (b) AV biofeedback, totaling 88 patient measurements. Simultaneously, the external respiratory motion of the abdomen was measured. The internal respiratory motion of the diaphragm and lung tumor was retrospectively measured from 2D coronal and sagittal cine-MR images. The correlation of respiratory motion between surrogates and tumors was calculated using Pearson's correlation coefficient for: (a) abdomen to tumor (abdomen-tumor) and (b) diaphragm to tumor (diaphragm-tumor). The correlations were compared between FB and AV biofeedback using several metrics: abdomen-tumor and diaphragm-tumor correlations with/without ≥5 mm tumor motion range and with/without adjusting for phase shifts between the signals. Compared to FB, AV biofeedback improved abdomen-tumor correlation by 11% (p = 0.12) from 0.53 to 0.59 and diaphragm-tumor correlation by 13% (p = 0.02) from 0.55 to 0.62. Compared to FB, AV biofeedback improved abdomen-tumor correlation by 17% (p = 0

  3. Simultaneous orthogonal plane imaging.

    PubMed

    Mickevicius, Nikolai J; Paulson, Eric S

    2017-11-01

    Intrafraction motion can result in a smearing of planned external beam radiation therapy dose distributions, resulting in an uncertainty in dose actually deposited in tissue. The purpose of this paper is to present a pulse sequence that is capable of imaging a moving target at a high frame rate in two orthogonal planes simultaneously for MR-guided radiotherapy. By balancing the zero gradient moment on all axes, slices in two orthogonal planes may be spatially encoded simultaneously. The orthogonal slice groups may be acquired with equal or nonequal echo times. A Cartesian spoiled gradient echo simultaneous orthogonal plane imaging (SOPI) sequence was tested in phantom and in vivo. Multiplexed SOPI acquisitions were performed in which two parallel slices were imaged along two orthogonal axes simultaneously. An autocalibrating phase-constrained 2D-SENSE-GRAPPA (generalized autocalibrating partially parallel acquisition) algorithm was implemented to reconstruct the multiplexed data. SOPI images without intraslice motion artifacts were reconstructed at a maximum frame rate of 8.16 Hz. The 2D-SENSE-GRAPPA reconstruction separated the parallel slices aliased along each orthogonal axis. The high spatiotemporal resolution provided by SOPI has the potential to be beneficial for intrafraction motion management during MR-guided radiation therapy or other MRI-guided interventions. Magn Reson Med 78:1700-1710, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  4. Reliability of 3-Dimensional Measures of Single-Leg Drop Landing Across 3 Institutions: Implications for Multicenter Research for Secondary ACL-Injury Prevention.

    PubMed

    Myer, Gregory D; Bates, Nathaniel A; DiCesare, Christopher A; Barber Foss, Kim D; Thomas, Staci M; Wordeman, Samuel C; Sugimoto, Dai; Roewer, Benjamin D; Medina McKeon, Jennifer M; Di Stasi, Stephanie L; Noehren, Brian W; McNally, Michael; Ford, Kevin R; Kiefer, Adam W; Hewett, Timothy E

    2015-05-01

    Due to the limitations of single-center studies in achieving appropriate sampling with relatively rare disorders, multicenter collaborations have been proposed to achieve desired sampling levels. However, documented reliability of biomechanical data is necessary for multicenter injury-prevention studies and is currently unavailable. To measure the reliability of 3-dimensional (3D) biomechanical waveforms from kinetic and kinematic variables during a single-leg landing (SLL) performed at 3 separate testing facilities. Multicenter reliability study. 3 laboratories. 25 female junior varsity and varsity high school volleyball players who visited each facility over a 1-mo period. Subjects were instrumented with 43 reflective markers to record 3D motion as they performed SLLs. During the SLL the athlete balanced on 1 leg, dropped down off of a 31-cm-high box, and landed on the same leg. Kinematic and kinetic data from both legs were processed from 2 trials across the 3 laboratories. Coefficients of multiple correlations (CMC) were used to statistically compare each joint angle and moment waveform for the first 500 ms of landing. Average CMC for lower-extremity sagittal-plane motion was excellent between laboratories (hip .98, knee .95, ankle .99). Average CMC for lower-extremity frontal-plane motion was also excellent between laboratories (hip .98, knee .80, ankle .93). Kinetic waveforms were repeatable in each plane of rotation (3-center mean CMC ≥.71), while knee sagittal-plane moments were the most consistent measure across sites (3-center mean CMC ≥.94). CMC waveform comparisons were similar relative to the joint measured to previously published reports of between-sessions reliability of sagittal- and frontal-plane biomechanics performed at a single institution. Continued research is needed to further standardize technology and methods to help ensure that highly reliable results can be achieved with multicenter biomechanical screening models.

  5. Absolute proper motion of IRAS 00259+5625 with VERA: Indication of superbubble expansion motion

    NASA Astrophysics Data System (ADS)

    Sakai, Nobuyuki; Sato, Mayumi; Motogi, Kazuhito; Nagayama, Takumi; Shibata, Katsunori M.; Kanaguchi, Masahiro; Honma, Mareki

    2014-02-01

    We present the first measurement of the absolute proper motions of IRAS 00259+5625 (CB3, LBN594) associated with the H I loop called the "NGC 281 superbubble" that extends from the Galactic plane over ˜ 300 pc toward decreasing galactic latitude. The proper motion components measured with VLBI Exploration of Radio Astrometry (VERA) are (μαcos δ, μδ) = (-2.48 ± 0.32, -2.85 ± 0.65) mas yr-1, converted into (μlcos b, μb) = (-2.72 ± 0.32, -2.62 ± 0.65) mas yr-1 in the Galactic coordinates. The measured proper motion perpendicular to the Galactic plane (μb) shows vertical motion away from the Galactic plane with a significance of about ˜ 4 σ. As for the source distance, the distance measured with VERA is marginal, 2.4^{+1.0}_{-0.6} kpc. Using the distance, an absolute vertical motion (vb) of -17.9 ± 12.2 km s-1 is determined with ˜ 1.5 σ significance. The tendency towards the large vertical motion is consistent with previous very long baseline interferometry (VLBI) results for NGC 281 associated with the same superbubble. Thus, our VLBI results indicate superbubble expansion motion whose origin is believed to be sequential supernova explosions.

  6. Acute proximal junctional failure in patients with preoperative sagittal imbalance.

    PubMed

    Smith, Micah W; Annis, Prokopis; Lawrence, Brandon D; Daubs, Michael D; Brodke, Darrel S

    2015-10-01

    Proximal junctional failure (PJF) is a recognized complication of spinal deformity surgery. Acute PJF (APJF) has recently been demonstrated to be 5.6% in the adult spinal deformity (ASD) population. The incidence and rate of return to the operating room for APJF have not been specifically investigated in individuals with sagittal imbalance. The purpose of this study was to report the incidence of APJF in patients with preoperative sagittal imbalance and the rate of return to the operating room for APJF. This study is based on a retrospective review of prospectively collected database of ASD patients. One hundred seventy-three consecutive patients were included with preoperative sagittal imbalance according to one of the following common parameters: sagittal vertical axis (SVA) greater than 50 mm, global sagittal alignment greater than 45°, or pelvic incidence minus lumbar lordosis greater than 10°. Outcome measure was presence and/or absence of APJF defined as fracture at the upper instrumented vertebra (UIV) or UIV+1, failure of UIV fixation, 15° or more proximal junctional kyphosis, or need for extension of instrumentation within 6 months of surgery. We performed radiographic measurements on X-rays at preoperative, immediate postoperative, and 6-month follow-up visits. The APJF rate was reported for the entire patient population with preoperative sagittal imbalance. Acute PJF incidence was calculated postoperatively for each of the accepted sagittal balance parameters and/or formulas. Patients with persistent postoperative sagittal imbalance were compared with the sagittally balanced group. We also assessed for threshold values. Acute PJF was observed in 60 of 173 patients (35%) and was least common in fusions with the UIV in the upper thoracic (UT) spine (p=.035). Of those who developed APJF, 21.7% required surgery. Proximal junctional kyphosis 15° or more was the most common form of APJF in fusions to the UT spine but least likely to need revision (p=.014

  7. Does proprioceptive acuity during active knee rotation in the transverse plane vary at different ranges?

    PubMed

    Muaidi, Qassim I

    2016-11-21

    Knee proprioception in the sagittal plane has been widely investigated in prospective studies, however limited information is known about proprioceptive acuity during active knee rotation and the way most commonly injured. To investigate whether proprioceptive acuity during active internal and external knee rotation varies at different ranges in the transverse plane. Healthy volunteers (N: 26) without previous injury or surgery of the knee joint participated in the study.Knee rotation proprioceptive acuity was measured using a custom-designed device. The measure of proprioceptive acuity used in this study was the just-noticeable-difference (JND). Participants actively rotated the knee at different intervals(initial, mid, and terminal internal or external rotation range) to one of four movement blocks and the magnitude of the permitted motion was judged. The means of the JND for proprioceptive acuity at initial internal rotation (0.80° ± 0.06) were significantly (p< 0.002) lower than for mid (1.62° ± 0.18), and terminal (2.08° ± 0.35) internal rotation. The means of the JND for proprioceptive acuity at initial external rotation (1.16° ± 0.10) were significantly (p< 0.04) lower than for mid (1.95° ± 0.30), and terminal (1.97° ± 0.24) internal rotation. Participants perceived smaller differences between active internal and external rotation movements at initial rotation range than at the mid and terminal rotation range of movement. This suggests better proprioceptive acuity at the initial rotation range of movement in the transverse plane.

  8. Association of Baseline Knee Sagittal Dynamic Joint Stiffness during Gait and 2-year Patellofemoral Cartilage Damage Worsening in Knee Osteoarthritis

    PubMed Central

    Chang, Alison H.; Chmiel, Joan S.; Almagor, Orit; Guermazi, Ali; Prasad, Pottumarthi V.; Moisio, Kirsten C.; Belisle, Laura; Zhang, Yunhui; Hayes, Karen; Sharma, Leena

    2016-01-01

    Objective Knee sagittal dynamic joint stiffness (DJS) describes the biomechanical interaction between change in external knee flexion moment and flexion angular excursion during gait. In theory, greater DJS may particularly stress the patellofemoral (PF) compartment and thereby contribute to PF osteoarthritis (OA) worsening. We hypothesized that greater baseline knee sagittal DJS is associated with PF cartilage damage worsening 2 years later. Methods Participants all had OA in at least one knee. Knee kinematics and kinetics during gait were recorded using motion capture systems and force plates. Knee sagittal DJS was computed as the slope of the linear regression line for knee flexion moments vs. angles during the loading response phase. Knee MRI scans were obtained at baseline and 2 years later. We assessed the association between baseline DJS and baseline-to-2-year PF cartilage damage worsening using logistic regression with generalized estimating equations. Results Our sample had 391 knees (204 persons): mean age 64.2 years (SD 10.0); BMI 28.4 kg/m2 (5.7); 76.5% women. Baseline knee sagittal DJS was associated with baseline-to-2-year cartilage damage worsening in the lateral (OR=5.35, 95% CI: 2.37–12.05) and any PF (OR=2.99, 95% CI: 1.27–7.04) compartment. Individual components of baseline DJS (i.e., change in knee moment or angle) were not associated with subsequent PF disease worsening. Conclusion Capturing the concomitant effect of knee kinetics and kinematics during gait, knee sagittal DJS is a potentially modifiable risk factor for PF disease worsening. PMID:27729289

  9. Sagittal Balance in Adolescent Idiopathic Scoliosis

    PubMed Central

    Xu, Xi-Ming; Wang, Fei; Zhou, Xiao-Yi; Liu, Zi-Xuan; Wei, Xian-Zhao; Bai, Yu-Shu; Li, Ming

    2015-01-01

    Abstract The relationship between spinal sagittal alignment and pelvic parameters is well known in adolescent idiopathic scoliosis. However, few studies have reported the sagittal spinopelvic relationship after selective posterior fusion of thoracolumbar/lumbar (TL/L) curves. We evaluated the relationship between spinal sagittal alignment and the pelvis, and analyzed how the pelvic sagittal state is adjusted in Lenke type 5C patients. We conducted a retrospective study of 36 patients with Lenke type 5C curves who received selective posterior TL/L curve fusion. Coronal and spinopelvic sagittal parameters were pre and postoperatively compared. Pearson coefficients were used to analyze the correlation between all spinopelvic sagittal parameters before and after surgery. We also evaluated 3 pelvic morphologies (anteverted, normal, and retroverted) before and after surgery. Preoperatively, the mean pelvic incidence was 46.0°, with a pelvic tilt and sacral slope (SS) of 8.2° and 37.8°, respectively, and 25% (9/36) of patients had an anteverted pelvis, whereas the other 75% had a normal pelvis. Postoperatively, 42% (15/36) of patients had a retroverted pelvis, 53% (19/36) had a normal pelvis, and 2 patients had an anteverted pelvis. Logistic regression analyses yielded 2 factors that were significantly associated with the risk for a postoperative unrecovered anteverted pelvis, including increased lumbar lordosis (LL) (odds ratio [OR] 4.8, P = 0.029) and increased SS (OR 5.6, P = 0.018). Four factors were significantly associated with the risk of a postoperative newly anteverted pelvis, including LL at the final follow-up (OR 6.9, P = 0.009), increased LL (OR 8.9, P = 0.003), LL below fusion (OR 9.4, P = 0.002), and increased SS (OR 11.5, P = 0.001). The pelvic state may be adjusted after selective posterior TL/L curve fusion in Lenke 5C adolescent idiopathic scoliosis patients. It is difficult to improve an anteverted pelvis in patients who have

  10. The cat vertebral column: stance configuration and range of motion

    NASA Technical Reports Server (NTRS)

    Macpherson, J. M.; Ye, Y.; Peterson, B. W. (Principal Investigator)

    1998-01-01

    This study examined the configuration of the vertebral column of the cat during independent stance and in various flexed positions. The range of motion in the sagittal plane is similar across most thoracic and lumbar joints, with the exception of a lesser range at the transition region from thoracic-type to lumbar-type vertebrae. The upper thoracic column exhibits most of its range in dorsiflexion and the lower thoracic and lumbar in ventroflexion. Lateral flexion is limited to less than 5 degrees at all segments. The range in torsion is almost 180 degrees and occurs primarily in the midthoracic region, T4-T11. Contrary to the depiction in most atlases, the standing cat exhibits several curvatures, including a mild dorsiflexion in the lower lumbar segments, a marked ventroflexion in the lower thoracic and upper lumbar segments, and a profound dorsiflexion in the upper thoracic (above T9) and cervical segments. The curvatures are not significantly changed by altering stance distance but are affected by head posture. During stance, the top of the scapula lies well above the spines of the thoracic vertebrae, and the glenohumeral joint is just below the bodies of vertebrae T3-T5. Using a simple static model of the vertebral column in the sagittal plane, it was estimated that the bending moment due to gravity is bimodal with a dorsiflexion moment in the lower thoracic and lumbar region and a ventroflexion moment in the upper thoracic and cervical region. Given the bending moments and the position of the scapula during stance, it is proposed that two groups of scapular muscles provide the major antigravity support for the head and anterior trunk. Levator scapulae and serratus ventralis form the lateral group, inserting on the lateral processes of cervical vertebrae and on the ribs. The major and minor rhomboids form the medial group, inserting on the spinous tips of vertebrae from C4 to T4. It is also proposed that the hypaxial muscles, psoas major, minor, and quadratus

  11. Comprehensive Analysis of Mandibular Residual Asymmetry after Bilateral Sagittal Split Ramus Osteotomy Correction of Menton Point Deviation

    PubMed Central

    Lin, Qiuping; Huang, Xiaoqiong; Xu, Yue; Yang, Xiaoping

    2016-01-01

    Purpose Facial asymmetry often persists even after mandibular deviation corrected by the bilateral sagittal split ramus osteotomy (BSSRO) operation, since the reference facial sagittal plane for the asymmetry analysis is usually set up before the mandibular menton (Me) point correction. Our aim is to develop a predictive and quantitative method to assess the true asymmetry of the mandible after a midline correction performed by a virtual BSSRO, and to verify its availability by evaluation of the post-surgical improvement. Patients and Methods A retrospective cohort study was conducted at the Hospital of Stomatology, Sun Yat-sen University (China) of patients with pure hemi-mandibular elongation (HE) from September 2010 through May 2014. Mandibular models were reconstructed from CBCT images of patients with pre-surgical orthodontic treatment. After mandibular de-rotation and midline alignment with virtual BSSRO, the elongation hemi-mandible was virtually mirrored along the facial sagittal plane. The residual asymmetry, defined as the superimposition and boolean operation of the mirrored elongation side on the normal side, was calculated, including the volumetric differences and the length of transversal and vertical asymmetry discrepancy. For more specific evaluation, both sides of the hemi-mandible were divided into the symphysis and parasymphysis (SP), mandibular body (MB), and mandibular angle (MA) regions. Other clinical variables include deviation of Me point, dental midline and molar relationship. The measurement of volumetric discrepancy between the two sides of post-surgical hemi-mandible were also calculated to verify the availability of virtual surgery. Paired t-tests were computed and the P value was set at .05. Results This study included 45 patients. The volume differences were 407.8±64.8 mm3, 2139.1±72.5 mm3, and 422.5±36.9 mm3; residual average transversal discrepancy, 1.9 mm, 1.0 mm, and 2.2 mm; average vertical discrepancy, 1.1 mm, 2.2 mm, and 2

  12. Comprehensive Analysis of Mandibular Residual Asymmetry after Bilateral Sagittal Split Ramus Osteotomy Correction of Menton Point Deviation.

    PubMed

    Lin, Han; Zhu, Ping; Lin, Qiuping; Huang, Xiaoqiong; Xu, Yue; Yang, Xiaoping

    2016-01-01

    Facial asymmetry often persists even after mandibular deviation corrected by the bilateral sagittal split ramus osteotomy (BSSRO) operation, since the reference facial sagittal plane for the asymmetry analysis is usually set up before the mandibular menton (Me) point correction. Our aim is to develop a predictive and quantitative method to assess the true asymmetry of the mandible after a midline correction performed by a virtual BSSRO, and to verify its availability by evaluation of the post-surgical improvement. A retrospective cohort study was conducted at the Hospital of Stomatology, Sun Yat-sen University (China) of patients with pure hemi-mandibular elongation (HE) from September 2010 through May 2014. Mandibular models were reconstructed from CBCT images of patients with pre-surgical orthodontic treatment. After mandibular de-rotation and midline alignment with virtual BSSRO, the elongation hemi-mandible was virtually mirrored along the facial sagittal plane. The residual asymmetry, defined as the superimposition and boolean operation of the mirrored elongation side on the normal side, was calculated, including the volumetric differences and the length of transversal and vertical asymmetry discrepancy. For more specific evaluation, both sides of the hemi-mandible were divided into the symphysis and parasymphysis (SP), mandibular body (MB), and mandibular angle (MA) regions. Other clinical variables include deviation of Me point, dental midline and molar relationship. The measurement of volumetric discrepancy between the two sides of post-surgical hemi-mandible were also calculated to verify the availability of virtual surgery. Paired t-tests were computed and the P value was set at .05. This study included 45 patients. The volume differences were 407.8±64.8 mm3, 2139.1±72.5 mm3, and 422.5±36.9 mm3; residual average transversal discrepancy, 1.9 mm, 1.0 mm, and 2.2 mm; average vertical discrepancy, 1.1 mm, 2.2 mm, and 2.2 mm (before virtual surgery). The

  13. Dynamic tracking of prosthetic valve motion and deformation from bi-plane x-ray views: feasibility study

    NASA Astrophysics Data System (ADS)

    Hatt, Charles R.; Wagner, Martin; Raval, Amish N.; Speidel, Michael A.

    2016-03-01

    Transcatheter aortic valve replacement (TAVR) requires navigation and deployment of a prosthetic valve within the aortic annulus under fluoroscopic guidance. To support improved device visualization in this procedure, this study investigates the feasibility of frame-by-frame 3D reconstruction of a moving and expanding prosthetic valve structure from simultaneous bi-plane x-ray views. In the proposed method, a dynamic 3D model of the valve is used in a 2D/3D registration framework to obtain a reconstruction of the valve. For each frame, valve model parameters describing position, orientation, expansion state, and deformation are iteratively adjusted until forward projections of the model match both bi-plane views. Simulated bi-plane imaging of a valve at different signal-difference-to-noise ratio (SDNR) levels was performed to test the approach. 20 image sequences with 50 frames of valve deployment were simulated at each SDNR. The simulation achieved a target registration error (TRE) of the estimated valve model of 0.93 +/- 2.6 mm (mean +/- S.D.) for the lowest SDNR of 2. For higher SDNRs (5 to 50) a TRE of 0.04 mm +/- 0.23 mm was achieved. A tabletop phantom study was then conducted using a TAVR valve. The dynamic 3D model was constructed from high resolution CT scans and a simple expansion model. TRE was 1.22 +/- 0.35 mm for expansion states varying from undeployed to fully deployed, and for moderate amounts of inter-frame motion. Results indicate that it is feasible to use bi-plane imaging to recover the 3D structure of deformable catheter devices.

  14. Dynamic tracking of prosthetic valve motion and deformation from bi-plane x-ray views: feasibility study.

    PubMed

    Hatt, Charles R; Wagner, Martin; Raval, Amish N; Speidel, Michael A

    2016-01-01

    Transcatheter aortic valve replacement (TAVR) requires navigation and deployment of a prosthetic valve within the aortic annulus under fluoroscopic guidance. To support improved device visualization in this procedure, this study investigates the feasibility of frame-by-frame 3D reconstruction of a moving and expanding prosthetic valve structure from simultaneous bi-plane x-ray views. In the proposed method, a dynamic 3D model of the valve is used in a 2D/3D registration framework to obtain a reconstruction of the valve. For each frame, valve model parameters describing position, orientation, expansion state, and deformation are iteratively adjusted until forward projections of the model match both bi-plane views. Simulated bi-plane imaging of a valve at different signal-difference-to-noise ratio (SDNR) levels was performed to test the approach. 20 image sequences with 50 frames of valve deployment were simulated at each SDNR. The simulation achieved a target registration error (TRE) of the estimated valve model of 0.93 ± 2.6 mm (mean ± S.D.) for the lowest SDNR of 2. For higher SDNRs (5 to 50) a TRE of 0.04 mm ± 0.23 mm was achieved. A tabletop phantom study was then conducted using a TAVR valve. The dynamic 3D model was constructed from high resolution CT scans and a simple expansion model. TRE was 1.22 ± 0.35 mm for expansion states varying from undeployed to fully deployed, and for moderate amounts of inter-frame motion. Results indicate that it is feasible to use bi-plane imaging to recover the 3D structure of deformable catheter devices.

  15. One-degree-of-freedom spherical model for the passive motion of the human ankle joint.

    PubMed

    Sancisi, Nicola; Baldisserri, Benedetta; Parenti-Castelli, Vincenzo; Belvedere, Claudio; Leardini, Alberto

    2014-04-01

    Mathematical modelling of mobility at the human ankle joint is essential for prosthetics and orthotic design. The scope of this study is to show that the ankle joint passive motion can be represented by a one-degree-of-freedom spherical motion. Moreover, this motion is modelled by a one-degree-of-freedom spherical parallel mechanism model, and the optimal pivot-point position is determined. Passive motion and anatomical data were taken from in vitro experiments in nine lower limb specimens. For each of these, a spherical mechanism, including the tibiofibular and talocalcaneal segments connected by a spherical pair and by the calcaneofibular and tibiocalcaneal ligament links, was defined from the corresponding experimental kinematics and geometry. An iterative procedure was used to optimize the geometry of the model, able to predict original experimental motion. The results of the simulations showed a good replication of the original natural motion, despite the numerous model assumptions and simplifications, with mean differences between experiments and predictions smaller than 1.3 mm (average 0.33 mm) for the three joint position components and smaller than 0.7° (average 0.32°) for the two out-of-sagittal plane rotations, once plotted versus the full flexion arc. The relevant pivot-point position after model optimization was found within the tibial mortise, but not exactly in a central location. The present combined experimental and modelling analysis of passive motion at the human ankle joint shows that a one degree-of-freedom spherical mechanism predicts well what is observed in real joints, although its computational complexity is comparable to the standard hinge joint model.

  16. Brief communication: Cineradiographic analysis of the chimpanzee (Pan troglodytes) talonavicular and calcaneocuboid joints.

    PubMed

    Thompson, Nathan E; Holowka, Nicholas B; O'Neill, Matthew C; Larson, Susan G

    2014-08-01

    During terrestrial locomotion, chimpanzees exhibit dorsiflexion of the midfoot between midstance and toe-off of stance phase, a phenomenon that has been called the "midtarsal break." This motion is generally absent during human bipedalism, and in chimpanzees is associated with more mobile foot joints than in humans. However, the contribution of individual foot joints to overall foot mobility in chimpanzees is poorly understood, particularly on the medial side of the foot. The talonavicular (TN) and calcaneocuboid (CC) joints have both been suggested to contribute significantly to midfoot mobility and to the midtarsal break in chimpanzees. To evaluate the relative magnitude of motion that can occur at these joints, we tracked skeletal motion of the hindfoot and midfoot during passive plantarflexion and dorsiflexion manipulations using cineradiography. The sagittal plane range of motion was 38 ± 10° at the TN joint and 14 ± 8° at the CC joint. This finding indicates that the TN joint is more mobile than the CC joint during ankle plantarflexion-dorsiflexion. We suggest that the larger range of motion at the TN joint during dorsiflexion is associated with a rotation (inversion-eversion) across the transverse tarsal joint, which may occur in addition to sagittal plane motion. © 2014 Wiley Periodicals, Inc.

  17. Development of synthetic simulators for endoscope-assisted repair of metopic and sagittal craniosynostosis.

    PubMed

    Eastwood, Kyle W; Bodani, Vivek P; Haji, Faizal A; Looi, Thomas; Naguib, Hani E; Drake, James M

    2018-06-01

    OBJECTIVE Endoscope-assisted repair of craniosynostosis is a safe and efficacious alternative to open techniques. However, this procedure is challenging to learn, and there is significant variation in both its execution and outcomes. Surgical simulators may allow trainees to learn and practice this procedure prior to operating on an actual patient. The purpose of this study was to develop a realistic, relatively inexpensive simulator for endoscope-assisted repair of metopic and sagittal craniosynostosis and to evaluate the models' fidelity and teaching content. METHODS Two separate, 3D-printed, plastic powder-based replica skulls exhibiting metopic (age 1 month) and sagittal (age 2 months) craniosynostosis were developed. These models were made into consumable skull "cartridges" that insert into a reusable base resembling an infant's head. Each cartridge consists of a multilayer scalp (skin, subcutaneous fat, galea, and periosteum); cranial bones with accurate landmarks; and the dura mater. Data related to model construction, use, and cost were collected. Eleven novice surgeons (residents), 9 experienced surgeons (fellows), and 5 expert surgeons (attendings) performed a simulated metopic and sagittal craniosynostosis repair using a neuroendoscope, high-speed drill, rongeurs, lighted retractors, and suction/irrigation. All participants completed a 13-item questionnaire (using 5-point Likert scales) to rate the realism and utility of the models for teaching endoscope-assisted strip suturectomy. RESULTS The simulators are compact, robust, and relatively inexpensive. They can be rapidly reset for repeated use and contain a minimal amount of consumable material while providing a realistic simulation experience. More than 80% of participants agreed or strongly agreed that the models' anatomical features, including surface anatomy, subgaleal and subperiosteal tissue planes, anterior fontanelle, and epidural spaces, were realistic and contained appropriate detail. More

  18. Spinal sagittal balance substantially influences locomotive syndrome and physical performance in community-living middle-aged and elderly women.

    PubMed

    Muramoto, Akio; Imagama, Shiro; Ito, Zenya; Hirano, Kenichi; Ishiguro, Naoki; Hasegawa, Yukiharu

    2016-03-01

    Spinal sagittal imbalance has been well known risk factor of decreased quality of life in the field of adult spinal deformity. However, the impact of spinal sagittal balance on locomotive syndrome and physical performance in community-living elderly has not yet been clarified. The present study investigated the influence of spinal sagittal alignment on locomotive syndrome (LS) and physical performance in community-living middle-aged and elderly women. A total of 125 women between the age of 40-88 years (mean 66.2 ± 9.7 years) who completed the questionnaires, spinal mouse test, physical examination and physical performance tests in Yakumo study were enrolled in this study. Participants answered the 25-Question Geriatric Locomotive Function Scale (GLFS-25), the visual analog scale (VAS) for low back pain (LBP), knee pain. LS was defined as having a score of >16 points on the GLFS-25. Using spinal mouse, spinal inclination angle (SIA), thoracic kyphosis angle (TKA), lumbar lordosis angle (LLA), sacral slope angle (SSA), thoracic spinal range of motion (TSROM), lumbar spinal range of motion (LSROM) were measured. Timed-up-and-go test (TUG), one-leg standing time with eyes open (OLS), and maximum stride, back muscle strength were also measured. The relationship between spinal sagittal parameters and GLFS-25, VAS and physical performance tests were analyzed. 26 people were diagnosed as LS and 99 were diagnosed as non-LS. LBP and knee pain were greater, physical performance tests were poorer, SIA were greater, LLA were smaller in LS group compared to non-LS group even after adjustment by age. SIA significantly correlated with GLFS-25, TUG, OLS and maximum stride even after adjustment by age. The cutoff value of SIA for locomotive syndrome was 6°. People with a SIA of 6° or greater were grouped as "Inclined" and people with a SIA of less than 6° were grouped as "Non-inclined". 21 people were "Inclined" and 104 were "Non-inclined". Odds ratio to fall in LS of

  19. Robust Notion Vision For A Vehicle Moving On A Plane

    NASA Astrophysics Data System (ADS)

    Moni, Shankar; Weldon, E. J.

    1987-05-01

    A vehicle equipped with a cemputer vision system moves on a plane. We show that subject to certain constraints, the system can determine the motion of the vehicle (one rotational and two translational degrees of freedom) and the depth of the scene in front of the vehicle. The constraints include limits on the speed of the vehicle, presence of texture on the plane and absence of pitch and roll in the vehicular motion. It is possible to decouple the problems of finding the vehicle's motion and the depth of the scene in front of the vehicle by using two rigidly connected cameras. One views a field with known depth (i.e. the ground plane) and estimates the motion parameters and the other determines the depth map knowing the motion parameters. The motion is constrained to be planar to increase robustness. We use a least squares method of fitting the vehicle motion to observer brightness gradients. With this method, no correspondence between image points needs to be established and information fran the entire image is used in calculating notion. The algorithm performs very reliably on real image sequences and these results have been included. The results compare favourably to the performance of the algorithm of Negandaripour and Horn [2] where six degrees of freedom are assumed.

  20. The path of the superior sagittal sinus in unicoronal synostosis.

    PubMed

    Russell, Aaron J; Patel, Kamlesh B; Skolnick, Gary; Woo, Albert S; Smyth, Matthew D

    2014-10-01

    This study investigates the anatomic relationship between the superior sagittal sinus (SSS) and the sagittal suture in infants with uncorrected unicoronal synostosis. The morphology of the SSS is also evaluated postoperatively to assess whether normalization of intracranial structures occurs following reconstruction. The study sample consisted of 20 computed tomography scans (10 preoperative, 6 postoperative, and 4 unaffected controls) obtained between 2001 and 2013. The SSS and the sagittal suture were outlined using Analyze imaging software. These data were used to measure the maximum lateral discrepancy between the SSS and the sagittal suture preoperatively and to assess for postoperative changes in the morphology of the SSS. In children with uncorrected unicoronal synostosis, the SSS deviates to the side of the patent coronal suture posteriorly and tends to follow the path of the sagittal and metopic sutures. The lateral discrepancy between the SSS and the sagittal suture ranged from 5.0 to 11.8 mm, with a 99.9 % upper prediction bound of 14.4 mm. Postoperatively, the curvature of the SSS was statistically decreased following surgical intervention, though it remained significantly greater than in unaffected controls. The SSS follows a predictable course relative to surface landmarks in children with unicoronal synostosis. When creating burr holes for craniotomies, the SSS can be avoided in 99.9 % of cases by remaining at least 14.4 mm from the lateral edge of the sagittal suture. Postoperative changes in the path of the SSS provide indirect evidence for normalization of regional brain morphology following fronto-orbital advancement.

  1. Association of baseline knee sagittal dynamic joint stiffness during gait and 2-year patellofemoral cartilage damage worsening in knee osteoarthritis.

    PubMed

    Chang, A H; Chmiel, J S; Almagor, O; Guermazi, A; Prasad, P V; Moisio, K C; Belisle, L; Zhang, Y; Hayes, K; Sharma, L

    2017-02-01

    Knee sagittal dynamic joint stiffness (DJS) describes the biomechanical interaction between change in external knee flexion moment and flexion angular excursion during gait. In theory, greater DJS may particularly stress the patellofemoral (PF) compartment and thereby contribute to PF osteoarthritis (OA) worsening. We hypothesized that greater baseline knee sagittal DJS is associated with PF cartilage damage worsening 2 years later. Participants all had OA in at least one knee. Knee kinematics and kinetics during gait were recorded using motion capture systems and force plates. Knee sagittal DJS was computed as the slope of the linear regression line for knee flexion moments vs angles during the loading response phase. Knee magnetic resonance imaging (MRI) scans were obtained at baseline and 2 years later. We assessed the association between baseline DJS and baseline-to-2-year PF cartilage damage worsening using logistic regression with generalized estimating equations (GEE). Our sample had 391 knees (204 persons): mean age 64.2 years (SD 10.0); body mass index (BMI) 28.4 kg/m 2 (5.7); 76.5% women. Baseline knee sagittal DJS was associated with baseline-to-2-year cartilage damage worsening in the lateral (OR = 5.35, 95% CI: 2.37-12.05) and any PF (OR = 2.99, 95% CI: 1.27-7.04) compartment. Individual components of baseline DJS (i.e., change in knee moment or angle) were not associated with subsequent PF disease worsening. Capturing the concomitant effect of knee kinetics and kinematics during gait, knee sagittal DJS is a potentially modifiable risk factor for PF disease worsening. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  2. Comparison of Liver Tumor Motion With and Without Abdominal Compression Using Cine-Magnetic Resonance Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eccles, Cynthia L.; Patel, Ritesh; Simeonov, Anna K.

    2011-02-01

    Purpose: Abdominal compression (AC) can be used to reduce respiratory liver motion in patients undergoing liver stereotactic body radiotherapy. The purpose of the present study was to measure the changes in three-dimensional liver tumor motion with and without compression using cine-magnetic resonance imaging. Patients and Methods: A total of 60 patients treated as a part of an institutional research ethics board-approved liver stereotactic body radiotherapy protocol underwent cine T2-weighted magnetic resonance imaging through the tumor centroid in the coronal and sagittal planes. A total of 240 cine-magnetic resonance imaging sequences acquired at one to three images each second for 30-60more » s were evaluated using an in-house-developed template matching tool (based on the coefficient correlation) to measure the magnitude of the tumor motion. The average tumor edge displacements were used to determine the magnitude of changes in the caudal-cranial (CC) and anteroposterior (AP) directions, with and without AC. Results: The mean tumor motion without AC of 11.7 mm (range, 4.8-23.3) in the CC direction was reduced to 9.4 mm (range, 1.6-23.4) with AC. The tumor motion was reduced in both directions (CC and AP) in 52% of the patients and in a single direction (CC or AP) in 90% of the patients. The mean decrease in tumor motion with AC was 2.3 and 0.6 mm in the CC and AP direction, respectively. Increased motion occurred in one or more directions in 28% of patients. Clinically significant (>3 mm) decreases were observed in 40% and increases in <2% of patients in the CC direction. Conclusion: AC can significantly reduce three-dimensional liver tumor motion in most patients, although the magnitude of the reduction was smaller than previously reported.« less

  3. Assessment of the rotation motion at the papillary muscle short-axis plane with normal subjects by two-dimensional speckle tracking imaging: a basic clinical study.

    PubMed

    Ni, Xian-Da; Huang, Jun; Hu, Yuan-Ping; Xu, Rui; Yang, Wei-Yu; Zhou, Li-Ming

    2013-01-01

    The aim of this study was to observe the rotation patterns at the papillary muscle plane in the Left Ventricle(LV) with normal subjects using two-dimensional speckle tracking imaging(2D-STI). We acquired standard of the basal, the papillary muscle and the apical short-axis images of the LV in 64 subjects to estimate the LV rotation motion by 2D-STI. The rotational degrees at the papillary muscle short-axis plane were measured at 15 different time points in the analysis of two heart cycles. There were counterclockwise rotation, clockwise rotation, and counterclockwise to clockwise rotation at the papillary muscle plane in the LV with normal subjects, respectively. The ROC analysis of the rotational degrees was performed at the papillary muscle short-axis plane at the peak LV torsion for predicting whether the turnaround point of twist to untwist motion pattern was located at the papillary muscle level. Sensitivity and specificity were 97% and 67%, respectively, with a cut-off value of 0.34°, and an area under the ROC curve of 0.8. At the peak LV torsion, there was no correlation between the rotational degrees at the papillary muscle short-axis plane and the LVEF in the normal subjects(r = 0.000, p = 0.998). In the study, we conclude that there were three rotation patterns at the papillary muscle short-axis levels, and the transition from basal clockwise rotation to apical counterclockwise rotation is located at the papillary muscle level.

  4. Assessment of the Rotation Motion at the Papillary Muscle Short-Axis Plane with Normal Subjects by Two-Dimensional Speckle Tracking Imaging: A Basic Clinical Study

    PubMed Central

    Ni, Xian-Da; Huang, Jun; Hu, Yuan-Ping; Xu, Rui; Yang, Wei-Yu; Zhou, Li-Ming

    2013-01-01

    Background The aim of this study was to observe the rotation patterns at the papillary muscle plane in the Left Ventricle(LV) with normal subjects using two-dimensional speckle tracking imaging(2D-STI). Methods We acquired standard of the basal, the papillary muscle and the apical short-axis images of the LV in 64 subjects to estimate the LV rotation motion by 2D-STI. The rotational degrees at the papillary muscle short-axis plane were measured at 15 different time points in the analysis of two heart cycles. Results There were counterclockwise rotation, clockwise rotation, and counterclockwise to clockwise rotation at the papillary muscle plane in the LV with normal subjects, respectively. The ROC analysis of the rotational degrees was performed at the papillary muscle short-axis plane at the peak LV torsion for predicting whether the turnaround point of twist to untwist motion pattern was located at the papillary muscle level. Sensitivity and specificity were 97% and 67%, respectively, with a cut-off value of 0.34°, and an area under the ROC curve of 0.8. At the peak LV torsion, there was no correlation between the rotational degrees at the papillary muscle short-axis plane and the LVEF in the normal subjects(r = 0.000, p = 0.998). Conclusions In the study, we conclude that there were three rotation patterns at the papillary muscle short-axis levels, and the transition from basal clockwise rotation to apical counterclockwise rotation is located at the papillary muscle level. PMID:24376634

  5. Gender differences of sagittal knee and ankle biomechanics during stair-to-ground descent transition.

    PubMed

    Hong, Yoon No Gregory; Shin, Choongsoo S

    2015-12-01

    Falls on stairs often result in severe injury and occur twice as frequently in women. However, gender differences in kinetics and kinematics during stair descent are unknown. Thus, this study aimed to determine whether gender differences of knee and ankle biomechanics exist in the sagittal plane during the stair-to-ground descending transition. It was hypothesized that 1) women would reveal higher ground-toe-trochanter angle and lower ground-toe length during stair-to-ground descent transition than men; and 2) women would reveal lower peak knee extension moment during stair-to-ground descent transition than men. Fifteen men and fifteen women were recruited and performed a stair descent activity. Kinetic and kinematic data were obtained using a force plate and motion capture system. The women performed the stair descent with a lower peak knee extension moment and a peak knee power at the early weight acceptance phase. The women also revealed a higher ground-toe-trochanter angle and a lower ground-toe length, which indicated a more forward position of the lower extremity relative to the toe contact point at both the initial contact and at the time of peak kinematic and kinetic events. This study found that knee and ankle kinematics and kinetics differed significantly between the genders due to differences in ground-toe-trochanter angle. Women have a different stair descending strategy that reduces the demand of the lower extremity muscle function, but this strategy seems to increase the risk of falls. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Ankle mechanics during sidestep cutting implicates need for 2-degrees of freedom powered ankle-foot prostheses.

    PubMed

    Ficanha, Evandro M; Rastgaar, Mohammad; Kaufman, Kenton R

    2015-01-01

    The ankle joint of currently available powered prostheses is capable of controlling one degree of freedom (DOF), focusing on improved mobility in the sagittal plane. To increase agility, the requirements of turning in prosthesis design need to be considered. Ankle kinematics and kinetics were studied during sidestep cutting and straight walking. There were no significant differences between the ankle sagittal plane mechanics when comparing sidestep cutting and straight walking; however, significant differences were observed in ankle frontal plane mechanics. During straight walking, the inversion-eversion (IE) angles were smaller than with sidestep cutting. The ankle that initiated the sidestep cutting showed progressively increasing inversion from 2 to 13 degrees while the following contralateral step showed progressively decreasing inversion from 8 to -4 degrees during normal walking speed. The changes in IE kinematics were the most significant during sidestep cutting compared with straight walking. The IE moments of the step that initiated the sidestep cutting were always in eversion, acting as a braking moment opposing the inverting motion. This suggests that an ankle-foot prosthesis with active DOFs in the sagittal and frontal planes will increase the agility of gait for patients with limb loss.

  7. Position of the prosthesis components in total ankle replacement and the effect on motion at the replaced joint.

    PubMed

    Cenni, Francesco; Leardini, Alberto; Cheli, Andrea; Catani, Fabio; Belvedere, Claudio; Romagnoli, Matteo; Giannini, Sandro

    2012-03-01

    In some cases of total ankle replacement, perfect alignment of the prosthetic components is not achieved. This study analyses the extent to which component positioning is critical for the final range of motion. Fourteen patients undergoing total ankle replacement were assessed preoperatively and postoperatively at seven and 13 months follow-up. X-ray pictures of the ankle were taken in static double leg stance, i.e. at neutral joint position, and in maximum plantarflexion and dorsiflexion. Measurements were obtained by a specially devised computer program based on anatomical reference points digitised on the radiograms. These allowed calculation of the position and orientation of the components in the sagittal and coronal planes, together with the joint range of motion. The mean range of motion was about 34 degrees at the first follow-up and maintained at the second. Tibial and talar components were more anterior than the mid-tibial shaft in 11 and nine patients, respectively. Mean inclination was about four degrees posterior for the tibial component and nearly one degree anterior for the talar component. A significantly larger range of motion was found in ankles both with the talar component located and inclined more anteriorly than the tibial. Correlation, though weak, was found between motion at the replaced ankle and possible residual subluxation and inclination of the components. However, a satisfactory range of motion was also achieved in those patients where recommended locations for the components could not be reached because of the size of the original joint deformity.

  8. Walking sagittal balance correction by pedicle subtraction osteotomy in adults with fixed sagittal imbalance.

    PubMed

    Yagi, Mitsuru; Kaneko, Shinjiro; Yato, Yoshiyuki; Asazuma, Takashi; Machida, Masafumi

    2016-08-01

    Pedicle subtraction osteotomy (PSO) is widely used to treat severe fixed sagittal imbalance. However, the effect of PSO on balance has not been fully documented. The aim of this study was to assess dynamic walking balance after PSO to treat fixed sagittal imbalance. Gait and balance were assessed in 15 consecutive adult female patients who had been treated by PSO for a fixed sagittal imbalance and compare patients' preop and postop dynamic walking balance with that of 15 age- and gender-matched healthy volunteers (HV). Each patient's chart, X-rays, pre and postop SRS22 outcome scores, and ODI were reviewed. Means were compared by Mann-Whitney U test and Chi-square test. The mean age was 66.3 years (51-74 years). The mean follow-up was 2.7 years (2-3.5 years). The C7PL and GL, measured on the force platform, were both improved from 24.2 ± 7.3 cm and 27.6 ± 9.4 to 5.4 ± 2.6 cm and 7.2 ± 3.4 cm, respectively. The baseline hip ROM was significantly smaller in patients compared to HV, whereas no significant difference was observed in the knee or ankle ROM. The pelvic tilt (preop -0.4° ± 1.4°, postop 8.9° ± 1.0°), and maximum hip-extension angle (preop -1.2° ± 14.2°, postop -11.2° ± 7.2°) were also improved after surgery. Cadence (116 s/min), stance-swing ratio (stance 63.2 % vs. swing 36.8 %), and stride (98.0 cm) were all increased after surgery. On the other hand, gait velocity was significantly slower in the PSO group at both pre and postop than in HV (PSO 53.3 m/min at preop and 58.8 m/min at postop vs. HV 71.1 m/min, p = 0.04). Despite a mild residual spinal-pelvic malalignment, PSO restored sagittal alignment and balance satisfactorily and has improved the gait pattern.

  9. A separation of antiferromagnetic spin motion modes in the training effect of exchange biased Co/CoO film with in-plane anisotropy

    NASA Astrophysics Data System (ADS)

    Wu, R.; Yun, C.; Ding, S. L.; Wen, X.; Liu, S. Q.; Wang, C. S.; Han, J. Z.; Du, H. L.; Yang, J. B.

    2016-08-01

    The motion of antiferromagnetic interfacial spins is investigated through the temperature evolution of training effect in a Co/CoO film with in-plane biaxial anisotropy. Significant differences in the training effect and its temperature dependence are observed in the magnetic easy axis and hard axis (HA) and ascribed to the different motion modes of antiferromagnetic interfacial spins, the collective spin cluster rotation (CSR) and the single spin reversal (SSR), caused by different magnetization reversal modes of ferromagnetic layer. These motion modes of antiferromagnetic spins are successfully separated using a combination of an exponential function and a classic n-1/2 function. A larger CSR to SSR ratio and a shorter lifetime of CSR found in the HA indicates that the domain rotation in the ferromagnetic layer tends to activate and accelerate a CSR mode in the antiferromagnetic spins.

  10. Elimination of motion and pulsation artifacts using BLADE sequences in knee MR imaging.

    PubMed

    Lavdas, Eleftherios; Mavroidis, Panayiotis; Hatzigeorgiou, Vasiliki; Roka, Violeta; Arikidis, Nikos; Oikonomou, Georgia; Andrianopoulos, Konstantinos; Notaras, Ioannis

    2012-10-01

    The purpose of this study is to evaluate the ability of proton density (PD)-BLADE sequences in reducing or even eliminating motion and pulsatile flow artifacts in knee magnetic resonance imaging examinations. Eighty consecutive patients, who had been routinely scanned for knee examination, participated in the study. The following pairs of sequences with and without BLADE were compared: (a) PD turbo spin echo (TSE) sagittal (SAG) fat saturation (FS) in 35 patients, (b) PD TSE coronal (COR) FS in 19 patients, (c) T2 TSE axial in 13 patients and (d) PD TSE SAG in 13 patients. Both qualitative and quantitative analyses were performed based on the signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and relative contrast (ReCon) measures of normal anatomic structures. The qualitative analysis was performed by experienced radiologists. Also, the presence of image motion and pulsation artifacts was evaluated. Based on the results of the SNR, CRN and ReCon for the different sequences and anatomical structures, the BLADE sequences were significantly superior in 19 cases, whereas the corresponding conventional sequences were significantly superior in only 6 cases. BLADE sequences eliminated motion artifacts in all the cases. However, motion artifacts were shown in (a) six PD TSE SAG FS, (b) three PD TSE COR FS, (c) three PD TSE SAG and (d) two T2 TSE axial conventional sequences. In our results, it was found that, in PD FS sequences (sagittal and coronal), the differences between the BLADE and conventional sequences regarding the elimination of motion and pulsatile flow artifacts were statistically significant. In all the comparisons, the PD FS BLADE sequences (coronal and sagittal) were significantly superior to the corresponding conventional sequences regarding the classification of their image quality. In conclusion, this technique appears to be capable to potentially eliminate motion and pulsatile flow artifacts in MR images. Copyright © 2012 Elsevier Inc. All

  11. Study of in-plane dynamics of tires

    NASA Astrophysics Data System (ADS)

    Gong, S.

    1993-12-01

    The in-plane dynamics of tires deals with the forces and motion in the plane of rotation of the wheel. Three aspects of tire in-plane dynamics can be identified: the rolling contact between the tire and the road surface; the transmission of forces and motion from the contact patch to the wheel axle; and the vibration of the tire treadband. The main objective of the investigation reported in this thesis is to develop a tire model which is suitable to study all three aspects of the in-plane dynamics of tires in both low and high frequency ranges. The tire model is finally validated by experimental modal analysis of a test tire. Laboratory tests are conducted to establish the modal shapes and natural frequencies of the test tire. The tests are carried out for two different configurations of the tire: one with the wheel rim fixed in space and one with the tire-wheel system suspended freely in the air. Good agreement is found between the experimental and theoretical results.

  12. Valuation of coefficient of rolling friction by the inclined plane method

    NASA Astrophysics Data System (ADS)

    Ciornei, F. C.; Alaci, S.; Ciogole, V. I.; Ciornei, M. C.

    2017-05-01

    A major objective of tribological researches is characterisation of rolling friction, due to various cases encountered in classical engineering applications, like gear transmissions and cam mechanisms or more recent examples met in bioengineering and biomedical devices. A characteristic of these examples consists in reduced dimensions of the contact zones, theoretically zero, the relative motion occurring between the contact points being either sliding or rolling. A characteristic parameter for the rolling motion is the coefficient of rolling friction. The paper proposes a method for estimation of coefficient of rolling friction by studying the motion of a body of revolution on an inclined plane. Assuming the hypothesis that moment of rolling friction is proportional to the normal reaction force, the law of motion for the body on the inclined plane is found under the premise of pure rolling. It is reached the conclusion that there is an uniformly accelerated motion, and thus for a known plane slope, it is sufficient to find the time during which the body runs a certain distance, starting from motionless situation. To obtain accurate results assumes finding precisely the time of motion. The coefficient of rolling friction was estimated for several slopes of the inclined plane and it is concluded that with increased slope, the values of coefficient of rolling friction increase, fact that suggest that the proportionality between the rolling torque and normal load is valid only for domains of limited variations of normal load.

  13. Paramedics on the job: dynamic trunk motion assessment at the workplace.

    PubMed

    Prairie, Jérôme; Corbeil, Philippe

    2014-07-01

    Many paramedics' work accidents are related to physical aspects of the job, and the most affected body part is the low back. This study documents the trunk motion exposure of paramedics on the job. Nine paramedics were observed over 12 shifts (120 h). Trunk postures were recorded with the computer-assisted CUELA measurement system worn on the back like a knapsack. Average duration of an emergency call was 23.5 min. Sagittal trunk flexion of >40° and twisting rotation of >24° were observed in 21% and 17% of time-sampled postures. Medical care on the scene (44% of total time) involved prolonged flexed and twisted postures (∼ 10s). The highest extreme sagittal trunk flexion (63°) and twisting rotation (40°) were observed during lifting activities, which lasted 2% of the total time. Paramedics adopted trunk motions that may significantly increase the risk of low back disorders during medical care and patient-handling activities. Copyright © 2013. Published by Elsevier Ltd.

  14. Characterisation of dynamic couplings at lower limb residuum/socket interface using 3D motion capture.

    PubMed

    Tang, Jinghua; McGrath, Michael; Laszczak, Piotr; Jiang, Liudi; Bader, Dan L; Moser, David; Zahedi, Saeed

    2015-12-01

    Design and fitting of artificial limbs to lower limb amputees are largely based on the subjective judgement of the prosthetist. Understanding the science of three-dimensional (3D) dynamic coupling at the residuum/socket interface could potentially aid the design and fitting of the socket. A new method has been developed to characterise the 3D dynamic coupling at the residuum/socket interface using 3D motion capture based on a single case study of a trans-femoral amputee. The new model incorporated a Virtual Residuum Segment (VRS) and a Socket Segment (SS) which combined to form the residuum/socket interface. Angular and axial couplings between the two segments were subsequently determined. Results indicated a non-rigid angular coupling in excess of 10° in the quasi-sagittal plane and an axial coupling of between 21 and 35 mm. The corresponding angular couplings of less than 4° and 2° were estimated in the quasi-coronal and quasi-transverse plane, respectively. We propose that the combined experimental and analytical approach adopted in this case study could aid the iterative socket fitting process and could potentially lead to a new socket design. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  15. A separation of antiferromagnetic spin motion modes in the training effect of exchange biased Co/CoO film with in-plane anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, R.; Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS; Yun, C.

    2016-08-07

    The motion of antiferromagnetic interfacial spins is investigated through the temperature evolution of training effect in a Co/CoO film with in-plane biaxial anisotropy. Significant differences in the training effect and its temperature dependence are observed in the magnetic easy axis and hard axis (HA) and ascribed to the different motion modes of antiferromagnetic interfacial spins, the collective spin cluster rotation (CSR) and the single spin reversal (SSR), caused by different magnetization reversal modes of ferromagnetic layer. These motion modes of antiferromagnetic spins are successfully separated using a combination of an exponential function and a classic n{sup −1/2} function. A largermore » CSR to SSR ratio and a shorter lifetime of CSR found in the HA indicates that the domain rotation in the ferromagnetic layer tends to activate and accelerate a CSR mode in the antiferromagnetic spins.« less

  16. Sagittal alignment of the cervical spine after neck injury.

    PubMed

    Beltsios, Michail; Savvidou, Olga; Mitsiokapa, Evanthia A; Mavrogenis, Andreas F; Kaspiris, Angelos; Efstathopoulos, Nikolaos; Papagelopoulos, Panayiotis J

    2013-07-01

    The normal sagittal alignment of the cervical spine is lordotic and is affected by the posture of the head and neck. The question of whether loss of cervical lordosis is the result of muscle spasm after injury or a normal variation, and the clinical significance of such changes in sagittal profile of the cervical spine has been an issue of several studies. The purpose of this paper is to study the incidence of normal cervical lordosis and its changes after neck injury compared to the healthy population. We studied the lateral radiographs of the cervical spine of 60 patients with neck injury compared to 100 patients without a neck injury. Lateral radiographs were obtained in the standing or sitting position, and the curvature of the cervical spine was measured using the angle formed between the inferior end plates of the C2 and C7 vertebrae. In the patients without neck injury, lordotic and straight cervical spine sagittal alignment was observed in 36.5% each, double curvature in 17%, and kyphotic in 10%. In the patients with neck injury, lordotic sagittal alignment was observed in 36%, straight in 34%, double curvature in 26% and kyphotic in 4%. No significant difference between the two groups regarding all types of sagittal alignment of the cervical spine was found (p > 0.100). The alterations in normal cervical lordosis in patients with neck injury must be considered coincidental. These alterations should not be associated with muscle spasm caused by neck pain.

  17. Comparative abilities of Microsoft Kinect and Vicon 3D motion capture for gait analysis.

    PubMed

    Pfister, Alexandra; West, Alexandre M; Bronner, Shaw; Noah, Jack Adam

    2014-07-01

    Biomechanical analysis is a powerful tool in the evaluation of movement dysfunction in orthopaedic and neurologic populations. Three-dimensional (3D) motion capture systems are widely used, accurate systems, but are costly and not available in many clinical settings. The Microsoft Kinect™ has the potential to be used as an alternative low-cost motion analysis tool. The purpose of this study was to assess concurrent validity of the Kinect™ with Brekel Kinect software in comparison to Vicon Nexus during sagittal plane gait kinematics. Twenty healthy adults (nine male, 11 female) were tracked while walking and jogging at three velocities on a treadmill. Concurrent hip and knee peak flexion and extension and stride timing measurements were compared between Vicon and Kinect™. Although Kinect measurements were representative of normal gait, the Kinect™ generally under-estimated joint flexion and over-estimated extension. Kinect™ and Vicon hip angular displacement correlation was very low and error was large. Kinect™ knee measurements were somewhat better than hip, but were not consistent enough for clinical assessment. Correlation between Kinect™ and Vicon stride timing was high and error was fairly small. Variability in Kinect™ measurements was smallest at the slowest velocity. The Kinect™ has basic motion capture capabilities and with some minor adjustments will be an acceptable tool to measure stride timing, but sophisticated advances in software and hardware are necessary to improve Kinect™ sensitivity before it can be implemented for clinical use.

  18. Modification of Eye Movements and Motion Perception during Off-Vertical Axis Rotation

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Reschke, M. F.; Denise, P.; CLement, G.

    2006-01-01

    Constant velocity Off-Vertical Axis Rotation (OVAR) imposes a continuously varying orientation of the head and body relative to gravity. The ensuing ocular reflexes include modulation of both torsional and horizontal eye movements as a function of the varying linear acceleration along the lateral plane, and modulation of vertical and vergence eye movements as a function of the varying linear acceleration along the sagittal plane. Previous studies have demonstrated that tilt and translation otolith-ocular responses, as well as motion perception, vary as a function of stimulus frequency during OVAR. The purpose of this study is to examine normative OVAR responses in healthy human subjects, and examine adaptive changes in astronauts following short duration space flight at low (0.125 Hz) and high (0.5 Hz) frequencies. Data was obtained on 24 normative subjects (14 M, 10 F) and 14 (13 M, 1F) astronaut subjects. To date, astronauts have participated in 3 preflight sessions (n=14) and on R+0/1 (n=7), R+2 (n= 13) and R+4 (n= 13) days after landing. Subjects were rotated in darkness about their longitudinal axis 20 deg off-vertical at constant rates of 45 and 180 deg/s, corresponding to 0.125 and 0.5 Hz. Binocular responses were obtained with video-oculography. Perceived motion was evaluated using verbal reports and a two-axis joystick (pitch and roll tilt) mounted on top of a two-axis linear stage (anterior-posterior and medial-lateral translation). Eye responses were obtained in ten of the normative subjects with the head and trunk aligned, and then with the head turned relative to the trunk 40 deg to the right or left of center. Sinusoidal curve fits were used to derive amplitude, phase and bias of the responses over several cycles at each stimulus frequency. Eye responses during 0.125 Hz OVAR were dominated by modulation of torsional and vertical eye position, compensatory for tilt relative to gravity. While there is a bias horizontal slow phase velocity (SPV), the

  19. Diffraction crystal for sagittally focusing x-rays

    DOEpatents

    Ice, Gene E.; Sparks, Jr., Cullie J.

    1984-01-01

    The invention is a new type of diffraction crystal designed for sagittally focusing photons of various energies. The invention is based on the discovery that such focusing is not obtainable with conventional crystals because of distortion resulting from anticlastic curvature. The new crystal comprises a monocrystalline base having a front face contoured for sagittally focusing photons and a back face provided with rigid, upstanding, stiffening ribs restricting anticlastic curvature. When mounted in a suitable bending device, the reflecting face of the crystal can be adjusted to focus photons having any one of a range of energies.

  20. Diffraction crystals for sagittally focusing x-rays

    DOEpatents

    Ice, G.E.; Sparks, C.J. Jr.

    1982-06-07

    The invention is a new type of diffraction crystal designed for sagittally focusing photons of various energies. The invention is based on the discovery that such focusing is not obtainable with conventional crystals because of distortion resulting from anticlastic curvature. The new crystal comprises a monocrystalline base having a front face contoured for sagittally focusing photons and a back face provided with rigid, upstanding, stiffening ribs restricting anticlastic curvature. When mounted in a suitable bending device, the reflecting face of the crystal can be adjusted to focus photons having any one of a range of energies.

  1. Elimination of motion, pulsatile flow and cross-talk artifacts using blade sequences in lumbar spine MR imaging.

    PubMed

    Lavdas, Eleftherios; Mavroidis, Panayiotis; Kostopoulos, Spiros; Glotsos, Dimitrios; Roka, Violeta; Koutsiaris, Aristotle G; Batsikas, Georgios; Sakkas, Georgios K; Tsagkalis, Antonios; Notaras, Ioannis; Stathakis, Sotirios; Papanikolaou, Nikos; Vassiou, Katerina

    2013-07-01

    The purpose of this study is to evaluate the ability of T2 turbo spin echo (TSE) axial and sagittal BLADE sequences in reducing or even eliminating motion, pulsatile flow and cross-talk artifacts in lumbar spine MRI examinations. Forty four patients, who had routinely undergone a lumbar spine examination, participated in the study. The following pairs of sequences with and without BLADE were compared: a) T2 TSE Sagittal (SAG) in thirty two cases, and b) T2 TSE Axial (AX) also in thirty two cases. Both quantitative and qualitative analyses were performed based on measurements in different normal anatomical structures and examination of seven characteristics, respectively. The qualitative analysis was performed by experienced radiologists. Also, the presence of image motion, pulsatile flow and cross-talk artifacts was evaluated. Based on the results of the qualitative analysis for the different sequences and anatomical structures, the BLADE sequences were found to be significantly superior to the conventional ones in all the cases. The BLADE sequences eliminated the motion artifacts in all the cases. In our results, it was found that in the examined sequences (sagittal and axial) the differences between the BLADE and conventional sequences regarding the elimination of motion, pulsatile flow and cross-talk artifacts were statistically significant. In all the comparisons, the T2 TSE BLADE sequences were significantly superior to the corresponding conventional sequences regarding the classification of their image quality. In conclusion, this technique appears to be capable of potentially eliminating motion, pulsatile flow and cross-talk artifacts in lumbar spine MR images and producing high quality images in collaborative and non-collaborative patients. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Trajectory of coronary motion and its significance in robotic motion cancellation.

    PubMed

    Cattin, Philippe; Dave, Hitendu; Grünenfelder, Jürg; Szekely, Gabor; Turina, Marko; Zünd, Gregor

    2004-05-01

    To characterize remaining coronary artery motion of beating pig hearts after stabilization with an 'Octopus' using an optical remote analysis technique. Three pigs (40, 60 and 65 kg) underwent full sternotomy after receiving general anesthesia. An 8-bit high speed black and white video camera (50 frames/s) coupled with a laser sensor (60 microm resolution) were used to capture heart wall motion in all three dimensions. Dopamine infusion was used to deliberately modulate cardiac contractility. Synchronized ECG, blood pressure, airway pressure and video data of the region around the first branching point of the left anterior descending (LAD) coronary artery after Octopus stabilization were captured for stretches of 8 s each. Several sequences of the same region were captured over a period of several minutes. Computerized off-line analysis allowed us to perform minute characterization of the heart wall motion. The movement of the points of interest on the LAD ranged from 0.22 to 0.81 mm in the lateral plane (x/y-axis) and 0.5-2.6 mm out of the plane (z-axis). Fast excursions (>50 microm/s in the lateral plane) occurred corresponding to the QRS complex and the T wave; while slow excursion phases (<50 microm/s in the lateral plane) were observed during the P wave and the ST segment. The trajectories of the points of interest during consecutive cardiac cycles as well as during cardiac cycles minutes apart remained comparable (the differences were negligible), provided the hemodynamics remained stable. Inotrope-induced changes in cardiac contractility influenced not only the maximum excursion, but also the shape of the trajectory. Normal positive pressure ventilation displacing the heart in the thoracic cage was evident by the displacement of the reference point of the trajectory. The movement of the coronary artery after stabilization appears to be still significant. Minute characterization of the trajectory of motion could provide the substrate for achieving motion

  3. How is sagittal balance acquired during bipedal gait acquisition? Comparison of neonatal and adult pelves in three dimensions. Evolutionary implications.

    PubMed

    Tardieu, Christine; Bonneau, Noémie; Hecquet, Jérôme; Boulay, Christophe; Marty, Catherine; Legaye, Jean; Duval-Beaupère, Geneviève

    2013-08-01

    We compare adult and intact neonatal pelves, using a pelvic sagittal variable, the angle of sacral incidence, which presents significant correlations with vertebral curvature in adults and plays an important role in sagittal balance of the trunk on the lower limbs. Since the lumbar curvature develops in the child in association with gait acquisition, we expect a change in this angle during growth which could contribute to the acquisition of sagittal balance. To understand the mechanisms underlying the sagittal balance in the evolution of human bipedalism, we also measure the angle of incidence of hominid fossils. Fourty-seven landmarks were digitized on 50 adult and 19 intact neonatal pelves. We used a three-dimensional model of the pelvis (DE-VISU program) which calculates the angle of sacral incidence and related functional variables. Cross-sectional data from newborns and adults show that the angle of sacral incidence increases and becomes negatively correlated with the sacro-acetabular distance. During ontogeny the sacrum becomes curved, tends to sink down between the iliac blades as a wedge and moves backward in the sagittal plane relative to the acetabula, thus contributing to the backwards displacement of the center of gravity of the trunk. A chain of correlations links the degree of the sacral slope and of the angle of incidence, which is tightly linked with the lumbar lordosis. We sketch a model showing the coordinated changes occurring in the pelvis and vertebral column during the acquisition of bipedalism in infancy. In the australopithecine pelves, Sts 14 and AL 288-1, and in the Homo erectus Gona pelvis the angle of sacral incidence reaches the mean values of humans. Discussing the incomplete pelves of Ardipithecus ramidus, Australopithecus sediba and the Nariokotome Boy, we suggest how the functional linkage between pelvis and spine, observed in humans, could have emerged during hominid evolution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Gender differences associated with rearfoot, midfoot, and forefoot kinematics during running.

    PubMed

    Takabayashi, Tomoya; Edama, Mutsuaki; Nakamura, Masatoshi; Nakamura, Emi; Inai, Takuma; Kubo, Masayoshi

    2017-11-01

    Females, as compared with males, have a higher proportion of injuries in the foot region. However, the reason for this gender difference regarding foot injuries remains unclear. This study aimed to investigate gender differences associated with rearfoot, midfoot, and forefoot kinematics during running. Twelve healthy males and 12 females ran on a treadmill. The running speed was set to speed which changes from walking to running. Three-dimensional kinematics of rearfoot, midfoot, and forefoot were collected and compared between males and females. Furthermore, spatiotemporal parameters (speed, cadence, and step length) were measured. In the rearfoot angle, females showed a significantly greater peak value of plantarflexion and range of motion in the sagittal plane as compared with males (effect size (ES) = 1.55 and ES = 1.12, respectively). In the midfoot angle, females showed a significantly greater peak value of dorsiflexion and range of motion in the sagittal plane as compared with males (ES = 1.49 and ES = 1.71, respectively). The forefoot peak angles and ranges of motion were not significantly different between the genders in all three planes. A previous study suggested that a gender-related difference in excessive motions of the lower extremities during running has been suggested as a contributing factor to running injuries. Therefore, the present investigation may provide insight into the reason for the high incidence of foot injuries in females.

  5. Altered spinal motion in low back pain associated with lumbar strain and spondylosis.

    PubMed

    Cheng, Joseph S; Carr, Christopher B; Wong, Cyrus; Sharma, Adrija; Mahfouz, Mohamed R; Komistek, Richard D

    2013-04-01

    Study Design We present a patient-specific computer model created to translate two-dimensional (2D) fluoroscopic motion data into three-dimensional (3D) in vivo biomechanical motion data. Objective The aim of this study is to determine the in vivo biomechanical differences in patients with and without acute low back pain. Current dynamic imaging of the lumbar spine consists of flexion-extension static radiographs, which lack sensitivity to out-of-plane motion and provide incomplete information on the overall spinal motion. Using a novel technique, in-plane and coupled out-of-plane rotational motions are quantified in the lumbar spine. Methods A total of 30 participants-10 healthy asymptomatic subjects, 10 patients with low back pain without spondylosis radiologically, and 10 patients with low back pain with radiological spondylosis-underwent dynamic fluoroscopy with a 3D-to-2D image registration technique to create a 3D, patient-specific bone model to analyze in vivo kinematics using the maximal absolute rotational magnitude and the path of rotation. Results Average overall in-plane rotations (L1-L5) in patients with low back pain were less than those asymptomatic, with the dominant loss of motion during extension. Those with low back pain also had significantly greater out-of-plane rotations, with 5.5 degrees (without spondylosis) and 7.1 degrees (with spondylosis) more out-of-plane rotational motion per level compared with asymptomatic subjects. Conclusions Subjects with low back pain exhibited greater out-of-plane intersegmental motion in their lumbar spine than healthy asymptomatic subjects. Conventional flexion-extension radiographs are inadequate for evaluating motion patterns of lumbar strain, and assessment of 3D in vivo spinal motion may elucidate the association of abnormal vertebral motions and clinically significant low back pain.

  6. Motion compensated shape error concealment.

    PubMed

    Schuster, Guido M; Katsaggelos, Aggelos K

    2006-02-01

    The introduction of Video Objects (VOs) is one of the innovations of MPEG-4. The alpha-plane of a VO defines its shape at a given instance in time and hence determines the boundary of its texture. In packet-based networks, shape, motion, and texture are subject to loss. While there has been considerable attention paid to the concealment of texture and motion errors, little has been done in the field of shape error concealment. In this paper we propose a post-processing shape error concealment technique that uses the motion compensated boundary information of the previously received alpha-plane. The proposed approach is based on matching received boundary segments in the current frame to the boundary in the previous frame. This matching is achieved by finding a maximally smooth motion vector field. After the current boundary segments are matched to the previous boundary, the missing boundary pieces are reconstructed by motion compensation. Experimental results demonstrating the performance of the proposed motion compensated shape error concealment method, and comparing it with the previously proposed weighted side matching method are presented.

  7. Sagittal band, boutonniere, and pulley injuries in the athlete.

    PubMed

    Grandizio, Louis Christopher; Klena, Joel Christian

    2017-03-01

    While hand injuries occur frequently in the athletic population, sagittal band ruptures, boutonniere deformities, and pulley ruptures are infrequently encountered. These injuries represent diagnostic challenges and can result in significant impairment. Early recognition with appropriate treatment is necessary to maximize recovery and minimize return to athletic competition. This review will focus on the underlying mechanism, pathophysiology of injury, diagnosis, and treatment of each of these injuries. With respect to sagittal band ruptures, boutonniere deformities, and pulley ruptures, the recent literature has been limited in scope. For sagittal band injuries, current efforts have focused on alternative techniques for sagittal band reconstruction. Little progress has been made in recent years with respect to boutonniere injuries in the athletic population; prevention of fixed deformities remains the backbone of treatment. The exact contribution from individual and combined pulley injuries in the creation of bowstringing remains controversial. Recent anatomical studies have failed to definitively answer the question of what degree of rupture is necessary to create symptomatic bowstringing. Favorable outcomes, with respect to both preventing bowstringing and returning to full athletic participation, have been newly reported following pulley reconstruction in rock climbers. Due to the infrequent nature of sagittal band ruptures, boutonniere deformities, and pulley ruptures, current treatment is mostly guided by historically established methods, limited case series, and case reports. Nonsurgical treatment remains the mainstay for most injuries and, if employed early, often precludes the need for surgery. Further anatomical and clinical research, including outcome studies, is necessary in guiding treatment algorithms.

  8. Orthotic intervention in forefoot and rearfoot strike running patterns.

    PubMed

    Stackhouse, Carrie Laughton; Davis, Irene McClay; Hamill, Joseph

    2004-01-01

    To compare the differential effect of custom orthoses on the lower extremity mechanics of a forefoot and rearfoot strike pattern. Fifteen subjects ran with both a forefoot and a rearfoot strike pattern with and without orthoses. Lower extremity kinematic and kinetic variables were compared between strike pattern and orthotic conditions. Foot orthoses have been shown to be effective in controlling excessive rearfoot motion in rearfoot strikers. The effect of orthotic intervention on rearfoot motion in forefoot strikers has not been previously reported. Five trials were collected for each condition. Peak rearfoot eversion, eversion excursion, eversion velocity, peak inversion moment, and inversion work were compared between conditions. Kinematic variables in the sagittal plane of the rearfoot and in the frontal and sagittal plane of the knee were also determined. Increased rearfoot excursions and velocities and decreased peak eversion were noted in the forefoot strike pattern compared to the rearfoot strike pattern. Orthotic intervention, however,did not significantly change rearfoot motion in either strike pattern. Reductions in internal rotation and abduction of the knee were noted with orthotic intervention. Foot orthoses do not differentially effect rearfoot motion of a rearfoot strike and a forefoot strike running pattern. Orthotic intervention has a larger and more systematic effect on rearfoot kinetics compared to rearfoot kinematics.

  9. Sagittal plane kinematics of passive dorsiflexion of the foot in adolescent athletes.

    PubMed

    Gatt, Alfred; Chockalingam, Nachiappan; Falzon, Owen

    2013-01-01

    Although assessment of passive maximum foot dorsiflexion angle is performed routinely, there is a paucity of information regarding adolescents' foot and foot segment motion during this procedure. There are currently no trials investigating the kinematics of the adolescent foot during passive foot dorsiflexion. A six-camera optoelectronic motion capture system was used to collect kinematic data using the Oxford Foot Model. Eight female amateur gymnasts 11 to 16 years old (mean age, 13.2 years; mean height, 1.5 m) participated in the study. A dorsiflexing force was applied to the forefoot until reaching maximum resistance with the foot placed in the neutral, pronated, and supinated positions in random order. The maximum foot dorsiflexion angle and the range of movement of the forefoot to hindfoot, tibia to forefoot, and tibia to hindfoot angles were computed. Mean ± SD maximum foot dorsiflexion angles were 36.3° ± 7.2° for pronated, 36.9° ± 4.0° for neutral, and 33.0° ± 4.9° for supinated postures. One-way repeated-measures analysis of variance results were nonsignificant among the 3 groups (P = .70), as were the forefoot to tibia angle and hindfoot to tibia angle variations (P = .091 and P = .188, respectively). Forefoot to hindfoot angle increased with the application of force, indicating that in adolescents, the forefoot does not lock at any particular posture as portrayed by the traditional Rootian paradigm. Participants had very flexible foot dorsiflexion, unlike those in another study assessing adolescent athletes. This finding, together with nonsignificant statistical results, implies that foot dorsiflexion measurement may be performed at any foot posture without notably affecting results.

  10. Sagittal Alignment Two Years After Selective and Nonselective Thoracic Fusion for Lenke 1C Adolescent Idiopathic Scoliosis.

    PubMed

    Celestre, Paul C; Carreon, Leah Y; Lenke, Lawrence G; Sucato, Daniel J; Glassman, Steven D

    2015-11-01

    Matched cohort. To evaluate thoracic and thoracolumbar sagittal Cobb angles in patients undergoing either selective thoracic fusion (STF) or nonselective thoracic fusion (NSTF) for Lenke 1C adolescent idiopathic scoliosis (AIS). The Lenke classification is used to guide fusion levels in AIS. For some curve types, including 1C, there is a disparity in practice regarding whether the thoracolumbar/lumbar curve should be included in the arthrodesis. The impact of performing an NSTF on sagittal parameters has not been adequately evaluated. A multicenter database of AIS was queried for patients with right-sided 1C curves treated with posterior correction and fusion. A matched cohort for each group was created based on age, gender, preoperative Cobb angles, and Scoliosis Research Society-22R domain scores. Independent t tests for continuous variables and Fisher exact test for categorical variables were used to compare the STF and NSTF groups. Thirty-eight patients who underwent NSTF were matched to 38 patients in the STF. An average of 8.0 levels were fused in the STF group and 11.6 in the NSTF group (p < .001). Preoperative and radiographic variables were similar between the two groups. Postoperatively, there was a statistically significant difference between the STF and NSTF sagittal Cobb in the thoracic spine, 26.9° and 21.7° (p = .013). The greatest difference was in the thoracolumbar sagittal Cobb, which increased to 4.3° kyphosis in the STF group and decreased to 9° of lordosis in the NSTF group (p < .001). Residual thoracolumbar/lumbar scoliosis was 25.5° in the STF group and 14.5° in the NSTF group (p < .001). STF in 1C curves preserves lumbar motion segments but may be associated with an increase in thoracic and thoracolumbar kyphosis compared to NSTF. As expected, residual thoracolumbar/lumbar scoliosis was less in the NSTF group compared to the STF group. Although the long-term implications of these changes are unknown, consideration of sagittal balance

  11. Interceptive orthopedics for the correction of maxillary transverse and sagittal deficiency in the early mixed dentition period

    PubMed Central

    Talapaneni, Ashok Kumar; Kumar, Karnati Praveen; Kommi, Pradeep Babu; Nuvvula, Sivakumar

    2011-01-01

    Dentofacial Orthopedics directed to a hypoplastic maxilla in the prepubertal period redirects growth of the maxilla in the vertical, transverse and sagittal planes of space. The orthopedic correction of maxillary hypoplasia in the early mixed dentition period thus intercepts the establishment of permanent structural asymmetry in the mandible and helps in the achievement of optimal dentofacial esthetics. This paper presents the growth redirection in a hypoplastic maxilla of an 8-year-old girl with simultaneous rapid maxillary expansion and protraction headgear therapy for a period of 11 months which corrected the posterior unilateral cross-bite, the positional asymmetry of the mandible and established an orthognathic profile in the individual. PMID:22346162

  12. Estimation of multiple accelerated motions using chirp-Fourier transform and clustering.

    PubMed

    Alexiadis, Dimitrios S; Sergiadis, George D

    2007-01-01

    Motion estimation in the spatiotemporal domain has been extensively studied and many methodologies have been proposed, which, however, cannot handle both time-varying and multiple motions. Extending previously published ideas, we present an efficient method for estimating multiple, linearly time-varying motions. It is shown that the estimation of accelerated motions is equivalent to the parameter estimation of superpositioned chirp signals. From this viewpoint, one can exploit established signal processing tools such as the chirp-Fourier transform. It is shown that accelerated motion results in energy concentration along planes in the 4-D space: spatial frequencies-temporal frequency-chirp rate. Using fuzzy c-planes clustering, we estimate the plane/motion parameters. The effectiveness of our method is verified on both synthetic as well as real sequences and its advantages are highlighted.

  13. Using a Motion Sensor-Equipped Smartphone to Facilitate CT-Guided Puncture.

    PubMed

    Hirata, Masaaki; Watanabe, Ryouhei; Koyano, Yasuhiro; Sugata, Shigenori; Takeda, Yukie; Nakamura, Seiji; Akamune, Akihisa; Tsuda, Takaharu; Mochizuki, Teruhito

    2017-04-01

    To demonstrate the use of "Smart Puncture," a smartphone application to assist conventional CT-guided puncture without CT fluoroscopy, and to describe the advantages of this application. A puncture guideline is displayed by entering the angle into the application. Regardless of the angle at which the device is being held, the motion sensor ensures that the guideline is displayed at the appropriate angle with respect to gravity. The angle of the smartphone's liquid crystal display (LCD) is also detected, preventing needle deflection from the CT slice image. Physicians can perform the puncture procedure by advancing the needle using the guideline while the smartphone is placed adjacent to the patient. In an experimental puncture test using a sponge as a target, the target was punctured at 30°, 50°, and 70° when the device was tilted to 0°, 15°, 30°, and 45°, respectively. The punctured target was then imaged with a CT scan, and the puncture error was measured. The mean puncture error in the plane parallel to the LCD was less than 2°, irrespective of device tilt. The mean puncture error in the sagittal plane was less than 3° with no device tilt. However, the mean puncture error tended to increase when the tilt was increased. This application can transform a smartphone into a valuable tool that is capable of objectively and accurately assisting CT-guided puncture procedures.

  14. Effect of vision and stance width on human body motion when standing: implications for afferent control of lateral sway.

    PubMed

    Day, B L; Steiger, M J; Thompson, P D; Marsden, C D

    1993-09-01

    1. Measurements of human upright body movements in three dimensions have been made on thirty-five male subjects attempting to stand still with various stance widths and with eyes closed or open. Body motion was inferred from movements of eight markers fixed to specific sites on the body from the shoulders to the ankles. Motion of these markers was recorded together with motion of the point of application of the resultant of the ground reaction forces (centre of pressure). 2. The speed of the body (average from eight sites) was increased by closing the eyes or narrowing the stance width and there was an interaction between these two factors such that vision reduced body speed more effectively when the feet were closer together. Similar relationships were found for components of velocity both in the frontal and sagittal planes although stance width exerted a much greater influence on the lateral velocity component. 3. Fluctuations in position of the body were also increased by eye closure or narrowing of stance width. Again, the effect of stance width was more potent for lateral than for anteroposterior movements. In contrast to the velocity measurements, there was no interaction between vision and stance width. 4. There was a progressive increase in the amplitude of position and velocity fluctuations from markers placed higher on the body. The fluctuations in the position of the centre of pressure were similar in magnitude to those of the markers placed near the hip. The fluctuations in velocity of centre of pressure, however, were greater than of any site on the body. 5. Analysis of the amplitude of angular motion between adjacent straight line segments joining the markers suggests that the inverted pendulum model of body sway is incomplete. Motion about the ankle joint was dominant only for lateral movement in the frontal plane with narrow stance widths (< 8 cm). For all other conditions most angular motion occurred between the trunk and leg. 6. The large

  15. Contact pressure in the facet joint during sagittal bending of the cadaveric cervical spine.

    PubMed

    Jaumard, Nicolas V; Bauman, Joel A; Weisshaar, Christine L; Guarino, Benjamin B; Welch, William C; Winkelstein, Beth A

    2011-07-01

    The facet joint contributes to the normal biomechanical function of the spine by transmitting loads and limiting motions via articular contact. However, little is known about the contact pressure response for this joint. Such information can provide a quantitative measure of the facet joint's local environment. The objective of this study was to measure facet pressure during physiologic bending in the cervical spine, using a joint capsule-sparing technique. Flexion and extension bending moments were applied to six human cadaveric cervical spines. Global motions (C2-T1) were defined using infra-red cameras to track markers on each vertebra. Contact pressure in the C5-C6 facet was also measured using a tip-mounted pressure transducer inserted into the joint space through a hole in the postero-inferior region of the C5 lateral mass. Facet contact pressure increased by 67.6 ± 26.9 kPa under a 2.4 Nm extension moment and decreased by 10.3 ± 9.7 kPa under a 2.7 Nm flexion moment. The mean rotation of the overall cervical specimen motion segments was 9.6 ± 0.8° and was 1.6 ± 0.7° for the C5-C6 joint, respectively, for extension. The change in pressure during extension was linearly related to both the change in moment (51.4 ± 42.6 kPa/Nm) and the change in C5-C6 angle (18.0 ± 108.9 kPa/deg). Contact pressure in the inferior region of the cervical facet joint increases during extension as the articular surfaces come in contact, and decreases in flexion as the joint opens, similar to reports in the lumbar spine despite the difference in facet orientation in those spinal regions. Joint contact pressure is linearly related to both sagittal moment and spinal rotation. Cartilage degeneration and the presence of meniscoids may account for the variation in the pressure profiles measured during physiologic sagittal bending. This study shows that cervical facet contact pressure can be directly measured with minimal disruption to the joint and is the first to provide local

  16. Comparison of lower limb kinetics during vertical jumps in turnout and neutral foot positions by classical ballet dancers.

    PubMed

    Imura, Akiko; Iino, Yoichi

    2017-03-01

    The purpose of this study was to investigate the effect of hip external rotation (turnout) on lower limb kinetics during vertical jumps by classical ballet dancers. Vertical jumps in a turnout (TJ) and a neutral hip position (NJ) performed by 12 classical female ballet dancers were analysed through motion capture, recording of the ground reaction forces, and inverse dynamics analysis. At push-off, the lower trunk leaned forward 18.2° and 20.1° in the TJ and NJ, respectively. The dancers jumped lower in the TJ than in the NJ. The knee extensor and hip abductor torques were smaller, whereas the hip external rotator torque was larger in the TJ than in the NJ. The work done by the hip joint moments in the sagittal plane was 0.28 J/(Body mass*Height) and 0.33 J/(Body mass*Height) in the TJ and NJ, respectively. The joint work done by the lower limbs were not different between the two jumps. These differences resulted from different planes in which the lower limb flexion-extension occurred, i.e. in the sagittal or frontal plane. This would prevent the forward lean of the trunk by decreasing the hip joint work in the sagittal plane and reduce the knee extensor torque in the jump.

  17. Upper body kinematics in patients with cerebellar ataxia.

    PubMed

    Conte, Carmela; Pierelli, Francesco; Casali, Carlo; Ranavolo, Alberto; Draicchio, Francesco; Martino, Giovanni; Harfoush, Mahmoud; Padua, Luca; Coppola, Gianluca; Sandrini, Giorgio; Serrao, Mariano

    2014-12-01

    Although abnormal oscillations of the trunk are a common clinical feature in patients with cerebellar ataxia, the kinematic behaviour of the upper body in ataxic patients has yet to be investigated in quantitative studies. In this study, an optoelectronic motion analysis system was used to measure the ranges of motion (ROMs) of the head and trunk segments in the sagittal, frontal and yaw planes in 16 patients with degenerative cerebellar ataxia during gait at self-selected speed. The data obtained were compared with those collected in a gender-, age- and gait speed-matched sample of healthy subjects and correlated with gait variables (time-distance means and coefficients of variation) and clinical variables (disease onset, duration and severity). The results showed significantly larger head and/or trunk ROMs in ataxic patients compared with controls in all three spatial planes, and significant correlations between trunk ROMs and disease duration and severity (in sagittal and frontal planes) and time-distance parameters (in the yaw plane), and between both head and trunk ROMs and swing phase duration variability (in the sagittal plane). Furthermore, the ataxic patients showed a flexed posture of both the head and the trunk during walking. In conclusion, our study revealed abnormal motor behaviour of the upper body in ataxic patients, mainly resulting in a flexed posture and larger oscillations of the head and trunk. The results of the correlation analyses suggest that the longer and more severe the disease, the larger the upper body oscillations and that large trunk oscillations may explain some aspects of gait variability. These results suggest the need of specific rehabilitation treatments or the use of elastic orthoses that may be particularly useful to reduce trunk oscillations and improve dynamic stability.

  18. Clinical measurement of the dart throwing motion of the wrist: variability, accuracy and correction.

    PubMed

    Vardakastani, Vasiliki; Bell, Hannah; Mee, Sarah; Brigstocke, Gavin; Kedgley, Angela E

    2018-01-01

    Despite being functionally important, the dart throwing motion is difficult to assess accurately through goniometry. The objectives of this study were to describe a method for reliably quantifying the dart throwing motion using goniometric measurements within a healthy population. Wrist kinematics of 24 healthy participants were assessed using goniometry and optical motion tracking. Three wrist angles were measured at the starting and ending points of the motion: flexion-extension, radial-ulnar deviation and dart throwing motion angle. The orientation of the dart throwing motion plane relative to the flexion-extension axis ranged between 28° and 57° among the tested population. Plane orientations derived from optical motion capture differed from those calculated through goniometry by 25°. An equation to correct the estimation of the plane from goniometry measurements was derived. This was applied and differences in the orientation of the plane were reduced to non-significant levels, enabling the dart throwing motion to be measured using goniometry alone.

  19. Principal component analysis-based imaging angle determination for 3D motion monitoring using single-slice on-board imaging.

    PubMed

    Chen, Ting; Zhang, Miao; Jabbour, Salma; Wang, Hesheng; Barbee, David; Das, Indra J; Yue, Ning

    2018-04-10

    Through-plane motion introduces uncertainty in three-dimensional (3D) motion monitoring when using single-slice on-board imaging (OBI) modalities such as cine MRI. We propose a principal component analysis (PCA)-based framework to determine the optimal imaging plane to minimize the through-plane motion for single-slice imaging-based motion monitoring. Four-dimensional computed tomography (4DCT) images of eight thoracic cancer patients were retrospectively analyzed. The target volumes were manually delineated at different respiratory phases of 4DCT. We performed automated image registration to establish the 4D respiratory target motion trajectories for all patients. PCA was conducted using the motion information to define the three principal components of the respiratory motion trajectories. Two imaging planes were determined perpendicular to the second and third principal component, respectively, to avoid imaging with the primary principal component of the through-plane motion. Single-slice images were reconstructed from 4DCT in the PCA-derived orthogonal imaging planes and were compared against the traditional AP/Lateral image pairs on through-plane motion, residual error in motion monitoring, absolute motion amplitude error and the similarity between target segmentations at different phases. We evaluated the significance of the proposed motion monitoring improvement using paired t test analysis. The PCA-determined imaging planes had overall less through-plane motion compared against the AP/Lateral image pairs. For all patients, the average through-plane motion was 3.6 mm (range: 1.6-5.6 mm) for the AP view and 1.7 mm (range: 0.6-2.7 mm) for the Lateral view. With PCA optimization, the average through-plane motion was 2.5 mm (range: 1.3-3.9 mm) and 0.6 mm (range: 0.2-1.5 mm) for the two imaging planes, respectively. The absolute residual error of the reconstructed max-exhale-to-inhale motion averaged 0.7 mm (range: 0.4-1.3 mm, 95% CI: 0.4-1.1 mm) using

  20. Evolution of the postoperative sagittal spinal profile in early-onset scoliosis: is there a difference between rib-based and spine-based growth-friendly instrumentation?

    PubMed

    Chen, Zhonghui; Li, Song; Qiu, Yong; Zhu, Zezhang; Chen, Xi; Xu, Liang; Sun, Xu

    2017-12-01

    OBJECTIVE Although the vertical expandable prosthetic titanium rib (VEPTR) and growing rod instrumentation (GRI) encourage spinal growth via regular lengthening, they can create different results because of their different fixation patterns and mechanisms in correcting scoliosis. Previous studies have focused comparisons on coronal plane deformity with minimal attention to the sagittal profile. In this retrospective study, the authors aimed to compare the evolution of the sagittal spinal profile in early-onset scoliosis (EOS) treated with VEPTR versus GRI. METHODS The data for 11 patients with VEPTR and 22 with GRI were reviewed. All patients had more than 2 years' follow-up with more than 2 lengthening procedures. Radiographic measurements were performed before and after the index surgery and at the latest follow-up. The complications in both groups were recorded. RESULTS Patients in both groups had similar diagnoses, age at the index surgery, and number of lengthening procedures. The changes in the major coronal Cobb angle and T1-S1 spinal height were not significantly different between the 2 groups. Compared with the GRI group, the VEPTR group had less correction in thoracic kyphosis (23% ± 12% vs 44% ± 16%, p < 0.001) after the index surgery and experienced a greater correction loss in thoracic kyphosis (46% ± 18% vs 11% ± 8%, p < 0.001) at the latest follow-up. Although the increase in the proximal junctional angle was not significantly different (VEPTR: 7° ± 4° vs GRI: 8° ± 5°, p = 0.569), the incidence of proximal junctional kyphosis was relatively lower in the VEPTR group (VEPTR: 18.2% vs GRI: 22.7%). No significant changes in the spinopelvic parameters were observed, while the sagittal vertical axis showed a tendency toward a neutral position in both groups. The overall complication rate was higher in the VEPTR group than in the GRI group (72.7% vs 54.5%). CONCLUSIONS The VEPTR had coronal correction and spinal growth results similar to those

  1. The effect of sagittal rotation of the glenoid on axial glenoid width and glenoid version in computed tomography scan imaging.

    PubMed

    Gross, Daniel J; Golijanin, Petar; Dumont, Guillaume D; Parada, Stephen A; Vopat, Bryan G; Reinert, Steven E; Romeo, Anthony A; Provencher, C D R Matthew T

    2016-01-01

    Computed tomography (CT) scans of the shoulder are often not well aligned to the axis of the scapula and glenoid. The purpose of this paper was to determine the effect of sagittal rotation of the glenoid on axial measurements of anterior-posterior (AP) glenoid width and glenoid version attained by standard CT scan. In addition, we sought to define the angle of rotation required to correct the CT scan to optimal positioning. A total of 30 CT scans of the shoulder were reformatted using OsiriX software multiplanar reconstruction. The uncorrected (UNCORR) and corrected (CORR) CT scans were compared for measurements of both (1) axial AP glenoid width and (2) glenoid version at 5 standardized axial cuts. The mean difference in glenoid version was 2.6% (2° ± 0.1°; P = .0222) and the mean difference in AP glenoid width was 5.2% (1.2 ± 0.42 mm; P = .0026) in comparing the CORR and UNCORR scans. The mean angle of correction required to align the sagittal plane was 20.1° of rotation (range, 9°-39°; standard error of mean, 1.2°). These findings demonstrate that UNCORR CT scans of the glenohumeral joint do not correct for the sagittal rotation of the glenoid, and this affects the characteristics of the axial images. Failure to align the sagittal image to the 12-o'clock to 6-o'clock axis results in measurement error in both glenoid version and AP glenoid width. Use of UNCORR CT images may have notable implications for decision-making and surgical treatment. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  2. Gender differences in motion sickness history and susceptibility to optokinetic rotation-induced motion sickness.

    PubMed

    Park, A H; Hu, S

    1999-11-01

    The present study investigated gender differences in motion sickness history and susceptibility to optokinetic rotation-induced motion sickness. The study included two phases. In Phase 1, 485 subjects filled out a survey of previous incidence of motion sickness. Results indicated that women reported significantly greater incidence of feeling motion sickness than did men on buses, on trains, on planes, in cars, and on amusement rides before the age of 12 yr; and on buses, on trains, on planes, in boats, on ships, in cars, on amusement rides, and on swings between the ages of 12 and 25 yr. Women also reported significantly higher incidence of being actually sick than did men on buses before the age of 12 yr and on buses, on ships, and in cars between the ages of 12 and 25 yr. In Phase 2, each of the 47 subjects viewed an optokinetic rotating-drum for 16 min. Subjects' subjective symptoms of motion sickness (SSMS) were obtained during drum rotation. The results showed that there were no significant differences on SSMS scores between men and women. Although women reported greater incidence in motion sickness history, women did not differ from men in severity of symptoms of motion sickness while viewing a rotating optokinetic drum.

  3. The effect of arch height on kinematic coupling during walking.

    PubMed

    Wilken, Jason; Rao, Smita; Saltzman, Charles; Yack, H John

    2011-03-01

    The purpose of the current study was to assess kinematic coupling within the foot in individuals across a range of arch heights. Seventeen subjects participated in this study. Weight-bearing lateral radiographs were used to measure the arch height, defined as angle between the 1st metatarsal and the calcaneus. A kinematic model including the 1st metatarsal, lateral forefoot, calcaneus and tibia was used to assess foot kinematics during walking. Four coupling ratios were calculated: calcaneus frontal to forefoot transverse plane motion (Calcaneal EV/Forefoot AB), calcaneus frontal to transverse plane motion (Calcaneus EV/AB), forefoot sagittal to transverse plane motion (Forefoot DF/AB), and 1st metatarsal sagittal to transverse plane motion (1st Metatarsal DF/AB). Pearson product moment correlations were used to assess the relationship between arch height and coupling ratios. Mean (SD) radiographic arch angles of 129.8 (12.1) degrees with a range from 114 to 153 were noted, underscoring the range of arch heights in this cohort. Arch height explained approximately 3%, 38%, 12% and 1% of the variance in Calcaneal EV/Forefoot AB, Calcaneus EV/AB, Forefoot DF/AB and 1st Metatarsal DF/AB respectively. Calcaneal EV/Forefoot AB, Calcaneus EV/AB, Forefoot DF/AB and 1st Metatarsal DF/AB coupling ratios of 1.84 ± 0.80, 0.56 ± 0.35, 0.96 ± 0.27 and 0.43 ± 0.21 were noted, consistent with the twisted foot plate model, windlass mechanism and midtarsal locking mechanisms. Arch height had a small and modest relationship with kinematic coupling ratios during walking. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. SU-F-I-58: Image Quality Comparisons of Different Motion Magnitudes and TR Values in MR-PET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patrick, J; Thompson, R; Tavallaei, M

    2016-06-15

    Purpose: The aim of this work is to evaluate the accuracy and sensitivity of a respiratory-triggered MR-PET protocol in detecting four different sized lesions at two different magnitudes of motion, with two different TR values, using a novel PET-MR-CT compatible respiratory motion phantom. Methods: The eight-compartment torso phantom was setup adjacent to the motion stage, which moved four spherical compartments (28, 22, 17, 10 mm diameter) in two separate (1 and 2 cm) linear motion profiles, simulating a 3.5 second respiratory cycle. Scans were acquired on a 3T MR-PET system (Biograph mMR; Siemens Medical Solutions, Germany). MR measurements were takenmore » with: 1) Respiratory-triggered T2-weighted turbo spin echo (BLADE) sequence in coronal orientation, and 2) Real-time balanced steady-state gradient echo sequence (TrueFISP) in coronal and sagittal planes. PET was acquired simultaneously with MR. Sphere geometries and motion profiles were measured and compared with ground truths for T2 BLADE-TSE acquisitions and real time TrueFISP images. PET quantification and geometry measurements were taken using standardized uptake values, voxel intensity plots and were compared with known values, and examined alongside MR-based attenuation maps. Contrast and signal-to-noise ratios were also compared for each of the acquisitions as functions of motion range and TR. Results: Comparison of lesion diameters indicate the respiratory triggered T2 BLADE-TSE was able to maintain geometry within −2 mm for 1 cm motion for both TR values, and within −3.1 mm for TR = 2000 ms at 2 cm motion. Sphere measurements in respiratory triggered PET images were accurate within +/− 5 mm for both ranges of motion for 28, 22, and 17 mm diameter spheres. Conclusion: Hybrid MR-PET systems show promise in imaging lung cancer in non-compliant patients, with their ability to acquire both modalities simultaneously. However, MR-based attenuation maps are still susceptible to motion derived

  5. Measurements of three-dimensional shape and sound-induced motion of the chinchilla tympanic membrane

    PubMed Central

    Rosowski, John J; Dobrev, Ivo; Khaleghi, Morteza; Lu, Weina; Cheng, Jeffrey Tao; Harrington, Ellery; Furlong, Cosme

    2013-01-01

    Opto-electronic computer holographic measurements were made of the tympanic membrane (TM) in cadaveric chinchillas. Measurements with two laser wavelengths were used to compute the 3D-shape of the TM. Single laser wavelength measurements locked to eight distinct phases of a tonal stimulus were used to determine the magnitude and the relative phase of the surface displacements. These measurements were made at over 250,000 points on the TM surface. The measured motions contained spatial phase variations consistent with relatively low-order (large spatial frequency) modal motions and smaller magnitude higher-order (smaller spatial frequency) motions that appear to travel, but may also be explained by losses within the membrane. The measurement of shape and thin shell theory allowed us to separate the measured motions into those components orthogonal to the plane of the tympanic ring, and those components within the plane of the tympanic ring based on the 3D-shape. The predicted in-plane motion components are generally smaller than the out-of-plane perpendicular component of motion. Since the derivation of in-plane and out-of plane depended primarily on the membrane shape, the relative sizes of the predicted motion components did not vary with frequency. PMID:23247058

  6. Computed tomographic method for measurement of inclination angles and motion of the sacroiliac joints in German Shepherd Dogs and Greyhounds.

    PubMed

    Saunders, Fritha C; Cave, Nick J; Hartman, Karl M; Gee, Erica K; Worth, Andrew J; Bridges, Janis P; Hartman, Angela C

    2013-09-01

    To develop an in vivo CT method to measure inclination angles and motion of the sacroiliac joints in dogs of performance breeds. 10 German Shepherd Dogs and 12 Greyhounds without signs of lumbosacral region pain or neurologic problems. CT of the ilium and sacrum was performed in flexed, neutral, and extended hind limb positions. Lines were drawn on volume-rendered images acquired in the flexed and extended positions to measure motion of the ilia relative to the sacra. Inclination angles of the synovial and ligamentous components of the sacroiliac joints were measured on transverse-plane CT images acquired at cranial and caudal locations. Coefficients of variance of measurements were calculated to determine intraobserver variability. Coefficients of variance of measurements ranged from 0.17% to 2.45%. A significantly higher amount of sacroiliac joint rotational motion was detected for German Shepherd Dogs versus Greyhounds. The cranial synovial joint component had a significantly more sagittal orientation in German Shepherd Dogs versus Greyhounds. No significant differences were detected between breeds for x- or y-axis translational motion or caudal synovial or ligamentous joint component inclination angles. The small amounts of sacroiliac joint motion detected in this study may buffer high-frequency vibrations during movement of dogs. Differences detected between breeds may be associated with the predisposition of German Shepherd Dogs to develop lumbosacral region signs of pain, although the biological importance of this finding was not determined. Future studies are warranted to compare sacroiliac joint variables between German Shepherd Dogs with and without lumbosacral region signs of pain.

  7. Anterior cervical decompression and fusion on neck range of motion, pain, and function: a prospective analysis.

    PubMed

    Landers, Merrill R; Addis, Kate A; Longhurst, Jason K; Vom Steeg, Bree-lyn; Puentedura, Emilio J; Daubs, Michael D

    2013-11-01

    Intractable cervical radiculopathy secondary to stenosis or herniated nucleus pulposus is commonly treated with an anterior cervical decompression and fusion (ACDF) procedure. However, there is little evidence in the literature that demonstrates the impact such surgery has on long-term range of motion (ROM) outcomes. The objective of this study was to compare cervical ROM and patient-reported outcomes in patients before and after a 1, 2, or 3 level ACDF. Prospective, nonexperimental. Forty-six patients. The following were measured preoperatively and also at 3 and 6 months after ACDF: active ROM (full and painfree) in three planes (ie, sagittal, coronal, and horizontal), pain visual analog scale, Neck Disability Index, and headache frequency. Patients undergoing an ACDF for cervical radiculopathy had their cervical ROM measured preoperatively and also at 3 and 6 months after the procedure. Neck Disability Index and pain visual analog scale values were also recorded at the same time. Both painfree and full active ROM did not change significantly from the preoperative measurement to the 3-month postoperative measurement (ps>.05); however, painfree and full active ROM did increase significantly in all three planes of motion from the preoperative measurement to the 6-month postoperative measurement regardless of the number of levels fused (ps≤.023). Visual analog scale, Neck Disability Index, and headache frequency all improved significantly over time (ps≤.017). Our results suggest that patients who have had an ACDF for cervical radiculopathy will experience improved ROM 6 months postoperatively. In addition, patients can expect a decrease in pain, an improvement in neck function, and a decrease in headache frequency. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Comparison of erector spinae and hamstring muscle activities and lumbar motion during standing knee flexion in subjects with and without lumbar extension rotation syndrome.

    PubMed

    Kim, Si-hyun; Kwon, Oh-yun; Park, Kyue-nam; Kim, Moon-Hwan

    2013-12-01

    The aim of this study was to compare the activity of the erector spinae (ES) and hamstring muscles and the amount and onset of lumbar motion during standing knee flexion between individuals with and without lumbar extension rotation syndrome. Sixteen subjects with lumbar extension rotation syndrome (10 males, 6 females) and 14 healthy subjects (8 males, 6 females) participated in this study. During the standing knee flexion, surface electromyography (EMG) was used to measure muscle activity, and surface EMG electrodes were attached to both the ES and hamstring (medial and lateral) muscles. A three-dimensional motion analysis system was used to measure kinematic data of the lumbar spine. An independent-t test was conducted for the statistical analysis. The group suffering from lumbar extension rotation syndrome exhibited asymmetric muscle activation of the ES and decreased hamstring activity. Additionally, the group with lumbar extension rotation syndrome showed greater and earlier lumbar extension and rotation during standing knee flexion compared to the control group. These data suggest that asymmetric ES muscle activation and a greater amount of and earlier lumbar motion in the sagittal and transverse plane during standing knee flexion may be an important factor contributing to low back pain. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Reproducibility and repeatability of a new computerized software for sagittal spinopelvic and scoliosis curvature radiologic measurements: Keops(®).

    PubMed

    Maillot, C; Ferrero, E; Fort, D; Heyberger, C; Le Huec, J-C

    2015-07-01

    The purpose of this study was to evaluate the inter- and intra-observer variability of the computerized radiologic measurements using Keops(®) and to determine the bias between the software and the standard paper measurement. Four individuals measured all frontal and sagittal variables on the 30 X-rays randomly selected on two occasions (test and retest conditions). The Bland-Altman plot was used to determine the degree of agreement between the measurement on paper X-ray and the measurement using Keops(®) for all reviewers and for the two measures; the intraclass correlation coefficient (ICC) was calculated for each pair of analyses to assess interobserver reproducibility among the four reviewers for the same patient using either paper X-ray or Keops(®) measurement and finally, concordance correlation coefficient (rc) was calculated to assess intraobserver repeatability among the same reviewer for one patient between the two measure using the same method (paper or Keops(®)). The mean difference calculated between the two methods was minimal at -0, 4° ± 3.41° [-7.1; 6.4] for frontal measurement and 0.1° ± 3.52° [-6.7; 6.8] for sagittal measurement. Keops(®) has a better interobserver reproducibility than paper measurement for determination of the sagittal pelvic parameter (ICC = 0.9960 vs. 0.9931; p = 0.0001). It has a better intraobserver repeatability than paper for determination of Cobbs angle (rc = 0.9872 vs. 0.9808; p < 0.0001) and for pelvic parameter (rc = 0.9981 vs. 0.9953; p < 0.0001). We conclude that Keops(®) has no bias compared to the traditionally paper measurement, and moreover, the repeatability and the reproducibility of measurements with this method is much better than with similar standard radiologic measures done manually in both frontal and sagittal plane and that the use of this software can be recommended for clinical application. Diagnostic, level III.

  10. Patients with proximal junctional kyphosis requiring revision surgery have higher postoperative lumbar lordosis and larger sagittal balance corrections.

    PubMed

    Kim, Han Jo; Bridwell, Keith H; Lenke, Lawrence G; Park, Moon Soo; Song, Kwang Sup; Piyaskulkaew, Chaiwat; Chuntarapas, Tapanut

    2014-04-20

    Case control study. To evaluate risk factors in patients in 3 groups: those without proximal junctional kyphosis (PJK) (N), with PJK but not requiring revision (P), and then those with PJK requiring revision surgery (S). It is becoming clear that some patients maintain stable PJK angles, whereas others progress and develop severe PJK necessitating revision surgery. A total of 206 patients at a single institution from 2002 to 2007 with adult scoliosis with 2-year minimum follow-up (average 3.5 yr) were analyzed. Inclusion criteria were age more than 18 years and primary fusions greater than 5 levels from any thoracic upper instrumented vertebra to any lower instrumented vertebrae. Revisions were excluded. Radiographical assessment included Cobb measurements in the coronal/sagittal plane and measurements of the PJK angle at postoperative time points: 1 to 2 months, 2 years, and final follow-up. PJK was defined as an angle greater than 10°. The prevalence of PJK was 34%. The average age in N was 49.9 vs. 51.3 years in P and 60.1 years in S. Sex, body mass index, and smoking status were not significantly different between groups. Fusions extending to the pelvis were 74%, 85%, and 91% of the cases in groups N, P, and S. Instrumentation type was significantly different between groups N and S, with a higher number of upper instrumented vertebra hooks in group N. Radiographical parameters demonstrated a higher postoperative lumbar lordosis and a larger sagittal balance change, with surgery in those with PJK requiring revision surgery. Scoliosis Research Society postoperative pain scores were inferior in group N vs. P and S, and Oswestry Disability Index scores were similar between all groups. Patients with PJK requiring revision were older, had higher postoperative lumbar lordosis, and larger sagittal balance corrections than patients without PJK. Based on these data, it seems as though older patients with large corrections in their lumbar lordosis and sagittal balance

  11. How Different Marker Sets Affect Joint Angles in Inverse Kinematics Framework.

    PubMed

    Mantovani, Giulia; Lamontagne, Mario

    2017-04-01

    The choice of marker set is a source of variability in motion analysis. Studies exist which assess the performance of marker sets when direct kinematics is used, but these results cannot be extrapolated to the inverse kinematic framework. Therefore, the purpose of this study was to examine the sensitivity of kinematic outcomes to inter-marker set variability in an inverse kinematic framework. The compared marker sets were plug-in-gait, University of Ottawa motion analysis model and a three-marker-cluster marker set. Walking trials of 12 participants were processed in opensim. The coefficient of multiple correlations was very good for sagittal (>0.99) and transverse (>0.92) plane angles, but worsened for the transverse plane (0.72). Absolute reliability indices are also provided for comparison among studies: minimum detectable change values ranged from 3 deg for the hip sagittal range of motion to 16.6 deg of the hip transverse range of motion. Ranges of motion of hip and knee abduction/adduction angles and hip and ankle rotations were significantly different among the three marker configurations (P < 0.001), with plug-in-gait producing larger ranges of motion. Although the same model was used for all the marker sets, the resulting minimum detectable changes were high and clinically relevant, which warns for caution when comparing studies that use different marker configurations, especially if they differ in the joint-defining markers.

  12. Correction Capability in the 3 Anatomic Planes of Different Pedicle Screw Designs in Scoliosis Instrumentation.

    PubMed

    Wang, Xiaoyu; Aubin, Carl-Eric; Coleman, John; Rawlinson, Jeremy

    2017-05-01

    Computer simulations to compare the correction capabilities of different pedicle screws in adolescent idiopathic scoliosis (AIS) instrumentations. To compare the correction and resulting bone-screw forces associated with different pedicle screws in scoliosis instrumentations. Pedicle screw fixation is widely used in surgical instrumentation for spinal deformity treatment. Screw design, correction philosophies, and surgical techniques are constantly evolving to achieve better control of the vertebrae and correction of the spinal deformity. Yet, there remains a lack of biomechanical studies that quantify the effects and advantages of different screw designs in terms of correction kinematics. The correction capabilities of fixed-angle, multiaxial, uniaxial, and saddle axial screws were kinematically analyzed, simulated, and compared. These simulations were based on the screw patterns and correction techniques proposed by 2 experienced surgeons for 2 AIS cases. Additional instrumentations were assessed to compare the correction and resulting bone-screw forces associated with each type of screw. The fixed-angle, uniaxial and saddle axial screws had similar kinematic behavior and performed better than multiaxial screws in the coronal and transverse planes (8% and 30% greater simulated corrections, respectively). Uniaxial and multiaxial screws were less effective than fixed-angle and saddle axial screws in transmitting compression/distraction to the anterior spine because of their sagittal plane mobility between the screw head and shank. Only the saddle axial screws allow vertebra angle in the sagittal plane to be independently adjusted. Pedicle screws of different designs performed differently for deformity corrections or for compensating screw placement variations in different anatomic planes. For a given AIS case, screw types should be determined based on the particular instrumentation objectives, the deformity's stiffness and characteristics so as to make the best of

  13. Circular motion geometry using minimal data.

    PubMed

    Jiang, Guang; Quan, Long; Tsui, Hung-Tat

    2004-06-01

    Circular motion or single axis motion is widely used in computer vision and graphics for 3D model acquisition. This paper describes a new and simple method for recovering the geometry of uncalibrated circular motion from a minimal set of only two points in four images. This problem has been previously solved using nonminimal data either by computing the fundamental matrix and trifocal tensor in three images or by fitting conics to tracked points in five or more images. It is first established that two sets of tracked points in different images under circular motion for two distinct space points are related by a homography. Then, we compute a plane homography from a minimal two points in four images. After that, we show that the unique pair of complex conjugate eigenvectors of this homography are the image of the circular points of the parallel planes of the circular motion. Subsequently, all other motion and structure parameters are computed from this homography in a straighforward manner. The experiments on real image sequences demonstrate the simplicity, accuracy, and robustness of the new method.

  14. Relationships between clubshaft motions and clubface orientation during the golf swing.

    PubMed

    Takagi, Tokio; Yokozawa, Toshiharu; Inaba, Yuki; Matsuda, Yuji; Shiraki, Hitoshi

    2017-09-01

    Since clubface orientation at impact affects ball direction and ball spin, the ability to control clubface orientation is one of the most important skills for golfers. This study presents a new method to describe clubface orientation as a function of the clubshaft motions (i.e., swing plane orientation, clubshaft angle in the swing plane, and clubshaft rolling angle) during a golf swing and investigates the relationships between the clubshaft motions and clubface orientation at impact. The club motion data of driver shots were collected from eight skilled golfers using a three-dimensional motion capture system. The degrees of influence of the clubshaft motions on the clubface orientation were investigated using sensitivity analysis. The sensitivity analysis revealed that the swing plane horizontal angle affected the clubface horizontal angle to an extent of 100%, that the clubshaft angle in the swing plane affected both the clubface vertical and horizontal angles to extents of 74 and 68%, respectively, and that the clubshaft rolling angle affected both the clubface vertical and horizontal angles to extents of -67 and 75%, respectively. Since the method presented here relates clubface orientation to clubshaft motions, it is useful for understanding the clubface control of a golfer.

  15. Automatic Recognition of Fetal Facial Standard Plane in Ultrasound Image via Fisher Vector.

    PubMed

    Lei, Baiying; Tan, Ee-Leng; Chen, Siping; Zhuo, Liu; Li, Shengli; Ni, Dong; Wang, Tianfu

    2015-01-01

    Acquisition of the standard plane is the prerequisite of biometric measurement and diagnosis during the ultrasound (US) examination. In this paper, a new algorithm is developed for the automatic recognition of the fetal facial standard planes (FFSPs) such as the axial, coronal, and sagittal planes. Specifically, densely sampled root scale invariant feature transform (RootSIFT) features are extracted and then encoded by Fisher vector (FV). The Fisher network with multi-layer design is also developed to extract spatial information to boost the classification performance. Finally, automatic recognition of the FFSPs is implemented by support vector machine (SVM) classifier based on the stochastic dual coordinate ascent (SDCA) algorithm. Experimental results using our dataset demonstrate that the proposed method achieves an accuracy of 93.27% and a mean average precision (mAP) of 99.19% in recognizing different FFSPs. Furthermore, the comparative analyses reveal the superiority of the proposed method based on FV over the traditional methods.

  16. Influence of intentional femoral component flexion in navigated TKA on gap balance and sagittal anatomy.

    PubMed

    Roßkopf, J; Singh, P K; Wolf, P; Strauch, M; Graichen, H

    2014-03-01

    Navigation has proven its ability to accurately restore coronal leg axis; however, for a good clinical outcome, other factors such as sagittal anatomy and balanced gaps are at least as important. In a gap-balanced technique, the size of the flexion gap is equalled to that of the extension gap. Flexion of the femoral component has been described as a theoretical possibility to balance flexion and extension gap. Aim of this study was to assess whether intentional femoral component flexion is helpful in balancing TKA gaps and in restoring sagittal anatomy. One hundred and thirty-one patients with TKA were included in this study. Implantation was performed in a navigated, gap-balanced, tibia-first technique. The femoral component flexion needed to equal flexion to extension gap was calculated based upon the navigation data. The sagittal diameter, the anterior and posterior offset were measured pre- and postoperatively based on the lateral radiographs. Medial and lateral gaps in extension and flexion as well as flexion/extension gap differences pre- and postoperatively were analysed. Additionally range of motion (ROM) and patient satisfaction (SF 12) were obtained. To achieve equal flexion and extension gap, the femoral component was flexed in 120 out of 131 patients showing mean flexion of 2.9° (SD 2.2°; navigation data) and 3.1° (SD 2.0°; radiological analysis), respectively. Based on this technique, it was possible to balance the extension gap (<2 mm difference) in 130 out of 131 patients (99%) and the flexion gap in 119 out of 131 (91%). The difference between extension and flexion gap was reduced from 39 to 24 out of 131 patients (81%) on the medial side and from 69 to 28 on the lateral side (79%). The sagittal diameter was restored in 114 out of 131 cases (87%); however, anterior offset was significantly reduced by 1.3 mm (SD 3.9°), and posterior offset was significantly increased by 1.6 mm (SD 3.3°). No correlation between any navigation and radiological

  17. Frontal plane stability following UKA in a biomechanical study.

    PubMed

    Heyse, Thomas J; Tucker, Scott M; Rajak, Yogesh; Kia, Mohammad; Lipman, Joseph D; Imhauser, Carl W; Westrich, Geoffrey H

    2015-06-01

    Function and kinematics following unicondylar knee arthroplasty (UKA) have been reported to be close to the native knee. Gait, stair climbing and activities of daily living expose the knee joint to a combination of varus and valgus moments. Replacement of the medial compartment via UKA is likely to change the physiologic knee stability and its ability to respond to varus and valgus moments. It was hypothesized that UKA implantation would stiffen the knee and decrease range of motion in the frontal plane. Six fresh frozen cadaver knees were prepared and mounted in a six-degrees-of-freedom robot. An axial load of 200 N was applied with the knee in 15°, 45° and 90° of flexion. Varus and valgus moments were added, respectively, before and after implantation of medial UKA. Tests were than redone with a thicker polyethylene inlay to simulate overstuffing of the medial compartment. Range of motion in the frontal plane and the tibial response to moments were recorded via the industrial robot. The range of motion in the frontal plane was decreased with both, balanced and overstuffed UKA and shifted towards valgus. When exposed to valgus moments, knees following UKA were stiffer in comparison with the native knee. The effect was even more pronounced with medial overstuffing. In UKA, the compressive anatomy is replaced by much stiffer components. This lack of medial compression and relative overstuffing leads to a tighter medial collateral ligament. This drives the trend towards a stiffer joint as documented by a decrease in frontal plane range of motion. Overstuffing should strictly be avoided when performing UKA.

  18. Fast cine-magnetic resonance imaging point tracking for prostate cancer radiation therapy planning

    NASA Astrophysics Data System (ADS)

    Dowling, J.; Dang, K.; Fox, Chris D.; Chandra, S.; Gill, Suki; Kron, T.; Pham, D.; Foroudi, F.

    2014-03-01

    The analysis of intra-fraction organ motion is important for improving the precision of radiation therapy treatment delivery. One method to quantify this motion is for one or more observers to manually identify anatomic points of interest (POIs) on each slice of a cine-MRI sequence. However this is labour intensive and inter- and intra- observer variation can introduce uncertainty. In this paper a fast method for non-rigid registration based point tracking in cine-MRI sagittal and coronal series is described which identifies POIs in 0.98 seconds per sagittal slice and 1.35 seconds per coronal slice. The manual and automatic points were highly correlated (r>0.99, p<0.001) for all organs and the difference generally less than 1mm. For prostate planning peristalsis and rectal gas can result in unpredictable out of plane motion, suggesting the results may require manual verification.

  19. “Soft that molds the hard:” Geometric morphometry of lateral atlantoaxial joints focusing on the role of cartilage in changing the contour of bony articular surfaces

    PubMed Central

    Prasad, Prashant Kumar; Salunke, Pravin; Sahni, Daisy; Kalra, Parveen

    2017-01-01

    Purpose: The existing literature on lateral atlantoaxial joints is predominantly on bony facets and is unable to explain various C1-2 motions observed. Geometric morphometry of facets would help us in understanding the role of cartilages in C1-2 biomechanics/kinematics. Objective: Anthropometric measurements (bone and cartilage) of the atlantoaxial joint and to assess the role of cartilages in joint biomechanics. Materials and Methods: The authors studied 10 cadaveric atlantoaxial lateral joints with the articular cartilage in situ and after removing it, using three-dimensional laser scanner. The data were compared using geometric morphometry with emphasis on surface contours of articulating surfaces. Results: The bony inferior articular facet of atlas is concave in both sagittal and coronal plane. The bony superior articular facet of axis is convex in sagittal plane and is concave (laterally) and convex medially in the coronal plane. The bony articulating surfaces were nonconcordant. The articular cartilages of both C1 and C2 are biconvex in both planes and are thicker than the concavities of bony articulating surfaces. Conclusion: The biconvex structure of cartilage converts the surface morphology of C1-C2 bony facets from concave on concavo-convex to convex on convex. This reduces the contact point making the six degrees of freedom of motion possible and also makes the joint gyroscopic. PMID:29403249

  20. Sagittal Plane Kinematics of the Jaw and Hyolingual Apparatus During Swallowing in Macaca mulatta

    PubMed Central

    Iriarte-Diaz, Jose; Arce-McShane, Fritzie; Orsbon, Courtney P.; Brown, Kevin A.; Eastment, McKenna; Avivi-Arber, Limor; Sessle, Barry J.; Inoue, Makoto; Hatsopoulos, Nicholas G.; Ross, Callum F.

    2018-01-01

    Studies of mechanisms of feeding behavior are important in a society where aging- and disease-related feeding disorders are increasingly prevalent. It is important to evaluate the clinical relevance of animal models of the disease and the control. Our present study quantifies macaque hyolingual and jaw kinematics around swallowing cycles to determine the extent to which macaque swallowing resembles that of humans. One female and one male adult Macaca mulatta were trained to feed in a primate chair. Videofluoroscopy was used to record kinematics in a sagittal view during natural feeding on solid food, and the kinematics of the hyoid bone, thyroid cartilage, mandibular jaw, and anterior-, middle-, and posterior-tongue. Jaw gape cycles were defined by consecutive maximum gapes, and the kinematics of the swallow cycles were compared with those of the two consecutive non-swallow cycles preceding and succeeding the swallow cycles. Although there are size differences between macaques and humans, and macaques have shorter durations of jaw gape cycles and hyoid and thyroid upward movements, there are several important similarities between our macaque data and human data reported in the literature: (1) The durations of jaw gape cycles during swallow cycles are longer than those of non-swallow cycles as a result of an increased duration of the jaw-opening phase; (2) Hyoid and thyroid upward movement is linked with a posterior tongue movement and is faster during swallow than non-swallow cycles; (3) Tongue elevation propagates from anterior to posterior during swallow and non-swallow cycles. These findings suggest that macaques can be a useful experimental model for human swallowing studies. PMID:28528492

  1. A study of emergency American football helmet removal techniques.

    PubMed

    Swartz, Erik E; Mihalik, Jason P; Decoster, Laura C; Hernandez, Adam E

    2012-09-01

    The purpose was to compare head kinematics between the Eject Helmet Removal System and manual football helmet removal. This quasi-experimental study was conducted in a controlled laboratory setting. Thirty-two certified athletic trainers (sex, 19 male and 13 female; age, 33 ± 10 years; height, 175 ± 12 cm; mass, 86 ± 20 kg) removed a football helmet from a healthy model under 2 conditions: manual helmet removal and Eject system helmet removal. A 6-camera motion capture system recorded 3-dimensional head position. Our outcome measures consisted of the average angular velocity and acceleration of the head in each movement plane (sagittal, frontal, and transverse), the resultant angular velocity and acceleration, and total motion. Paired-samples t tests compared each variable across the 2 techniques. Manual helmet removal elicited greater average angular velocity in the sagittal and transverse planes and greater resultant angular velocity compared with the Eject system. No differences were observed in average angular acceleration in any single plane of movement; however, the resultant angular acceleration was greater during manual helmet removal. The Eject Helmet Removal System induced greater total head motion. Although the Eject system created more motion at the head, removing a helmet manually resulted in more sudden perturbations as identified by resultant velocity and acceleration of the head. The implications of these findings relate to the care of all cervical spine-injured patients in emergency medical settings, particularly in scenarios where helmet removal is necessary. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. What is the impingement-free range of motion of the asymptomatic hip in young adult males?

    PubMed

    Larkin, Brian; van Holsbeeck, Marnix; Koueiter, Denise; Zaltz, Ira

    2015-04-01

    Femoroacetabular impingement is a recognized cause of chondrolabral injury. Although surgical treatment for impingement seeks to improve range of motion, there are very little normative data on dynamic impingement-free hip range of motion (ROM) in asymptomatic people. Hip ultrasound demonstrates labral anatomy and femoral morphology and, when used dynamically, can assist in measuring range of motion. The purposes of this study were (1) to measure impingement-free hip ROM until labral deflection is observed; and (2) to measure the maximum degree of sagittal plane hip flexion when further flexion is limited by structural femoroacetabular abutment. Forty asymptomatic adult male volunteers (80 hips) between the ages of 21 and 35 years underwent bilateral static and dynamic hip ultrasound examination. Femoral morphology was characterized and midsagittal flexion passive ROM was measured at two points: (1) at the initiation of labral deformation; and (2) at maximum flexion when the femur impinged on the acetabular rim. The mean age of the subjects was 28 ± 3 years and the mean body mass index was 25 ± 4 kg/m(2). Mean impingement-free hip passive flexion measured from full extension to initial labral deflection was 68° ± 17° (95% confidence interval [CI], 65-72). Mean maximum midsagittal passive flexion, measured at the time of bony impingement, was 96° ± 6° (95% CI, 95-98). Using dynamic ultrasound, we found that passive ROM in the asymptomatic hip was much less than the motion reported in previous studies. Measuring ROM using ultrasound is more accurate because it allows anatomic confirmation of terminal hip motion. Surgical procedures used to treat femoroacetabular impingement are designed to restore or increase hip ROM and their results should be evaluated in light of precise normative data. This study suggests that normal passive impingement-free femoroacetabular flexion in the young adult male is approximately 95°.

  3. A three-plane architectonic atlas of the rat hippocampal region.

    PubMed

    Boccara, Charlotte N; Kjonigsen, Lisa J; Hammer, Ingvild M; Bjaalie, Jan G; Leergaard, Trygve B; Witter, Menno P

    2015-07-01

    The hippocampal region, comprising the hippocampal formation and the parahippocampal region, has been one of the most intensively studied parts of the brain for decades. Better understanding of its functional diversity and complexity has led to an increased demand for specificity in experimental procedures and manipulations. In view of the complex 3D structure of the hippocampal region, precisely positioned experimental approaches require a fine-grained architectural description that is available and readable to experimentalists lacking detailed anatomical experience. In this paper, we provide the first cyto- and chemoarchitectural description of the hippocampal formation and parahippocampal region in the rat at high resolution and in the three standard sectional planes: coronal, horizontal and sagittal. The atlas uses a series of adjacent sections stained for neurons and for a number of chemical marker substances, particularly parvalbumin and calbindin. All the borders defined in one plane have been cross-checked against their counterparts in the other two planes. The entire dataset will be made available as a web-based interactive application through the Rodent Brain WorkBench (http://www.rbwb.org) which, together with this paper, provides a unique atlas resource. © 2014 Wiley Periodicals, Inc.

  4. Ankle and knee kinetics between strike patterns at common training speeds in competitive male runners.

    PubMed

    Kuhman, Daniel; Melcher, Daniel; Paquette, Max R

    2016-01-01

    The purpose of this study was to investigate the interaction of foot strike and common speeds on sagittal plane ankle and knee joint kinetics in competitive rear foot strike (RFS) runners when running with a RFS pattern and an imposed forefoot strike (FFS) pattern. Sixteen competitive habitual male RFS runners ran at two different speeds (i.e. 8 and 6 min mile(-1)) using their habitual RFS and an imposed FFS pattern. A repeated measures analysis of variance was used to assess a potential interaction between strike pattern and speed for selected ground reaction force (GRF) variables and, sagittal plane ankle and knee kinematic and kinetic variables. No foot strike and speed interaction was observed for any of the kinetic variables. Habitual RFS yielded a greater loading rate of the vertical GRF, peak ankle dorsiflexor moment, peak knee extensor moment, peak knee eccentric extensor power, peak dorsiflexion and sagittal plane knee range of motion compared to imposed FFS. Imposed FFS yielded greater maximum vertical GRF, peak ankle plantarflexor moment, peak ankle eccentric plantarflexor power and sagittal plane ankle ROM compared to habitual RFS. Consistent with previous literature, imposed FFS in habitual RFS reduces eccentric knee extensor and ankle dorsiflexor involvement but produce greater eccentric ankle plantarflexor action compared to RFS. These acute differences between strike patterns were independent of running speeds equivalent to typical easy and hard training runs in competitive male runners. Current findings along with previous literature suggest differences in lower extremity kinetics between habitual RFS and imposed FFS running are consistent among a variety of runner populations.

  5. Contribution of calcaneal and leg segment rotations to ankle joint dorsiflexion in a weight-bearing task.

    PubMed

    Chizewski, Michael G; Chiu, Loren Z F

    2012-05-01

    Joint angle is the relative rotation between two segments where one is a reference and assumed to be non-moving. However, rotation of the reference segment will influence the system's spatial orientation and joint angle. The purpose of this investigation was to determine the contribution of leg and calcaneal rotations to ankle rotation in a weight-bearing task. Forty-eight individuals performed partial squats recorded using a 3D motion capture system. Markers on the calcaneus and leg were used to model leg and calcaneal segment, and ankle joint rotations. Multiple linear regression was used to determine the contribution of leg and calcaneal segment rotations to ankle joint dorsiflexion. Regression models for left (R(2)=0.97) and right (R(2)=0.97) ankle dorsiflexion were significant. Sagittal plane leg rotation had a positive influence (left: β=1.411; right: β=1.418) while sagittal plane calcaneal rotation had a negative influence (left: β=-0.573; right: β=-0.650) on ankle dorsiflexion. Sagittal plane rotations of the leg and calcaneus were positively correlated (left: r=0.84, P<0.001; right: r=0.80, P<0.001). During a partial squat, the calcaneus rotates forward. Simultaneous forward calcaneal rotation with ankle dorsiflexion reduces total ankle dorsiflexion angle. Rear foot posture is reoriented during a partial squat, allowing greater leg rotation in the sagittal plane. Segment rotations may provide greater insight into movement mechanics that cannot be explained via joint rotations alone. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Three-dimensional kinematic analysis of upper and lower limb motion during gait of post-stroke patients

    PubMed Central

    Carmo, A.A.; Kleiner, A.F.R.; Lobo da Costa, P.H.; Barros, R.M.L.

    2012-01-01

    The aim of this study was to analyze the alterations of arm and leg movements of patients during stroke gait. Joint angles of upper and lower limbs and spatiotemporal variables were evaluated in two groups: hemiparetic group (HG, 14 hemiparetic men, 53 ± 10 years) and control group (CG, 7 able-bodied men, 50 ± 4 years). The statistical analysis was based on the following comparisons (P ≤ 0.05): 1) right versus left sides of CG; 2) affected (AF) versus unaffected (UF) sides of HG; 3) CG versus both the affected and unaffected sides of HG, and 4) an intracycle comparison of the kinematic continuous angular variables between HG and CG. This study showed that the affected upper limb motion in stroke gait was characterized by a decreased range of motion of the glenohumeral (HG: 6.3 ± 4.5, CG: 20.1 ± 8.2) and elbow joints (AF: 8.4 ± 4.4, UF: 15.6 ± 7.6) on the sagittal plane and elbow joint flexion throughout the cycle (AF: 68.2 ± 0.4, CG: 46.8 ± 2.7). The glenohumeral joint presented a higher abduction angle (AF: 14.2 ± 1.6, CG: 11.5 ± 4.0) and a lower external rotation throughout the cycle (AF: 4.6 ± 1.2, CG: 22.0 ± 3.0). The lower limbs showed typical alterations of the stroke gait patterns. Thus, the changes in upper and lower limb motion of stroke gait were identified. The description of upper limb motion in stroke gait is new and complements gait analysis. PMID:22473324

  7. Club position relative to the golfer's swing plane meaningfully affects swing dynamics.

    PubMed

    MacKenzie, Sasho J

    2012-06-01

    Previous research indicates that the motion of the golf club is not planar and that the plane traced out by the club is different than that of the golfer's hands. The aim of the present study was to investigate how the position of the club, relative to the golfer's swing plane, influences the motion of the club by using a four-segment (torso, upper arm, forearm, and club), three-dimensional forward dynamics model. A genetic algorithm optimized the coordination of the model's four muscular torque generators to produce the best golf swings possible under six different conditions. The series of simulations were designed to demonstrate the effect of positioning the club above, and below, the golfer's swing plane as well as the effect of changing the steepness of the golfer's swing plane. The simulation results suggest that positioning the club below the golfer's swing plane, early in the downswing, will facilitate the squaring of the clubface for impact, while positioning the club above the plane will have the opposite effect. It was also demonstrated that changing the steepness of the golfer's swing plane by 10 degrees can have little effect on the delivery of the clubhead to the ball.

  8. Sagittal imbalance in patients with lumbar spinal stenosis and outcomes after simple decompression surgery.

    PubMed

    Shin, E Kyung; Kim, Chi Heon; Chung, Chun Kee; Choi, Yunhee; Yim, Dahae; Jung, Whei; Park, Sung Bae; Moon, Jung Hyeon; Heo, Won; Kim, Sung-Mi

    2017-02-01

    Lumbar spinal stenosis (LSS) is the most common lumbar degenerative disease, and sagittal imbalance is uncommon. Forward-bending posture, which is primarily caused by buckling of the ligamentum flavum, may be improved via simple decompression surgery. The objectives of this study were to identify the risk factors for sagittal imbalance and to describe the outcomes of simple decompression surgery. This is a retrospective nested case-control study PATIENT SAMPLE: This was a retrospective study that included 83 consecutive patients (M:F=46:37; mean age, 68.5±7.7 years) who underwent decompression surgery and a minimum of 12 months of follow-up. The primary end point was normalization of sagittal imbalance after decompression surgery. Sagittal imbalance was defined as a C7 sagittal vertical axis (SVA) ≥40 mm on a 36-inch-long lateral whole spine radiograph. Logistic regression analysis was used to identify the risk factors for sagittal imbalance. Bilateral decompression was performed via a unilateral approach with a tubular retractor. The SVA was measured on serial radiographs performed 1, 3, 6, and 12 months postoperatively. The prognostic factors for sagittal balance recovery were determined based on various clinical and radiological parameters. Sagittal imbalance was observed in 54% (45/83) of patients, and its risk factors were old age and a large mismatch between pelvic incidence and lumbar lordosis. The 1-year normalization rate was 73% after decompression surgery, and the median time to normalization was 1 to 3 months. Patients who did not experience SVA normalization exhibited low thoracic kyphosis (hazard ratio [HR], 1.04; 95% confidence interval [CI], 1.02-1.10) (p<.01) and spondylolisthesis (HR, 0.33; 95% CI, 0.17-0.61) before surgery. Sagittal imbalance was observed in more than 50% of LSS patients, but this imbalance was correctable via simple decompression surgery in 70% of patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Amputation effects on the underlying complexity within transtibial amputee ankle motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wurdeman, Shane R., E-mail: shanewurdeman@gmail.com; Advanced Prosthetics Center, Omaha, Nebraska 68134; Myers, Sara A.

    2014-03-15

    The presence of chaos in walking is considered to provide a stable, yet adaptable means for locomotion. This study examined whether lower limb amputation and subsequent prosthetic rehabilitation resulted in a loss of complexity in amputee gait. Twenty-eight individuals with transtibial amputation participated in a 6 week, randomized cross-over design study in which they underwent a 3 week adaptation period to two separate prostheses. One prosthesis was deemed “more appropriate” and the other “less appropriate” based on matching/mismatching activity levels of the person and the prosthesis. Subjects performed a treadmill walking trial at self-selected walking speed at multiple points ofmore » the adaptation period, while kinematics of the ankle were recorded. Bilateral sagittal plane ankle motion was analyzed for underlying complexity through the pseudoperiodic surrogation analysis technique. Results revealed the presence of underlying deterministic structure in both prostheses and both the prosthetic and sound leg ankle (discriminant measure largest Lyapunov exponent). Results also revealed that the prosthetic ankle may be more likely to suffer loss of complexity than the sound ankle, and a “more appropriate” prosthesis may be better suited to help restore a healthy complexity of movement within the prosthetic ankle motion compared to a “less appropriate” prosthesis (discriminant measure sample entropy). Results from sample entropy results are less likely to be affected by the intracycle periodic dynamics as compared to the largest Lyapunov exponent. Adaptation does not seem to influence complexity in the system for experienced prosthesis users.« less

  10. Newtonian dynamics in the plane corresponding to straight and cyclic motions on the hyperelliptic curve μ2=νn-1, n∈Z: Ergodicity, isochrony and fractals

    NASA Astrophysics Data System (ADS)

    Grinevich, P. G.; Santini, P. M.

    2007-08-01

    We study the complexification of the one-dimensional Newtonian particle in a monomial potential. We discuss two classes of motions on the associated Riemann surface: the rectilinear and the cyclic motions, corresponding to two different classes of real and autonomous Newtonian dynamics in the plane. The rectilinear motion has been studied in a number of papers, while the cyclic motion is much less understood. For small data, the cyclic time trajectories lead to isochronous dynamics. For bigger data the situation is quite complicated; computer experiments show that, for sufficiently small degree of the monomial, the motion is generically isochronous with integer period, which depends in a quite sensitive way on the initial data. If the degree of the monomial is sufficiently high, computer experiments show essentially chaotic behavior. We suggest a possible theoretical explanation of these different behaviors. We also introduce a two-parameter family of two-dimensional mappings, describing the motion of the center of the circle, as a convenient representation of the cyclic dynamics; we call such a mapping the center map. Computer experiments for the center map show a typical multifractal behavior with periodicity islands. Therefore the above complexification procedure generates dynamics amenable to analytic treatment and possessing a high degree of complexity.

  11. Loading, electromyograph, and motion during exercise

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando

    1993-01-01

    A system is being developed to gather kineto-dynamic data for a study to determine the load vectors applied to bone during exercise on equipment similar to that used in space. This information will quantify bone loading for exercise countermeasures development. Decreased muscle loading and external loading of bone during weightlessness results in cancellous bone loss of 1 percent per month in the lower extremities and 2 percent per month in the calcaneous. It is hypothesized that loading bone appropriately during exercise may prevent the bone loss. The system consists of an ergometer instrumented to provide position of the pedal (foot), pedaling forces on the foot (on the sagittal plane), and force on the seat. Accelerometers attached to the limbs will provide acceleration. These data will be used as input to an analytical model of the limb to determine forces on the bones and on groups of muscles. EMG signals from activity in the muscles will also be used in conjunction with the equations of mechanics of motion to be able to discern forces exerted by specific muscles. The tasks to be carried out include: design of various mechanical components to mount transducers, specification of mechanical components, specification of position transducers, development of a scheme to control the data acquisition instruments (TEAC recorder and optical encoder board), development of a dynamic model of the limbs in motion, and development of an overall scheme for data collection analysis and presentation. At the present time, all the hardware components of the system are operational, except for a computer board to gather position data from the pedals and crank. This board, however, may be put to use by anyone with background in computer based instrumentation. The software components are not all done. Software to transfer data recorded from the EMG measurements is operational, software to drive the optical encoder card is mostly done. The equations to model the kinematics and

  12. Stationary motion stability of monocycle on ice surface

    NASA Astrophysics Data System (ADS)

    Lebedev, Dmitri A.

    2018-05-01

    The problem of the one-wheeled crew motion on smooth horizontal ice is considered. The motion equations are worked out in quasicoordinates in the form of Euler-Lagrange's equations. The variety of stationary motions is defined. Stability of some stationary motions is investigated. Comparison of the results received for a similar model of one-wheeled crew at its motion on the horizontal plane without slipping is carried out.

  13. Is arch form influenced by sagittal molar relationship or Bolton tooth-size discrepancy?

    PubMed

    Aldrees, Abdullah M; Al-Shujaa, Abdulmajeed M; Alqahtani, Mohammad A; Aljhani, Ali S

    2015-06-26

    Orthodontic patients show high prevalence of tooth-size discrepancy. This study investigates the possible association between arch form, clinically significant tooth-size discrepancy, and sagittal molar relationship. Pretreatment orthodontic casts of 230 Saudi patients were classified into one of three arch form types (tapered, ovoid, and square) using digitally scanned images of the mandibular arches. Bolton ratio was calculated, sagittal molar relationship was defined according to Angle classification, and correlations were analyzed using ANOVA, chi-square, and t-tests. No single arch form was significantly more common than the others. Furthermore, no association was observed between the presence of significant Bolton discrepancy and the sagittal molar relationship or arch form. Overall Bolton discrepancy is significantly more prevalent in males. Arch form in a Saudi patient group is independent of gender, sagittal molar relationship, and Bolton discrepancy.

  14. A portable system with sample rate of 250 Hz for characterization of knee and hip angles in the sagittal plane during gait

    PubMed Central

    2014-01-01

    Background Gait analysis and research have been developed to obtain characteristics of movement patterns of people while walking. However, traditional measuring systems present different drawbacks that reduce their use and application. Among those drawbacks one can find: high price, low sampling frequency and limiting number of steps to be analyzed. Traditional measuring gait systems carry out their measurement at frequencies oscillating between 60 to 100 Hz. It can be argued about the need of higher sampling rates for gait measurements. However small displacements of the knee or hip for example, cannot be seen with low frequencies required a more detailed sampling and higher frequency sampling. Bearing this in mind, in this paper is presented a 250 Hz system based on accelerometers for gait measurement, and the particularities of knee and hip angles during gait are highlighted. Methods The system was designed with a PCI data acquisition card instrumented with an FPGA to achieve a rate sample of 250 Hz. The accelerometers were placed in thighs and legs to calculate the joint angles of hip and knee in the sagittal plane. The angles were estimated using the acceleration polygon method without integrating the acceleration and without filters. Results The gait of thirty healthy people of Mexican phenotype was analyzed over a flat floor free of obstacles. The results showed the gait phases and particularities associated with the walking style and people's laterality; the movement patterns were similar in the thirty persons. Based on the results, the particularities as the maximum amplitude in the angles and the shape in the movement patterns were related to the anthropometry and people phenotype. Conclusions The sampling frequency was essential to record 340 samples in single gait cycle and so registering the gait cycle with its particularities. In this work were recorded an average of 8 to 10 gait cycles, and the results showed variation regarding works carried out

  15. A portable system with sample rate of 250 Hz for characterization of knee and hip angles in the sagittal plane during gait.

    PubMed

    Martínez-Solís, Fermín; Claudio-Sánchez, Abraham; Rodríguez-Lelis, José M; Vergara-Limon, Sergio; Olivares-Peregrino, Víctor; Vargas-Treviño, Marciano

    2014-03-31

    Gait analysis and research have been developed to obtain characteristics of movement patterns of people while walking. However, traditional measuring systems present different drawbacks that reduce their use and application. Among those drawbacks one can find: high price, low sampling frequency and limiting number of steps to be analyzed. Traditional measuring gait systems carry out their measurement at frequencies oscillating between 60 to 100 Hz. It can be argued about the need of higher sampling rates for gait measurements. However small displacements of the knee or hip for example, cannot be seen with low frequencies required a more detailed sampling and higher frequency sampling. Bearing this in mind, in this paper is presented a 250 Hz system based on accelerometers for gait measurement, and the particularities of knee and hip angles during gait are highlighted. The system was designed with a PCI data acquisition card instrumented with an FPGA to achieve a rate sample of 250 Hz. The accelerometers were placed in thighs and legs to calculate the joint angles of hip and knee in the sagittal plane. The angles were estimated using the acceleration polygon method without integrating the acceleration and without filters. The gait of thirty healthy people of Mexican phenotype was analyzed over a flat floor free of obstacles. The results showed the gait phases and particularities associated with the walking style and people's laterality; the movement patterns were similar in the thirty persons. Based on the results, the particularities as the maximum amplitude in the angles and the shape in the movement patterns were related to the anthropometry and people phenotype. The sampling frequency was essential to record 340 samples in single gait cycle and so registering the gait cycle with its particularities. In this work were recorded an average of 8 to 10 gait cycles, and the results showed variation regarding works carried out in biomechanics laboratories; this

  16. Pictorial essay of ultrasound-reconstructed coronal plane images of the uterus in different uterine pathologies.

    PubMed

    Grigore, Mihaela; Grigore, Anamaria; Gafitanu, Dumitru; Furnica, Cristina

    2018-04-01

    Imaging in the major planes (horizontal, coronal, and sagittal) of the uterus is important for determining anatomy and allowing the findings to be standardized, and for evaluating and diagnosing different pathological conditions in clinical practice. Examination of the coronal plane is an important step in identifying uterine pathologies and their relationships to the endometrial canal. Three-dimensional (3D) ultrasound reveals the normal anatomy better and improves the depiction of abnormal anatomy, as the coronal plane of the uterus can easily be obtained using 3D reconstruction techniques. Our pictorial essay demonstrates that adding 3D ultrasound to a routine gynecological workup can be beneficial for clinicians, enabling a precise diagnosis to be made. In addition, the volumes obtained and stored by 3D ultrasound can allow students or residents to become more familiar with normal and abnormal pelvic structures. Clin. Anat. 31:373-379, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Muscle complex saving posterior sagittal anorectoplasty.

    PubMed

    Zaiem, Maher; Zaiem, Feras

    2017-05-01

    Posterior sagittal anorectoplasty (PSARP) published by DeVries and Peña in 1982 had become the preferred surgical technique for the management of anorectal malformations (ARM). The original technique is based upon complete exposure of the anorectal region by means of a median sagittal incision that runs from the sacrum to the anal dimple, cutting through all muscle structures behind the rectum by dividing the levator muscle and the muscle complex. Then, the rectum is located in front of the levator and within the limits of the muscle complex. In this review, we described Muscle Complex Saving-Posterior Sagittal Anorectoplasty (MCS-PSARP), which is a less invasive technique that consists of keeping this funnel-shaped muscle complex completely intact and not divided, and pulling the rectum through this funnel, toward fixing the new anus to the skin. This technique aimed both to respect the lower part of the sphincter mechanism consisting of the muscle complex, and to avoid the disturbance of this important structure by dividing and resuturing it. We presented six cases of male patients who were born with anorectal malformation (ARM) and underwent MCS-PSARP. The surgical technique proved to be feasible to achieve the dissection of the rectal pouch and the division of the rectourethral fistula in all patients, by opening only the upper part of the sphincter mechanism, the levator muscle, and keeping the lower part consisting of intact muscle complex. The early results in our series are encouraging; however, long-term functional outcomes of these patients are awaited. The surgical tips were also discussed. This proposed approach in the management of anorectal malformation cases provides an opportunity to maximize preservation of the existing continence mechanisms. It preserves the muscle complex components of the levator muscle intact, allowing a better function of the continence mechanism. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. The addition of a sagittal image fusion improves the prostate cancer detection in a sensor-based MRI /ultrasound fusion guided targeted biopsy.

    PubMed

    Günzel, Karsten; Cash, Hannes; Buckendahl, John; Königbauer, Maximilian; Asbach, Patrick; Haas, Matthias; Neymeyer, Jörg; Hinz, Stefan; Miller, Kurt; Kempkensteffen, Carsten

    2017-01-13

    To explore the diagnostic benefit of an additional image fusion of the sagittal plane in addition to the standard axial image fusion, using a sensor-based MRI/US fusion platform. During July 2013 and September 2015, 251 patients with at least one suspicious lesion on mpMRI (rated by PI-RADS) were included into the analysis. All patients underwent MRI/US targeted biopsy (TB) in combination with a 10 core systematic prostate biopsy (SB). All biopsies were performed on a sensor-based fusion system. Group A included 162 men who received TB by an axial MRI/US image fusion. Group B comprised 89 men in whom the TB was performed with an additional sagittal image fusion. The median age in group A was 67 years (IQR 61-72) and in group B 68 years (IQR 60-71). The median PSA level in group A was 8.10 ng/ml (IQR 6.05-14) and in group B 8.59 ng/ml (IQR 5.65-12.32). In group A the proportion of patients with a suspicious digital rectal examination (DRE) (14 vs. 29%, p = 0.007) and the proportion of primary biopsies (33 vs 46%, p = 0.046) were significantly lower. The rate of PI-RADS 3 lesions were overrepresented in group A compared to group B (19 vs. 9%; p = 0.044). Classified according to PI-RADS 3, 4 and 5, the detection rates of TB were 42, 48, 75% in group A and 25, 74, 90% in group B. The rate of PCa with a Gleason score ≥7 missed by TB was 33% (18 cases) in group A and 9% (5 cases) in group B; p-value 0.072. An explorative multivariate binary logistic regression analysis revealed that PI-RADS, a suspicious DRE and performing an additional sagittal image fusion were significant predictors for PCa detection in TB. 9 PCa were only detected by TB with sagittal fusion (sTB) and sTB identified 10 additional clinically significant PCa (Gleason ≥7). Performing an additional sagittal image fusion besides the standard axial fusion appears to improve the accuracy of the sensor-based MRI/US fusion platform.

  19. Origin of the Local Group satellite planes

    NASA Astrophysics Data System (ADS)

    Banik, Indranil; O'Ryan, David; Zhao, Hongsheng

    2018-04-01

    We attempt to understand the planes of satellite galaxies orbiting the Milky Way (MW) and M31 in the context of Modified Newtonian Dynamics (MOND), which implies a close MW-M31 flyby occurred ≈8 Gyr ago. Using the timing argument, we obtain MW-M31 trajectories consistent with cosmological initial conditions and present observations. We adjust the present M31 proper motion within its uncertainty in order to simulate a range of orbital geometries and closest approach distances. Treating the MW and M31 as point masses, we follow the trajectories of surrounding test particle disks, thereby mapping out the tidal debris distribution. Around each galaxy, the resulting tidal debris tends to cluster around a particular orbital pole. We find some models in which these preferred spin vectors align fairly well with those of the corresponding observed satellite planes. The radial distributions of material in the simulated satellite planes are similar to what we observe. Around the MW, our best-fitting model yields a significant fraction (0.22) of counter-rotating material, perhaps explaining why Sculptor counter-rotates within the MW satellite plane. In contrast, our model yields no counter-rotating material around M31. This is testable with proper motions of M31 satellites. In our best model, the MW disk is thickened by the flyby 7.65 Gyr ago to a root mean square height of 0.75 kpc. This is similar to the observed age and thickness of the Galactic thick disk. Thus, the MW thick disk may have formed together with the MW and M31 satellite planes during a past MW-M31 flyby.

  20. Origin of the Local Group satellite planes

    NASA Astrophysics Data System (ADS)

    Banik, Indranil; O'Ryan, David; Zhao, Hongsheng

    2018-07-01

    We attempt to understand the planes of satellite galaxies orbiting the Milky Way (MW) and M31 in the context of Modified Newtonian Dynamics, which implies a close MW-M31 flyby occurred ≈8 Gyr ago. Using the timing argument, we obtain MW-M31 trajectories consistent with cosmological initial conditions and present observations. We adjust the present M31 proper motion within its uncertainty in order to simulate a range of orbital geometries and closest approach distances. Treating the MW and M31 as point masses, we follow the trajectories of surrounding test particle discs, thereby mapping out the tidal debris distribution. Around each galaxy, the resulting tidal debris tends to cluster around a particular orbital pole. We find some models in which these preferred spin vectors align fairly well with those of the corresponding observed satellite planes. The radial distributions of material in the simulated satellite planes are similar to what we observe. Around the MW, our best-fitting model yields a significant fraction (0.22) of counter-rotating material, perhaps explaining why Sculptor counter-rotates within the MW satellite plane. In contrast, our model yields no counter-rotating material around M31. This is testable with proper motions of M31 satellites. In our best model, the MW disc is thickened by the flyby 7.65 Gyr ago to a root mean square height of 0.75 kpc. This is similar to the observed age and thickness of the Galactic thick disc. Thus, the MW thick disc may have formed together with the MW and M31 satellite planes during a past MW-M31 flyby.

  1. Projectile Motion Revisited.

    ERIC Educational Resources Information Center

    Lucie, Pierre

    1979-01-01

    Analyzes projectile motion using symmetry and simple geometry. Deduces the direction of velocity at any point, range, time of flight, maximum height, safety parabola, and maximum range for a projectile launched upon a plane inclined at any angle with respect to the horizontal. (Author/GA)

  2. Experimental investigation on in-plane/out-of-plane vortex-induced vibrations of curved cylinder in parallel and perpendicular flows

    NASA Astrophysics Data System (ADS)

    Srinil, Narakorn; Ma, Bowen; Zhang, Licong

    2018-05-01

    This study is motivated by an industrial need to better understand the vortex-induced vibration (VIV) of a curved structure subject to current flows with varying directions whose data for model calibration and validation are lacking. In this paper, new experimental investigations on the two-degree-of-freedom in-plane/out-of-plane VIV of a rigid curved circular cylinder immersed in steady and uniform free-stream flows are presented. The principal objective is to examine how the approaching flow direction versus the cylinder curvature plane affects cross-flow and in-line VIV and the associated hydrodynamic properties. This is achieved by testing the curved cylinder in 3 different flow orientations comprising the parallel flows aligned with the curvature vertical plane in convex and concave configurations, and the flows perpendicular to the curvature plane. The case of varying flow velocities in a subcritical flow range with a maximum Reynolds number of about 50,000 is considered for the curved cylinder with a low mass ratio and damping ratio. Experimental results are presented and discussed in terms of the cylinder response amplitudes, inclination angles, mean displacements, motion trajectories, oscillation frequencies, hydrodynamic forces, relative phases, fluid excitation and added inertia coefficients. Comparisons with other experimental results of curved and straight cylinder VIV are also presented. The experiments highlight the important effects of cylinder curvature versus flow orientation on the combined cross-flow/in-line VIV. The maximum (minimum) responses occur in the perpendicular (convex) flow case whereas the extended lower-branch responses occur in the concave flow case. For perpendicular flows, some meaningful features are observed, including the appearances of cross-flow mean displacements and asymmetric eight-shaped motion trajectories due to multiple 2:1:1 resonances where two out-of-plane and one in-plane dominant frequencies are simultaneously

  3. Graft position in arthroscopic anterior cruciate ligament reconstruction: anteromedial versus transtibial technique.

    PubMed

    Guler, Olcay; Mahırogulları, Mahir; Mutlu, Serhat; Cercı, Mehmet H; Seker, Ali; Cakmak, Selami

    2016-11-01

    better in AM patients. Lysholm scores and range of motion of operated knees in the AM and TT groups showed no significant difference (p > 0.05). Precise reconstruction on sagittal plane cannot be obtained with either AM or TT technique. However, AM technique is superior to TT technique in terms of anatomical graft positioning. Posterior-placed grafts in tibial tunnel prevent ACL reconstruction, although tibial tunnel is drilled on sagittal plane.

  4. The effect of age and knee osteoarthritis on muscle activation patterns and knee joint biomechanics during dual belt treadmill gait.

    PubMed

    Rutherford, Derek; Baker, Matthew; Wong, Ivan; Stanish, William

    2017-06-01

    To compare a group of individuals with moderate medial compartment knee osteoarthritis (OA) to both an age-matched asymptomatic group of older adults and younger adults to determine whether differences in knee joint muscle activation patterns and joint biomechanics exist during gait between these three groups. 20 young adults, 20 older adults, and 40 individuals with moderate knee OA were recruited. Using standardized procedures, surface electromyograms were recorded from the vastus lateralis and medialis, rectus femoris and the medial and lateral hamstrings. All individuals walked on a dual belt instrumented treadmill while segment motions and ground reaction forces were recorded. Sagittal plane motion and net external sagittal and frontal plane moments were calculated. Discrete measures and principal component analyses extracted amplitude and temporal waveform features. Analysis of Variance models using Bonferroni corrections determined between and within group differences in these gait features (α=0.05). Individuals with knee OA have distinct biomechanics and muscle activation patterns when compared to age-matched asymptomatic adults and younger adults whereas differences between the young and older adults were few and included only measures of muscle activation amplitude. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Low impact weight-bearing exercise in an upright posture achieves greater lumbopelvic stability than overground walking.

    PubMed

    Gibbon, K C; Debuse, D; Caplan, N

    2013-10-01

    The aim of this study was to determine the kinematic differences between movements on a new exercise device (EX) that promotes a stable trunk over a moving, unstable base of support, and overground walking (OW). Sixteen male participants performed EX and OW trials while their movements were tracked using a 3D motion capture system. Trunk and pelvis range of motion (ROM) were similar between EX and OW in the sagittal and frontal planes, and reduced for EX in the transverse plane. The pelvis was tilted anteriorly, on average, by about 16° in EX compared to OW. Hip and knee ROM were reduced in EX compared to OW. The exercise device appears to promote similar or reduced lumbopelvic motion, compared to walking, which could contribute to more tonic activity of the local lumbopelvic musculature. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. 'Lumbar Degenerative Kyphosis' Is Not Byword for Degenerative Sagittal Imbalance: Time to Replace a Misconception.

    PubMed

    Lee, Chang-Hyun; Chung, Chun Kee; Jang, Jee-Soo; Kim, Sung-Min; Chin, Dong-Kyu; Lee, Jung-Kil

    2017-03-01

    Lumbar degenerative kyphosis (LDK) is a subgroup of the flat-back syndrome and is most commonly caused by unique life styles, such as a prolonged crouched posture during agricultural work and performing activities of daily living on the floor. Unfortunately, LDK has been used as a byword for degenerative sagittal imbalance, and this sometimes causes confusion. The aim of this review was to evaluate the exact territory of LDK, and to introduce another appropriate term for degenerative sagittal deformity. Unlike what its name suggests, LDK does not only include sagittal balance disorder of the lumbar spine and kyphosis, but also sagittal balance disorder of the whole spine and little lordosis of the lumbar spine. Moreover, this disease is closely related to the occupation of female farmers and an outdated Asian life style. These reasons necessitate a change in the nomenclature of this disorder to prevent misunderstanding. We suggest the name "primary degenerative sagittal imbalance" (PDSI), which encompasses degenerative sagittal misalignments of unknown origin in the whole spine in older-age patients, and is associated with back muscle wasting. LDK may be regarded as a subgroup of PDSI related to an occupation in agriculture. Conservative treatments such as exercise and physiotherapy are recommended as first-line treatments for patients with PDSI, and surgical treatment is considered only if conservative treatments failed. The measurement of spinopelvic parameters for sagittal balance is important prior to deformity corrective surgery. LDK can be considered a subtype of PDSI that is more likely to occur in female farmers, and hence the use of LDK as a global term for all degenerative sagittal imbalance disorders is better avoided. To avoid confusion, we recommend PDSI as a newer, more accurate diagnostic term instead of LDK.

  7. A Tilted Plane as a Gravitational Field Model.

    ERIC Educational Resources Information Center

    Hale, D. P.

    1980-01-01

    Describes an experiment for the use of a tilted plane as a two-dimensional uniform gravitational field to demonstrate the motion of projectiles, to determine the fundamental laws of mechanics, or to study the focusing properties of the uniform field. (SK)

  8. Comparison of body's center of mass motion relative to center of pressure between treadmill and over-ground walking.

    PubMed

    Lu, Hsuan-Lun; Lu, Tung-Wu; Lin, Hsiu-Chen; Chan, Wing P

    2017-03-01

    Treadmills have been used in rehabilitation settings to provide convenient protocols and continuous monitoring of movement over multiple cycles at well-controlled speeds for gait and balance training. However, the potential differences in the movement control may affect the translation of the training outcomes to real life over-ground walking (OW). The similarities and differences in the balance control between treadmill walking (TW) and OW have largely been unexplored. The current study bridged the gap by comparing the motions of the body's center of mass (COM) relative to the center of pressure (COP) between TW and OW, in terms of the COM-COP inclination angle (IA) and its rate of change (RCIA). The movement of the COM and COP separately were quite different between OW and TW, but when describing the COM motion relative to the COP, the COM motions became similar qualitatively with similar butterfly patterns. However, significantly increased peak values in themediolateral RCIA and greater ranges of mediolateral IA were found during TW (p<0.004). In the sagittal plane, the posterior velocity of the belt led to an anterior RCIA (posterior RCIA in OW) with increasing anterior IA during early double-limb support phase, and reduced posterior RCIA (p<0.009) with an increased anterior IA (p<0.001) during the remainder of the phase. These differences between TW and OW may have to be taken into account in future designs of strategies to optimize the translation of treadmill gait training outcomes into real life over-ground walking. Copyright © 2017. Published by Elsevier B.V.

  9. Optimizing snake locomotion on an inclined plane

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolin; Osborne, Matthew T.; Alben, Silas

    2014-01-01

    We develop a model to study the locomotion of snakes on inclined planes. We determine numerically which snake motions are optimal for two retrograde traveling-wave body shapes, triangular and sinusoidal waves, across a wide range of frictional parameters and incline angles. In the regime of large transverse friction coefficients, we find power-law scalings for the optimal wave amplitudes and corresponding costs of locomotion. We give an asymptotic analysis to show that the optimal snake motions are traveling waves with amplitudes given by the same scaling laws found in the numerics.

  10. Dynamic motion analysis of dart throwers motion visualized through computerized tomography and calculation of the axis of rotation.

    PubMed

    Edirisinghe, Y; Troupis, J M; Patel, M; Smith, J; Crossett, M

    2014-05-01

    We used a dynamic three-dimensional (3D) mapping method to model the wrist in dynamic unrestricted dart throwers motion in three men and four women. With the aid of precision landmark identification, a 3D coordinate system was applied to the distal radius and the movement of the carpus was described. Subsequently, with dynamic 3D reconstructions and freedom to position the camera viewpoint anywhere in space, we observed the motion pathways of all carpal bones in dart throwers motion and calculated its axis of rotation. This was calculated to lie in 27° of anteversion from the coronal plane and 44° of varus angulation relative to the transverse plane. This technique is a safe and a feasible carpal imaging method to gain key information for decision making in future hand surgical and rehabilitative practices.

  11. Comparison of computed tomography and complex motion tomography in the evaluation of cholesteatoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaffer, K.A.

    1984-08-01

    High-resolution axial and coronal computed tomographic (CT) scans were compared with coronal and sagittal complex motion tomograms in patients with suspected middle ear cholesteatomas. Information on CT scans equaled or exceeded that on conventional complex motion tomograms in 16 of 17 patients, and in 11 it provided additional information. Soft-tissue resolution was superior with CT. In 14 patients who underwent surgery, CT provided information that was valuable to the surgeon. On the basis of this study, high-resolution CT is recommended as the preferred method for evaluating most patients with cholesteatomas of the temporal bone.

  12. Does the application of kinesiotape change scapular kinematics in healthy female handball players?

    PubMed

    Van Herzeele, M; van Cingel, R; Maenhout, A; De Mey, K; Cools, A

    2013-11-01

    Elastic taping is widely used in sports medicine for correcting functional alignment and muscle recruitment. However, evidence regarding its influence on scapular dynamic positioning is scarce. This study aimed to investigate the effect of a specific kinesiotaping method on scapular kinematics in female elite handball players without shoulder complaints. 25 athletes (18.0±1.5 years) active in the highest national division were recruited. All subjects received an elastic adhesive tape (K-active tape©) with the purpose to correct scapular position. 3-dimensional scapular motion measurements were performed (Fastrak®) during humeral elevation in the sagittal, frontal and scapular plane. The results showed that taping has a moderate to large effect (Cohen's d>0.7) towards scapular posterior tilting, in all 3 planes of humeral movement and for all angles of elevation (mean posteriorizing effect of 4.23 °, 3.23 ° and 4.33 ° respectively for elevation in the sagittal, frontal and scapular plane, p<0.001). In addition, taping also moderately increased the scapular upward rotation at 30 °, 60 ° and 90 ° of humeral abduction (mean increase of 2.90 °, Cohen's d>0.7). Together these results suggest that kinesiotape application causes positive changes in scapular motion. This could support its use in sports medicine for preventing shoulder problems in overhead athletes. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Three-dimensional MRI-linac intra-fraction guidance using multiple orthogonal cine-MRI planes

    NASA Astrophysics Data System (ADS)

    Bjerre, Troels; Crijns, Sjoerd; Rosenschöld, Per Munck af; Aznar, Marianne; Specht, Lena; Larsen, Rasmus; Keall, Paul

    2013-07-01

    The introduction of integrated MRI-radiation therapy systems will offer live intra-fraction imaging. We propose a feasible low-latency multi-plane MRI-linac guidance strategy. In this work we demonstrate how interleaved acquired, orthogonal cine-MRI planes can be used for low-latency tracking of the 3D trajectory of a soft-tissue target structure. The proposed strategy relies on acquiring a pre-treatment 3D breath-hold scan, extracting a 3D target template and performing template matching between this 3D template and pairs of orthogonal 2D cine-MRI planes intersecting the target motion path. For a 60 s free-breathing series of orthogonal cine-MRI planes, we demonstrate that the method was capable of accurately tracking the respiration related 3D motion of the left kidney. Quantitative evaluation of the method using a dataset designed for this purpose revealed a translational error of 1.15 mm for a translation of 39.9 mm. We have demonstrated how interleaved acquired, orthogonal cine-MRI planes can be used for online tracking of soft-tissue target volumes.

  14. Three-dimensional MRI-linac intra-fraction guidance using multiple orthogonal cine-MRI planes.

    PubMed

    Bjerre, Troels; Crijns, Sjoerd; af Rosenschöld, Per Munck; Aznar, Marianne; Specht, Lena; Larsen, Rasmus; Keall, Paul

    2013-07-21

    The introduction of integrated MRI-radiation therapy systems will offer live intra-fraction imaging. We propose a feasible low-latency multi-plane MRI-linac guidance strategy. In this work we demonstrate how interleaved acquired, orthogonal cine-MRI planes can be used for low-latency tracking of the 3D trajectory of a soft-tissue target structure. The proposed strategy relies on acquiring a pre-treatment 3D breath-hold scan, extracting a 3D target template and performing template matching between this 3D template and pairs of orthogonal 2D cine-MRI planes intersecting the target motion path. For a 60 s free-breathing series of orthogonal cine-MRI planes, we demonstrate that the method was capable of accurately tracking the respiration related 3D motion of the left kidney. Quantitative evaluation of the method using a dataset designed for this purpose revealed a translational error of 1.15 mm for a translation of 39.9 mm. We have demonstrated how interleaved acquired, orthogonal cine-MRI planes can be used for online tracking of soft-tissue target volumes.

  15. Cervical vertebrae maturation index estimates on cone beam CT: 3D reconstructions vs sagittal sections.

    PubMed

    Bonfim, Marco A E; Costa, André L F; Fuziy, Acácio; Ximenez, Michel E L; Cotrim-Ferreira, Flávio A; Ferreira-Santos, Rívea I

    2016-01-01

    The aim of this study was to evaluate the performance of CBCT three-dimensional (3D) reconstructions and sagittal sections for estimates of cervical vertebrae maturation index (CVMI). The sample consisted of 72 CBCT examinations from patients aged 8-16 years (45 females and 27 males) selected from the archives of two private clinics. Two calibrated observers (kappa scores: ≥0.901) interpreted the CBCT settings twice. Intra- and interobserver agreement for both imaging exhibition modes was analyzed by kappa statistics, which was also used to analyze the agreement between 3D reconstructions and sagittal sections. Correlations between cervical vertebrae maturation estimates and chronological age, as well as between the assessments by 3D reconstructions and sagittal sections, were analyzed using gamma Goodman-Kruskal coefficients (α = 0.05). The kappa scores evidenced almost perfect agreement between the first and second assessments of the cervical vertebrae by 3D reconstructions (0.933-0.983) and sagittal sections (0.983-1.000). Similarly, the agreement between 3D reconstructions and sagittal sections was almost perfect (kappa index: 0.983). In most divergent cases, the difference between 3D reconstructions and sagittal sections was one stage of CVMI. Strongly positive correlations (>0.8, p < 0.001) were found not only between chronological age and CVMI but also between the estimates by 3D reconstructions and sagittal sections (p < 0.001). Although CBCT imaging must not be used exclusively for this purpose, it may be suitable for skeletal maturity assessments.

  16. Cervical vertebrae maturation index estimates on cone beam CT: 3D reconstructions vs sagittal sections

    PubMed Central

    Bonfim, Marco A E; Costa, André L F; Ximenez, Michel E L; Cotrim-Ferreira, Flávio A; Ferreira-Santos, Rívea I

    2016-01-01

    Objectives: The aim of this study was to evaluate the performance of CBCT three-dimensional (3D) reconstructions and sagittal sections for estimates of cervical vertebrae maturation index (CVMI). Methods: The sample consisted of 72 CBCT examinations from patients aged 8–16 years (45 females and 27 males) selected from the archives of two private clinics. Two calibrated observers (kappa scores: ≥0.901) interpreted the CBCT settings twice. Intra- and interobserver agreement for both imaging exhibition modes was analyzed by kappa statistics, which was also used to analyze the agreement between 3D reconstructions and sagittal sections. Correlations between cervical vertebrae maturation estimates and chronological age, as well as between the assessments by 3D reconstructions and sagittal sections, were analyzed using gamma Goodman–Kruskal coefficients (α = 0.05). Results: The kappa scores evidenced almost perfect agreement between the first and second assessments of the cervical vertebrae by 3D reconstructions (0.933–0.983) and sagittal sections (0.983–1.000). Similarly, the agreement between 3D reconstructions and sagittal sections was almost perfect (kappa index: 0.983). In most divergent cases, the difference between 3D reconstructions and sagittal sections was one stage of CVMI. Strongly positive correlations (>0.8, p < 0.001) were found not only between chronological age and CVMI but also between the estimates by 3D reconstructions and sagittal sections (p < 0.001). Conclusions: Although CBCT imaging must not be used exclusively for this purpose, it may be suitable for skeletal maturity assessments. PMID:26509559

  17. Kinematic alterations of the lower limbs and pelvis during an ascending stairs task are associated with the degree of knee osteoarthritis severity.

    PubMed

    Gonçalves, Glaucia Helena; Selistre, Luiz Fernando Approbato; Petrella, Marina; Mattiello, Stela Márcia

    2017-03-01

    Individuals with knee osteoarthritis (OA) generally demonstrate great difficulty in ascending stairs. The strategies and compensations used by these individuals in stair activities have not been fully established. The purpose of this study was to investigate the joint kinematics of the pelvis, hip, knee and ankle throughout the gait cycle, in the sagittal and frontal planes, in individuals with mild and moderate knee OA, during an ascending stairs task. Thirty-one individuals with knee OA and 19 controls were subjected to clinical and radiographic analysis, divided into three groups: control, mild knee OA, and moderate knee OA. Participants answered a self-reported questionnaire, carried out performance-based tests, and their kinematic data were recorded during an ascending stairs task using an eight-camera Qualisys 3D-Motion analysis system. The individuals with moderate degrees of knee OA demonstrated kinematic alterations in the pelvis, hip, knee, and ankle in the sagittal plane. The individuals with mild degrees of knee OA demonstrated kinematic alterations of the hip in the frontal plane, and kinematic alterations of the ankle in the sagittal plane. The ascending stairs task allowed verification of meaningful information regarding gait strategies used by individuals with mild and moderate knee OA. The strategies of these two groups of individuals are different for this task, although more pronounced in individuals with moderate knee OA. The findings should be taken into account in the development of rehabilitation programs. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Evaluation of human dynamic balance in Grassmann manifold

    NASA Astrophysics Data System (ADS)

    Michalczuk, Agnieszka; Wereszczyński, Kamil; Mucha, Romualda; Świtoński, Adam; Josiński, Henryk; Wojciechowski, Konrad

    2017-07-01

    The authors present an application of Grassmann manifold to the evaluation of human dynamic balance based on the time series representing movements of hip, knee and ankle joints in the sagittal, frontal and transverse planes. Time series were extracted from gait sequences which were recorded in the Human Motion Laboratory (HML) of the Polish-Japanese Academy of Information Technology in Bytom, Poland using the Vicon system.

  19. A qualitative study of the complete set of solutions of the differential equation of motion of a test particle in the equatorial plane of the Kerr gravitational field

    NASA Technical Reports Server (NTRS)

    Montgomery, H. E.; Chan, F. K.

    1973-01-01

    A study is made of the mathematical solution of the differential equation of motion of a test particle in the equatorial plane of the Kerr gravitational field, using S (Schwarzschild-like) coordinates. A qualitative solution of this equation leads to the conclusion that there can only be 25 different types of orbits. For each value of a, the results are presented in a master diagram for which h and e are the parameters. A master diagram divides the h, e parameter space into regions such that at each point within one of these regions the types of admissible orbits are qualitatively the same. A pictorial representation of the physical orbits in the r, phi plane is also given.

  20. THORACOLUMBAR RANGE OF MOTION IN BASEBALL PITCHERS AND POSITION PLAYERS

    PubMed Central

    Lynall, Robert; Williams, Jeffrey G.; Wong, Regan; Onuki, Takashi; Meister, Keith

    2013-01-01

    Introduction/Background: Optimal baseball throwing mechanics require a significant contribution of thoracolumbar motion, particularly in the sagittal and transverse planes. This motion is key for proper transmission of forces from the lower to upper extremity, thereby minimizing a throwing athlete's risk of injury and maximizing athletic performance. Purpose: To define the active‐assisted thoracolumbar ROM of both baseball pitchers and position players and to compare these motions both within and between groups. Methods: Fifty‐six asymptomatic, collegiate and minor league baseball pitchers and 42 position players volunteered to participate. Active‐assisted thoracolumbar flexion, extension, and bilateral rotation ROM, were measured in a standing position, using two bubble inclinometers. Two‐tailed t tests were used to determine differences in ROM between and within the pitchers and position players. Results: The pitchers had significantly more rotation to the non‐throwing arm side as compared to the position players (p = .007, effect size = .61). The pitchers also had more rotation to the non‐throwing arm side as compared to their throwing side (p = .006, effect size = .47). There were no other significant differences between the pitchers and the position players (p > .53). Furthermore, the position players did not have a side‐to‐side rotation difference (p = .99). Conclusions: Pitchers have a greater amount of rotation ROM towards the non‐throwing arm side as compared to position players. Pitchers also have a greater amount of rotation ROM to the non‐throwing arm side as compared to their throwing side rotation. Because pitchers often present with posterior shoulder tightness and subsequent altered shoulder horizontal adduction and internal rotation ROM, the increase in non‐throwing side rotation ROM may occur in response to these adaptations. More specifically, this increase in non‐throwing side trunk rotation ROM may allow such athletes to

  1. The formation of Local Group planes of galaxies

    NASA Astrophysics Data System (ADS)

    Shaya, Ed J.; Tully, R. Brent

    2013-12-01

    The confinement of most satellite galaxies in the Local Group to thin planes presents a challenge to the theory of hierarchical galaxy clustering. The Pan-Andromeda Archaeological Survey (PAndAS) collaboration has identified a particularly thin configuration with kinematic coherence among companions of M31 and there have been long-standing claims that the dwarf companions to the Milky Way lie in a plane roughly orthogonal to the disc of our galaxy. This discussion investigates the possible origins of four Local Group planes: the plane similar, but not identical to that identified by the PAndAS collaboration, an adjacent slightly tilted plane and two planes in the vicinity of the Milky Way: one with very nearby galaxies and the other with more distant ones. Plausible orbits are found by using a combination of Numerical Action methods and a backward in time integration procedure. This investigation assumes that the companion galaxies formed at an early time in accordance with the standard cosmological model. For M31, M33, IC10 and Leo I, solutions are found that are consistent with measurements of their proper motions. For galaxies in planes, there must be commonalities in their proper motions, and this constraint greatly limits the number of physically plausible solutions. Key to the formation of the planar structures has been the evacuation of the Local Void and consequent build-up of the Local Sheet, a wall of this void. Most of the M31 companion galaxies were born in early-forming filamentary or sheet-like substrata that chased M31 out of the void. M31 is a moving target because of its attraction towards the Milky Way, and the result has been alignments stretched towards our galaxy. In the case of the configuration around the Milky Way, it appears that our galaxy was in a three-way competition for companions with M31 and Centaurus A. Only those within a modest band fell our way. The Milky Way's attraction towards the Virgo Cluster resulted in alignment along the

  2. The longitudinal sagittal growth changes of maxilla and mandible according to quantitative cervical vertebral maturation.

    PubMed

    Chen, Lili; Lin, Jiuxiang; Xu, Tianmin; Long, Xiaosi

    2009-04-01

    To investigate the longitudinal sagittal growth changes of maxilla and mandible according to the quantitative cervical vertebral maturation (QCVM) for adolescents with normal occlusion, mixed longitudinal data were used. The samples included 87 adolescents aged from 8 to 18 y old with normal occlusion (32 males, 55 females) selected from 901 candidates. Sequential lateral cephalograms and hand-wrist films were taken once a year, lasting for 6 y. The longitudinal sagittal growth changes of maxilla and mandible according to QCVM were measured. There were some significant differences between maxilla and mandible according to QCVM. The sagittal growth change of maxilla showed a trend towards high velocity-->decelerating velocity-->completing velocity from QCVM stage I to stage IV. The sagittal growth change of mandible showed a trend towards accelerating velocity-->high velocity-->decelerating velocity-->completing velocity from QCVM stage I to stage IV. With sagittal relationship, growth magnitude was almost the same between maxilla and mandible at QCVM stage I. At stage II the growth of mandible exceeded that of maxilla and growth in mandible continued at stages III and IV, while the maxilla ceased to grow. Growth magnitude was greater and the growth duration was longer with male mandible. It is concluded that the longitudinal sagittal growth changes of maxilla and mandible on the basis of QCVM is of value in the orthodontic practice.

  3. Reliability of the xipho-pubic angle in patients with sagittal imbalance of the spine.

    PubMed

    Langella, Francesco; Villafañe, Jorge H; Ismael, Maryem; Buric, Josip; Piazzola, Andrea; Lamartina, Claudio; Berjano, Pedro

    2018-04-01

    Proximal junctional kyphosis (PJK) is a frequent complication that compromises the outcomes of spinal surgery, especially for adult deformity. To the date no single risk factor or cause has been identified that explains its occurrence. The purpose of this study was to investigate the test-retest reliability of the radiologic measurements using xipho-pubic angle (XPA) for subjects undergoing surgery for sagittal misalignment of the spine. Retrospective observational cross-sectional study of prospectively collected data. Full-spine standing lateral radiographs of 50 patients who underwent surgery for fixed sagittal imbalance (preoperative and postoperative) were evaluated. Internal consistency, reproducibility, concurrent validity, and discriminative ability of the XPA. Two physicians measured XPA on the 100 randomly sorted and anonymized radiographs on two occasions, one week apart (test and retest conditions), were calculated for inter and intraobserver agreement. Test-retest reliability of XPA measurement was excellent for pre- (ICC=0.98; P=0.001) and post-surgical (ICC=0.86; P=0.001) radiographs of subjects with sagittal imbalance of the spine. XPA was able to discriminate between preoperative and postoperative radiographs F=17.924, P<0.001) in patients undergoing surgery for fixed sagittal imbalance for both raters. There were significant differences between pre- vs. postoperative XPA, pelvic tilt, lumbar lordosis and sagittal vertical axis values (all P<0.001). Xipho-pubic angle had fair to excellent test-retest reliability, and it did possess validity to discriminate between preoperative and postoperative radiographs in patients undergoing surgery for fixed sagittal imbalance.

  4. Validation of spinal motion with the spine reposition sense device

    PubMed Central

    Petersen, Cheryl M; Rundquist, Peter J

    2009-01-01

    Background A sagittal plane spine reposition sense device (SRSD) has been developed. Two questions were addressed with this study concerning the new SRSD: 1) whether spine movement was occurring with the methodology, and 2) where movement was taking place. Methods Sixty-five subjects performed seven trials of repositioning to a two-thirds full flexion position in sitting with X and Y displacement measurements taken at the T4 and L3 levels. The thoracolumbar angle between the T4 and the L3 level was computed and compared between the positions tested. A two (vertebral level of thoracic and lumbar) by seven (trials) mixed model repeated measures ANOVA indicated whether significant differences were present between the thoracic (T4) and lumbar (L3) angular measurements. Results Calculated thoracolumbar angles between T4 and L3 were significantly different for all positions tested indicating spinal movement was occurring with testing. No interactions were found between the seven trials and the two vertebral levels. No significant findings were found between the seven trials but significant differences were found between the two vertebral levels. Conclusion This study indicated spine motion was taking place with the SRSD methodology and movement was found specific to the lumbar spine. These findings support utilizing the SRSD to evaluate changes in spine reposition sense during future intervention studies dealing with low back pain. PMID:19386126

  5. Teasing Apart Complex Motions using VideoPoint

    NASA Astrophysics Data System (ADS)

    Fischer, Mark

    2002-10-01

    Using video analysis software such as VideoPoint, it is possible to explore the physics of any phenomenon that can be captured on videotape. The good news is that complex motions can be filmed and analyzed. The bad news is that the motions can become very complex very quickly. An example of such a complicated motion, the 2-dimensional motion of an object as filmed by a camera that is moving and rotating in the same plane will be discussed. Methods for extracting the desired object motion will be given as well as suggestions for shooting more easily analyzable video clips.

  6. Knee joint motion and muscle activation patterns are altered during gait in individuals with moderate hip osteoarthritis compared to asymptomatic cohort.

    PubMed

    Rutherford, Derek; Moreside, Janice; Wong, Ivan

    2015-07-01

    Knee replacements are common after hip replacement for end stage osteoarthritis. Whether abnormal knee mechanics exist in moderate hip osteoarthritis remains undetermined and has implications for understanding early osteoarthritis joint mechanics. The purpose of this study was to determine whether three-dimensional (3D) knee motion and muscle activation patterns in individuals with moderate hip osteoarthritis differ from an asymptomatic cohort and whether these features differ between contra- and ipsilateral knees. 3D motions and medial and lateral quadriceps and hamstring surface electromyography were recorded on 20 asymptomatic individuals and 20 individuals with moderate hip osteoarthritis during treadmill walking, using standardized collection and processing procedures. Principal component analysis was used to derive electromyographic amplitude and temporal waveform features. 3D stance-phase range of motion was calculated. A 2-factor repeated analysis of variance determined significant within-group leg and muscle differences. Student's t-tests identified between group differences, with Bonferroni corrections where applicable (α=0.05). Lower sagittal plane motion between early and mid/late stance (5°, P=0.004, effect size: 0.96) and greater mid-stance quadriceps activity was found in the osteoarthritis group (P=0.01). Compared to the ipsilateral knee, a borderline significant increase in mid-stance hamstring activity was found in the contra-lateral knee of the hip osteoarthritis group (P=0.018). Bilateral knee mechanics were altered, suggesting potentially increased loads and knee muscle fatigue. There was no indication that one knee is more susceptible to osteoarthritis than the other, thus clinicians should include bilateral knee analysis when treating patients with hip osteoarthritis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. ‘Lumbar Degenerative Kyphosis’ Is Not Byword for Degenerative Sagittal Imbalance: Time to Replace a Misconception

    PubMed Central

    Lee, Chang-Hyun; Chung, Chun Kee; Jang, Jee-Soo; Kim, Sung-Min; Chin, Dong-Kyu; Lee, Jung-Kil

    2017-01-01

    Lumbar degenerative kyphosis (LDK) is a subgroup of the flat-back syndrome and is most commonly caused by unique life styles, such as a prolonged crouched posture during agricultural work and performing activities of daily living on the floor. Unfortunately, LDK has been used as a byword for degenerative sagittal imbalance, and this sometimes causes confusion. The aim of this review was to evaluate the exact territory of LDK, and to introduce another appropriate term for degenerative sagittal deformity. Unlike what its name suggests, LDK does not only include sagittal balance disorder of the lumbar spine and kyphosis, but also sagittal balance disorder of the whole spine and little lordosis of the lumbar spine. Moreover, this disease is closely related to the occupation of female farmers and an outdated Asian life style. These reasons necessitate a change in the nomenclature of this disorder to prevent misunderstanding. We suggest the name “primary degenerative sagittal imbalance” (PDSI), which encompasses degenerative sagittal misalignments of unknown origin in the whole spine in older-age patients, and is associated with back muscle wasting. LDK may be regarded as a subgroup of PDSI related to an occupation in agriculture. Conservative treatments such as exercise and physiotherapy are recommended as first-line treatments for patients with PDSI, and surgical treatment is considered only if conservative treatments failed. The measurement of spinopelvic parameters for sagittal balance is important prior to deformity corrective surgery. LDK can be considered a subtype of PDSI that is more likely to occur in female farmers, and hence the use of LDK as a global term for all degenerative sagittal imbalance disorders is better avoided. To avoid confusion, we recommend PDSI as a newer, more accurate diagnostic term instead of LDK. PMID:28264231

  8. Spinal pedicle subtraction osteotomy for fixed sagittal imbalance patients

    PubMed Central

    Hyun, Seung-Jae; Kim, Yongjung J; Rhim, Seung-Chul

    2013-01-01

    In addressing spinal sagittal imbalance through a posterior approach, the surgeon now may choose from among a variety of osteotomy techniques. Posterior column osteotomies such as the facetectomy or Ponte or Smith-Petersen osteotomy provide the least correction, but can be used at multiple levels with minimal blood loss and a lower operative risk. Pedicle subtraction osteotomies provide nearly 3 times the per-level correction of Ponte/Smith-Petersen osteotomies; however, they carry increased technical demands, longer operative time, and greater blood loss and associated significant morbidity, including neurological injury. The literature focusing on pedicle subtraction osteotomy for fixed sagittal imbalance patients is reviewed. The long-term overall outcomes, surgical tips to reduce the complications and suggestions for their proper application are also provided. PMID:24340276

  9. Effect of Preoperative Molding Helmet in Patients With Sagittal Synostosis.

    PubMed

    Hashmi, Asra; Marupudi, Neena I; Sood, Sandeep; Rozzelle, Arlene

    2017-06-01

    In our practice, the authors found that molding helmet used for plagiocephaly preoperatively, in patients with sagittal synostosis, decreased bathrocephaly, forehead bossing, and improved posterior vertex, as well as Cephalic Index (CI). This prompted us to investigate the impact of preoperative molding helmet in patients with sagittal synostosis. A prospective study was performed on patients undergoing surgical correction of sagittal synostosis, over a 5-year period. Patients were categorized into 2 groups. "No Helmet group" only had surgical correction, and "Helmet group" had preoperative molding helmet, prior to surgical correction. Cephalic Index for the 2 groups was compared using t-test. There were 40 patients in the No Helmet group and 18 patients in the Helmet group. For No Helmet group, mean CI at presentation, immediately preoperative, and postoperatively was 0.70 (±0.045), 0.70 (±0.020), and 0.80 (±0.030), respectively, and for Helmet group, it was 0.69 (±0.023), 0.73 (±0.036), and 0.83 (±0.036), respectively. There was no statistically significant difference between CI of the 2 groups at presentation (P = 0.45). Comparison of postoperative CI did show a statistically significant difference between the groups (P = 0.01). For Helmet group, on comparison of CI at presentation and preoperative CI (after helmet therapy), a statistically significant improvement in CI was observed (P = 0.0004). Our results suggest that preoperative molding helmet can decrease bathrocephaly, forehead bossing, and improve posterior vertex as well as CI, prior to surgery and thus can be used as a valuable adjunct in patients with sagittal synostosis.

  10. [Effect of calcaneocuboid arthrodesis on three-dimensional kinematics of talonavicular joint].

    PubMed

    Chen, Yanxi; Yu, Guangrong; Ding, Zhuquan

    2007-03-01

    To discuss the effect of the calcaneocuboid arthrodesis on three-dimensional kinematics of talonavicular joint and its clinical significance. Ten fresh-frozen foot specimens, three-dimensional kinematics of talonavicular joint were determined in the case of neutral position, dorsiflexion. plantoflexion, adduction, abduction, inversion and eversion motion by means of three-dimensional coordinate instrument (Immersion MicroScribe G2X) before and after calcaneocuboid arthrodesis under non-weight with moment of couple, bending moment, equilibrium dynamic loading. Calcaneocuboid arthrodesis was performed on these feet in neutral position and the lateral column of normal length. A significant decrease in the three-dimensional kinematics of talonavicular joint was observed (P < 0.01) in cadaver model following calcaneocuboid arthrodesis. Talonavicular joint motion was diminished by 31.21% +/- 6.08% in sagittal plane; by 51.46% +/- 7.91% in coronal plane; by 36.98% +/- 4.12% in transverse plane; and averagely by 41.25% +/- 6.02%. Calcancocuboid arthrodesis could limite motion of the talonavicular joints, and the disadvantage of calcaneocuboid arthrodesis shouldn't be neglected.

  11. Intervertebral anticollision constraints improve out-of-plane translation accuracy of a single-plane fluoroscopy-to-CT registration method for measuring spinal motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Cheng-Chung; Tsai, Tsung-Yuan; Hsu, Shih-Jung

    2013-03-15

    Purpose: The study aimed to propose a new single-plane fluoroscopy-to-CT registration method integrated with intervertebral anticollision constraints for measuring three-dimensional (3D) intervertebral kinematics of the spine; and to evaluate the performance of the method without anticollision and with three variations of the anticollision constraints via an in vitro experiment. Methods: The proposed fluoroscopy-to-CT registration approach, called the weighted edge-matching with anticollision (WEMAC) method, was based on the integration of geometrical anticollision constraints for adjacent vertebrae and the weighted edge-matching score (WEMS) method that matched the digitally reconstructed radiographs of the CT models of the vertebrae and the measured single-plane fluoroscopymore » images. Three variations of the anticollision constraints, namely, T-DOF, R-DOF, and A-DOF methods, were proposed. An in vitro experiment using four porcine cervical spines in different postures was performed to evaluate the performance of the WEMS and the WEMAC methods. Results: The WEMS method gave high precision and small bias in all components for both vertebral pose and intervertebral pose measurements, except for relatively large errors for the out-of-plane translation component. The WEMAC method successfully reduced the out-of-plane translation errors for intervertebral kinematic measurements while keeping the measurement accuracies for the other five degrees of freedom (DOF) more or less unaltered. The means (standard deviations) of the out-of-plane translational errors were less than -0.5 (0.6) and -0.3 (0.8) mm for the T-DOF method and the R-DOF method, respectively. Conclusions: The proposed single-plane fluoroscopy-to-CT registration method reduced the out-of-plane translation errors for intervertebral kinematic measurements while keeping the measurement accuracies for the other five DOF more or less unaltered. With the submillimeter and subdegree accuracy, the WEMAC method

  12. Isolated sagittal craniosynostosis: definition, classification, and surgical indications.

    PubMed

    Massimi, Luca; Caldarelli, Massimo; Tamburrini, Gianpiero; Paternoster, Giovanna; Di Rocco, Concezio

    2012-09-01

    Sagittal craniosynostosis (SC) remains the most common type of synostosis, accounting for about a half of all forms. It would result from a mesenchymal disorder involving the intramembranous ossification of the sagittal suture and leading to its early fusion. No specific data on the etiologic factors are currently available. The premature ossification of the sagittal suture can result in three main types of SC, according to the different segment prevalently involved: anterior, posterior, and complete SC. The diagnosis is easily obtained by clinical examination. However, a radiological work up (3D CT scan) may be necessary to rule out hidden venous or cranial anomalies possibly associated with most severe cases, or for the surgical planning. The most common indication for surgery is the improvement of the cosmetic appearance of the skull, since a cranial deformation may have a significant psychological impact on affected subjects. To relieve from raised intracranial pressure is a further indication to surgery. Although an increased intracranial pressure can be demonstrated in a minority of affected children at diagnosis, indeed, it can present later (usually after the second/third year of life) with chronic symptoms. The role of surgery in the preservation of cognitive functions in scaphocephalic patients does not seem to be relevant, since minor anomalies of the cerebral development associated with SC would occur independently from the cranial shape. On the other hand, the surgical correction may show a protective effect on some visual skills, like the ability to fix and follow, and the fixation shift.

  13. Point-to-plane and plane-to-plane electrostatic charge injection atomization for insulating liquids

    NASA Astrophysics Data System (ADS)

    Malkawi, Ghazi

    An electrostatic charge injection atomizer was fabricated and used to introduce and study the electrostatic charge injection atomization methods for highly viscous vegetable oils and high conductivity low viscosity aviation fuel, JP8. The total, spray and leakage currents and spray breakup characteristics for these liquids were investigated and compared with Diesel fuel data. Jet breakup and spray atomization mechanism showed differences for vegetable oils and lower viscosity hydrocarbon fuels. For vegetable oils, a bending/spinning instability phenomenon was observed similar to the phenomenon found in liquid jets of high viscosity polymer solutions. The spray tip lengths and cone angles were presented qualitatively and quantitatively and correlated with the appropriate empirical formulas. The different stages of the breakup mechanisms for such oils, as a function of specific charges and flow rates, were discussed. In order to make this method of atomization more suitable for practical use in high flow rate applications, a blunt face electrode (plane-to-plane) was used as the charge emitter in place of a single pointed electrode (point-to-plane). This allowed the use of a multi-orifice emitter that maintained a specific charge with the flow rate increase which could not be achieved with the needle electrode. The effect of the nozzle geometry, liquid physical properties and applied bulk flow on the spray charge, total charge, maximum critical spray specific charge and electrical efficiency compared with the needle point-to-plane atomizer results was presented. Our investigation revealed that the electrical efficiency of the atomizer is dominated by the charge forced convection rate rather than charge transport by ion motilities and liquid motion by the electric field. As a result of the electric coulomb forces between the electrified jets, the multi-orifice atomizer provided a unique means of dispersing the fuel in a hollow cone with wide angles making the new

  14. Kinematic predictors of star excursion balance test performance in individuals with chronic ankle instability.

    PubMed

    Hoch, Matthew C; Gaven, Stacey L; Weinhandl, Joshua T

    2016-06-01

    The Star Excursion Balance Test has identified dynamic postural control deficits in individuals with chronic ankle instability. While kinematic predictors of Star Excursion Balance Test performance have been evaluated in healthy individuals, this has not been thoroughly examined in individuals with chronic ankle instability. Fifteen individuals with chronic ankle instability completed the anterior reach direction of the Star Excursion Balance Test and weight-bearing dorsiflexion assessments. Maximum reach distances on the Star Excursion Balance Test were measured in cm and normalized to leg length. Three-dimensional trunk, hip, knee, and ankle motion of the stance limb were recorded during each anterior reach trial using a motion capture system. Sagittal, frontal, and transverse plane displacement observed from trial initiation to the point of maximum reach was calculated for each joint or segment and averaged for analysis. Pearson product-moment correlations were performed to examine the relationships between kinematic variables, maximal reach, and weight-bearing dorsiflexion. A backward multiple linear regression model was developed with maximal reach as the criterion variable and kinematic variables as predictors. Frontal plane displacement of the trunk, hip, and ankle and sagittal plane knee displacement were entered into the analysis. The final model (p=0.004) included all three frontal plane variables and explained 81% of the variance in maximal reach. Maximal reach distance and several kinematic variables were significantly related to weight-bearing dorsiflexion. Individuals with chronic ankle instability who demonstrated greater lateral trunk displacement toward the stance limb, hip adduction, and ankle eversion achieved greater maximal reach. Copyright © 2016. Published by Elsevier Ltd.

  15. Accuracy and reliability of coronal and sagittal spinal curvature data based on patient-specific three-dimensional models created by the EOS 2D/3D imaging system.

    PubMed

    Somoskeöy, Szabolcs; Tunyogi-Csapó, Miklós; Bogyó, Csaba; Illés, Tamás

    2012-11-01

    Three-dimensional (3D) deformations of the spine are predominantly characterized by two-dimensional (2D) angulation measurements in coronal and sagittal planes, using anteroposterior and lateral X-ray images. For coronal curves, a method originally described by Cobb and for sagittal curves a modified Cobb method are most widely used in practice, and these methods have been shown to exhibit good-to-excellent reliability and reproducibility, carried out either manually or by computer-based tools. Recently, an ultralow radiation dose-integrated radioimaging solution was introduced with special software for realistic 3D visualization and parametric characterization of the spinal column. Comparison of accuracy, correlation of measurement values, intraobserver and interrater reliability of methods by conventional manual 2D and sterEOS 3D measurements in a routine clinical setting. Retrospective nonrandomized study of diagnostic X-ray images created as part of a routine clinical protocol of eligible patients examined at our clinic during a 30-month period between July 2007 and December 2009. In total, 201 individuals (170 females, 31 males; mean age, 19.88 years) including 10 healthy athletes with normal spine and patients with adolescent idiopathic scoliosis (175 cases), adult degenerative scoliosis (11 cases), and Scheuermann hyperkyphosis (5 cases). Overall range of coronal curves was between 2.4° and 117.5°. Analysis of accuracy and reliability of measurements were carried out on a group of all patients and in subgroups based on coronal plane deviation: 0° to 10° (Group 1, n=36), 10° to 25° (Group 2, n=25), 25° to 50° (Group 3, n=69), 50° to 75° (Group 4, n=49), and more than 75° (Group 5, n=22). Coronal and sagittal curvature measurements were determined by three experienced examiners, using either traditional 2D methods or automatic measurements based on sterEOS 3D reconstructions. Manual measurements were performed three times, and sterEOS 3D

  16. Motions in Taub-NUT-de Sitter spinning spacetime

    NASA Astrophysics Data System (ADS)

    Banu, Akhtara

    2012-09-01

    We investigate the geodesic motion of pseudo-classical spinning particles in the Taub-NUT-de Sitter spacetime. We obtain the conserved quantities from the solutions of the generalized Killing equations for spinning spaces. Applying the formalism the motion of a pseudo-classical Dirac fermion is analyzed on a cone and plane.

  17. Prehospital emergency removal of football helmets using two techniques.

    PubMed

    Swartz, Erik E; Hernandez, Adam E; Decoster, Laura C; Mihalik, Jason P; Burns, Matthew F; Reynolds, Cathryn

    2011-01-01

    To compare the Eject Helmet Removal (EHR) System with manual football helmet removal. This quasiexperimental counterbalanced study was conducted in a controlled laboratory setting. Thirty certified athletic trainers (17 men and 13 women; mean ± standard deviation age: 33.03 ± 10.02 years; height: 174.53 ± 12.04 cm; mass: 85.19 ± 19.84 kg) participated after providing informed consent. Participants removed a Riddell Revolution IQ football helmet from a healthy model two times each under two conditions: manual helmet removal (MHR) and removal with the EHR system. A six-camera, three-dimensional motion capture system was used to record range of motion (ROM) of the head. A digital stopwatch was used to time trials and to record a split time associated with EHR system bladder insertion. A modified Borg CR10 scale was used to measure the rating of perceived exertion (RPE). Mean values were created for each variable. Three pairwise t-tests with Bonferroni-corrected alpha levels tested for differences between time for removal, split time, and RPE. A 2 x 3 (condition x plane) totally within-subjects repeated-measures design analysis of variance (ANOVA) tested for differences in head ROM between the sagittal, frontal, and transverse planes. Analyses were performed using SPSS (version 18.0) (alpha = 0.05). There was no statistically significant difference in perceived difficulty between EHR (RPE = 2.73) and MHR (RPE = 2.55) (t(29) = 0.76; p = 0.45; d = 0.20). Manual helmet removal was, on average, 28.95 seconds faster than EHR (t(29) = 11.44; p < 0.001). Head ROM was greater during EHR compared with MHR in the sagittal (t(29) = 4.57; p < 0.001), frontal (t(29) = 5.90; p < 0.001), and transverse (t(29) = 8.34; p < 0.001) planes. Head ROM was also greater during the helmet-removal portion of EHR in the frontal (t(29) = 4.44; p < 0.001) and transverse (t(29) = 5.99; p < 0.001) planes, compared with MHR. Regardless of technique, sagittal-plane head ROM was greater than

  18. Speckle correlation method used to measure object's in-plane velocity.

    PubMed

    Smíd, Petr; Horváth, Pavel; Hrabovský, Miroslav

    2007-06-20

    We present a measurement of an object's in-plane velocity in one direction by the use of the speckle correlation method. Numerical correlations of speckle patterns recorded periodically during motion of the object under investigation give information used to evaluate the object's in-plane velocity. The proposed optical setup uses a detection plane in the image field and enables one to detect the object's velocity within the interval (10-150) microm x s(-1). Simulation analysis shows a way of controlling the measuring range. The presented theory, simulation analysis, and setup are verified through an experiment of measurement of the velocity profile of an object.

  19. Comparing trapezius muscle activity in the different planes of shoulder elevation

    PubMed Central

    Ishigaki, Tomonobu; Ishida, Tomoya; Samukawa, Mina; Saito, Hiroshi; Hirokawa, Motoki; Ezawa, Yuya; Sugawara, Makoto; Tohyama, Harukazu; Yamanaka, Masanori

    2015-01-01

    [Purpose] The purpose of this study was to compare the upper, middle, and lower trapezius muscles’ activity in the different planes of shoulder elevation. [Subjects] Twenty male subjects volunteered for this study. [Methods] Surface electromyographic (EMG) activity for each of the three regions of the trapezius muscles in the three different planes of elevation were collected while the participants maintained 30, 60, and 90 degrees of elevation in each plane. The EMG data were normalized with maximum voluntary isometric contraction (%MVIC), and compared among the planes at each angle of elevation. [Results] There were significantly different muscle activities among the elevation planes at each angle. [Conclusion] This study found that the three regions of the trapezius muscles changed their activity depending on the planes of shoulder elevation. These changes in the trapezius muscles could induce appropriate scapular motion to face the glenoid cavity in the correct directions in different planes of shoulder elevation. PMID:26157248

  20. Comparing trapezius muscle activity in the different planes of shoulder elevation.

    PubMed

    Ishigaki, Tomonobu; Ishida, Tomoya; Samukawa, Mina; Saito, Hiroshi; Hirokawa, Motoki; Ezawa, Yuya; Sugawara, Makoto; Tohyama, Harukazu; Yamanaka, Masanori

    2015-05-01

    [Purpose] The purpose of this study was to compare the upper, middle, and lower trapezius muscles' activity in the different planes of shoulder elevation. [Subjects] Twenty male subjects volunteered for this study. [Methods] Surface electromyographic (EMG) activity for each of the three regions of the trapezius muscles in the three different planes of elevation were collected while the participants maintained 30, 60, and 90 degrees of elevation in each plane. The EMG data were normalized with maximum voluntary isometric contraction (%MVIC), and compared among the planes at each angle of elevation. [Results] There were significantly different muscle activities among the elevation planes at each angle. [Conclusion] This study found that the three regions of the trapezius muscles changed their activity depending on the planes of shoulder elevation. These changes in the trapezius muscles could induce appropriate scapular motion to face the glenoid cavity in the correct directions in different planes of shoulder elevation.

  1. The three dimensional motion and stability of a rotating space station: Cable-counterweight configuration

    NASA Technical Reports Server (NTRS)

    Bainum, P. M.; Evans, K. S.

    1974-01-01

    The three dimensional equations of motion for a cable connected space station--counterweight system are developed using a Lagrangian formulation. The system model employed allows for cable and end body damping and restoring effects. The equations are then linearized about the equilibrium motion and nondimensionalized. To first degree, the out-of-plane equations uncouple from the inplane equations. Therefore, the characteristic polynomials for the in-plane and out-of-plane equations are developed and treated separately. From the general in-plane characteristic equation, necessary conditions for stability are obtained. The Routh-Hurwitz necessary and sufficient conditions for stability are derived for the general out-of-plane characteristic equation. Special cases of the in-plane and out-of-plane equations (such as identical end masses, and when the cable is attached to the centers of mass of the two end bodies) are then examined for stability criteria.

  2. The effect of age and speed on foot and ankle kinematics assessed using a 4-segment foot model.

    PubMed

    van Hoeve, Sander; Leenstra, Bernard; Willems, Paul; Poeze, Martijn; Meijer, Kenneth

    2017-09-01

    The effects of age and speed on foot and ankle kinematics in gait studies using foot models are not fully understood, whereas this can have significant influence. We analyzed these variables with the 4-segment Oxford foot model. Twenty-one healthy subjects (aged 20-65 years) were recruited for gait analysis. The effect of speed on foot and ankle kinematics was assessed by comparing results during slow walking and fast walking. To assess the effect of age, a group of 13 healthy young adults (aged 20-24 years) were compared with a group of 8 older adults (aged 53-65 years). Also, the interaction between age and speed was analyzed. Regarding speed, there was a significant difference between forefoot/hindfoot motion in the sagittal plane (flexion/extension) during both loading- and push-off phase (P = .004, P < .001). Between hindfoot/tibia, there was a significant difference for all parameters except for motion in the sagittal plane (flexion/extension) during push-off phase (P = .5). Age did not significantly influence kinematics. There was no interaction between age and speed. Our analysis found that speed significantly influenced the kinematic outcome parameters. This was more pronounced in the ankle joint. In contrast, no significant differences were found between younger and older healthy subjects.

  3. A perspective view of the plane mixing layer

    NASA Technical Reports Server (NTRS)

    Jimenez, J.; Cogollos, M.; Bernal, L. P.

    1984-01-01

    A three-dimensional model of the plane mixing layer is constructed by applying digital image processing and computer graphic techniques to laser fluorescent motion pictures of its transversal sections. A system of streamwise vortex pairs is shown to exist on top of the classical spanwise eddies. Its influence on mixing is examined.

  4. UROKIN: A Software to Enhance Our Understanding of Urogenital Motion.

    PubMed

    Czyrnyj, Catriona S; Labrosse, Michel R; Graham, Ryan B; McLean, Linda

    2018-05-01

    Transperineal ultrasound (TPUS) allows for objective quantification of mid-sagittal urogenital mechanics, yet current practice omits dynamic motion information in favor of analyzing only a rest and a peak motion frame. This work details the development of UROKIN, a semi-automated software which calculates kinematic curves of urogenital landmark motion. A proof of concept analysis, performed using UROKIN on TPUS video recorded from 20 women with and 10 women without stress urinary incontinence (SUI) performing maximum voluntary contraction of the pelvic floor muscles. The anorectal angle and bladder neck were tracked while the motion of the pubic symphysis was used to compensate for the error incurred by TPUS probe motion during imaging. Kinematic curves of landmark motion were generated for each video and curves were smoothed, time normalized, and averaged within groups. Kinematic data yielded by the UROKIN software showed statistically significant differences between women with and without SUI in terms of magnitude and timing characteristics of the kinematic curves depicting landmark motion. Results provide insight into the ways in which UROKIN may be useful to study differences in pelvic floor muscle contraction mechanics between women with and without SUI and other pelvic floor disorders. The UROKIN software improves on methods described in the literature and provides unique capacity to further our understanding of urogenital biomechanics.

  5. Reciprocal Changes in Sagittal Alignment in Adolescent Idiopathic Scoliosis Patients Following Strategic Pedicle Screw Fixation.

    PubMed

    Dumpa, Srikanth Reddy; Shetty, Ajoy Prasad; Aiyer, Siddharth N; Kanna, Rishi Mugesh; Rajasekaran, S

    2018-04-01

    Retrospective observational study. To analyze the effect of low-density (LD) strategic pedicle screw fixation on the correction of coronal and sagittal parameters in adolescent idiopathic scoliosis (AIS) patients. LD screw fixation achieves favorable coronal correction, but its effect on sagittal parameters is not well established. AIS is often associated with decreased thoracic kyphosis (TK), and the use of multi-level pedicle screws may result in further flattening of the sagittal profile. A retrospective analysis was performed on 92 patients with AIS to compare coronal and sagittal parameters preoperatively and at 2-year follow-up. All patients underwent posterior correction via LD strategic pedicle screw fixation. Radiographs were analyzed for primary Cobb angle (PCA), coronal imbalance, cervical sagittal angle (CSA), TK, lumbar lordosis (LL), pelvic incidence, pelvic tilt (PT), sacral slope (SS), C7 plumb line, spino-sacral angle, curve flexibility, and screw density. PCA changed significantly from 57.6°±13.9° to 19°±8.4° ( p <0.0001) with 67% correction, where the mean curve flexibility was 41% and screw density was 68%. Regional sagittal parameters did not change significantly, including CSA (from 10.76° to 10.56°, p =0.893), TK (from 24.4° to 22.8°, p =0.145), and LL (from 50.3° to 51.1°, p =0.415). However, subgroup analysis of the hypokyphosis group (<10°) and the hyperkyphosis group (>40°) showed significant correction of TK ( p <0.0001 in both). Sacro-pelvic parameters showed a significant decrease of PT and increase of SS, suggesting a reduction in pelvic retroversion SS (from 37° to 40°, p =0.0001) and PT (from 15° to 14°, p =0.025). LD strategic pedicle screw fixation provides favorable coronal correction and improves overall sagittal sacro-pelvic parameters. This technique does not cause significant flattening of TK and results in a favorable restoration of TK in patients with hypokyphosis or hyperkyphosis.

  6. Reciprocal Changes in Sagittal Alignment in Adolescent Idiopathic Scoliosis Patients Following Strategic Pedicle Screw Fixation

    PubMed Central

    Dumpa, Srikanth Reddy; Aiyer, Siddharth N.; Kanna, Rishi Mugesh; Rajasekaran, S

    2018-01-01

    Study Design Retrospective observational study. Purpose To analyze the effect of low-density (LD) strategic pedicle screw fixation on the correction of coronal and sagittal parameters in adolescent idiopathic scoliosis (AIS) patients. Overview of Literature LD screw fixation achieves favorable coronal correction, but its effect on sagittal parameters is not well established. AIS is often associated with decreased thoracic kyphosis (TK), and the use of multi-level pedicle screws may result in further flattening of the sagittal profile. Methods A retrospective analysis was performed on 92 patients with AIS to compare coronal and sagittal parameters preoperatively and at 2-year follow-up. All patients underwent posterior correction via LD strategic pedicle screw fixation. Radiographs were analyzed for primary Cobb angle (PCA), coronal imbalance, cervical sagittal angle (CSA), TK, lumbar lordosis (LL), pelvic incidence, pelvic tilt (PT), sacral slope (SS), C7 plumb line, spino-sacral angle, curve flexibility, and screw density. Results PCA changed significantly from 57.6°±13.9° to 19°±8.4° (p <0.0001) with 67% correction, where the mean curve flexibility was 41% and screw density was 68%. Regional sagittal parameters did not change significantly, including CSA (from 10.76° to 10.56°, p =0.893), TK (from 24.4° to 22.8°, p =0.145), and LL (from 50.3° to 51.1°, p =0.415). However, subgroup analysis of the hypokyphosis group (<10°) and the hyperkyphosis group (>40°) showed significant correction of TK (p <0.0001 in both). Sacro-pelvic parameters showed a significant decrease of PT and increase of SS, suggesting a reduction in pelvic retroversion SS (from 37° to 40°, p =0.0001) and PT (from 15° to 14°, p =0.025). Conclusions LD strategic pedicle screw fixation provides favorable coronal correction and improves overall sagittal sacro-pelvic parameters. This technique does not cause significant flattening of TK and results in a favorable restoration of TK in

  7. Reconstruction of Galileo Galilei's Experiment: The Inclined Plane

    ERIC Educational Resources Information Center

    Straulino, S.

    2008-01-01

    In the "Third Day" of the "Discourses and Mathematical Demonstrations Concerning Two New Sciences" Galileo Galilei describes the famous experiment of the inclined plane and uses it to bring an experimental confirmation to the laws of uniformly accelerated motion. We describe a reconstruction of the experiment and how the results can be used for…

  8. Noninvasive Optoelectronic Assessment of Induced Sagittal Imbalance Using the Vicon System.

    PubMed

    Ould-Slimane, Mourad; Latrobe, Charles; Michelin, Paul; Chastan, Nathalie; Dujardin, Franck; Roussignol, Xavier; Gauthé, Rémi

    2017-06-01

    Spinal diseases often induce gait disorders with multifactorial origins such as lumbar pain, radicular pain, neurologic complications, or spinal deformities. However, radiography does not permit an analysis of spinal dynamics; therefore, sagittal balance dynamics during gait remain largely unexplored. This prospective and controlled pilot study assessed the Vicon system for detecting sagittal spinopelvic imbalance, to determine the correlations between optoelectronic and radiographic parameters. Reversible anterior sagittal imbalance was induced in 24 healthy men using a thoracolumbar corset. Radiographic, optoelectronic, and comparative analyses were conducted. Corset wearing induced significant variations in radiographic parameters indicative of imbalance; the mean C7-tilt and d/D ratio increased by 15° ± 7.4° and 359%, respectively, whereas the mean spinosacral angle decreased by 16.8° ± 8° (all P < 0.001). The Vicon system detected the imbalance; the mean spinal angle increased by 15.4° ± 5.6° (P < 0.01), the mean floor projection of the C7S1 vector (C7'S1') increased by 126.3 ± 51.9 mm (P < 0.001), and the mean C7-T10-S1 angle decreased by 9.8° ± 3° (P < 0.001). Variations in C7'S1' were significantly correlated with d/D ratio (ρ = 0.58; P < 0.05) and C7-tilt (ρ = 0.636; P < 0.05) variations. Corset wearing induced radiographically confirmed anterior sagittal imbalance detected using the Vicon system. Optoelectronic C7'S1' correlated with radiographic C7-tilt and d/D ratio. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Improved kinect-based spatiotemporal and kinematic treadmill gait assessment.

    PubMed

    Eltoukhy, Moataz; Oh, Jeonghoon; Kuenze, Christopher; Signorile, Joseph

    2017-01-01

    A cost-effective, clinician friendly gait assessment tool that can automatically track patients' anatomical landmarks can provide practitioners with important information that is useful in prescribing rehabilitative and preventive therapies. This study investigated the validity and reliability of the Microsoft Kinect v2 as a potential inexpensive gait analysis tool. Ten healthy subjects walked on a treadmill at 1.3 and 1.6m·s -1 , as spatiotemporal parameters and kinematics were extracted concurrently using the Kinect and three-dimensional motion analysis. Spatiotemporal measures included step length and width, step and stride times, vertical and mediolateral pelvis motion, and foot swing velocity. Kinematic outcomes included hip, knee, and ankle joint angles in the sagittal plane. The absolute agreement and relative consistency between the two systems were assessed using interclass correlations coefficients (ICC2,1), while reproducibility between systems was established using Lin's Concordance Correlation Coefficient (rc). Comparison of ensemble curves and associated 90% confidence intervals (CI90) of the hip, knee, and ankle joint angles were performed to investigate if the Kinect sensor could consistently and accurately assess lower extremity joint motion throughout the gait cycle. Results showed that the Kinect v2 sensor has the potential to be an effective clinical assessment tool for sagittal plane knee and hip joint kinematics, as well as some spatiotemporal temporal variables including pelvis displacement and step characteristics during the gait cycle. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. How Well Can Modern Nonhabitual Barefoot Youth Adapt to Barefoot and Minimalist Barefoot Technology Shoe Walking, in regard to Gait Symmetry.

    PubMed

    Xu, Y; Hou, Q; Wang, C; Simpson, T; Bennett, B; Russell, S

    2017-01-01

    We aim to test how well modern nonhabitual barefoot people can adapt to barefoot and Minimalist Bare Foot Technology (MBFT) shoes, in regard to gait symmetry. 28 healthy university students (22 females/6 males) were recruited to walk on a 10-meter walkway randomly on barefoot, in MBFT shoes, and in neutral running shoes at their comfortable walking speed. Kinetic and kinematic data were collected using an 8-camera motion capture system. Data of joint angles, joint forces, and joint moments were extracted to compute a consecutive symmetry index. Compared to walking in neutral running shoes, walking barefoot led to worse symmetry of the following: ankle joint force in sagittal plane, knee joint moment in transverse plane, and ankle joint moment in frontal plane, while improving the symmetry of joint angle in sagittal plane at ankle joints and global (hip-knee-ankle) level. Walking in MBFT shoes had intermediate gait symmetry performance as compared to walking barefoot/walking in neutral running shoes. We conclude that modern nonhabitual barefoot adults will lose some gait symmetry in joint force/moment if they switch to barefoot walking without fitting in; MBFT shoe might be an ideal compromise for healthy youth as regards gait symmetry in walking.

  11. Travelling Randomly on the Poincaré Half-Plane with a Pythagorean Compass

    NASA Astrophysics Data System (ADS)

    Cammarota, V.; Orsingher, E.

    2008-02-01

    A random motion on the Poincaré half-plane is studied. A particle runs on the geodesic lines changing direction at Poisson-paced times. The hyperbolic distance is analyzed, also in the case where returns to the starting point are admitted. The main results concern the mean hyperbolic distance (and also the conditional mean distance) in all versions of the motion envisaged. Also an analogous motion on orthogonal circles of the sphere is examined and the evolution of the mean distance from the starting point is investigated.

  12. Relative motion of orbiting satellites

    NASA Technical Reports Server (NTRS)

    Eades, J. B., Jr.

    1972-01-01

    The relative motion problem is analyzed, as a linearized case, and as a numerically determined solution to provide a time history of the geometries representing the motion state. The displacement history and the hodographs for families of solutions are provided, analytically and graphically, to serve as an aid to understanding this problem area. Linearized solutions to relative motion problems of orbiting particles are presented for the impulsive and fixed thrust cases. Second order solutions are described to enhance the accuracy of prediction. A method was developed to obtain accurate, numerical solutions to the intercept and rendezvous problem; and, special situations are examined. A particular problem related to relative motions, where the motion traces develop a cusp, is examined in detail. This phenomenon is found to be dependent on a particular relationship between orbital eccentricity and the inclination between orbital planes. These conditions are determined, and, example situations are presented and discussed.

  13. Changes in foot and shank coupling due to alterations in foot strike pattern during running.

    PubMed

    Pohl, Michael B; Buckley, John G

    2008-03-01

    Determining if and how the kinematic relationship between adjacent body segments changes when an individual's gait pattern is experimentally manipulated can yield insight into the robustness of the kinematic coupling across the associated joint(s). The aim of this study was to assess the effects on the kinematic coupling between the forefoot, rearfoot and shank during ground contact of running with alteration in foot strike pattern. Twelve subjects ran over-ground using three different foot strike patterns (heel strike, forefoot strike, toe running). Kinematic data were collected of the forefoot, rearfoot and shank, which were modelled as rigid segments. Coupling at the ankle-complex and midfoot joints was assessed using cross-correlation and vector coding techniques. In general good coupling was found between rearfoot frontal plane motion and transverse plane shank rotation regardless of foot strike pattern. Forefoot motion was also strongly coupled with rearfoot frontal plane motion. Subtle differences were noted in the amount of rearfoot eversion transferred into shank internal rotation in the first 10-15% of stance during heel strike running compared to forefoot and toe running, and this was accompanied by small alterations in forefoot kinematics. These findings indicate that during ground contact in running there is strong coupling between the rearfoot and shank via the action of the joints in the ankle-complex. In addition, there was good coupling of both sagittal and transverse plane forefoot with rearfoot frontal plane motion via the action of the midfoot joints.

  14. Motion camera based on a custom vision sensor and an FPGA architecture

    NASA Astrophysics Data System (ADS)

    Arias-Estrada, Miguel

    1998-09-01

    A digital camera for custom focal plane arrays was developed. The camera allows the test and development of analog or mixed-mode arrays for focal plane processing. The camera is used with a custom sensor for motion detection to implement a motion computation system. The custom focal plane sensor detects moving edges at the pixel level using analog VLSI techniques. The sensor communicates motion events using the event-address protocol associated to a temporal reference. In a second stage, a coprocessing architecture based on a field programmable gate array (FPGA) computes the time-of-travel between adjacent pixels. The FPGA allows rapid prototyping and flexible architecture development. Furthermore, the FPGA interfaces the sensor to a compact PC computer which is used for high level control and data communication to the local network. The camera could be used in applications such as self-guided vehicles, mobile robotics and smart surveillance systems. The programmability of the FPGA allows the exploration of further signal processing like spatial edge detection or image segmentation tasks. The article details the motion algorithm, the sensor architecture, the use of the event- address protocol for velocity vector computation and the FPGA architecture used in the motion camera system.

  15. Biomechanical effects of body weight support with a novel robotic walker for over-ground gait rehabilitation.

    PubMed

    Mun, Kyung-Ryoul; Lim, Su Bin; Guo, Zhao; Yu, Haoyong

    2017-02-01

    Body weight support (BWS) promotes better functional outcomes for neurologically challenged patients. Despite the established effectiveness of BWS in gait rehabilitation, the findings on biomechanical effects of BWS training still remain contradictory. Therefore, the aim of this study is to comprehensively investigate the effects of BWS. Using a newly developed robotic walker which can facilitate pelvic motions with an active BWS unit, we compared gait parameters of ten healthy subjects during a 10-m walk with incremental levels of body weight unloading, ranging from 0 to 40 % at 10 % intervals. Significant changes in joint angles and gait temporospatial parameters were observed. In addition, the results of an EMG signal study showed that the intensity of muscle activation was significantly reduced with increasing BWS levels. The reduction was found at the ankle, knee, and hip joints in the sagittal plane as well as at the hip joint in the frontal plane. The results of this study provide an important indication of increased lateral body balance and greater stabilization in sagittal and frontal plane during gait. Our findings provide a better understanding of the biomechanical effects of BWS during gait, which will help guide the gait rehabilitation strategies.

  16. Measurement of passive ankle stiffness in subjects with chronic hemiparesis using a novel ankle robot

    PubMed Central

    Roy, Anindo; Bever, Christopher T.; Forrester, Larry W.; Macko, Richard F.; Hogan, Neville

    2011-01-01

    Our objective in this study was to assess passive mechanical stiffness in the ankle of chronic hemiparetic stroke survivors and to compare it with those of healthy young and older (age-matched) individuals. Given the importance of the ankle during locomotion, an accurate estimate of passive ankle stiffness would be valuable for locomotor rehabilitation, potentially providing a measure of recovery and a quantitative basis to design treatment protocols. Using a novel ankle robot, we characterized passive ankle stiffness both in sagittal and in frontal planes by applying perturbations to the ankle joint over the entire range of motion with subjects in a relaxed state. We found that passive stiffness of the affected ankle joint was significantly higher in chronic stroke survivors than in healthy adults of a similar cohort, both in the sagittal as well as frontal plane of movement, in three out of four directions tested with indistinguishable stiffness values in plantarflexion direction. Our findings are comparable to the literature, thus indicating its plausibility, and, to our knowledge, report for the first time passive stiffness in the frontal plane for persons with chronic stroke and older healthy adults. PMID:21346215

  17. Motion video analysis using planar parallax

    NASA Astrophysics Data System (ADS)

    Sawhney, Harpreet S.

    1994-04-01

    Motion and structure analysis in video sequences can lead to efficient descriptions of objects and their motions. Interesting events in videos can be detected using such an analysis--for instance independent object motion when the camera itself is moving, figure-ground segregation based on the saliency of a structure compared to its surroundings. In this paper we present a method for 3D motion and structure analysis that uses a planar surface in the environment as a reference coordinate system to describe a video sequence. The motion in the video sequence is described as the motion of the reference plane, and the parallax motion of all the non-planar components of the scene. It is shown how this method simplifies the otherwise hard general 3D motion analysis problem. In addition, a natural coordinate system in the environment is used to describe the scene which can simplify motion based segmentation. This work is a part of an ongoing effort in our group towards video annotation and analysis for indexing and retrieval. Results from a demonstration system being developed are presented.

  18. Secondary motion in three-dimensional branching networks

    PubMed Central

    Guha, Abhijit; Pradhan, Kaustav

    2017-01-01

    A major aim of the present work is to understand and thoroughly document the generation, the three-dimensional distribution, and the evolution of the secondary motion as the fluid progresses downstream through a branched network. Six generations (G0-G5) of branches (involving 63 straight portions and 31 bifurcation modules) are computed in one go; such computational challenges are rarely taken in the literature. More than 30 × 106 computational elements are employed for high precision of computed results and fine quality of the flow visualization diagrams. The study of co-planar vis-à-vis non-planar space-filling configurations establishes a quantitative evaluation of the dependence of the fluid dynamics on the three-dimensional arrangement of the same individual branches. As compared to the secondary motion in a simple curved pipe, three distinctive features, viz., the change of shape and size of the flow-cross-section, the division of non-uniform primary flow in a bifurcation module, and repeated switchover from clockwise to anticlockwise curvature and vice versa in the flow path, make the present situation more complex. It is shown that the straight portions in the network, in general, attenuate the secondary motion, while the three-dimensionally complex bifurcation modules generate secondary motion and may alter the number, arrangement, and structure of vortices. A comprehensive picture of the evolution of quantitative flow visualizations of the secondary motion is achieved by constructing contours of secondary velocity v→S, streamwise vorticity ωS, and λ2 iso-surfaces. It is demonstrated, for example, that for in-plane configuration, the vortices on any plane appear in pair (i.e., for each clockwise rotating vortex, there is an otherwise identical anticlockwise vortex), whereas the vortices on a plane for the out-of-plane configuration may be dissimilar, and there may even be an odd number of vortices. We have formulated three new parameters (ES/P,

  19. Secondary motion in three-dimensional branching networks

    NASA Astrophysics Data System (ADS)

    Guha, Abhijit; Pradhan, Kaustav

    2017-06-01

    A major aim of the present work is to understand and thoroughly document the generation, the three-dimensional distribution, and the evolution of the secondary motion as the fluid progresses downstream through a branched network. Six generations (G0-G5) of branches (involving 63 straight portions and 31 bifurcation modules) are computed in one go; such computational challenges are rarely taken in the literature. More than 30 × 106 computational elements are employed for high precision of computed results and fine quality of the flow visualization diagrams. The study of co-planar vis-à-vis non-planar space-filling configurations establishes a quantitative evaluation of the dependence of the fluid dynamics on the three-dimensional arrangement of the same individual branches. As compared to the secondary motion in a simple curved pipe, three distinctive features, viz., the change of shape and size of the flow-cross-section, the division of non-uniform primary flow in a bifurcation module, and repeated switchover from clockwise to anticlockwise curvature and vice versa in the flow path, make the present situation more complex. It is shown that the straight portions in the network, in general, attenuate the secondary motion, while the three-dimensionally complex bifurcation modules generate secondary motion and may alter the number, arrangement, and structure of vortices. A comprehensive picture of the evolution of quantitative flow visualizations of the secondary motion is achieved by constructing contours of secondary velocity | v → S | , streamwise vorticity ω S , and λ 2 iso-surfaces. It is demonstrated, for example, that for in-plane configuration, the vortices on any plane appear in pair (i.e., for each clockwise rotating vortex, there is an otherwise identical anticlockwise vortex), whereas the vortices on a plane for the out-of-plane configuration may be dissimilar, and there may even be an odd number of vortices. We have formulated three new parameters

  20. HELICAL MOTIONS OF FINE-STRUCTURE PROMINENCE THREADS OBSERVED BY HINODE AND IRIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okamoto, Takenori J.; Liu, Wei; Tsuneta, Saku, E-mail: joten.okamoto@nao.ac.jp

    Fine-structure dynamics in solar prominences holds critical clues to understanding their physical nature of significant space-weather implications. We report evidence of rotational motions of horizontal helical threads in two active-region prominences observed by the Hinode and/or Interface Region Imaging Spectrograph satellites at high resolution. In the first event, we found transverse motions of brightening threads at speeds up to 55 km s{sup -1} seen in the plane of the sky. Such motions appeared as sinusoidal space–time trajectories with a typical period of ∼390 s, which is consistent with plane-of-sky projections of rotational motions. Phase delays at different locations suggest themore » propagation of twists along the threads at phase speeds of 90–270 km s{sup -1}. At least 15 episodes of such motions occurred in two days, none associated with an eruption. For these episodes, the plane-of-sky speed is linearly correlated with the vertical travel distance, suggestive of a constant angular speed. In the second event, we found Doppler velocities of 30–40 km s{sup -1} in opposite directions in the top and bottom portions of the prominence, comparable to the plane-of-sky speed. The moving threads have about twice broader line widths than stationary threads. These observations, when taken together, provide strong evidence for rotations of helical prominence threads, which were likely driven by unwinding twists triggered by magnetic reconnection between twisted prominence magnetic fields and ambient coronal fields.« less

  1. Bad splits in bilateral sagittal split osteotomy: systematic review of fracture patterns.

    PubMed

    Steenen, S A; Becking, A G

    2016-07-01

    An unfavourable and unanticipated pattern of the mandibular sagittal split osteotomy is generally referred to as a 'bad split'. Few restorative techniques to manage the situation have been described. In this article, a classification of reported bad split pattern types is proposed and appropriate salvage procedures to manage the different types of undesired fracture are presented. A systematic review was undertaken, yielding a total of 33 studies published between 1971 and 2015. These reported a total of 458 cases of bad splits among 19,527 sagittal ramus osteotomies in 10,271 patients. The total reported incidence of bad split was 2.3% of sagittal splits. The most frequently encountered were buccal plate fractures of the proximal segment (types 1A-F) and lingual fractures of the distal segment (types 2A and 2B). Coronoid fractures (type 3) and condylar neck fractures (type 4) have seldom been reported. The various types of bad split may require different salvage approaches. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  2. [Utility of axial images in an early Alzheimer disease diagnosis support system (VSRAD)].

    PubMed

    Goto, Masami; Aoki, Shigeki; Abe, Osamu; Masumoto, Tomohiko; Watanabe, Yasushi; Satake, Yoshiroh; Nishida, Katsuji; Ino, Kenji; Yano, Keiichi; Iida, Kyohhito; Mima, Kazuo; Ohtomo, Kuni

    2006-09-20

    In recent years, voxel-based morphometry (VBM) has become a popular tool for the early diagnosis of Alzheimer disease. The Voxel-Based Specific Regional Analysis System for Alzheimer's Disease (VSRAD), a VBM system that uses MRI, has been reported to be clinically useful. The able-bodied person database (DB) of VSRAD, which employs sagittal plane imaging, is not suitable for analysis by axial plane imaging. However, axial plane imaging is useful for avoiding motion artifacts from the eyeball. Therefore, we created an able-bodied person DB by axial plane imaging and examined its utility. We also analyzed groups of able-bodied persons and persons with dementia by axial plane imaging and reviewed the validity. After using the DB of axial plane imaging, the Z-score of the intrahippocampal region improved by 8 in 13 instances. In all brains, the Z-score improved by 13 in all instances.

  3. Elastic behavior of a red blood cell with the membrane's nonuniform natural state: equilibrium shape, motion transition under shear flow, and elongation during tank-treading motion.

    PubMed

    Tsubota, Ken-Ichi; Wada, Shigeo; Liu, Hao

    2014-08-01

    Direct numerical simulations of the mechanics of a single red blood cell (RBC) were performed by considering the nonuniform natural state of the elastic membrane. A RBC was modeled as an incompressible viscous fluid encapsulated by an elastic membrane. The in-plane shear and area dilatation deformations of the membrane were modeled by Skalak constitutive equation, while out-of-plane bending deformation was formulated by the spring model. The natural state of the membrane with respect to in-plane shear deformation was modeled as a sphere ([Formula: see text]), biconcave disk shape ([Formula: see text]) and their intermediate shapes ([Formula: see text]) with the nonuniformity parameter [Formula: see text], while the natural state with respect to out-of-plane bending deformation was modeled as a flat plane. According to the numerical simulations, at an experimentally measured in-plane shear modulus of [Formula: see text] and an out-of-plane bending rigidity of [Formula: see text] of the cell membrane, the following results were obtained. (i) The RBC shape at equilibrium was biconcave discoid for [Formula: see text] and cupped otherwise; (ii) the experimentally measured fluid shear stress at the transition between tumbling and tank-treading motions under shear flow was reproduced for [Formula: see text]; (iii) the elongation deformation of the RBC during tank-treading motion from the simulation was consistent with that from in vitro experiments, irrespective of the [Formula: see text] value. Based on our RBC modeling, the three phenomena (i), (ii), and (iii) were mechanically consistent for [Formula: see text]. The condition [Formula: see text] precludes a biconcave discoid shape at equilibrium (i); however, it gives appropriate fluid shear stress at the motion transition under shear flow (ii), suggesting that a combined effect of [Formula: see text] and the natural state with respect to out-of-plane bending deformation is necessary for understanding details of the

  4. Investigation of the rolling motion of a hollow cylinder using a smartphone

    NASA Astrophysics Data System (ADS)

    Puttharugsa, Chokchai; Khemmani, Supitch; Utayarat, Patipan; Luangtip, Wasutep

    2016-09-01

    This paper describes the use of smartphone’s gyroscope sensor to analyse a hollow cylinder rolling down an inclined plane. The smartphone (iPhone 4s) was attached to the end of hollow cylinder and was equipped with the Sensorlog application (Sensorlog app) to record the angular speed of rolling down an inclined plane. The experimental results agree with the theoretical model that is familiar to students for the rolling motion on an inclined plane. Moreover, the coefficients of static friction and kinetic friction were determined to be 0.205 ± 0.011 and 0.178 ± 0.003 from the measurements, respectively. This experiment demonstrated an alternative way to teach the rolling motion in a physics laboratory.

  5. Visual Depth from Motion Parallax and Eye Pursuit

    PubMed Central

    Stroyan, Keith; Nawrot, Mark

    2012-01-01

    A translating observer viewing a rigid environment experiences “motion parallax,” the relative movement upon the observer’s retina of variously positioned objects in the scene. This retinal movement of images provides a cue to the relative depth of objects in the environment, however retinal motion alone cannot mathematically determine relative depth of the objects. Visual perception of depth from lateral observer translation uses both retinal image motion and eye movement. In (Nawrot & Stroyan, 2009, Vision Res. 49, p.1969) we showed mathematically that the ratio of the rate of retinal motion over the rate of smooth eye pursuit mathematically determines depth relative to the fixation point in central vision. We also reported on psychophysical experiments indicating that this ratio is the important quantity for perception. Here we analyze the motion/pursuit cue for the more general, and more complicated, case when objects are distributed across the horizontal viewing plane beyond central vision. We show how the mathematical motion/pursuit cue varies with different points across the plane and with time as an observer translates. If the time varying retinal motion and smooth eye pursuit are the only signals used for this visual process, it is important to know what is mathematically possible to derive about depth and structure. Our analysis shows that the motion/pursuit ratio determines an excellent description of depth and structure in these broader stimulus conditions, provides a detailed quantitative hypothesis of these visual processes for the perception of depth and structure from motion parallax, and provides a computational foundation to analyze the dynamic geometry of future experiments. PMID:21695531

  6. A comparison of lumbopelvic motion patterns and erector spinae behavior between asymptomatic subjects and patients with recurrent low back pain during pain-free periods.

    PubMed

    Sánchez-Zuriaga, Daniel; López-Pascual, Juan; Garrido-Jaén, David; García-Mas, Maria Amparo

    2015-02-01

    The purpose of this study was to determine the patterns of lumbopelvic motion and erector spinae (ES) activity during trunk flexion-extension movements and to compare these patterns between patients with recurrent low back pain (LBP) in their pain-free periods and matched asymptomatic subjects. Thirty subjects participated (15 patients with disc herniation and recurrent LBP in their pain-free periods and 15 asymptomatic control subjects). A 3-dimensional videophotogrammetric system and surface electromyography (EMG) were used to record the angular displacements of the lumbar spine and hip in the sagittal plane and the EMG activity of the ES during standardized trunk flexion-extension cycles. Variables were maximum ranges of spine and hip flexion; percentages of maximum lumbar and hip flexion at the start and end of ES relaxation; average percentages of EMG activity during flexion, relaxation, and extension; and flexion-extension ratio of myoelectrical activity. Recurrent LBP patients during their pain-free period showed significantly greater ES activation both in flexion and extension, with a higher flexion-extension ratio than controls. Maximum ranges of lumbar and hip flexion showed no differences between controls and patients, although patients spent less time with their lumbar spine maximally flexed. This study showed that reduced maximum ranges of motion and absence of ES flexion-relaxation phenomenon were not useful to identify LBP patients in the absence of acute pain. However, these patients showed subtle alterations of their lumbopelvic motion and ES activity patterns, which may have important clinical implications. Copyright © 2015 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.

  7. Effect of Cervical Sagittal Balance on Laminoplasty in Patients With Cervical Myelopathy

    PubMed Central

    Namikawa, Takashi; Matsumura, Akira; Konishi, Sadahiko; Nakamura, Hiroaki

    2017-01-01

    Study Design: Retrospective clinical study. Objective: We evaluated the relationship between cervical sagittal alignment parameters and clinical status in patients with cervical myelopathy and analyzed the effect of cervical sagittal balance on cervical laminoplasty. Methods: Patients with cervical myelopathy (n = 110) who underwent laminoplasty were included in this study. The relationship between cervical sagittal alignment parameters and clinical status was evaluated. The changes in radiographic cervical sagittal parameters and clinical status 2 years after surgery were compared between patients with preoperative C2-7 SVA ≥35 mm (group A) and those with preoperative C2-7 SVA <35 mm (group B). Results: Preoperatively, C2-7 SVA had no correlation with defined health-related quality of life evaluation scores. At 2-year follow-up, the improvement in SF-36 physical component summary was significantly lower in group A than in group B. The postoperative change of C2-7 SVA did not significantly differ in 2 groups. Patients in group A maintained cervical regional balance after laminoplasty but experienced extensive postoperative neck pain. Conclusions: Our patients with a C2-7 SVA of ≥35 mm maintained cervical regional balance after laminoplasty and their improvement in myelopathy was equivalent to that in patients with a C2-7 SVA of <35 mm. However, the patents with a C2-7 SVA of ≥35 mm experienced severe postoperative neck pain. C2-7 SVA is a parameter worth considering because it can lead to poor QOL and axial neck pain after laminoplasty. PMID:28507885

  8. Comparison of different parameters for recording sagittal maxillo mandibular relation using natural head posture: A cephalometric study

    PubMed Central

    Singh, Ashish Kumar; Ganeshkar, Sanjay V.; Mehrotra, Praveen; Bhagchandani, Jitendra

    2013-01-01

    Background: Commonly used parameters for anteroposterior assessment of the jaw relationship includes several analyses such as ANB, NA-Pog, AB-NPog, Wits appraisal, Harvold's unit length difference, Beta angle. Considering the fact that there are several parameters (with different range and values) which account for sagittal relation, and still the published literature for comparisons and correlation of these measurements is scarce. Therefore, the objective of this study was to correlate these values in subjects of Indian origin. Materials and Methods: The sample consisted of fifty adult individuals (age group 18-26 years) with equal number of males and females. The selection criteria included subjects with no previous history of orthodontic and/or orthognathic surgical treatment; orthognathic facial profile; Angle's Class I molar relation; clinical Frankfort Mandibular plane angle FMA of 30±5° and no gross facial asymmetry. The cephalograms were taken in natural head position (NHP). Seven sagittal skeletal parameters were measured in the cephalograms and subjected to statistical evaluation with Wits reading on the true horizontal as reference. A correlation coefficient analysis was done to assess the significance of association between these variables. Results: ANB angle showed statistically significant correlation for the total sample, though the values were insignificant for the individual groups and therefore may not be very accurate. Wits appraisal was seen to have a significant correlation only in the female sample group. Conclusions: If cephalograms cannot be recorded in a NHP, then the best indicator for recording A-P skeletal dimension would be angle AB-NPog, followed by Harvold's unit length difference. However, considering biologic variability, more than one reading should necessarily be used to verify the same. PMID:24987638

  9. Relationship between thoracic hypokyphosis, lumbar lordosis and sagittal pelvic parameters in adolescent idiopathic scoliosis.

    PubMed

    Clément, Jean-Luc; Geoffray, Anne; Yagoubi, Fatima; Chau, Edouard; Solla, Federico; Oborocianu, Ioana; Rampal, Virginie

    2013-11-01

    Sagittal spine and pelvic alignment of adolescent idiopathic scoliosis (AIS) is poorly described in the literature. It generally reports the sagittal alignment with regard to the type of curve and never correlated to the thoracic kyphosis. The objective of this study is to investigate the relationship between thoracic kyphosis, lumbar lordosis and sagittal pelvic parameters in thoracic AIS. Spinal and pelvic sagittal parameters were evaluated on lateral radiographs of 86 patients with thoracic AIS; patients were separated into hypokyphosis group (n = 42) and normokyphosis group (n = 44). Results were statistically analyzed. The lumbar lordosis was lower in the hypokyphosis group, due to the low proximal lordosis. The thoracic kyphosis was not correlated with any pelvic parameters but with the proximal lordosis. The pelvic incidence was correlated with sacral slope, pelvic tilt, lumbar lordosis and highly correlated with distal lumbar lordosis in the two groups. There was a significant linear regression between thoracic kyphosis and proximal lordosis and between pelvic incidence and distal lordosis. We can consider that the proximal part of the lordosis depends on the thoracic kyphosis and the distal part depends on the pelvic incidence. The hypokyphosis in AIS is independent of the pelvic parameters and could be described as a structural parameter, characteristic of the scoliotic deformity.

  10. Robotic application of a dynamic resultant force vector using real-time load-control: simulation of an ideal follower load on Cadaveric L4-L5 segments.

    PubMed

    Bennett, Charles R; Kelly, Brian P

    2013-08-09

    Standard in-vitro spine testing methods have focused on application of isolated and/or constant load components while the in-vivo spine is subject to multiple components that can be resolved into resultant dynamic load vectors. To advance towards more in-vivo like simulations the objective of the current study was to develop a methodology to apply robotically-controlled, non-zero, real-time dynamic resultant forces during flexion-extension on human lumbar motion segment units (MSU) with initial application towards simulation of an ideal follower load (FL) force vector. A proportional-integral-derivative (PID) controller with custom algorithms coordinated the motion of a Cartesian serial manipulator comprised of six axes each capable of position- or load-control. Six lumbar MSUs (L4-L5) were tested with continuously increasing sagittal plane bending to 8 Nm while force components were dynamically programmed to deliver a resultant 400 N FL that remained normal to the moving midline of the intervertebral disc. Mean absolute load-control tracking errors between commanded and experimental loads were computed. Global spinal ranges of motion and sagittal plane inter-body translations were compared to previously published values for non-robotic applications. Mean TEs for zero-commanded force and moment axes were 0.7 ± 0.4N and 0.03 ± 0.02 Nm, respectively. For non-zero force axes mean TEs were 0.8 ± 0.8 N, 1.3 ± 1.6 Nm, and 1.3 ± 1.6N for Fx, Fz, and the resolved ideal follower load vector FL(R), respectively. Mean extension and flexion ranges of motion were 2.6° ± 1.2° and 5.0° ± 1.7°, respectively. Relative vertebral body translations and rotations were very comparable to data collected with non-robotic systems in the literature. The robotically coordinated Cartesian load controlled testing system demonstrated robust real-time load-control that permitted application of a real-time dynamic non-zero load vector during flexion-extension. For single MSU

  11. Effects of Prophylactic Ankle Supports on Vertical Ground Reaction Force During Landing: A Meta-Analysis.

    PubMed

    Niu, Wenxin; Feng, Tienan; Wang, Lejun; Jiang, Chenghua; Zhang, Ming

    2016-03-01

    There has been much debate on how prophylactic ankle supports (PASs) may influence the vertical ground reaction force (vGRF) during landing. Therefore, the primary aims of this meta-analysis were to systematically review and synthesize the effect of PASs on vGRF, and to understand how PASs affect vGRF peaks (F1, F2) and the time from initial contact to peak loading (T1, T2) during landing. Several key databases, including Scopus, Cochrane, Embase, PubMed, ProQuest, Medline, Ovid, Web of Science, and the Physical Activity Index, were used for identifying relevant studies published in English since inception to April 1, 2015. The computerized literature search and cross-referencing the citation list of the articles yielded 3,993 articles. Criteria for inclusion required that 1) the study was conducted on healthy adults; 2) the subject number and trial number were known; 3) the subjects performed landing with and without PAS; 4) the landing movement was in the sagittal plane; 5) the comparable vGRF parameters were reported; and 6) the F1 and F2 must be normalized to the subject's body weight. After the removal of duplicates and irrelevant articles, 6, 6, 15 and 11 studies were respectively pooled for outcomes of F1, T1, F2 and T2. This study found a significantly increased F2 (.03 BW, 95% CI: .001, .05) and decreased T1 (-1.24 ms, 95% CI: -1.77, -.71) and T2 (-3.74 ms, 95% CI: -4.83, -2.65) with the use of a PAS. F1 was not significantly influenced by the PAS. Heterogeneity was present in some results, but there was no evidence of publication bias for any outcome. These changes represented deterioration in the buffering characteristics of the joint. An ideal PAS design should limit the excessive joint motion of ankle inversion, while allowing a normal range of motion, especially in the sagittal plane. Key pointsPAS can effectively protect the ligamentous structure from spraining by providing mechanical support and cutaneous proprioceptive benefits.Using of PAS can

  12. Compression of auditory space during forward self-motion.

    PubMed

    Teramoto, Wataru; Sakamoto, Shuichi; Furune, Fumimasa; Gyoba, Jiro; Suzuki, Yôiti

    2012-01-01

    Spatial inputs from the auditory periphery can be changed with movements of the head or whole body relative to the sound source. Nevertheless, humans can perceive a stable auditory environment and appropriately react to a sound source. This suggests that the inputs are reinterpreted in the brain, while being integrated with information on the movements. Little is known, however, about how these movements modulate auditory perceptual processing. Here, we investigate the effect of the linear acceleration on auditory space representation. Participants were passively transported forward/backward at constant accelerations using a robotic wheelchair. An array of loudspeakers was aligned parallel to the motion direction along a wall to the right of the listener. A short noise burst was presented during the self-motion from one of the loudspeakers when the listener's physical coronal plane reached the location of one of the speakers (null point). In Experiments 1 and 2, the participants indicated which direction the sound was presented, forward or backward relative to their subjective coronal plane. The results showed that the sound position aligned with the subjective coronal plane was displaced ahead of the null point only during forward self-motion and that the magnitude of the displacement increased with increasing the acceleration. Experiment 3 investigated the structure of the auditory space in the traveling direction during forward self-motion. The sounds were presented at various distances from the null point. The participants indicated the perceived sound location by pointing a rod. All the sounds that were actually located in the traveling direction were perceived as being biased towards the null point. These results suggest a distortion of the auditory space in the direction of movement during forward self-motion. The underlying mechanism might involve anticipatory spatial shifts in the auditory receptive field locations driven by afferent signals from

  13. Lumbar contribution to the trunk forward bending and backward return; age-related differences.

    PubMed

    Vazirian, Milad; Shojaei, Iman; Agarwal, Anuj; Bazrgari, Babak

    2017-07-01

    Age-related differences in lumbar contribution to the trunk motion in the sagittal plane were investigated. Sixty individuals between 20-70 years old in five gender-balanced age groups performed forward bending and backward return with slow and fast paces. Individuals older than 50 years old, irrespective of the gender or pace, had smaller lumbar contribution than those younger than this age. The lumbar contribution to trunk motion was also smaller in female participants than male participants, and under fast pace than under the slow pace. Age-related differences in lumbar contributions suggest the synergy between the active and passive lower back tissues is different between those above and under 50 years old, differences that are likely to affect the lower back mechanics. Therefore, detailed modelling should be conducted in future to find the age-related differences in the lower back mechanics for tasks involving large trunk motion. Practitioner Summary: Lumbar contribution to the sagittal trunk motion was observed to be smaller in individuals above 50 years old than those below this age. This could be an indication of a likely change in the synergy between the active and passive lower back tissues, which may disturb the lower back mechanics.

  14. Extensor Tendon Instability Due to Sagittal Band Injury in a Martial Arts Athlete: A Case Report.

    PubMed

    Kochevar, Andrew; Rayan, Ghazi

    2017-03-01

    A Taekwondo participant sustained a hand injury from punching an opponent that resulted in painful instability of the ring finger extensor digitorum communis tendon due to sagittal band damage. His symptoms resolved after reconstructive surgery on the sagittal band (SB) with stabilization of the extensor tendon over the metacarpophalangeal joint.

  15. In-vivo confirmation of the use of the dart thrower's motion during activities of daily living.

    PubMed

    Brigstocke, G H O; Hearnden, A; Holt, C; Whatling, G

    2014-05-01

    The dart thrower's motion is a wrist rotation along an oblique plane from radial extension to ulnar flexion. We report an in-vivo study to confirm the use of the dart thrower's motion during activities of daily living. Global wrist motion in ten volunteers was recorded using a three-dimensional optoelectronic motion capture system, in which digital infra-red cameras track the movement of retro-reflective marker clusters. Global wrist motion has been approximated to the dart thrower's motion when hammering a nail, throwing a ball, drinking from a glass, pouring from a jug and twisting the lid of a jar, but not when combing hair or manipulating buttons. The dart thrower's motion is the plane of global wrist motion used during most activities of daily living. Arthrodesis of the radiocarpal joint instead of the midcarpal joint will allow better wrist function during most activities of daily living by preserving the dart thrower's motion.

  16. Digital anthropomorphic phantoms of non-rigid human respiratory and voluntary body motion for investigating motion correction in emission imaging

    NASA Astrophysics Data System (ADS)

    Könik, Arda; Connolly, Caitlin M.; Johnson, Karen L.; Dasari, Paul; Segars, Paul W.; Pretorius, P. H.; Lindsay, Clifford; Dey, Joyoni; King, Michael A.

    2014-07-01

    The development of methods for correcting patient motion in emission tomography has been receiving increased attention. Often the performance of these methods is evaluated through simulations using digital anthropomorphic phantoms, such as the commonly used extended cardiac torso (XCAT) phantom, which models both respiratory and cardiac motion based on human studies. However, non-rigid body motion, which is frequently seen in clinical studies, is not present in the standard XCAT phantom. In addition, respiratory motion in the standard phantom is limited to a single generic trend. In this work, to obtain a more realistic representation of motion, we developed a series of individual-specific XCAT phantoms, modeling non-rigid respiratory and non-rigid body motions derived from the magnetic resonance imaging (MRI) acquisitions of volunteers. Acquisitions were performed in the sagittal orientation using the Navigator methodology. Baseline (no motion) acquisitions at end-expiration were obtained at the beginning of each imaging session for each volunteer. For the body motion studies, MRI was again acquired only at end-expiration for five body motion poses (shoulder stretch, shoulder twist, lateral bend, side roll, and axial slide). For the respiratory motion studies, an MRI was acquired during free/regular breathing. The magnetic resonance slices were then retrospectively sorted into 14 amplitude-binned respiratory states, end-expiration, end-inspiration, six intermediary states during inspiration, and six during expiration using the recorded Navigator signal. XCAT phantoms were then generated based on these MRI data by interactive alignment of the organ contours of the XCAT with the MRI slices using a graphical user interface. Thus far we have created five body motion and five respiratory motion XCAT phantoms from the MRI acquisitions of six healthy volunteers (three males and three females). Non-rigid motion exhibited by the volunteers was reflected in both respiratory

  17. Comparison of sagittal parameters for anterior cervical discectomy and fusion, hybrid surgery, and total disc replacement for three levels of cervical spondylosis.

    PubMed

    Hung, Che-Wei; Wu, Ming-Fang; Yu, Gwo-Fane; Ko, Chin-Chu; Kao, Cheng-Hsing

    2018-05-01

    To analyze sagittal balance of the cervical spine after three operative methods for three consecutive levels. A retrospective case selection and observational study was performed from December 2012 to December 2015: 20 patients underwent anterior cervical discectomy and fusion, 22 patients underwent hybrid surgery (HS), and 20 patients underwent total disc replacement (TDR). Perioperative parameters, clinical outcomes, and preoperative and postoperative sagittal parameters were recorded. Clinical outcomes improved. Fusion and hybrid groups were associated with more postoperative focal lordosis than the TDR group (no significant difference). The postoperative C2-7 sagittal vertical axis (SVA) was greater in the TDR group (no significant difference). In the fusion group, the postoperative C2-7 SVA was highly correlated with the preoperative C2-7 SVA and postoperative C7 slope (C7SL). Postoperative C2-7 lordosis (C2-7L) was highly correlated with the preoperative C2-7 SVA and preoperative and postoperative C7SL. In the hybrid group, postoperative C2-7L was highly correlated with preoperative C2-7L, preoperative and postoperative focal lordosis, and C7SL. In the TDR group, the postoperative C2-7 SVA was highly correlated with the preoperative C2-7 SVA and postoperative C7 slope. The postoperative C2-7 SVA was also negatively correlated with postoperative C2-7L and focal lordosis. Postoperative C2-7L was highly correlated with postoperative focal lordosis. For three or more levels of cervical degenerative disease, good clinical outcomes can be achieved. TDR may not be a good choice for large preoperative C2-7 SVA. HS provides good cervical range of motion and restores cervical lordosis and C2-7 SVA. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Biomechanical Comparison of Robotically Applied Pure Moment, Ideal Follower Load, and Novel Trunk Weight Loading Protocols on L4-L5 Cadaveric Segments during Flexion-Extension.

    PubMed

    Bennett, Charles R; DiAngelo, Denis J; Kelly, Brian P

    2015-01-01

    Extremely few in-vitro biomechanical studies have incorporated shear loads leaving a gap for investigation, especially when applied in combination with compression and bending under dynamic conditions. The objective of this study was to biomechanically compare sagittal plane application of two standard protocols, pure moment (PM) and follower load (FL), with a novel trunk weight (TW) loading protocol designed to induce shear in combination with compression and dynamic bending in a neutrally potted human cadaveric L4-L5 motion segment unit (MSU) model. A secondary objective and novelty of the current study was the application of all three protocols within the same testing system serving to reduce artifacts due to testing system variability. Six L4-L5 segments were tested in a Cartesian load controlled system in flexion-extension to 8Nm under PM, simulated ideal 400N FL, and vertically oriented 400N TW loading protocols. Comparison metrics used were rotational range of motion (RROM), flexibility, neutral zone (NZ) range of motion, and L4 vertebral body displacements. Significant differences in vertebral body translations were observed with different initial force applications but not with subsequent bending moment application. Significant reductions were observed in combined flexion-extension RROM, in flexibility during extension, and in NZ region flexibility with the TW loading protocol as compared to PM loading. Neutral zone ranges of motion were not different between all protocols. The combined compression and shear forces applied across the spinal joint in the trunk weight protocol may have a small but significantly increased stabilizing effect on segment flexibility and kinematics during sagittal plane flexion and extension.

  19. Biomechanical Comparison of Robotically Applied Pure Moment, Ideal Follower Load, and Novel Trunk Weight Loading Protocols on L4-L5 Cadaveric Segments during Flexion-Extension

    PubMed Central

    Bennett, Charles R.; DiAngelo, Denis J.

    2015-01-01

    Background Extremely few in-vitro biomechanical studies have incorporated shear loads leaving a gap for investigation, especially when applied in combination with compression and bending under dynamic conditions. The objective of this study was to biomechanically compare sagittal plane application of two standard protocols, pure moment (PM) and follower load (FL), with a novel trunk weight (TW) loading protocol designed to induce shear in combination with compression and dynamic bending in a neutrally potted human cadaveric L4-L5 motion segment unit (MSU) model. A secondary objective and novelty of the current study was the application of all three protocols within the same testing system serving to reduce artifacts due to testing system variability. Methods Six L4-L5 segments were tested in a Cartesian load controlled system in flexion-extension to 8Nm under PM, simulated ideal 400N FL, and vertically oriented 400N TW loading protocols. Comparison metrics used were rotational range of motion (RROM), flexibility, neutral zone (NZ) range of motion, and L4 vertebral body displacements. Results Significant differences in vertebral body translations were observed with different initial force applications but not with subsequent bending moment application. Significant reductions were observed in combined flexion-extension RROM, in flexibility during extension, and in NZ region flexibility with the TW loading protocol as compared to PM loading. Neutral zone ranges of motion were not different between all protocols. Conclusions The combined compression and shear forces applied across the spinal joint in the trunk weight protocol may have a small but significantly increased stabilizing effect on segment flexibility and kinematics during sagittal plane flexion and extension. PMID:26273551

  20. Relative mobility of the pelvis and spine during trunk axial rotation in chronic low back pain patients: A case-control study

    PubMed Central

    Ibuki, Satoko; Ichihashi, Noriaki

    2017-01-01

    Background Trunk axial rotation is a risk factor for chronic low back pain (CLBP). The characteristics of rotational mobility in the pelvis and spine among CLBP patients are not fully understood. Purpose The purpose of this study was to examine three-dimensional kinematic changes, and to compare the differences of rotational mobility and coupled motion, in patients with and without CLBP. Methods Fifteen patients with CLBP and 15 age and sex matched healthy subjects participated in this study. Each subject performed trunk rotation to maximum range of motion (ROM) in a standing position. The kinematics data was collected using a three-dimensional motion analysis system. The outcomes measured were the rotational ROM and the spine/pelvis ratio (SPR) in transvers plane at both maximum and 50% rotation position. The coupled angles in sagittal and frontal planes were also measured. Results No significant differences in rotational ROM of the thorax, pelvis, and spine were observed between two groups at maximum rotation position. However, there was a significant interaction between groups and rotational ROM of pelvis and spine (F = 4.57, p = 0.04), and the SPR in CLBP patients was significantly greater than that of the healthy subjects (CLBP; 0.50 ± 0.10 Control; 0.41 ± 0.12, p = 0.04). The results at 50% rotation position were similar to that at maximum rotation. This indicates a relative increase in spinal rotation in the CLBP patients during trunk rotation. Moreover, the CLBP patients exhibited a significantly higher anterior tilt of the pelvis and extension of the spine in the sagittal plane coupled with rotation. Conclusions CLBP patients had relative hyper rotational mobility of the spine as well as excessive spinal extension coupled with trunk rotation. These results suggest that uncoordinated trunk rotation might be a functional failure associated with CLBP. PMID:29040298

  1. Relative mobility of the pelvis and spine during trunk axial rotation in chronic low back pain patients: A case-control study.

    PubMed

    Taniguchi, Masashi; Tateuchi, Hiroshige; Ibuki, Satoko; Ichihashi, Noriaki

    2017-01-01

    Trunk axial rotation is a risk factor for chronic low back pain (CLBP). The characteristics of rotational mobility in the pelvis and spine among CLBP patients are not fully understood. The purpose of this study was to examine three-dimensional kinematic changes, and to compare the differences of rotational mobility and coupled motion, in patients with and without CLBP. Fifteen patients with CLBP and 15 age and sex matched healthy subjects participated in this study. Each subject performed trunk rotation to maximum range of motion (ROM) in a standing position. The kinematics data was collected using a three-dimensional motion analysis system. The outcomes measured were the rotational ROM and the spine/pelvis ratio (SPR) in transvers plane at both maximum and 50% rotation position. The coupled angles in sagittal and frontal planes were also measured. No significant differences in rotational ROM of the thorax, pelvis, and spine were observed between two groups at maximum rotation position. However, there was a significant interaction between groups and rotational ROM of pelvis and spine (F = 4.57, p = 0.04), and the SPR in CLBP patients was significantly greater than that of the healthy subjects (CLBP; 0.50 ± 0.10 Control; 0.41 ± 0.12, p = 0.04). The results at 50% rotation position were similar to that at maximum rotation. This indicates a relative increase in spinal rotation in the CLBP patients during trunk rotation. Moreover, the CLBP patients exhibited a significantly higher anterior tilt of the pelvis and extension of the spine in the sagittal plane coupled with rotation. CLBP patients had relative hyper rotational mobility of the spine as well as excessive spinal extension coupled with trunk rotation. These results suggest that uncoordinated trunk rotation might be a functional failure associated with CLBP.

  2. Kinematic model for the space-variant image motion of star sensors under dynamical conditions

    NASA Astrophysics Data System (ADS)

    Liu, Chao-Shan; Hu, Lai-Hong; Liu, Guang-Bin; Yang, Bo; Li, Ai-Jun

    2015-06-01

    A kinematic description of a star spot in the focal plane is presented for star sensors under dynamical conditions, which involves all necessary parameters such as the image motion, velocity, and attitude parameters of the vehicle. Stars at different locations of the focal plane correspond to the slightly different orientation and extent of motion blur, which characterize the space-variant point spread function. Finally, the image motion, the energy distribution, and centroid extraction are numerically investigated using the kinematic model under dynamic conditions. A centroid error of eight successive iterations <0.002 pixel is used as the termination criterion for the Richardson-Lucy deconvolution algorithm. The kinematic model of a star sensor is useful for evaluating the compensation algorithms of motion-blurred images.

  3. Alphabet Soup: Sagittal Balance Correction Osteotomies of the Spine-What Radiologists Should Know.

    PubMed

    Takahashi, T; Kainth, D; Marette, S; Polly, D

    2018-04-01

    Global sagittal malalignment has been demonstrated to have correlation with clinical symptoms and is a key component to be restored in adult spinal deformity. In this article, various types of sagittal balance-correction osteotomies are reviewed primarily on the basis of the 3 most commonly used procedures: Smith-Petersen osteotomy, pedicle subtraction osteotomy, and vertebral column resection. Familiarity with the expected imaging appearance and commonly encountered complications seen on postoperative imaging studies following correction osteotomies is crucial for accurate image interpretation. © 2018 by American Journal of Neuroradiology.

  4. Video Analysis of Muscle Motion

    ERIC Educational Resources Information Center

    Foster, Boyd

    2004-01-01

    In this article, the author discusses how video cameras can help students in physical education and sport science classes successfully learn and present anatomy and kinesiology content at levels. Video analysis of physical activity is an excellent way to expand student knowledge of muscle location and function, planes and axes of motion, and…

  5. Super-resolution reconstruction in frequency, image, and wavelet domains to reduce through-plane partial voluming in MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gholipour, Ali, E-mail: ali.gholipour@childrens.harvard.edu; Afacan, Onur; Scherrer, Benoit

    Purpose: To compare and evaluate the use of super-resolution reconstruction (SRR), in frequency, image, and wavelet domains, to reduce through-plane partial voluming effects in magnetic resonance imaging. Methods: The reconstruction of an isotropic high-resolution image from multiple thick-slice scans has been investigated through techniques in frequency, image, and wavelet domains. Experiments were carried out with thick-slice T2-weighted fast spin echo sequence on the Academic College of Radiology MRI phantom, where the reconstructed images were compared to a reference high-resolution scan using peak signal-to-noise ratio (PSNR), structural similarity image metric (SSIM), mutual information (MI), and the mean absolute error (MAE) ofmore » image intensity profiles. The application of super-resolution reconstruction was then examined in retrospective processing of clinical neuroimages of ten pediatric patients with tuberous sclerosis complex (TSC) to reduce through-plane partial voluming for improved 3D delineation and visualization of thin radial bands of white matter abnormalities. Results: Quantitative evaluation results show improvements in all evaluation metrics through super-resolution reconstruction in the frequency, image, and wavelet domains, with the highest values obtained from SRR in the image domain. The metric values for image-domain SRR versus the original axial, coronal, and sagittal images were PSNR = 32.26 vs 32.22, 32.16, 30.65; SSIM = 0.931 vs 0.922, 0.924, 0.918; MI = 0.871 vs 0.842, 0.844, 0.831; and MAE = 5.38 vs 7.34, 7.06, 6.19. All similarity metrics showed high correlations with expert ranking of image resolution with MI showing the highest correlation at 0.943. Qualitative assessment of the neuroimages of ten TSC patients through in-plane and out-of-plane visualization of structures showed the extent of partial voluming effect in a real clinical scenario and its reduction using SRR. Blinded expert evaluation of image

  6. Super-resolution reconstruction in frequency, image, and wavelet domains to reduce through-plane partial voluming in MRI

    PubMed Central

    Gholipour, Ali; Afacan, Onur; Aganj, Iman; Scherrer, Benoit; Prabhu, Sanjay P.; Sahin, Mustafa; Warfield, Simon K.

    2015-01-01

    Purpose: To compare and evaluate the use of super-resolution reconstruction (SRR), in frequency, image, and wavelet domains, to reduce through-plane partial voluming effects in magnetic resonance imaging. Methods: The reconstruction of an isotropic high-resolution image from multiple thick-slice scans has been investigated through techniques in frequency, image, and wavelet domains. Experiments were carried out with thick-slice T2-weighted fast spin echo sequence on the Academic College of Radiology MRI phantom, where the reconstructed images were compared to a reference high-resolution scan using peak signal-to-noise ratio (PSNR), structural similarity image metric (SSIM), mutual information (MI), and the mean absolute error (MAE) of image intensity profiles. The application of super-resolution reconstruction was then examined in retrospective processing of clinical neuroimages of ten pediatric patients with tuberous sclerosis complex (TSC) to reduce through-plane partial voluming for improved 3D delineation and visualization of thin radial bands of white matter abnormalities. Results: Quantitative evaluation results show improvements in all evaluation metrics through super-resolution reconstruction in the frequency, image, and wavelet domains, with the highest values obtained from SRR in the image domain. The metric values for image-domain SRR versus the original axial, coronal, and sagittal images were PSNR = 32.26 vs 32.22, 32.16, 30.65; SSIM = 0.931 vs 0.922, 0.924, 0.918; MI = 0.871 vs 0.842, 0.844, 0.831; and MAE = 5.38 vs 7.34, 7.06, 6.19. All similarity metrics showed high correlations with expert ranking of image resolution with MI showing the highest correlation at 0.943. Qualitative assessment of the neuroimages of ten TSC patients through in-plane and out-of-plane visualization of structures showed the extent of partial voluming effect in a real clinical scenario and its reduction using SRR. Blinded expert evaluation of image resolution in

  7. Super-resolution reconstruction in frequency, image, and wavelet domains to reduce through-plane partial voluming in MRI.

    PubMed

    Gholipour, Ali; Afacan, Onur; Aganj, Iman; Scherrer, Benoit; Prabhu, Sanjay P; Sahin, Mustafa; Warfield, Simon K

    2015-12-01

    To compare and evaluate the use of super-resolution reconstruction (SRR), in frequency, image, and wavelet domains, to reduce through-plane partial voluming effects in magnetic resonance imaging. The reconstruction of an isotropic high-resolution image from multiple thick-slice scans has been investigated through techniques in frequency, image, and wavelet domains. Experiments were carried out with thick-slice T2-weighted fast spin echo sequence on the Academic College of Radiology MRI phantom, where the reconstructed images were compared to a reference high-resolution scan using peak signal-to-noise ratio (PSNR), structural similarity image metric (SSIM), mutual information (MI), and the mean absolute error (MAE) of image intensity profiles. The application of super-resolution reconstruction was then examined in retrospective processing of clinical neuroimages of ten pediatric patients with tuberous sclerosis complex (TSC) to reduce through-plane partial voluming for improved 3D delineation and visualization of thin radial bands of white matter abnormalities. Quantitative evaluation results show improvements in all evaluation metrics through super-resolution reconstruction in the frequency, image, and wavelet domains, with the highest values obtained from SRR in the image domain. The metric values for image-domain SRR versus the original axial, coronal, and sagittal images were PSNR = 32.26 vs 32.22, 32.16, 30.65; SSIM = 0.931 vs 0.922, 0.924, 0.918; MI = 0.871 vs 0.842, 0.844, 0.831; and MAE = 5.38 vs 7.34, 7.06, 6.19. All similarity metrics showed high correlations with expert ranking of image resolution with MI showing the highest correlation at 0.943. Qualitative assessment of the neuroimages of ten TSC patients through in-plane and out-of-plane visualization of structures showed the extent of partial voluming effect in a real clinical scenario and its reduction using SRR. Blinded expert evaluation of image resolution in resampled out-of-plane

  8. Reliability and accuracy of a goniometer mobile device application for video measurement of the functional movement screen deep squat test.

    PubMed

    Krause, David A; Boyd, Michael S; Hager, Allison N; Smoyer, Eric C; Thompson, Anthony T; Hollman, John H

    2015-02-01

    The squat is a fundamental movement of many athletic and daily activities. Methods to clinically assess the squat maneuver range from simple observation to the use of sophisticated equipment. The purpose of this study was to examine the reliability of Coach's Eye (TechSmith Corp), a 2-dimensional (2D) motion analysis mobile device application (app), for assessing maximal sagittal plane hip, knee, and ankle motion during a functional movement screen deep squat, and to compare range of motion values generated by it to those from a Vicon (Vicon Motion Systems Ltd) 3-dimensional (3D) motion analysis system. Twenty-six healthy subjects performed three functional movement screen deep squats recorded simultaneously by both the app (on an iPad [Apple Inc]) and the 3D motion analysis system. Joint angle data were calculated with Vicon Nexus software (Vicon Motion Systems Ltd). The app video was analyzed frame by frame to determine, and freeze on the screen, the deepest position of the squat. With a capacitive stylus reference lines were then drawn on the iPad screen to determine joint angles. Procedures were repeated with approximately 48 hours between sessions. Test-retest intrarater reliability (ICC3,1) for the app at the hip, knee, and ankle was 0.98, 0.98, and 0.79, respectively. Minimum detectable change was hip 6°, knee 6°, and ankle 7°. Hip joint angles measured with the 2D app exceeded measurements obtained with the 3D motion analysis system by approximately 40°. Differences at the knee and ankle were of lower magnitude, with mean differences of 5° and 3°, respectively. Bland-Altman analysis demonstrated a systematic bias in the hip range-of-motion measurement. No such bias was demonstrated at the knee or ankle. The 2D app demonstrated excellent reliability and appeared to be a responsive means to assess for clinical change, with minimum detectable change values ranging from 6° to 7°. These results also suggest that the 2D app may be used as an alternative

  9. Apparent motion determined by surface layout not by disparity or three-dimensional distance.

    PubMed

    He, Z J; Nakayama, K

    1994-01-13

    The most meaningful events ecologically, including the motion of objects, occur in relation to or on surfaces. We run along the ground, cars travel on roads, balls roll across lawns, and so on. Even though there are other motions, such as flying of birds, it is likely that motion along surfaces is more frequent and more significant biologically. To examine whether events occurring in relation to surfaces have a preferred status in terms of visual representation, we asked whether the phenomenon of apparent motion would show a preference for motion attached to surfaces. We used a competitive three-dimensional motion paradigm and found that there is a preference to see motion between tokens placed within the same disparity as opposed to different planes. Supporting our surface-layout hypothesis, the effect of disparity was eliminated either by slanting the tokens so that they were all seen within the same surface plane or by inserting a single slanted background surface upon which the tokens could rest. Additionally, a highly curved stereoscopic surface led to the perception of a more circuitous motion path defined by that surface, instead of the shortest path in three-dimensional space.

  10. Influence of lumbar lordosis restoration on thoracic curve and sagittal position in lumbar degenerative kyphosis patients.

    PubMed

    Jang, Jee-Soo; Lee, Sang-Ho; Min, Jun-Hong; Maeng, Dae Hyeon

    2009-02-01

    A retrospective study. To determine postsurgical correlations between thoracic and lumbar sagittal curves in lumbar degenerative kyphosis (LDK) and to determine predictability of spontaneous correction of thoracic curve and sacral angle after surgical restoration of lumbar lordosis and fusion. To our knowledge, there are only a limited number of articles about the relationship between thoracic and lumbar curve in sagittal thoracic compensated LDK. Retrospective review of 53 consecutive patients treated with combined anterior and posterior spinal arthrodesis. We included patients with sagittal thoracic compensated LDK caused by sagittal imbalance in this study. Total lumbar lordosis, thoracic kyphosis, sacral slope, and C7 plumb line were measured on the pre- and postoperative whole spine lateral views. Postoperative changes in thoracic kyphosis, sacral slope, and C7 plumb line according to the surgical lumbar lordosis restoration were measured and evaluated. The mean preoperative sagittal imbalance by plumb line was 78.3 mm (+/-76.5); this improved to 13.6 mm (+/-25) after surgery (P < 0.0001). Mean lumbar lordosis was 9.4 degrees (+/-19.2) before surgery and increased to 38.4 degrees (+/-13.1) at follow-up (P < 0.0001). Mean thoracic kyphosis was 1.1 degrees (+/-12.7) before surgery and increased to 17.6 degrees (+/-12.2) at follow-up (P < 0.0001). Significant preoperative correlations existed between kyphosis and lordosis (r = 0.772, P < 0.0001) and between lordosis and sacral slope (r = 0.785, P < 0.0001). Postoperative lumbar lordosis is correlated to thoracic kyphosis increase (r = 0.620, P < 0.0001). Postoperative lumbar lordosis is correlated to sacral slope increase (r = 0.722, P < 0.0001). Reciprocal relationship exists between lumbar lordosis and thoracic kyphosis in sagittal thoracic compensated LDK. Surgical restoration of lumbar lordosis for LDK brings about high level of statistical correlation to thoracic kyphosis improvement. At the same time, the

  11. Finding the Acceleration and Speed of a Light-Emitting Object on an Inclined Plane with a Smartphone Light Sensor

    ERIC Educational Resources Information Center

    Kapucu, Serkan

    2017-01-01

    This study investigates how the acceleration and speed of a light-emitting object on an inclined plane may be determined using a smartphone's light sensor. A light-emitting object was released from the top of an inclined plane and its illuminance values were detected by a smartphone's light sensor during its subsequent motion down the plane. Using…

  12. Gait analysis and functional outcome in patients after Lisfranc injury treatment.

    PubMed

    van Hoeve, S; Stollenwerck, G; Willems, P; Witlox, M A; Meijer, K; Poeze, M

    2017-07-18

    Lisfranc injuries involve any bony or ligamentous disruption of the tarsometatarsal joint. Outcome results after treatment are mainly evaluated using patient-reported outcome measures (PROM), physical examination and radiographic findings. Less is known about the kinematics during gait. Nineteen patients (19 feet) treated for Lisfranc injury were recruited. Patients with conservative treatment and surgical treatment consisting of open reduction and internal fixation (ORIF) or primary arthrodesis were included. PROM, radiographic findings and gait analysis using the Oxford Foot Model (OFM) were analysed. Results were compared with twenty-one healthy subjects (31 feet). Multivariable logistic regression was used to determine factors influencing outcome. Patients treated for Lisfranc injury had a significantly lower walking speed than healthy subjects (P<0.001). There was a significant difference between the two groups regarding the range of motion (ROM) in the sagittal plane (flexion-extension) in the midfoot during the push-off phase (p<0.001). The ROM in the sagittal plane was significantly correlated with the AOFAS midfoot score (r 2 =0.56, p=0.012), FADI (r 2 =0.47, p=0.043) and the SF-36-physical impairment score (r 2 =0.60, p=0.007) but not with radiographic parameters for quality of reduction. In a multivariable analysis, the best explanatory factors were ROM in the sagittal plane during the push-off phase (β=0.707, p=0.001), stability (β=0.423, p=0.028) and BMI (β=-0.727 p=<0.001). This prediction model explained 87% of patient satisfaction. This study showed that patients treated for Lisfranc injury had significantly lower walking speed and significantly lower flexion/extension in the midfoot than healthy subjects. The ROM in these patients was significantly correlated with PROM, but not with radiographic quality of reduction. Most important satisfaction predictors were BMI, ROM in the sagittal plane during the push-off phase and fracture stability

  13. In vitro kinematic measurements of the patellar tendon in two different types of posterior-stabilized total knee arthroplasties.

    PubMed

    Zhu, Zhonglin; Ding, Hui; Dang, Xiao; Tang, Jing; Zhou, Yixin; Wang, Guangzhi

    2010-01-01

    Fixed-bearing posterior-stabilized (PS) total knee arthroplasty (TKA) has been used in Asian countries for several years, but few studies have investigated differences in the kinematic properties of the patellar tendon after standard PS TKA as compared to high-flex PS TKA. To quantify the in vitro three-dimensional (3D) kinematics of the patellar tendon during passive high flexion and full extension before and after two different types of PS TKAs. Six fresh-frozen cadaveric knees were tested under the following conditions: the unaltered state, status-post traditional PS prostheses (Simth-nephew GENESIS II) replacement, and status-post high-flexion PS prostheses replacement. The soft tissue around the knee and the quadriceps muscle were preserved, then tested under the load of a specific weight in an Oxford knee rig. We designed a specialized rigid body with four active markers fixed to each bone to track the 3D passive motion of the cadaveric knees. Flexion and extension was controlled by the knee rig and captured by an Optotrak Certus high precision optical tracking system. The attachment sites of the patellar tendon were registered as virtual markers to calculate the 3D kinematics. The patellar tendon of the unaltered knee and both TKA knees showed similar deformation. We found the length of the patellar tendon changed significantly during a motion from full extension to 30°, but there was no significant change in length while undergoing a motion from 30° to full flexion. Both the sagittal plane and coronal plane angles of the patellar tendon decreased after PS TKAs. There was no significant difference in patellar tendon kinematics between the two types of PS TKAs. We believe the changes observed in the sagittal plane and coronal plane angles of the patellar tendon after PS TKAs may influence the extensor mechanism and be an important cause of patella-femoral complications. These data may be used to assess patella-femoral complications after surgery so as to

  14. Evaluation of the reproducibility of lung motion probability distribution function (PDF) using dynamic MRI.

    PubMed

    Cai, Jing; Read, Paul W; Altes, Talissa A; Molloy, Janelle A; Brookeman, James R; Sheng, Ke

    2007-01-21

    Treatment planning based on probability distribution function (PDF) of patient geometries has been shown a potential off-line strategy to incorporate organ motion, but the application of such approach highly depends upon the reproducibility of the PDF. In this paper, we investigated the dependences of the PDF reproducibility on the imaging acquisition parameters, specifically the scan time and the frame rate. Three healthy subjects underwent a continuous 5 min magnetic resonance (MR) scan in the sagittal plane with a frame rate of approximately 10 f s-1, and the experiments were repeated with an interval of 2 to 3 weeks. A total of nine pulmonary vessels from different lung regions (upper, middle and lower) were tracked and the dependences of their displacement PDF reproducibility were evaluated as a function of scan time and frame rate. As results, the PDF reproducibility error decreased with prolonged scans and appeared to approach equilibrium state in subjects 2 and 3 within the 5 min scan. The PDF accuracy increased in the power function with the increase of frame rate; however, the PDF reproducibility showed less sensitivity to frame rate presumably due to the randomness of breathing which dominates the effects. As the key component of the PDF-based treatment planning, the reproducibility of the PDF affects the dosimetric accuracy substantially. This study provides a reference for acquiring MR-based PDF of structures in the lung.

  15. Geometrical Series and Phase Space in a Finite Oscillatory Motion

    ERIC Educational Resources Information Center

    Mareco, H. R. Olmedo

    2006-01-01

    This article discusses some interesting physical properties of oscillatory motion of a particle on two joined inclined planes. The geometrical series demonstrates that the particle will oscillate during a finite time. Another detail is the converging path to the origin of the phase space. Due to its simplicity, this motion may be used as a…

  16. The effect of age and speed on foot and ankle kinematics assessed using a 4-segment foot model

    PubMed Central

    van Hoeve, Sander; Leenstra, Bernard; Willems, Paul; Poeze, Martijn; Meijer, Kenneth

    2017-01-01

    Abstract Background: The effects of age and speed on foot and ankle kinematics in gait studies using foot models are not fully understood, whereas this can have significant influence. We analyzed these variables with the 4-segment Oxford foot model. Methods: Twenty-one healthy subjects (aged 20–65 years) were recruited for gait analysis. The effect of speed on foot and ankle kinematics was assessed by comparing results during slow walking and fast walking. To assess the effect of age, a group of 13 healthy young adults (aged 20–24 years) were compared with a group of 8 older adults (aged 53–65 years). Also, the interaction between age and speed was analyzed. Results: Regarding speed, there was a significant difference between forefoot/hindfoot motion in the sagittal plane (flexion/extension) during both loading- and push-off phase (P = .004, P < .001). Between hindfoot/tibia, there was a significant difference for all parameters except for motion in the sagittal plane (flexion/extension) during push-off phase (P = .5). Age did not significantly influence kinematics. There was no interaction between age and speed. Conclusion: Our analysis found that speed significantly influenced the kinematic outcome parameters. This was more pronounced in the ankle joint. In contrast, no significant differences were found between younger and older healthy subjects. PMID:28858109

  17. The rolling motion of an eccentrically loaded wheel

    NASA Astrophysics Data System (ADS)

    Theron, W. F. D.

    2000-09-01

    This article discusses the rolling motion on a rough plane of a wheel whose center of mass does not coincide with the axis; for example, when a heavy particle is fixed to the rim of a rigid hoop. In cases with large eccentricity, the resulting motion is surprisingly complex, with four phases being identified, namely rolling (without slipping), spinning, skidding, and "hopping," by which is meant that the wheel actually leaves the plane. The main result of this analysis is the identification of the conditions that are required for hopping to occur. A second result is that faster than gravity accelerations occur when the mass of the particle is greater than the mass of the hoop. Massless hoops are briefly discussed as a special case of the general results.

  18. Sagittal balance, a useful tool for neurosurgeons?

    PubMed

    Villard, Jimmy; Ringel, Florian; Meyer, Bernhard

    2014-01-01

    New instrumentation techniques have made any correction of the spinal architecture possible. Sagittal balance has been described as an important parameter for assessing spinal deformity in the early 1970s, but over the last decade its importance has grown with the published results in terms of overall quality of life and fusion rate. Up until now, most of the studies have concentrated on spinal deformity surgery, but its use in the daily neurosurgery practice remains uncertain and may warrant further studies.

  19. A superellipsoid-plane model for simulating foot-ground contact during human gait.

    PubMed

    Lopes, D S; Neptune, R R; Ambrósio, J A; Silva, M T

    2016-01-01

    Musculoskeletal models and forward dynamics simulations of human movement often include foot-ground interactions, with the foot-ground contact forces often determined using a constitutive model that depends on material properties and contact kinematics. When using soft constraints to model the foot-ground interactions, the kinematics of the minimum distance between the foot and planar ground needs to be computed. Due to their geometric simplicity, a considerable number of studies have used point-plane elements to represent these interacting bodies, but few studies have provided comparisons between point contact elements and other geometrically based analytical solutions. The objective of this work was to develop a more general-purpose superellipsoid-plane contact model that can be used to determine the three-dimensional foot-ground contact forces. As an example application, the model was used in a forward dynamics simulation of human walking. Simulation results and execution times were compared with a point-like viscoelastic contact model. Both models produced realistic ground reaction forces and kinematics with similar computational efficiency. However, solving the equations of motion with the surface contact model was found to be more efficient (~18% faster), and on average numerically ~37% less stiff. The superellipsoid-plane elements are also more versatile than point-like elements in that they allow for volumetric contact during three-dimensional motions (e.g. rotating, rolling, and sliding). In addition, the superellipsoid-plane element is geometrically accurate and easily integrated within multibody simulation code. These advantages make the use of superellipsoid-plane contact models in musculoskeletal simulations an appealing alternative to point-like elements.

  20. An Assessment of Correlation between Dermatoglyphic Patterns and Sagittal Skeletal Discrepancies

    PubMed Central

    Philip, Biju; Madathody, Deepika; Mathew, Manu; Paul, Jose; Dlima, Johnson Prakash

    2017-01-01

    Introduction Investigators over years have been fascinated by dermatoglyphic patterns which has led to the development of dermatoglyphics as a science with numerous applications in various fields other than being the best and most widely used method for personal identification. Aim To assess the correlation between dermatoglyphic patterns and sagittal skeletal discrepancies. Materials and Methods A total of 180 patients, aged 18-40 years, were selected from those who attended the outpatient clinic of the Deparment of Orthodontics and Dentofacial Orthopedics, Mar Baselios Dental College, Kothamangalam, Kerala, India. The fingerprints of both hands were taken by ink and stamp method after proper hand washing. The patterns of arches, loops and whorls in fingerprints were assessed. The total ridge count was also evaluated. Data was also sent to the fingerprint experts for expert evaluation. The sagittal jaw relation was determined from the patient’s lateral cephalogram. The collected data was then statistically analyzed using Chi-square tests, ANOVA and Post-hoc tests and a Multinomial regression prediction was also done. Results A significant association was observed between the dermatoglyphic pattern exhibited by eight fingers and the sagittal skeletal discrepancies (p<0.05). An increased distribution of whorl pattern was observed in the skeletal Class II with maxillary excess group and skeletal Class II with mandibular deficiency group while an increased distribution of loop pattern was seen in the skeletal Class III with mandibular excess group and skeletal Class III with maxillary deficiency group. Higher mean of total ridge count was also seen in the groups of skeletal Class II with maxillary excess and skeletal Class II with mandibular deficiency. Multinomial regression predicting skeletal pattern with respect to the fingerprint pattern showed that the left thumb impression fits the best model for predicting the skeletal pattern. Conclusion There was a

  1. Optimal feedback strategies for pursuit-evasion and interception in a plane

    NASA Technical Reports Server (NTRS)

    Rajan, N.; Ardema, M. D.

    1983-01-01

    Variable-speed pursuit-evasion and interception for two aircraft moving in a horizontal plane are analyzed in terms of a coordinate frame fixed in the plane at termination. Each participant's optimal motion can be represented by extremal trajectory maps. These maps are used to discuss sub-optimal approximations that are independent of the other participant. A method of constructing sections of the barrier, dispersal, and control-level surfaces and thus determining feedback strategies is described. Some examples are shown for pursuit-evasion and the minimum-time interception of a straight-flying target.

  2. Anterior Cervical Discectomy and Fusion Alters Whole-Spine Sagittal Alignment

    PubMed Central

    Kim, Jang Hoon; Yi, Seong; Kim, Kyung Hyun; Kuh, Sung Uk; Chin, Dong Kyu; Kim, Keun Su; Cho, Yong Eun

    2015-01-01

    Purpose Anterior cervical discectomy and fusion (ACDF) has become a common spine procedure, however, there have been no previous studies on whole spine alignment changes after cervical fusion. Our purpose in this study was to determine whole spine sagittal alignment and pelvic alignment changes after ACDF. Materials and Methods Forty-eight patients who had undergone ACDF from January 2011 to December 2012 were enrolled in this study. Cervical lordosis, thoracic kyphosis, lumbar lordosis, sagittal vertical axis (SVA), and pelvic parameters were measured preoperatively and at 1, 3, 6, and 12 months postoperatively. Clinical outcomes were assessed using Visual Analog Scale (VAS) scores and Neck Disability Index (NDI) values. Results Forty-eight patients were grouped according to operative method (cage only, cage & plate), operative level (upper level: C3/4 & C4/5; lower level: C5/6 & C6/7), and cervical lordosis (high lordosis, low lordosis). All patients experienced significant improvements in VAS scores and NDI values after surgery. Among the radiologic parameters, pelvic tilt increased and sacral slope decreased at 12 months postoperatively. Only the high cervical lordosis group showed significantly-decreased cervical lordosis and a shortened SVA postoperatively. Correlation tests revealed that cervical lordosis was significantly correlated with SVA and that SVA was significantly correlated with pelvic tilt and sacral slope. Conclusion ACDF affects whole spine sagittal alignment, especially in patients with high cervical lordosis. In these patients, alteration of cervical lordosis to a normal angle shortened the SVA and resulted in reciprocal changes in pelvic tilt and sacral slope. PMID:26069131

  3. Altered Kinematics and Time to Stabilization During Drop-Jump Landings in Individuals With or Without Functional Ankle Instability

    PubMed Central

    Wright, Cynthia J.; Arnold, Brent L.; Ross, Scott E.

    2016-01-01

    Context It has been proposed that altered dynamic-control strategies during functional activity such as jump landings may partially explain recurrent instability in individuals with functional ankle instability (FAI). Objective To capture jump-landing time to stabilization (TTS) and ankle motion using a multisegment foot model among FAI, coper, and healthy control individuals. Design Cross-sectional study. Setting Laboratory. Patients or Other Participants Participants were 23 individuals with a history of at least 1 ankle sprain and at least 2 episodes of giving way in the past year (FAI), 23 individuals with a history of a single ankle sprain and no subsequent episodes of instability (copers), and 23 individuals with no history of ankle sprain or instability in their lifetime (controls). Participants were matched for age, height, and weight (age = 23.3 ± 3.8 years, height = 1.71 ± 0.09 m, weight = 69.0 ± 13.7 kg). Intervention(s) Ten single-legged drop jumps were recorded using a 12-camera Vicon MX motion-capture system and a strain-gauge force plate. Main Outcome Measures Mediolateral (ML) and anteroposterior (AP) TTS in seconds, as well as forefoot and hindfoot sagittal- and frontal-plane angles at jump-landing initial contact and at the point of maximum vertical ground reaction force were calculated. Results For the forefoot and hindfoot in the sagittal plane, group differences were present at initial contact (forefoot: P = .043, hindfoot: P = .004). At the hindfoot, individuals with FAI displayed more dorsiflexion than the control and coper groups. Time to stabilization differed among groups (AP TTS: P < .001; ML TTS: P = .040). Anteroposterior TTS was longer in the coper group than in the FAI or control groups, and ML TTS was longer in the FAI group than in the control group. Conclusions During jump landings, copers showed differences in sagittal-plane control, including less plantar flexion at initial contact and increased AP sway during stabilization

  4. Cambodian students’ prior knowledge of projectile motion

    NASA Astrophysics Data System (ADS)

    Piten, S.; Rakkapao, S.; Prasitpong, S.

    2017-09-01

    Students always bring intuitive ideas about physics into classes, which can impact what they learn and how successful they are. To examine what Cambodian students think about projectile motion, we have developed seven open-ended questions and applied into grade 11 students before (N=124) and after (N=131) conventional classes. Results revealed several consistent misconceptions, for instance, many students believed that the direction of a velocity vector of a projectile follows the curved path at every position. They also thought the direction of an acceleration (or a force) follows the direction of motion. Observed by a pilot sitting on the plane, the falling object, dropped from a plane moving at a constant initial horizontal speed, would travel backward and land after the point of its release. The greater angle of the launched projectile creates the greater horizontal range. The hand force imparted with the ball leads the ball goes straight to hit the target. The acceleration direction points from the higher position to lower position. The misconceptions will be used as primary resources to develop instructional instruments to promote Cambodian students’ understanding of projectile motion in the following work.

  5. Which cardiovascular magnetic resonance planes and sequences provide accurate measurements of branch pulmonary artery size in children with right ventricular outflow tract obstruction?

    PubMed

    Vijarnsorn, Chodchanok; Rutledge, Jennifer M; Tham, Edythe B; Coe, James Y; Quinonez, Luis; Patton, David J; Noga, Michelle

    2014-02-01

    Children with right ventricular outflow tract obstructive (RVOTO) lesions require precise quantification of pulmonary artery (PA) size for proper management of branch PA stenosis. We aimed to determine which cardiovascular magnetic resonance (CMR) sequences and planes correlated best with cardiac catheterization and surgical measurements of branch PA size. Fifty-five children with RVOTO lesions and biventricular circulation underwent CMR prior to; either cardiac catheterization (n = 30) or surgery (n = 25) within a 6 month time frame. CMR sequences included axial black blood, axial, coronal oblique and sagittal oblique cine balanced steady-state free precession (bSSFP), and contrast-enhanced magnetic resonance angiography (MRA) with multiplanar reformatting in axial, coronal oblique, sagittal oblique, and cross-sectional planes. Maximal branch PA and stenosis (if present) diameter were measured. Comparisons of PA size on CMR were made to reference methods: (1) catheterization measurements performed in the anteroposterior plane at maximal expansion, and (2) surgical measurement obtained from a maximal diameter sound which could pass through the lumen. The mean differences (Δ) and intra class correlation (ICC) were used to determine agreement between different modalities. CMR branch PA measurements were compared to the corresponding cardiac catheterization measurements in 30 children (7.6 ± 5.6 years). Reformatted MRA showed better agreement for branch PA measurement (ICC > 0.8) than black blood (ICC 0.4-0.6) and cine sequences (ICC 0.6-0.8). Coronal oblique MRA and maximal cross sectional MRA provided the best correlation of right PA (RPA) size with ICC of 0.9 (Δ -0.1 ± 2.1 mm and Δ 0.5 ± 2.1 mm). Maximal cross sectional MRA and sagittal oblique MRA provided the best correlate of left PA (LPA) size (Δ 0.1 ± 2.4 and Δ -0.7 ± 2.4 mm). For stenoses, the best correlations were from coronal oblique MRA of right pulmonary artery (RPA) (Δ -0.2 ± 0.8 mm, ICC 0

  6. Quantification of Esophageal Tumor Motion on Cine-Magnetic Resonance Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lever, Frederiek M.; Lips, Irene M.; Crijns, Sjoerd P.M.

    2014-02-01

    Purpose: To quantify the movement of esophageal tumors noninvasively on cine-magnetic resonance imaging (MRI) by use of a semiautomatic method to visualize tumor movement directly throughout multiple breathing cycles. Methods and Materials: Thirty-six patients with esophageal tumors underwent MRI. Tumors were located in the upper (8), middle (7), and lower (21) esophagus. Cine-MR images were collected in the coronal and sagittal plane during 60 seconds at a rate of 2 Hz. An adaptive correlation filter was used to automatically track a previously marked reference point. Tumor movement was measured in the craniocaudal (CC), left–right (LR), and anteroposterior (AP) directions andmore » its relationship along the longitudinal axis of the esophagus was investigated. Results: Tumor registration within the individual images was typically done at a millisecond time scale. The mean (SD) peak-to-peak displacements in the CC, AP, and LR directions were 13.3 (5.2) mm, 4.9 (2.5) mm, and 2.7 (1.2) mm, respectively. The bandwidth to cover 95% of excursions from the mean position (c95) was also calculated to exclude outliers caused by sporadic movements. The mean (SD) c95 values were 10.1 (3.8) mm, 3.7 (1.9) mm, and 2.0 (0.9) mm in the CC, AP, and LR dimensions. The end-exhale phase provided a stable position in the respiratory cycle, compared with more variety in the end-inhale phase. Furthermore, lower tumors showed more movement than did higher tumors in the CC and AP directions. Conclusions: Intrafraction tumor movement was highly variable between patients. Tumor position proved the most stable during the respiratory cycle in the end-exhale phase. A better understanding of tumor motion makes it possible to individualize radiation delivery strategies accordingly. Cine-MRI is a successful noninvasive modality to analyze motion for this purpose in the future.« less

  7. Projectile Motion on an Inclined Misty Surface: I. Capturing and Analysing the Trajectory

    ERIC Educational Resources Information Center

    Ho, S. Y.; Foong, S. K.; Lim, C. H.; Lim, C. C.; Lin, K.; Kuppan, L.

    2009-01-01

    Projectile motion is usually the first non-uniform two-dimensional motion that students will encounter in a pre-university physics course. In this article, we introduce a novel technique for capturing the trajectory of projectile motion on an inclined Perspex plane. This is achieved by coating the Perspex with a thin layer of fine water droplets…

  8. Optical Measurement of In-plane Waves in Mechanical Metamaterials Through Digital Image Correlation

    NASA Astrophysics Data System (ADS)

    Schaeffer, Marshall; Trainiti, Giuseppe; Ruzzene, Massimo

    2017-02-01

    We report on a Digital Image Correlation-based technique for the detection of in-plane elastic waves propagating in structural lattices. The experimental characterization of wave motion in lattice structures is currently of great interest due its relevance to the design of novel mechanical metamaterials with unique/unusual properties such as strongly directional behaviour, negative refractive indexes and topologically protected wave motion. Assessment of these functionalities often requires the detection of highly spatially resolved in-plane wavefields, which for reticulated or porous structural assemblies is an open challenge. A Digital Image Correlation approach is implemented that tracks small displacements of the lattice nodes by centring image subsets about the lattice intersections. A high speed camera records the motion of the points by properly interleaving subse- quent frames thus artificially enhancing the available sampling rate. This, along with an imaging stitching procedure, enables the capturing of a field of view that is sufficiently large for subsequent processing. The transient response is recorded in the form of the full wavefields, which are processed to unveil features of wave motion in a hexagonal lattice. Time snapshots and frequency contours in the spatial Fourier domain are compared with numerical predictions to illustrate the accuracy of the recorded wavefields.

  9. Cerebral palsy characterization by estimating ocular motion

    NASA Astrophysics Data System (ADS)

    González, Jully; Atehortúa, Angélica; Moncayo, Ricardo; Romero, Eduardo

    2017-11-01

    Cerebral palsy (CP) is a large group of motion and posture disorders caused during the fetal or infant brain development. Sensorial impairment is commonly found in children with CP, i.e., between 40-75 percent presents some form of vision problems or disabilities. An automatic characterization of the cerebral palsy is herein presented by estimating the ocular motion during a gaze pursuing task. Specifically, After automatically detecting the eye location, an optical flow algorithm tracks the eye motion following a pre-established visual assignment. Subsequently, the optical flow trajectories are characterized in the velocity-acceleration phase plane. Differences are quantified in a small set of patients between four to ten years.

  10. Leg stiffness, valgus knee motion, and Q-angle are associated with hypertrophic soft patella tendon and idiopathic knee pain in adolescent basketball players.

    PubMed

    Satkunskiene, Danguole; Mickevicius, Mantas; Snieckus, Audrius; Kamandulis, Sigitas

    2017-01-01

    Knee pain without knee degenerative symptoms is a common phenomenon among young basketball players. The aim of this study was to identify factors predisposing young basketball players to suffer from knee pain. The study involved 20 male adolescent (14-15 years) basketball players who were divided into two equal groups based on knee pain symptoms. Legs torque was tested on an isokinetic dynamometer. The length, elongation and the cross-sectional area (CSA) of the patellar tendon were measured with ultrasonography. Quadriceps angle (Q-angle), knee valgus motion, and joint angular displacement in the sagittal plane were analyzed using video recording during countermovement jump. Ground reaction force was measured using a force platform. Knee pain (KP) participants had a significantly lower Q-angle (P=0.045) and lower maximum varus knee angle (P=0.035), and a greater knee inside displacement (P=0.039) during squat phase. In the KP group, the CSA at the top of the tendon was significantly greater than in the middle (P=0.006) and at the bottom (P=0.039). Absolute tendon stiffness (P=0.013) and Young's modulus (P=0.034) were significantly lower in the KP group compared with controls. Leg stiffness during landing was significantly greater in the control group (P=0.015). Leg stiffness, valgus knee motion, and Q-angle are associated with hypertrophic soft patella tendon and idiopathic knee pain in adolescent basketball players.

  11. Correlation and Reliability of Cervical Sagittal Alignment Parameters between Lateral Cervical Radiograph and Lateral Whole-Body EOS Stereoradiograph.

    PubMed

    Singhatanadgige, Weerasak; Kang, Daniel G; Luksanapruksa, Panya; Peters, Colleen; Riew, K Daniel

    2016-09-01

    Retrospective analysis. To evaluate the correlation and reliability of cervical sagittal alignment parameters obtained from lateral cervical radiographs (XRs) compared with lateral whole-body stereoradiographs (SRs). We evaluated adults with cervical deformity using both lateral XRs and lateral SRs obtained within 1 week of each other between 2010 and 2014. XR and SR images were measured by two independent spine surgeons using the following sagittal alignment parameters: C2-C7 sagittal Cobb angle (SCA), C2-C7 sagittal vertical axis (SVA), C1-C7 translational distance (C1-7), T1 slope (T1-S), neck tilt (NT), and thoracic inlet angle (TIA). Pearson correlation and paired t test were used for statistical analysis, with intra- and interrater reliability analyzed using intraclass correlation coefficient (ICC). A total of 35 patients were included in the study. We found excellent intrarater reliability for all sagittal alignment parameters in both the XR and SR groups with ICC ranging from 0.799 to 0.994 for XR and 0.791 to 0.995 for SR. Interrater reliability was also excellent for all parameters except NT and TIA, which had fair reliability. We also found excellent correlations between XR and SR measurements for most sagittal alignment parameters; SCA, SVA, and C1-C7 had r > 0.90, and only NT had r < 0.70. There was a significant difference between groups, with SR having lower measurements compared with XR for both SVA (0.68 cm lower, p < 0.001) and C1-C7 (1.02 cm lower, p < 0.001). There were no differences between groups for SCA, T1-S, NT, and TIA. Whole-body stereoradiography appears to be a viable alternative for measuring cervical sagittal alignment parameters compared with standard radiography. XR and SR demonstrated excellent correlation for most sagittal alignment parameters except NT. However, SR had significantly lower average SVA and C1-C7 measurements than XR. The lower radiation exposure using single SR has to be weighed against its

  12. Coordination between pelvis and shoulder girdle during walking in bilateral cerebral palsy.

    PubMed

    Tavernese, Emanuela; Paoloni, Marco; Mangone, Massimiliano; Castelli, Enrico; Santilli, Valter

    2016-02-01

    Studies revealed that pelvis and shoulder girdle kinematics is impaired in children with the diplegic form of bilateral cerebral palsy while walking. The features of 3D coordination between these segments, however, have never been evaluated. The gait analyses of 27 children with bilateral cerebral palsy (18 males; mean age 124 months) have been retrospectively reviewed from the database of a Movement Analysis Laboratory. The spatial-temporal parameters and the range-of-motions of the pelvis and of the shoulder girdle on the three planes of motion have been calculated. Continuous relative phase has been calculated for the 3D pelvis-shoulder girdle couplings on the transverse, sagittal and frontal planes of motion to determine coordination between these segments. Data from 10 typically developed children have been used for comparison. Children with bilateral cerebral palsy walk with lower velocity (P=0.01), shorter steps (P<0.0001), larger base of support (P<0.01) and increased duration of the double support phase (P=0.005) when compared to typically developed children. The mean continuous relative phase on the transverse plane has been found lower in the cerebral palsy group throughout the gait cycle (P=0.003), as well as in terminal stance, pre-swing and mid-swing. The age, gait speed and pelvis range-of-motions on the transverse plane have been found correlated to continuous relative phase on the transverse plane. Compared with typically developed children, children with bilateral cerebral palsy show a more in-phase coordination between the pelvis and the shoulder girdle on the transverse plane while walking. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Laser interferometric system for six-axis motion measurement.

    PubMed

    Zhang, Zhipeng; Menq, Chia-Hsiang

    2007-08-01

    This article presents the development of a precision laser interferometric system, which is designed to achieve six-axis motion measurement for real-time applications. By combining the advantage of the interferometer with a retroreflector and that of the interferometer with a plane mirror reflector, the system is capable of simultaneously measuring large transverse motions along and large rotational motions about three orthogonal axes. Based on optical path analysis along with the designed kinematics of the system, a closed form relationship between the six-axis motion parameters of the object being measured and the readings of the six laser interferometers is established. It can be employed as a real-time motion sensor for various six-axis motion control stages. A prototype is implemented and integrated with a six-axis magnetic levitation stage to illustrate its resolution and measurement range.

  14. Analytical solution of perturbed relative motion: an application of satellite formations to geodesy

    NASA Astrophysics Data System (ADS)

    Wnuk, Edwin

    In the upcoming years, several space missions will be operated using a number of spacecraft flying in formation. Clusters of spacecraft with a carefully designed orbits and optimal formation geometry enable a wide variety of applications ranging from remote sensing to astronomy, geodesy and basic physics. Many of the applications require precise relative navigation and autonomous orbit control of satellites moving in a formation. For many missions a centimeter level of orbit control accuracy is required. The GRACE mission, since its launch in 2002, has been improving the Earth's gravity field model to a very high level of accuracy. This mission is a formation flying one consisting of two satellites moving in coplanar orbits and provides range and range-rate measurements between the satellites in the along-track direction. Future geodetic missions probably will employ alternative architectures using additional satellites and/or performing out-of-plane motion, e.g cartwheel orbits. The paper presents an analytical model of a satellite formation motion that enables propagation of the relative spacecraft motion. The model is based on the analytical theory of satellite relative motion that was presented in the previous our papers (Wnuk and Golebiewska, 2005, 2006). This theory takes into account the influence of the following gravitational perturbation effects: 1) zonal and tesseral harmonic geopotential coefficients up to arbitrary degree and order, 2) Lunar gravity, 3) Sun gravity. Formulas for differential perturbations were derived with any restriction concerning a plane of satellite orbits. They can be applied in both: in plane and out of plane cases. Using this propagator we calculated relative orbits and future relative satellite positions for different types of formations: in plane, out of plane, cartwheel and others. We analyzed the influence of particular parts of perturbation effects and estimated the accuracy of predicted relative spacecrafts positions

  15. Hamstring Strength Asymmetry at 3 Years After Anterior Cruciate Ligament Reconstruction Alters Knee Mechanics During Gait and Jogging.

    PubMed

    Abourezk, Matthew N; Ithurburn, Matthew P; McNally, Michael P; Thoma, Louise M; Briggs, Matthew S; Hewett, Timothy E; Spindler, Kurt P; Kaeding, Christopher C; Schmitt, Laura C

    2017-01-01

    Anterior cruciate ligament reconstruction (ACLR) using a hamstring tendon autograft often results in hamstring muscle strength asymmetry. However, the effect of hamstring muscle strength asymmetry on knee mechanics has not been reported. Participants with hamstring strength asymmetry would demonstrate altered involved limb knee mechanics during walking and jogging compared with those with more symmetric hamstring strength at least 2 years after ACLR with a hamstring tendon autograft. Controlled laboratory study. There were a total of 45 participants at least 2 years after ACLR (22 male, 23 female; mean time after ACLR, 34.6 months). A limb symmetry index (LSI) was calculated for isometric hamstring strength to subdivide the sample into symmetric hamstring (SH) (LSI ≥90%; n = 18) and asymmetric hamstring (AH) (LSI <85%; n = 18) groups. Involved knee kinematic and kinetic data were collected using 3-dimensional motion analysis during gait and jogging. Peak sagittal-, frontal-, and transverse-plane knee angles and sagittal-plane knee moments and knee powers were calculated. Independent-samples t tests and analyses of covariance were used to compare involved knee kinematic and kinetic variables between the groups. There were no differences in sagittal- and frontal-plane knee angles between the groups ( P > .05 for all). The AH group demonstrated decreased tibial internal rotation during weight acceptance during gait ( P = .01) and increased tibial external rotation during jogging at initial contact ( P = .03) and during weight acceptance ( P = .02) compared with the SH group. In addition, the AH group demonstrated decreased peak negative knee power during midstance ( P = .01) during gait compared with the SH group, after controlling for gait speed, which differed between groups. Participants with hamstring strength asymmetry showed altered involved knee mechanics in the sagittal plane during gait and in the transverse plane during gait and jogging compared with those

  16. Is Diaphragm Motion a Good Surrogate for Liver Tumor Motion?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Juan; School of Information Science and Engineering, Shandong University, Jinan, Shandong; Cai, Jing

    Purpose: To evaluate the relationship between liver tumor motion and diaphragm motion. Methods and Materials: Fourteen patients with hepatocellular carcinoma (10 of 14) or liver metastases (4 of 14) undergoing radiation therapy were included in this study. All patients underwent single-slice cine–magnetic resonance imaging simulations across the center of the tumor in 3 orthogonal planes. Tumor and diaphragm motion trajectories in the superior–inferior (SI), anterior–posterior (AP), and medial–lateral (ML) directions were obtained using an in-house-developed normalized cross-correlation–based tracking technique. Agreement between the tumor and diaphragm motion was assessed by calculating phase difference percentage, intraclass correlation coefficient, and Bland-Altman analysis (Diff).more » The distance between the tumor and tracked diaphragm area was analyzed to understand its impact on the correlation between the 2 motions. Results: Of all patients, the mean (±standard deviation) phase difference percentage values were 7.1% ± 1.1%, 4.5% ± 0.5%, and 17.5% ± 4.5% in the SI, AP, and ML directions, respectively. The mean intraclass correlation coefficient values were 0.98 ± 0.02, 0.97 ± 0.02, and 0.08 ± 0.06 in the SI, AP, and ML directions, respectively. The mean Diff values were 2.8 ± 1.4 mm, 2.4 ± 1.1 mm, and 2.2 ± 0.5 mm in the SI, AP, and ML directions, respectively. Tumor and diaphragm motions had high concordance when the distance between the tumor and tracked diaphragm area was small. Conclusions: This study showed that liver tumor motion had good correlation with diaphragm motion in the SI and AP directions, indicating diaphragm motion in the SI and AP directions could potentially be used as a reliable surrogate for liver tumor motion.« less

  17. Optimal multiple-pass aeroassisted plane change

    NASA Technical Reports Server (NTRS)

    Vinh, Nguyen X.; Ma, Der-Ming

    1990-01-01

    This paper presents the exact dimensionless equation of motion and the necessary conditions for the computation of the optimal trajectories of a hypervelocity vehicle flying through a non-rotating spherical planetary atmosphere. Numerical solution is then presented for the case when the vehicle makes several passages through the atmosphere near the perigee of its orbit. While the orbit is slowly contracting, aerodynamic maneuver is performed to obtain the maximum plane change. Several plots were presented to show the optimal variations of the lift coefficient and the bank angle and the various elements of the orbit.

  18. Control of body's center of mass motion relative to center of pressure during uphill walking in the elderly.

    PubMed

    Hong, Shih-Wun; Leu, Tsai-Hsueh; Wang, Ting-Ming; Li, Jia-Da; Ho, Wei-Pin; Lu, Tung-Wu

    2015-10-01

    Uphill walking places more challenges on the locomotor system than level walking does when the two limbs work together to ensure the stability and continuous progression of the body over the base of support. With age-related degeneration older people may have more difficulty in maintaining balance during uphill walking, and may thus experience an increased risk of falling. The current study aimed to investigate using gait analysis techniques to determine the effects of age and slope angles on the control of the COM relative to the COP in terms of their inclination angles (IA) and the rate of change of IA (RCIA) during uphill walking. The elderly were found to show IAs similar to those of the young, but with reduced self-selected walking speed and RCIAs (P<0.05). After adjusting for walking speed differences, the elderly showed significantly greater excursions of IA in the sagittal plane (P<0.05) and increased RCIA at heel-strike and during single limb support (SLS) and double limb support (DLS) in the sagittal plane (P<0.05), and increased RCIA at heel-strike in the frontal plane (P<0.05). The RCIAs were significantly reduced with increasing slope angles (P<0.05). The current results show that the elderly adopted a control strategy different from the young during uphill walking, and that the IA and RCIA during walking provide a sensitive measure to differentiate individuals with different balance control abilities. The current results and findings may serve as baseline data for future clinical and ergonomic applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Differences of Sagittal Lumbosacral Parameters between Patients with Lumbar Spondylolysis and Normal Adults

    PubMed Central

    Yin, Jin; Peng, Bao-Gan; Li, Yong-Chao; Zhang, Nai-Yang; Yang, Liang; Li, Duan-Ming

    2016-01-01

    Background: Recent studies have suggested an association between elevated pelvic incidence (PI) and the development of lumbar spondylolysis. However, there is still lack of investigation for Han Chinese people concerning the normal range of spinopelvic parameters and relationship between abnormal sagittal parameters and lumbar diseases. The objective of the study was to investigate sagittal lumbosacral parameters of adult lumbar spondylolysis patients in Han Chinese population. Methods: A total of 52 adult patients with symptomatic lumbar spondylolysis treated in the General Hospital of Armed Police Force (Beijing, China) were identified as the spondylolysis group. All the 52 patients were divided into two subgroups, Subgroup A: 36 patients with simple lumbar spondylolysis, and Subgroup B: 16 patients with lumbar spondylolysis accompanying with mild lumbar spondylolisthesis (slip percentage <30%). Altogether 207 healthy adults were chosen as the control group. All patients and the control group took lumbosacral lateral radiographs. Seven sagittal lumbosacral parameters, including PI, pelvic tilt (PT), sacral slope (SS), lumbar lordosis (LL), L5 incidence, L5 slope, and sacral table angle (STA), were measured in the lateral radiographs. All the parameters aforementioned were compared between the two subgroups and between the spondylolysis group and the control group with independent-sample t-test. Results: There were no statistically significant differences of all seven sagittal lumbosacral parameters between Subgroup A and Subgroup B. PI, PT, SS, and LL were higher (P < 0.05) in the spondylolysis group than those in the control group, but STA was lower (P < 0.001) in the spondylolysis group. Conclusions: Current study results suggest that increased PI and decreased STA may play important roles in the pathology of lumbar spondylolysis in Han Chinese population. PMID:27174324

  20. Differences of Sagittal Lumbosacral Parameters between Patients with Lumbar Spondylolysis and Normal Adults.

    PubMed

    Yin, Jin; Peng, Bao-Gan; Li, Yong-Chao; Zhang, Nai-Yang; Yang, Liang; Li, Duan-Ming

    2016-05-20

    Recent studies have suggested an association between elevated pelvic incidence (PI) and the development of lumbar spondylolysis. However, there is still lack of investigation for Han Chinese people concerning the normal range of spinopelvic parameters and relationship between abnormal sagittal parameters and lumbar diseases. The objective of the study was to investigate sagittal lumbosacral parameters of adult lumbar spondylolysis patients in Han Chinese population. A total of 52 adult patients with symptomatic lumbar spondylolysis treated in the General Hospital of Armed Police Force (Beijing, China) were identified as the spondylolysis group. All the 52 patients were divided into two subgroups, Subgroup A: 36 patients with simple lumbar spondylolysis, and Subgroup B: 16 patients with lumbar spondylolysis accompanying with mild lumbar spondylolisthesis (slip percentage <30%). Altogether 207 healthy adults were chosen as the control group. All patients and the control group took lumbosacral lateral radiographs. Seven sagittal lumbosacral parameters, including PI, pelvic tilt (PT), sacral slope (SS), lumbar lordosis (LL), L5 incidence, L5 slope, and sacral table angle (STA), were measured in the lateral radiographs. All the parameters aforementioned were compared between the two subgroups and between the spondylolysis group and the control group with independent-sample t- test. There were no statistically significant differences of all seven sagittal lumbosacral parameters between Subgroup A and Subgroup B. PI, PT, SS, and LL were higher (P < 0.05) in the spondylolysis group than those in the control group, but STA was lower (P < 0.001) in the spondylolysis group. Current study results suggest that increased PI and decreased STA may play important roles in the pathology of lumbar spondylolysis in Han Chinese population.

  1. Knee Joint Contact Mechanics during Downhill Gait and its Relationship with Varus/Valgus Motion and Muscle Strength in Patients with Knee Osteoarthritis

    PubMed Central

    Farrokhi, Shawn; Voycheck, Carrie A.; Gustafson, Jonathan A.; Fitzgerald, G. Kelley; Tashman, Scott

    2015-01-01

    Objective The objective of this exploratory study was to evaluate tibiofemoral joint contact point excursions and velocities during downhill gait and assess the relationship between tibiofemoral joint contact mechanics with frontal-plane knee joint motion and lower extremity muscle weakness in patients with knee osteoarthritis (OA). Methods Dynamic stereo X-ray was used to quantify tibiofemoral joint contact mechanics and frontal-plane motion during the loading response phase of downhill gait in 11 patients with knee OA and 11 control volunteers. Quantitative testing of the quadriceps and the hip abductor muscles was also performed. Group differences in contact mechanics and frontal-plane motion excursions were compared using analysis of covariance with adjustments for body mass index. Differences in strength were compared using independent sample t-tests. Additionally, linear associations between contact mechanics with frontal-plane knee motion and muscle strength were evaluated using Pearson's correlation coefficients. Results Patients with knee OA demonstrated larger medial/lateral joint contact point excursions (p<0.02) and greater heel-strike joint contact point velocities (p<0.05) for the medial and lateral compartments compared to the control group. The peak medial/lateral joint contact point velocity of the medial compartment was also greater for patients with knee OA compared to their control counterparts (p=0.02). Additionally, patients with knee OA demonstrated significantly increased frontal-plane varus motion excursions (p<0.01) and greater quadriceps and hip abductor muscle weakness (p=0.03). In general, increased joint contact point excursions and velocities in patients with knee OA were linearly associated with greater frontal-plane varus motion excursions (p<0.04) but not with quadriceps or hip abductor strength. Conclusion Altered contact mechanics in patients with knee OA may be related to compromised frontal-plane joint stability but not with

  2. Inertial Measurement Units for Clinical Movement Analysis: Reliability and Concurrent Validity

    PubMed Central

    Nicholas, Kevin; Sparkes, Valerie; Sheeran, Liba; Davies, Jennifer L

    2018-01-01

    The aim of this study was to investigate the reliability and concurrent validity of a commercially available Xsens MVN BIOMECH inertial-sensor-based motion capture system during clinically relevant functional activities. A clinician with no prior experience of motion capture technologies and an experienced clinical movement scientist each assessed 26 healthy participants within each of two sessions using a camera-based motion capture system and the MVN BIOMECH system. Participants performed overground walking, squatting, and jumping. Sessions were separated by 4 ± 3 days. Reliability was evaluated using intraclass correlation coefficient and standard error of measurement, and validity was evaluated using the coefficient of multiple correlation and the linear fit method. Day-to-day reliability was generally fair-to-excellent in all three planes for hip, knee, and ankle joint angles in all three tasks. Within-day (between-rater) reliability was fair-to-excellent in all three planes during walking and squatting, and poor-to-high during jumping. Validity was excellent in the sagittal plane for hip, knee, and ankle joint angles in all three tasks and acceptable in frontal and transverse planes in squat and jump activity across joints. Our results suggest that the MVN BIOMECH system can be used by a clinician to quantify lower-limb joint angles in clinically relevant movements. PMID:29495600

  3. Comparison of prostate contours between conventional stepping transverse imaging and Twister-based sagittal imaging in permanent interstitial prostate brachytherapy.

    PubMed

    Kawakami, Shogo; Ishiyama, Hiromichi; Satoh, Takefumi; Tsumura, Hideyasu; Sekiguchi, Akane; Takenaka, Kouji; Tabata, Ken-Ichi; Iwamura, Masatsugu; Hayakawa, Kazushige

    2017-08-01

    To compare prostate contours on conventional stepping transverse image acquisitions with those on twister-based sagittal image acquisitions. Twenty prostate cancer patients who were planned to have permanent interstitial prostate brachytherapy were prospectively accrued. A transrectal ultrasonography probe was inserted, with the patient in lithotomy position. Transverse images were obtained with stepping movement of the transverse transducer. In the same patient, sagittal images were also obtained through rotation of the sagittal transducer using the "Twister" mode. The differences of prostate size among the two types of image acquisitions were compared. The relationships among the difference of the two types of image acquisitions, dose-volume histogram (DVH) parameters on the post-implant computed tomography (CT) analysis, as well as other factors were analyzed. The sagittal image acquisitions showed a larger prostate size compared to the transverse image acquisitions especially in the anterior-posterior (AP) direction ( p < 0.05). Interestingly, relative size of prostate apex in AP direction in sagittal image acquisitions compared to that in transverse image acquisitions was correlated to DVH parameters such as D 90 ( R = 0.518, p = 0.019), and V 100 ( R = 0.598, p = 0.005). There were small but significant differences in the prostate contours between the transverse and the sagittal planning image acquisitions. Furthermore, our study suggested that the differences between the two types of image acquisitions might correlated to dosimetric results on CT analysis.

  4. Optimization of real-time rigid registration motion compensation for prostate biopsies using 2D/3D ultrasound

    NASA Astrophysics Data System (ADS)

    Gillies, Derek J.; Gardi, Lori; Zhao, Ren; Fenster, Aaron

    2017-03-01

    During image-guided prostate biopsy, needles are targeted at suspicious tissues to obtain specimens that are later examined histologically for cancer. Patient motion causes inaccuracies when using MR-transrectal ultrasound (TRUS) image fusion approaches used to augment the conventional biopsy procedure. Motion compensation using a single, user initiated correction can be performed to temporarily compensate for prostate motion, but a real-time continuous registration offers an improvement to clinical workflow by reducing user interaction and procedure time. An automatic motion compensation method, approaching the frame rate of a TRUS-guided system, has been developed for use during fusion-based prostate biopsy to improve image guidance. 2D and 3D TRUS images of a prostate phantom were registered using an intensity based algorithm utilizing normalized cross-correlation and Powell's method for optimization with user initiated and continuous registration techniques. The user initiated correction performed with observed computation times of 78 ± 35 ms, 74 ± 28 ms, and 113 ± 49 ms for in-plane, out-of-plane, and roll motions, respectively, corresponding to errors of 0.5 ± 0.5 mm, 1.5 ± 1.4 mm, and 1.5 ± 1.6°. The continuous correction performed significantly faster (p < 0.05) than the user initiated method, with observed computation times of 31 ± 4 ms, 32 ± 4 ms, and 31 ± 6 ms for in-plane, out-of-plane, and roll motions, respectively, corresponding to errors of 0.2 ± 0.2 mm, 0.6 ± 0.5 mm, and 0.8 ± 0.4°.

  5. Planer orientation of the bilateral semicircular canals in dizzy patients.

    PubMed

    Aoki, Sachiko; Takei, Yasuhiko; Suzuki, Kazufumi; Masukawa, Ai; Arai, Yasuko

    2012-10-01

    Recent development of 3-dimensional analysis of eye movement enabled to detect the eye rotation axis, which is used to determine the responsible semicircular canal(s) in dizzy patients. Therefore, the knowledge of anatomical orientation of bilateral semicircular canals is essential, as all 6 canals influence the eye movements. Employing the new head coordinate system suitable for MR imaging, we calculated the angles of semicircular canal planes of both ears in 11 dizzy patients who had normal caloric response in both ears. The angles between adjacent canal pairs were nearly perpendicular in both ears. The angle between the posterior canal planes and head sagittal plane was 51° and significantly larger the angle between the anterior canal planes and head sagittal plane, which was 35°. The angle between the horizontal canal plane and head sagittal plane was almost orthogonal. Pairs of contralateral synergistic canal planes were not parallel, forming 10° between right and left horizontal canal planes, 17° between right anterior and left posterior canal planes and 19° between the right posterior and left anterior canal planes. Our measurement of the angles of adjacent canal pairs and the angle between each semicircular canal and head sagittal plane coincided with those of previous reports obtained from CT images and skull specimens. However, the angles between contralateral synergistic canal planes were more parallel than those of previous reports. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  6. Does insertion of intramuscular electromyographic electrodes alter motor behavior during locomotion?

    PubMed

    Armour Smith, Jo; Kulig, Kornelia

    2015-06-01

    Intramuscular electromyography (EMG) is commonly used to quantify activity in the trunk musculature. However, it is unclear if the discomfort or fear of pain associated with insertion of intramuscular EMG electrodes results in altered motor behavior. This study examined whether intramuscular EMG affects locomotor speed and trunk motion, and examined the anticipated and actual pain associated with electrode insertion in healthy individuals and individuals with a history of low back pain (LBP). Before and after insertion of intramuscular electrodes into the lumbar and thoracic paraspinals, participants performed multiple repetitions of a walking turn at self-selected and controlled average speed. Low levels of anticipated and actual pain were reported in both groups. Self-selected locomotor speed was significantly increased following insertion of the electrodes. At the controlled speed, the amplitude of sagittal plane lumbo-pelvic motion decreased significantly post-insertion, but the extent of this change was the same in both groups. Lumbo-pelvic motion in the frontal and axial planes and thoraco-lumbar motion in all planes were not affected by the insertions. This study demonstrates that intramuscular EMG is an appropriate methodology to selectively quantify the activation patterns of the individual muscles in the paraspinal group, both in healthy individuals and individuals with a history of LBP. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. 3D Asymmetrical motions of the Galactic outer disc with LAMOST K giant stars

    NASA Astrophysics Data System (ADS)

    Wang, Haifeng; López-Corredoira, Martín; Carlin, Jeffrey L.; Deng, Licai

    2018-07-01

    We present a three dimensional velocity analysis of Milky Way disc kinematics using LAMOST K giant stars and the GPS1 proper motion catalogue. We find that Galactic disc stars near the anticentre direction (in the range of Galactocentric distance between R = 8 and 13 kpc and vertical position between Z = -2 and 2 kpc) exhibit asymmetrical motions in the Galactocentric radial, azimuthal, and vertical components. Radial motions are not zero, thus departing from circularity in the orbits; they increase outwards within R ≲ 12 kpc, show some oscillation in the northern (0 < Z < 2 kpc) stars, and have north-south asymmetry in the region corresponding to a well-known nearby northern structure in the velocity field. There is a clear vertical gradient in azimuthal velocity, and also an asymmetry that shifts from a larger azimuthal velocity above the plane near the solar radius to faster rotation below the plane at radii of 11-12 kpc. Stars both above and below the plane at R ≳ 9 kpc exhibit net upward vertical motions. We discuss some possible mechanisms that might create the asymmetrical motions, such as external perturbations due to dwarf galaxy minor mergers or dark matter sub-haloes, warp dynamics, internal processes due to spiral arms or the Galactic bar, and (most likely) a combination of some or all of these components.

  8. Bracing of the Reconstructed and Osteoarthritic Knee during High Dynamic Load Tasks.

    PubMed

    Hart, Harvi F; Crossley, Kay M; Collins, Natalie J; Ackland, David C

    2017-06-01

    Lateral compartment osteoarthritis accompanied by abnormal knee biomechanics is frequently reported in individuals with knee osteoarthritis after anterior cruciate ligament reconstruction (ACLR). The aim of this study was to evaluate changes in knee biomechanics produced by an adjusted and unadjusted varus knee brace during high dynamic loading activities in individuals with lateral knee osteoarthritis after ACLR and valgus malalignment. Nineteen participants who had undergone ACLR 5 to 20 yr previously and had symptomatic and radiographic lateral knee osteoarthritis with valgus malalignment were assessed. Quantitative motion analysis experiments were conducted during hopping, stair ascent, and descent under three test conditions: (i) no brace, (ii) unadjusted brace with sagittal plane support and neutral frontal plane alignment, and (iii) adjusted brace with sagittal plane support and varus realignment (valgus to neutral). Sagittal, frontal, and transverse plane knee kinematics, external joint moment, and angular impulse data were calculated. Relative to an unbraced knee, braced conditions significantly increased knee flexion and adduction angles during hopping (P = 0.003 and P = 0.005; respectively), stair ascent (P = 0.003 and P < 0.001, respectively), and descent (P = 0.009 and P < 0.001, respectively). In addition, the brace conditions increased knee flexion (P < 0.001) and adduction (P = 0.001) angular impulses and knee stiffness (P < 0.001) during hopping, as well as increased knee adduction moments during stair ascent (P = 0.008) and flexion moments during stair descent (P = 0.006). There were no significant differences between the adjusted and the unadjusted brace conditions (P > 0.05). A knee brace, with or without varus alignment, can modulate knee kinematics and external joint moments during hopping, stairs ascent, and descent in individuals with predominant lateral knee osteoarthritis after ACLR. Longer-term use of a brace may have implications in

  9. Assessment of geometrical accuracy of magnetic resonance images for radiation therapy of lung cancers

    PubMed Central

    Liu, H. H.; Olsson, L. E.; Jackson, E. F.

    2003-01-01

    The purpose of this research was to investigate the geometrical accuracy of magnetic resonance (MR) images used in the radiation therapy treatment planning for lung cancer. In this study, the capability of MR imaging to acquire dynamic two‐dimensional images was explored to access the motion of lung tumors. Due to a number of factors, including the use of a large field‐of‐view for the thorax, MR images are particularly subject to geometrical distortions caused by the inhomogeneity and gradient nonlinearity of the magnetic field. To quantify such distortions, we constructed a phantom, which approximated the dimensions of the upper thorax and included two air cavities. Evenly spaced vials containing contrast agent could be held in three directions with their cross‐sections in the coronal, sagittal, and axial planes, respectively, within the air cavities. MR images of the phantom were acquired using fast spin echo (FSE) and fast gradient echo (fGRE) sequences. The positions of the vials according to their centers of mass were measured from the MR images and registered to the corresponding computed tomography images for comparison. Results showed the fGRE sequence exhibited no errors >2.0 mm in the sagittal and coronal planes, whereas the FSE sequence produced images with errors between 2.0 and 4.0 mm along the phantom's perimeter in the axial plane. On the basis of these results, the fGRE sequence was considered to be clinically acceptable in acquiring images in all sagittal and coronal planes tested. However, the spatial accuracy in periphery of the axial FSE images exceeded the acceptable criteria for the acquisition parameters used in this study. PACS number(s): 87.57.–s, 87.61.–c PMID:14604425

  10. Towards real-time MRI-guided 3D localization of deforming targets for non-invasive cardiac radiosurgery

    NASA Astrophysics Data System (ADS)

    Ipsen, S.; Blanck, O.; Lowther, N. J.; Liney, G. P.; Rai, R.; Bode, F.; Dunst, J.; Schweikard, A.; Keall, P. J.

    2016-11-01

    Radiosurgery to the pulmonary vein antrum in the left atrium (LA) has recently been proposed for non-invasive treatment of atrial fibrillation (AF). Precise real-time target localization during treatment is necessary due to complex respiratory and cardiac motion and high radiation doses. To determine the 3D position of the LA for motion compensation during radiosurgery, a tracking method based on orthogonal real-time MRI planes was developed for AF treatments with an MRI-guided radiotherapy system. Four healthy volunteers underwent cardiac MRI of the LA. Contractile motion was quantified on 3D LA models derived from 4D scans with 10 phases acquired in end-exhalation. Three localization strategies were developed and tested retrospectively on 2D real-time scans (sagittal, temporal resolution 100 ms, free breathing). The best-performing method was then used to measure 3D target positions in 2D-2D orthogonal planes (sagittal-coronal, temporal resolution 200-252 ms, free breathing) in 20 configurations of a digital phantom and in the volunteer data. The 3D target localization accuracy was quantified in the phantom and qualitatively assessed in the real data. Mean cardiac contraction was  ⩽  3.9 mm between maximum dilation and contraction but anisotropic. A template matching approach with two distinct template phases and ECG-based selection yielded the highest 2D accuracy of 1.2 mm. 3D target localization showed a mean error of 3.2 mm in the customized digital phantoms. Our algorithms were successfully applied to the 2D-2D volunteer data in which we measured a mean 3D LA motion extent of 16.5 mm (SI), 5.8 mm (AP) and 3.1 mm (LR). Real-time target localization on orthogonal MRI planes was successfully implemented for highly deformable targets treated in cardiac radiosurgery. The developed method measures target shifts caused by respiration and cardiac contraction. If the detected motion can be compensated accordingly, an MRI-guided radiotherapy

  11. Sagittal-lung CT measurements in the evaluation of asthma-COPD overlap syndrome: a distinctive phenotype from COPD alone.

    PubMed

    Qu, Yanjuan; Cao, Yiyuan; Liao, Meiyan; Lu, Zhiyan

    2017-07-01

    This study aimed at investigating the capability of sagittal-lung computed tomography (CT) measurements in differentiating chronic obstructive pulmonary disease (COPD) and asthma-COPD overlap syndrome (ACOS). Clinical and high-resolution CT of 229 patients including 123 pure COPD patients and 106 ACOS patients were included. Sagittal-lung CT measurements in terms of bilateral lung height (LH), anterior-posterior lung diameter (APLD), diaphragm height (DH), and anterior sterno-diaphragmatic angle (ASDA), as well as inter-pulmonary septum length (IPSL) on axial images were measured both before and after bronchodilator (BD) administration. Comparisons of clinical characteristics and CT measurements between patient groups were performed. All pre-BD quantitative sagittal features measuring diaphragm flattening and hyperinflation were not significantly different between patients with COPD and patients with ACOS (P values all >0.05). Following BD administration, the ACOS patients exhibited lower left LH, bilateral APLD, and bilateral ASDA, but higher right DH, compared to pure COPD patients (P values all <0.05). Right LH, left DH and IPSL were not significantly different between patient groups. Besides, variations of all sagittal-lung CT measurements were significantly larger in patients with ACOS than in patients with pure COPD (P values all <0.001) and showed high performance in differentiating these two kinds of patient, with diagnostic sensitivities ranging from 76.4 to 97.2%, specificities ranging from 86.2 to 100.0%, and accuracies ranging from 80.9 to 90.7%. Sagittal-lung CT measurements allow for differentiating patients with ACOS from those with pure COPD. The ACOS patients had larger post-BD variations of sagittal-lung CT measurements than patients with pure COPD.

  12. Standing sagittal alignment of the whole axial skeleton with reference to the gravity line in humans.

    PubMed

    Hasegawa, Kazuhiro; Okamoto, Masashi; Hatsushikano, Shun; Shimoda, Haruka; Ono, Masatoshi; Homma, Takao; Watanabe, Kei

    2017-05-01

    between offset of C7 vertebra from the sagittal vertical axis (a vertical line drawn through the posterior superior corner of the sacrum in the sagittal plane) and age, but no correlation was detected between the centre of the acoustic meati-GL offset and age. Cervical lordosis (CL), pelvic tilt (PT), pelvic incidence, hip extension, knee flexion and ankle dorsiflexion increased significantly with age. Our results revealed that aging induces trunk stooping, but the global alignment is compensated for by an increase in the CL, PT and knee flexion, with the main function of CL and PT to maintain a horizontal gaze in a healthy population. © 2017 The Authors Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.

  13. Impact of sagittal spinopelvic alignment on clinical outcomes after decompression surgery for lumbar spinal canal stenosis without coronal imbalance.

    PubMed

    Hikata, Tomohiro; Watanabe, Kota; Fujita, Nobuyuki; Iwanami, Akio; Hosogane, Naobumi; Ishii, Ken; Nakamura, Masaya; Toyama, Yoshiaki; Matsumoto, Morio

    2015-10-01

    The object of this study was to investigate correlations between sagittal spinopelvic alignment and improvements in clinical and quality-of-life (QOL) outcomes after lumbar decompression surgery for lumbar spinal canal stenosis (LCS) without coronal imbalance. The authors retrospectively reviewed data from consecutive patients treated for LCS with decompression surgery in the period from 2009 through 2011. They examined correlations between preoperative or postoperative sagittal vertical axis (SVA) and radiological parameters, clinical outcomes, and health-related (HR)QOL scores in patients divided according to SVA. Clinical outcomes were assessed according to Japanese Orthopaedic Association (JOA) and visual analog scale (VAS) scores. Health-related QOL was evaluated using the Roland-Morris Disability Questionnaire (RMDQ) and the JOA Back Pain Evaluation Questionnaire (JOABPEQ). One hundred nine patients were eligible for inclusion in the study. Compared to patients with normal sagittal alignment prior to surgery (Group A: SVA < 50 mm), those with preoperative sagittal imbalance (Group B: SVA ≥ 50 mm) had significantly smaller lumbar lordosis and thoracic kyphosis angles and larger pelvic tilt. In Group B, there was a significant decrease in postoperative SVA compared with the preoperative SVA (76.3 ± 29.7 mm vs. 54.3 ± 39.8 mm, p = 0.004). The patients in Group B with severe preoperative sagittal imbalance (SVA > 80 mm) had residual sagittal imbalance after surgery (82.8 ± 41.6 mm). There were no significant differences in clinical and HRQOL outcomes between Groups A and B. Compared to patients with normal postoperative SVA (Group C: SVA < 50 mm), patients with a postoperative SVA ≥ 50 mm (Group D) had significantly lower JOABPEQ scores, both preoperative and postoperative, for walking ability (preop: 36.6 ± 26.3 vs. 22.7 ± 26.0, p = 0.038, respectively; postop: 71.1 ± 30.4 vs. 42.5 ± 29.6, p < 0.001) and social functioning (preop: 38.7 ± 18.5 vs. 30

  14. Kinematics of a selectively constrained radiolucent anterior lumbar disc: comparisons to hybrid and circumferential fusion.

    PubMed

    Daftari, Tapan K; Chinthakunta, Suresh R; Ingalhalikar, Aditya; Gudipally, Manasa; Hussain, Mir; Khalil, Saif

    2012-10-01

    Despite encouraging clinical outcomes of one-level total disc replacements reported in literature, there is no compelling evidence regarding the stability following two-level disc replacement and hybrid constructs. The current study is aimed at evaluating the multidirectional kinematics of a two-level disc arthroplasty and hybrid construct with disc replacement adjacent to rigid circumferential fusion, compared to two-level fusion using a novel selectively constrained radiolucent anterior lumbar disc. Nine osteoligamentous lumbosacral spines (L1-S1) were tested in the following sequence: 1) Intact; 2) One-level disc replacement; 3) Hybrid; 4) Two-level disc replacement; and 5) Two-level fusion. Range of motion (at both implanted and adjacent level), and center of rotation in sagittal plane were recorded and calculated. At the level of implantation, motion was restored when one-level disc replacement was used but tended to decrease with two-level disc arthroplasty. The findings also revealed that both one-level and two-level disc replacement and hybrid constructs did not significantly change adjacent level kinematics compared to the intact condition, whereas the two-level fusion construct demonstrated a significant increase in flexibility at the adjacent level. The location of center of rotation in the sagittal plane at L4-L5 for the one-level disc replacement construct was similar to that of the intact condition. The one-level disc arthroplasty tended to mimic a motion profile similar to the intact spine. However, the two-level disc replacement construct tended to reduce motion and clinical stability of a two-level disc arthroplasty requires additional investigation. Hybrid constructs may be used as a surgical alternative for treating two-level lumbar degenerative disc disease. Published by Elsevier Ltd.

  15. The stability of steady motion of magnetic domain wall: Role of higher-order spin-orbit torques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Peng-Bin, E-mail: hepengbin@hnu.edu.cn; Yan, Han; Cai, Meng-Qiu

    The steady motion of magnetic domain wall driven by spin-orbit torques is investigated analytically in the heavy/ferromagnetic metal nanowires for three cases with a current transverse to the in-plane and perpendicular easy axis, and along the in-plane easy axis. By the stability analysis of Walker wall profile, we find that if including the higher-order spin-orbit torques, the Walker breakdown can be avoided in some parameter regions of spin-orbit torques with a current transverse to or along the in-plane easy axis. However, in the case of perpendicular anisotropy, even considering the higher-order spin-orbit torques, the velocity of domain wall cannot bemore » efficiently enhanced by the current. Furthermore, the direction of wall motion is dependent on the configuration and chirality of domain wall with a current along the in-plane easy axis or transverse to the perpendicular one. Especially, the direction of motion can be controlled by the initial chirality of domain wall. So, if only involving the spin-orbit mechanism, it is preferable to adopt the scheme of a current along the in-plane easy axis for enhancing the velocity and controlling the direction of domain wall.« less

  16. Is the Milky Way still breathing? RAVE-Gaia streaming motions

    NASA Astrophysics Data System (ADS)

    Carrillo, I.; Minchev, I.; Kordopatis, G.; Steinmetz, M.; Binney, J.; Anders, F.; Bienaymé, O.; Bland-Hawthorn, J.; Famaey, B.; Freeman, K. C.; Gilmore, G.; Gibson, B. K.; Grebel, E. K.; Helmi, A.; Just, A.; Kunder, A.; McMillan, P.; Monari, G.; Munari, U.; Navarro, J.; Parker, Q. A.; Reid, W.; Seabroke, G.; Sharma, S.; Siebert, A.; Watson, F.; Wojno, J.; Wyse, R. F. G.; Zwitter, T.

    2018-04-01

    We use data from the Radial Velocity Experiment (RAVE) and the Tycho-Gaia astrometric solution (TGAS) catalogue to compute the velocity fields yielded by the radial (VR), azimuthal (Vϕ),and vertical (Vz) components of associated Galactocentric velocity. We search in particular for variation in all three velocity components with distance above and below the disc mid-plane, as well as how each component of Vz (line-of-sight and tangential velocity projections) modifies the obtained vertical structure. To study the dependence of velocity on proper motion and distance, we use two main samples: a RAVE sample including proper motions from the Tycho-2, PPMXL, and UCAC4 catalogues, and a RAVE-TGAS sample with inferred distances and proper motions from the TGAS and UCAC5 catalogues. In both samples, we identify asymmetries in VR and Vz. Below the plane, we find the largest radial gradient to be ∂VR/∂R = -7.01 ± 0.61 km s-1 kpc-1, in agreement with recent studies. Above the plane, we find a similar gradient with ∂VR/∂R = -9.42 ± 1.77 km s-1 kpc-1. By comparing our results with previous studies, we find that the structure in Vz is strongly dependent on the adopted proper motions. Using the Galaxia Milky Way model, we demonstrate that distance uncertainties can create artificial wave-like patterns. In contrast to previous suggestions of a breathing mode seen in RAVE data, our results support a combination of bending and breathing modes, likely generated by a combination of external or internal and external mechanisms.

  17. Altered motor control patterns in whiplash and chronic neck pain.

    PubMed

    Woodhouse, Astrid; Vasseljen, Ottar

    2008-06-20

    Persistent whiplash associated disorders (WAD) have been associated with alterations in kinesthetic sense and motor control. The evidence is however inconclusive, particularly for differences between WAD patients and patients with chronic non-traumatic neck pain. The aim of this study was to investigate motor control deficits in WAD compared to chronic non-traumatic neck pain and healthy controls in relation to cervical range of motion (ROM), conjunct motion, joint position error and ROM-variability. Participants (n = 173) were recruited to three groups: 59 patients with persistent WAD, 57 patients with chronic non-traumatic neck pain and 57 asymptomatic volunteers. A 3D motion tracking system (Fastrak) was used to record maximal range of motion in the three cardinal planes of the cervical spine (sagittal, frontal and horizontal), and concurrent motion in the two associated cardinal planes relative to each primary plane were used to express conjunct motion. Joint position error was registered as the difference in head positions before and after cervical rotations. Reduced conjunct motion was found for WAD and chronic neck pain patients compared to asymptomatic subjects. This was most evident during cervical rotation. Reduced conjunct motion was not explained by current pain or by range of motion in the primary plane. Total conjunct motion during primary rotation was 13.9 degrees (95% CI; 12.2-15.6) for the WAD group, 17.9 degrees (95% CI; 16.1-19.6) for the chronic neck pain group and 25.9 degrees (95% CI; 23.7-28.1) for the asymptomatic group. As expected, maximal cervical range of motion was significantly reduced among the WAD patients compared to both control groups. No group differences were found in maximal ROM-variability or joint position error. Altered movement patterns in the cervical spine were found for both pain groups, indicating changes in motor control strategies. The changes were not related to a history of neck trauma, nor to current pain, but more

  18. Evolution of motion uncertainty in rectal cancer: implications for adaptive radiotherapy

    NASA Astrophysics Data System (ADS)

    Kleijnen, Jean-Paul J. E.; van Asselen, Bram; Burbach, Johannes P. M.; Intven, Martijn; Philippens, Marielle E. P.; Reerink, Onne; Lagendijk, Jan J. W.; Raaymakers, Bas W.

    2016-01-01

    Reduction of motion uncertainty by applying adaptive radiotherapy strategies depends largely on the temporal behavior of this motion. To fully optimize adaptive strategies, insight into target motion is needed. The purpose of this study was to analyze stability and evolution in time of motion uncertainty of both the gross tumor volume (GTV) and clinical target volume (CTV) for patients with rectal cancer. We scanned 16 patients daily during one week, on a 1.5 T MRI scanner in treatment position, prior to each radiotherapy fraction. Single slice sagittal cine MRIs were made at the beginning, middle, and end of each scan session, for one minute at 2 Hz temporal resolution. GTV and CTV motion were determined by registering a delineated reference frame to time-points later in time. The 95th percentile of observed motion (dist95%) was taken as a measure of motion. The stability of motion in time was evaluated within each cine-MRI separately. The evolution of motion was investigated between the reference frame and the cine-MRIs of a single scan session and between the reference frame and the cine-MRIs of several days later in the course of treatment. This observed motion was then converted into a PTV-margin estimate. Within a one minute cine-MRI scan, motion was found to be stable and small. Independent of the time-point within the scan session, the average dist95% remains below 3.6 mm and 2.3 mm for CTV and GTV, respectively 90% of the time. We found similar motion over time intervals from 18 min to 4 days. When reducing the time interval from 18 min to 1 min, a large reduction in motion uncertainty is observed. A reduction in motion uncertainty, and thus the PTV-margin estimate, of 71% and 75% for CTV and tumor was observed, respectively. Time intervals of 15 and 30 s yield no further reduction in motion uncertainty compared to a 1 min time interval.

  19. Normal variation in sagittal spinal alignment parameters in adult patients: an EOS study using serial imaging.

    PubMed

    Hey, Hwee Weng Dennis; Tan, Kian Loong Melvin; Moorthy, Vikaesh; Lau, Eugene Tze-Chun; Lau, Leok-Lim; Liu, Gabriel; Wong, Hee-Kit

    2018-03-01

    To describe normal variations in sagittal spinal radiographic parameters over an interval period and establish physiological norms and guidelines for which these images should be interpreted. Data were prospectively collected from a continuous series of adult patients with first-episode mild low back pain presenting to a single institution. The sagittal parameters of two serial radiographic images taken 6-months apart were obtained with the EOS ® slot scanner. Measured parameters include CL, TK, TL, LL, PI, PT, SS, and end and apical vertebrae. Chi-squared test and Wilcoxon Signed Rank test were used to compare categorical and continuous variables, respectively. Sixty patients with a total of 120 whole-body sagittal X-rays were analysed. Mean age was 52.1 years (SD 21.2). Mean interval between the first and second X-rays was 126.2 days (SD 47.2). Small variations (< 1°) occur for all except PT (1.2°), CL (1.2°), and SVA (2.9 cm). Pelvic tilt showed significant difference between two images (p = 0.035). Subgroup analysis based on the time interval between X-rays, and between the first and second X-rays, did not show significant differences. Consistent findings were found for end and apical vertebrae of the thoracic and lumbar spine between the first and second X-rays for sagittal curve shapes. Radiographic sagittal parameters vary between serial images and reflect dynamism in spinal balancing. SVA and PT are predisposed to the widest variation. SVA has the largest variation between individuals of low pelvic tilt. Therefore, interpretation of these parameters should be patient specific and relies on trends rather than a one-time assessment.

  20. Simulation of Oscillatory Domain Wall Motion Driven by Spin Waves in Nanostrip with Perpendicular Magnetic Anisotropy

    NASA Astrophysics Data System (ADS)

    Lee, Shang Fan; Chang, Liang Juan; Spintronics Laboratory Team

    2014-03-01

    We numerically investigate the spin waves (SW) induced domain wall (DW) oscillatory motion in a nanostrip with perpendicular magnetic anisotropy by means of micromagnetic simulation. SW carries spin angular momentum and can interact with DWs via Spin Transfer Torque (STT). Propagating SW can drive a DW motion depending on the in-plane tilt angle φ of the wall magnetization. We calculate the instantaneous velocity of DWs as a function of φwith different SW frequency f. We find that the DW motion under propagating SW depends not only on the frequencies f, but also on the in-plane tilt angle φ. The nanostrip considered is 50 nm wide and 4000 nm long. A DW at the center is subjected to a SW source 500 nm apart on the left with amplitude in the transverse direction and varying frequency f. The motions of the DW induced by the SW are accompanied by in-plane rotation of magnetization of DW. Once rotated by 90 degrees, the DW shows a backward motion towards the SW source. The oscillatory amplitude and frequency of the DW motion is analyzed. A phase diagram will be presented. This study provides new perspectives for the control and manipulation of DW in a nanostrip. Financial supports by Academia Sinica and National Science Council are acknowledged

  1. Variations of cervical lordosis and head alignment after pedicle subtraction osteotomy surgery for sagittal imbalance.

    PubMed

    Cecchinato, R; Langella, F; Bassani, R; Sansone, V; Lamartina, C; Berjano, P

    2014-10-01

    The variations of the cervical lordosis after correction of sagittal imbalance have been poorly studied. The aim of our study is to verify whether the cervical lordosis changes after surgery for sagittal imbalance. Thirty-nine patients were included in the study. Cervical, thoracic and lumbar spine, pelvic and lower-limb sagittal parameters were recorded. The cranial alignment was measured by the newly described Cranial Slope. The global cervical kyphosis (preop -43°, postop -31.5°) and the upper (preop -24.1°, postop -20.2°) and lower cervical kyphosis (preop -18.1°, postop -9.2°) were significantly reduced after surgical realignment of the trunk. A positive linear correlation was observed between the changes in T1 slope and the lower cervical lordosis, and between T1 slope and the global cervical alignment. The cervical lordosis is reduced by surgical correction of malalignment of the trunk, suggesting an adaptive role to maintain the head's neutral position.

  2. Impact of Cervical Sagittal Alignment on Axial Neck Pain and Health-related Quality of Life After Cervical Laminoplasty in Patients With Cervical Spondylotic Myelopathy or Ossification of the Posterior Longitudinal Ligament: A Prospective Comparative Study.

    PubMed

    Fujiwara, Hiroyasu; Oda, Takenori; Makino, Takahiro; Moriguchi, Yu; Yonenobu, Kazuo; Kaito, Takashi

    2018-05-01

    This is prospective observational study. To prospectively investigate the correlation among axial neck pain; a newly developed patient-based quality of life outcome measure, the Japanese Orthopaedic Association Cervical Myelopathy Evaluation Questionnaire (JOACMEQ); and cervical sagittal alignment after open-door laminoplasty for cervical myelopathy. Many studies have focused on postoperative axial neck pain after laminoplasty. However, the correlation among cervical sagittal alignment, neck pain, and JOACMEQ has not been investigated. In total, 57 consecutive patients treated by open-door laminoplasty for cervical myelopathy were included (mean age, 63.7 y; 15 women and 42 men) and divided into 2 groups according to diagnosis [cervical spondylotic myelopathy (CSM) group: 35 patients, and ossification of the posterior longitudinal ligament (OPLL) group: 22 patients]. JOA score, a subdomain of cervical spine function (CSF) in the JOACMEQ, and the visual analog scale for axial neck pain were assessed preoperatively and 12 months postoperatively. Radiographic cervical sagittal parameters were measured by C2 sagittal vertical axis (C2 SVA), C2-C7 lordosis, C7 sagittal slope (C7 slope), and range of motion. C2 SVA values in both groups shifted slightly anteriorly between preoperative and 12-month postoperative measurements (CSM: +19.7±10.9 mm; OPLL: +22.1±13.4 mm vs. CSM: +23.2±16.1 mm; OPLL: +28.7±15.4 mm, respectively). Postoperative axial neck pain in the OPLL group showed strong negative correlations with C2 SVA and C7 slope. Strong negative correlations were found between axial neck pain and CSF in both the preoperative CSM and OPLL groups (CSM: r=-0.45, P=0.01; OPLL: r=-0.61, P<0.01) and between axial neck pain and CSF in the postoperative OPLL group (r=-0.51, P=0.05). This study demonstrated a significant negative correlation between neck pain and CSF in both the CSM and OPLL groups preoperatively and in the OPLL group postoperatively. Radiographic

  3. The transverse ligament as a landmark for tibial sagittal insertions of the anterior cruciate ligament: a cadaveric study.

    PubMed

    Kongcharoensombat, Wirat; Ochi, Mitsuo; Abouheif, Mohamed; Adachi, Nobuo; Ohkawa, Shingo; Kamei, Goki; Okuhara, Atushi; Shibuya, Hoyatoshi; Niimoto, Takuya; Nakasa, Tomoyuki; Nakamae, Atsuo; Deie, Masataka

    2011-10-01

    The purpose of this study was to determine the relation between the position of the transverse ligament, the anterior edge of the anterior cruciate ligament (ACL) tibial footprint, and the center of the ACL tibial insertion. We used arthroscopy for localization of the anatomic landmarks, followed by insertions of guide pins under direct visualization, and then the position of these guide pins was checked on plain lateral radiographs. The transverse ligament and the anterior aspect of the ACL tibial footprint were identified by arthroscopy in 20 unpaired cadaveric knees (10 left and 10 right). Guide pins were inserted with tibial ACL adapter drill guides under direct observation at the transverse ligament, the anterior aspect of the tibial footprint, and the center of tibial insertion of the ACL. Then, plain lateral radiographs of specimens were taken. The Amis and Jakob line was used to define the attachment of the ACL tibial insertion and the transverse ligament. A sagittal percentage of the location of the insertion point was determined and calculated from the anterior margin of the tibia in the anteroposterior direction. The transverse ligament averaged 21.20% ± 4.1%, the anterior edge of the ACL tibial insertion averaged 21.60% ± 4.0%, and the center of the ACL tibial insertion averaged 40.30% ± 4.8%. There were similar percent variations between the transverse ligament and the anterior edge of the ACL tibial insertion, with no significant difference between them (P = .38). Intraobserver and interobserver reliability was high, with small standard errors of measurement. This study shows that the transverse ligament coincides with the anterior edge of the ACL tibial footprint in the sagittal plane. The transverse ligament can be considered as a new landmark for tibial tunnel positioning during anatomic ACL reconstruction. Copyright © 2011 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  4. Motion illusion – evidence towards human vestibulo-thalamic projections

    PubMed Central

    Shaikh, Aasef G.; Straumann, Dominik; Palla, Antonella

    2017-01-01

    Introduction Contemporary studies speculated that cerebellar network responsible for motion perception projects to the cerebral cortex via vestibulo-thalamus. Here we sought for the physiological properties of vestibulo-thalamic pathway responsible for the motion perception. Methods Healthy subjects and the patient with focal vestibulo-thalamic lacunar stroke spun a hand-held rheostat to approximate the value of perceived angular velocity during whole-body passive earth-vertical axis rotations in yaw plane. Vestibulo-ocular reflex was simultaneously measured with high-resolution search coils (paradigm 1). In primates the vestibulo-thalamic projections remain medial and then dorsomedial to the subthalamus. Therefore the paradigm 2 assessed the effects of high-frequency subthalamic nucleus electrical stimulation through the medial and caudal deep brain stimulation electrode in five subjects with Parkinson’s disease. Results Paradigm 1 discovered directional mismatch of perceived rotation in a patient with vestiblo-thalamic lacune. There was no such mismatch in vestibulo-ocular reflex. Healthy subjects did not have such directional discrepancy of perceived motion. The results confirmed that perceived angular motion is relayed through the thalamus. Stimulation through medial and caudal-most electrode of subthalamic deep brain stimulator in paradigm 2 resulted in perception of rotational motion in the horizontal semicircular canal plane. One patient perceived riding a swing, a complex motion, possibly the combination of vertical canal and otolith derived signals representing pitch and fore-aft motion respectively. Conclusion The results examined physiological properties of the vestibulo-thalamic pathway that passes in proximity to the subthalamic nucleus conducting pure semicircular canal signals and convergent signals from the semicircular canals and the otoliths. PMID:28127679

  5. [CORRELATION OF LUMBAR FACET JOINT DEGENERATION AND SPINE-PELVIC SAGITTAL BALANCE].

    PubMed

    Lo, Xin; Zhang, Bin; Liu, Yuan; Dai, Min

    2015-08-01

    To investigate the relationship between lumbar facet joint degeneration of each segment and spine-pelvic sagittal balance parameters. A retrospective analysis was made the clinical data of 120 patients with lumbar degenerative disease, who accorded with the inclusion criteria between June and November 2014. There were 58 males and 62 females with an average age of 53 years (range, 24-77 years). The disease duration ranged from 3 to 96 months (mean, 6.6 months). Affected segments included L3,4 in 32 cases, L4,5 in 47 cases, and L5, S1 in 52 cases. The CT and X-ray films of the lumbar vertebrae were taken. The facet joint degeneration was graded based on the grading system of Pathria. The spine-pelvic sagittal balance parameters were measured, including lumbar lordosis (LL), upper lumbar lordosis (ULL), lower lumbar lordosis (LLL), pelvic incidence (PI), pelvic tilt (PT), and sacral slope (SS). According to normal range of PI, the patients were divided into 3 groups: group A (PI was less than normal range), group B (PI was within normal range), and group C (PI was more than normal range). The facet joint degeneration was compared; according to the facet joint degeneration degree, the patients were divided into group N (mild degeneration group) and group M (serious degeneration group) to observe the relationship of lumbar facet joint degeneration of each segment and spine-pelvic sagittal balance parameters. At L4,5 and L5, S1, facet joint degeneration showed significant difference among groups A, B, and C (P < 0.05), more serious facet joint degeneration was observed in group C; no significant difference was found in facet joint degeneration at L3,4 (P > 0.05). There was no significant difference in the other spine-pelvic sagittal balance parameters between groups N and M at each segment (P > 0.05) except for PT (P < 0.05). PI of more than normal range may lead to or aggravate lumbar facet joint degeneration at L4,5 and L5, Si; PT and PI are significantly associated

  6. Comparison of ultrasound imaging in transverse median and parasagittal oblique planes for thoracic epidurals: A pilot study.

    PubMed

    Khemka, Rakhi; Rastogi, Sonal; Desai, Neha; Chakraborty, Arunangshu; Sinha, Subir

    2016-06-01

    The use of ultrasound (US) scanning to assess the depth of epidural space to prevent neurological complications is established in current practice. In this study, we hypothesised that pre-puncture US scanning for estimating the depth of epidural space for thoracic epidurals is comparable between transverse median (TM) and paramedian sagittal oblique (PSO) planes. We performed pre-puncture US scanning in 32 patients, posted for open abdominal surgeries. The imaging was done to detect the depth of epidural space from skin (ultrasound depth [UD]) and needle insertion point, in parasagittal oblique plane in PSO group and transverse median plane in TM group. Subsequently, epidural space was localised through the predetermined insertion point by 'loss of resistance' technique and needle depth (ND) to the epidural space was marked. Correlation between the UD and actual ND was calculated and concordance correlation coefficient (CCC) was used to determine the degree of agreement between UD and ND in both the planes. The primary outcome, i.e., the comparison between UD and ND, done using Pearson correlation coefficient, was 0.99 in both PSO and TM groups, and the CCC was 0.93 (95% confidence interval [95% CI]: 0.81-0.97) and 0.90 (95% CI: 0.74-0.96) in PSO and TM groups respectively, which shows a strong positive association between UD and ND in both groups. The use of pre-puncture US scanning in both PSO and TM planes for estimating the depth of epidural space at the level of mid- and lower-thoracic spine is comparable.

  7. Differences in lumbar spine and lower extremity kinematics during a step down functional task in people with and people without low back pain.

    PubMed

    Hernandez, Alejandra; Gross, Karlie; Gombatto, Sara

    2017-08-01

    When functional movements are impaired in people with low back pain, they may be a contributing factor to chronicity and recurrence. The purpose of the current study was to examine lumbar spine, pelvis, and lower extremity kinematics during a step down functional task between people with and without a history of low back pain. A 3-dimensional motion capture system was used to analyze kinematics during a step down task. Total excursion of the lumbar spine, pelvis, and lower extremity segments in each plane were calculated from the start to end of the task. Separate analysis of variance tests (α=0.05) were conducted to determine the effect of independent variables of group and plane on lumbar spine, pelvis, and lower extremity kinematics. An exploratory analysis was conducted to examine kinematic differences among movement-based low back pain subgroups. Subjects with low back pain displayed less lumbar spine movement than controls across all three planes of movement (P-values=0.001-0.043). This group difference was most pronounced in the sagittal plane. For the lower extremity, subjects with low back pain displayed more frontal and axial plane knee movement than controls (P-values=0.001). There were no significant differences in kinematics among movement-based low back pain subgroups. People with low back pain displayed less lumbar region movement in the sagittal plane and more off-plane knee movements than the control group during a step down task. Clinicians can use this information when assessing lumbar spine and lower extremity movement during functional tasks, with the goal of developing movement-based interventions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Motion of Discrete Interfaces Through Mushy Layers

    NASA Astrophysics Data System (ADS)

    Braides, Andrea; Solci, Margherita

    2016-08-01

    We study the geometric motion of sets in the plane derived from the homogenization of discrete ferromagnetic energies with weak inclusions. We show that the discrete sets are composed by a `bulky' part and an external `mushy region' composed only of weak inclusions. The relevant motion is that of the bulky part, which asymptotically obeys to a motion by crystalline mean curvature with a forcing term, due to the energetic contribution of the mushy layers, and pinning effects, due to discreteness. From an analytical standpoint, it is interesting to note that the presence of the mushy layers implies only a weak and not strong convergence of the discrete motions, so that the convergence of the energies does not commute with the evolution. From a mechanical standpoint it is interesting to note the geometrical similarity of some phenomena in the cooling of binary melts.

  9. A Biomechanical Investigation of Selected Lumbopelvic Hip Tests: Implications for the Examination of Walking.

    PubMed

    Bailey, Robert Walter; Richards, Jim; Selfe, James

    2016-01-01

    The purpose of this study was to compare lumbopelvic hip ranges of motion during the Trendelenburg, Single Leg Squat, and Corkscrew Tests to walking and to describe the 3-dimensional lumbopelvic hip motion during the tests. This may help clinicians to select appropriate tests when examining gait. An optoelectronic movement analysis tracking system was used to assess the lumbopelvic hip region of 14 healthy participants while performing Trendelenburg, Single Leg Squat, and Corkscrew Tests and walking. The lumbopelvic hip 3-dimensional ranges of movement for the clinical tests were compared with walking using a repeated-measures analysis of variance with pairwise comparisons. No significant differences were found between the pelvic obliquity during the Trendelenburg Test and walking (Trendelenburg Test: L, 11.3° ± 4.8°, R, 10.8° ± 5.0° vs walk: L, 8.3° ± 4.8°, R 8.3° ± 5.1°, L, P = .143, R, P = .068). Significant differences were found between the hip sagittal plane range of movement during the Single Leg Squat and walking (Single Leg Squat: L, 44.2° ±13.7°, R, 41.7° ±10.9° vs walk: 38.6° ±7.0°, R 37.8° ±5.1°, P < .05), the hip coronal plane range of movement (Single Leg Squat: L, 9.1° ±5.8°, R, 9.0° ± 4.6° vs walk: L, 9.4° ± 2.3°, R 9.5° ± 2.0°, P < .05), and the hip coronal plane range of movement during the Corkscrew Test and walking (Corkscrew: L, 5.7° ±3.3°, R, 5.7° ±3.2° vs walk: L, 9.4° ± 2.3°, R 9.5° ± 2.0°, P < .05). The results of the present study showed that, in young asymptomatic participants with no known lumbopelvic hip pathology, the pelvic obliquity during the Trendelenburg Test and walking is similar. During the Single Leg Squat, the hip moved more in the sagittal plane and less in the coronal plane when compared with walking. There was more movement in the hip transverse plane movement during the Corkscrew Test than during walking. These results suggest that for the Trendelenburg Test to be

  10. Management options of non-syndromic sagittal craniosynostosis.

    PubMed

    Lee, Bryan S; Hwang, Lee S; Doumit, Gaby D; Wooley, Joseph; Papay, Francis A; Luciano, Mark G; Recinos, Violette M

    2017-05-01

    There have been various effective surgical procedures for the treatment of non-syndromic sagittal craniosynostosis, but no definitive guidelines for management have been established. We conducted a study to elucidate the current state of practice and establish a warranted standard of care. An Internet-based study was sent to 180 pediatric neurosurgeons across the country and 102 craniofacial plastic surgeons in fourteen different countries, to collect data for primary indication for surgical management, preference for timing and choice of surgery, and pre-, peri-, and post-operative management options. The overall response rate from both groups was 32% (n=90/284). Skull deformity was the primary indication for surgical treatment in patients without signs of hydrocephalus for both neurosurgeons and craniofacial surgeons (80% and 63%, respectively). Open surgical management was most commonly performed at six months of age by neurosurgeons (46%) and also by craniofacial surgeons (35%). Open surgical approach was favored for patients younger than four months of age by neurosurgeons (50%), but endoscopic approach was favored by craniofacial surgeons (35%). When performing an open surgical intervention, most neurosurgeons preferred pi or reversed pi procedure (27%), whereas total cranial vault remodeling was the most commonly performed procedure by craniofacial surgeons (37%). The data demonstrated a discrepancy in the treatment options for non-syndromic sagittal craniosynostosis. By conducting/comparing a wide survey to collect consolidative data from both groups of pediatric neurosurgeons and craniofacial plastic surgeons, we can attempt to facilitate the establishment of standard of care. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Path integration on the hyperbolic plane with a magnetic field

    NASA Astrophysics Data System (ADS)

    Grosche, Christian

    1990-08-01

    In this paper I discuss the path integrals on three formulations of hyperbolic geometry, where a constant magnetic field B is included. These are: the pseudosphere Λ2, the Poincaré disc D, and the hyperbolic strip S. The corresponding path integrals can be reformulated in terms of the path integral for the modified Pöschl-Teller potential. The wave-functions and the energy spectrum for the discrete and continuous part of the spectrum are explicitly calculated in each case. First the results are compared for the limit B → 0 with previous calculations and second with the path integration on the Poincaré upper half-plane U. This work is a continuation of the path integral calculations for the free motion on the various formulations on the hyperbolic plane and for the case of constant magnetic field on the Poincaré upper half-plane U.

  12. An MR-based Model for Cardio-Respiratory Motion Compensation of Overlays in X-Ray Fluoroscopy

    PubMed Central

    Fischer, Peter; Faranesh, Anthony; Pohl, Thomas; Maier, Andreas; Rogers, Toby; Ratnayaka, Kanishka; Lederman, Robert; Hornegger, Joachim

    2017-01-01

    In X-ray fluoroscopy, static overlays are used to visualize soft tissue. We propose a system for cardiac and respiratory motion compensation of these overlays. It consists of a 3-D motion model created from real-time MR imaging. Multiple sagittal slices are acquired and retrospectively stacked to consistent 3-D volumes. Slice stacking considers cardiac information derived from the ECG and respiratory information extracted from the images. Additionally, temporal smoothness of the stacking is enhanced. Motion is estimated from the MR volumes using deformable 3-D/3-D registration. The motion model itself is a linear direct correspondence model using the same surrogate signals as slice stacking. In X-ray fluoroscopy, only the surrogate signals need to be extracted to apply the motion model and animate the overlay in real time. For evaluation, points are manually annotated in oblique MR slices and in contrast-enhanced X-ray images. The 2-D Euclidean distance of these points is reduced from 3.85 mm to 2.75 mm in MR and from 3.0 mm to 1.8 mm in X-ray compared to the static baseline. Furthermore, the motion-compensated overlays are shown qualitatively as images and videos. PMID:28692969

  13. Measuring attention using induced motion.

    PubMed

    Gogel, W C; Sharkey, T J

    1989-01-01

    Attention was measured by means of its effect upon induced motion. Perceived horizontal motion was induced in a vertically moving test spot by the physical horizontal motion of inducing objects. All stimuli were in a frontoparallel plane. The induced motion vectored with the physical motion to produce a clockwise or counterclockwise tilt in the apparent path of motion of the test spot. Either a single inducing object or two inducing objects moving in opposite directions were used. Twelve observers were instructed to attend to or to ignore the single inducing object while fixating the test object and, when the two opposing inducing objects were present, to attend to one inducing object while ignoring the other. Tracking of the test spot was visually monitored. The tilt of the path of apparent motion of the test spot was measured by tactile adjustment of a comparison rod. It was found that the measured tilt was substantially larger when the single inducing object was attended rather than ignored. For the two inducing objects, attending to one while ignoring the other clearly increased the effectiveness of the attended inducing object. The results are analyzed in terms of the distinction between voluntary and involuntary attention. The advantages of measuring attention by its effect on induced motion as compared with the use of a precueing procedure, and a hypothesis regarding the role of attention in modifying perceived spatial characteristics are discussed.

  14. Two-dimensional tracking of ncd motility by back focal plane interferometry.

    PubMed Central

    Allersma, M W; Gittes, F; deCastro, M J; Stewart, R J; Schmidt, C F

    1998-01-01

    A technique for detecting the displacement of micron-sized optically trapped probes using far-field interference is introduced, theoretically explained, and used to study the motility of the ncd motor protein. Bead motions in the focal plane relative to the optical trap were detected by measuring laser intensity shifts in the back-focal plane of the microscope condenser by projection on a quadrant diode. This detection method is two-dimensional, largely independent of the position of the trap in the field of view and has approximately 10-micros time resolution. The high resolution makes it possible to apply spectral analysis to measure dynamic parameters such as local viscosity and attachment compliance. A simple quantitative theory for back-focal-plane detection was derived that shows that the laser intensity shifts are caused primarily by a far-field interference effect. The theory predicts the detector response to bead displacement, without adjustable parameters, with good accuracy. To demonstrate the potential of the method, the ATP-dependent motility of ncd, a kinesin-related motor protein, was observed with an in vitro bead assay. A fusion protein consisting of truncated ncd (amino acids 195-685) fused with glutathione-S-transferase was adsorbed to silica beads, and the axial and lateral motions of the beads along the microtubule surface were observed with high spatial and temporal resolution. The average axial velocity of the ncd-coated beads was 230 +/- 30 nm/s (average +/- SD). Spectral analysis of bead motion showed the increase in viscous drag near the surface; we also found that any elastic constraints of the moving motors are much smaller than the constraints due to binding in the presence of the nonhydrolyzable nucleotide adenylylimidodiphosphate. PMID:9533719

  15. Analysis of motion during the breast clamping phase of mammography

    PubMed Central

    McEntee, Mark F; Mercer, Claire; Kelly, Judith; Millington, Sara; Hogg, Peter

    2016-01-01

    Objective: To measure paddle motion during the clamping phase of a breast phantom for a range of machine/paddle combinations. Methods: A deformable breast phantom was used to simulate a female breast. 12 mammography machines from three manufacturers with 22 flexible and 20 fixed paddles were evaluated. Vertical motion at the paddle was measured using two calibrated linear potentiometers. For each paddle, the motion in millimetres was recorded every 0.5 s for 40 s, while the phantom was compressed with 80 N. Independent t-tests were used to determine differences in paddle motion between flexible and fixed, small and large, GE Senographe Essential (General Electric Medical Systems, Milwaukee, WI) and Hologic Selenia Dimensions paddles (Hologic, Bedford, MA). Paddle tilt in the medial–lateral plane for each machine/paddle combination was calculated. Results: All machine/paddle combinations demonstrate highest levels of motion during the first 10 s of the clamping phase. The least motion is 0.17 ± 0.05 mm/10 s (n = 20) and the most motion is 0.51 ± 0.15 mm/10 s (n = 80). There is a statistical difference in paddle motion between fixed and flexible (p < 0.001), GE Senographe Essential and Hologic Selenia Dimensions paddles (p < 0.001). Paddle tilt in the medial–lateral plane is independent of time and varied from 0.04 ° to 0.69 °. Conclusion: All machine/paddle combinations exhibited motion and tilting, and the extent varied with machine and paddle sizes and types. Advances in knowledge: This research suggests that image blurring will likely be clinically insignificant 4 s or more after the clamping phase commences. PMID:26739577

  16. Intrinsic and Extrinsic Contributions to Seated Balance in the Sagittal and Coronal Planes: Implications for Trunk Control After Spinal Cord Injury.

    PubMed

    Audu, Musa L; Triolo, Ronald J

    2015-08-01

    The contributions of intrinsic (passive) and extrinsic (active) properties of the human trunk, in terms of the simultaneous actions about the hip and spinal joints, to the control of sagittal and coronal seated balance were examined. Able-bodied (ABD) and spinal-cord-injured (SCI) volunteers sat on a moving platform which underwent small amplitude perturbations in the anterior-posterior (AP) and medial-lateral (ML) directions while changes to trunk orientation were measured. A linear parametric model that related platform movement to trunk angle was fit to the experimental data by identifying model parameters in the time domain. The results showed that spinal cord injury leads to a systematic reduction in the extrinsic characteristics, while most of the intrinsic characteristics were rarely affected. In both SCI and ABD individuals, passive characteristics alone were not enough to maintain seated balance. Passive stiffness in the ML direction was almost 3 times that in the AP direction, making more extrinsic mechanisms necessary for balance in the latter direction. Proportional and derivative terms of the extrinsic model made the largest contribution to the overall output from the active system, implying that a simple proportional plus derivative (PD) controller structure will suffice for restoring seated balance after spinal cord injury.

  17. The coordinated movement of the spine and pelvis during running.

    PubMed

    Preece, Stephen J; Mason, Duncan; Bramah, Christopher

    2016-02-01

    Previous research into running has demonstrated consistent patterns in pelvic, lumbar and thoracic motions between different human runners. However, to date, there has been limited attempt to explain why observed coordination patterns emerge and how they may relate to centre of mass (CoM) motion. In this study, kinematic data were collected from the thorax, lumbar spine, pelvis and lower limbs during over ground running in n=28 participants. These data was subsequently used to develop a theoretical understanding of the coordination of the spine and pelvis in all three body planes during the stance phase of running. In the sagittal plane, there appeared to be an antiphase coordinate pattern which may function to increase femoral inclination at toe off whilst minimising anterior-posterior accelerations of the CoM. In the medio-lateral direction, CoM motion appears to facilitate transition to the contralateral foot. However, an antiphase coordination pattern was also observed, most likely to minimise unnecessary accelerations of the CoM. In the transverse plane, motion of the pelvis was observed to lag slightly behind that of the thorax. However, it is possible that the close coupling between these two segments facilitates the thoracic rotation required to passively drive arm motion. This is the first study to provide a full biomechanical rationale for the coordination of the spine and pelvis during human running. This insight should help clinicians develop an improved understanding of how spinal and pelvic motions may contribute to, or result from, common running injuries. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. A novel method to correct for pitch and yaw patient setup errors in helical tomotherapy.

    PubMed

    Boswell, Sarah A; Jeraj, Robert; Ruchala, Kenneth J; Olivera, Gustavo H; Jaradat, Hazim A; James, Joshua A; Gutierrez, Alonso; Pearson, Dave; Frank, Gary; Mackie, T Rock

    2005-06-01

    An accurate means of determining and correcting for daily patient setup errors is important to the cancer outcome in radiotherapy. While many tools have been developed to detect setup errors, difficulty may arise in accurately adjusting the patient to account for the rotational error components. A novel, automated method to correct for rotational patient setup errors in helical tomotherapy is proposed for a treatment couch that is restricted to motion along translational axes. In tomotherapy, only a narrow superior/inferior section of the target receives a dose at any instant, thus rotations in the sagittal and coronal planes may be approximately corrected for by very slow continuous couch motion in a direction perpendicular to the scanning direction. Results from proof-of-principle tests indicate that the method improves the accuracy of treatment delivery, especially for long and narrow targets. Rotational corrections about an axis perpendicular to the transverse plane continue to be implemented easily in tomotherapy by adjustment of the initial gantry angle.

  19. The association between whole body sagittal balance and risk of falls among elderly patients seeking treatment for back pain.

    PubMed

    Kim, J; Hwang, J Y; Oh, J K; Park, M S; Kim, S W; Chang, H; Kim, T-H

    2017-05-01

    The objective of this study was to assess the association between whole body sagittal balance and risk of falls in elderly patients who have sought treatment for back pain. Balanced spinal sagittal alignment is known to be important for the prevention of falls. However, spinal sagittal imbalance can be markedly compensated by the lower extremities, and whole body sagittal balance including the lower extremities should be assessed to evaluate actual imbalances related to falls. Patients over 70 years old who visited an outpatient clinic for back pain treatment and underwent a standing whole-body radiograph were enrolled. Falls were prospectively assessed for 12 months using a monthly fall diary, and patients were divided into fallers and non-fallers according to the history of falls. Radiological parameters from whole-body radiographs and clinical data were compared between the two groups. A total of 144 patients (120 female patients and 24 male patients) completed a 12-month follow-up for assessing falls. A total of 31 patients (21.5%) reported at least one fall within the 12-month follow-up. In univariate logistic regression analysis, the risk of falls was significantly increased in older patients and those with more medical comorbidities, decreased lumbar lordosis, increased sagittal vertical axis, and increased horizontal distance between the C7 plumb line and the centre of the ankle (C7A). Increased C7A was significantly associated with increased risk of falls even after multivariate adjustment. Whole body sagittal balance, measured by the horizontal distance between the C7 plumb line and the centre of the ankle, was significantly associated with risk of falls among elderly patients with back pain. Cite this article : J. Kim, J. Y. Hwang, J. K. Oh, M. S. Park, S. W. Kim, H. Chang, T-H. Kim. The association between whole body sagittal balance and risk of falls among elderly patients seeking treatment for back pain. Bone Joint Res 2017;6:-344. DOI: 10

  20. Fracture of fusion mass after hardware removal in patients with high sagittal imbalance.

    PubMed

    Sedney, Cara L; Daffner, Scott D; Stefanko, Jared J; Abdelfattah, Hesham; Emery, Sanford E; France, John C

    2016-04-01

    As spinal fusions become more common and more complex, so do the sequelae of these procedures, some of which remain poorly understood. The authors report on a series of patients who underwent removal of hardware after CT-proven solid fusion, confirmed by intraoperative findings. These patients later developed a spontaneous fracture of the fusion mass that was not associated with trauma. A series of such patients has not previously been described in the literature. An unfunded, retrospective review of the surgical logs of 3 fellowship-trained spine surgeons yielded 7 patients who suffered a fracture of a fusion mass after hardware removal. Adult patients from the West Virginia University Department of Orthopaedics who underwent hardware removal in the setting of adjacent-segment disease (ASD), and subsequently experienced fracture of the fusion mass through the uninstrumented segment, were studied. The medical records and radiological studies of these patients were examined for patient demographics and comorbidities, initial indication for surgery, total number of surgeries, timeline of fracture occurrence, risk factors for fracture, as well as sagittal imbalance. All 7 patients underwent hardware removal in conjunction with an extension of fusion for ASD. All had CT-proven solid fusion of their previously fused segments, which was confirmed intraoperatively. All patients had previously undergone multiple operations for a variety of indications, 4 patients were smokers, and 3 patients had osteoporosis. Spontaneous fracture of the fusion mass occurred in all patients and was not due to trauma. These fractures occurred 4 months to 4 years after hardware removal. All patients had significant sagittal imbalance of 13-15 cm. The fracture level was L-5 in 6 of the 7 patients, which was the first uninstrumented level caudal to the newly placed hardware in all 6 of these patients. Six patients underwent surgery due to this fracture. The authors present a case series of 7